WO2008016771A1 - Fibrous web comprising microfibers dispersed among bonded meltspun fibers - Google Patents

Fibrous web comprising microfibers dispersed among bonded meltspun fibers Download PDF

Info

Publication number
WO2008016771A1
WO2008016771A1 PCT/US2007/073562 US2007073562W WO2008016771A1 WO 2008016771 A1 WO2008016771 A1 WO 2008016771A1 US 2007073562 W US2007073562 W US 2007073562W WO 2008016771 A1 WO2008016771 A1 WO 2008016771A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
web
meltspun
stream
meltblown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2007/073562
Other languages
English (en)
French (fr)
Inventor
Andrew R. Fox
John D. Stelter
Timothy J. Lindquist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP07799608A priority Critical patent/EP2047022A1/en
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to KR1020097001974A priority patent/KR101432325B1/ko
Priority to BRPI0715525-5A priority patent/BRPI0715525A2/pt
Priority to CN2007800286223A priority patent/CN101495693B/zh
Priority to JP2009522919A priority patent/JP5642964B2/ja
Publication of WO2008016771A1 publication Critical patent/WO2008016771A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/08Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of fibres or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/619Including other strand or fiber material in the same layer not specified as having microdimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/625Autogenously bonded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/626Microfiber is synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/68Melt-blown nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to nonwoven fibrous webs comprising a combination of continuous oriented meltspun fibers and separately prepared micro fibers.
  • Nonwoven fibrous webs used as filtration media often comprise two or more kinds of fibers, each having a different average diameter so the web can filter particles of a broad range of sizes.
  • the different kinds of fibers lie in different layers of the web.
  • One example taught in Healy, U.S. Patent Application Publication No. US 2004/0035095 is a filtration web comprising a layer of microf ⁇ bers having diameters between about 0.8 and 1.5 micrometers meltblown onto a spunbond web (see paragraphs [0009] through [0012]).
  • a problem with such a web is that such small micro fibers, exposed on the top of the web, are very fragile and easily crushed by normal handling or contact with some object.
  • SMS webs comprising a layer of spunbond fibers, a layer of meltblown micro fibers, and another layer of spunbond fibers.
  • the multilayer nature of such webs increases their thickness and weight, and also introduces some complexity in manufacture.
  • micro fibers are incorporated into a nonwoven fibrous web that comprises a coherent matrix of meltspun fibers. It has been found that a stream of micro fibers, including a stream consisting only of very fine microf ⁇ bers having a median diameter of one or two micrometers or less, can be merged with a stream of meltspun fibers, whereupon the micro fibers are captured by the stream of meltspun fibers and dispersed among the meltspun fibers. Also, by the present invention the collected meltspun fibers are bonded, preferably by an autogenous thermal bonding step, to form a coherent matrix that is self-sustaining in which the microfibers are reliably held and protected so the web can be handled and used with minimal loss or crushing of microfibers. Preferably the meltspun fibers are oriented fibers comprised of a semicrystalline polymeric material, thus adding to the mechanical or physical properties of the web.
  • the present invention provides a nonwoven fibrous web that comprises a matrix of continuous meltspun fibers bonded to a coherent self-sustaining form, and separately prepared microfibers dispersed among the meltspun fibers, most often in an amount accounting for at least one weight-percent of the fibers of the web.
  • a web as described has a number of beneficial and unique properties.
  • a useful finished product can be prepared that consists only of a single layer, but comprises a mixture of microfibers and larger fibers, with broadened filtration capability and increased fiber surface area.
  • Such a single-layer product offers important efficiencies - product complexity and waste are reduced by eliminating laminating processes and equipment and by reducing the number of intermediate materials.
  • webs of the invention can be quite economical. Also, if the fibers of the web all comprise the same polymeric composition, the web can be fully recyclable.
  • a web of the invention can be used in a variety of forms - e.g., it can be molded or pleated, as well as being used in its collected form.
  • the web is given an even more greatly increased fiber surface area, with such beneficial effects as improved filtration and thermal or acoustic insulating performance.
  • Performance such as filtration and insulation performance can be tailored to a particular use by using fibers of different diameters.
  • pressure drops of webs of the invention are kept lower, because the larger meltspun fibers physically separate and space apart the microfibers.
  • micro fibers are fibers having a median diameter of 10 micrometers or less; "ultrafine microfibers” are microfibers having a median diameter of two micrometers or less; and “submicron microfibers” are microfibers having a median diameter one micrometer or less.
  • an array of submicron microfibers it means the complete population of microfibers in that array, or the complete population of a single batch of microfibers, and not only that portion of the array or batch that is of submicron dimensions.
  • Continuous oriented meltspun fibers herein refers to essentially continuous fibers issuing from a die and traveling through a processing station in which the fibers are permanently drawn and at least portions of the polymer molecules within the fibers are permanently oriented into alignment with the longitudinal axis of the fibers ("oriented" as used with respect to fibers means that at least portions of the polymer molecules of the fibers are aligned along the longitudinal axis of the fibers).
  • Microfibers herein refers to fibers prepared by extruding molten fiber-forming material through orifices in a die into a high-velocity gaseous stream, where the extruded material is first attenuated and then solidifies as a mass of fibers.
  • "Separately prepared microfibers” means a stream of microfibers produced from a micro fiber- forming apparatus (e.g., a die) positioned such that the microfiber stream is initially spatially separate (e.g., over a distance of about 1 inch (25 mm) or more from, but will merge in flight and disperse into, a stream of larger size meltspun fibers.
  • Automatic bonding is defined as bonding between fibers at an elevated temperature as obtained in an oven or with a through-air bonder without application of solid contact pressure such as in point-bonding or calendering.
  • Molecularly same polymer refers to polymers that have essentially the same repeating molecular unit, but which may differ in molecular weight, method of manufacture, commercial form, etc.
  • All the fibers of the web are said to be unoriented to give good isotropic properties (column 13, lines 47-49). There is no teaching of a web comprising a coherent matrix of continuous oriented thermally bonded meltspun fibers, with micro fibers dispersed among the meltspun fibers.
  • Bodaghi et al U.S. Patent No. 5,993,943 teaches small-diameter oriented meltblown fibers, including fibers that can average less than one micrometer (micron) in diameter) to which non-oriented meltblown fibers may be added; but there is no teaching of a coherent matrix of bonded meltspun fibers in which meltblown microf ⁇ bers are dispersed.
  • a filter element that comprises a porous molded web that contains thermally bonded staple fibers and non-thermally bonded electrically charged microfibers, the porous molded web being retained in its molded configuration, at least in part, by bonds between the staple fibers at points of fiber intersection.
  • Figure 1 is a schematic overall diagram of apparatus of the invention for forming a nonwoven fibrous web according to the invention.
  • FIG. 2 is an enlarged side view of a processing chamber for preparing fibers useful in a web of the invention, with mounting means for the chamber not shown.
  • Figure 3 is a top view, partially schematic, of the processing chamber shown in
  • Figure 4 is an enlarged view of a portion of the apparatus shown in Figure 1.
  • Figure 5 is a schematic enlarged and expanded view of a heat-treating part of the apparatus shown in Figure 1.
  • Figure 6 is a perspective view of the apparatus of Figure 5.
  • Figure 7 is a histogram showing the distribution of fibers in a web of Example 11.
  • Figures 1-6 show an illustrative apparatus for carrying out the invention as part of a direct- web production method and apparatus.
  • Figure 1 is a schematic overall side view;
  • Figures 2 and 3 are enlarged views of fiber-forming portions of the Figure 1 apparatus;
  • Figures 4 and 5 are enlarged views of other portions of the apparatus shown in Figure 1 ;
  • Figure 6 is a perspective view of apparatus as shown in Figures 1 and 5.
  • a stream 1 of continuous oriented meltspun fibers is prepared in fiber-forming apparatus 2 and directed toward collection apparatus
  • meltblown fibers emanating from meltb lowing apparatus 101 On its course between the fiber- forming apparatus 2 and the collection apparatus 3, the stream 1 is intercepted by a stream 100 of meltblown fibers emanating from meltb lowing apparatus 101.
  • the two streams merge as discussed in more detail below and become deposited on the collection apparatus as a blended web of the oriented continuous meltspun fibers and the meltblown fibers.
  • a second meltblowing apparatus 101a could be used to introduce meltblown fibers on both sides of the meltspun stream.
  • the fiber-forming apparatus 2 in Figure 1 is a preferred apparatus for use in the invention.
  • fiber-forming material is brought to an extrusion head 10 — in this illustrative apparatus, by introducing a polymeric fiber- forming material into a hopper 11, melting the material in an extruder 12, and pumping the molten material into the extrusion head 10 through a pump 13.
  • solid polymeric material in pellet or other particulate form is most commonly used and melted to a liquid, pumpable state, other fiber-forming liquids such as polymer solutions can also be used.
  • the extrusion head 10 may be a conventional spinnerette or spin pack, generally including multiple orifices arranged in a regular pattern, e.g., straightline rows.
  • Filaments 15 of fiber-forming liquid are extruded from the extrusion head and conveyed to a processing chamber or attenuator 16.
  • the distance 17 the extruded filaments 15 travel before reaching the attenuator 16 can vary, as can the conditions to which they are exposed.
  • quenching streams 18 of air or other gas are presented to the extruded filaments to reduce the temperature of the extruded filaments 15.
  • the streams of air or other gas may be heated to facilitate drawing of the fibers.
  • a first air stream 18a blown transversely to the filament stream which may remove undesired gaseous materials or fumes released during extrusion
  • a second quenching air stream 18b that achieves a major desired temperature reduction.
  • quenching streams may be used; for example, the stream shown as 18b in Figure 1 could itself comprise more than one stream to achieve a desired level of quenching.
  • the quenching air may be sufficient to solidify the extruded filaments 15 before they reach the attenuator 16.
  • the extruded filaments are still in a softened or molten condition when they enter the attenuator.
  • no quenching streams are used; in such a case ambient air or other fluid between the extrusion head 10 and the attenuator 16 may be a medium for any change in the extruded filaments before they enter the attenuator.
  • the filaments 15 pass through the attenuator 16, and eventually exit onto a collector 19 where they are collected as a mass of fibers 20, as discussed in more detail below.
  • the collector 19 is generally porous and a gas-withdrawal device 14 can be positioned below the collector to assist deposition of fibers onto the collector.
  • the distance 21 between the attenuator exit and the collector may be varied to obtain different effects.
  • the filaments are lengthened and reduced in diameter and polymer molecules in the filaments become oriented, i.e., at least portions of the polymer molecules within the fibers become aligned with the longitudinal axis of the fibers. In the case of semicrystalline polymers, the orientation is generally sufficient to develop strain-induced crystallinity, which greatly strengthens the resulting fibers.
  • the representative attenuator 16 includes slanted entry walls 27, which define an entrance space or throat 24a of the attenuation chamber 24.
  • the entry walls 27 preferably are curved at the entry edge or surface 27a to smooth the entry of air streams carrying the extruded filaments 15.
  • the walls 27 are attached to a main body portion 28, and may be provided with a recessed area 29 to establish a gap 30 between the body portion 28 and wall 27.
  • Air may be introduced into the gaps 30 through conduits 31 , creating air knives (represented by the arrows 32) that increase the velocity of the filaments traveling through the attenuator, and that also have a further quenching effect on the filaments.
  • the attenuator body 28 is preferably curved at 28a to smooth the passage of air from the air knife 32 into the passage 24.
  • the angle ( ⁇ ) of the surface 28b of the attenuator body can be selected to determine the desired angle at which the air knife impacts a stream of filaments passing through the attenuator.
  • the air knives may be disposed further within the chamber.
  • the attenuation chamber 24 may have a uniform gap width (the horizontal distance 33 on the page of Figure 2 between the two attenuator sides is herein called the gap width) over its longitudinal length through the attenuator (the dimension along a longitudinal axis 26 through the attenuation chamber is called the axial length).
  • the gap width may vary along the length of the attenuator chamber.
  • the attenuation chamber is defined by straight or flat walls; in such embodiments the spacing between the walls may be constant over their length, or alternatively the walls may slightly diverge or converge
  • the length of the attenuation chamber 24 can be varied to achieve different effects; variation is especially useful with the portion between the air knives 32 and the exit opening 34, sometimes called herein the chute length 35.
  • the angle between the chamber walls and the axis 26 may be wider near the exit 34 to change the distribution of fibers onto the collector; or structure such as deflector surfaces, Coanda curved surfaces, and uneven wall lengths may be used at the exit to achieve a desired spreading or other distribution of fibers.
  • the gap width, chute length, attenuation chamber shape, etc. are chosen in conjunction with the material being processed and the mode of treatment desired to achieve desired effects. For example, longer chute lengths may be useful to increase the crystallinity of prepared fibers. Conditions are chosen and can be widely varied to process the extruded filaments into a desired fiber form.
  • the meltb lowing apparatus 101 can be of known structure and operated in known ways to produce meltblown micro fibers for use in the invention.
  • An early description of the basic meltb lowing method and apparatus is found in Wente, Van A. "Superfine Thermoplastic Fibers," in Industrial Engineering Chemistry, Vol. 48, pages 1342 et seq (1956), or in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled “Manufacture of Superfine Organic Fibers" by Wente, V. A.; Boone, C. D.; and Fluharty, E. L.
  • Polypropylene is generally the preferred material for forming meltblown fibers, but many other materials can be used, including generally any of the materials useful for forming the meltspun fibers. It is usually preferred in the case of webs that are to be electrically charged that both the meltspun fibers and the meltblown fibers be made of an electrically chargeable material.
  • Preferred materials include polypropylene, polycarbonate, polymethyl pentene, and copolymers of cyclic olefins; others are polyethylene and polylactic acid polymers.
  • the distance 107 in Figure 4 from the exit of the die 102 to the centerline of the meltspun stream 1 is preferably about 2 to 12 inches (5 to 25 centimeters) and preferably about 6 or 8 inches (about 15 or 20 centimeters) or less for very small micro fibers
  • the stream 100 of meltb lown fibers is preferably disposed at an acute angle ⁇ to the stream 1 of meltspun fibers, so that a vector of the meltb lown stream 100 is directionally aligned with the stream 1.
  • is between about 0 and 45 degrees and more preferably between 10 and 30 degrees.
  • the amount of molecular material of the phase susceptible to undesirable (softening- impeding) crystal growth is not as great as it was before treatment.
  • the amorphous- characterized phase is understood to have experienced a kind of cleansing or reduction of molecular structure that would lead to undesirable increases in crystallinity in conventional untreated fibers during a thermal bonding operation.
  • Treated fibers of the invention are capable of a kind of "repeatable softening,” meaning that the fibers, and particularly the amorphous-characterized phase of the fibers, will undergo to some degree a repeated cycle of softening and resolidifying as the fibers are exposed to a cycle of raised and lowered temperature within a temperature region lower than that which would cause melting of the whole fiber.
  • repeatable softening is indicated when a treated web (which already generally exhibits a useful bonding as a result of the heating and quenching treatment) can be heated to cause further autogenous bonding of the fibers.
  • the cycling of softening and resolidifying may not continue indefinitely, but it is generally sufficient that the fibers may be initially bonded by exposure to heat, e.g., during a heat treatment according to the invention, and later heated again to cause re-softening and further bonding, or, if desired, other operations, such as calendering or re-shaping.
  • the invention is most commonly practiced by collecting a web on a continuous screen-type collector such as the belt-type collector 19 in Figure lor a screen-covered drum.
  • a web can be collected by aiming the merged stream of meltspun and meltblown fibers into the gap between two collectors, as shown and described in Olson et al., WO 2004/046443, whereupon a web having a C-shaped configuration of fibers is obtained.
  • a web could be prepared from the submicron fibers themselves, such a web would be flimsy and weak. But by incorporating the submicron fibers in a coherent bonded oriented fiber matrix a strong and self-supporting web or sheet material can be obtained.
  • Preferably webs of the invention have a Gurley stiffness of at least 200 mg, especially when intended to be used in devices such as pleated filters.
  • meltspun fibers of Example 4 were measured with scanning electron microscopy (SEM) and found to have a median diameter (44 fibers measured) of 15 micrometers.
  • the meltspun fibers of Examples 1-3 were estimated to have a median fiber diameter of approximately 11 micrometers (based on similar samples).
  • polypropylene having a melt flow index of 350 (Fina
  • meltblown fibers were measured with SEM and found to have a median fiber diameter of 1.13 micrometers, and the meltblown fiber stream had a width such as to be present at a width of about 12 inches (about 30 centimeters) in the collected web on the collection belt 19. Essentially 100% of the meltblown fibers were captured within the meltspun stream.
  • the web of one example (Example 4) was cross-sectioned and micro fibers were found to be distributed through the full thickness of the web.
  • the webs of Examples 1-3 had a ratio of about 64 parts by weight of meltspun fibers and 36 parts by weight meltblown fibers.
  • the web of Example 4 had a ratio of about 82 parts by weight of meltspun fibers and 18 parts by weight meltblown fibers.
  • the combined stream of meltspun and meltblown fibers was collected on a 20- mesh stainless steel collection belt (19), which moved at a rate of 29 fpm (about 8.8 meters/minute) for Examples 1-3 and 47 fpm (about 14.3 meters/minute) for Example
  • the challenge stream comprised particles generated from a 2% NaCl solution in a concentration of 19-25 mg/m 3 .
  • the automatic filter tester was run with the heater on and particle neutralizer on. Results are given in Table 2. The last column gives the total weight collected on the filter from the challenge stream up to the time of maximum penetration.
  • Samples F and H are most preferred because they exhibit penetration and pressure drop loading results very similar to the standard multilayer commercial respirator.
  • Sample S is also a most preferred sample because it is run at significantly higher total process throughput, has low initial pressure drop, and has maximum penetration of less than 5%.
  • Other preferred samples in Table 2 include the A, G, I, and T samples, because they exhibit initial pressure drop of less than 10 mm H 2 O, maximum penetrations of less than 5%, and moderate NaCl challenge at maximum penetration (meaning that they do not plug up too rapidly).
  • x position means the distance 107 on Fig. 4 of the drawings). Samples were also hydrocharged in the manner described in Examples 1-4.
  • a critical parameter in determining if a filter web is suitable for use as a self-supporting pleated filter is the stiffness of the web; adequate stiffness is necessary to initially form and later retain the pleated shape.
  • the filter media property is being described and not the filter property, i.e. that the media itself is not reinforced by wire, mesh, or stiffening layers even if the filter construction may have wire, glue, or frame reinforcement to strengthen the entire filter.
  • the exemplary webs of the invention were compared to the flat web properties of a commercially available HVAC filter, namely a 2-inch-deep (50 mm) pleated filter with 5 mm pleat spacing, the filter media being a three-layer laminate including a 17 gsm polypropylene spunbond coverweb, a 40 gsm electrostatically charged meltblown filter media, and a 90 gsm polyester spunbond stiffening layer.
  • the web used to make the commercial pleated filter was tested in the flat condition before folding into a pleated form.
  • the key targeted properties of the exemplary webs of the invention include a Gurley stiffness of greater than 600 mg (to achieve the stated two-inch pleat depth of the commercial filter) and similar penetration (efficiency) as the commercial filter.
  • Examples 5-13 are all about 100 gsm, which is considerably less than the current commercial [multilayer product] laminate solution of approximately 150 gsm. Further evaluation was performed by load-testing Examples 5-13 as flat filters with NaCl on a TSI 8130 Automatic Filter Tester (approximately 0.075 ⁇ m diameter particles).
  • the flat media was tested with the collector side of the web both up and down to examine whether fiber intermixing and/or the collection surface affected the loading behavior. Samples were loaded to maximum penetration at 60 lpm (10 cm/s face velocity) flowrate, and the tests were then stopped. Particles were generated from a 2% NaCl solution in a concentration of about 16-23 mg/m 3 . The automatic filter tester was run with the heater on and particle neutralizer on. Results are in Table 5.
  • Samples Example 9 and 10 webs tested “down” are the most preferred samples because they have initial pressure drop closest to the comparison, lower initial penetration, higher initial quality factor, and lower maximum penetration, all with similar pressure drop rise as a function of challenge.
  • the Example 12 web is also a most preferred sample because it has slightly lower initial pressure drop, somewhat higher maximum penetration, but almost 3X the mass challenge at maximum penetration for nearly equal pressure drop rise - equating to a better-loading filter.
  • the hydrocharged Samples 9 and 11 tested “up” and Samples 5, 8, 11, and 13 tested “down” are also preferred samples because they have moderate pressure drop, low initial penetration, moderate to high initial quality factors, and maximum penetration less than the control.
  • Sample 12 is the overall most preferred sample due to the balance of flat media physical properties and filtration performance.
  • Example 11 was submitted for analysis with a scanning electron microscope, and the meltblown fibers were found to have a median diameter of 0.65 micrometers, a mean diameter of 0.88 micrometers, and a standard deviation of 0.67 micrometers; the maximum diameter was 4.86 micrometers and the minimum was 0.20 micrometers.
  • the sample size was 151 meltblown fibers and 28 meltspun fibers; all fibers less than 10 microns in diameter were assumed to be meltblown fibers.
  • a histogram of the size distribution is pictured in Figure 7, with fiber diameter in micrometers plotted along the abscissa and frequency plotted along the ordinate.
  • the surface area of the meltblown micro fibers was determined as about 51% of the total web surface area, and the surface area of the submicron fibers was determined as about 23% of the total web surface area.
  • the submicron fibers of Example 11 were captured with essentially 100% efficiency during the web formation process, and the resulting bonded web had adequate strength and integrity for normal handling.
  • Samples 1-13 While a specific construction is compared in these experiments, the deep body of information included in Samples 1-13 illustrate that the present invention can be tuned and used for numerous pleated filter applications, including but not limited to low to high MERV ratings for HVAC filter applications, room air purifier filters, cabin air filters, automotive intake filters, and many general or specific pleated filter uses.
  • meltblown web Example Cl
  • the meltblown web consisted only of polypropylene fibers having an effective fiber diameter of 5.5 micrometers, the web basis weight was 106 gsm, and the web had a solidity of 5.4%. Results are reported in Table 6, where "t" is time in hours.
  • webs of the invention had a compaction of less than 10%. Even a compaction of 20% would be markedly better than the compaction exhibited by the meltblown web.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
PCT/US2007/073562 2006-07-31 2007-07-16 Fibrous web comprising microfibers dispersed among bonded meltspun fibers Ceased WO2008016771A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07799608A EP2047022A1 (en) 2006-07-31 2007-06-16 Fibrous web comprising microfibers dispersed among bonded meltspun fibers
KR1020097001974A KR101432325B1 (ko) 2006-07-31 2007-07-16 결합된 멜트스펀 섬유들 사이에 분산된 마이크로 섬유를 포함하는 섬유 웨브
BRPI0715525-5A BRPI0715525A2 (pt) 2006-07-31 2007-07-16 manta fibrosa que compreende microfibras dispersas entre fibras de fiaÇço por fusço ligadas
CN2007800286223A CN101495693B (zh) 2006-07-31 2007-07-16 包含分散于粘结熔纺纤维中的微纤维的纤维幅材
JP2009522919A JP5642964B2 (ja) 2006-07-31 2007-07-16 結合した溶融紡糸繊維中に分散したマイクロファイバーを含む繊維ウェブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/461,192 US7807591B2 (en) 2006-07-31 2006-07-31 Fibrous web comprising microfibers dispersed among bonded meltspun fibers
US11/461,192 2006-07-31

Publications (1)

Publication Number Publication Date
WO2008016771A1 true WO2008016771A1 (en) 2008-02-07

Family

ID=38624395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/073562 Ceased WO2008016771A1 (en) 2006-07-31 2007-07-16 Fibrous web comprising microfibers dispersed among bonded meltspun fibers

Country Status (7)

Country Link
US (2) US7807591B2 (enExample)
EP (1) EP2047022A1 (enExample)
JP (1) JP5642964B2 (enExample)
KR (1) KR101432325B1 (enExample)
CN (1) CN101495693B (enExample)
BR (1) BRPI0715525A2 (enExample)
WO (1) WO2008016771A1 (enExample)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532755A (ja) * 2009-07-15 2012-12-20 ディーエスエム アイピー アセッツ ビー.ブイ. 水および空気ろ過用ナノファイバメンブレン層
DE102012004227A1 (de) * 2012-03-06 2013-09-12 Carl Freudenberg Kg Verfahren und Vorrichtung zur Herstellung von superfeinen Polymerfasern durch Melt-blown-Technik
WO2013182296A1 (de) * 2012-06-04 2013-12-12 Irema-Filter Gmbh Verfahren zur herstellung eines vliesstoffes
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8986432B2 (en) 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
CN104562450A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用氧化石墨烯-聚氨酯复合乳液包覆聚丙烯基非织造吸音材料
CN104562449A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用氮化硼纳米管-聚氨酯复合乳液包覆聚丙烯基非织造吸音材料
CN104562446A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用玻璃微珠-eva复合乳液包覆聚丙烯基非织造吸音材料
CN104553172A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用活性炭-eva复合乳液包覆聚丙烯基非织造吸音材料
EP2787108A4 (en) * 2011-11-28 2015-07-29 Toray Industries NON-WOVEN MIXED FIBER TEXTILE AND FILTER ELEMENT USING THE SAME
US9168471B2 (en) 2010-11-22 2015-10-27 Irema-Filter Gmbh Air filter medium combining two mechanisms of action
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
US10273611B2 (en) 2006-03-28 2019-04-30 Irema-Filter Gmbh Pleatable nonwoven material and method and apparatus for production thereof
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US10653986B2 (en) 2010-12-17 2020-05-19 Hollingsworth & Vose Company Fine fiber filter media and processes
US11571645B2 (en) 2013-05-16 2023-02-07 Iremea-Filter Gmbh Fibrous nonwoven and method for the production thereof
US12420221B2 (en) 2016-07-01 2025-09-23 Hollingsworth & Vose Company Multi-layered electret-containing filtration media

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106982A1 (en) * 2003-11-17 2005-05-19 3M Innovative Properties Company Nonwoven elastic fibrous webs and methods for making them
WO2007047263A1 (en) * 2005-10-19 2007-04-26 3M Innovative Properties Company Multilayer articles having acoustical absorbance properties and methods of making and using the same
US8325097B2 (en) * 2006-01-14 2012-12-04 Research In Motion Rf, Inc. Adaptively tunable antennas and method of operation therefore
US9770058B2 (en) * 2006-07-17 2017-09-26 3M Innovative Properties Company Flat-fold respirator with monocomponent filtration/stiffening monolayer
US7902096B2 (en) * 2006-07-31 2011-03-08 3M Innovative Properties Company Monocomponent monolayer meltblown web and meltblowing apparatus
US7858163B2 (en) * 2006-07-31 2010-12-28 3M Innovative Properties Company Molded monocomponent monolayer respirator with bimodal monolayer monocomponent media
US7754041B2 (en) * 2006-07-31 2010-07-13 3M Innovative Properties Company Pleated filter with bimodal monolayer monocomponent media
US20080315454A1 (en) * 2007-06-22 2008-12-25 3M Innovative Properties Company Method of making meltblown fiber web with staple fibers
US7989371B2 (en) * 2007-06-22 2011-08-02 3M Innovative Properties Company Meltblown fiber web with staple fibers
US7989372B2 (en) * 2007-06-22 2011-08-02 3M Innovative Properties Company Molded respirator comprising meltblown fiber web with staple fibers
WO2009062009A2 (en) * 2007-11-09 2009-05-14 Hollingsworth & Vose Company Meltblown filter medium
EP2231912B1 (en) * 2007-12-28 2014-10-22 3M Innovative Properties Company Composite nonwoven fibrous webs and methods of making and using the same
JP5767113B2 (ja) 2008-12-23 2015-08-19 スリーエム イノベイティブ プロパティズ カンパニー パターン付きスパンボンド繊維ウェブ及びこれを作製する方法
WO2010077929A1 (en) 2008-12-30 2010-07-08 3M Innovative Properties Company Elastic nonwoven fibrous webs and methods of making and using
US8162153B2 (en) * 2009-07-02 2012-04-24 3M Innovative Properties Company High loft spunbonded web
KR101219393B1 (ko) * 2010-05-04 2013-01-11 주식회사 익성 멜트블로운 섬유웹의 제조방법 및 그 제조장치
KR20130041928A (ko) 2010-07-07 2013-04-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 패턴화된 에어 레이드 부직포 섬유질 웨브 및 그 제조 및 사용 방법
KR20130091734A (ko) * 2010-07-07 2013-08-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 패턴화된 에어 레이드 부직포 일렉트릿 섬유질 웨브 및 그 제조 및 사용 방법
US8426671B2 (en) 2011-02-11 2013-04-23 Polymer Group, Inc. Liquid management layer for personal care absorbent articles
US8322487B1 (en) 2011-08-19 2012-12-04 Milliken & Company Acoustically coupled non-woven composite
KR101345215B1 (ko) * 2011-10-12 2014-01-16 주식회사 익성 자동차용 흡음재, 그 제조방법 및 상기 자동차용 흡음재가 부착된 자동차 부품의 제조방법
US8496088B2 (en) 2011-11-09 2013-07-30 Milliken & Company Acoustic composite
CN103161032B (zh) * 2011-12-16 2015-12-02 比亚迪股份有限公司 一种无纺布及其制备方法和生产设备
EP2798107B1 (en) 2011-12-30 2018-01-24 3M Innovative Properties Company Methods and apparatus for producing nonwoven fibrous webs
KR101282784B1 (ko) * 2011-12-30 2013-07-05 웅진케미칼 주식회사 수직기류를 이용한 단섬유 공급장치
CN104220661B (zh) * 2011-12-30 2019-04-12 3M创新有限公司 用于制备非织造纤维网的设备和方法
US9186608B2 (en) 2012-09-26 2015-11-17 Milliken & Company Process for forming a high efficiency nanofiber filter
JP2014084548A (ja) * 2012-10-26 2014-05-12 Teijin Ltd 不織布およびその製造方法
KR101417396B1 (ko) * 2012-11-08 2014-07-10 현대자동차주식회사 결집력과 탄성이 향상된 멜트블로운 섬유웹 및 이의 제조방법 및 장치
CN103088549A (zh) * 2012-12-04 2013-05-08 江苏六鑫洁净新材料有限公司 基于聚丙烯超细纤维和涤纶短纤维的双组份吸音、隔热棉及其制备方法
CN103276535B (zh) * 2013-06-19 2015-08-26 天津泰达洁净材料有限公司 一种双组份熔喷无纺材料及其制造方法
JP2016535180A (ja) * 2013-09-03 2016-11-10 スリーエム イノベイティブ プロパティズ カンパニー 溶融紡糸処理、溶融紡糸不織布繊維ウェブ、及び関連する濾材
EP3155147A2 (en) 2014-06-16 2017-04-19 Groz-Beckert KG Multi-die melt blowing system for forming co-mingled structures and method thereof
JP6094715B2 (ja) * 2015-08-07 2017-03-15 ダイキン工業株式会社 エアフィルタ濾材、フィルタパック、およびエアフィルタユニット
MY194230A (en) * 2016-03-30 2022-11-23 Mitsui Chemicals Inc Apparatus for manufacturing non-woven fabric and method of manufacturing non-woven fabric
WO2017213926A1 (en) * 2016-06-06 2017-12-14 3M Innovative Properties Company Channel-framed, pleated air filter with bridging filaments
GB201616932D0 (en) * 2016-10-05 2016-11-16 British American Tobacco (Investments) Limited And Tobacco Research And Development Institute (Propr Mathod and equipment for gathering fibres
CN106555236B (zh) * 2016-12-02 2019-08-30 武汉纺织大学 一种利用熔喷法制备超细纤维束的装置及方法
WO2018172744A1 (en) 2017-03-24 2018-09-27 British American Tobacco South Africa Proprietary Limited Methods and equipment for forming tubes of fibrous material
EP3425099A1 (de) * 2017-07-03 2019-01-09 Axel Nickel Meltblown-vliesstoff mit verbesserter stapelbarkeit und lagerbarkeit
CN107503045A (zh) * 2017-08-31 2017-12-22 长青藤高性能纤维材料有限公司 超高分子量聚乙烯纤维复合纺粘无纺布生产设备
CN118223137A (zh) 2017-11-22 2024-06-21 挤压集团公司 熔喷模头尖端组件和方法
KR101948608B1 (ko) * 2018-08-31 2019-02-15 (주) 한국노텍 부직포를 제조하기 위한 장치
CN114340759A (zh) * 2019-08-13 2022-04-12 3M创新有限公司 高性能纺粘空气过滤纤维网
GB2609852B (en) * 2020-04-23 2024-04-03 Kimberly Clark Co Nonwoven web containing a high strength spunblown layer
WO2021262974A1 (en) * 2020-06-26 2021-12-30 Jabil Inc. Polyester/poly(methyl methacrylate) articles and methods to make them
KR20230165860A (ko) 2021-06-08 2023-12-05 자빌 인코퍼레이티드 비결정질 열가소성 적층 제조 물품 및 이의 제조 방법
CN114150436B (zh) * 2021-12-06 2022-10-18 美埃(中国)环境科技股份有限公司 一种纳米纤维复合驻极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079080A (en) * 1989-05-26 1992-01-07 Bix Fiberfilm Corporation Process for forming a superabsorbent composite web from fiberforming thermoplastic polymer and supersorbing polymer and products produced thereby
US5681469A (en) * 1995-05-02 1997-10-28 Memtec America Corporation Melt-blown filtration media having integrally co-located support and filtration fibers
US5685757A (en) * 1989-06-20 1997-11-11 Corovin Gmbh Fibrous spun-bonded non-woven composite
US6315806B1 (en) * 1997-09-23 2001-11-13 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
JP2007054778A (ja) * 2005-08-26 2007-03-08 Japan Vilene Co Ltd エアフィルタ用濾材及びエアフィルタユニット
WO2007112877A2 (de) * 2006-03-28 2007-10-11 Irema-Filter Gmbh Plissierbares vliesmaterial und verfahren und vorrichtung zur herstellung desselben

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US162457A (en) * 1875-04-27 Improvement in combined haytumblers and rakes
US38976A (en) * 1863-06-23 Improvement in valves for steam-hammers
US32451A (en) * 1861-05-28 Improvement in fire-arms
US97155A (en) * 1869-11-23 Improved confection prom haisins
US35095A (en) * 1862-04-29 Improvement in breech-loading ordnance
US114066A (en) * 1871-04-25 Improvement in seed-planters
US3849241A (en) * 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
DE1950669C3 (de) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Vliesherstellung
US3715251A (en) * 1969-10-09 1973-02-06 Exxon Research Engineering Co Laminated non-woven sheet
FR2223318B1 (enExample) * 1973-03-30 1978-03-03 Saint Gobain
US3971373A (en) * 1974-01-21 1976-07-27 Minnesota Mining And Manufacturing Company Particle-loaded microfiber sheet product and respirators made therefrom
US4100324A (en) * 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US3981650A (en) * 1975-01-16 1976-09-21 Beloit Corporation Melt blowing intermixed filaments of two different polymers
CA1073648A (en) * 1976-08-02 1980-03-18 Edward R. Hauser Web of blended microfibers and crimped bulking fibers
US4363646A (en) * 1979-07-20 1982-12-14 Torobin Leonard B Method and apparatus for producing microfilaments
US4286977A (en) * 1979-10-15 1981-09-01 Max Klein High efficiency particulate air filter
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4405297A (en) * 1980-05-05 1983-09-20 Kimberly-Clark Corporation Apparatus for forming nonwoven webs
US4364156A (en) * 1981-01-23 1982-12-21 Milliken Research Corporation Apparatus for heated pressurized fluid stream treatment of substrate material
US4405279A (en) * 1981-08-18 1983-09-20 Robert F. Davy Tailgate loader
WO1984003193A1 (en) * 1983-02-04 1984-08-16 Minnesota Mining & Mfg Method and apparatus for manufacturing an electret filter medium
US4547420A (en) * 1983-10-11 1985-10-15 Minnesota Mining And Manufacturing Company Bicomponent fibers and webs made therefrom
US4729371A (en) * 1983-10-11 1988-03-08 Minnesota Mining And Manufacturing Company Respirator comprised of blown bicomponent fibers
US4536440A (en) * 1984-03-27 1985-08-20 Minnesota Mining And Manufacturing Company Molded fibrous filtration products
US4818464A (en) * 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
US4714647A (en) * 1986-05-02 1987-12-22 Kimberly-Clark Corporation Melt-blown material with depth fiber size gradient
US5532050A (en) * 1986-06-30 1996-07-02 Wm. T. Burnett & Co., Inc. Densified thermo-bonded synthetic fiber batting
DE3713862A1 (de) * 1987-04-25 1988-11-10 Reifenhaeuser Masch Verfahren und spinnvliesanlage zur herstellung eines spinnvlieses aus synthetischem endlosfilament
US4813948A (en) * 1987-09-01 1989-03-21 Minnesota Mining And Manufacturing Company Microwebs and nonwoven materials containing microwebs
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
US5993943A (en) * 1987-12-21 1999-11-30 3M Innovative Properties Company Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers
US4931355A (en) * 1988-03-18 1990-06-05 Radwanski Fred R Nonwoven fibrous hydraulically entangled non-elastic coform material and method of formation thereof
US4910064A (en) * 1988-05-25 1990-03-20 Sabee Reinhardt N Stabilized continuous filament web
US5227107A (en) * 1990-08-07 1993-07-13 Kimberly-Clark Corporation Process and apparatus for forming nonwovens within a forming chamber
US5200246A (en) * 1991-03-20 1993-04-06 Tuff Spun Fabrics, Inc. Composite fabrics comprising continuous filaments locked in place by intermingled melt blown fibers and methods and apparatus for making
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
CA2105026C (en) * 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Shaped nonwoven fabric and method for making the same
EP0634511B1 (en) * 1993-07-16 1997-12-10 Chisso Corporation Microfine fiber product and process for producing the same
EP0714463B1 (en) * 1993-08-17 1999-03-10 Minnesota Mining And Manufacturing Company Method of charging electret filter media
CA2129496A1 (en) * 1994-04-12 1995-10-13 Mary Lou Delucia Strength improved single polymer conjugate fiber webs
US5582907A (en) * 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
US5597645A (en) * 1994-08-30 1997-01-28 Kimberly-Clark Corporation Nonwoven filter media for gas
US5476616A (en) * 1994-12-12 1995-12-19 Schwarz; Eckhard C. A. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices
US5707468A (en) * 1994-12-22 1998-01-13 Kimberly-Clark Worldwide, Inc. Compaction-free method of increasing the integrity of a nonwoven web
US5679379A (en) * 1995-01-09 1997-10-21 Fabbricante; Anthony S. Disposable extrusion apparatus with pressure balancing modular die units for the production of nonwoven webs
DE19501125C2 (de) * 1995-01-17 1997-10-16 Reifenhaeuser Masch Verfahren zur Herstellung einer Vliesbahn aus thermoplastischen Polymerfilamenten
US5908598A (en) * 1995-08-14 1999-06-01 Minnesota Mining And Manufacturing Company Fibrous webs having enhanced electret properties
US5721180A (en) * 1995-12-22 1998-02-24 Pike; Richard Daniel Laminate filter media
US5817584A (en) * 1995-12-22 1998-10-06 Kimberly-Clark Worldwide, Inc. High efficiency breathing mask fabrics
TW334380B (en) * 1996-01-24 1998-06-21 Nippon Walin Kk Burnishing cloth
US5679042A (en) * 1996-04-25 1997-10-21 Kimberly-Clark Worldwide, Inc. Nonwoven fabric having a pore size gradient and method of making same
US5902540A (en) * 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US5904298A (en) * 1996-10-08 1999-05-18 Illinois Tool Works Inc. Meltblowing method and system
US6183670B1 (en) * 1997-09-23 2001-02-06 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
US6410138B2 (en) * 1997-09-30 2002-06-25 Kimberly-Clark Worldwide, Inc. Crimped multicomponent filaments and spunbond webs made therefrom
JP3657415B2 (ja) * 1998-01-07 2005-06-08 日本バイリーン株式会社 不織布及びその製造方法
US6019152A (en) * 1998-07-29 2000-02-01 Kimberly-Clark Worldwide, Inc. Apparatus for heating nonwoven webs
TW479087B (en) * 1998-11-13 2002-03-11 Kimberly Clark Co Pulp-modified bicomponent continuous filament nonwoven webs and articles
US6723669B1 (en) * 1999-12-17 2004-04-20 Kimberly-Clark Worldwide, Inc. Fine multicomponent fiber webs and laminates thereof
US6217691B1 (en) * 1998-12-24 2001-04-17 Johns Manville International, Inc. Method of making a meltblown fibrous insulation
US6588080B1 (en) * 1999-04-30 2003-07-08 Kimberly-Clark Worldwide, Inc. Controlled loft and density nonwoven webs and method for producing
DE19929709C2 (de) * 1999-06-24 2001-07-12 Lueder Gerking Verfahren zur Herstellung von im Wesentlichen endlosen feinen Fäden und Verwendung der Vorrichtung zur Durchführung des Verfahrens
US6319865B1 (en) * 1999-09-02 2001-11-20 Tonen Tapyrus Co., Ltd. Melt-blown non-woven fabric, and nozzle piece for producing the same
US6554881B1 (en) * 1999-10-29 2003-04-29 Hollingsworth & Vose Company Filter media
US6502615B1 (en) * 1999-12-22 2003-01-07 Nordson Corporation Apparatus for making an absorbent composite product
US6743273B2 (en) * 2000-09-05 2004-06-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
EP1325184B1 (en) * 2000-10-04 2006-09-13 E. I. du Pont de Nemours and Company Meltblown web
US6607624B2 (en) * 2000-11-20 2003-08-19 3M Innovative Properties Company Fiber-forming process
US6667254B1 (en) * 2000-11-20 2003-12-23 3M Innovative Properties Company Fibrous nonwoven webs
AU2002243282B2 (en) * 2000-11-20 2006-07-06 3M Innovative Properties Company Fiber-forming process
JP4505987B2 (ja) 2000-12-14 2010-07-21 チッソ株式会社 熱接着性複合繊維、その製造方法およびそれを用いた繊維成形体
US6736916B2 (en) * 2000-12-20 2004-05-18 Kimberly-Clark Worldwide, Inc. Hydraulically arranged nonwoven webs and method of making same
JP4599760B2 (ja) 2001-05-25 2010-12-15 チッソ株式会社 熱融着性複合繊維及びこれを用いた繊維成形体
JP2003020555A (ja) * 2001-07-11 2003-01-24 Toray Ind Inc 積層不織布の製造方法
WO2003014451A1 (en) * 2001-08-07 2003-02-20 The Procter & Gamble Company Fibers and webs capable of high speed solid state deformation
US20030114066A1 (en) * 2001-12-13 2003-06-19 Clark Darryl Franklin Uniform distribution of absorbents in a thermoplastic web
US7258758B2 (en) * 2001-12-21 2007-08-21 Kimberly-Clark Worldwide, Inc. Strong high loft low density nonwoven webs and laminates thereof
US6916752B2 (en) * 2002-05-20 2005-07-12 3M Innovative Properties Company Bondable, oriented, nonwoven fibrous webs and methods for making them
US6827764B2 (en) * 2002-07-25 2004-12-07 3M Innovative Properties Company Molded filter element that contains thermally bonded staple fibers and electrically-charged microfibers
US6893711B2 (en) * 2002-08-05 2005-05-17 Kimberly-Clark Worldwide, Inc. Acoustical insulation material containing fine thermoplastic fibers
US7476632B2 (en) * 2002-11-15 2009-01-13 3M Innovative Properties Company Fibrous nonwoven web
DE10336380B4 (de) 2003-08-06 2005-08-25 Carl Freudenberg Kg Ultradünner, poröser und mechanisch stabiler Vliesstoff und dessen Verwendung
US6858297B1 (en) * 2004-04-05 2005-02-22 3M Innovative Properties Company Aligned fiber web
US9139940B2 (en) 2006-07-31 2015-09-22 3M Innovative Properties Company Bonded nonwoven fibrous webs comprising softenable oriented semicrystalline polymeric fibers and apparatus and methods for preparing such webs
US7754041B2 (en) * 2006-07-31 2010-07-13 3M Innovative Properties Company Pleated filter with bimodal monolayer monocomponent media

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079080A (en) * 1989-05-26 1992-01-07 Bix Fiberfilm Corporation Process for forming a superabsorbent composite web from fiberforming thermoplastic polymer and supersorbing polymer and products produced thereby
US5685757A (en) * 1989-06-20 1997-11-11 Corovin Gmbh Fibrous spun-bonded non-woven composite
US5681469A (en) * 1995-05-02 1997-10-28 Memtec America Corporation Melt-blown filtration media having integrally co-located support and filtration fibers
US6315806B1 (en) * 1997-09-23 2001-11-13 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
JP2007054778A (ja) * 2005-08-26 2007-03-08 Japan Vilene Co Ltd エアフィルタ用濾材及びエアフィルタユニット
WO2007112877A2 (de) * 2006-03-28 2007-10-11 Irema-Filter Gmbh Plissierbares vliesmaterial und verfahren und vorrichtung zur herstellung desselben

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200732, Derwent World Patents Index; AN 2007-336584, XP002457471 *
See also references of EP2047022A1 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273611B2 (en) 2006-03-28 2019-04-30 Irema-Filter Gmbh Pleatable nonwoven material and method and apparatus for production thereof
US8986432B2 (en) 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US9950284B2 (en) 2009-04-03 2018-04-24 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US10682595B2 (en) 2009-04-03 2020-06-16 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
JP2012532755A (ja) * 2009-07-15 2012-12-20 ディーエスエム アイピー アセッツ ビー.ブイ. 水および空気ろ過用ナノファイバメンブレン層
US10155187B2 (en) 2010-04-27 2018-12-18 Hollingsworth & Vose Company Filter media with a multi-layer structure
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
US9283501B2 (en) 2010-04-27 2016-03-15 Hollingsworth & Vose Company Filter media with a multi-layer structure
US9168471B2 (en) 2010-11-22 2015-10-27 Irema-Filter Gmbh Air filter medium combining two mechanisms of action
US10874962B2 (en) 2010-12-17 2020-12-29 Hollingsworth & Vose Company Fine fiber filter media and processes
US10653986B2 (en) 2010-12-17 2020-05-19 Hollingsworth & Vose Company Fine fiber filter media and processes
US11458427B2 (en) 2010-12-17 2022-10-04 Hollingsworth & Vose Company Fine fiber filter media and processes
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
EP2787108A4 (en) * 2011-11-28 2015-07-29 Toray Industries NON-WOVEN MIXED FIBER TEXTILE AND FILTER ELEMENT USING THE SAME
US9180392B2 (en) 2011-11-28 2015-11-10 Toray Industries, Inc. Mixed-fiber nonwoven fabric and filter medium using the same
DE102012004227A1 (de) * 2012-03-06 2013-09-12 Carl Freudenberg Kg Verfahren und Vorrichtung zur Herstellung von superfeinen Polymerfasern durch Melt-blown-Technik
WO2013182296A1 (de) * 2012-06-04 2013-12-12 Irema-Filter Gmbh Verfahren zur herstellung eines vliesstoffes
US11571645B2 (en) 2013-05-16 2023-02-07 Iremea-Filter Gmbh Fibrous nonwoven and method for the production thereof
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US11167232B2 (en) 2014-12-19 2021-11-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US11684885B2 (en) 2014-12-19 2023-06-27 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US12011686B2 (en) 2014-12-19 2024-06-18 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US12274968B2 (en) 2014-12-19 2025-04-15 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
CN104553172A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用活性炭-eva复合乳液包覆聚丙烯基非织造吸音材料
CN104562446A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用玻璃微珠-eva复合乳液包覆聚丙烯基非织造吸音材料
CN104562449A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用氮化硼纳米管-聚氨酯复合乳液包覆聚丙烯基非织造吸音材料
CN104562450A (zh) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 一种汽车内饰用氧化石墨烯-聚氨酯复合乳液包覆聚丙烯基非织造吸音材料
US12420221B2 (en) 2016-07-01 2025-09-23 Hollingsworth & Vose Company Multi-layered electret-containing filtration media

Also Published As

Publication number Publication date
BRPI0715525A2 (pt) 2013-04-24
KR20090035560A (ko) 2009-04-09
CN101495693B (zh) 2011-10-05
US20080026661A1 (en) 2008-01-31
JP2009545681A (ja) 2009-12-24
CN101495693A (zh) 2009-07-29
US20100258967A1 (en) 2010-10-14
US8591683B2 (en) 2013-11-26
US7807591B2 (en) 2010-10-05
EP2047022A1 (en) 2009-04-15
JP5642964B2 (ja) 2014-12-17
KR101432325B1 (ko) 2014-08-20

Similar Documents

Publication Publication Date Title
US7807591B2 (en) Fibrous web comprising microfibers dispersed among bonded meltspun fibers
CA2659356C (en) Pleated filter with bimodal monolayer monocomponent media
EP2054135B1 (en) Pleated filter with monolayer monocomponent meltspun media
KR101453578B1 (ko) 성형된 1성분 단층 호흡기
EP2449159B1 (en) High loft spunbonded web
EP2231912B1 (en) Composite nonwoven fibrous webs and methods of making and using the same
US5486411A (en) Electrically charged, consolidated non-woven webs
US20160206984A1 (en) Melt-spinning process, melt-spun nonwoven fibrous webs and related filtration media
KR20090035561A (ko) 연화성의 배향된 반결정질 중합체 섬유를 포함하는 결합 부직 섬유 웨브 및 그러한 웨브를 제조하기 위한 장치 및 방법
US5730923A (en) Post-treatment of non-woven webs
AU685052B2 (en) Post-treatment of nonwoven webs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028622.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07799608

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009522919

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097001974

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007799608

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0715525

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090129