WO2008018169A1 - Dispositif de palier magnétique intégré dans un moteur - Google Patents
Dispositif de palier magnétique intégré dans un moteur Download PDFInfo
- Publication number
- WO2008018169A1 WO2008018169A1 PCT/JP2007/000827 JP2007000827W WO2008018169A1 WO 2008018169 A1 WO2008018169 A1 WO 2008018169A1 JP 2007000827 W JP2007000827 W JP 2007000827W WO 2008018169 A1 WO2008018169 A1 WO 2008018169A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- magnetic bearing
- main shaft
- turbine
- bearing device
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C39/00—Relieving load on bearings
- F16C39/06—Relieving load on bearings using magnetic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
- F16C19/546—Systems with spaced apart rolling bearings including at least one angular contact bearing
- F16C19/547—Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/083—Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/09—Structural association with bearings with magnetic bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2362/00—Apparatus for lighting or heating
- F16C2362/52—Compressors of refrigerators, e.g. air-conditioners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
Definitions
- the present invention relates to a magnetic bearing device used for a turbine unit for air cycle refrigeration cooling, and more particularly, to use a rolling bearing and a magnetic bearing in combination, and the magnetic bearing supports one or both of an axial load and a bearing preload.
- the present invention relates to a motor-integrated magnetic bearing device.
- the air cycle refrigeration cooling system uses air as a refrigerant, and thus is less energy efficient than using chlorofluorocarbon, ammonia gas, or the like, but is preferable in terms of environmental protection. Also, in facilities where refrigerant air can be directly blown in, such as refrigerated warehouses, there is a possibility that the total cost may be reduced by omitting internal fans and defrosters, etc.
- a cycle refrigeration cooling system has been proposed (for example, Patent Document 1).
- Peripheral devices include compressors and expansion turbines.
- Patent Document 1 a turbine unit in which a compressor wheel and an expansion turbine wheel are attached to a common main shaft is used.
- Patent Document 3 Although it is a proposal for a gas turbine engine, rolling for supporting the main shaft In order to avoid the thrust load acting on the rolling bearing from shortening the bearing life, it has been proposed to reduce the thrust load acting on the rolling bearing with a thrust magnetic bearing (Patent Document 3).
- Patent Document 1 Japanese Patent No. 2 6 2 3 2 0 2
- Patent Document 2 Japanese Patent Laid-Open No. 7-9 1 7 60
- Patent Document 3 Japanese Patent Laid-Open No. 8_2 6 1 2 3 7
- the turbine unit in which the compressor wheel and the expansion turbine wheel are attached to the common main shaft as described above is used.
- This turbine unit improves the efficiency of the air cycle refrigerator by driving the compressor wheel with the power generated by the expansion turbine.
- Magnetic bearing type turbine of Patent Document 2 ⁇ The main shaft is a magnetic shaft like a compressor.
- journal bearings and thrust bearings that consist of bearings journal bearings do not have an axial restriction function. For this reason, if there is an unstable factor in the control of the thrust bearing, it is difficult to perform stable high-speed rotation with a small gap between the impeller and the diffuser. In the case of magnetic bearings, there is also a problem of contact when the power is stopped.
- This motor-integrated magnetic bearing device is used in an air cycle refrigeration cooling turbine unit in which a compressor impeller 4 6a of a compressor 4 6 and a turbine impeller 4 7a of an expansion turbine 47 are attached to both ends of a main shaft 53.
- the radial load of the main shaft 53 is rolled, and the axial loads are supported by the electromagnets 57 with the bearings 55, 56, respectively, and the driving force by the motor 68 provided coaxially with the main shaft 53 and the turbine impeller 4 7a
- the compressor impeller 4 6 a is driven to rotate with the driving force of.
- the electromagnet 5 7 supporting the axial load is disposed on the spindle housing 6 4 so as to face the two thrust plates 5 3 a and 5 3 b which are provided perpendicularly and coaxially to the main shaft 53 and separated in the axial direction in a non-contact manner. It is installed and controlled by the magnetic bearing controller 5 9 according to the output of the sensor 5 8 that detects the axial force.
- the motor 68 is of an axial gap type.
- the motor rotor 6 8 a is formed on the two thrust plates 5 3 a, 5 3 b, and the motor rotor 6 8 is formed in a space between the motor rotors 6 8 a.
- Motor stage 6 8 b is arranged so as to face 8 a in the axial direction.
- the motor rotor 68a is configured by arranging permanent magnets 68aa arranged at equal pitches in the circumferential direction on one side of the thrust plates 53a, 53b facing the motor stator 68b.
- the other side facing the electromagnet 57 is an electromagnet target.
- the permanent magnet 68 aa is prevented from scattering by flanges 53 aa and 53 ba formed on the outer diameter portions of the thrust plates 53 a and 53 b.
- the magnetic poles are set to be different from each other.
- Motor stator 6 8 b is the left and right motor rotor 6 8 a
- a plurality of concentrated winding type motor coils 6 8 ba are installed in the spindle housing 64 so as to face the permanent magnet 6 8 aa mounting surface in a non-contact manner.
- the motor coil 6 8 ba is a coreless coil with a hollow inside the coil.
- the motor 68 is controlled by a motor controller 69, independently of the electromagnet 57.
- the rigidity value of the rigid panel formed by the rolling bearings 5 5 and 5 6 and the rolling bearing support system is formed by the electromagnet 5 7 and the motor 6 8. It is set to be greater than the negative composite value of the composite panel.
- the thruster applied to the main shaft 53 is supported by the electromagnet 57.
- the acting thrust force can be reduced.
- the small gap between each impeller 4 6 a, 4 7 a and the housing 4 6 b, 4 7 b can be kept constant, and the long-term durability of the rolling bearings 5 5, 5 6 against the thrust load Can be improved.
- the rigidity value of the rigid panel formed by the rolling bearings 55, 56 and the rolling bearing support system is greater than the negative combined value of the combined panel formed by the electromagnet 57 and the motor 68. Therefore, even if the motor 68 operates at a high load and an excessive axial load is applied, the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, and The circuit configuration of the controller 59 can be simplified.
- the motor 68 has a coil end portion of the motor stator 68b as a thrust plate 53a. , 5 3 b is formed outside the outer diameter, so when the main shaft 53 is rotated at a high speed, the iron loss in the motor rotor 6 8 a is large, and the motor rotor 6 8 a is heated to become a permanent magnet. There is a problem that 6 8 aa is thermally demagnetized.
- the purpose of the present invention is to enable stable control even when the motor operates at a high load and an excessive axial load is applied, simplify the controller configuration, and generate heat in the motor rotor. It is an object of the present invention to provide a motor-integrated magnetic bearing device capable of rotating a main shaft at a high speed in a suppressed state.
- a motor-body-type magnetic bearing device of the present invention is a motor-integrated magnetic bearing device that uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supporting a radial load, and the magnetic bearing being an axial load.
- the electromagnet constituting the magnetic bearing is attached to the spindle housing so as to face the flange-like thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner.
- Two thrust plates are provided apart from each other in the axial direction. Each of the two thrust plates has an electromagnet target formed on one surface, and a permanent magnet for a motor rotor is disposed on the other surface.
- the permanent magnets are arranged on opposite surfaces of the two thrust plates, and the permanent magnets are arranged in the circumferential direction so that the different poles face each other.
- a motor stator is arranged and attached to the spindle housing so as to be sandwiched between the permanent magnets at a pitch, and a controller that controls the electromagnet according to the output of the sensor that detects the axial force.
- the stiffness value of the composite panel formed by the rolling bearing and the support system of the rolling bearing is set to be larger than the negative stiffness value of the stiffness panel formed by the magnetic bearing and the motor.
- the inner diameter of the coil end on the outer diameter side of the coil constituting the motor stator is set to be equal to or smaller than the outer diameter of the permanent magnet.
- the rolling bearing supports the radial load, and the magnetic bearing supports one or both of the axial load and the bearing preload.
- Axial direction precision support can be performed, long-term durability of the rolling bearing can be secured, and damage when the power supply is stopped in the case of supporting only the magnetic bearing can be avoided.
- two electromagnets are arranged on the axially outer side of two thrust plates provided on the main shaft side by side in the axial direction to form a magnetic bearing unit, and both the thrust plates Since the axial gearup type motor is arranged at the position sandwiched between the two to form a motor unit, the magnetic bearing unit and the motor unit can be made into a compact integrated structure. Therefore, the shaft length of the main shaft can be shortened, and the natural frequency of the main shaft can be increased accordingly, and the main shaft can be rotated at high speed.
- the stiffness value of the composite panel formed by the rolling bearing and the support system of the rolling bearing is greater than the negative stiffness value of the rigid panel formed by the magnetic bearing and the motor. Even when the motor operates at a high load and an excessive axial load is applied, the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, and the controlled object can be stabilized.
- the circuit configuration of the troller can be simplified.
- the inner diameter of the coil end on the outer diameter side of the motor coil constituting the motor stator is set to be smaller than the outer diameter of the permanent magnet constituting the motor rotor, so the outer diameter when a rotating magnetic field is generated
- the iron loss of the outer surface of the motor rotor due to the magnetic flux at the side coil end can be reduced, and the permanent magnets in the motor port are less likely to be thermally demagnetized.
- the spindle can be rotated at a high speed in a state where heat generation in the motor rotor is suppressed.
- two electromagnets of the magnetic bearing are provided and arranged one by one so as to face both outer sides in the axial direction of the two thrust plates.
- the distance between the two thrust plates can be reduced, which has the advantage of reducing the axial dimension of the motor portion.
- both rolling bearings are located in the axial direction outer side of a main shaft on both sides of the said magnetic bearing.
- a compressor side impeller and a turbine side impeller are attached to a main shaft common to the thrust plate and the motor rotor, and either or both of the motor power and the power generated by the turbine bin side impeller are used.
- Compressor It is applied to a compression / expansion turbine system that drives a side impeller. Also good.
- the compression / expansion turbine system to which the motor-integrated magnetic bearing device is applied compresses the inflowing air by precompression means, cools by a heat exchanger, and uses a turbine unit compressor.
- the present invention may be applied to an air cycle refrigeration cooling system that sequentially performs compression, cooling by another heat exchanger, and adiabatic expansion by the expansion turbine of the turbine unit.
- FIG. 1 is a cross-sectional view of a turbine unit in which a motor type magnetic bearing device according to an embodiment of the present invention is incorporated.
- FIG. 2 is a block diagram showing an example of a magnetic bearing controller used in a motor-integrated magnetic bearing device.
- FIG.3 An example of a motor controller used in a motor-integrated magnetic bearing device FIG.
- FIG. 4 is a partially cutaway view along the axial direction of the motor in the motor-integrated magnetic bearing device.
- FIG. 5 is an explanatory diagram showing a positional relationship between a motor stator and a motor rotor.
- FIG. 6 is a system diagram of an air cycle refrigeration cooling system to which the turbine unit of FIG. 1 is applied.
- FIG. 7 is a cross-sectional view of the proposed example.
- FIG. 8 is a partially cutaway view along the axial direction of the motor in the proposed example.
- FIG. 9 is an explanatory diagram showing the positional relationship between the motor stator and the motor rotor in the proposed example.
- FIG. 10 is a cross-sectional view of a turbine unit in which a motor-body-type magnetic bearing device according to a configuration example of an application technique not belonging to the present invention is incorporated.
- FIG. 11 is an exploded plan view of a motor station in the turbine unit.
- FIG. 12 is a cross-sectional view of the proposed example.
- FIG. 1 is a cross-sectional view of a turbine unit 5 incorporating the motor-integrated magnetic bearing device of this embodiment.
- This turbine unit 5 constitutes a compression / expansion turbine system, and includes a compressor 6 and an expansion turbine 7, and a compressor impeller 6 a of the compressor 6 and a turbine impeller 7 a of the expansion turbine 7 are disposed at both ends of the main shaft 13. Each is fitted.
- Low carbon steel with good magnetic properties is used as the material for the main shaft 1 3.
- the expansion turbine 7 has a turbine housing 7 b facing the turbine impeller 7 a through a minute gap d 2, and sucks in from the outer periphery as indicated by an arrow 7 c.
- the air is adiabatically expanded by the turbine impeller 7a and discharged in the axial direction from the central outlet 7d.
- the motor-integrated magnetic bearing device in the turbine unit 5 is configured such that the main shaft 13 is supported by a plurality of bearings 15 and 16 in the radial direction, and either the axial load applied to the main shaft 13 or the bearing preload is applied. One or both of them are supported by an electromagnetic unit 17 that is a magnetic bearing, and an axial gap type motor 28 that rotates the main shaft 13 is provided.
- the turbine unit 5 includes a sensor 18 for detecting a thrust force acting on the main shaft 13 and a controller for a magnetic bearing 1 9 for controlling a supporting force by the electromagnet unit 17 according to an output of the sensor 18. And a motor controller 29 for controlling the motor 28 independently of the electromagnet unit 17.
- the electromagnet unit 17 is composed of two flange-shaped thrust plates 1 3 a, 1 3 made of a ferromagnetic material arranged perpendicularly and coaxially to the main shaft 13 so as to be aligned in the axial direction at the axial intermediate portion of the main shaft 1 3.
- a pair of electromagnets 17 A and 17 B are installed in the spindle housing 14 so as to face each side of b, in this example, the surface outside in the axial direction without contact.
- one of the electromagnets 17 A constituting the magnetic bearing unit is configured such that one side of the thrust plate 13 a located toward the expansion turbine 7 and facing the expansion turbine 7 is an electromagnet target and is not in contact with this one side.
- the other electromagnet 17 B constituting the magnetic bearing unit has an electromagnetic target on one side facing the compressor 6 side of the thrust plate 13 b located near the compressor 6 and is not in contact with this one side. It is installed in the spindle housing 14 so as to face each other. In this way, the magnetic bearing is composed of the electromagnet unit 17 and the thrust plates 13a, 13b.
- the motor 28 includes a motor rotor 28a provided on the main shaft 13 alongside the electromagnet unit 17 and a motor stator 28b facing the motor rotor 28a in the axial direction.
- This is a motor unit.
- the motor rotor constituting one part of the motor unit 2 8 a represents permanent magnets arranged at equal pitches in the circumferential direction on one side of the thrust plates 13 a and 13 b opposite to the side facing the electromagnets 17 A and 17 B.
- a pair of left and right is configured by arranging the.
- On the outer diameter portion of each thrust plate 13 a, 13 b, flanges 13 aa, 13 ba are provided to prevent the permanent magnets 28 aa from scattering.
- the magnetic poles are set to be different from each other. Since the low-carbon steel with good magnetic properties is used for the main shaft 1 3, the thrust plates 1 3 a and 1 3 b provided so as to be integrated with the main shaft 1 3 are replaced with permanent magnets 2 8 aa Can be used for both back yoke and electromagnet target.
- the motor stator 28 b which is another part of the motor unit, faces the surfaces of both motor rotors 28 a in a non-contact manner at the center position in the axial direction between the pair of left and right motor rotors 28 a.
- the motor coil 2 8 ba arranged without a core is installed in the spindle housing 14 so as to be configured.
- the motor 28 rotates the main shaft 13 by a mouth-lens force acting between the motor rotor 28a and the motor stator 28b.
- this axial gap type motor 28 is a coreless motor, the negative rigidity due to the magnetic force pulling between the motor rotor 28a and the motor stator 28b is zero. ing.
- the inner diameter R i of the coil end on the outer diameter side of the motor coil 28 b constituting the motor stator 28 b is the permanent diameter constituting the motor port 28 a.
- the outer diameter Ro of the magnet 28aa in the ring-shaped arrangement region is set to be smaller than or equal to Ro.
- Bearings 15 and 16 that support the main shaft 13 are rolling bearings and have a function of regulating the axial direction position.
- deep groove ball bearings are used as angular bearings. Deep groove ball bearings have a thrust support function in both directions, and return the inner and outer rings in the axial position to the neutral position.
- These two bearings 15 and 16 are respectively arranged in the vicinity of the compressor wheel 6a and the turbine wheel 7a in the spindle housing 14 and magnetic bearings 17 and 13a.
- 1 3 b is located outside the main shaft 1 3 in the axial direction. Accordingly, since the rolling bearings 15 and 16 that support the radial load of the main shaft 13 are spaced apart from each other in the axial direction, the main shaft 13 can be stably supported.
- the main shaft 13 is a stepped shaft having a large-diameter portion 13 3c at an intermediate portion and small-diameter portions 13 3d at both ends.
- the bearings 15 and 16 on both sides have their inner rings 15 a and 16 a fitted into the small-diameter portion 13 d in a press-fit state, and one of the width surfaces is between the large-diameter portion 13 c and the small-diameter portion 13 d Engage with the step surface.
- the bearings 6 a and 7 a side of the bearings 15 and 16 on both sides of the spindle housing 14 are formed so that the inner diameter surface is close to the main shaft 13 and the non-contact seal 2 is provided on the inner diameter surface. 1 and 2 2 are formed.
- the non-contact seals 2 1 and 2 2 are labyrinth seals in which a plurality of circumferential grooves are arranged in the axial direction on the inner diameter surface of the spiddle housing 14, but other non-contact seal means But it ’s okay.
- the sensor 18 is provided on the stationary side in the vicinity of the bearing 16 on the turbine impeller 7 a side, that is, on the spindle housing 14 side.
- a bearing 16 provided with the sensor 18 in the vicinity thereof has an outer ring 16 b fitted in a fixed state in the bearing housing 23.
- the bearing housing 2 3 is formed in a ring shape and has an inner flange 2 3 a that engages with the width surface of the outer ring 16 b of the bearing 16 at one end, and an inner diameter surface provided on the spindle housing 14 2 4 is movably fitted in the axial direction.
- the inner flange 2 3 a is provided at the center end in the axial direction.
- the sensors 1 8 are distributed and arranged at a plurality of circumferential locations around the main shaft 1 3 (for example, 2 locations), and fixed to the inner flange 2 3 a side surface of the bearing housing 2 3 and the spindle housing 1 4 It is interposed between one electromagnet unit 17 which is a formed member.
- the sensor 18 is preloaded by a sensor preload spring 25.
- the sensor preload spring 25 is housed in a concavity recess provided in the spindle housing 14 and urges the outer ring 16 b of the bearing 16 in the axial direction.
- the outer ring 16 b and the bearing housing 2 Preload sensor 1 8 via 3.
- the sensor preload springs 25 are provided at a plurality of circumferential positions around the main shaft 1 3.
- the coil spring is provided.
- the preload by the sensor preload spring 25 is to be able to detect any movement in the axial direction of the sensor 1 8 force spindle 1 3 that detects the thrust force by the pressing force. It is larger than the average thruster acting on the main shaft 13 in the normal operation state of 5.
- the non-arranged bearing 15 of the sensor 18 is installed so as to be movable in the axial direction with respect to the spindle housing 14, and is elastically supported by a bearing preload spring 26.
- the outer ring 1 5 b of the bearing 15 is fitted to the inner surface of the spindle housing 14 4 so as to be movable in the axial direction.
- the bearing preload spring 2 6 is formed between the outer ring 15 b and the spindle housing 14. Is intervening.
- the bearing preload spring 26 is configured to urge the outer ring 15 b facing the step surface of the main shaft 13 with which the width surface of the inner ring 15 a is engaged, and applies a preload to the bearing 15.
- the bearing preloading springs 26 are made up of coil springs and the like provided at a plurality of locations around the main shaft 13 in the circumferential direction, and are respectively accommodated in receiving recesses provided in the spindle housing 14.
- the bearing preload spring 26 is assumed to have a smaller spring constant than the sensor preload spring 25.
- the dynamic model of the motor-integrated magnetic bearing device in the turbine unit 5 can be configured by a simple panel system. That is, this panel system includes a synthetic panel formed by bearings 15 and 16 and a support system for these bearings (sensor preload spring 25, bearing preload spring 26, bearing housing 23, etc.), and a motor unit ( This is a configuration in which a composite panel formed by an electromagnet unit 17 and a motor 28) is arranged in parallel.
- the composite panel formed by the bearings 15 and 16 and the support system of these bearings has rigidity that acts in proportion to the amount of displacement in the direction opposite to the displaced direction.
- the composite spring formed by the electromagnet unit 17 and the motor 28 has a negative rigidity that acts in proportion to the amount of displacement in the displaced direction.
- the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, so that the magnetic bearing controller 19 can be controlled even when the motor 28 is operating at a high load and an excessive axial load is applied.
- the target can be stable, and the circuit configuration of the controller 19 can be configured as a simple one using proportional or proportional integration as shown in Fig. 2.
- the detection outputs P 1 and P 2 of the sensors 18 are added and subtracted by the sensor output calculation circuit 30 and the calculation results are compared by the comparator 31.
- Deviation is calculated by comparing with the reference value of the reference value setting means 3 2, and the calculated deviation is proportionally integrated (or appropriately set by the PI compensation circuit (or P compensation circuit) 3 3 according to the turbine unit 5 (or (Proportional)
- the control signal of the electromagnet unit 17 is calculated.
- the output of the PI compensation circuit (or P compensation circuit) 3 3 is input to the power circuits 3 6 and 3 7 that drive the electromagnets 17 A and 17 B in each direction via the diodes 3 4 and 3 5.
- the electromagnets 17 A and 17 B since the electromagnets 17 A and 17 B only act on the thrust plates 1 3 a and 1 3 b shown in Fig. 1, the direction of the current is determined in advance by the diodes 3 4 and 3 5, 2 The electromagnets 17 A and 17 B are selectively driven.
- the phase of the motor drive current is adjusted by the phase adjustment circuit 38 using the rotation angle of the motor rotor 28 a as a feedback signal, and the motor drive current corresponding to the adjustment result is obtained from the motor drive circuit 39.
- the constant rotation control is performed by supplying the motor stage 28b.
- the turbine unit 5 having this configuration is applied to, for example, an air cycle refrigeration cooling system so that air as a cooling medium can be efficiently exchanged by a heat exchanger (not shown here) at a subsequent stage.
- the temperature is increased by compressing at 6 and the air cooled by the heat exchanger in the subsequent stage is further insulated by the expansion turbine 7 to a target temperature, for example, a very low temperature of about 30 ° C. to about 60 ° C. Used to cool and discharge by expansion.
- the turbine unit 5 is fitted to the main shaft 1 3 common to the thrust plate 1 3 a and the motor rotor 2 8 a, and the motor 2 8
- the compressor impeller 6a is driven by one or both of the power of the turbine and the power generated by the turbine impeller 7a.
- stable high-speed rotation of the main shaft 13 can be obtained while maintaining appropriate gaps d 1 and d 2 between the impellers 6 a and 7 a, and the long-term durability of the bearings 15 and 16 can be improved. Improved lifespan is obtained.
- a thrust force is applied to the main shaft 13 of the turbine unit 5 by the air pressure acting on the impellers 6 a and 7 a.
- the turbine unit 5 used in the air cooling system has a very high speed of about 80,000 to 100 thousand revolutions per minute. It becomes the rotation. For this reason, when the above thrust force acts on the rolling bearings 15 and 16 that rotatably support the main shaft 13, the long-term durability of the bearings 15 and 16 decreases.
- the thruster is supported by the electromagnet unit 17, the thrust force acting on the rolling bearings 15 and 16 for supporting the main shaft 13 can be reduced while suppressing an increase in torque without contact. Can do.
- a sensor 18 for detecting the thrust force acting on the main shaft 1 3 and a magnetic bearing controller 19 for controlling the supporting force by the electromagnet unit 17 according to the output of the sensor 18 are provided. Therefore, the rolling bearings 15 and 16 can be used in an optimum state with respect to the thrust force according to the bearing specifications.
- a magnetic bearing unit is configured by arranging two electromagnets 17 A and 17 B outside the two thrust plates 13 a and 13 b arranged in the axial direction on the main shaft 13 in the axial direction.
- an axial gap type motor 28 at a position sandwiched between the thrust plates 13 3 a and 13 b, a motor unit is constructed, so that the magnetic bearing unit and the motor unit are compact. Therefore, the shaft length of the main shaft 53 can be shortened, and the natural frequency of the main shaft 13 can be increased accordingly, and the main shaft 13 can be rotated at high speed.
- the inner diameter R i of the coil end on the outer diameter side of the motor coil 28 ba constituting the motor stator 28 b Is set to be equal to or less than the outer diameter Ro in the ring-shaped arrangement region of the permanent magnets 2 8 aa constituting the motor rotor 2 8 a, so that the motor rotor 2 8 caused by the magnetic flux of the outer diameter side coil end when the rotating magnetic field is generated a
- the iron loss of the outer diameter surface can be reduced, and the heat generated by the motor rotor 28a can be kept small even when the main shaft 13 is rotated at a high speed.
- the permanent magnet 2 8 a a of the motor port 28 a becomes difficult to be thermally demagnetized.
- FIG. 6 shows an overall configuration of an air cycle refrigeration cooling system using the turbine unit 5.
- This air cycle refrigeration cooling system is a system that directly cools the air in the space to be cooled 10 such as a refrigeration warehouse as a refrigerant.
- the air intake opening 1 a to the cooling space 1 0 to the air outlet 1 b Air circulation leading to Has ring route 1.
- pre-compression means 2 first heat exchanger 3, compressor 6 of air cycle refrigeration cooling turbine unit 5, second heat exchanger 3, intermediate heat exchanger 9, and the turbine Unit 5 expansion turbine bins 7 are provided in order.
- the intermediate heat exchanger 9 exchanges heat between the inflow air in the vicinity of the intake 1a in the same air circulation path 1 and the air that has been heated by the subsequent compression and cooled.
- the air near the inlet 1a passes through the heat exchanger 9a.
- the pre-compression means 2 comprises a blower or the like, and is driven by a motor 2a.
- the first heat exchanger 3 and the second heat exchanger 8 have heat exchangers 3 a and 8 a for circulating a cooling medium, respectively, and a cooling medium such as water in the heat exchangers 3 a and 8 a Heat exchange with the air in the air circulation path 1.
- Each of the heat exchangers 3 a and 8 a is connected to the cooling tower 11 by piping, and the cooling medium heated by the heat exchange is cooled by the cooling tower 11.
- An air cycle refrigeration cooling system having a configuration not including the pre-compression means 2 may be used.
- This air cycle refrigeration cooling system is a system that keeps the space to be cooled 10 at about 0 ° C to-60 ° C. ° C to-60 ° C air flows in at around 60 ° C.
- the air flowing into the intake 1a is used for cooling the air in the latter stage in the air circulation path 1 by the intermediate heat exchanger 9, and the temperature is raised to 30 ° C.
- the heated air remains at 1 atm, but is compressed to 1.4 atm by the pre-compression means 2, and the temperature is raised to 70 ° C by the compression.
- the first heat exchanger 3 only needs to cool the heated air at 70 ° C, so even cold water at room temperature can be efficiently cooled and cooled to 40 ° C.
- This motor-integrated magnetic bearing device has air in which a compressor impeller 1 0 6 a of a compressor 1 0 6 and a turbine bin impeller 1 0 7 a of an expansion turbine 1 0 7 are attached to both ends of a main shaft 1 1 3.
- the radial load of the main shaft 1 1 3 is supported by the rolling bearings 1 1 5 and 1 1 6 and the axial load is supported by the electromagnet 1 1 7 and coaxial with the main shaft 1 1 3
- the compressor impeller 10 6 a is rotationally driven by the driving force of the installed motor 1 28 and the driving force of the turbine impeller 10 7 a.
- the electromagnet 1 1 7 that supports the axial load is a sensor that is positioned so as to face the thrust plate 1 1 3 a that is perpendicular and coaxial with the main shaft 1 1 3 without contact, and detects the axial force 1 1 8 Controlled by magnetic bearing controller 1 1 9 according to output 8 It is.
- the motor 1 2 8 is of an axial gap type, and a motor rotor 1 2 8 a is formed on another thrust plate 1 1 3 b provided perpendicularly and coaxially to the main shaft 1 1 3, and this motor rotor 1 2 8 Motor stator 1 2 8 b is arranged so as to face a in the axial direction.
- the motor 1 2 8 is controlled by the motor controller 1 2 9 independently of the electromagnet 1 1 7.
- the thrust force applied to the main shaft 1 1 3 is supported by the electromagnet 1 1 7, so that the rolling bearing 1
- the thrust force acting on 1 5 and 1 1 6 can be reduced.
- the small gap between each impeller 10 6 a, 1 0 7 a and the housing 1 0 6 b, 1 0 7 b can be kept constant, and the long-term durability of the rolling bearing against the thrust load can be improved. Can be improved.
- the left and right electromagnets are arranged with one thrust plate provided on the main shaft 1 1 3 interposed therebetween to form the magnetic bearing unit, and the main shaft 1 1
- the left and right axial gap type motors 1 2 8 are arranged by sandwiching another thrust plate separately provided in 3 to configure the motor unit independently of the magnetic bearing unit. The longer the axial length of 3, the lower the natural frequency, and there is a problem that it cannot be rotated at high speed.
- the purpose of this applied technology is to provide a motor type magnetic bearing device capable of improving the long-term durability of a rolling bearing against a thrust load and capable of rotating the spindle at high speed. It is.
- the motor-type magnetic bearing device uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, and the magnetic bearing has one or both of an axial load and a bearing preload.
- the electromagnet constituting the magnetic bearing is attached to the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner, and the thrust plate is Two axially spaced, these two thrust plates are on one side
- An electromagnet target is formed, a permanent magnet for the motor rotor is disposed on the other surface, and the permanent magnet for the motor rotor is disposed on the opposing surfaces of the two thrust plates, and the permanent magnet is different in polarity.
- a motor stator is arranged and attached to the spindle housing so as to be sandwiched between the permanent magnets, and a Lorentz between the motor rotor and the motor stator
- An axial gap type coreless motor that rotates a spindle by force, and the motor stator is composed of a plurality of concentrated winding coils, and each of the motor stators has the coil It is characterized by being divided into a plurality of modules that are aligned in the circumferential direction and integrated with each other.
- the two thrust plates may be formed on the main shaft.
- the rolling bearing supports the radial load, and the magnetic bearing supports one or both of the axial load and the bearing preload. It can be supported with high accuracy and long-term durability of the rolling bearing can be secured, and damage when the power supply is stopped in the case of supporting only the magnetic bearing can be avoided.
- two electromagnets are arranged on the outer side in the axial direction of the two thrust plates provided on the main shaft side by side in the axial direction to form a magnetic bearing unit, and an axial gearup type motor is installed at a position sandwiched between the two thrust plates. Since the motor unit is arranged, the magnetic bearing unit and the motor unit can be made into a compact integrated structure. Therefore, the shaft length of the main shaft can be shortened, and the natural frequency of the main shaft can be increased accordingly, and the main shaft can be rotated at high speed.
- the stator is composed of a plurality of concentrated winding coils, and each of the coils is divided into a plurality of modules arranged in a circumferential direction and integrated with each other, so that the apparatus can be assembled.
- a thrust plate is separated from the main shaft.
- the main shaft rotates at a high speed
- the motor rotor side is divided, such as by making the thrust plate a separate member from the main shaft, the strength is insufficient.
- the motor stator side is divided, the problem of assembly can be solved without causing the problem of insufficient strength during high-speed rotation.
- the two thrust plates may be formed integrally with the main shaft.
- both the thrust plates can be used both as the back yoke and the electromagnet target of the permanent magnet. Since the motor stator is divided as described above, the two thrust plates can be integrated with the main shaft without causing any assembly problems.
- the compressor side impeller and the turbine side impeller are fitted to a main shaft common to the thrust plate and the motor rotor, and either or both of the motor power and the power generated in the turbine side impeller are It may be applied to a compression / expansion turbine system that drives a compressor side impeller.
- a stable high-speed rotation of the main shaft can be obtained while maintaining an appropriate clearance between each impeller, and long-term durability and life of the bearing can be improved.
- a compression / expansion turbine system to which the motor-integrated magnetic bearing device is applied, compresses inflow air by a compressor of a turbine unit, cooling by another heat exchanger, Adiabatic expansion by the expansion turbine of the unit, or compression by the pre-compression means, cooling by the heat exchanger, compression by the compressor of the turbine unit, cooling by another heat exchanger, adiabatic expansion of the turbine unit by the expansion turbine, It may be applied to a sequential air cycle refrigeration cooling system.
- FIG. 10 is a cross-sectional view of a turbine unit 75 incorporating the motor-integrated magnetic bearing device of this configuration example.
- This turbine unit 7 5 constitutes a compression / expansion turbine system, and includes a compressor 7 6 and an expansion turbine 7 7, a compressor impeller 7 6 a of the compressor 7 6 and a turbine impeller of the expansion turbine 7 7.
- 7 7 a is fitted to both ends of the main shaft 8 3.
- Low carbon steel with good magnetic properties is used for the material of the main shaft 8 3
- the compressor 7 6 has a compressor housing 7 6 b facing the compressor impeller 7 6 a via a minute gap d 1 and is axially directed from the suction port 7 6 c at the center. Compressed by the compressor impeller 76a, and discharged from the outlet (not shown) at the outer periphery as shown by the arrow 76d.
- the expansion turbine 7 7 has a turbine housing 7 7 b facing the turbine impeller 7 7 a via a minute gap d 2, and the air sucked from the outer peripheral portion as indicated by an arrow 7 7 c Car 7 7 a adiabatic expansion with a center outlet 7
- the motor-integrated magnetic bearing device in the turbine unit 75 includes a main shaft.
- This turbine unit 75 includes a sensor 8 8 for detecting a thrust force acting on the main shaft 83, and this sensor. Controller 8 9 for controlling the supporting force of the electromagnet unit 8 7 according to the output of the sensor 8 8, and a motor controller 9 9 for controlling the motor 9 8 independently of the electromagnet unit 8 7. And have.
- the electromagnet unit 8 7 is composed of two flange-shaped thrust plates 8 3 a and 8 3 made of a ferromagnetic material which is arranged perpendicularly and coaxially with the main shaft 8 3 so as to be aligned in the axial direction at the axial intermediate portion of the main shaft 8 3.
- a pair of electromagnets 8 7 A and 8 7 B are installed on the spindle housing 84 so as to face each side of b without contact.
- one of the electromagnets 8 7 A constituting the magnetic bearing unit has one surface facing the expansion turbine 7 7 side of the thrust plate 8 3 a located near the expansion turbine 7 7 as an electromagnet target. It is installed in the spindle housing 84 so as to face each other without contact.
- the other electromagnet 8 7 B constituting the magnetic bearing unit has an electromagnetic target on one side facing the compressor 7 6 side of the thrust plate 8 3 b located near the compressor 76, and is not in contact with this one side. It is installed in the spindle housing 84 so as to face each other.
- the motor 9 8 includes a motor rotor 9 8 a provided on the main shaft 8 3 along with the electromagnet unit 8 7, and a motor stator 9 8 facing the motor rotor 9 8 a in the axial direction. It is a motor unit consisting of b. Specifically, the motor rotor 9 8a constituting one part of the motor unit is connected to the side where the electromagnets 8 7 A and 8 7 B of the thrust plates 8 3 a and 8 3 b of the main shaft 8 3 face each other. A pair of left and right ones is formed by arranging permanent magnets 98 aa arranged at equal pitches in the circumferential direction on each side of the opposite side.
- the magnetic poles are set to be different from each other. Since low carbon steel with good magnetic properties is used for the main shaft 8 3, the thrust plates 8 3 a and 8 3 b provided so as to be integrated with the main shaft 8 3 are replaced with permanent magnets 9 8. Can be used as both aa back yoke and electromagnet target.
- the motor stator 98b which is another part of the motor unit, is not attached to each surface of both motor rotors 98a at the center position in the axial direction between the pair of left and right motor rotors 98a. Arranged without cores so that they face each other in contact A plurality of concentrated winding coils 9 8 ba are installed on the spindle housing 84. Specifically, as shown in FIG. 11 shown in an exploded plan view, the motor stator 98 b includes a plurality of coils 9 8 ba arranged in the circumferential direction and integrated with each other (here 2 Modules) 9 8 b 1 and 9 8 b 2.
- Each of the modules 9 8 b 1 and 9 8 b 2 has a coil 9 8 ba accommodated in a case 9 8 bb made of a polymer material.
- the case 9 8 bb may be a mold resin obtained by resin molding the coil 9 8 ba.
- the two thrust plates 8 3a and 8 3b of the motor rotor 9 8a which is one part of the motor unit, are integral with the main shaft 8 3, the two thrust plates 8 3a, If the motor stator 9 8 b disposed between 8 3 b is an integral member, the apparatus cannot be assembled. Therefore, in this turbine unit 75, as described above, the motor stator 9 8 b is divided into a plurality of modules 9 8 b 1 and 9 8 b 2 to enable assembly. Yes.
- the motor stator 9 8 b can be assembled even if it is an integral member.
- the main shaft 83 rotates at a high speed (for example, about 10 000 rpm)
- the structure in which the thrust plates 8 3 a and 8 3 b are separate members from the main shaft 8 3 causes insufficient strength.
- the motor 98 rotates the main shaft 83 by a mouth-lens force acting between the motor rotor 98a and the motor stator 98b.
- this axial gap type motor 98 is a coreless motor, the negative rigidity due to the magnetic force pulling between the motor rotor 9 8 a and the motor stator 9 8 b becomes zero. ing.
- the bearings 85 and 86 that support the main shaft 83 are rolling bearings and have a function of regulating the axial direction position.
- deep groove ball bearings are used as angular bearings. Deep groove ball bearings have a thrust support function in both directions. It has the effect of returning the axial position of the outer ring to the neutral position.
- These two bearings 8 5 and 8 6 are arranged in the vicinity of the compressor wheel 76 a and the turbine wheel 77 a in the spindle housing 84, respectively.
- the main shaft 8 3 is a stepped shaft having a large-diameter portion 8 3c at an intermediate portion and small-diameter portions 8 3d at both ends.
- the bearings 85 and 86 on both sides have their inner rings 85a and 86a fitted into the small-diameter portion 83d in a press-fitted state, and one of the width surfaces is between the large-diameter portion 83c and the small-diameter portion 83d. Engage with the step surface.
- each impeller 7 6 a, 7 7 a rather than the bearings 8 5, 8 6 on both sides of the spindle housing 8 4 are formed so that the inner diameter surface is close to the main shaft 83, and are not in contact with the inner diameter surface Seals 9 1 and 9 2 are formed.
- the non-contact seals 9 1 and 9 2 are labyrinth seals in which a plurality of circumferential grooves are arranged in the axial direction on the inner diameter surface of the spindle housing 84, but other non-contact seal means may be used. .
- the sensor 88 is provided on the stationary side in the vicinity of the bearing 86 on the turbine impeller 77a side, that is, on the spindle housing 84 side.
- the bearing 8 6 provided with the sensor 8 8 in the vicinity thereof has its outer ring 8 6 b fitted in the bearing housing 93 in a fixed state.
- the bearing housing 9 3 is formed in a ring shape and has an inner flange 9 3 a that engages with the width surface of the outer ring 8 6 b of the bearing 8 6 at one end, and an inner diameter surface provided in the spindle housing 8 4 9 Fits 4 to 4 in the axial direction.
- the inner flange 9 3 a is provided at the center end in the axial direction.
- the sensors 8 8 are distributed and arranged in multiple circumferential locations around the main shaft 8 3 (for example, two locations), and are fixed to the inner flange 9 3 a side width surface of the bearing housing 9 3 and the spindle housing 8 4 It is interposed between one electromagnet unit 87, which is a formed member.
- the sensor 8 8 is applied with preload by the sensor preload spring 95.
- the sensor preload spring 95 is accommodated in a concavity provided in the spindle housing 84 and biases the outer ring 8 6 b of the bearing 8 6 in the axial direction.
- the outer ring 8 6 b and the bearing housing 9 Pre-load sensor 8 8 via 3.
- sensor preload springs 9 5 are provided at a plurality of circumferential positions around the main shaft 83.
- the coil spring is provided.
- the preload by the sensor preload spring 9 5 is to be able to detect any movement in the axial direction of the sensor 8 8 force spindle 8 3 that detects the thrust force by the pressing force. 7
- the size is larger than the average thruster acting on the main shaft 83 in the normal operating state of 5.
- the bearing 85 on the non-arrangement side of the sensor 88 is installed so as to be movable in the axial direction with respect to the spindle housing 84, and is elastically supported by a bearing preload spring 96.
- the outer ring 8 5 b force of the bearing 8 5 is fitted to the inner surface of the spindle housing 8 4 so as to be movable in the axial direction, and the bearing preload spring 9 6 is formed between the outer ring 8 5 b and the spindle housing 8 4 Is intervening.
- the bearing preload spring 96 is configured to urge the outer ring 85 b facing the step surface of the main shaft 83 with which the width surface of the inner ring 85 a is engaged, and applies a preload to the bearing 85.
- the bearing preloading spring 96 is made up of coil springs and the like provided at a plurality of locations in the circumferential direction around the main shaft 83, and is accommodated in receiving recesses provided in the spindle housing 84, respectively.
- the bearing preload spring 96 is assumed to have a smaller spring constant than the sensor preload spring 95.
- the dynamic model of the motor-integrated magnetic bearing device in the turbine unit 75 can be constituted by a simple panel system. That is, this panel system includes a synthetic panel formed by bearings 85 and 86 and a support system for these bearings (sensor preload spring 95, bearing preload spring 96, bearing housing 93, etc.), and a motor unit.
- the composite panel formed by the bearings 8 5 and 8 6 and the support system of these bearings has rigidity that acts in proportion to the amount of displacement in the direction opposite to the displaced direction.
- the composite panel formed by the electromagnet unit 8 7 and the motor 9 8 has a negative stiffness that acts in proportion to the amount of displacement in the displaced direction.
- the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, so that the magnetic bearing controller 8 9 can be controlled even when the motor 98 is operating at a high load and an excessive axial load is applied.
- the target can be stable, and the circuit configuration of the controller 8 9 can be configured to be the same as that of the controller 19 in FIG.
- the same controller as the controller 29 shown in FIG. 3 can be used.
- the turbine unit 75 having this configuration is applied to, for example, an air cycle refrigeration cooling system so that air as a cooling medium can be efficiently heat-exchanged by a subsequent heat exchanger (not shown here).
- the air that has been compressed by the compressor 76 and raised in temperature, and further cooled by the heat exchanger at the subsequent stage is converted into a target temperature, for example, about ⁇ 30 ° C. to ⁇ 60 ° C. by the expansion turbine 7 7. Used to cool and discharge to a low temperature by adiabatic expansion.
- this turbine unit 75 is fitted to the main shaft 8 3 which is common to the thrust plate 8 3 a and the motor port 9 8 a.
- Compressor impeller 7 6 by the power of motor 9 8 and / or turbine impeller 7 7a It is supposed to drive a. Therefore, stable high-speed rotation of the main shaft 8 3 can be obtained while maintaining the appropriate gaps d 1 and d 2 of the respective impellers 7 6 a and 7 7 a, and the long-term durability of the bearings 8 5 and 8 6 Improved and improved lifespan.
- the gaps 01 1 and d 2 between the respective impellers 7 6 a and 7 7 a and the housings 7 6 b and 7 13 are made fine. Need to keep small. For example, when this turbine unit 75 is applied to an air cycle refrigeration cooling system, ensuring this efficiency is important.
- the main shaft 83 is supported by rolling type bearings 85, 86, the axial direction position control function of the rolling bearing regulates the axial direction of the main shaft 83 to some extent.
- the minute gaps d 1 and d 2 between the impellers 7 6 a and 7 7 a and the housings 7 6 b and 7 b can be kept constant.
- a thrust force is applied to the main shaft 83 of the turbine unit 75 by the pressure of the air acting on each of the impellers 76a, 77a.
- the turbine unit 75 used in the air cooling system rotates at a very high speed of, for example, about 80,000 to 100,000 rotations per minute. For this reason, if the thrust force acts on the rolling bearings 85 and 86 that rotatably support the main shaft 83, the long-term durability of the bearings 85 and 86 decreases.
- Thrust force acting on 6 can be reduced.
- the rolling bearings 85 and 86 can be used in an optimum state with respect to the thrust force according to the bearing specifications.
- the two electromagnets 8 7 A and 8 7 B are arranged outside the axial direction of 3 b to form a magnetic bearing unit, and the axial gap is located between the thrust plates 8 3 a and 8 3 b.
- the motor unit by arranging the motors of the mold 9 8 Therefore, the magnetic bearing unit and motor unit have a compact integrated structure, so that the shaft length of the main shaft 53 can be shortened, and the natural frequency of the main shaft 83 can be increased accordingly, and the main shaft 83 can be rotated at high speed. Can do.
- the turbine unit 75 including the magnetic bearing device according to the applied technology can be used in an air cycle refrigeration cooling system having the same configuration as that shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Description
明 細 書
モーター体型の磁気軸受装置
技術分野
[0001 ] 本発明は、 空気サイクル冷凍冷却用タービンュニット等に用いられる磁気 軸受装置に関し、 特に、 転がり軸受と磁気軸受を併用し、 磁気軸受がアキシ アル負荷と軸受予圧のどちらか一方または両方を支持するようにしたモータ 一体型の磁気軸受装置に関する。
背景技術
[0002] 空気サイクル冷凍冷却システムは、 冷媒として空気を用いるため、 フロン やアンモニアガス等を用いる場合に比べてエネルギー効率が不足するが、 環 境保護の面では好ましい。 また、 冷凍倉庫等のように、 冷媒空気を直接に吹 き込むことができる施設では、 庫内ファンやデフロス卜の省略等によってト —タルコストを引下げられる可能性があり、 このような用途で空気サイクル 冷凍冷却システムが提案されている (例えば特許文献 1 ) 。
[0003] また、 _ 3 0 °C〜― 6 0 °Cのディ _プ■ コール領域では、 空気冷却の理論 効率は、 フロンやアンモニアガスと同等以上になることが知られている。 た だし、 上記空気冷却の理論効率を得ることは、 最適に設計された周辺装置が あって、 始めて成り立つとも述べられている。 周辺装置は、 圧縮機や膨張タ —ビン等である。
圧縮機, 膨張タービンとしては、 コンプレッサ翼車および膨張タービン翼 車を共通の主軸に取付けたタービンュニッ卜が用いられている (特許文献 1
) o
[0004] なお、 プロセスガスを処理するタービン■ コンプレッサとしては、 主軸の 一端にタービン翼車、 他端にコンプレッサ翼車を取付け、 前記主軸を電磁石 の電流で制御するジャーナルおよびスラスト軸受で支承した磁気軸受式ター ビン■ コンプレッサが提案されている (特許文献 2 ) 。
また、 ガスタービンエンジンにおける提案ではあるが、 主軸支持用の転が
り軸受に作用するスラスト荷重が軸受寿命の短縮を招くことを回避するため 、 転がり軸受に作用するスラスト荷重をスラスト磁気軸受により低減するこ とが提案されている (特許文献 3 ) 。
特許文献 1 :特許第 2 6 2 3 2 0 2号公報
特許文献 2:特開平 7— 9 1 7 6 0号公報
特許文献 3:特開平 8 _ 2 6 1 2 3 7公報
[0005] 上記のように、 空気サイクル冷凍冷却システムとして、 ディ _プ ' コール 領域で高効率となる空気冷却の理論効率を得るためには、 最適に設計された 圧縮機や膨張タ一ビンが必要となる。
圧縮機, 膨張タービンとしては、 上記のようにコンプレッサ翼車および膨 張タービン翼車を共通の主軸に取付けたタービンュニッ卜が用いられている
。 このタービンユニットは、 膨張タ一ビンの生じる動力によりコンプレッサ 翼車を駆動できることで空気サイクル冷凍機の効率を向上させている。
[0006] しかし、 実用的な効率を得るためには、 各翼車とハウジングとの隙間を微 小に保つ必要がある。 この隙間の変動は、 安定した高速回転の妨げとなり効 率の低下を招く。
また、 コンプレッサ翼車やタービン翼車に作用する空気により、 主軸にス ラスト力が作用し、 主軸を支持する軸受にスラスト荷重が負荷される。 空気 サイクル冷凍冷却システムにおけるタービンユニットの主軸の回転速度は、 1分間に 8万〜 1 0万回転であり、 一般的な用途の軸受に比べて非常に高速 となる。 そのため、 上記のようなスラスト荷重は、 主軸を支持する軸受の長 期耐久性の低下、 寿命低下を招き、 空気サイクル冷凍冷却用タービンュニッ トの信頼性を低下させる。 このような軸受の長期耐久性の課題を解消しなく ては、 空気サイクル冷凍冷却用タービンユニットの実用化が難しい。 しかし 、 上記特許文献 1に開示の技術は、 この高速回転下におけるスラスト荷重の 負荷に対する軸受の長期耐久性の低下については解決されるに至っていない
[0007] 特許文献 2の磁気軸受式タービン■ コンプレッサのように、 主軸を磁気軸
受からなるジャーナル軸受およびスラスト軸受で支承したものでは、 ジャー ナル軸受にアキシアル方向の規制機能がない。 そのため、 スラスト軸受の制 御の不安定要因等があると、 上記翼車とディフューザ間の微小隙間を保って 安定した高速回転を行うことが難しい。 磁気軸受の場合は、 電源停止時にお ける接触の問題もある。
そこで、 本発明者等は、 上記課題を解決するものとして、 図 7に示すよう な公知ではないモータ一体型の磁気軸受装置を開発した。 このモータ一体型 の磁気軸受装置は、 主軸 5 3の両端にコンプレッサ 4 6のコンプレッサ翼車 4 6 aおよび膨張タービン 4 7のタービン翼車 4 7 aを取付けた空気サイク ル冷凍冷却用タービンュニッ卜において、 主軸 5 3のラジアル負荷を転がり 軸受 5 5 , 5 6で、 アキシアル負荷を電磁石 5 7でそれぞれ支持すると共に 、 主軸 5 3に同軸に設けたモータ 6 8による駆動力とタービン翼車 4 7 aの 駆動力とでコンプレッサ翼車 4 6 aを回転駆動するようにしたものである。 アキシアル負荷を支持する電磁石 5 7は、 主軸 5 3に垂直かつ同軸に設けら れ軸方向に離れた 2つのスラスト板 5 3 a , 5 3 bに非接触で対向するよう にスピンドルハウジング 6 4に取付けられ、 アキシアル方向の力を検出する センサ 5 8の出力に応じて磁気軸受用コントロ一ラ 5 9で制御される。 モ一 タ 6 8はアキシアルギャップ型のものであって、 前記 2つのスラスト板 5 3 a , 5 3 bにモータロータ 6 8 aを形成すると共に、 これらモータロータ 6 8 aに挟まれた空間にモータロータ 6 8 aと軸方向に対向するようにモータ ステ一タ 6 8 bを配置して構成される。
モータロータ 6 8 aは、 スラスト板 5 3 a , 5 3 bのモ一タステ一タ 6 8 bと対向する片面に、 円周方向に等ピッチで並ぶ永久磁石 6 8 a aを配置す ることで構成され、 電磁石 5 7と対向する他の片面は電磁石ターゲットとさ れる。 前記永久磁石 6 8 a aは、 スラスト板 5 3 a , 5 3 bの外径部に形成 された鍔部 5 3 a a , 5 3 b aで飛散防止が図られている。 このように軸方 向に対向配置される永久磁石 6 8 a aの間では、 その磁極が互いに異極とな るように設定される。 モ一タステ一タ 6 8 bは、 左右のモータロータ 6 8 a
の永久磁石 6 8 a a配置面に非接触で対向するように集中巻き方式の複数個 のモータコイル 6 8 b aを、 スピンドルハウジング 6 4に設置して構成され る。 モータコイル 6 8 b aは、 コイルの内側が中空部となったコアレスコィ ルとされる。 このモータ 6 8は、 電磁石 5 7とは独立にモータ用コント口一 ラ 6 9で制御される。
上記構成のモータ一体型の磁気軸受装置において、 転がり軸受 5 5 , 5 6 と転がり軸受の支持系とで形成される剛性パネの剛性値は、 電磁石 5 7とモ ータ 6 8とで形成される合成パネの負の合成値より大という関係に設定され る。
[0009] 上記構成のモータ一体型の磁気軸受装置によると、 主軸 5 3にかかるスラ ストカを電磁石 5 7で支持するため、 非接触でトルクの増大を抑えながら、 転がり軸受 5 5 , 5 6に作用するスラスト力を軽減することができる。 その 結果、 各翼車 4 6 a , 4 7 aとハウジング 4 6 b , 4 7 bとの微小隙間を一 定に保つことができ、 スラスト荷重の負荷に対する転がり軸受 5 5 , 5 6の 長期耐久性を向上させることができる。
また、 転がり軸受 5 5 , 5 6と転がり軸受の支持系とで形成される剛性バ ネの剛性値が、 電磁石 5 7とモータ 6 8とで形成される合成パネの負の合成 値より大という関係に設定されているので、 モータ 6 8が高負荷動作し過大 なアキシアル荷重が作用した場合でも、 制御帯域において、 機械システムの 位相が 1 8 0 ° 遅れとなることを防止できて、 制御対象を安定なものとでき 、 コントローラ 5 9の回路構成を簡略化できる。
[0010] しかし、 上記構成のモータ一体型の磁気軸受装置において、 モータ 6 8は 、 図 8および図 9に示すように、 モ一タステ一タ 6 8 bのコイルエンド部が スラスト板 5 3 a , 5 3 bの外径よりも外側に形成されているので、 主軸 5 3を高速回転させた場合に、 モータロータ 6 8 aでの鉄損が大きく、 モータ ロータ 6 8 aが加熱され、 永久磁石 6 8 a aが熱減磁してしまうという問題 が有る。
発明の開示
[001 1 ] 本発明の目的は、 モータが高負荷状態で動作し過大なアキシアル荷重が作 用した状態でも、 安定な制御が可能でコントローラの構成を簡略化でき、 か つモータロータでの発熱を抑制した状態で主軸を高速回転させることが可能 なモータ一体型の磁気軸受装置を提供することである。
[0012] 本発明のモーター体型の磁気軸受装置は、 転がり軸受と磁気軸受を併用す るモータ一体型の磁気軸受装置であって、 前記転がり軸受がラジアル負荷を 支持し、 前記磁気軸受がアキシアル負荷と軸受予圧の少なくとも一方を支持 し、 前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフ ランジ状のスラスト板に非接触で対向するように、 スピンドルハウジングに 取付けられており、 前記スラスト板は軸方向に離れて 2つ設けられ、 これら 2つのスラスト板は、 各々、 片面に電磁石ターゲットが形成され、 もう片方 の面にはモータロータ用の永久磁石が配置され、 前記モータロータ用の永久 磁石は前記 2つのスラスト板の対向する面に配置されており、 前記永久磁石 は異極が互いに対向するように、 周方向に等ピッチで配置され、 前記永久磁 石に挟まれるように、 モータステ一タが配置されてスピンドルハウジングに 取付けられており、 アキシアル方向の力を検出するセンサの出力に応じて、 電磁石を制御するコントローラを有し、 転がり軸受と転がり軸受の支持系と で形成される合成パネの剛性値が、 磁気軸受とモータとで形成される剛性バ ネの負の剛性値よりも大きい値となるように設定されており、 前記モータス テータを構成するコイルの外径側のコイルェンドの内径を、 前記永久磁石の 外径以下としたものである。
[0013] この構成によると、 転がり軸受と磁気軸受を併用し、 転がり軸受がラジア ル負荷を支持し、 磁気軸受がアキシアル負荷と軸受予圧のどちらか一方また は両方を支持するものであるため、 アキシアル方向の精度の良い支持が行え 、 また転がり軸受の長期耐久性が確保でき、 磁気軸受のみの支持の場合にお ける電源停止時の損傷も回避される。
また、 軸方向に並べて主軸に設けられた 2つのスラスト板の軸方向外側に 2つの電磁石を配置して磁気軸受ュニッ卜とすると共に、 前記両スラスト板
で挟まれる位置にアキシアルギヤップ型のモータを配置してモータュニット としたため、 磁気軸受ュニッ卜とモータュニットとがコンパク 卜な一体構造 とできる。 そのため、 主軸の軸長を短くでき、 それだけ主軸の固有振動数が 高くなつて、 主軸を高速回転させることができる。
また、 転がり軸受と転がり軸受の支持系とで形成される合成パネの剛性値 力 磁気軸受とモータとで形成される剛性パネの負の剛性値よりも大きいと いった関係を有するものとしているので、 モータが高負荷動作し過大なアキ シアル荷重が作用した場合でも、 制御帯域において、 機械システムの位相が 1 8 0 ° 遅れとなることを防止できて、 制御対象を安定なものとでき、 コン トローラの回路構成を簡略化できる。
また、 モータの構成において、 モータステ一タを構成するモータコイルの 外径側のコイルェンドの内径を、 モータロータを構成する永久磁石の外径以 下としているので、 回転磁界を発生させたときの外径側コイルェンド部の磁 束に起因したモータロータ外径面の鉄損を低減することができ、 モータ口一 タの永久磁石が熱減磁し難くなる。 これにより、 モータロータでの発熱を抑 制した状態で主軸を高速回転させることができる。
[0014] 本発明において、 前記磁気軸受の電磁石は、 2つ設けられ、 前記 2つのス ラスト板の軸方向両外側に対向して 1つずつ配置されたものが好ましい。 こ れにより、 2つのスラスト板の間隔を小さくできるので、 モータ部分の軸方 向寸法を小さくできる利点がある。
また、 本発明において、 前記転がり軸受を一対有し、 両転がり軸受が前記 磁気軸受を挟んで主軸の軸方向外側に位置しているのが好ましい。 この構成 により、 主軸のラジアル負荷を、 大きく離間した一対の転がり軸受により安 定して支持できる。
[0015] 本発明において、 前記スラスト板およびモータロータと共通の主軸にコン プレッサ側翼車およびタービン側翼車が取付けられており、 モータ動力とタ 一ビン側翼車で発生した動力のどちらか一方または両方によりコンプレッサ 側翼車を駆動させる圧縮膨張タービンシステムに、 適用されるものであって
も良い。
この構成の場合、 各翼車の適切な隙間を保って主軸の安定した高速回転が 得られ、 かつ軸受の長期耐久性、 寿命の向上が得られる。
[0016] 本発明において、 前記モータ一体型の磁気軸受装置を適用した圧縮膨張タ 一ビンシステムが、 流入空気に対して、 予圧縮手段による圧縮、 熱交換器に よる冷却、 タービンユニットのコンプレッサによる圧縮、 他の熱交換器によ る冷却、 前記タービンユニットの膨張タービンによる断熱膨張、 を順次行う 空気サイクル冷凍冷却システムに適用されたものであっても良い。
このモータ一体型の磁気軸受装置を適用した圧縮膨張タービンシステムを 、 このような空気サイクル冷凍冷却システムに適用した場合、 圧縮膨張ター ビンシステムにおいて、 各翼車の適切な隙間を保って主軸の安定した高速回 転が得られ、 かつ軸受の長期耐久性の向上、 寿命の向上が得られることから 、 圧縮膨張タービンシステムの全体として、 しいては空気サイクル冷凍冷却 システムの全体としての信頼性が向上する。 また、 空気サイクル冷凍冷却シ ステムのネックとなっている圧縮膨張タービンシステムの主軸軸受の安定し た高速回転、 長期耐久性、 信頼性が向上することから、 空気サイクル冷凍冷 却システムの実用化が可能となる。
図面の簡単な説明
[0017] 本発明は、 添付の図面を参考にした以下の好適な実施例の説明から、 より 明瞭に理解されるであろう。 しかしながら、 実施例および図面は単なる図示 および説明のためのものであり、 本発明の範囲を定めるために利用されるべ きものではない。 本発明の範囲は添付の請求の範囲によって定まる。 添付図 面において、 複数の図面における同一の部品番号は、 同一部分を示す。
[図 1 ]本発明の一実施形態にかかるモーター体型の磁気軸受装置が組み込まれ たタービンュニッ卜の断面図である。
[図 2]モータ一体型の磁気軸受装置に用いられる磁気軸受用コントローラの一 例を示すプロック図である。
[図 3]モータ一体型の磁気軸受装置に用いられるモータ用コントローラの一例
を示すプロック図である。
[図 4]モータ一体型の磁気軸受装置におけるモータの軸方向に沿う部分破断図 である。
[図 5]モータステータとモータロータの位置関係を示す説明図である。
[図 6]図 1のタービンュニットを適用した空気サイクル冷凍冷却システムの系 統図である。
[図 7]提案例の断面図である。
[図 8]提案例におけるモータの軸方向に沿う部分破断図である。
[図 9]提案例におけるモータステータとモータロータの位置関係を示す説明図 である。
[図 10]本発明には属さない応用技術の一構成例にかかるモーター体型の磁気 軸受装置が組み込まれたタービンユニットの断面図である。
[図 11 ]同タービンュニットにおけるモータステ一タの分解平面図である。
[図 12]提案例の断面図である。
発明を実施するための最良の形態
[0018] 本発明の一実施形態を図 1ないし図 5と共に説明する。 図 1は、 この実施 形態のモータ一体型の磁気軸受装置を組み込んだタービンュニット 5の断面 図を示す。 このタービンュニット 5は圧縮膨張タービンシステムを構成する ものであり、 コンプレッサ 6および膨張タービン 7を有し、 コンプレッサ 6 のコンプレッサ翼車 6 aおよび膨張タービン 7のタービン翼車 7 aが主軸 1 3の両端にそれぞれ嵌合している。 主軸 1 3の材料には、 磁気特性の良好な 低炭素鋼が使用される。
[001 9] 図 1において、 コンプレッサ 6は、 コンプレッサ翼車 6 aと微小の隙間 d
1を介して対向するコンプレッサハウジング 6 bを有し、 中心部の吸込口 6 cから軸方向に吸入した空気を、 コンプレッサ翼車 6 aで圧縮し、 外周部の 出口 (図示せず) から矢印 6 dで示すように排出する。
膨張タービン 7は、 タービン翼車 7 aと微小の隙間 d 2を介して対向する タービンハウジング 7 bを有し、 外周部から矢印 7 cで示すように吸い込ん
だ空気を、 タービン翼車 7 aで断熱膨張させ、 中心部の排出口 7 dから軸方 向に排出する。
[0020] このタービンユニット 5におけるモータ一体型の磁気軸受装置は、 主軸 1 3をラジアル方向に対し複数の軸受 1 5 , 1 6で支持し、 主軸 1 3にかかる アキシアル負荷と軸受予圧のどちらか一方または両方を磁気軸受である電磁 石ュニット 1 7により支持すると共に、 主軸 1 3を回転駆動するアキシアル ギャップ型のモータ 2 8を設けたものである。 このタービンュニット 5は、 主軸 1 3に作用するスラスト力を検出するセンサ 1 8と、 このセンサ 1 8の 出力に応じて前記電磁石ュニット 1 7による支持力を制御する磁気軸受用コ ントロ一ラ 1 9と、 電磁石ユニット 1 7とは独立に前記モータ 2 8を制御す るモータ用コントロ一ラ 2 9とを有している。
電磁石ュニット 1 7は、 主軸 1 3の軸方向中間部において軸方向に並ぶよ うに主軸 1 3に垂直かつ同軸に設けられた強磁性体からなるフランジ状の 2 つのスラスト板 1 3 a , 1 3 bの各片面、 この例では軸方向外側の面に非接 触で対向するように、 一対の電磁石 1 7 A , 1 7 Bをスピンドルハウジング 1 4に設置したものである。 具体的には、 磁気軸受ュニットを構成する一方 の電磁石 1 7 Aは、 膨張タービン 7寄りに位置するスラスト板 1 3 aの膨張 タービン 7側に向く片面を電磁石ターゲットとして、 この片面に非接触で対 向するようにスピンドルハウジング 1 4に設置される。 また、 磁気軸受ュニ ットを構成する他方の電磁石 1 7 Bは、 コンプレッサ 6寄りに位置するスラ スト板 1 3 bのコンプレッサ 6側に向く片面を電磁石ターゲットして、 この 片面に非接触で対向するようにスピンドルハウジング 1 4に設置される。 こ うして磁気軸受が、 電磁石ュニット 1 7とスラスト板 1 3 a , 1 3 bとによ り構成される。
[0021 ] モータ 2 8は、 前記電磁石ユニット 1 7と並んで主軸 1 3に設けられたモ —タロータ 2 8 aと、 このモータロータ 2 8 aに対し軸方向に対向するモー タステ一タ 2 8 bとでなるモータユニットである。 具体的には、 図 4に部分 破断図で示すように、 モータュニッ卜の一部品を構成するモータロータ 2 8
aは、 前記各スラスト板 1 3 a , 1 3 bにおける電磁石 1 7 A , 1 7 Bが対 向する側とは反対側の各片面に、 円周方向に等ピッチで並ぶ永久磁石 2 8 a aを配置することで左右一対のものが構成される。 各スラスト板 1 3 a , 1 3 bの外径部には、 永久磁石 2 8 a aの飛散防止を図る鍔部 1 3 a a , 1 3 b aが形成されている。 このように軸方向に対向配置される永久磁石 2 8 a aの間では、 その磁極が互いに異極となるように設定される。 主軸 1 3には 磁気特性の良好な低炭素鋼を使用しているので、 主軸 1 3と一体構造となる ように設けられる前記各スラスト板 1 3 a , 1 3 bを、 永久磁石 2 8 a aの バックヨークおよび電磁石ターゲットに兼用できる。
モータュニッ卜の他の部品であるモータステ一タ 2 8 bは、 前記左右一対 のモータロータ 2 8 aに挟まれる軸方向中央の位置において、 これら両モ一 タロータ 2 8 aの各面に非接触で対向するようにコアの無い状態で配置した モータコイル 2 8 b aを、 スピンドルハウジング 1 4に設置して構成される 。 このモータ 2 8は、 前記モータロータ 2 8 aとモ一タステ一タ 2 8 b間に 作用する口一レンツ力により、 主軸 1 3を回転させる。 このように、 このァ キシアルギャップ型のモータ 2 8はコアレスモータとされていることから、 モータロータ 2 8 aとモ一タステ一タ 2 8 b間の磁気力ップリングによる負 の剛性はゼロとなっている。
また、 上記モータ 2 8の構成において、 モ一タステ一タ 2 8 bを構成する モータコイル 2 8 b aの外径側のコイルェンドの内径寸法 R i は、 モータ口 ータ 2 8 aを構成する永久磁石 2 8 a aのリング状配置領域における外径 R o以下とされている。
主軸 1 3を支持する軸受 1 5 , 1 6は転がり軸受であって、 アキシアル方 向位置の規制機能を有するものであり、 例えば深溝玉軸受ゃアンギユラ玉軸 受が用いられる。 深溝玉軸受の場合、 両方向のスラスト支持機能を有し、 内 外輪のアキシアル方向位置を中立位置に戻す作用を持つ。 これら 2個の軸受 1 5 , 1 6は、 それぞれスピンドルハウジング 1 4におけるコンプレッサ翼 車 6 aおよびタービン翼車 7 aの近傍に配置されて、 磁気軸受 1 7 , 1 3 a
, 1 3 bを挟んで主軸 1 3の軸方向外側に位置している。 したがって、 主軸 1 3のラジアル負荷を支持する転がり軸受 1 5 , 1 6が軸方向に離間して位 置するので、 主軸 1 3を安定して支持できる。
[0023] 主軸 1 3は、 中間部の大径部 1 3 cと、 両端部の小径部 1 3 dとを有する 段付き軸とされている。 両側の軸受 1 5 , 1 6は、 その内輪 1 5 a , 1 6 a が小径部 1 3 dに圧入状態に嵌合し、 片方の幅面が大径部 1 3 cと小径部 1 3 d間の段差面に係合する。
スピンドルハウジング 1 4における両側の軸受 1 5 , 1 6よりも各翼車 6 a , 7 a側の部分は、 内径面が主軸 1 3に近接する径に形成され、 この内径 面に非接触シール 2 1 , 2 2が形成されている。 この実施形態では、 非接触 シール 2 1 , 2 2は、 スピドルハウジング 1 4の内径面に複数の円周溝を軸 方向に並べて形成したラビリンスシールとしているが、 その他の非接触シ一 ル手段でも良い。
[0024] 前記センサ 1 8は、 タービン翼車 7 a側の軸受 1 6の近傍における静止側 、 つまりスピンドルハウジング 1 4側に設けられている。 このセンサ 1 8を 近傍に設けた軸受 1 6は、 その外輪 1 6 bが軸受ハウジング 2 3内に固定状 態に嵌合している。 軸受ハウジング 2 3は、 リング状に形成されて一端に軸 受 1 6の外輪 1 6 bの幅面に係合する内鍔 2 3 aを有しており、 スピンドル ハウジング 1 4に設けられた内径面 2 4にアキシアル方向に移動自在に嵌合 している。 内鍔 2 3 aは、 アキシアル方向の中央側端に設けられている。
[0025] センサ 1 8は主軸 1 3の回りの円周方向複数箇所 (例えば 2箇所) に分配 配置され、 軸受ハウジング 2 3の内鍔 2 3 a側の幅面と、 スピンドルハウジ ング 1 4に固定された部材である片方の電磁石ュニット 1 7との間に介在さ せてある。 また、 センサ 1 8は、 センサ予圧ばね 2 5により予圧が印加され ている。 センサ予圧ばね 2 5は、 スピンドルハウジング 1 4に設けられた収 容凹部内に収容されて軸受 1 6の外輪 1 6 bをアキシアル方向に付勢するも のとされ、 外輪 1 6 bおよび軸受ハウジング 2 3を介してセンサ 1 8を予圧 する。 センサ予圧ばね 2 5は、 例えば主軸 1 3の回りの円周方向複数箇所に
設けられたコィルばね等からなる。
[0026] センサ予圧ばね 2 5による予圧は、 押し付け力によってスラスト力を検出 するセンサ 1 8力 主軸 1 3のアキシアル方向のいずれの向きの移動に対し ても検出できるようにするためであり、 タービンュニット 5の通常の運転状 態で主軸 1 3に作用する平均的なスラストカ以上の大きさとされる。
[0027] センサ 1 8の非配置側の軸受 1 5は、 スピンドルハウジング 1 4に対して アキシアル方向に移動自在に設置され、 かつ軸受予圧ばね 2 6によって弾性 支持されている。 この例では軸受 1 5の外輪 1 5 b力 スピンドルハウジン グ 1 4の内径面にアキシアル方向移動自在に嵌合していて、 軸受予圧ばね 2 6は、 外輪 1 5 bとスピンドルハウジング 1 4との間に介在している。 軸受 予圧ばね 2 6は、 内輪 1 5 aの幅面が係合した主軸 1 3の段面に対向して外 輪 1 5 bを付勢するものとされ、 軸受 1 5に予圧を与えている。 軸受予圧ば ね 2 6は、 主軸 1 3回りの円周方向複数箇所に設けられたコイルばね等から なり、 それぞれスピンドルハウジング 1 4に設けられた収容凹部内に収容さ れている。 軸受予圧ばね 2 6は、 センサ予圧ばね 2 5よりもばね定数が小さ いものとされる。
[0028] 上記タービンュニット 5におけるモータ一体型の磁気軸受装置の力学モデ ルは簡単なパネ系で構成することができる。 すなわち、 このパネ系は、 軸受 1 5 , 1 6とこれら軸受の支持系 (センサ予圧ばね 2 5、 軸受予圧ばね 2 6 、 軸受ハウジング 2 3など) とで形成される合成パネと、 モータ部 (電磁石 ユニット 1 7とモータ 2 8 ) で形成される合成パネとが並列となった構成で ある。 このバネ系において、 軸受 1 5 , 1 6とこれら軸受の支持系とで形成 される合成パネは、 変位した方向と逆の方向に変位量に比例して作用する剛 性となるのに対し、 電磁石ユニット 1 7とモータ 2 8とで形成される合成バ ネは、 変位した方向に変位量に比例して作用する負の剛性となる。
このため、 上記した両合成パネの剛性の大小関係を、
軸受等による合成パネの剛性値 <電磁石■モータによる合成パネの負の剛 性値… (1 ) とした場合、 機械システムの位相は 1 8 0 ° 遅れとなり不安定
な系となることから、 電磁石ユニット 1 7を制御する磁気軸受用コントロー ラ 1 9において、 予め位相補償回路を付加する必要が生じ、 コントローラ 1 9の構成が複雑なものになる。
[0029] そこで、 この実施形態のモータ一体型の磁気軸受装置では、 上記した両合 成パネの剛性の大小関係を、
軸受等による合成パネの剛性値 >電磁石■モータによる合成パネの負の剛 性値… (2 ) としている。 とくに、 このモータ一体型の磁気軸受装置では、 上記したようにアキシアルギャップ型のモータ 2 8をコアレスモータとして いるので、 モータ 2 8に作用する負の剛性値をゼロとすることができ、 モー タ 2 8が高負荷動作し過大なアキシアル荷重が作用した状態においても上記 ( 2 ) 式の大小関係を保つことができる。
その結果、 制御帯域において、 機械システムの位相が 1 8 0 ° 遅れとなる ことを防止できるので、 モータ 2 8が高負荷動作し過大なアキシアル荷重が 作用した状態でも磁気軸受用コントローラ 1 9の制御対象を安定なものとで き、 コントローラ 1 9の回路構成を図 2のように比例もしくは比例積分を用 いた簡単なものに構成できる。
[0030] ブロック図で示す図 2の磁気軸受用コントローラ 1 9では、 各センサ 1 8 の検出出力 P 1 , P 2をセンサ出力演算回路 3 0で加減算し、 その演算結果 を比較器 3 1で基準値設定手段 3 2の基準値と比較して偏差を演算し、 さら に演算した偏差を P I補償回路 (もしくは P補償回路) 3 3によりタービン ユニット 5に応じて適宜設定される比例積分 (もしくは比例) 処理を行うこ とで、 電磁石ュニット 1 7の制御信号を演算するようにしている。 P I補償 回路 (もしくは P補償回路) 3 3の出力は、 ダイオード 3 4 , 3 5を介して 各方向の電磁石 1 7 A , 1 7 Bを駆動するパワー回路 3 6 , 3 7に入力され る。 電磁石 1 7 A , 1 7 Bは、 図 1に示したスラスト板 1 3 a , 1 3 bに対 して吸引力しか作用しないため、 予めダイオード 3 4 , 3 5で電流の向きを 決め、 2個の電磁石 1 7 A , 1 7 Bを選択的に駆動するようにしている。
[0031 ] 同じくブロック図で示す図 3のモータ用コントローラ 2 9では、 回転同期
指令信号を基に、 モータロータ 2 8 aの回転角をフィードバック信号として 位相調整回路 3 8でモータ駆動電流の位相調整が行われ、 その調整結果に応 じたモータ駆動電流をモータ駆動回路 3 9からモータステ一タ 2 8 bに供給 することによって、 定回転制御が行われる。
[0032] この構成のタービンユニット 5は、 例えば空気サイクル冷凍冷却システム に適用されて、 冷却媒体となる空気を後段の熱交換器 (ここでは図示せず) により効率良く熱交換できるように、 コンプレッサ 6で圧縮して温度上昇さ せ、 さらに後段の前記熱交換器で冷却された空気を、 膨張タービン 7により 、 目標温度、 例えば— 3 0 °C〜一 6 0 °C程度の極低温まで断熱膨張により冷 却して排出するように使用される。
このような使用例において、 このタービンユニット 5は、 コンプレッサ翼 車 6 aおよびタービン翼車 7 a力 前記スラスト板 1 3 aとモータロータ 2 8 aと共通の主軸 1 3に嵌合し、 モータ 2 8の動力とタービン翼車 7 aで発 生した動力のどちらか一方または両方によりコンプレッサ翼車 6 aを駆動す るものとしている。 このため、 各翼車 6 a , 7 aの適切な隙間 d 1 , d 2を 保って主軸 1 3の安定した高速回転が得られ、 かつ軸受 1 5 , 1 6の長期耐 久性の向上、 寿命の向上が得られる。
[0033] すなわち、 タービンユニット 5の圧縮, 膨張の効率を確保するためには、 各翼車 6 a , 7 aとハウジング 6 b , 7 13との隙間01 1 , d 2を微小に保つ 必要がある。 例えば、 このタービンユニット 5を空気サイクル冷凍冷却シス テムに適用する場合には、 この効率確保が重要となる。 これに対して、 主軸 1 3を転がり形式の軸受 1 5 , 1 6により支持するため、 転がり軸受の持つ アキシアル方向位置の規制機能により、 主軸 1 3のアキシアル方向位置があ る程度規制され、 各翼車 6 a , 7 aとハウジング 6 b , 7 bとの微小隙間 d 1 , d 2を一定に保つことができる。
[0034] しかし、 タービンユニット 5の主軸 1 3には、 各翼車 6 a , 7 aに作用す る空気の圧力でスラスト力がかかる。 また、 空気冷却システムで使用するタ —ビンュニット 5では、 1分間に例えば 8万〜 1 0万回転程度の非常に高速
の回転となる。 そのため、 主軸 1 3を回転支持する転がり軸受 1 5 , 1 6に 上記スラスト力が作用すると、 軸受 1 5 , 1 6の長期耐久性が低下する。 この実施形態は、 上記スラストカを電磁石ュニット 1 7で支持するため、 非接触でトルクの増大を抑えながら、 主軸 1 3の支持用の転がり軸受 1 5 , 1 6に作用するスラスト力を軽減することができる。 この場合に、 主軸 1 3 に作用するスラスト力を検出するセンサ 1 8と、 このセンサ 1 8の出力に応 じて前記電磁石ュニット 1 7による支持力を制御する磁気軸受用コントロー ラ 1 9とを設けたため、 転がり軸受 1 5 , 1 6を、 その軸受仕様に応じてス ラスト力に対し最適な状態で使用することができる。
特に、 軸方向に並べて主軸 1 3に設けられた 2つのスラスト板 1 3 a , 1 3 bの軸方向外側に 2つの電磁石 1 7 A , 1 7 Bを配置して磁気軸受ュニッ トを構成すると共に、 前記両スラスト板 1 3 a , 1 3 bで挟まれる位置にァ キシアルギャップ型のモータ 2 8を配置してモータュニットを構成すること により、 磁気軸受ュニッ卜とモータュニットをコンパク 卜な一体構造として いるため、 主軸 5 3の軸長を短くでき、 それだけ主軸 1 3の固有振動数が高 くなつて、 主軸 1 3を高速回転させることができる。
[0035] また、 このモータ一体型の磁気軸受装置では、 モータ 2 8の構成において 、 モ一タステ一タ 2 8 bを構成するモータコイル 2 8 b aの外径側のコイル ェンドの内径寸法 R i を、 モータロータ 2 8 aを構成する永久磁石 2 8 a a のリング状配置領域における外径 R o以下としているので、 回転磁界を発生 させたときの外径側コイルェンド部の磁束に起因したモータロータ 2 8 a外 径面の鉄損を低減することができ、 主軸 1 3を高速回転させた場合にもモー タロータ 2 8 aの発熱を小さく抑えることができる。 これにより、 モータ口 —タ 2 8 aの永久磁石 2 8 a aが熱減磁し難くなる。
[0036] 図 6は、 上記タービンユニット 5を用いた空気サイクル冷凍冷却システム の全体の構成を示す。 この空気サイクル冷凍冷却システムは、 冷凍倉庫等の 被冷却空間 1 0の空気を直接に冷媒として冷却するシステムであり、 被冷却 空間 1 0にそれぞれ開口した空気の取入口 1 aから排出口 1 bに至る空気循
環経路 1を有している。 この空気循環経路 1に、 予圧縮手段 2、 第 1の熱交 換器 3、 空気サイクル冷凍冷却用タービンユニット 5のコンプレッサ 6、 第 2の熱交換器 3、 中間熱交換器 9、 および前記タービンユニット 5の膨張タ 一ビン 7が順に設けられている。 中間熱交換器 9は、 同じ空気循環経路 1内 で取入口 1 aの付近の流入空気と、 後段の圧縮で昇温し、 冷却された空気と の間で熱交換を行うものであり、 取入口 1 aの付近の空気は熱交換器 9 a内 を通る。
[0037] 予圧縮手段 2はブロア等からなり、 モータ 2 aにより駆動される。 第 1の 熱交換器 3および第 2の熱交換器 8は、 冷却媒体を循環させる熱交換器 3 a , 8 aをそれぞれ有し、 熱交換器 3 a , 8 a内の水等の冷却媒体と空気循環 経路 1の空気との間で熱交換を行う。 各熱交換器 3 a , 8 aは、 冷却塔 1 1 に配管接続されており、 熱交換で昇温した冷却媒体が冷却塔 1 1で冷却され る。 なお、 前記予圧縮手段 2を含まない構成の空気サイクル冷凍冷却システ ムでもよい。
[0038] この空気サイクル冷凍冷却システムは、 被冷却空間 1 0を 0 °C〜― 6 0 °C 程度に保つシステムであり、 被冷却空間 1 0から空気循環経路 1の取入口 1 aに 0 °C〜― 6 0 °C程度で 1気圧の空気が流入する。 なお、 以下に示す温度 および気圧の数値は、 一応の目安となる一例である。 取入口 1 aに流入した 空気は、 中間熱交換器 9により、 空気循環経路 1中の後段の空気の冷却に使 用され、 3 0 °Cまで昇温する。 この昇温した空気は 1気圧のままであるが、 予圧縮手段 2により 1 . 4気圧に圧縮させられ、 その圧縮により、 7 0 °Cま で昇温する。 第 1の熱交換器 3は、 昇温した 7 0 °Cの空気を冷却すれば良い ため、 常温程度の冷水であっても効率良く冷却することができ、 4 0 °Cに冷 却する。
[0039] 熱交換により冷却された 4 0 °C, 1 . 4気圧の空気が、 タービンユニット 5のコンプレッサ 6により、 1 . 8気圧まで圧縮され、 この圧縮により 7 0 °C程度に昇温した状態で、 第 2の熱交換器 8により 4 0 °Cに冷却される。 こ の 4 0 °Cの空気は、 中間熱交換器 9で— 3 0 °Cの空気により— 2 0 °Cまで冷
却される。 気圧はコンプレッサ 6から排出された 1 . 8気圧が維持される。 中間熱交換器 9で一 2 0 °Cまで冷却された空気は、 タービンュニット 5の 膨張タービン 7により断熱膨張され、 _ 5 5 °Cまで冷却されて排出口 1 bか ら被冷却空間 1 0に排出される。 この空気サイクル冷凍冷却システムは、 こ のような冷凍サイクルを行う。
[0040] この空気サイクル冷凍冷却システムでは、 タービンユニット 5において、 各翼車 6 a , 7 aの適切な隙間 d 1 , d 2を保って主軸 1 3の安定した高速 回転が得られ、 かつ軸受 1 5 , 1 6の長期耐久性の向上、 寿命の向上が得ら れることで、 軸受 1 5 , 1 6の長期耐久性が向上することから、 タービンュ ニット 5の全体として、 しいては空気サイクル冷凍冷却システムの全体とし ての信頼性が向上する。 このように、 空気サイクル冷凍冷却システムのネッ クとなっているタービンュニット 5の主軸軸受 1 5 , 1 6の安定した高速回 転、 長期耐久性、 信頼性が向上するため、 空気サイクル冷凍冷却システムの 実用化が可能となる。
[0041 ] 次に、 本発明とは基本構成が異なる応用技術であるモーター体型の磁気軸 受装置について説明する。
[0042] 本発明者等は、 先行技術 (特許文献 1〜3 ) における上記課題を解決する ものとして、 図 1 2に示すような公知ではないモータ一体型の磁気軸受装置 を開発した。 このモータ一体型の磁気軸受装置は、 主軸 1 1 3の両端にコン プレッサ 1 0 6のコンプレッサ翼車 1 0 6 aおよび膨張タービン 1 0 7のタ 一ビン翼車 1 0 7 aを取付けた空気サイクル冷凍冷却用タービンュニッ卜に おいて、 主軸 1 1 3のラジアル負荷を転がり軸受 1 1 5 , 1 1 6で、 アキシ アル負荷を電磁石 1 1 7でそれぞれ支持すると共に、 主軸 1 1 3に同軸に設 けたモータ 1 2 8による駆動力とタービン翼車 1 0 7 aの駆動力とでコンプ レッサ翼車 1 0 6 aを回転駆動するようにしたものである。 アキシアル負荷 を支持する電磁石 1 1 7は、 主軸 1 1 3に垂直かつ同軸に設けられたスラス ト板 1 1 3 aに非接触で対向するように配置され、 アキシアル方向のカを検 出するセンサ 1 1 8の出力に応じて磁気軸受用コントローラ 1 1 9で制御さ
れる。 モータ 1 2 8はアキシアルギャップ型のものであって、 主軸 1 1 3に 垂直かつ同軸に設けた別のスラスト板 1 1 3 bにモータロータ 1 2 8 aを形 成すると共に、 このモータロータ 1 2 8 aと軸方向に対向するようにモータ ステ一タ 1 2 8 bを配置して構成される。 このモータ 1 2 8は、 電磁石 1 1 7とは独立にモータ用コントローラ 1 2 9で制御される。
[0043] 上記構成のモータ一体型の磁気軸受装置によると、 主軸 1 1 3にかかるス ラスト力を電磁石 1 1 7で支持するため、 非接触でトルクの増大を抑えなが ら、 転がり軸受 1 1 5 , 1 1 6に作用するスラスト力を軽減することができ る。 その結果、 各翼車 1 0 6 a , 1 0 7 aとハウジング 1 0 6 b , 1 0 7 b との微小隙間を一定に保つことができ、 スラスト荷重の負荷に対する転がり 軸受の長期耐久性を向上させることができる。
[0044] しかし、 上記構成のモータ一体型の磁気軸受装置では、 主軸 1 1 3に設け た 1つのスラスト板を挟んで左右 2個の電磁石を配置して磁気軸受ュニット を構成すると共に、 主軸 1 1 3に別に設けたもう 1つのスラスト板を挟んで 左右 2個のアキシアルギャップ型のモータ 1 2 8を配置することで前記磁気 軸受ュニッ卜と独立にモータュニットを構成しているため、 主軸 1 1 3の軸 長が長くなつて固有振動数が低下し、 高速回転させることができないという 問題がある。
[0045] この応用技術の目的は、 スラスト荷重の負荷に対する転がり軸受の長期耐 久性を向上させることができ、 かつ主軸を高速回転させることが可能なモー ター体型の磁気軸受装置を提供することである。
応用技術の概要
[0046] 上記応用技術に係るモーター体型の磁気軸受装置は、 転がり軸受と磁気軸 受を併用し、 転がり軸受がラジアル負荷を支持し、 磁気軸受がアキシアル負 荷と軸受予圧のどちらか一方または両方を支持し、 前記磁気軸受を構成する 電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接 触で対向するように、 スピンドルハウジングに取付けられており、 前記スラ スト板は軸方向に離れて 2つ設けられ、 これら 2つのスラスト板は、 片面に
電磁石ターゲッ卜が形成され、 もう片方の面にはモータロータ用の永久磁石 が配置され、 前記モータロータ用の永久磁石は前記 2つのスラスト板の対向 する面に配置されており、 前記永久磁石は異極が互いに対向するように、 周 方向に等ピッチで配置され、 前記永久磁石に挟まれるように、 モータステー タが配置されてスピンドルハウジングに取付けられており、 前記モータロー タおよび前記モータステータ間のローレンツ力により主軸を回転させるアキ シアルギャップ型のコアレスモータを有するものであって、 前記モ一タステ —タは、 集中巻き方式の複数個のコイルで構成し、 このモータステ一タは、 それぞれ前記コイルが周方向に複数並び互いに一体化された複数個のモジュ —ルに分けて構成したことを特徴とする。 前記 2つのスラスト板は、 主軸に —体に形成されたものであっても良い。
この構成によると、 転がり軸受と磁気軸受を併用し、 転がり軸受がラジア ル負荷を支持し、 磁気軸受がアキシアル負荷と軸受予圧のどちらか一方また は両方を支持するものであるため、 アキシアル方向の精度の良い支持が行え 、 また転がり軸受の長期耐久性が確保でき、 磁気軸受のみの支持の場合にお ける電源停止時の損傷も回避される。
また、 軸方向に並べて主軸に設けられた 2つのスラスト板の軸方向外側に 2つの電磁石を配置して磁気軸受ュニッ卜とすると共に、 前記両スラスト板 で挟まれる位置にアキシアルギヤップ型のモータを配置してモータュニット としたため、 磁気軸受ュニッ卜とモータュニットとがコンパク 卜な一体構造 とできる。 そのため、 主軸の軸長を短くでき、 それだけ主軸の固有振動数が 高くなつて、 主軸を高速回転させることができる。
また、 モ一タステ一タは主軸に設けられた 2つのスラスト板に挟まれて配 置されるため、 モータステ一タおよびモータロータの両方が一体の部材であ ると装置の組み立てができないが、 モータステータを集中巻き方式の複数個 のコイルで構成し、 それぞれ前記コイルが周方向に複数並び互いに一体化さ れた複数個のモジュールに分けて構成しているので、 装置の組み立てが可能 である。 なお、 ロータ側の分割構造として、 例えばスラスト板を主軸とは別
の部材とし、 主軸に嵌合させるなどして主軸に固定させる構成とした場合に は、 モ一タステ一タが一体の部材であっても組み立ては可能となる。 しかし 、 主軸は高速回転するため、 スラスト板を主軸と別部材とすることなどによ り、 モータロータ側を分割構造としたのでは、 強度不足を招く。 この発明は モータステータ側を分割構造としたため、 高速回転時の強度不足の問題を招 くことなく、 組立上の問題を解消することができる。
[0048] 上記磁気軸受装置において、 前記 2つのスラスト板は主軸に一体で形成さ れたものであっても良い。 この構成の場合、 これら両スラスト板を前記永久 磁石のバックヨークおよび電磁石ターゲッ卜に兼用できる。 前記のようにモ 一タステータを分割構造としたため、 組立上の問題を生じることなく、 2枚 のスラスト板を主軸と一体のものとできる。
[0049] 上記磁気軸受装置において、 コンプレッサ側翼車およびタービン側翼車が 、 前記スラスト板およびモータロータと共通の主軸に嵌合し、 モータ動力と タービン側翼車で発生した動力のどちらか一方または両方により、 コンプレ ッサ側翼車を駆動させる、 圧縮膨張タービンシステムに適用されたものであ つても良い。 この構成の場合、 各翼車の適切な隙間を保って主軸の安定した 高速回転が得られ、 かつ軸受の長期耐久性、 寿命の向上が得られる。
[0050] 上記磁気軸受装置において、 前記モータ一体型の磁気軸受装置を適用した 圧縮膨張タービンシステムが、 流入空気に対して、 タービンユニットのコン プレッサによる圧縮、 他の熱交換器による冷却、 前記タービンユニットの膨 張タービンによる断熱膨張、 もしくは予圧縮手段による圧縮、 熱交換器によ る冷却、 タービンユニットのコンプレッサによる圧縮、 他の熱交換器による 冷却、 前記タービンユニットの膨張タービンによる断熱膨張、 を順次行う空 気サイクル冷凍冷却システムに適用されたものであっても良い。
このモータ一体型の磁気軸受装置を適用した圧縮膨張タービンシステムを 、 このような空気サイクル冷凍冷却システムに適用した場合、 圧縮膨張ター ビンシステムにおいて、 各翼車の適切な隙間を保って主軸の安定した高速回 転が得られ、 かつ軸受の長期耐久性の向上、 寿命の向上が得られることから
、 圧縮膨張タービンシステムの全体として、 しいては空気サイクル冷凍冷却 システムの全体としても信頼性が向上する。 また、 空気サイクル冷凍冷却シ ステムのネックとなっている圧縮膨張タービンシステムの主軸軸受の安定し た高速回転、 長期耐久性、 信頼性が向上することから、 空気サイクル冷凍冷 却システムの実用化が可能となる。
応用技術の詳細
[0051 ] 上記応用技術に係る磁気軸受装置の具体的な構成例を図 1 0および図 1 1 と共に説明する。 図 1 0は、 この構成例のモータ一体型の磁気軸受装置を組 み込んだタービンュニット 7 5の断面図を示す。 このタービンュニット 7 5 は圧縮膨張タービンシステムを構成するものであり、 コンプレッサ 7 6およ び膨張タービン 7 7を有し、 コンプレッサ 7 6のコンプレッサ翼車 7 6 aお よび膨張タービン 7 7のタービン翼車 7 7 aが主軸 8 3の両端にそれぞれ嵌 合している。 主軸 8 3の材料には、 磁気特性の良好な低炭素鋼が使用される
[0052] 図 1 0において、 コンプレッサ 7 6は、 コンプレッサ翼車 7 6 aと微小の 隙間 d 1を介して対向するコンプレッサハウジング 7 6 bを有し、 中心部の 吸込口 7 6 cから軸方向に吸入した空気を、 コンプレッサ翼車 7 6 aで圧縮 し、 外周部の出口 (図示せず) から矢印 7 6 dで示すように排出する。 膨張タービン 7 7は、 タービン翼車 7 7 aと微小の隙間 d 2を介して対向 するタービンハウジング 7 7 bを有し、 外周部から矢印 7 7 cで示すように 吸い込んだ空気を、 タービン翼車 7 7 aで断熱膨張させ、 中心部の排出口 7
7 dから軸方向に排出する。
[0053] このタービンュニット 7 5におけるモータ一体型の磁気軸受装置は、 主軸
8 3をラジアル方向に対し複数の軸受 8 5 , 8 6で支持し、 主軸 8 3にかか るアキシアル負荷と軸受予圧のどちらか一方または両方を、 磁気軸受を構成 する電磁石ュニット 8 7により支持すると共に、 主軸 8 3を回転駆動するァ キシアルギャップ型のモータ 9 8を設けたものである。 このタービンュニッ ト 7 5は、 主軸 8 3に作用するスラスト力を検出するセンサ 8 8と、 このセ
ンサ 8 8の出力に応じて前記電磁石ュニット 8 7による支持力を制御する磁 気軸受用コントローラ 8 9と、 電磁石ュニット 8 7とは独立に前記モータ 9 8を制御するモータ用コントロ一ラ 9 9とを有している。
電磁石ュニット 8 7は、 主軸 8 3の軸方向中間部において軸方向に並ぶよ うに主軸 8 3に垂直かつ同軸に設けられた強磁性体からなるフランジ状の 2 つのスラスト板 8 3 a , 8 3 bの各片面に非接触で対向するように、 一対の 電磁石 8 7 A , 8 7 Bをスピンドルハウジング 8 4に設置したものである。 具体的には、 磁気軸受ユニットを構成する一方の電磁石 8 7 Aは、 膨張ター ビン 7 7寄りに位置するスラスト板 8 3 aの膨張タービン 7 7側に向く片面 を電磁石ターゲットとして、 この片面に非接触で対向するようにスピンドル ハウジング 8 4に設置される。 また、 磁気軸受ユニットを構成する他方の電 磁石 8 7 Bは、 コンプレッサ 7 6寄りに位置するスラスト板 8 3 bのコンプ レッサ 7 6側に向く片面を電磁石ターゲッ卜して、 この片面に非接触で対向 するようにスピンドルハウジング 8 4に設置される。
[0054] モータ 9 8は、 前記電磁石ユニット 8 7と並んで主軸 8 3に設けられたモ —タロータ 9 8 aと、 このモータロータ 9 8 aに対し軸方向に対向するモ一 タステ一タ 9 8 bとでなるモータユニットである。 具体的には、 モータュニ ッ卜の一部品を構成するモータロータ 9 8 aは、 主軸 8 3における前記各ス ラスト板 8 3 a , 8 3 bにおける電磁石 8 7 A , 8 7 Bが対向する側とは反 対側の各片面に、 円周方向に等ピッチで並ぶ永久磁石 9 8 a aを配置するこ とで左右一対のものが構成される。 このように軸方向に対向配置される永久 磁石 9 8 a aの間では、 その磁極が互いに異極となるように設定される。 主 軸 8 3には磁気特性の良好な低炭素鋼を使用しているので、 主軸 8 3と一体 構造となるように設けられる前記各スラスト板 8 3 a , 8 3 bを、 永久磁石 9 8 a aのバックヨークおよび電磁石ターゲッ卜に兼用できる。
[0055] モータュニッ卜の他の部品であるモータステ一タ 9 8 bは、 前記左右一対 のモータロータ 9 8 aに挟まれる軸方向中央の位置において、 これら両モ一 タロータ 9 8 aの各面に非接触で対向するようにコアの無い状態で配置した
集中巻き方式の複数個のコイル 9 8 b aを、 スピンドルハウジング 8 4に設 置して構成される。 具体的には、 モ一タステ一タ 9 8 bは、 分解した平面図 で示す図 1 1のように、 前記コイル 9 8 b aが周方向に複数並び互いに一体 化された複数個 (ここでは 2個) のモジュール 9 8 b 1 , 9 8 b 2に分けて 構成される。 各モジュール 9 8 b 1 , 9 8 b 2は、 高分子材料からなるケ一 ス 9 8 b b内に、 コイル 9 8 b aを収容したものである。 ケース 9 8 b bは 、 コイル 9 8 b aを樹脂モールドしたモールド樹脂であっても良い。
[0056] 上記したように、 モータユニットの一部品であるモータロータ 9 8 aの 2 つのスラスト板 8 3 a , 8 3 bは主軸 8 3と一体であるため、 これら 2つの スラスト板 8 3 a , 8 3 bに挟まれて配置される前記モ一タステ一タ 9 8 b が一体の部材であると、 装置の組み立てができない。 そこで、 このタービン ュニット 7 5では、 上記したようにモ一タステ一タ 9 8 bを複数個のモジュ —ル 9 8 b 1 , 9 8 b 2に分けて構成することにより、 組み立てを可能にし ている。
なお、 前記スラスト板 8 3 a , 8 3 bを主軸 8 3から分離した部材とし、 主軸 8 3に嵌合させるなどして主軸 8 3に結合させる構成とした場合には、 モ一タステ一タ 9 8 bが一体の部材であっても組み立ては可能となる。 しか し、 主軸 8 3は高速回転 (例えば 1 0万 r p m程度) するため、 スラスト板 8 3 a , 8 3 bを主軸 8 3と別部材とする構成では強度不足を招くことにな る。
[0057] このモータ 9 8は、 前記モータロータ 9 8 aとモ一タステ一タ 9 8 b間に 作用する口一レンツ力により、 主軸 8 3を回転させる。 このように、 このァ キシアルギャップ型のモータ 9 8はコアレスモータとされていることから、 モータロータ 9 8 aとモ一タステ一タ 9 8 b間の磁気力ップリングによる負 の剛性はゼロとなっている。
[0058] 主軸 8 3を支持する軸受 8 5 , 8 6は転がり軸受であって、 アキシアル方 向位置の規制機能を有するものであり、 例えば深溝玉軸受ゃアンギユラ玉軸 受が用いられる。 深溝玉軸受の場合、 両方向のスラスト支持機能を有し、 内
外輪のアキシアル方向位置を中立位置に戻す作用を持つ。 これら 2個の軸受 8 5 , 8 6は、 それぞれスピンドルハウジング 8 4におけるコンプレッサ翼 車 7 6 aおよびタービン翼車 7 7 aの近傍に配置されている。
[0059] 主軸 8 3は、 中間部の大径部 8 3 cと、 両端部の小径部 8 3 dとを有する 段付き軸とされている。 両側の軸受 8 5 , 8 6は、 その内輪 8 5 a , 8 6 a が小径部 8 3 dに圧入状態に嵌合し、 片方の幅面が大径部 8 3 cと小径部 8 3 d間の段差面に係合する。
スピンドルハウジング 8 4における両側の軸受 8 5 , 8 6よりも各翼車 7 6 a , 7 7 a側の部分は、 内径面が主軸 8 3に近接する径に形成され、 この 内径面に非接触シール 9 1 , 9 2が形成されている。 この構成例では、 非接 触シール 9 1 , 9 2は、 スピンドルハウジング 8 4の内径面に複数の円周溝 を軸方向に並べて形成したラビリンスシールとしているが、 その他の非接触 シール手段でも良い。
[0060] 前記センサ 8 8は、 タービン翼車 7 7 a側の軸受 8 6の近傍における静止 側、 つまりスピンドルハウジング 8 4側に設けられている。 このセンサ 8 8 を近傍に設けた軸受 8 6は、 その外輪 8 6 bが軸受ハウジング 9 3内に固定 状態に嵌合している。 軸受ハウジング 9 3は、 リング状に形成されて一端に 軸受 8 6の外輪 8 6 bの幅面に係合する内鍔 9 3 aを有しており、 スピンド ルハウジング 8 4に設けられた内径面 9 4にアキシアル方向に移動自在に嵌 合している。 内鍔 9 3 aは、 アキシアル方向の中央側端に設けられている。
[0061 ] センサ 8 8は主軸 8 3の回りの円周方向複数箇所 (例えば 2箇所) に分配 配置され、 軸受ハウジング 9 3の内鍔 9 3 a側の幅面と、 スピンドルハウジ ング 8 4に固定された部材である片方の電磁石ュニット 8 7との間に介在さ せてある。 また、 センサ 8 8は、 センサ予圧ばね 9 5により予圧が印加され ている。 センサ予圧ばね 9 5は、 スピンドルハウジング 8 4に設けられた収 容凹部内に収容されて軸受 8 6の外輪 8 6 bをアキシアル方向に付勢するも のとされ、 外輪 8 6 bおよび軸受ハウジング 9 3を介してセンサ 8 8を予圧 する。 センサ予圧ばね 9 5は、 例えば主軸 8 3の回りの円周方向複数箇所に
設けられたコィルばね等からなる。
[0062] センサ予圧ばね 9 5による予圧は、 押し付け力によってスラスト力を検出 するセンサ 8 8力 主軸 8 3のアキシアル方向のいずれの向きの移動に対し ても検出できるようにするためであり、 タービンュニット 7 5の通常の運転 状態で主軸 8 3に作用する平均的なスラストカ以上の大きさとされる。
[0063] センサ 8 8の非配置側の軸受 8 5は、 スピンドルハウジング 8 4に対して アキシアル方向に移動自在に設置され、 かつ軸受予圧ばね 9 6によって弾性 支持されている。 この例では軸受 8 5の外輪 8 5 b力 スピンドルハウジン グ 8 4の内径面にアキシアル方向移動自在に嵌合していて、 軸受予圧ばね 9 6は、 外輪 8 5 bとスピンドルハウジング 8 4との間に介在している。 軸受 予圧ばね 9 6は、 内輪 8 5 aの幅面が係合した主軸 8 3の段面に対向して外 輪 8 5 bを付勢するものとされ、 軸受 8 5に予圧を与えている。 軸受予圧ば ね 9 6は、 主軸 8 3回りの円周方向複数箇所に設けられたコイルばね等から なり、 それぞれスピンドルハウジング 8 4に設けられた収容凹部内に収容さ れている。 軸受予圧ばね 9 6は、 センサ予圧ばね 9 5よりもばね定数が小さ いものとされる。
[0064] 上記タービンュニット 7 5におけるモータ一体型の磁気軸受装置の力学モ デルは簡単なパネ系で構成することができる。 すなわち、 このパネ系は、 軸 受 8 5 , 8 6とこれら軸受の支持系 (センサ予圧ばね 9 5、 軸受予圧ばね 9 6、 軸受ハウジング 9 3など) とで形成される合成パネと、 モータ部 (電磁 石ュニット 8 7とモータ 9 8 ) で形成される合成パネとが並列となった構成 である。 このバネ系において、 軸受 8 5 , 8 6とこれら軸受の支持系とで形 成される合成パネは、 変位した方向と逆の方向に変位量に比例して作用する 剛性となるのに対し、 電磁石ュニット 8 7とモータ 9 8とで形成される合成 パネは、 変位した方向に変位量に比例して作用する負の剛性となる。
このため、 上記した両合成パネの剛性の大小関係を、
軸受等による合成パネの剛性値 <電磁石■モータによる合成パネの負の剛 性値… (1 ) とした場合、 機械システムの位相は 1 8 0 ° 遅れとなり不安定
な系となることから、 電磁石ュニット 8 7を制御する磁気軸受用コントロー ラ 8 9において、 予め位相補償回路を付加する必要が生じ、 コントローラ 8 9の構成が複雑なものになる。
[0065] そこで、 この構成例のモータ一体型の磁気軸受装置では、 上記した両合成 パネの剛性の大小関係を、
軸受等による合成パネの剛性値 >電磁石■モータによる合成パネの負の剛 性値… (2 ) としている。 とくに、 このモータ一体型の磁気軸受装置では、 上記したようにアキシアルギャップ型のモータ 9 8をコアレスモータとして いるので、 モータ 9 8に作用する負の剛性値をゼロとすることができ、 モー タ 9 8が高負荷動作し過大なアキシアル荷重が作用した状態においても上記 ( 2 ) 式の大小関係を保つことができる。
その結果、 制御帯域において、 機械システムの位相が 1 8 0 ° 遅れとなる ことを防止できるので、 モータ 9 8が高負荷動作し過大なアキシアル荷重が 作用した状態でも磁気軸受用コントローラ 8 9の制御対象を安定なものとで き、 コントローラ 8 9の回路構成を図 2のコントローラ 1 9と同様の比例も しくは比例積分を用いた簡単なものに構成できる。
[0066] 同じくモータ用コントローラ 9 9としては、 図 3に示したコントローラ 2 9と同じ構成のものを使用することができる。
[0067] この構成のタービンュニット 7 5は、 例えば空気サイクル冷凍冷却システ ムに適用されて、 冷却媒体となる空気を後段の熱交換器 (ここでは図示せず ) により効率良く熱交換できるように、 コンプレッサ 7 6で圧縮して温度上 昇させ、 さらに後段の前記熱交換器で冷却された空気を、 膨張タービン 7 7 により、 目標温度、 例えば— 3 0 °C〜― 6 0 °C程度の極低温まで断熱膨張に より冷却して排出するように使用される。
このような使用例において、 このタービンユニット 7 5は、 コンプレッサ 翼車 7 6 aおよびタービン翼車 7 7 a力 前記スラスト板 8 3 aとモータ口 —タ 9 8 aと共通の主軸 8 3に嵌合し、 モータ 9 8の動力とタービン翼車 7 7 aで発生した動力のどちらか一方または両方によりコンプレッサ翼車 7 6
aを駆動するものとしている。 このため、 各翼車 7 6 a , 7 7 aの適切な隙 間 d 1 , d 2を保って主軸 8 3の安定した高速回転が得られ、 かつ軸受 8 5 , 8 6の長期耐久性の向上、 寿命の向上が得られる。
[0068] すなわち、 タービンユニット 7 5の圧縮, 膨張の効率を確保するためには 、 各翼車 7 6 a , 7 7 aとハウジング 7 6 b , 7 13との隙間01 1 , d 2を微 小に保つ必要がある。 例えば、 このタービンュニット 7 5を空気サイクル冷 凍冷却システムに適用する場合には、 この効率確保が重要となる。 これに対 して、 主軸 8 3を転がり形式の軸受 8 5 , 8 6により支持するため、 転がり 軸受の持つアキシアル方向位置の規制機能により、 主軸 8 3のアキシアル方 向位置がある程度規制され、 各翼車 7 6 a , 7 7 aとハウジング 7 6 b , 7 bとの微小隙間 d 1 , d 2を一定に保つことができる。
[0069] しかし、 タービンユニット 7 5の主軸 8 3には、 各翼車 7 6 a , 7 7 aに 作用する空気の圧力でスラスト力がかかる。 また、 空気冷却システムで使用 するタービンュニット 7 5では、 1分間に例えば 8万〜 1 0万回転程度の非 常に高速の回転となる。 そのため、 主軸 8 3を回転支持する転がり軸受 8 5 , 8 6に上記スラスト力が作用すると、 軸受 8 5 , 8 6の長期耐久性が低下 する。
この構成例は、 上記スラストカを電磁石ュニット 8 7で支持するため、 非 接触でトルクの増大を抑えながら、 主軸 8 3の支持用の転がり軸受 8 5 , 8
6に作用するスラスト力を軽減することができる。 この場合に、 主軸 8 3に 作用するスラストカを検出するセンサ 8 8と、 このセンサ 8 8の出力に応じ て前記電磁石ュニット 8 7による支持力を制御する磁気軸受用コントローラ
1 9とを設けたため、 転がり軸受 8 5 , 8 6を、 その軸受仕様に応じてスラ スト力に対し最適な状態で使用することができる。
特に、 軸方向に並べて主軸 8 3に設けられた 2つのスラスト板 8 3 a , 8
3 bの軸方向外側に 2つの電磁石 8 7 A , 8 7 Bを配置して磁気軸受ュニッ トを構成すると共に、 前記両スラスト板 8 3 a , 8 3 bで挟まれる位置にァ キシアルギャップ型のモータ 9 8を配置してモータュニットを構成すること
により、 磁気軸受ュニッ卜とモータュニットをコンパク 卜な一体構造として いるため、 主軸 5 3の軸長を短くでき、 それだけ主軸 8 3の固有振動数が高 くなつて、 主軸 8 3を高速回転させることができる。
上記応用技術に係る磁気軸受装置を備える上記タービンュニット 7 5は、 図 6と同じ構成の空気サイクル冷凍冷却システムに使用することが可能であ る。
Claims
[1 ] 転がり軸受と磁気軸受を併用するモーター体型の磁気軸受装置であって、 前記転がり軸受がラジアル負荷を支持し、 前記磁気軸受がアキシアル負荷 と軸受予圧の少なくとも一方を支持し、
前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフラ ンジ状のスラスト板に非接触で対向するように、 スピンドルハウジングに取 付けられており、
前記スラスト板は軸方向に離れて 2つ設けられ、 これら 2つのスラスト板 は、 各々、 片面に電磁石ターゲットが形成され、 もう片方の面にはモータ口 ータ用の永久磁石が配置され、
前記モータロータ用の永久磁石は前記 2つのスラスト板の対向する面に配 置されており、 前記永久磁石は異極が互いに対向するように、 周方向に等ピ ツチで配置され、 前記永久磁石に挟まれるように、 モータステータが配置さ れてスピンドル/、ゥジングに取付けられており、
アキシアル方向の力を検出するセンサの出力に応じて、 電磁石を制御する コントローラを有し、 転がり軸受と転がり軸受の支持系とで形成される合成 パネの剛性値が、 磁気軸受とモータとで形成される剛性パネの負の剛性値よ りも大きい値となるように設定されており、
前記モータステータを構成するコィルの外径側のコイルェンドの内径が、 前記永久磁石の外径以下であるモーター体型の磁気軸受装置。
[2] 請求項 1において、 前記磁気軸受の電磁石は、 2つ設けられ、 前記 2つの スラスト板の軸方向両外側に対向して 1つずつ配置されているモータ一体型 の磁気軸受装置。
[3] 請求項 1において、 前記転がり軸受を一対有し、 両転がり軸受が前記磁気 軸受を挟んで主軸の軸方向外側に位置しているモーター体型の磁気軸受装置
[4] 請求項 1において、 前記スラスト板およびモータロータと共通の主軸にコ ンプレツサ側翼車およびタービン側翼車が取付けられており、 モータ動力と
タービン側翼車で発生した動力のどちらか一方または両方によりコンプレツ サ側翼車を駆動させる圧縮膨張タービンシステムに適用される、 モーター体 型の磁気軸受装置。
請求項 2において、 前記モーター体型の磁気軸受装置を適用した圧縮膨張 タービンシステムが、 流入空気に対して、 予圧縮手段による圧縮、 熱交換器 による冷却、 タービンユニットのコンプレッサによる圧縮、 他の熱交換器に よる冷却、 前記タービンユニットの膨張タービンによる断熱膨張、 を順次行 う空気サイクル冷凍冷却システムに適用されたものであるモータ一体型の磁 気軸受装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-219292 | 2006-08-11 | ||
JP2006219292A JP2008045586A (ja) | 2006-08-11 | 2006-08-11 | モータ一体型磁気軸受装置 |
JP2006-227758 | 2006-08-24 | ||
JP2006227758A JP2008054413A (ja) | 2006-08-24 | 2006-08-24 | モータ一体型の磁気軸受装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008018169A1 true WO2008018169A1 (fr) | 2008-02-14 |
Family
ID=39032710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/000827 WO2008018169A1 (fr) | 2006-08-11 | 2007-08-01 | Dispositif de palier magnétique intégré dans un moteur |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008018169A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107370322A (zh) * | 2017-08-24 | 2017-11-21 | 莱克电气股份有限公司 | 一种吸尘器电机及吸尘器 |
CN112177868A (zh) * | 2019-07-01 | 2021-01-05 | 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) | 调心磁悬浮轴承系统及发电机 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06101498A (ja) * | 1992-09-18 | 1994-04-12 | Hitachi Ltd | 磁気軸受式タービン・コンプレッサ |
JPH0791760A (ja) * | 1993-09-17 | 1995-04-04 | Hitachi Ltd | 磁気軸受式タービンコンプレッサ |
JPH08261237A (ja) * | 1995-03-17 | 1996-10-08 | Aisin Seiki Co Ltd | ガスタービンエンジン |
JP2007162727A (ja) * | 2005-12-09 | 2007-06-28 | Ntn Corp | モータ一体型磁気軸受装置 |
-
2007
- 2007-08-01 WO PCT/JP2007/000827 patent/WO2008018169A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06101498A (ja) * | 1992-09-18 | 1994-04-12 | Hitachi Ltd | 磁気軸受式タービン・コンプレッサ |
JPH0791760A (ja) * | 1993-09-17 | 1995-04-04 | Hitachi Ltd | 磁気軸受式タービンコンプレッサ |
JPH08261237A (ja) * | 1995-03-17 | 1996-10-08 | Aisin Seiki Co Ltd | ガスタービンエンジン |
JP2007162727A (ja) * | 2005-12-09 | 2007-06-28 | Ntn Corp | モータ一体型磁気軸受装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107370322A (zh) * | 2017-08-24 | 2017-11-21 | 莱克电气股份有限公司 | 一种吸尘器电机及吸尘器 |
CN112177868A (zh) * | 2019-07-01 | 2021-01-05 | 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) | 调心磁悬浮轴承系统及发电机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7723883B2 (en) | Motor built-in magnetic bearing device | |
US7932656B2 (en) | Magnetic bearing device | |
JP2007162723A (ja) | モータ一体型磁気軸受装置 | |
WO2008032430A1 (fr) | Dispositif à coussinet magnétique intégré à un moteur | |
JP2008283813A (ja) | モータ一体型磁気軸受装置 | |
WO2008018167A1 (fr) | Dispositif palier magnétique du type à moteur intégré | |
JP2007162726A (ja) | モータ一体型磁気軸受装置 | |
WO2008015776A1 (fr) | Dispositif de palier magnétique intégral à un moteur | |
JP2007162725A (ja) | モータ一体型磁気軸受装置 | |
JP2009062848A (ja) | モータ一体型の磁気軸受装置 | |
WO2008015777A1 (fr) | Unité de turbine de machine refrigérante à cycle à air | |
JP2008072809A (ja) | モータ一体型の磁気軸受装置 | |
JP2007162493A (ja) | 圧縮膨張タービンシステム | |
JP2009050066A (ja) | モータ一体型の磁気軸受装置 | |
JP2008072808A (ja) | モータ一体型の磁気軸受装置 | |
JP2008072810A (ja) | モータ一体型の磁気軸受装置 | |
JP2008082426A (ja) | 磁気軸受装置 | |
JP4799159B2 (ja) | モータ一体型磁気軸受装置 | |
JP2008039228A (ja) | 空気サイクル冷凍機用タービンユニット | |
JP2007162492A (ja) | 圧縮膨張タービンシステム | |
WO2008018169A1 (fr) | Dispositif de palier magnétique intégré dans un moteur | |
JP2008187829A (ja) | モータ一体型の磁気軸受装置 | |
JP4969272B2 (ja) | モータ一体型磁気軸受装置 | |
JP2008045586A (ja) | モータ一体型磁気軸受装置 | |
JP2007162491A (ja) | 圧縮膨張タービンシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07790317 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07790317 Country of ref document: EP Kind code of ref document: A1 |