WO2008015930A1 - Conditionneur d'air - Google Patents

Conditionneur d'air Download PDF

Info

Publication number
WO2008015930A1
WO2008015930A1 PCT/JP2007/064471 JP2007064471W WO2008015930A1 WO 2008015930 A1 WO2008015930 A1 WO 2008015930A1 JP 2007064471 W JP2007064471 W JP 2007064471W WO 2008015930 A1 WO2008015930 A1 WO 2008015930A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
room temperature
refrigerant
pressure side
side pressure
Prior art date
Application number
PCT/JP2007/064471
Other languages
English (en)
French (fr)
Inventor
Tetsuya Okamoto
Shinichi Kasahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP07791203.8A priority Critical patent/EP2053319B1/en
Priority to US12/375,242 priority patent/US8104299B2/en
Priority to CN2007800281357A priority patent/CN101495816B/zh
Priority to AU2007279774A priority patent/AU2007279774B2/en
Priority to ES07791203T priority patent/ES2721546T3/es
Publication of WO2008015930A1 publication Critical patent/WO2008015930A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to an air conditioner using a refrigerant whose high pressure side is operated at a supercritical pressure.
  • Patent Document 1 From the viewpoint of protecting the global environment and improving efficiency, application of a supercritical refrigerant whose high pressure side is operated at a supercritical pressure is being studied as a refrigerant of an air conditioner (for example, see Patent Document 1).
  • the one described in Patent Document 1 uses C02 refrigerant, controls the high pressure according to the refrigerant outlet temperature value of the radiator to a range where the coefficient of performance COP is near the maximum, and performs high-rate operation with a coefficient of performance COP. Do it like you do.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-130770
  • Patent Document 1 does not disclose a solution to the problem.
  • the subject of this invention is providing the air conditioning apparatus which can always draw out required heating capability using a supercritical refrigerant
  • An air conditioner includes a radiator and a control device.
  • the radiator dissipates heat from the supercritical refrigerant to the air during the heating operation.
  • the control device controls the room temperature in the air-conditioned room by causing the high-pressure side pressure of the refrigeration cycle including the radiator and the refrigerant outlet temperature of the radiator to reach respective preset target values. . Then, the control device increases or decreases the target value of the high-pressure side pressure when it recognizes that the heating operation capacity is excessive or insufficient from the room temperature even though the high-pressure side pressure and the refrigerant outlet temperature reach the target values.
  • the high-pressure side pressure is higher than the critical pressure, and the refrigerant outlet temperature of the radiator moves on the isotherm and is constant as the high-pressure side pressure increases or decreases. Therefore, when the high-pressure side pressure is high, the capacity is excessive, and when the high-pressure side pressure is low, the capacity is insufficient. Therefore, the controller adjusts the heating capacity by increasing or decreasing the high-pressure side pressure while monitoring the refrigerant outlet temperature and the room temperature. For this reason, lack of capability is eliminated and comfort is improved. In addition, excess capacity is eliminated, saving energy.
  • An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein when the predetermined time has elapsed without the room temperature reaching the set temperature, the control device sets the target value of the high pressure side pressure. Increase.
  • An air conditioner according to a third invention is the air conditioner according to the first invention, wherein when the estimated arrival time to the set temperature calculated from the time derivative of room temperature exceeds a predetermined threshold, the control is performed.
  • the device increases the target value for the high side pressure.
  • control device predicts the transition of the room temperature and adjusts the capacity. As a result, lack of capacity is avoided and heating comfort is improved.
  • An air conditioner according to a fourth invention is the air conditioner according to the first invention, wherein the control is performed when the difference between the refrigerant outlet temperature and the room temperature becomes smaller than a preset specified value.
  • the device reduces the target value for the high side pressure.
  • An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the first aspect of the present invention, further comprising an outlet temperature detector and a room temperature detector.
  • the outlet temperature detector detects the refrigerant outlet temperature of the radiator, and the room temperature detector detects the room temperature. Then, the control device determines the increase / decrease range of the target value of the high pressure side pressure from the difference between the output value of the outlet temperature detector and the output value of the room temperature detector.
  • An air conditioner according to a sixth aspect of the present invention is the air conditioner according to the first aspect of the present invention, comprising a plurality of indoor units equipped with radiators.
  • the control device monitors the difference between the refrigerant outlet temperature of the radiator and the room temperature for each indoor unit, and increases or decreases the target value of the high-pressure side pressure.
  • control device increases or decreases the high-pressure side pressure according to the required capacity of each indoor unit. For this reason, the necessary capacity of all indoor units is extracted, and the comfort of heating is improved.
  • An air conditioner according to a seventh aspect of the present invention is the air conditioner according to the sixth aspect of the present invention, wherein a specified value for the difference between the refrigerant outlet temperature of the radiator and the room temperature is set, and the control device When it becomes smaller than the specified value, the target value of the high-pressure side pressure is lowered.
  • An air conditioner according to an eighth invention is the air conditioner according to the first invention, wherein the refrigeration cycle is a refrigerant circuit comprising a compressor, a radiator, an expansion mechanism, and an evaporator connected in sequence. Has a road.
  • the high-pressure side pressure is the pressure that the refrigerant existing in the refrigerant circuit receives in the section from the refrigerant discharge port of the compressor through the radiator to the refrigerant inlet of the expansion mechanism.
  • control device uses force S to eliminate the excess or deficiency of the capacity by increasing or decreasing the pressure of the refrigerant in the section from the refrigerant outlet of the compressor to the refrigerant inlet of the expansion mechanism.
  • the control device adjusts the heating capacity by increasing or decreasing the high-pressure side pressure while monitoring the refrigerant outlet temperature and the room temperature. For this reason, lack of capacity is resolved and comfort is improved. In addition, excess capacity is also eliminated, saving energy.
  • the air conditioner according to the second aspect of the present invention it is avoided that the air conditioner is continued for a long period of time while heating is insufficient. For this reason, the comfort of heating improves.
  • the control device predicts the transition of the room temperature and adjusts the capacity. For this reason, insufficiency is avoided in advance, and the comfort of heating is improved.
  • excess capacity is eliminated during heating, resulting in energy saving.
  • the control device adjusts the heating capacity by increasing or decreasing the high-pressure side pressure while monitoring the refrigerant outlet temperature and the room temperature. For this reason, lack of capacity is resolved and comfort is improved. In addition, excess capacity is also eliminated, saving energy.
  • the control device increases or decreases the high-pressure side pressure according to the required capacity of each indoor unit. For this reason, the necessary capacity of all indoor units is extracted, and the comfort of heating is improved.
  • the excess capacity of the indoor unit is eliminated, saving energy.
  • the control device quickly eliminates excess or deficiency in capacity by increasing or decreasing the pressure of the refrigerant in the section from the refrigerant discharge port of the compressor to the refrigerant inlet of the expansion mechanism. I can do it.
  • FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 (a) Pressure-enthalpy diagram of refrigeration cycle using R410A. (B) Pressure vs. enthalpy diagram of supercritical refrigeration cycle using C02.
  • FIG. 3 is a control block diagram of heating capacity control.
  • FIG. 4 is a flowchart of heating capacity control.
  • FIG. 5 is a flowchart of heating capacity control.
  • FIG. 6 is a flowchart of heating capacity control.
  • FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 1 uses C02 as a refrigerant whose high pressure side is equal to or higher than the critical pressure.
  • the air conditioner 1 is a multi-type air conditioner for buildings, and is compressed so that a plurality of indoor units 3 are connected in parallel to one or a plurality of outdoor units 2 and refrigerant can flow.
  • Equipment 11, four-way switching valve 12, outdoor heat exchanger 13, outdoor expansion valve 14 and indoor expansion valve 15, which are expansion mechanisms, and indoor heat exchanger 16 are connected to form refrigerant circuit 10. Yes.
  • the indoor fan 22 introduces indoor air into the indoor heat exchanger 16.
  • an outlet temperature sensor 41 is provided on the refrigerant outlet side (at the time of heating) of the indoor heat exchanger 16, and a room temperature sensor 42 is provided on the air suction side of the indoor heat exchanger 16.
  • the four-way selector valve 12 is connected as shown by the dotted line in FIG. 1, the compressor 11 and the outdoor heat exchanger 13 communicate with each other, and the indoor heat exchanger 16 and the outdoor heat exchanger 13 are Each functions as an evaporator and a radiator. That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 11 is introduced into the outdoor heat exchanger 13.
  • the medium temperature / high pressure gas is depressurized by the indoor expansion valve 15 to become a low-temperature / low-pressure two-phase refrigerant and introduced into the indoor heat exchanger 16. .
  • the air is sucked into the compressor 11 again.
  • the four-way selector valve 12 is connected as shown by the solid line in FIG. 1, and the compressor 11 and the indoor heat exchanger 16 communicate with each other, and the indoor heat exchanger 16 and the outdoor heat exchanger 13 are connected.
  • the medium temperature / high pressure gas passes through the pipe, is reduced in pressure by the outdoor expansion valve 14, and is introduced into the outdoor heat exchanger 13.
  • heat exchange with the outdoor air takes place and Inhaled by the compressor 11.
  • the control device 4 monitors the values detected by the outlet temperature sensor 41 provided at the refrigerant outlet of the indoor heat exchanger 16 and the room temperature sensor 42 provided on the air suction side of the indoor heat exchanger 16. The opening degree of the outdoor expansion valve 14 and the indoor expansion valve 15 and the operation frequency of the compressor 11 are controlled.
  • the control device 4 is equipped with a microcomputer 5 and a memory (not shown).
  • the microcomputer 5 calculates the target value of the high-pressure side pressure based on the values detected by the outlet temperature sensor 41 and the room temperature sensor 42. To do.
  • the high-pressure side pressure means that, for example, during heating, the refrigerant present in the refrigerant circuit 10 passes from the refrigerant discharge locus of the compressor 11 to the refrigerant inlet of the outdoor expansion valve 14 via the indoor heat exchanger 16. This is the pressure received in the section.
  • Fig. 2 (a) is the pressure-enthalpy diagram of the refrigeration cycle using R410A
  • Fig. 2 (b) is the pressure-enthalpy diagram of the supercritical refrigeration cycle using C02.
  • FIG. 3 is a control block diagram of the heating capacity control
  • FIG. 4 is a flowchart of the heating capacity control.
  • Control of the heating operation in the air conditioner 1 is performed by controlling the high-pressure side pressure necessary to ensure the heating capacity by the operating frequency of the compressor 11, and the refrigerant outlet state of the indoor heat exchanger 16 is determined by the opening of the outdoor expansion valve 14.
  • the microcomputer 5 uses the outlet temperature target value calculation unit 51 to calculate the target value Tgcs of the refrigerant outlet temperature Tgc of the indoor heat exchanger 16 based on the temperature difference el between the set temperature Ts and the room temperature Ta. calculate.
  • the expansion valve control unit 52 calculates the opening change value dEV of the expansion valve based on the temperature difference e2 between the target value Tgcs and the refrigerant outlet temperature Tg c, and controls the valve opening of the outdoor expansion valve 14.
  • the capacity determination unit 53 determines whether the heating capacity is excessive or insufficient based on the temperature difference el, the temperature difference e2, and the temperature difference e3 between the refrigerant outlet temperature Tgc and the room temperature Ta, and the high pressure side pressure change value dPh is calculated. After the calculation, the operation frequency of the compressor 11 of the outdoor unit 2 is mainly controlled.
  • differential value del / dt of the temperature difference el may be calculated by the differentiator 54 and added as a variable at the time of excess / deficiency determination.
  • each indoor unit 3 there is a state in which the room temperature Ta has not reached the set temperature Ts even though the refrigerant outlet temperature Tgc of the indoor heat exchanger 16 has reached the target Tgcs.
  • the target value of the high-pressure side pressure is increased. Then, after the room temperature Ta reaches the set temperature Ts in each indoor unit 3, if the difference between the refrigerant outlet temperature Tgc and the room temperature Ta becomes smaller than the specified value es set for each indoor unit 3, Lower the target value of the high-pressure side pressure for indoor unit 3.
  • step S 1 the room temperature Tan is obtained from the room temperature sensor 42 for each microcomputer 5 ⁇ indoor unit 3.
  • the alphabet at the end of the variable indicates the number of indoor units 3.
  • the set temperature Ts of the m-th and n-th indoor units 3 is expressed as Tsm and Tsn.
  • step S2 it is determined for each indoor unit 3 whether the room temperature Tan has reached the set temperature Tsn. If it is determined that the m-th indoor unit 3 is No in step S2, the process proceeds to step S3, and the target value Tgcsm of the refrigerant outlet temperature of the indoor heat exchanger 16 is calculated for the m-th indoor unit 3. To do.
  • step S4 the refrigerant outlet temperature Tgcm of the indoor heat exchanger 16 is acquired for the m-th indoor unit 3.
  • step S5 it is determined for the m-th indoor unit 3 whether or not the refrigerant outlet temperature Tgcm has reached the target value Tgcsm.
  • step S5 If it is determined No in step S5, the process proceeds to step S6, the compressor 11 and the outdoor expansion valve 14 are controlled so that the refrigerant outlet temperature Tgcm reaches the target value Tgcsm, and the process returns to step S1. If YES in step S5, the process proceeds to control A, and in step S7, whether the room temperature Tam force S on the m-th indoor unit 3 side is less than the set temperature Tsm of the m-th indoor unit 3 or not. Determine whether or not. If YES in step S7, proceed to step S8 to start the timer and measure the specified time. If No is determined in step S7, the process returns to S1.
  • step S9 it is determined whether the room temperature Tam is still lower than the set temperature Tsm. If yes in step S9, proceed to step S10 to determine whether the timer has expired. Steps S7 to S10 are controls for determining whether or not the state where the room temperature Tam is lower than the set temperature Tsm has continued for a predetermined time. Therefore, if it is determined to be No in step S9, go to step S1. Return.
  • step S10 If it is determined in step S10 that the timer has expired, it is determined that the capacity is insufficient, and the process proceeds to step S11 to increase the target value for the high-pressure side pressure.
  • step S12 in order to achieve the target value of the high-pressure side pressure set in step S11, the compressor 11 and the outdoor expansion valve 14 are controlled, and the process returns to step S1.
  • step S2 the process proceeds to control B, and in step S13, the microcomputer 5 determines the difference S between the refrigerant outlet temperature Tgcn and the room temperature Tan for each indoor unit 3, a preset standard value. Determine if it is less than esn. If at least one unit is determined to be Yes in step S13, it is determined that the indoor unit 3 determined as Yes has excessive capacity, and the process proceeds to step S14, and the indoor unit 3 determined as Yes in step S13. Reduce the target value of the high-pressure side pressure. If NO is determined in step S13, the process returns to S1. In step S15, in order to achieve the target value of the high-pressure side pressure set in step S14, the compressor 11 and the outdoor expansion valve 14 are controlled, and the process returns to step S1.
  • the indoor heat exchanger 16 releases heat from the supercritical refrigerant to the air.
  • the control device 4 maintains the high pressure side pressure of the refrigeration cycle including the indoor heat exchanger 16 constant. Further, the control device 4 detects the refrigerant outlet temperature Tgc of the indoor heat exchanger 16 by the outlet temperature sensor 41, and detects the room temperature Ta by the room temperature sensor 42. In the supercritical refrigeration cycle, the refrigerant outlet temperature Tgc of the radiator (for example, the indoor heat exchanger 16 during heating) moves on the isotherm and is constant as the pressure on the high pressure side increases or decreases.
  • the controller 4 determines that the refrigerant outlet temperature Tgc of the indoor heat exchanger 16 is the target value T during heating. If gcs is reached, but the room temperature Ta in the room to be heated is judged to be excessive or insufficient, increase or decrease the target value for the high-pressure side pressure.
  • the air conditioner 1 can adjust the heating capacity by increasing or decreasing the high-pressure side pressure while monitoring the refrigerant outlet temperature Tgc and the room temperature Ta during heating, thus eliminating the lack of capacity. This improves comfort. In addition, excess capacity is also eliminated, saving energy.
  • the air conditioner 1 sets a predetermined threshold when the predetermined time has passed without the room temperature Ta reaching the set temperature Ts, or when the estimated arrival time to the set temperature Ts calculated from the time derivative of the room temperature Ta is set to a predetermined threshold.
  • the target value of the high-pressure side pressure is increased. For this reason, the comfort of heating is improved because the lack of capacity does not continue for a long time during heating.
  • the air conditioner 1 reduces the target value of the high-pressure side pressure when the difference between the refrigerant outlet temperature Tgc and the room temperature Ta becomes smaller than the preset specified value es. Is eliminated and energy saving is achieved.
  • the air conditioner 1 includes a plurality of indoor units 3.
  • the controller 4 monitors the difference between the refrigerant outlet temperature Tgc of the indoor heat exchanger 16 and the room temperature Ta for each indoor unit 3, and increases or decreases the target value of the high-pressure side pressure. For this reason, during heating, the high-pressure side pressure can be increased or decreased according to the required capacity of each indoor unit 3, and the necessary capacity of all the indoor units is extracted, thereby improving the comfort of heating.
  • the air conditioner 1 sets a specified value es for the difference between the refrigerant outlet temperature Tgc of the indoor heat exchanger 16 and the room temperature Ta, and when the difference e becomes smaller than the specified value, the target value of the high-pressure side pressure is set. Reduce. For this reason, during heating, the excess capacity of the indoor unit is eliminated, saving energy.
  • the present invention can realize a heating capacity as required, and is useful for an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

明 細 書
空気調和装置
技術分野
[0001] 本発明は、高圧側が超臨界圧力で運転される冷媒を用いた空気調和装置に関す 背景技術
[0002] 地球環境保護や効率向上の観点から、空気調和装置の冷媒として高圧側が超臨 界圧力で運転される超臨界冷媒の適用検討が行われている(例えば、特許文献 1参 照)。特許文献 1に記載のものは、 C02冷媒を使用し、放熱器の冷媒出口温度の値 に応じて高圧圧力を成績係数 COPが最大付近となる範囲に制御し、成績係数 COP の高レヽ運転を行うようにしてレ、る。
特許文献 1 :特開 2002— 130770号公報
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、超臨界の冷媒を利用した空気調和装置においては、暖房時に放熱 器の冷媒出口温度が目標値に達しているにもかかわらず、室温が設定温度に達しな いことがあり、特許文献 1には、その問題に対する解決方法が開示されていない。 本発明の課題は、超臨界の冷媒を利用して必要な暖房能力を常に引き出すことが できる空気調和装置を提供することにある。
課題を解決するための手段
[0004] 第 1発明に係る空気調和装置は、放熱器と制御装置とを備えている。放熱器は、暖 房運転時に超臨界の冷媒から空気に対して放熱を行わせる。制御装置は、放熱器 を含む冷凍サイクルの高圧側圧力と、放熱器の冷媒出口温度とを、予め設定された それぞれの目標値へ到達させることによって、空調対象である室内の室温を制御す る。そして、制御装置は、高圧側圧力および冷媒出口温度が目標値に達しているに もかかわらず、室温から暖房運転能力の過不足を認知した場合には、高圧側圧力の 目標値を増減させる。 この空気調和装置では、高圧側圧力が臨界圧力以上であり、高圧側圧力の増減に 対して放熱器の冷媒出口温度は等温線上を移動し一定である。それゆえ、高圧側圧 力が高い場合は能力過剰であり、高圧側圧力が低い場合は能力不足となる。そこで 制御装置は、冷媒出口温度と室温とを監視しながら高圧側圧力を増減して暖房能力 を調整する。このため、能力不足が解消され快適性が向上する。さらに、過剰能力も 解消されるので省エネとなる。
[0005] 第 2発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、室温が 設定温度に到達せずに所定時間が経過したとき、制御装置が高圧側圧力の目標値 を増加させる。
この空気調和装置では、暖房時、能力不足のまま長期間継続されることが回避され る。このため、暖房の快適性が向上する。
[0006] 第 3発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、室温の 時間微分から算出した設定温度への推定到達時間が所定の閾値を超過したとき、制 御装置が高圧側圧力の目標値を増加させる。
この空気調和装置では、制御装置が、室温の推移を予測して能力を調整する。こ のため、能力不足が未然に回避され、暖房の快適性が向上する。
[0007] 第 4発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、冷媒出 口温度と室温との差が、予め設定されている規定値より小さくなつたとき、制御装置が 高圧側圧力の目標値を低下させる。
この空気調和装置では、過剰能力が解消され、省エネとなる。
[0008] 第 5発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、出口温 度検知器と室温検知器とをさらに備えて!/、る。出口温度検知器は放熱器の冷媒出口 温度を検知し、室温検知器は室温を検知する。そして、制御装置は、出口温度検知 器の出力値と、室温検知器の出力値との差から、高圧側圧力の目標値の増減幅を 決定する。
この空気調和装置では、制御装置が、冷媒出口温度と室温とを監視しながら高圧 側圧力を増減して暖房能力を調整する。このため、能力不足が解消され快適性が向 上する。さらに、過剰能力も解消されるので省エネとなる。 [0009] 第 6発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、放熱器 を搭載した複数の室内機を備えている。そして制御装置は、室内機ごとに、放熱器の 冷媒出口温度と室温との差を監視し、高圧側圧力の目標値を増減させる。
この空気調和装置では、制御装置が、各室内機の必要能力に応じて高圧側圧力 を増減する。このため、室内機全てにおいて必要な能力が引き出され、暖房の快適 性が向上する。
[0010] 第 7発明に係る空気調和装置は、第 6発明に係る空気調和装置であって、放熱器 の冷媒出口温度と室温との差に対する規定値が設定され、制御装置は、その差が規 定値より小さくなつたとき高圧側圧力の目標値を低下させる。
この空気調和装置では、室内機の過剰能力が解消されるので省エネとなる。
[0011] 第 8発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、冷凍サ ィクルが、圧縮機、放熱器、膨張機構、および蒸発器が順次接続されて成る冷媒回 路を有する。
高圧側圧力は、冷媒回路内に存在する冷媒が、圧縮機の冷媒吐出口から放熱器 を経て膨張機構の冷媒入口に至るまでの区間で受ける圧力である。
この空気調和装置では、制御装置が、圧縮機の冷媒吐出口から膨張機構の冷媒 入口までの区間にある冷媒の圧力を増減することによって、能力の過不足を解消す ること力 Sでさる。
発明の効果
[0012] 第 1発明に係る空気調和装置では、暖房時、制御装置が、冷媒出口温度と室温と を監視しながら高圧側圧力を増減して暖房能力を調整する。このため、能力不足が 解消され快適性が向上する。さらに、過剰能力も解消されるので省エネとなる。
第 2発明に係る空気調和装置では、暖房時、能力不足のまま長期間継続されること が回避される。このため、暖房の快適性が向上する。
第 3発明に係る空気調和装置では、暖房時、制御装置が、室温の推移を予測して 能力を調整する。このため、能力不足が未然に回避され、暖房の快適性が向上する 第 4発明に係る空気調和装置では、暖房時、過剰能力が解消され、省エネとなる。 第 5発明に係る空気調和装置では、暖房時、制御装置が、冷媒出口温度と室温と を監視しながら高圧側圧力を増減して暖房能力を調整する。このため、能力不足が 解消され快適性が向上する。さらに、過剰能力も解消されるので省エネとなる。
[0013] 第 6発明に係る空気調和装置では、暖房時、制御装置が、各室内機の必要能力に 応じて高圧側圧力を増減する。このため、室内機全てにおいて必要な能力が引き出 され、暖房の快適性が向上する。
第 7発明に係る空気調和装置では、暖房時、室内機の過剰能力が解消されるので 省エネとなる。
第 8発明に係る空気調和装置では、制御装置が、圧縮機の冷媒吐出口から膨張機 構の冷媒入口までの区間にある冷媒の圧力を増減することによって、能力の過不足 を角早消すること力できる。
図面の簡単な説明
[0014] [図 1]本発明の実施形態に係る空気調和装置の構成図。
[図 2] (a) R410Aを使用した冷凍サイクルの圧力—ェンタルピー線図。 (b) C〇2を使 用した超臨界冷凍サイクルの圧力ーェンタルピー線図。
[図 3]暖房能力制御の制御ブロック図。
[図 4]暖房能力制御のフローチャート。
[図 5]暖房能力制御のフローチャート。
[図 6]暖房能力制御のフローチャート。
符号の説明
[0015] 1 空気調和装置
3 室内機
4 制御装置
11 圧縮機
13 室外熱交換器 (蒸発器)
14 室外膨張弁 (膨張機構)
16 室内熱交換器 (放熱器)
41 出口温度センサ 42 室温センサ
発明を実施するための最良の形態
[0016] <空気調和装置の構成〉
図 1は、本発明の実施形態に係る空気調和装置の構成図である。空気調和装置 1 は、冷媒として、高圧側が臨界圧力以上となる C02を用いている。
空気調和装置 1は、ビル用のマルチタイプの空気調和装置であって、 1つ又は複数 の室外機 2に対して複数の室内機 3が並列に接続され、冷媒が流通できるように、圧 縮機 11、四路切換弁 12、室外熱交換器 13、膨張機構である室外膨張弁 14および 室内膨張弁 15、さらに室内熱交換器 16などの機器が接続されて冷媒回路 10が形 成されている。室内ファン 22は、室内の空気を室内熱交換器 16に導入させる。
また、室内熱交換器 16の冷媒出口側(暖房時)の配管上には出口温度センサ 41 が設けられ、室内熱交換器 16の空気吸込側には室温センサ 42が設けられている。
[0017] <空気調和装置の動作〉
(冷房運転)
冷房運転時において、四路切換弁 12は、図 1の点線で示すように接続され、圧縮 機 11と室外熱交換器 13とが連通し、室内熱交換器 16および室外熱交換器 13は、 それぞれ蒸発器および放熱器として機能する。すなわち、圧縮機 11から吐出された 高温 ·高圧の冷媒ガスが室外熱交換器 13に導入される。ここで、冷媒ガスと室外空 気との熱交換が行われた後、中温 ·高圧ガスは室内膨張弁 15で減圧され、低温-低 圧の二相冷媒となり室内熱交換器 16に導入される。ここで室内空気と熱交換が行わ れた後、再び圧縮機 11に吸入される。
(暖房運転)
一方、暖房運転時において、四路切換弁 12は、図 1の実線で示すように接続され、 圧縮機 11と室内熱交換器 16とが連通し、室内熱交換器 16および室外熱交換器 13 はそれぞれ放熱器および蒸発器として機能する。すなわち、圧縮機 11より吐出され た高温 ·高圧の冷媒ガスが室内熱交換器 16に導入される。ここで、冷媒ガスと室内 空気との熱交換が行われた後、中温 ·高圧ガスは配管を通過し、室外膨張弁 14で減 圧されて室外熱交換器 13に導入される。ここで室外空気と熱交換が行われ、再び圧 縮機 11に吸入される。
[0018] <制御装置〉
制御装置 4は、室内熱交換器 16の冷媒出口に設けられた出口温度センサ 41、お よび室内熱交換器 16の空気吸入側に設けられた室温センサ 42で検知される値を監 視し、室外膨張弁 14、および室内膨張弁 15の開度や、圧縮機 11の運転周波数を 制御する。
制御装置 4には、マイコン 5、メモリ(図示せず)が搭載されており、マイコン 5が、出 口温度センサ 41、室温センサ 42で検知された値に基づいて高圧側圧力の目標値を 算出する。なお、高圧側圧力とは、例えば暖房時の場合、冷媒回路 10内に存在する 冷媒が、圧縮機 11の冷媒吐出ロカも室内熱交換器 16を経て室外膨張弁 14の冷媒 入口に至るまでの区間で受ける圧力である。
<超臨界冷凍サイクルの能力制御〉
ここで、従来の冷凍サイクルと超臨界冷凍サイクルの違いについて説明する。図 2 ( a)は、 R410Aを使用した冷凍サイクルの圧力ーェンタルピー線図であり、図 2 (b)は 、 C02を使用した超臨界冷凍サイクルの圧力ーェンタルピー線図である。
[0019] 図 2 (a)において、従来の冷凍サイクルでは、全室内機で過冷却度 Scがっき過ぎて V、る場合は能力過剰であり、全室内機のうち 1つでも過冷却度 Scが全くつ!/、て!/、な い場合は能力不足であると判断し、高圧側圧力を増減することで能力調整を行う。 しかし、超臨界冷凍サイクルでは、図 2 (b)に示すように、過冷却という概念はなぐ 室内熱交換器の冷媒出口温度が目標値に達しているにもかかわらず、室温が設定 温度に達していないとき、高圧側圧力が高い場合は能力過剰であり、高圧側圧力が 低い場合は能力不足であると判断し、高圧側圧力を増減することで能力調整を行う。
(暖房能力制御)
次に、制御装置 4のマイコン 5による暖房能力制御について説明する。図 3は暖房 能力制御の制御ブロック図であり、図 4は暖房能力制御のフローチャートである。空 気調和装置 1における暖房運転の制御は、暖房能力の確保に必要な高圧側圧力を 圧縮機 11の運転周波数によって制御し、室内熱交換器 16の冷媒出口状態を室外 膨張弁 14の開度によって制御する。 [0020] 図 3において、マイコン 5は、出口温度目標値演算部 51において、設定温度 Tsと 室温 Taとの温度差 e lに基づいて、室内熱交換器 16の冷媒出口温度 Tgcの目標値 Tgcsを算出する。次に膨張弁制御部 52において、 目標値 Tgcsと冷媒出口温度 Tg cとの温度差 e2に基づいて膨張弁の開度変更値 dEVを算出し、室外膨張弁 14の弁 開度を制御する。
また、同時に能力判定部 53において、温度差 el、温度差 e2、および冷媒出口温 度 Tgcと室温 Taとの温度差 e3に基づいて暖房能力の過不足を判定し、高圧側圧力 変更値 dPhを算出後、主に室外機 2の圧縮機 11の運転周波数を制御する。
なお、能力過不足判定時に、微分器 54で温度差 elの微分値 del/dtを算出し、 変数として加えてもよい。
[0021] 本実施形態では、各室内機 3において室内熱交換器 16の冷媒出口温度 Tgcが目 標ィ直 Tgcsに達しているにもかかわらず、室温 Taが設定温度 Tsに達していない状態 が所定時間続いた場合に、高圧側圧力の目標値を増加させる。そして、各室内機 3 において室温 Taが設定温度 Tsに達した後は、冷媒出口温度 Tgcと室温 Taとの差が 、室内機 3毎に設定された規定値 esより小さくなつた場合に、その室内機 3に対して 高圧側圧力の目標値を下げる。
以下、図 4を用いて暖房能力制御のフローを説明する。ステップ S 1では、マイコン 5 ヽ室内機 3毎に室温センサ 42から室温 Tanを取得する。なお、変数末尾のアルフ ァベットは、室内機 3の数を示しており、例えば第 m番目、第 n番目の室内機 3の設定 温度 Tsに対しては、 Tsm、 Tsnと表記している。
[0022] ステップ S2では、室内機 3毎に室温 Tanが設定温度 Tsnに達しているか否かを判 定する。ステップ S2で仮に第 m番目の室内機 3で Noと判定した場合は、ステップ S3 へ進み、第 m番目の室内機 3に対して、室内熱交換器 16の冷媒出口温度の目標値 Tgcsmを算出する。ステップ S4では、第 m番目の室内機 3に対して、室内熱交換器 16の冷媒出口温度 Tgcmを取得する。ステップ S5では、第 m番目の室内機 3に対し て、冷媒出口温度 Tgcmが目標値 Tgcsmに達しているか否かを判定する。ステップ S 5で Noと判定した場合は、ステップ S6へ進み、冷媒出口温度 Tgcmが目標値 Tgcs mに到達するように圧縮機 11、室外膨張弁 14を制御し、ステップ S 1へ戻る。 ステップ S5で Yesと判定した場合は、制御 Aへ移り、ステップ S7で、第 m番目の室 内機 3側の室温 Tam力 S、第 m番目の室内機 3の設定温度 Tsm未満であるか否かを 判定する。ステップ S 7で Yesと判定した場合は、ステップ S8へ進みタイマを始動し所 定時間を計時する。なお、ステップ S 7で Noと判定した場合は S1へ戻る。
[0023] ステップ S9では、まだ室温 Tamが設定温度 Tsm未満であるか否かを判定する。ス テツプ S 9で Yesと判定した場合は、ステップ S 10へ進みタイマが終了したか否かを判 定する。ステップ S 7からステップ S 10までは、室温 Tamが設定温度 Tsm未満である 状態が所定時間継続されたか否かを判定する制御であるので、ステップ S9で仮に N oと判定した場合はステップ S1へ戻る。
ステップ S10でタイマが終了したと判定した場合は、能力不足であると判断しステツ プ S11へ進み、高圧側圧力の目標値を増加する。ステップ S 12では、ステップ S 11 で設定した高圧側圧力の目標値を達成するために、圧縮機 11、室外膨張弁 14を制 卸しステップ S 1へ戻る。
また、ステップ S2で Yesと判定した場合は、制御 Bへ移り、ステップ S13で、マイコン 5が、室内機 3毎に冷媒出口温度 Tgcnと室温 Tanとの差力 S、予め設定されている規 定値 esnより小さいか否かを判定する。ステップ S 13で一台でも Yesと判定した場合 は、その Yes判定された室内機 3が能力過剰であると判断し、ステップ S 14へ進み、 ステップ S 13で Yes判定された室内機 3に対して高圧側圧力の目標値を低減する。 なお、ステップ S13で Noと判定した場合は S 1へ戻る。ステップ S15では、ステップ S 14で設定した高圧側圧力の目標値を達成するために、圧縮機 11、室外膨張弁 14を 制御しステップ S 1へ戻る。
[0024] <特徴〉
(1)
空気調和装置 1では、暖房運転時、室内熱交換器 16が、超臨界の冷媒から空気 に対して放熱を行わせる。制御装置 4は、室内熱交換器 16を含む冷凍サイクルの高 圧側圧力を一定に維持する。また、制御装置 4は、出口温度センサ 41によって室内 熱交換器 16の冷媒出口温度 Tgcを検知し、室温センサ 42によって室温 Taを検知す 超臨界冷凍サイクルでは、高圧側圧力の増減に対して、放熱器 (例えば、暖房時の 室内熱交換器 16)の冷媒出口温度 Tgcは等温線上を移動し一定である。それゆえ、 高圧側圧力が高い場合は能力過剰であり、高圧側圧力が低い場合は能力不足であ そこで、制御装置 4は、暖房時、室内熱交換器 16の冷媒出口温度 Tgcが目標値 T gcsに達していても、暖房されるべき室内の室温 Taからみて能力過不足と判断した 場合には、高圧側圧力の目標値を増減させる。
[0025] このように空気調和装置 1は、暖房時、冷媒出口温度 Tgcと室温 Taとを監視しなが ら高圧側圧力を増減して暖房能力を調整することができるので、能力不足が解消さ れ快適性が向上する。さらに、過剰能力も解消されるので省エネとなる。
また、空気調和装置 1は、室温 Taが設定温度 Tsに到達せずに所定時間が経過し たとき、或は室温 Taの時間微分から算出した設定温度 Tsへの推定到達時間が所定 の閾値を超過したとき、高圧側圧力の目標値を増加させている。このため、暖房時、 能力不足が長期間継続されることがなぐ暖房の快適性が向上する。
また、空気調和装置 1は、冷媒出口温度 Tgcと室温 Taとの差が、予め設定されてい る規定値 esより小さくなつたとき、高圧側圧力の目標値を低下させるので、暖房時、 過剰能力が解消され、省エネとなる。
[0026] (2)
空気調和装置 1は、複数の室内機 3を備えている。そして制御装置 4は、室内機 3ご とに、室内熱交換器 16の冷媒出口温度 Tgcと室温 Taとの差を監視し、高圧側圧力 の目標値を増減させている。このため、暖房時、各室内機 3の必要能力に応じて高圧 側圧力を増減することができ、室内機全てにおいて必要な能力が引き出され、暖房 の快適性が向上する。
また、空気調和装置 1は、室内熱交換器 16の冷媒出口温度 Tgcと室温 Taとの差に 対する規定値 esを設定し、その差 eが規定値より小さくなつたとき高圧側圧力の目標 値を低下させる。このため、暖房時、室内機の過剰能力が解消されるので省エネとな 以上のように、本発明は、必要に応じた暖房能力を実現できるので、空気調和装置 に有用である。

Claims

請求の範囲
[1] 暖房運転時に超臨界の冷媒から空気に対して放熱を行わせる放熱器(16)と、 前記放熱器(16)を含む冷凍サイクルの高圧側圧力と、前記放熱器(16)の冷媒出 口温度とを、予め設定されたそれぞれの目標値へ到達させることによって、空調対象 である室内の室温を制御する制御装置(4)と、
を備え、
前記制御装置 (4)は、前記高圧側圧力および前記冷媒出口温度が前記目標値に 達しているにもかかわらず、前記室温から暖房運転能力の過不足を認知した場合に は、前記高圧側圧力の目標値を増減させる、
空気調和装置(1)。
[2] 前記制御装置 (4)は、前記室温が設定温度に到達せずに所定時間が経過したとき
、前記高圧側圧力の目標値を増加させる、
請求項 1に記載の空気調和装置(1)。
[3] 前記制御装置 (4)は、前記室温の時間微分から算出した設定温度への推定到達 時間が所定の閾値を超過したとき、前記高圧側圧力の目標値を増加させる、 請求項 1に記載の空気調和装置(1)。
[4] 前記制御装置 (4)は、前記冷媒出口温度と前記室温との差が、予め設定されて!/ヽ る規定値より小さくなつたとき、前記高圧側圧力の目標値を低下させる、
請求項 1に記載の空気調和装置(1)。
[5] 前記放熱器(16)の冷媒出口温度を検知する出口温度検知器 (41)と、
前記室温を検知する室温検知器 (42)と、
をさらに備え、
前記制御装置 (4)は、前記出口温度検知器 (41)の出力値と、前記室温検知器 (4 2)の出力値との差から、前記高圧側圧力の目標値の増減幅を決定する、 請求項 1に記載の空気調和装置(1)。
[6] 前記放熱器(16)を搭載した複数の室内機 (3)をさらに備え、
前記制御装置 (4)は、前記室内機(3)ごとに、前記放熱器(16)の冷媒出口温度と 前記室温との差を監視し、前記高圧側圧力の目標値を増減させる、 請求項 1に記載の空気調和装置(1)。
前記複数の室内機(3)ごとに、前記放熱器(16)の冷媒出口温度と前記室温との 差に対する規定値が設定され、
前記制御装置 (4)は、前記差が前記規定値より小さくなつたとき、前記高圧側圧力 の目標値を低下させる、
請求項 6に記載の空気調和装置(1)。
前記冷凍サイクルは、圧縮機(11)、前記放熱器(16)、膨張機構(14)、および蒸 発器(13)が順次接続されて成る冷媒回路(10)を有し、
前記高圧側圧力は、前記冷媒回路(10)内に存在する冷媒が、前記圧縮機(11) の冷媒吐出ロカ 前記放熱器(16)を経て前記膨張機構(14)の冷媒入口に至るま での区間で受ける圧力である、
請求項 1に記載の空気調和装置(1)。
PCT/JP2007/064471 2006-08-03 2007-07-24 Conditionneur d'air WO2008015930A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07791203.8A EP2053319B1 (en) 2006-08-03 2007-07-24 Air conditioner
US12/375,242 US8104299B2 (en) 2006-08-03 2007-07-24 Air conditioner
CN2007800281357A CN101495816B (zh) 2006-08-03 2007-07-24 空调装置
AU2007279774A AU2007279774B2 (en) 2006-08-03 2007-07-24 Air conditioner
ES07791203T ES2721546T3 (es) 2006-08-03 2007-07-24 Acondicionador de aire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006211937A JP5055884B2 (ja) 2006-08-03 2006-08-03 空気調和装置
JP2006-211937 2006-08-03

Publications (1)

Publication Number Publication Date
WO2008015930A1 true WO2008015930A1 (fr) 2008-02-07

Family

ID=38997110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064471 WO2008015930A1 (fr) 2006-08-03 2007-07-24 Conditionneur d'air

Country Status (9)

Country Link
US (1) US8104299B2 (ja)
EP (1) EP2053319B1 (ja)
JP (1) JP5055884B2 (ja)
KR (1) KR20090034939A (ja)
CN (1) CN101495816B (ja)
AU (1) AU2007279774B2 (ja)
ES (1) ES2721546T3 (ja)
TR (1) TR201905266T4 (ja)
WO (1) WO2008015930A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081523A (zh) * 2019-04-30 2019-08-02 广东美的制冷设备有限公司 室外机、空调系统及控制方法、装置和可读存储介质
WO2023225706A1 (en) * 2022-05-23 2023-11-30 Glaciem Cooling Technologies Pty Ltd Co 2 hvac system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077025B2 (ja) * 2008-03-31 2012-11-21 ダイキン工業株式会社 空気調和装置
EP2284060B1 (en) * 2008-06-11 2015-09-23 Mitsubishi Electric Corporation Air conditioner for use in vehicle, vehicle air conditioning management system, and method of vehicle air conditioning management
EP2363659B1 (en) * 2010-01-08 2016-07-13 Daikin Industries, Ltd. Radiator
JP5506433B2 (ja) * 2010-01-29 2014-05-28 三菱重工業株式会社 マルチ型空気調和機
JP5121908B2 (ja) * 2010-09-21 2013-01-16 三菱電機株式会社 冷房給湯装置
JP5427833B2 (ja) * 2011-05-18 2014-02-26 パナソニック株式会社 クリーンルームの逆流防止装置
JP5375945B2 (ja) * 2011-12-28 2013-12-25 ダイキン工業株式会社 温度および湿度の調整を行う空調システム
JP5984914B2 (ja) * 2012-03-27 2016-09-06 三菱電機株式会社 空気調和装置
JP6073653B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
CN103344028B (zh) * 2013-07-01 2016-04-06 青岛海信日立空调系统有限公司 空调节能控制方法及空调
JP5790729B2 (ja) * 2013-09-30 2015-10-07 ダイキン工業株式会社 空調システム及びその制御方法
US10558182B2 (en) * 2016-01-19 2020-02-11 Honeywell International Inc. Heating, ventilation and air conditioning capacity alert system
DE102016110585A1 (de) * 2016-06-08 2017-12-14 Truma Gerätetechnik GmbH & Co. KG Klimasystem und Verfahren zur Leckageerkennung in einem Klimasystem
CN109812950B (zh) * 2019-02-22 2021-04-09 广东欧科空调制冷有限公司 一种空调器蒸发温度控制方法、装置及空调器
JP7385099B2 (ja) * 2019-03-19 2023-11-22 ダイキン工業株式会社 情報処理装置、空気調和装置、情報処理方法、空気調和方法、及びプログラム
WO2024209870A1 (ja) * 2023-04-05 2024-10-10 パナソニックIpマネジメント株式会社 冷凍装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016754A (ja) * 2003-06-24 2005-01-20 Hitachi Home & Life Solutions Inc 冷凍サイクル装置
JP2005249384A (ja) * 2005-04-08 2005-09-15 Mitsubishi Electric Corp 冷凍サイクル装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269872A (ja) * 1988-04-20 1989-10-27 Daikin Ind Ltd 冷凍装置の運転制御装置
JP4167308B2 (ja) * 1997-12-18 2008-10-15 ヤマハ発動機株式会社 冷媒循環式熱移動装置
JP4258944B2 (ja) * 1999-10-28 2009-04-30 株式会社デンソー 超臨界蒸気圧縮機式冷凍サイクル
JP3679323B2 (ja) * 2000-10-30 2005-08-03 三菱電機株式会社 冷凍サイクル装置およびその制御方法
US6418735B1 (en) * 2000-11-15 2002-07-16 Carrier Corporation High pressure regulation in transcritical vapor compression cycles
JP4771627B2 (ja) * 2001-08-30 2011-09-14 株式会社日本クライメイトシステムズ 車両用空調装置
JP4688369B2 (ja) * 2001-08-30 2011-05-25 株式会社日本クライメイトシステムズ 車両用空調装置
JP3897681B2 (ja) * 2002-10-31 2007-03-28 松下電器産業株式会社 冷凍サイクル装置の高圧冷媒圧力の決定方法
JP4613526B2 (ja) * 2004-06-23 2011-01-19 株式会社デンソー 超臨界式ヒートポンプサイクル装置
JP4337880B2 (ja) * 2004-07-12 2009-09-30 株式会社デンソー ヒートポンプ式給湯器
JP4670329B2 (ja) * 2004-11-29 2011-04-13 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
WO2006062190A1 (ja) * 2004-12-09 2006-06-15 Matsushita Electric Industrial Co., Ltd. ヒートポンプ
JP2006283989A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷暖房システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016754A (ja) * 2003-06-24 2005-01-20 Hitachi Home & Life Solutions Inc 冷凍サイクル装置
JP2005249384A (ja) * 2005-04-08 2005-09-15 Mitsubishi Electric Corp 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2053319A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081523A (zh) * 2019-04-30 2019-08-02 广东美的制冷设备有限公司 室外机、空调系统及控制方法、装置和可读存储介质
CN110081523B (zh) * 2019-04-30 2021-12-03 广东美的制冷设备有限公司 室外机、空调系统及控制方法、装置和可读存储介质
WO2023225706A1 (en) * 2022-05-23 2023-11-30 Glaciem Cooling Technologies Pty Ltd Co 2 hvac system

Also Published As

Publication number Publication date
TR201905266T4 (tr) 2019-05-21
US20100281895A1 (en) 2010-11-11
AU2007279774A1 (en) 2008-02-07
EP2053319A1 (en) 2009-04-29
ES2721546T3 (es) 2019-08-01
CN101495816A (zh) 2009-07-29
JP5055884B2 (ja) 2012-10-24
AU2007279774B2 (en) 2010-08-05
CN101495816B (zh) 2011-05-04
EP2053319A4 (en) 2014-04-16
JP2008039234A (ja) 2008-02-21
EP2053319B1 (en) 2019-01-30
KR20090034939A (ko) 2009-04-08
US8104299B2 (en) 2012-01-31

Similar Documents

Publication Publication Date Title
WO2008015930A1 (fr) Conditionneur d&#39;air
JP5125124B2 (ja) 冷凍装置
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
KR101321546B1 (ko) 공기조화기
KR101485601B1 (ko) 공기 조화기 및 그의 제어방법
WO2009119023A1 (ja) 冷凍装置
KR101588205B1 (ko) 공기조화기 및 공기조화기의 제상운전방법
JP5418622B2 (ja) 冷凍装置
WO2008032559A1 (fr) climatiseur
JP6129520B2 (ja) マルチ型空気調和機及びマルチ型空気調和機の制御方法
WO2007094343A1 (ja) 空気調和装置
EP2093508B1 (en) Air Conditioner and Method of Controlling the Same
CN113551437B (zh) 空调系统以及控制方法
KR101558503B1 (ko) 멀티형 공기조화기 및 그 운전 방법
JP3668750B2 (ja) 空気調和装置
KR20100079405A (ko) 공기조화기 및 그 동작방법
KR20070077639A (ko) 멀티 공기조화기 및 그 제어방법
JP7258129B2 (ja) 空気調和装置
KR101227477B1 (ko) 용량 가변형 응축기가 구비된 공기조화기 및 그 제어방법
KR100953193B1 (ko) 멀티형 공기조화기의 운전 방법
JP2015124958A (ja) 空気調和機
KR20200073471A (ko) 공기조화기의 제어 방법
JP5999163B2 (ja) 空気調和装置
JP6105271B2 (ja) 空気調和機
JP5578914B2 (ja) マルチ形空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028135.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12375242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097002002

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007279774

Country of ref document: AU

Ref document number: 2007791203

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007279774

Country of ref document: AU

Date of ref document: 20070724

Kind code of ref document: A