WO2008015017A1 - Verfahren zur herstellung von biodieselkraftstoff - Google Patents

Verfahren zur herstellung von biodieselkraftstoff Download PDF

Info

Publication number
WO2008015017A1
WO2008015017A1 PCT/EP2007/006893 EP2007006893W WO2008015017A1 WO 2008015017 A1 WO2008015017 A1 WO 2008015017A1 EP 2007006893 W EP2007006893 W EP 2007006893W WO 2008015017 A1 WO2008015017 A1 WO 2008015017A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
ratio
glycerol
synthesis gas
crude glycerol
Prior art date
Application number
PCT/EP2007/006893
Other languages
English (en)
French (fr)
Inventor
Hans-Georg Anfang
Original Assignee
Süd-Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Süd-Chemie AG filed Critical Süd-Chemie AG
Publication of WO2008015017A1 publication Critical patent/WO2008015017A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a process for the production of biodiesel fuels from fats and oils.
  • the method relates to the use of glycerol obtained in the esterification or transesterification of fatty acids or triglycerides with methanol for the recovery of methanol in a continuous closed circuit.
  • biodiesel is obtained by transesterification of native glycidyl esters or by esterification of fatty acids, which are obtained, for example, from rapeseed oil in Europe with methanol using alkaline catalysts such as KOH or NaOH (B. Gutsche, Technologie der Methylesterher ein Fett / Lipid 99 (1997) 418-27).
  • alkaline catalysts such as KOH or NaOH
  • soybean oil is used. Both batch processes and semi-continuous processes are used here.
  • continuous processes are known, for example, from US Pat. No. 5,354,878 and EP 562,504. From DE 196 22 601 Cl is a continuous process for biodiesel production using waste fats known.
  • glycerine is used for the production of plastics and polyurethane foams as lubricants and softeners, as well as in the cosmetics and food industries.
  • biodiesel increases steadily, more glycerol is produced than can be consumed in the traditional application areas.
  • Hirai et al. (Energy and Fuel 2005, 19, 1761-1762) describe the theoretical possibility of using glycerol as the source of hydrogen, but the reaction presented there requires highly pure glycerol and specially developed noble metal-based catalysts, which are very cost-intensive.
  • WO2005 / 052097 describes the use of the glycerol obtained in the transesterification as a source of hydrogen or synthesis gas for the production of methanol, which is then subsequently used again in a process for the esterification of fatty acids.
  • WO2005 / 052097 also teaches that it is possible to thermally decompose glycerol without the use of a catalyst.
  • this step in the decomposition of glycerol with water at a S / C ratio of 1: 1, a variety of u. a. tar-like by-products, which massively affect the yield of syngas and, indirectly, the methanol yield.
  • the methanol synthesis according to this document is thus carried out with relatively low yields of ⁇ 50%.
  • unreacted synthesis gas is used thermally within the process.
  • an essential aspect of this process is the use of the accumulating glycerol, the process does not completely replace the amount of methanol necessary for the production of the biodiesel for the abovementioned reasons. Larger amounts of methanol from external sources still need to be added to the process.
  • this object has been achieved by a cyclic process for the production of biodiesel by urea esters of triglycerides with methanol, comprising the steps of
  • step iii) using the methanol for the esterification of fatty acids in step i), wherein the water vapor / carbon ratio (S / C ratio) in step iii) is adjusted to a value of 1.2: 1 to 5: 1.
  • the S / C ratio according to the invention minimizes the content of methanol in the synthesis gas and maximizes CO 2 , so that 99.9% carbon conversion is subsequently achieved in the methanol synthesis, so that the overall methanol yield is> 80% based on which is glycerol.
  • the conditioning step of the synthesis gas contained in the steam reforming reaction to an optimum so-called stoichiometric number leads to an optimized methanol synthesis with yields of more than 60%, preferably more than 70% and very particularly preferably more than 80%, based on the glycerol used that the glycerol obtained in step i) can be largely converted in the process of the invention in methanol, which is used again for the conversion of the triglycerides.
  • methanol which is used again for the conversion of the triglycerides.
  • conditioning in the context of the present invention means the adjustment of the stoichiometric number of the synthesis gas to a value optimized for the production of methanol, which can be carried out in various ways and is explained in more detail below.
  • glycerol is obtained in an amount of about 12 to 30% by weight, based on the weight of triglycerides or oil used.
  • methanol is typically used in a slight excess of from 1.1 to 2.8, based on one equivalent of an ester compound or fatty acid which is to be transesterified or esterified.
  • the esterification or transesterification reaction is known from the prior art.
  • an alkali catalyst such as KOH or
  • Solid acid catalysts can also be used. These should preferably be separated from the crude glycerol by means of an optional purification step, since these residues of alkaline catalysts in the glycerol-containing phase are mixed with the crude glycerol. The alkaline catalysts are in danger of subsequently damaging or reducing the activity of the catalyst in the subsequent steam reforming reaction.
  • the typical "crude glycerol”, ie, the glycerol-containing phase typically consists of 10 to 90 vol .-% glycerol, 10 to 90 vol .-% water, 0 to 10 vol .-% NaCl, KCl or depending Neutralization method also K 2 PO 4 or Na 2 PO 4 or other catalyst products and traces of methanol and fatty acids. It is understood that also previously purified glycerol can be used according to the invention. It may be contained in the crude glycerol depending on the organic starting material used sulfur and / or phosphorus.
  • the alkaline compounds, inorganic catalyst residues and especially the sulfur and phosphorus compounds are passed in a relatively simple work-up step, for example via ion exchangers, which may also be regenerable, which are anion exchangers or cation exchangers to the ionic compounds, such as the alkali compounds mentioned above or to remove inorganic catalyst residues.
  • ion exchangers which may also be regenerable, which are anion exchangers or cation exchangers to the ionic compounds, such as the alkali compounds mentioned above or to remove inorganic catalyst residues.
  • All other organic secondary constituents contained in the crude glycerol can likewise be converted into synthesis gas in the context of steam reforming.
  • the crude glycerol can be used even with the correspondingly high water content as it is obtained directly after the Ver or Verest fürsrepress, since in the subsequent steam reforming the gaseous glycerol with a certain molar water vapor to carbon ratio (the so-called SC ratio, S / C [mol / mol]) is passed over a steam reforming catalyst.
  • SC ratio molar water vapor to carbon ratio
  • Any steam reforming catalyst suitable for steam reforming can be used in the present process according to the invention, for example typical nickel, cobalt, iron and, albeit costly, noble metal catalysts which are commercially available. lent reasons are less preferred, and include Korabinationen of these metals. Particularly preferred are nickel- and iron-containing catalysts. Very particularly preferred are nickel-containing catalysts. In conjunction with the S / C ratio according to the invention, a particularly high carbon balance of more than 90%, preferably more than 99%, very particularly preferably 99.9% is achieved by using the nickel catalysts, so that in the subsequent step the methanol - maximum yield. Other catalysts, ie non-nickel-containing catalysts, require extensive optimization, but some also provide a carbon balance in the range of 90-96%.
  • the SC ratio Since water is already contained in the crude glycerine, the SC ratio only has to be slightly adjusted. The preferred range of the SC ratio is typically between 1.2: 1 and 5: 1.
  • a further advantage of glycerine / water mixtures, for example with SC ratios of 1.7: 1 to 3: 1 and more, is that when the mixture evaporates during the steam reforming reaction, the decomposition (thermal dehydration) of the pure substance occurs Glycerol can be suppressed to propenal, as it is z. B. in WO 2005/052097 is observed. Preferred is a ratio of 1.8: 1 to 2.2: 1.
  • Another important inventive feature of the inventive method is the conditioning of the synthesis gas obtained in the steam reforming reaction of hydrogen, CO and CO 2 , that is, the setting of the stoichiometric number. Any existing water in the synthesis gas must be removed beforehand, eg. B. be condensed out.
  • te stoichiometry number is set (ie the synthesis gas is conditioned), which indicates the ratio of H 2 to CO to CO 2 .
  • a stoichiometric number of less than 1.5 or more than 2.5 leads to a reduced (total) yield of methanol of about 30-40%.
  • the reformate from the Glycerinreformmaschine can be adjusted by various methods to the desired stoichiometric number, ie conditioned.
  • encryption provide drive for the reduction of CO 2, for example by leaching of CO 2 at.
  • other methods known to the person skilled in the art can also be used for this purpose.
  • a stoichiometric number of 2.05 is most preferred.
  • An optimal stoichiometric number ultimately leads to an optimal use of the synthesis gas with maximum methanol yields of more than 95%, preferably more than 99% and a minimum plant dimensioning. Deviations in the stoichiometric number lead to larger methanol synthesis layers, since a part of the gas must be carried.
  • a partial flow of the reformate is subjected to CO 2 scrubbing and then mixed with the remaining reformate in a specific ratio so as to set the desired optimum stoichiometry number.
  • Methanol is produced from hydrogen, carbon monoxide and carbon dioxide in the presence of highly selective, preferably copper-based catalysts.
  • the major synthetic reactions are as follows:
  • the methanol obtained is worked up in accordance with the specifications for the production of biodiesel, for example by distillation and then reintroduced into the process.
  • a further surprising advantage in the context of the process according to the invention results if, in addition, hydrocarbons such as natural gas, alkanes, alkenes etc. are added before the start of the reforming process of the glycerol. In very particularly preferred embodiments of the process according to the invention, this leads to a 100% educt substitution of the methanol initially used.
  • step i The process is started by transesterification of rapeseed oil and methanol (step i), whereby the transesterification of rapeseed oil into biodiesel produces crude glycerol as a by-product.
  • Typical ingredients of the crude glycerol are about 80 to 85% glycerol, 10 to 12% water, 5 to 7% alkaline salts or neutralizing salts from the transesterification reaction and methanol with less than 0.2%.
  • the resulting biodiesel is then purified by distillation and fed to its use.
  • the crude glycerol-containing phase (step ii) is separated off and optionally passed over ion exchangers to remove the alkali metal salts from the crude glycerol phase.
  • step iii The crude glycerol freed from alkali salts and optionally from sulfur and phosphorus compounds is then reacted in a typical steam reformer (step iii), e.g. Example, at a typical reforming temperature of 800 0 C and a pressure of 10 bar using, for example, a commercial nickel catalyst nickel at a GHSV of about 5,000 h "1 performed.
  • step iii) is explained in more detail.
  • the crude glycerol is still adjusted to the optimum water content, e.g. Water can be supplied by means of an evaporator or a pump in order to obtain an optimal high water content and the optimal S / C ratio.
  • Water can be supplied by means of an evaporator or a pump in order to obtain an optimal high water content and the optimal S / C ratio.
  • natural gas or another suitable hydrocarbon may be added, and in an amount such that, after reforming and adaptation, the stoichiometric number, a quantitative substitution of the required as starting material or the production of biodiesel methanol is achieved.
  • the water is separated on a condenser and the syngas is dried by commercial techniques.
  • methanol is produced from the synthesis gas by conventional methods. The methanol is distilled, if necessary, and reintroduced at the beginning of the process to be used for the transesterification of rapeseed oil. Usually no additional external methanol is needed.
  • step iii by embodiments with reference to the implementation of the obtained from the esterification and purified crude glycerol explained in more detail. Showing:
  • Example 1 shows the synthesis gas composition from Example 1
  • Fig. 2 shows the carbon balance of Example 1
  • a heated tubular reactor having an inner diameter of 19.5 mm from ZETON is used as a test facility for carrying out step iii) of the process according to the invention.
  • the catalyst As a catalyst for the Glycerininsky the catalyst was named CIl-PR, available from Süd-Chemie AG, with a composition of 56 wt .-% NiO, 12 wt .-% MgO, 10 wt .-% SiO 2 and 10 wt .-% Al 2 O 3 in the form of 1.2 to 5.8 mm large granules used.
  • the catalyst volume was 20 ml and the weight of the catalyst was 23.86 g.
  • a glycerol-water mixture (crude glycerol) in the ratio of 1: 1 by volume was used. Subsequently, an SC ratio of 3 was adjusted by adding water.
  • the temperature during the catalysis was 700 0 C with a medium-high catalyst bed and a GSHV of 1,532 h "1 .
  • the duration of the reaction was about 44 hours and the reaction product contained 0.2% by volume of CH 4 , 22.2% by volume of CO 2 , 11.0% by volume of CO and 66.6% by volume of H 2 by gas chromatography.
  • Example 1 The same test equipment as used in Example 1 was used.
  • the catalyst used was the catalyst designated G 90-LDP, obtainable from Süd-Chemie AG with a composition of 11% by weight of nickel on a calcium aluminate support in the form of spheres (diameter 2 mm).
  • the S / C ratio was 3 at a GHSV of 3000 h -1 and the temperature was 738 ° C.
  • the catalyst volume was 30 ml and the total weight of the catalyst was 33 g.
  • a glycerol-water mixture (crude glycerol) in a ratio of 1: 1 by volume was used. Subsequently, an SC ratio of 3 was adjusted by adding water.
  • the reaction product contained 1 vol .-% CH 4 , 11 vol .-% CO, 18 vol .-% CO 2 and 70% H 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Kreisprozess zur Herstellung von Biodiesel durch Umesterung von Triglyceriden mit Methanol, umfassend die Schritte des: i) Umsetzens von Triglyceriden mit Methanol; ii) Abtrennens des entstandenen Rohglycerins; iii) Umsetzens des Rohglycerins in einer katalytischen Dampf ref ormierungsreaktion; iv) Konditionierens des in der Dampf ref ormierungsreaktion erhaltenen Synthesegases durch Einstellen des stöchiometrischen Verhältnisses von H<SUB>2</SUB>/CO/CO<SUB>2</SUB> auf einen Bereich von 1,5 bis 2,5; v) Umsetzens des Synthesegases zu Methanol; vi) Verwendens des Methanols für die Veresterung von Fettsäuren in Schritt: i), wobei das Wasserdampf/Kohlenstoffverhältnis (S/C Verhältnis) in Schritt: iii) auf einen Wert von 1,2:1 bis 5:1 eingestellt wird. Dieses erfindungsgemäße Verfahren ermöglicht es, für die Veresterung von Fettsäuren die nötige Methanolmenge zur Herstellung von Biodiesel nahezu vollständig zur Verfügung zu stellen, so dass ein weitgehend geschlossenes Kreislaufverfahren zur Verfügung gestellt wird.

Description

VERFAHREN ZUR HERSTELLUNG VON BIODIESELKRAFTSTOFF
Die vorliegende Erfindung betrifft ein Verfahren zur Herstel- lung von Biodieselkraftstoffen aus Fetten und Ölen. Insbesondere betrifft das Verfahren die Verwendung des bei der Veresterung bzw. Umesterung von Fettsäuren bzw. Triglyceriden mit Methanol anfallenden Glycerins für die erneute Gewinnung von Methanol in einem kontinuierlichen geschlossenen Kreislauf.
Der weltweite Bedarf an regenerativen Kraftstoffen wird sich in den nächsten Jahren höchstwahrscheinlich deutlich erhöhen. Nach der Richtlinie zur Förderung der Verwendung von Biokraftstoffen (Richtlinie 2003/30/EG des Europäischen Parlaments) müssen alternative Kraftstoffe in den EU-Ländern bis Ende 2010 einen Mindestanteil an verkauften Kraftstoffen von 5,75% erzielen. Dadurch wird sich der Bedarf an Treibstoffen, die aus nachwachsenden Rohstoffen gewonnen werden, deutlich erhöhen. Biodiesel ist neben Bioethanol gegenwärtig der einzige Bio- kraftstoff, der in nennenswertem Umfang genutzt wird.
Bekannt ist, dass Biodiesel durch Umesterung von nativen GIy- cidestern bzw. durch Veresterung von Fettsäuren, die beispielsweise in Europa aus Rapsöl gewonnen werden, mit Methanol unter Einsatz von alkalischen Katalysatoren wie KOH oder NaOH gewonnen wird (B. Gutsche, Technologie der Methylesterherstellung Fett/Lipid 99 (1997) 418-27) . Neben Rapsöl wird beispielsweise auch Sojaöl verwendet. Hierbei kommen sowohl Batch-Verfahren wie auch semikontinuierliche Verfahren zum Einsatz. Ebenfalls sind schon kontinuierliche Verfahren beispielsweise aus der US 5,354,878 sowie dem EP 562 504 bekannt. Aus dem DE 196 22 601 Cl ist ein kontinuierliches Verfahren zur Biodieselherstellung unter Verwendung von Altfetten bekannt .
Bei der Umsetzung (Umesterung) von Triglyceriden mit Methanol zu einer Mischung von Fettsäureestern entsteht typischerweise Glycerin als Nebenprodukt.
Technisch wird Glycerin zur Herstellung von Kunststoffen und Polyurethanschäumen als Schmier- und Weichhaltemittel sowie in der Kosmetik und Nahrungsmittelindustrie eingesetzt. Da die Produktionskapazitäten von Biodiesel stetig steigen, wird mehr Glycerin produziert als in den klassischen Anwendungsgebieten verbraucht werden kann.
Hirai et al. (Energy and Fuel 2005, 19, 1761-1762) beschreiben die theoretische Möglichkeit, Glycerin als Wasserstoffquelle zu nutzen, jedoch bedarf die dort vorgestellte Reaktion hochreinen Glycerins und speziell entwickelter Katalysatoren auf Edelmetallbasis, die sehr kostenintensiv sind.
Weiter beschreibt die WO2005/052097 die Verwendung des bei der Umesterung anfallenden Glycerins als Quelle für Wasserstoff bzw. Synthesegas für die Methanolherstellung, was dann anschließend wieder in einen Prozess für die Veresterung von Fettsäuren eingesetzt wird. Die WO2005/052097 lehrt ebenfalls, dass es möglich ist, Glycerin thermisch ohne Katalysatoreinsatz zu zersetzen. Jedoch entsteht in diesem Schritt bei der Zersetzung von Glycerin mit Wasser bei einem S/C Verhältnis von 1:1 eine Vielzahl von u. a. teerähnlichen Nebenprodukten, die die Ausbeute an Synthesegas und indirekt damit die Metha- nolausbeute massiv beeinträchtigen.
Die Methanol-Synthese gemäß dieser Schrift wird somit mit relativ geringen Ausbeuten von < 50 % durchgeführt. Im Synthese- prozess nicht umgesetztes Synthesegas wird innerhalb des Verfahrens thermisch genutzt. Ein wesentlicher Gesichtspunkt dieses Verfahrens stellt zwar die Nutzung des anfallenden Glyce- rins dar, jedoch kann mit dem Verfahren die zur Herstellung des Biodiesels notwendige Menge an Methanol aus den vorstehend erwähnten Gründen nicht vollständig substituiert werden. Größere Mengen Methanol aus externen Quellen müssen nach wie vor dem Prozess zugefügt werden.
Aufgabe der vorliegenden Erfindung war es daher, das bei der Umesterung von Triglyceriden als Nebenprodukt anfallende GIy- cerin in einem kontinuierlichen Prozess so zu nutzen, dass durch die Prozessführung stets weitgehend das gesamte für die Umesterung bzw. Veresterung notwendige Methanol bereitgestellt wird.
Weiterhin sollten aufwendige Reinigungsschritte, die prozesstechnisch schwierig zu realisieren sind, weitestgehend vermieden werden.
Erfindungsgemäß wurde diese Aufgabe durch einen Kreisprozess zur Herstellung von Biodiesel durch Uraestern von Triglyceriden mit Methanol gelöst, umfassend die Schritte des
i) Umsetzens von Triglyceriden mit Methanol;
ii) Abtrennens des entstandenen Rohglycerins;
iii) Umsetzens des Rohglycerins in einer katalytischen
Dampfreformierungsreaktion,
iv) Konditionierens des in der Dampfreformierungsreaktion erhaltenen Synthesegases durch Einstellen des stöchio- metrischen Verhältnisses von H2/CO/CO2 auf einen Bereich von 1,5 bis 2,5;
v) Umsetzens des Synthesegases zu Methanol;
vi) Verwendens des Methanols für die Veresterung von Fettsäuren in Schritt i), wobei das Wasserdampf/Kohlenstoffverhältnis (S/C Verhältnis) in Schritt iii) auf einen Wert von 1,2:1 bis 5:1 eingestellt wird.
Überraschenderweise wurde gefunden, dass das erfindungsgemäße S/C Verhältnis den Gehalt des Synthesegases an Methanol minimiert und an CO2 maximiert, so dass anschließend ein 99, 9% Koh- lenstoffumsatz in der Methanolsynthese erzielt wird, so dass die Gesamtmethanolausbeute > 80% bezogen auf das Glycerin beträgt. Je höher der CO (und CO2) -anteil und je niedriger der CH4 Anteil im Synthesegas ist, desto höher ist die Ausbeute an Methanol. Es wurde gefunden, dass diese Anteile wesentlich durch die Dampfreformierung, d. h. durch das eingestellte S/C Verhältnis des Glycerins bestimmt werden.
Der Konditionierungsschritt des in der Dampfreformierungsreak- tion enthaltenen Synthesegases auf eine optimale so genannte Stöchiometriezahl führt zu einer optimierten Methanolsynthese mit Ausbeuten von mehr als 60 %, bevorzugt mehr als 70 % und ganz besonders bevorzugt von mehr als 80 % bezogen auf das eingesetzte Glycerin, so dass das in Schritt i) erhaltene Glycerin im Rahmen des erfindungsgemäßen Verfahrens weitgehend in Methanol umgewandelt werden kann, das wieder zum Umsatz der Triglyceride eingesetzt wird. Bei einem erfindungsgemäß erhaltenen Umsatz von mehr als 70 %, bevorzugter von mehr als 80%, ganz besonders bevorzugt von mehr als 90% von Glycerin zu Methanol werden nur sehr geringe Mengen an externem Methanol ne- ben dem zurückgeführten Methanol für den Umesterungsschritt benötigt.
Der Begriff „Konditionieren" bedeutet im Rahmen der vorliegenden Erfindung die weiter unten beschriebene Einstellung der Stöchiometriezahl des Synthesegases auf einen für die Herstellung von Methanol optimierten Wert. Das Einstellen kann dabei auf verschiedene Arten erfolgen und ist nachstehend genauer erläutert .
Beim Ver- bzw. Umestern erhält man Glycerin in einer Menge von ca. 12 bis 30 Gew.-% bezogen auf das Gewicht an Triglyceriden bzw. eingesetztem Öl.
Methanol wird bei der Umesterung typischerweise dabei in einem leichten Überschuss von 1,1 bis 2,8 bezogen auf ein Äquivalent einer Esterverbindung bzw. Fettsäure, die umgeestert bzw. ve- restert werden soll, eingesetzt. Die Ver- bzw. Umesterungs- reaktion ist dabei aus dem Stand der Technik bekannt.
Üblicherweise wird dabei ein Alkalikatalysator wie KOH oder
NaOH verwendet. Es können auch feste saure Katalysatoren verwendet werden. Diese sollten bevorzugterweise vom Rohglycerin mittels eines optionalen Aufreinigungsschrittes abgetrennt werden, da sich diese Restbestände an alkalischen Katalysato- ren in der Glycerin enthaltenden Phase mit dem Rohglycerin vermischt finden. Die alkalischen Katalysatoren bergen die Gefahr, dass sie anschließend den Katalysator in der nachfolgenden Dampfreformierungsreaktion schädigen bzw. dessen Aktivität herabsetzen.
Das typische „Rohglycerin", d.h. also die Glycerin enthaltende Phase besteht typischerweise aus 10 bis 90 Vol.-% Glycerin, 10 bis 90 Vol.-% Wasser, 0 bis 10 Vol.-% NaCl, KCl bzw. je nach Neutralisationsmethode auch K2PO4 bzw. Na2PO4 oder andere Katalysatorprodukte sowie Spuren an Methanol und Fettsäuren. Es versteht sich, dass auch vorher aufgereinigtes Glycerin erfindungsgemäß verwendet werden kann. Es kann dabei im Rohglycerin je nach verwendetem organischen Ausgangsprodukt Schwefel und/oder Phosphor enthalten sein.
Aufwendige Aufarbeitungsschritte und Kosten entfallen vorteil- hafterweise im Rahmen des erfindungsgemäßen Verfahrens. Die alkalischen Verbindungen, anorganischen Katalysatorreste und insbesondere die Schwefel- und Phosphorverbindungen werden nämlich in einem relativ einfachen Aufarbeitungsschritt, beispielsweise über Ionenaustauscher, die auch regenerierbar sein können, geleitet, die Anionenaustauscher bzw. Kationenaustauscher sind, um die ionischen Verbindungen, wie die vorstehend erwähnten Alkaliverbindungen bzw. anorganischen Katalysatorreste zu entfernen. Sämtliche weitere im Rohglycerin enthaltene organische Nebenbestandteile können im Rahmen der Dampfre- formierung ebenfalls zu Synthesegas umgewandelt werden.
Vorteilhafterweise kann das Rohglycerin schon auch mit dem entsprechend hohen Wassergehalt wie es direkt nach der Ver- bzw. Umesterungsreaktion erhalten wird, eingesetzt werden, da bei der sich anschließenden Dampfreformierung das gasförmige Glycerin mit einem bestimmten molaren Wasserdampf- zu Kohlen- stoff-Verhältnis (das so genannte SC-Verhältnis, S/C [mol/mol] ) über einen Dampfreformierungskatalysator geleitet wird.
Im Rahmen des vorliegenden erfindungsgemäßen Verfahrens kann jeder beliebige Dampfreformierungskatalysator, der für die Dampfreformierung geeignet ist, verwendet werden und beispielsweise typische Nickel-, Kobalt-, Eisen- und, wenn auch kostenintensive, Edelmetallkatalysatoren, die aus Wirtschaft- liehen Gründen weniger bevorzugt sind, sowie Korabinationen dieser Metalle umfassen. Besonders bevorzugt sind nickel- und eisenhaltige Katalysatoren. Ganz besonders bevorzugt sind ni- ckelhaltige Katalysatoren. In Verbindung mit dem erfindungsgemäßen S/C Verhältnis wird eine besonders hohe Kohlenstoffbi- lanz von mehr als 90%, bevorzugt von mehr als 99%, ganz besonders bevorzugt von 99, 9% durch Verwendung der Nickelkatalysatoren erzielt, so dass im nachfolgenden Schritt die Methanol- ausbeute maximal wird. Andere Katalysatoren d. h. nicht ni- ckelhaltige Katalysatoren, bedürfen eine weitgehende Optimie- rung, einige liefern jedoch auch eine Kohlenstoffbilanz im Bereich von 90-96%.
Da im Rohglycerin bereits Wasser enthalten ist, muss das SC- Verhältnis nur noch geringfügig angepasst werden. Der bevor- zugte Bereich des SC-Verhältnisses liegt typischerweise zwischen 1,2:1 und 5:1. Ein weiterer Vorteil von Glyce- rin/Wassergemischen, beispielsweise mit SC-Verhältnissen von 1,7:1 bis 3:1 und mehr, besteht darin, dass beim Verdampfen der Mischung während der Dampfreformierungsreaktion, die beim Reinstoff auftretende Zersetzung (thermische Dehydration) von Glycerin zu Propenal unterdrückt werden kann, wie es z. B. in der WO 2005/052097 zu beobachten ist. Bevorzugt ist ein Verhältnis von 1,8:1 bis 2,2:1.
Ein weiteres wichtiges erfindungswesentliches Merkmal des erfindungsgemäßen Verfahrens ist das Konditionieren des in der Dampfreformierungsreaktion erhaltenen Synthesegases aus Wasserstoff, CO und CO2, d.h. das Einstellen der Stöchiometrie- zahl. Dabei muss eventuell vorhandenes Wasser im Synthesegas vorher entfernt, z. B. auskondensiert werden.
Um anschließend mit dem eingesetzten Synthesegas die Ausbeute an Methanol zu optimieren, wird erfindungsgemäß die so genann- te Stöchiometriezahl eingestellt (d.h. das Synthesegas wird konditioniert), die das Verhältnis von H2 zu CO zu CO2 angibt. Die Stöchiometriezahl (SN) wird definiert als: SN = (H2- CO2) / (CO+CO2) . Es wurde gefunden, dass optimale Stöchiometrie- zahlen im Bereich von 1,3 bis 2,5 liegen, bevorzugt 1,8 bis 2,2. Ganz besonders bevorzugt ist eine Stöchiometriezahl von 2,1, noch bevorzugter von 2,05.
Eine Stöchiometriezahl von weniger als 1,5 oder mehr als 2,5 führt zu einer verminderten (Gesamt ) Ausbeute an Methanol von ca. 30-40%.
Das Reformat aus der Glycerinreformierung kann über verschiedene Methoden auf die gewünschte Stöchiometriezahl eingestellt d.h. konditioniert werden. Dabei bieten sich insbesondere Ver- fahren zur Verminderung des CO2, beispielsweise durch Auswaschung von CO2 an. Aber auch andere dem Fachmann bekannte Verfahren können dafür verwendet werden. Diese umfassen, sind a- ber nicht beschränkt auf Druckwasserwäschen, Monoethanolamin- wäschen, C02-Auskondensation, Mischen des Glycerin-Reformats mit Synthesegas aus anderen Kohlenwasserstoffen, Mischen des Glycerins mit anderen Kohlenwasserstoffe bereits vor der Reformierung, eine Druckwechseladsorptionsstufe mit anschließender Zumischung der entsprechenden Fraktion, eine der Reformierung nachgeschaltete Wasser-Gas-Shift Reaktionsstufe mit an- schließender Zumischung der entsprechenden Fraktion, eine der Reformierung nachgeschaltete Wasser-Gas-Shift Reaktionsstufe mit anschließender Cθ2~Wäsche, eine der Reformierung nachgeschaltete Wasser-Gas-Shift Reaktionsstufe mit anschließender Druckwechseladsorptionsstufe mit anschließender Zumischung der entsprechenden Fraktion, Kombinationen aus den vorgenannten Verfahren, Teilstrombehandlungen aus den vorgenannten Verfahren oder deren Kombinationen und anschließendem Mischen mit dem nicht behandelten Strom. Wie schon vorstehend erwähnt, ist eine Stöchiometriezahl von 2.05 am meisten bevorzugt. Eine optimale Stöchiometriezahl führt letztendlich zu einer optimalen Nutzung des Synthesegases mit maximalen Methanolausbeuten von mehr als 95%, bevorzugt mehr als 99% und einer minimalen Anlagendimensionierung . Abweichungen in der Stöchiometriezahl führen zu größeren Methanolsynthesenlagen, da ein Teil des Gases mitgeführt werden muss .
In bevorzugten Weiterbildungen des Verfahrens wird ein Teil- ström des Reformats einer Cθ2~Wäsche unterzogen und anschließend mit dem verbleibenden Reformat in einem bestimmten Verhältnis gemischt, um so die gewünschte optimale Stöchiometriezahl einzustellen.
Die sich anschließende Methanol-Synthese kann im Prinzip mit jedem üblichen, dem Fachmann an sich bekannten Methanolsyntheseverfahren durchgeführt werden. Methanol wird dabei aus Wasserstoff, Kohlenmonoxid und Kohlendioxid in Gegenwart von hochselektiven bevorzugt auf Kupfer basierenden Katalysatoren hergestellt. Die hauptsächlichen Synthesereaktionen sind wie folgt:
CO+2H2 <-> CH3OH CO2+3H2 <-> CH3OH+H2O
Diese Reaktionen sind hochexotherm und die Reaktionswärme muss schnell abgeführt werden.
Das erhaltene Methanol wird entsprechend den Spezifikationen für die Biodieselproduktion aufgearbeitet wie beispielsweise durch Destillation und anschließend erneut in das Verfahren eingespeist . Ein weiterer überraschender Vorteil im Rahmen des erfindungsgemäßen Verfahrens ergibt sich, wenn zusätzlich Kohlenwasserstoffe wie Erdgas, Alkane, Alkene etc. vor Beginn des Refor- mierungsprozesses des Glycerins zugegeben werden. Dies führt in ganz besonders bevorzugten Ausführungsformen des erfin- dungsgemäßen Verfahrens zu einer 100% Eduktsubstitution des anfangs eingesetzten Methanols.
In dem Verfahren des Standes der Technik, insbesondere in der WO 2005/052097, wurde bisher eine Umsetzung des Glycerins zu Methanol mit maximal 50% Ausbeute bezogen auf das erhaltene Glycerin bzw. 60% bezogen auf das durch die Glycerinreformie- rung erzeugte Synthesegas erreicht. Das im ersten Schritt der Biodieselherstellung erhaltene Glycerin wird bei diesem Verfahrensschritt zwar vollständig verwertet, jedoch findet nicht, wie im vorliegenden erfindungsgemäßen Verfahren, eine weitgehende Eduktsubstitution des zu Anfang eingesetzten Methanols statt. Dies wird vorliegend insbesondere durch die Einstellung der optimalen Stöchiometriezahl und des S/C Verhältnisses optimiert.
Durch die zusätzliche Zugabe von Erdgas oder anderen Kohlenwasserstoffen bei Reformierungsprozessen kann eine 100% Substitution des zu Anfang eingesetzten Methanols, so dass sich ein geschlossener Kreislauf beim Verfahren zur Herstellung von Biodiesel ergibt, der nur die zusätzliche, den Bedarf und Last der Anlage, in der das erfindungsgemäße Verfahren durchgeführt wird, angepasste Zugabe von Erdgas bzw. anderen Kohlenwasserstoffen erfordert.
Nachstehend ist das erfindungsgemäße Verfahren noch einmal im Detail beschrieben. Das Verfahren wird durch Umesterung von Rapsöl und Methanol gestartet (Schritt i), wobei durch die Umesterung von Rapsöl zu Biodiesel als Nebenprodukt Rohglycerin entsteht. Typische Inhaltsstoffe des Rohglycerins betragen ca. 80 bis 85% Glyce- rin, 10 bis 12% Wasser, 5 bis 7% alkalische Salze bzw. Neutra- lisiersalze aus der Umesterungsreaktion sowie Methanol mit weniger als 0,2%.
Der erhaltene Biodiesel wird anschließend durch Destillation gereinigt und seiner Verwendung zugeführt.
Die das Rohglycerin enthaltende Phase (Schritt ii) wird abgetrennt und ggf. über Ionenaustauscher geführt, um die Alkalisalze aus der Rohglycerinphase zu entfernen.
Das von Alkalisalzen und ggf. von Schwefel- und Phosphorverbindungen befreite Rohglycerin wird anschließend in einem typischen Dampfreformer (Schritt iii) umgesetzt, z. B. bei einer typischen Reformierungstemperatur von 8000C und einem Druck von 10 bar unter Verwendung beispielsweise eines handelsübli- chen Nickelkatalysator bei einer GHSV von ca. 5.000 h"1 durchgeführt .
In den Ausführungsbeispielen ist Schritt iii) genauer erläutert.
Vorab wird das Rohglycerin noch auf den optimalen Wassergehalt eingestellt, wobei z.B. mittels eines Verdampfers oder einer Pumpe Wasser zugeführt werden kann, um einen optimalen hohen Wassergehalt und das optimale S/C Verhältnis zu erhalten.
In weiteren Ausführungsformen der Erfindung kann noch Erdgas bzw. ein anderer geeigneter Kohlenwasserstoff zugegeben werden und zwar in einer Menge, dass nach der Reformierung und Anpas- sung der Stöchiometriezahl eine quantitative Substitution das als Edukt oder die Herstellung von Biodiesel benötigten Methanols erreicht wird.
Aus dem Reformer strömt ein Synthesegas, das H2, CO, CO2, H2O und CH4 enthält.
Das Wasser wird an einem Kondensator abgeschieden und das Synthesegas mittels handelsüblicher Techniken getrocknet. Ein Teil des Stroms kann optional abgetrennt werden und von CO2 durch einen C02-Kondensator oder über eine übliche CO2-Wäsche befreit werden und anschließend wieder so zugeführt werden, dass die Stöchiometriezahl [SN = (H2-CO2) / (CO+CO2) ] in dem Bereich von 1,5 bis 2,5 bevorzugt auf eine Zahl SN = 2, ganz besonders bevorzugt 2,05, eingestellt wird. Anschließend wird Methanol aus dem Synthesegas mittels üblicher Verfahren hergestellt. Das Methanol wird - falls nötig - destilliert und wieder zu Beginn des Prozesses eingespeist, um für die Umesterung von Rapsöl verwendet zu werden. Dabei wird üblicherweise kein weiteres externes Methanol mehr benötigt.
Nachfolgend wir die vorliegende Erfindung (Schritt iii) durch Ausführungsbeispiele anhand der Umsetzung des aus der Veresterung gewonnenen und gereinigten Rohglycerins näher erläutert. Dabei zeigen:
Fig. 1 die Synthesegaszusammensetzung aus Beispiel 1
Fig. 2 die Kohlenstoffbilanz aus Beispiel 1 und
Fig. 3 die Synthesegaszusammensetzung aus Beispiel 2. Beispiel 1
Als Testanlage zur Durchführung von Schritt iii) des erfindungsgemäßen Verfahrens wird ein beheizter Rohrreaktor mit einem Innendurchmesser von 19,5 mm der Firma ZETON verwendet.
Als Katalysator für die Glycerinumsetzung wurde der Katalysator mit der Bezeichnung CIl-PR, erhältlich von der Firma Süd- Chemie AG, mit einer Zusammensetzung von 56 Gew.-% NiO, 12 Gew.-% MgO, 10 Gew.-% SiO2 und 10 Gew.-% Al2O3 in Form von 1,2 bis 5,8 mm großen Granulatkörnchen eingesetzt. Das Katalysatorvolumen betrug 20 ml und das Gewicht des Katalysators betrug 23,86 g.
Es wurde ein Glycerin-Wasser-Gemisch (Rohglycerin) im Verhält- nis von 1:1 bezogen auf Vol.-% verwendet. Anschließend wurde mittels Zugabe von Wasser ein SC-Verhältnis von 3 eingestellt.
Die Temperatur während der Katalyse betrug 7000C bei einer mittelhohen Katalysatorschüttung und einer GSHV von 1.532 h"1.
Die Dauer der Reaktion betrug ca. 44 Stunden und das Reaktionsprodukt enthielt 0,2 Vol.-% CH4, 22,2 Vol.-% CO2, 11,0 VoI.- % CO und 66,6 Vol.-% H2 mittels Gaschromatographie.
Die maximale Stöchiometriezahl unter diesen Bedingungen betrug 1,3. Die Ergebnisse sind in Fig. 1 dargestellt.
Wie aus Fig. 2 ersichtlich ist, betrug die Kohlenstoffbilanz ca. 99,8% (Anteil ohne CH4), so das ein maximaler Umsatz des Synthesegases in Methanol erfolgen kann. Beispiel 2
Es wurde dieselbe Testanlage wie in Beispiel 1 verwendet.
Als Katalysator wurde der Katalysator mit der Bezeichnung G 90-LDP, erhältlich von der Firma Süd-Chemie AG mit einer Zusammensetzung von 11 Gew.-% Nickel auf einem Calciumalumi- natträger in Form von Kugeln (Durchmesser 2mm) eingesetzt. Das S/C Verhältnis betrug 3 bei einer GHSV von 3000 h"1 und die Temperatur 738 C° . Das Katalysatorvolumen betrug 30 ml und das Gesamtgewicht des Katalysators 33 g.
Es wurde ein Glycerin-Wasser-Gemisch (Rohglycerin) im Verhältnis von 1:1 bezogen auf Vol.-% verwendet. Anschließend wurde mittels Zugabe von Wasser ein SC-Verhältnis von 3 eingestellt.
Die Dauer der Reaktion betrug 50h.
Die Ergebnisse sind in Fig. 3 dargestellt. Das Reaktionsprodukt enthielt 1 Vol.-% CH4, 11 Vol.-% CO, 18 Vol.-% CO2 und 70% H2.

Claims

PATENTANSPRÜCHE
1. Kreisprozess zur Herstellung von Biodiesel durch Umesterung von Triglyceriden mit Methanol, umfassend die Schritte des
i) Umsetzens von Triglyceriden mit Methanol;
ii) Abtrennens des entstandenen Rohglycerins;
iii) Umsetzens des Rohglycerins in einer katalytischen Dampfreformierungsreaktion;
iv) Konditionierens des in der Dampfreformierungsreaktion erhaltenen Synthesegases durch Einstellen des stöchio- metrischen Verhältnisses von H2/CO/CO2 auf einen Be- reich von 1,5 bis 2,5;
v) Umsetzens des Synthesegases zu Methanol;
vi) Verwendens des Methanols für die Veresterung von Fett- säuren in Schritt i),
wobei das Wasserdampf/Kohlenstoffverhältnis (S/C Verhältnis) in Schritt iii) auf einen Wert von 1,2:1 bis 5:1 eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Rohglycerin nach Schritt i) aufgereinigt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Wassergehalt des Rohglycerins in Schritt iii) auf ein molares S/C (Dampf/Kohlenstoff) -Verhältnis im Bereich von 1,7:1 bis 3:1 eingestellt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein nickelhaltiger Katalysator verwendet wird.
5. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass das stöchiometrische Verhältnis in Schritt iv) im Be- reich von 1,8:1 bis 2,2:1 liegt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das stöchiometrische Verhältnis in Schritt iv) 2 bis 2,1 beträgt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Einstellen des stöchiometrischen Verhältnisses durch Entfernen von CO2 durchgeführt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Schritt iii) zusätzlich ein Kohlenwasserstoff zugeführt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Kohlenwasserstoff Erdgas ist.
PCT/EP2007/006893 2006-08-03 2007-08-03 Verfahren zur herstellung von biodieselkraftstoff WO2008015017A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006036332A DE102006036332A1 (de) 2006-08-03 2006-08-03 Verfahren zur Herstellung von Biodieselkraftstoff
DE102006036332.9 2006-08-03

Publications (1)

Publication Number Publication Date
WO2008015017A1 true WO2008015017A1 (de) 2008-02-07

Family

ID=38698435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/006893 WO2008015017A1 (de) 2006-08-03 2007-08-03 Verfahren zur herstellung von biodieselkraftstoff

Country Status (2)

Country Link
DE (1) DE102006036332A1 (de)
WO (1) WO2008015017A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008015756A1 (de) 2008-03-26 2009-10-08 Süd-Chemie AG Synthese von Solketal in Gegenwart von Feststoffkatalysatoren
WO2010002236A1 (en) * 2008-07-01 2010-01-07 Universiti Tenaga Nasional A system for production of alkyl esters and hydrogen
WO2012154042A1 (en) * 2011-05-10 2012-11-15 Biomethanol Chemie Nederland B.V. A process for catalytic steam reforming of a feedstock comprising an oxygenated hydrocarbon and a hydrocarbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127869A1 (en) * 2010-04-15 2011-10-20 G.F. Agro A.S. Method for processing of a mixture of waste substances containing glycerol as a prevailing component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026676A2 (en) * 2000-09-27 2002-04-04 Exxonmobil Chemical Patents Inc. A methanol, olefin, and hydrocarbon synthesis process
WO2003018958A1 (en) * 2001-08-31 2003-03-06 Statoil Asa Method and plant for enhanced oil recovery and simultaneous synthesis of hydrocarbons from natural gas
WO2005052097A1 (ja) * 2003-11-27 2005-06-09 Revo International Inc. 油脂からのデイーゼル燃料油製造プロセス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699457B2 (en) * 2001-11-29 2004-03-02 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
CA2469653C (en) * 2001-12-18 2011-10-25 Jerrel Dale Branson System and method for extracting energy from agricultural waste
DE10361508A1 (de) * 2003-12-23 2005-07-28 Basf Ag Verfahren zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen aus einer biochemisch hergestellten organischen Verbindung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026676A2 (en) * 2000-09-27 2002-04-04 Exxonmobil Chemical Patents Inc. A methanol, olefin, and hydrocarbon synthesis process
WO2003018958A1 (en) * 2001-08-31 2003-03-06 Statoil Asa Method and plant for enhanced oil recovery and simultaneous synthesis of hydrocarbons from natural gas
WO2005052097A1 (ja) * 2003-11-27 2005-06-09 Revo International Inc. 油脂からのデイーゼル燃料油製造プロセス
EP1698681A1 (de) * 2003-11-27 2006-09-06 Revo International Inc. Verfahren zur herstellung von dieselöl aus fett

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. CZERNIK, R. FRENCH, C. FEIK, E. CHORNET: "Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes", IND. ENG. CHEM. RES., vol. 41, 19 July 2002 (2002-07-19), pages 4209 - 4215, XP002459938 *
T. HIRAI, N. IKENAGA, T. MIYAKE, T. SUZUKI: "Production of hydrogen by steam reforming of glycerin on ruthenium catalyst", ENERGY AND FUELS, vol. 19, 27 May 2005 (2005-05-27), pages 1761 - 1762, XP002459937 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008015756A1 (de) 2008-03-26 2009-10-08 Süd-Chemie AG Synthese von Solketal in Gegenwart von Feststoffkatalysatoren
WO2010002236A1 (en) * 2008-07-01 2010-01-07 Universiti Tenaga Nasional A system for production of alkyl esters and hydrogen
WO2012154042A1 (en) * 2011-05-10 2012-11-15 Biomethanol Chemie Nederland B.V. A process for catalytic steam reforming of a feedstock comprising an oxygenated hydrocarbon and a hydrocarbon

Also Published As

Publication number Publication date
DE102006036332A1 (de) 2008-02-07

Similar Documents

Publication Publication Date Title
EP1724325B1 (de) Verfahren zur kontinuierlichen oder teilkontinuierlichen Konvertierung von fett-oder ölhaltigen Roh- und Abfallstoffen in Gemische mit hohem Kohlenwasserstoffanteil
EP3847146B1 (de) Verfahren zur herstellung von methanol aus synthesegas ohne emission von kohlendioxid
DE60304064T2 (de) Herstellung von kohlenwasserstoffen
EP2200960B1 (de) Verfahren zur herstellung von 1,2-propandiol durch niederdruck-hydrierung von glycerin
EP3491173A1 (de) Verfahren und anlage zur herstellung von methanol
WO2007071470A1 (de) Verfahren zur herstellung von glycerincarbonat
KR101746905B1 (ko) 저온 유동성을 개선한 경제적인 수첨 파라핀 형태의 디젤 탄화수소의 제조 방법
WO2008015017A1 (de) Verfahren zur herstellung von biodieselkraftstoff
EP2929585A1 (de) Integrierte anlage und verfahren zum flexiblen einsatz von strom
EP3526315B1 (de) Verfahren zur herstellung von methan
WO2017021083A1 (de) Herstellungsverfahren für ein brenngas und anlage zur herstellung eines brenngases mit einem elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung
EP2898943B1 (de) Verfahren und Anlage zur Gewinnung von Dimethylether aus Synthesegas
EP2598618B1 (de) Verfahren zur herstellung von synthetischem erdgas
DE102008049778A1 (de) Verfahren zur Gewinnung von gasförmigen Kohlenwasserstoffen aus biogenen Rohstoffen
Toralles et al. Hydrolysis of waste frying oils in subcritical water for biodiesel production by esterification using a heterogeneous catalyst
DE102018003343A1 (de) Verfahren und Anlage zur Herstellung von Ethanol
WO2022223458A1 (de) Anlage und verfahren zur herstellung von synthetischen kraftstoffen ohne kohlendioxidemission
KR101247612B1 (ko) 고산가 바이오오일로부터 바이오디젤을 제조하는 반응에 사용되는 균일촉매
DE102014202803B4 (de) Verfahren zur Herstellung flüssiger und/oder fester Kohlenwasserstoffverbindungen
EP3863962B1 (de) Verfahren zur herstellung von wasserstoff
WO2021089183A1 (de) Verfahren und anlage zur herstellung von monoethylenglycol
KR20110115793A (ko) 초임계 유체를 이용한 폐식용유로부터의 재생연료 제조방법
DE102019213501A1 (de) Verfahren zur Herstellung von Isobutanol und/oder 1-Butanol
EP4105171A1 (de) Verfahren zur herstellung von wasserstoff
WO2017207110A1 (de) Verfahren und anlage zur herstellung von ethanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07801509

Country of ref document: EP

Kind code of ref document: A1