WO2008012974A1 - Nouveau dérivé d'imidazolidinone, procédé de production de ce dérivé et procédé de production d'un acide aminé optiquement actif - Google Patents

Nouveau dérivé d'imidazolidinone, procédé de production de ce dérivé et procédé de production d'un acide aminé optiquement actif Download PDF

Info

Publication number
WO2008012974A1
WO2008012974A1 PCT/JP2007/059826 JP2007059826W WO2008012974A1 WO 2008012974 A1 WO2008012974 A1 WO 2008012974A1 JP 2007059826 W JP2007059826 W JP 2007059826W WO 2008012974 A1 WO2008012974 A1 WO 2008012974A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
optically active
substituted
formula
Prior art date
Application number
PCT/JP2007/059826
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Saka
Akio Fujii
Kazumi Okuro
Masaru Mitsuda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2008526694A priority Critical patent/JP5153631B2/ja
Priority to EP07743261.5A priority patent/EP2050738B1/en
Priority to US12/309,729 priority patent/US7947722B2/en
Publication of WO2008012974A1 publication Critical patent/WO2008012974A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/32One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/22Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from lactams, cyclic ketones or cyclic oximes, e.g. by reactions involving Beckmann rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/10Preparation of carboxylic acid amides from compounds not provided for in groups C07C231/02 - C07C231/08

Definitions

  • the present invention relates to an optically active imidazolidinone derivative, which is a chiral glycine synthon useful for the production of optically active amino acids.
  • the present invention also relates to a method for synthesizing the derivative and a method for producing an optically active amino acid using the derivative.
  • Optically active amino acids are important intermediates in the manufacture of pharmaceuticals, agricultural chemicals, and chemical products.
  • Optically active amino acids particularly non-naturally occurring optically active amino acids that do not exist in nature, are important components of pharmaceuticals, agricultural chemicals, chemical products and the like.
  • optically active imidazolidinone derivatives as chiral glycine synthons developed to synthesize such unnatural amino acids, the following synthetic methods are conventionally known.
  • Non-patent Document 3 Method of synthesizing from glycinamide derivative and pivalaldehyde (Non-patent document 1) ii) Method of synthesizing from optically active serine amide derivative and pivalaldehyde (Non-patent document 2) iii) From optically active methionine amide derivative and pivalaldehyde Synthesis method (Non-patent Document 3)
  • Non-Patent Document 4 A method of synthesizing from a chiral glycinamide derivative and pivalaldehyde (Non-Patent Document 4)
  • the generated optical isomer is separated as a mandelate salt, so that salt formation is inevitably required.
  • a salt-dissolving step was required, and it was a form that was difficult to implement industrially.
  • the optically active methionine power is a form that is difficult to industrially implement because it requires a complicated operation in order to go through multiple steps as in ii).
  • the resulting imidazolidinone derivative is obtained as an isomer mixture. This isomer mixture is purified by a silica gel column to obtain a pure single isomer.
  • Pivalaldehyde used as such is an expensive compound and is in a form that is difficult to implement on an industrial scale.
  • Non-patent literature l Angew. Chem. Int. Ed., 1986, 345
  • Non-Patent Document 3 Modern Synthetic Methods, 1986, 4, 128
  • Non-Patent Document 4 J. Org. Chem., 1995, 60, 6408.
  • the object of the present invention is to synthesize optically active amino acids without performing complicated operations such as diastereomeric salt resolution, derivatization from optically active amino acids, and isomer separation by silica gel columns.
  • the present invention provides an optically active imidazolidinone derivative that can be used universally. It also provides a method by which the derivative can be easily produced. Further, the present invention provides a method for easily producing an optically active amino acid using the derivative.
  • the present inventors have intensively studied in order to solve an energetic problem, and produced a novel imidazolidinone derivative isomer mixture. It was also found that the optically active imidazolidinone derivative can be isolated and purified by preferentially crystallizing any one isomer from the derivative isomer mixture solution. Furthermore, it was found that the isomerism progresses during preferential crystallization, and single isomers can be obtained by dynamic kinetic resolution. Further, the inventors have found that an optically active amino acid can be synthesized using the optically active derivative, and have completed the present invention.
  • the present invention relates to the general formula (1)
  • n and m are each independently an integer of 0 to 5 representing the number of substituents on the benzene ring and R 2 , respectively.
  • R 2 is independently an optionally substituted alkyl group having 1 to 18 carbon atoms, substituted, or an aralkyl group having 7 to 18 carbon atoms, substituted !, or may be carbon.
  • An aryl group having 6 to 18 carbon atoms, a halogen atom, a hydroxyl group, an optionally substituted alkoxy group having 1 to 18 carbon atoms, and a nitro group are shown.
  • * 1, * 2 represents an asymmetric carbon atom), or an optically active substance thereof.
  • the present invention relates to a method for producing an imidazolidinone derivative.
  • the present invention provides a method for crystallizing an optically active imidazolidinone derivative, characterized by crystallizing the imidazolidinone derivative represented by the general formula (1) using an organic solvent V. Concerning.
  • the present invention also relates to a method for crystallizing an optically active imidazolidinone derivative, wherein an acidic catalyst is used in isomerization.
  • the present invention provides an imidazolidinone derivative represented by the above formula (1) or an optically active substance thereof in the presence of a base in the general formula (6)
  • R 3 is the same as described above, X represents a halogen atom), or an oral genoformate ester or a general formula (7)
  • the present invention provides a method for crystallizing an optically active imidazolidinone derivative characterized in that the imidazolidinone derivative represented by the general formula (2) is crystallized using an organic solvent V. Concerning.
  • R 7 is an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted alkyl group having 2 to 18 carbon atoms, a substituted!
  • the present invention relates to a process for producing a photoactive imidazolidinone derivative represented by the general formula (3), wherein one or two electrophiles represented by the formula (3) are allowed to act.
  • the present invention provides a compound of the general formula (11)
  • an electrophilic agent represented by the general formula (3) is allowed to act About.
  • the present invention provides an action of an acid or a base on the optically active imidazolidinone derivative represented by the general formula (3) in a solvent using at least one of an organic solvent and water.
  • the present invention also provides a method for deprotecting a substituent on nitrogen of the optically active imidazolidinone derivative represented by the above formula (3).
  • the present invention provides an optically active imidazolidinone derivative represented by the general formula (2) in the presence of a base in the general formula (13).
  • R 8 is a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted alkyl group having 2 to 18 carbon atoms, substituted! , You may have 2-18 carbon atoms An alkynyl group, an optionally substituted aralkyl group having 7 to 18 carbon atoms, and an optionally substituted aralkyl group having 6 to 18 carbon atoms).
  • an acid or a base is allowed to act on the optically active imidazolidinone derivative represented by the general formula (14) in a solvent using at least one of an organic solvent and water.
  • the present invention is characterized in that the substituent on the nitrogen of the hydroxyamino acid derivative represented by the general formula (15) is deprotected. [0045] [Chemical 13]
  • the present invention also includes deprotecting a substituent on nitrogen of the optically active imidazolidinone derivative represented by the general formula (14),
  • the present invention After synthesizing an optically active hydroxyamino acid amide represented by the formula (wherein R 8 , * 3, and * 4 are the same as above), in a solvent using at least one of an organic solvent and water Then, the present invention relates to a method for producing an optically active hydroxy amino acid represented by the general formula (16), wherein an acid or a base is allowed to act.
  • the first aspect of the present invention is the following general formula (1)
  • each R 2 independently represents an optionally substituted alkyl group having 1 to 18 carbon atoms, an optionally substituted aralkyl group having 7 to 18 carbon atoms, or a substituted group. It represents an aryl group having 6 to 18 carbon atoms, a halogen atom, a hydroxyl group, an alkoxy group having 1 to 18 carbon atoms, and a nitro group.
  • Examples of the optionally substituted alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, t butyl group, n pentyl group, and neopentyl group. , Tamylyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nor group, n-decyl group and the like.
  • Examples of the optionally substituted aralkyl group having 7 to 18 carbon atoms include benzyl group, p-methoxyphenylmethyl group, naphthylmethyl group and the like.
  • Examples of the aryl group having 6 to 18 carbon atoms which may be substituted include a phenyl group, a p-methoxyphenyl group, a naphthyl group, and a p-trophenyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the optionally substituted alkoxy group having 1 to 18 carbon atoms includes, for example, a methoxy group, an ethoxy group, an n propyloxy group, an isopropyloxy group, an n butyloxy group, a tert-butyloxy group, and a methoxymethyl group.
  • examples thereof include a xy group, a benzyloxymethyloxy group, a methylthiomethyloxy group, a 2-chloroethyloxy group, and a 2-bromoethyloxy group.
  • the alkyl group, aralkyl group, aryl group, and alkoxy group are substituted with a halogen atom, an alkoxy group, a hydroxyl group, an aralkyloxy group, an alkylthio group, an alkylsilyloxy group, an arylalkylsilyloxy group, and the like.
  • a halogen atom an alkoxy group, a hydroxyl group, an aralkyloxy group, an alkylthio group, an alkylsilyloxy group, an arylalkylsilyloxy group, and the like.
  • R 2 is preferably a chlorine atom, a methyl group, a methoxy group, an ethoxy group, or a nitro group.
  • n is an integer of 0 to 5 representing the number of substituents on the benzene ring, the substituent is R 1 described above, and the substitution pattern is not particularly limited.
  • m represents the number of substituents on the benzene ring The integer is 0 to 5, the substituent is R 2 described above, and the substitution pattern is not particularly limited.
  • all R 1 s may be the same or different! /, And all R 2 s may be the same or different. Also good.
  • * 1 represents an asymmetric carbon atom, and the absolute configuration thereof is R or S.
  • configuration configuration means that “S” is sufficient if there is an excess of R configuration rather than S configuration with respect to the asymmetric carbon atom. ”Means that there are more S configurations than R configurations! /.
  • the second aspect of the present invention is the following general formula (2)
  • [0068] is an isomer mixture of imidazolidinone derivatives represented by or an optically active form of the derivative.
  • R 3 is an optionally substituted alkyl group having 1 to 18 carbon atoms, an optionally substituted carbon group having 2 to 18 carbon atoms, a substituted !, or an optionally substituted carbon group.
  • An alkyl group having 2 to 18 carbon atoms, substituted, or an aralkyl group having 7 to 18 carbon atoms, or substituted! May be an aryl group having 6 to 18 carbon atoms.
  • Examples of the optionally substituted alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, t butyl group, 2, 2, 2— Examples include trichloroethyl, isobutyl, 2-chloroethyl, 1,1 dimethyl-2,2,2-trichloroethyl, 1-adamantyl, and 2-trimethylsilylethyl.
  • Examples of the optionally substituted alkenyl group having 2 to 18 carbon atoms include an aryl group, a beryl group, a 3-butene group, a 2-methyl-2-propylene group, and a 3-furole 2 -Probel group, 3- (p-trophole) 2-probe group and the like.
  • Examples of the optionally substituted alkyl group having 2 to 18 carbon atoms include a propylene group, a 2-buturyl group, a 3-butynyl group, and a 2-pentynyl group.
  • Examples of the optionally substituted aryl group having 6 to 18 carbon atoms include a phenyl group, a p-methoxyphenyl group, and a naphthyl group.
  • the above alkyl group, alkyl group, alkyl group, aralkyl group, and aryl group are a halogen atom, an alkoxy group, a hydroxyl group, an aralkyloxy group, an alkylthio group, an alkylsilyloxy group, and an arylalkyl. It may be substituted with a silyloxy group or a nitro group.
  • R 3 is a methyl group, an ethyl group, an isopropyl group, an isobutyl group, a tbutyl group, an aryl group, a 2,2,2-trichlorodiethyl group, a benzyl group.
  • T-butyl group, methyl group, ethyl group, aryl group, and benzyl group are more preferable, and t-butyl group, aryl group, and benzyl group are more preferable.
  • the third aspect of the present invention is the following general formula (3)
  • n and m are the same as described above.
  • R 4 and R 5 are different and are a hydrogen atom, substituted !, or an alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted alkyl group having 2 to 18 carbon atoms.
  • Group, substituted ! may have 2 carbons
  • the carbon chain of the optionally substituted alkyl group having 1 to 30 carbon atoms includes, for example, a methyl group, an ethyl group, an n propyl group, an isopropyl group, an n butyl group, an isobutyl group, and a 1 methyl group pill.
  • Examples of the substituent include a halogen atom, an alkoxy group, a hydroxyl group, an aralkyloxy group, an alkylthio group, an alkylsilyloxy group, and an arylalkylsilyloxy group.
  • Examples include 3-chloropropyl group, 2-methoxyethyl group, benzyloxymethyl group, 2-benzoxyxetyl group, 2- (mercaptomethyl) ethyl group, 2- (tert-butyldimethylsilyloxy) ethyl group , 2— (t-Butyldiphenylsilylo And xyl) ethyl group and 2-trimethylsilyloxetyl group.
  • Examples of the optionally substituted aryl group having 6 to 18 carbon atoms include a phenyl group, a p-methoxyphenyl group, and a naphthyl group.
  • 2-methyl group pill group benzyloxymethyl group, 2- (mercaptomethyl) ethyl group, ⁇ -methoxyphenylmethyl group, 2-trimethylsilyloxetyl group, and diphenylmethyl group are preferable.
  • the imidazolidinone derivative represented by the general formula (1) includes, for example, the following general formula (4) [0097]
  • [0100] (wherein m and R 2 are the same as above) can be produced from cocoon by condensing a substituted benzaldehyde represented by the presence of an acidic catalyst.
  • optically active glycinamide represented by the general formula (4) can be easily produced by the method shown in Example 1 or the like. Moreover, the substituted benzaldehyde represented by the general formula (5) is easily available as a commercial product.
  • the amount of the optically active glycinamide derivative represented by the general formula (4) is not particularly limited, but is generally 0 based on the molar equivalent of the substituted benzaldehyde (5). Within the range of 1 to 10.0 molar equivalents. Preferably it is in the range of 0.1 to 5.0 molar equivalents, more preferably in the range of 0.1 to 3.0 molar equivalents.
  • the acidic catalyst is not particularly limited.
  • mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid; methane sulfonic acid, p toluene sulfonic acid, camphor sulfonic acid, trifluoromethane
  • sulfonic acids such as sulfonic acid
  • halogeno fatty acids such as trichlorodiacetic acid and trifluoroacetic acid.
  • p-toluenesulfonic acid is more preferable than sulfonic acids.
  • an organic solvent is usually used for this reaction.
  • Solvents that can be used are not particularly limited.
  • aliphatic hydrocarbons such as ⁇ -hexane, ⁇ -heptane, ⁇ octane, ⁇ -nonane, cyclohexane, and methylcyclohexane
  • Aromatic hydrocarbons such as benzene, xylene, mesitylene, chlorobenzene, and dichlorobenzene
  • acetates such as methyl acetate, ethyl acetate, ⁇ -butyl acetate, t-butyl acetate, and isopropyl acetate
  • tetrahydrofuran 1, 4 dioxane
  • Ethers such as diisopropyl ether, t-butyl methyl ether and cyclopentyl methyl ether
  • -tolyls such as acetonit
  • solvents may be used alone, or two or more kinds of solvents may be used in any combination.
  • aliphatic hydrocarbons and aromatic hydrocarbons are preferred.
  • More preferred is toluene, more preferred is heptane, n-octane, cyclohexane, methylcyclohexane, benzene, toluene, black benzene.
  • the amount of the solvent to be used is not particularly limited, but is generally within a range of 0.5 to 50 times the volume based on the weight of the compound represented by the formula (5). is there. Among these, 1.5 to 25 times the capacity is preferable.
  • the reaction temperature is not particularly limited as long as it causes a condensation reaction between the optically active glycinamide derivative represented by the general formula (4) and the substituted benzaldehyde represented by the general formula (5). Although not intended, 0 to 150 ° C is preferable, and 30 to 150 ° C is more preferable.
  • the reaction time is not particularly limited, but is preferably 0.1 to 50 hours, more preferably 2 to 30 hours.
  • the ability to produce an imidazolidinone derivative represented by the general formula (1) in this way is a mixture of the isomers of this imidazolidinone derivative with the 2-position carbon atom of the imidazolidinone ring (between both nitrogen atoms). About 1: 1 mixture of isomers).
  • the obtained compound represented by the general formula (1) may be used in the next step as it is, or may be an imidazo containing two or more optical isomers represented by the above formula (1).
  • One optically active compound may be preferentially crystallized from the solution of the lysone derivative isomer mixture and used in the next step.
  • An organic solvent is used for this crystallization. Since this crystallization utilizes the difference in solubility in organic solvents among a plurality of optical isomers, the solvent that can be used is particularly limited if the solubility difference between the isomers is sufficient. Is not to be done.
  • solvents may be used alone or two or more kinds of solvents may be used in any combination. Among them, -tolyl is more preferable, and acetonitrile is more preferable.
  • the amount of the solvent to be used is not particularly limited, but is generally in the range of 1 to: LOO double volume based on the weight of the imidazolidinone derivative isomer mixture. Among these, 1 to 50 times capacity is more preferable, and 1 to 20 times capacity is more preferable.
  • the temperature at the time of crystallization is not particularly limited, but it is preferably in the range of 25 to 80 ° C, more preferably 10 to 80 ° C, more preferably 0 to It is within the range of 50 ° C.
  • the time for crystallization is not particularly limited, but is preferably 0.1 to 50 hours, more preferably 0.1 to 24 hours.
  • a crystal of an optically active imidazolidinone derivative containing an excess of one optical isomer can be obtained.
  • the optical purity of the resulting derivative is generally in the range of 80-100% de. Of these, 85% de or more is preferable, and 90% de or more is particularly preferable. Further, by repeatedly using the crystallization method of the present invention, the optical purity of the optically active imidazolidinone derivative can be further increased.
  • the isomerization method of the imidazolidinone derivative is not particularly limited. Examples of the method include use of an acidic catalyst, use of a basic catalyst, use of an optically active acid or base, heating conditions, heating conditions, and light irradiation. In particular, the use of an acidic catalyst is preferred for isomerization of imidazolidinone derivatives.
  • the acidic catalyst is not particularly limited as long as the isomerism proceeds in the isomer with respect to the 2-position carbon atom of the imidazolidinone ring (the carbon atom sandwiched between both nitrogen atoms).
  • mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid
  • sulfonic acids such as methanesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, trifluoromethanesulfonic acid
  • halogeno fatty acids such as oral acetic acid and trifluoroacetic acid.
  • use of sulfonic acids and halogenoacetic acids is more preferable, and toluenesulfonic acid or trifluoroacetic acid is more preferable.
  • the amount of the acidic catalyst is not particularly limited, but is more preferably a force that can be used between 0.001 and 1.0 molar equivalent based on the molar equivalent of the imidazolidinone derivative used.
  • the range is preferably from 0.001 to 0.5 monoequivalent, and more preferably from 0.001 to 0.4 monoequivalent.
  • the amount of the solvent to be used is not particularly limited, but in general, it is preferably within the range of 1 to: LOO double volume based on the weight of the imidazolidinone derivative isomer mixture. Yes. Among these, 1 to 50 times capacity is more preferable, and 1 to 20 times capacity is more preferable.
  • the temperature at the time of crystallization of the isomorphism is not particularly limited, but in general, it is preferably in the range of -25 to 120 ° C-10 to 100 °. C is preferred over preferred Or within the range of 0-100 ° C.
  • the crystallization time is not particularly limited, but is preferably 0.1 to 200 hours, more preferably 1 to LOO time.
  • the isolation yield of one isomer can be further increased as compared with the normal preferential crystallization.
  • the optical purity of the resulting derivative is usually in the range of 80-100% de. Of these, 85% de or more is preferable, and 90% de or more is particularly preferable. Further, by repeatedly using the crystallization method of the present invention described above, the optical purity of the optically active imidazolidinone derivative obtained by isomeric crystallization can be further increased.
  • the imidazolidinone derivative represented by the general formula (2) includes, for example, the imidazolidinone derivative represented by the general formula (1) or an optically active substance thereof in the presence of a base (6) R 3 OCOX (6)
  • the compound represented by the above formula (1) used in this step may be a compound in which the content of one optical isomer is greatly increased by isomerization crystallization as described above.
  • the operation for increasing the optical purity may not be performed.
  • the (* 1, * 2) configuration may have (R, R), (R, S), (S, R), or (S, S) preferentially. You can mix two or more diastereomers! /.
  • R 3 is the same as described above, and X represents a halogen atom. Examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. X is preferably a chlorine atom.
  • X is preferably a chlorine atom.
  • Examples of the compound represented by the general formula (6) or (7) to be used include, for example, di-butyl dicarbonate, methyl chloroformate, ethyl chloroformate, isopropyl chloroformate, Forces such as benzyloxycarbol, 2,2,2-trichlorodiethylcarboxyl chloride, and saltyoxyloxycarbol, preferably di-tert-butyl dicarbonate Benzyl chloride and chloro chloride.
  • the molar equivalent of the halogenoformate of general formula (6) or the pyrocarbonate of general formula (7) used at this time is the molar equivalent of the imidazolidinone derivative represented by general formula (1).
  • general formula (1) As a standard, generally 0.1 to 10 molar equivalents are preferred, more preferably 0.5 to 5 molar equivalents.
  • the base may be an organic base or an inorganic base, but an organic base is preferred.
  • the inorganic base to be used is not particularly limited as long as it is usually used by those skilled in the art, and one kind or a combination of two or more kinds of inorganic bases can be used.
  • the organic base to be used is not particularly limited, but examples thereof include aliphatic amines such as triethylamine, diisopropylethylamine, tri-n-ptylamine; [2.2.2] diazabicyclooctane, Fused amines such as diazabicyclo [5. 4. 0] undecene, 1,5-diazabicyclo [4. 3.
  • nonene 0] nonene; pyridines such as pyridine, 2, 6-lutidine, 2, 4, 6-collidine; 4 — Alkylaminoviridines such as (N, N dimethylamino) pyridine and 4-pyrrolidinopyridine.
  • organic bases may be used alone or in combination of two or more organic bases.
  • aliphatic amines, alkylamino pyridines, or aliphatic amines that are preferred to be used in combination with aliphatic amines and alkylamino pyridines are triethylamine and alkylamino pyridines. 4- (N, N dimethylamino) Pyridine is preferred.
  • the total molar equivalent of the base used at this time is generally in the range of 0.1 to 10.0 molar equivalents based on the molar equivalent of the imidazolidinone derivative represented by the general formula (1). Preferably, it is within the range of 0.1 to 5.0 molar equivalents, more preferably within the range of 0.5 to 5.0 molar equivalents, and even more preferably 0.5 to 2 It is in the range of 5 molar equivalents, most preferably in the range of 1.0 to 1.5 molar equivalents.
  • the amount of alkylaminoviridine used is the general formula (1 In general, it is within the range of 0.001 to 5.0 molar equivalents, preferably within the range of 0.001 to 2.5 molar equivalents, based on the molar equivalent of the imidazolidinone derivative represented by More preferably, it is in the range of 0.001 to 1.0 molar equivalent.
  • a solvent is usually used for the reaction.
  • Solvents that can be used are not particularly limited. 1S For example, n-hexane, n-heptane, n-octane, n-nonane, cyclohexane, methylcyclohexane and other aliphatic hydrocarbons; benzene, Aromatic hydrocarbons such as toluene, xylene, black benzene, o-dichroic benzene; acetic esters such as methyl acetate, ethyl acetate, n-butyl acetate, t-butyl acetate, isopropyl acetate; Ethers such as 4-dioxane, diisopropyl ether, t-butyl methyl ether, cyclopentyl methyl ether; -tolyls such as acetonitrile and propio-tolyl; N, N-dimethyl
  • the amount of the solvent to be used is not particularly limited, but is generally in the range of 1.5 to 50 times the volume based on the weight of the imidazolidinone derivative. Among these, 1.5 to 25 times the capacity is preferable.
  • the temperature of the reaction is not particularly limited, but is preferably ⁇ 50 to 100 ° C., more preferably ⁇ 10 to 100 ° C., and most preferably ⁇ 10 to It is within the range of 50 ° C.
  • the reaction time is not particularly limited, but is preferably 0.1 to 50 hours, more preferably 0.1 to 25 hours.
  • the imidazolidinone derivative represented by the general formula (2) thus obtained may be used in the next step as it is, or any one of the optically active substances is preferentially used by the following operation. It may be crystallized.
  • An organic solvent is usually used for crystallization of the imidazolidinone derivative represented by the general formula (2). Since this crystallization uses the difference in solubility in organic solvents among multiple optical isomers, it can be used if the solubility difference between the optical isomers is sufficient.
  • the solvent to be used is not particularly limited.
  • solvents may be used alone or in combination of two or more kinds of solvents in any ratio! /, But it is particularly preferable to use a combination of hydrocarbons and esters. Even more preferred is a combination of ethyl acetate and hexane, or hexane alone.
  • the amount of the solvent to be used is not particularly limited, but is generally in the range of 1 to L00 times the volume based on the weight of the imidazolidinone derivative isomer mixture. Among these, 1 to 50 times capacity is more preferable, and 1 to 20 times capacity is more preferable.
  • the ratio of the solvents to be used is not particularly limited.
  • hexane is used in the range of 0 to: LOO double volume based on the volume of ethyl acetate. can do.
  • the temperature at the time of crystallization is not particularly limited, but is generally in the range of 30 to 80 ° C, and more preferably 20 to 80 ° C, more preferably 15 to 50 ° C. Within the range of ° C.
  • the time for crystallization is not particularly limited, but is preferably 0.1 to 80 hours, more preferably 0.1 to 65 hours.
  • the mother liquor after obtaining crystals of an optically active imidazolidinone derivative containing an excessive amount of S form contains a large amount of R form.
  • Crystallization operation can be performed by using the mother liquor containing a large amount of R form to obtain crystals containing excessive R form. If you do this
  • the electroactive imidazolidinone derivative represented by the general formula (3) can be produced by allowing the electrophile represented by
  • the compound represented by the formula (2) used in this step is preferable because the optical purity of the compound (3) obtained is higher as the optical purity is higher. There is no particular restriction.
  • R 7 in the general formula (8) is an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted alkenyl group having 2 to 18 carbon atoms, or optionally substituted. It shows an alkyl group having 2 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms that may be substituted, and an aryl group having 6 to 18 carbon atoms that may be substituted. Examples include the same substituents as those for R 4 and R 5 described above.
  • Y is a substituent usually having a leaving ability, and examples thereof include a halogen atom and a sulfonyloxy group.
  • the halogen atom include fluorine, chlorine, bromine, and iodine.
  • the sulfo-oxy group include a methane sulfo-oxy group, a p-toluene sulfo-oxy group, and a trifluoromethane sulfo-oxy group. Can be mentioned.
  • Examples of the electrophile represented by the general formula (8) used include, for example, methyl iodide, thio acetyl chloride, n -propyl iodide, isopropyl iodide, n-butyl iodide, Iodides such as benzyl iodide and allylic iodide, methyl bromide, acetyl bromide, n-propyl bromide, n-butynole bromide, 2-bromobutane, 1-bromo-2-methylpropane, 1-bromo-2-buty , Bromides such as benzyl bromide, allyl bromide, propier bromide, p-methoxybenzyl bromide, benzyl 2-bromoethyl ether, benzyl chloride, benzyloxymethyl chloride, 2-chloroethyl methylsulfide, Ch
  • the amount of the electrophilic agent represented by the general formula (8) is not particularly limited, but generally, the optically active imidazolidinone derivative represented by the formula (2) is not limited. Based on molar equivalents, 0.1 to 5 equivalents are preferred, and 0.5 to 2.5 equivalents are more preferred. Needless to say, in order to obtain the compound represented by the formula (3) with a high yield, 1 equivalent or more of the compound represented by the formula (8) is added to the compound represented by the formula (2). U, preferred to add.
  • the reaction is preferably performed in an inert gas atmosphere.
  • it is preferable to carry out in an atmosphere of nitrogen or argon.
  • a base is used in the reaction.
  • the base to be used is not particularly limited, but an inorganic base or an organic base is preferable. Of these, organic bases are preferred, with organic bases being preferred.
  • organometallic bases include lithium diisopropylamide, lithium dicyclohexylamide, lithium 2,2,6,6-tetramethylpiperazide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, and potassium.
  • Examples include oxamethyldisilazide, t-butylmagnesium chloride, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium hydride, sodium hydride, potassium hydride, and hydrogenation power.
  • lithium diisopropylamide lithium hexamethyldisilazide
  • sodium Preference is given to oxamethyl disilazide, potassium hexamethyl disilazide, t-butylmagnesium chloride, potassium t-butoxide, sodium t-butoxide, lithium t-butoxide, lithium hydride, sodium hydride, potassium hydride, calcium hydride
  • Lithium diisopropylamide, lithium disilazide, sodium disilazide, and potassium disilazide are most preferred, with the lithium lithium amide type base and disilazide base being more preferred.
  • the amount of these bases to be used is not particularly limited, but is generally 0.1-2 based on the molar equivalent of the optically active imidazolidinone derivative represented by the general formula (2) that is usually used. Within the range of 0 mole equivalent. Among these, the range of 0.5 to 1.5 equivalents is preferable, and more preferably 0.9 to: the range of L 3 equivalents.
  • aromatic hydrocarbons such as tetrahydrofuran, 1,2-dimethoxyethane, jetyl ether, diisopropyl ether, t-butyl methyl ether, cyclopentyl methyl ether, and the like.
  • tetrahydrofuran, toluene, ethylbenzene, and 1,2-dimethoxyethane are preferred, and these solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be used is not particularly limited, but is generally in the range of 1.0 to 50 times the volume based on the weight of the imidazolidinone derivative. Among these, 2.5 to 25 times the capacity is preferable.
  • the temperature during the reaction is not particularly limited, but for example, it is generally carried out at 30 ° C or lower. Among them, the range of 100 to 20 ° C is preferable, but the range of ⁇ 50 to 20 ° C is more preferable, the range of 40 ° C to 20 ° C is more preferable, and the range of 30 is particularly preferable. Within the range of ⁇ 20 ° C.
  • electrophiles two types, that is, electrophiles (8) and electrophiles with different R 7 parts
  • R 7 is different from R 7, an optionally substituted alkyl group having 1 to 30 carbon atoms are also substituted, by also, Aruke carbon number 2-18 - group, substituted Represents an alkynyl group having 2 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms that may be substituted, an aryl group having 6 to 18 carbon atoms that may be substituted, and Y represents If two types of electrophiles are used, indicating a substituent having a leaving ability, different substituents R 4 and R 5 (in this case, R 4 and R 5 are one of R 7 and the other is R 7 R 7 ) can be introduced at the same time.
  • the compound represented by the formula (11) obtained by reacting one kind of the compound represented by the formula (8) with the compound represented by the formula (2) may be isolated. Yes, it does not have to be isolated, and further, it does not pass through the compound represented by the formula (11) or the production of the compound represented by the formula (11) is not confirmed.
  • the reaction may be carried out in a pot.
  • the amount of the compound represented by the formula (8) used to produce the general formula (11) is not particularly limited, but the amount of the compound represented by the formula (2) is not limited. In general, 0.1 to 5 equivalents are preferred based on molar equivalents, and 0.5 to 2.5 equivalents are more preferred. Needless to say, in order to obtain the compound represented by the formula (11) with high yield, 1 equivalent or more of the compound represented by the formula (8) is added to the compound represented by the formula (2). U, prefer to be. When two or more kinds of the compounds represented by the formula (8) are used and different substituents are introduced in one pot, the above equivalents may be used for each compound represented by the formula (8). That's fine.
  • an electrophile represented by the above formula (8) is allowed to act on the compound represented by the above formula (11) obtained by the above-described method in the presence of a base, and R 4 , R It is also possible to produce an optically active imidazolidinone derivative represented by the above formula (3) in which none of 5 is a hydrogen atom.
  • the detailed reaction conditions of this production method are the methods for carrying out the reaction using one kind of the compound represented by the formula (8) in the production methods of the general formula (2) to the general formula (3). Is the same.
  • organic solvent and Z or water are used.
  • the type of organic solvent used is not particularly limited, for example, aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane, n-nonane, cyclohexane, methylcyclohexane, etc.
  • Aromatic hydrocarbons such as benzene, toluene, xylene, black benzene, o dichlorobenzene; acetates such as methyl acetate, ethyl acetate, n-butyl acetate, t-butyl acetate, isopropyl acetate; diisopropyl ether , T-butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran, 1,4 dioxane and other ethers; aceto-tolyl, propio-tolyl and other tolyls; methanol, ethanol, n-propanol, isopropanol, n —Arcohols such as butanol, isobutanol, 2-methyl-2-propanol Le acids; N, N-dimethylformamide, N, N-dimethyl ⁇ Seto amides, such as amides such as 1-methyl
  • the amount of the organic solvent and Z or water used is not particularly limited, but is generally based on the weight of the optically active imidazolidinone derivative represented by the general formula (3). 1 to: Within the range of LOO double capacity. Among them, 1 to 80 times capacity is preferable, and 1 to 50 times capacity is more preferable, and 1 to 30 times capacity is most preferable.
  • the acid or base used is not particularly limited, but examples of the acid include mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, fuming nitric acid; Examples include sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, and trifluoromethanesulfonic acid; and halogeno fatty acids such as trifluoroacetic acid and trichroic acetic acid.
  • mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, fuming nitric acid
  • sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, and trifluoromethanesulfonic acid
  • halogeno fatty acids such as trifluoroacetic acid and trichroic acetic acid.
  • Examples of the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, cesium hydroxide, barium hydroxide, magnesium hydroxide, and other metal hydroxides; lithium methoxide, sodium Examples thereof include metal alkoxides such as methoxide, potassium methoxide, calcium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, calcium ethoxide, lithium tert butoxide, sodium tert butoxide, and potassium tert butoxide.
  • the amount of these acids or bases to be used is not particularly limited, but is generally within the range of 1 to: LOO molar equivalents relative to the molar equivalent of the optically active imidazolidinone derivative to be used. Yes, preferably 1 to 80 molar equivalents, more preferably 1 to 50 molar equivalents, particularly preferably 1 to 40 molar equivalents.
  • the temperature at which the reaction is carried out by reacting the acid or base in this way is also particularly limited. It is not something.
  • it is usually in the range of 0 to 180 ° C, more preferably in the range of 0 to 150 ° C, more preferably in the range of 0 to 130 ° C.
  • it is usually in the range of 10 to 50 ° C, particularly preferably in the range of 10 to 30 ° C.
  • the reaction time is not particularly limited, but is preferably 0.1 to 72 hours, more preferably 0.1 to 60 hours.
  • an optically active 2- (1-substituted phenyl) amino acid derivative represented by the general formula (9) can be synthesized.
  • the reaction solution of this amino acid derivative usually shows acidity or basicity, but the salt of the amino acid derivative can be directly obtained from this reaction solution by crystallization.
  • the optically active 2- (1-substituted phenylethyl) amino acid derivative is obtained by neutralization crystallization.
  • the 1 (substituted phenyl) ethyl group which is a substituent on the amino group of the optically active 2- (1 substituted phenyl) amino acid derivative represented by the general formula (9), is converted to an acid, an oxidizing agent, a contact
  • deprotecting under normal conditions for deprotecting the 1 (substituted phenol) ethyl group, such as hydrogenation reaction general formula (10)
  • optically active amino acid derivative synthesized in this way can be obtained under various conditions usually used for isolating amino acids, such as ion exchange columns, neutralization crystallization, and salt crystallization.
  • isolating amino acids such as ion exchange columns, neutralization crystallization, and salt crystallization.
  • N acylation directly from the reaction solution to N acylation to give N derived amino acid.
  • the resulting N-derivatized amino acid can also be isolated by operations such as extraction and crystallization.
  • an imidazolidinone derivative represented by the above formula (3) is dissolved in an organic solvent and a solvent using one or more of Z or water, and then contacted hydrogen There is a method of adding an additional catalyst and further reacting with hydrogen gas, whereby an optically active amino acid amide represented by the above formula (12) can be synthesized.
  • the catalyst for catalytic hydrogenation used at this time is not particularly limited as long as it is normally used.
  • palladium such as radium-carbon, palladium hydroxide-carbon, palladium oxide, palladium black, etc.
  • the catalyst include platinum catalysts such as platinum oxide and platinum black.
  • a nitrogen catalyst is preferred, and a radium-carbon and palladium hydroxide carbon are more preferred.
  • the amount of the catalyst used is not particularly limited, but generally it is preferably within the range of 0.01 to 5.0 times the weight based on the weight of the substrate imidazolidinone derivative.
  • Preferably 0.05-: L is in the range of 5 times the weight.
  • Hydrogen gas is used in the reaction, as long as its capacity and pressure do not affect the reaction. Although it is not particularly limited, generally it is preferably in the range of 0.01 MPa to 100 MPa, more preferably in the range of 0.1 to 50 MPa.
  • organic solvent and Z or water are usually used.
  • examples of organic solvents that can be used for the conversion from the general formula (3) to the general formula (9) can be exemplified as they are. The same applies to the combined use.
  • this reaction can also be carried out by adding an acid.
  • the type of acid to be added is not particularly limited, but for example, mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, fuming nitric acid; methanesulfonic acid, benzenesulfonic acid, toluene
  • sulfonic acids such as sulfonic acid and trifluoromethane sulfonic acid
  • halogeno fatty acids such as trifluoroacetic acid and trichloroacetic acid, formic acid, acetic acid, propionic acid and the like, hydrochloric acid, sulfuric acid, formic acid and acetic acid are preferable.
  • optically active imidazolidinone derivative represented by the general formula (2) is added to the general formula (13) in the presence of a base.
  • R 8 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, Or an alkyl group having 2 to 18 carbon atoms, substituted !, an alkynyl group having 2 to 18 carbon atoms, or an optionally substituted aralkyl group having 7 to 18 carbon atoms.
  • the higher the optical purity the higher the optical purity at the asymmetric carbon atom * 3 of the obtained compound (14).
  • the optical purity is not particularly limited.
  • the compound represented by the general formula (13) is an aldehyde, and in the general formula (13), a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, Of course, an alkyl group having 2 to 18 carbon atoms, substituted !, an alkyl group having 2 to 18 carbon atoms, an optionally substituted aralkyl group having 7 to 18 carbon atoms, and a substituted group.
  • the aryl group having 6 to 18 carbon atoms which may be used is shown.
  • R 8 is a hydrogen atom
  • * 4 is not an asymmetric carbon atom.
  • alkyl group examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 1-methylpropyl group, 2-methylpropyl group, pentyl group, and hexyl.
  • Examples of the substituent include a halogen atom, an alkoxy group, a hydroxyl group, an aralkyloxy group, an alkylthio group, an alkylsilyloxy group, and an arylalkylsilyloxy group.
  • Examples include 3-chloropropyl group, 2-methoxyethyl group, benzyloxymethyl group, 2-benzoxyxetyl group, 2- (mercaptomethyl) ethyl group, 2- (tert-butyldimethylsilyloxy) ethyl group 2- (t-butyldiphenylsilyloxy) ethyl group, 2-trimethylsilyloxetyl group and the like.
  • Examples of the optionally substituted alkenyl group having 2 to 18 carbon atoms include aralkyl group, beryl group, 3 butyr group, 2-methyl-2-propellyl group, and 3 furul 2 —Probing groups.
  • Examples of the optionally substituted alkynyl group having 2 to 18 carbon atoms include propynyl group, 2 butynyl group, 3 butynyl group, and 2 pentynyl group.
  • Examples of the optionally substituted aralkyl group having 7 to 18 carbon atoms include a benzyl group, p-methoxyphenylmethyl group, p-trifluoromethyl group, p-bromophenylmethyl group, p-chlorophenol methyl group. Group, 2, 4 dichlorophenylmethyl group, naphthylmethyl group, 1 indanol group and the like.
  • aryl group having 6 to 18 carbon atoms which may be substituted include a phenyl group, a p-methoxyphenyl group, and a naphthyl group.
  • R 8 may be a hydrogen atom, a methyl group, an ethyl group, a benzyl group, a 2-phenylethyl group, a propyl group, an aryl group, a propyl group, or a 1-methyl group.
  • Pyr group, 2-methyl group pill group, benzyloxymethyl group, 2- (mercaptomethyl) ethyl group, p-methoxyphenylmethyl group, and 2-trimethylsilyloxycetyl group are preferable.
  • electrophile represented by the general formula (13) to be used include, for example, formaldehyde, acetoaldehyde, propionaldehyde, phenylacetaldehyde, 3-phenol.
  • examples thereof include hydride, benzyloxyacetaldehyde, 2- (mercaptomethyl) propionaldehyde, p-methoxyphenyl-acetaldehyde, 2-trimethylsilylpropionaldehyde, benzaldehyde, p-methoxybenzaldehyde and the like.
  • the amount of the electrophilic agent represented by the general formula (13) is not particularly limited. Generally, the amount of the electrophilic agent represented by the general formula (13) is 0.1 to 5 equivalents are preferred 0.5 to 2.5 equivalents are more preferred. Needless to say, in order to obtain the compound represented by the formula (14) with a high yield, 1 equivalent of the compound represented by the formula (13) with respect to the compound represented by the formula (2). It is preferable to add more.
  • the reaction is preferably carried out in an inert gas atmosphere.
  • it is preferable to carry out in an atmosphere of nitrogen or argon.
  • a base is used in the reaction.
  • the base to be used is not particularly limited, but an inorganic base or an organic base is preferable. Of these, organic bases are preferred, with organic bases being preferred.
  • organometallic base examples include lithium diisopropylamide, lithium dicyclohexamide, lithium 2, 2, 6, 6-tetramethylpiperazide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, Examples include potassium hexamethyldisilazide, tert-butylmagnesium chloride, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium hydride, sodium hydride, potassium hydride, and calcium hydride. It is done.
  • lithium diisopropylamide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, potassium hexamethyldisilazide, t-butylmagnesium chloride, potassium t-butoxide, sodium t-butoxide, lithium t --Lithium amide base preferred is butoxide, lithium hydride, sodium hydride, potassium hydride, calcium hydride; Lithium diisopropylamide, lithium disilazide, sodium disilazide, which is more preferred than disilazide type base, Potassium disilazide is most preferred.
  • the amount of these bases to be used is not particularly limited, but is, for example, 0.1 to 2. on the basis of the molar equivalent of the optically active imidazolidinone derivative represented by the general formula (2) that is generally used. 0 Within the molar equivalent range. Of these, the range of 0.5 to 1.5 equivalents is more preferable. Is in the range of 0.9 to 1.3 equivalents.
  • a solvent is used in the reaction.
  • the solvent that can be used is not particularly limited. 1S
  • a solvent that does not react with the above-mentioned base is preferable.
  • the temperature during the reaction is not particularly limited, but for example, it is usually carried out at 30 ° C or lower. Among these, a range of ⁇ 100 to 0 ° C. is preferable, but a range of ⁇ 100 to 0 ° C. is more preferable, and a range of ⁇ 100 to ⁇ 30 ° C. is particularly preferable.
  • the reaction time is not particularly limited, but is preferably 0.1 to 48 hours, more preferably 0.1 to 24 hours.
  • R 8 is not a hydrogen atom
  • an asymmetric carbon atom * 4 is newly generated.
  • the optical purity in * 4 is not particularly limited, but is generally preferably 50% de or more, more preferably 60% de or more.
  • optically active hydroxyimidazolidinone derivative represented by the above general formula (14) is reacted with an acid or a base in a solvent using at least one of an organic solvent and Z or water.
  • organic solvent and Z or water are used.
  • the type of organic solvent to be used is not particularly limited, but examples thereof include aliphatic carbonization such as n-hexane, n-heptane, n-otatan, n-nonane, cyclohexane, and methylcyclohexane.
  • Aromatic carbon such as benzene, toluene, xylene, black benzene, o dichlorobenzene Hydrogen; Acetic esters such as methyl acetate, ethyl acetate, n-butyl acetate, t-butyl acetate, isopropyl acetate Ethers such as diisopropyl ether, t-butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran and 1,4 dioxane; -tolyls such as acetonitrile and propio-tolyl; methanol, ethanol, n propanol, isopropanol, n —Butanol, isobutanol, 2-methyl-2-propanol, etc. Call acids; N, N-dimethylformamide, N, N-dimethyl ⁇ Seto amides, such as amides such as 1-methyl-2-pyrrol
  • Two or more organic solvents may be used in combination at any ratio. Further, an organic solvent and water may be used in combination. In this case, water and an arbitrary ratio may be mixed and used. In addition, you may use with the non-mixed solvent system by the solvent which does not mix. Of these, the use of water, or the use of alcohols and ethers is preferred and water alone is more preferred. Use, methanol, ethanol, isopropanol, tetrahydrofuran.
  • the amount of organic solvent used and the amount of Z or water used is not particularly limited, but is generally based on the weight of the optically active hydroxyimidazolidinone derivative represented by the general formula (14). , In the range of 1 to 500 times capacity. Among these, 1 to 300 times capacity is preferable, and 1 to 200 times capacity is more preferable.
  • Examples of the base include metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, calcium cesium, barium hydroxide, magnesium hydroxide; lithium Metal alkoxides such as methoxide, sodium methoxide, potassium methoxide, calcium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, calcium ethoxide, lithium t-butoxide, sodium t-butoxide, potassium t-butoxide, etc. Be mentioned
  • an acid When an acid is used, a mineral acid is preferable, and hydrochloric acid and sulfuric acid are particularly preferable.
  • a base When a base is used, metal hydroxide is preferable, and lithium hydroxide, sodium hydroxide, potassium hydroxide, and calcium hydroxide are particularly preferable.
  • the amount of these acids or bases to be used is not particularly limited, but is generally within the range of 1 to 200 molar equivalents relative to the molar equivalent of the optically active hydroxyimidazolidinone derivative used. And preferably in the range of 1 to 100 molar equivalents, more preferably 1 to 60 molar equivalents.
  • the temperature at which the reaction is carried out by reacting the acid or base as described above is not particularly limited. In the case of carrying out the reaction under acidic conditions, it is generally within the range of 0 to 180 ° C, more preferably within the range of 0 to 150 ° C, more preferably within the range of 0 to 130 ° C. When carrying out the reaction under basic conditions, it is generally in the range of 10-50 ° C. Of these, the range of ⁇ 10 to 30 ° C. is preferable.
  • the time for conducting the reaction is not particularly limited, but is preferably 0.1 to 72 hours, more preferably 0.1 to 60 hours.
  • an optically active 2- (1-substituted pheuyl) 3-hydroxyamino acid derivative represented by the general formula (15) can be synthesized.
  • the reaction solution of the hydroxyamino acid derivative usually shows acidity or basicity, but the salt of the hydroxyamino acid derivative can be directly obtained from the reaction solution by crystallization.
  • an optically active 2- (1-substituted pheuyl) 3-hydroxyamino acid derivative is obtained by neutralization crystallization. You can also.
  • the 1- (substituted phenyl) ethyl group which is a substituent on the amino group, is deprotected from the usual 1 (substituted phenyl) ethyl group such as acid, oxidant, catalytic hydrogenation reaction, etc.
  • optically active hydroxyamino acid represented by the formula (wherein R 8 , * 3, and * 4 are the same as described above) can be produced.
  • the optically active amino acid derivative synthesized in this way can of course be obtained by various conditions usually used for isolating amino acids, such as ion exchange columns, neutralization crystallization, and salt crystallization. It is also possible to make N-derivative amino acids by directly performing N-force rubamoi or N-acylation from the reaction solution. The obtained N-derivatized amino acid can also be isolated by operations such as extraction and crystallization.
  • the acid is used in a solvent using at least one of an organic solvent and water.
  • an optically active amino acid derivative can be produced by reacting a base.
  • N, N-bridged substituents that form a 1- (substituted phenol) ethyl group and an imidazolidinone ring is carried out in one step by catalytic hydrogenation reaction
  • the imidazolidinone ring N, N-bridged substituent can of course be opened by hydrolysis, but the catalytic hydrogenation reaction is carried out while carrying out this ring-opening reaction. It is also possible to deprotect the 1- (substituted phenyl) ethyl group in one step.
  • the amount of the catalyst to be used is not particularly limited, but is generally within a range of 0.01 to 5.0 times by weight based on the weight of the substrate imidazolidinone derivative, preferably 0. 05: L is within 5 times the weight range.
  • Hydrogen gas is used for the reaction, and its capacity and pressure are not particularly limited as long as the reaction is not affected. In general, it is in the range of 0.01 MPa to 100 MPa, and more preferably in the range of 0.1 to 50 MPa.
  • the optically active hydroxyamino acid amide is produced by deprotecting the 1 (substituted phenyl) ethyl group and the N, N-bridged substituent that forms the imidazolidinone ring! After that, the optically active hydroxyamino acid represented by the general formula (17) is produced by carrying out the operation in the above step iii), that is, the carboxylic acid amide force and the hydrolysis reaction to carboxylic acid. Can do.
  • R 2 is a methyl group
  • m 3
  • the phenyl group is substituted at the 2, 4, 6 positions.
  • imidazolidinone derivative which is an R 3 -butyl group, a benzyl group or an aryl group.
  • the optically active imidazolidinone derivative represented by the general formula (2) is represented by the compound represented by the general formula (8) or the general formula (13).
  • the optically active imidazolidinone derivative represented by the general formula (2) can generally be condensed with an imidazolidinone derivative using other electrophiles. Needless to say, it can react with substrates. Examples include the Michael reaction, the Mannig reaction, and the coupling reaction with the aryl group. For example, Claisen condensation can be mentioned.
  • optically active imidazolidinone derivative produced by the present invention can be widely used for synthesizing optically active amino acids, and optically active amino acids that are important in production in various fields including the pharmaceutical field can be easily used. Can be manufactured.
  • the crude product was dissolved in 160 ml of ethyl acetate, and 220 ml of hexane was added dropwise for crystallization to obtain 69.7 g (72.7% yield) of the title compound as white crystals.
  • the mother liquor was further concentrated, and the same crystallization operation was performed twice using 50 ml of ethyl acetate and 50 ml of hexane to obtain 18.5 g (19.2% yield) of the title compound as white crystals.
  • the total yield (total yield) was 88.2 g (91.9%).
  • the crystals were washed with ethyl acetate Z-hexane (1Z8 volume ratio) solution 20 ml X 2 times and hexane 25 ml X I to obtain wet crystals (secondary crystals).
  • the obtained wet crystals were mixed and dried under a vacuum at 40 ° C. for 24 hours to obtain 58 g (89% yield, 100% de) of the title compound as white crystals.
  • the reaction solution is ethyl acetate (100 ml).
  • the extract was washed twice with each of an aqueous ammonium chloride solution, distilled water and saturated brine, and dried over anhydrous magnesium sulfate to the organic layer. After filtering off the solid, the solvent was distilled off under reduced pressure to obtain 4.51 g of a crude product. This was reslurry washed with hexane to give 2.8 g (77% yield) of the title compound as pale brown crystals.
  • Step 3 3-Fe-Lu (2S)-[(l 'R) -Fe-ethylamino] propionic acid obtained in Step 2 was added with 12 ml of ethanol and 2 ml of distilled water. Thereafter, 200 mg of 20% palladium-carbon (containing 50% water) was obtained at room temperature under a nitrogen stream. The reaction system was replaced with hydrogen gas and reacted at 50 ° C for 2.5 hours (conversion 99.6%). The catalyst was filtered off and washed with distilled water, and the pH was adjusted to 3.5 with a 30% aqueous sodium hydroxide solution.
  • Step 1 Anhydrous tetrahydrofuran (20 ml) containing trace amounts (less than 5 mg) of 1,10-phenanthroline and diisopropylamine 2. lm 1 (14.8 mmol) under nitrogen flow at ⁇ 15 ° C Then, 8.5 ml of n-butyllithium (l. 6 molZL; n-hexane solution, 13.6 mmol) was added dropwise over 5 minutes.
  • Step 2 30 ml of methanol, 20 ml of concentrated hydrochloric acid and 5 ml of distilled water were added to the crude product of Step 1 (7.3 g) and reacted at 50 ° C. for 14 hours. After adding 20 ml of methanol and further reacting for 4 hours, the mixture was stirred at room temperature for 3.5 hours. The reaction mixture was concentrated under reduced pressure, and the aqueous layer was washed 4 times with 20 ml of toluene. To this was added 6.4 g of concentrated sulfuric acid, and the mixture was reacted at an external temperature of 120 to 130 ° C. for 3 hours (conversion rate 97%) and cooled to room temperature.
  • Step 1 n-Butyllithium in an anhydrous tetrahydrofuran (20 ml) solution containing trace amounts (less than 5 mg) of 1, 10 phenanthroline and diisopropylamine 2.
  • Om 1 (14.2 mmol) at 15 ° C under a nitrogen stream 8.2 ml (l.6 mol ZL; n-hexane solution, 13. l mmol) was added dropwise over 10 minutes.
  • 1,1-Dimethylethyl (2R)-(2,6-dichlorophenol) 5-oxo3 ((1, R) -phenol-ethyl) tetrahydride obtained by the method of Example 9 after 30 minutes
  • a solution of 5.2 g (ll.8 mmol) of 1H-1-imidazolecarboxylate in anhydrous tetrahydrofuran (10 ml) was added dropwise over 10 minutes.
  • the dropping line was washed with 2.5 ml of anhydrous tetrahydrofuran and then aged at 15 ° C for 25 minutes.
  • Step 1 n-Butyl in a tetrahydrofuran (20 ml) solution containing trace amounts (less than 5 mg) of 1, 10 phenanthroline and diisopropylamine 2.
  • lm 1 (14.8 mmol) at 15 ° C under a nitrogen stream
  • Step 2 Mixture of isomers obtained in Step 1 4. Add 96 g (14 mmol) of anhydrous cetonitrile (50 ml) to a solution of triethylamine 2. lg (14 mmol) and di-t-butyl dicarbonate at 0 ° C under a nitrogen stream. Bonate 3.9 g (16.8 mmol) and 4- (N, N-dimethylamino) pyridine 170 mg (l.4 mmol) were added, and the mixture was stirred at room temperature for 16 hours.
  • Step 3 To the isomer mixture obtained in Step 2, 30 ml of ethyl acetate Z-hexane (1Z3 volume ratio) was added and stirred at room temperature. To this was added the seed crystal of the (2S) isomer obtained in Step 2, and 50 ml of hexane was further added, followed by stirring at room temperature for 1 hour. The precipitated crystals were filtered, washed successively with an ethyl acetate Z-hexane (1Z7 volume ratio) solution and hexane, and then dried at 40 ° C. under reduced pressure.
  • Step 4 After concentrating the mother liquor in which the (2S) isomer was precipitated in Step 3, crystallization was performed with 100 ml of hexane, 1, 1-dimethylethyl- (2R) (3, 4 dichlorophenol ) -5-oxo3-((1, R) -feuethyl) tetrahydro-1H-1-imidazolecarboxylate was obtained as 1.23 g (20% yield) as white crystals.
  • Step 1 A trace amount (less than 5 mg) of 1,10 phenanthroline and 1, 1-dimethylethyl (2R)-(3,4 dichlorophenol) 5-oxo 3- (( 1, R) -Fe-ruetyl) tetrahydro-1H-1-imidazolecarboxylate Lithium isopropylamide in a solution of anhydrous tetrahydrofuran (20ml) containing 2.5g (5.7mmo 1) at -15 ° C under nitrogen flow 3. 2 ml (2. OmolZL; heptane Z tetrahydrofuran Z ethylbenzene solution, 6.3 mmol) was added dropwise over 10 minutes.
  • Step 2 1.0 g (84% content, 840 mg, 1.6 mmol) of the crude product obtained in Step 1 was added to 18 ml of tetrahydrofuran, 6 ml of distilled water, and lithium hydroxide at 0 ° C under a nitrogen stream. 168 mg (4 mmol) of monohydrate was added and reacted at 0 ° C for 22.5 hours. Tetrahydrofuran was removed under reduced pressure, ethyl acetate was added and washing was performed, and the organic layer was discarded. The aqueous layer was adjusted to PH 2.5 with 6M aqueous hydrochloric acid solution, added again with ethyl acetate and washed, and the organic layer was discarded.
  • Step 1 n-Butyllithium 1.3ml at 20 ° C under nitrogen flow into a solution of trace amount (less than 5mg) 1,10 phenanthroline and diisopropylamine 0.32m 1 (2.3mmol) in anhydrous tetrahydrofuran (5ml) (l.6 mol ZL; n-xane solution, 2. Ommol) was added dropwise over 10 minutes.
  • Methyl iodide (05 mg, 2.9 mmol) was added dropwise thereto, and the mixture was stirred at 20 ° C for 1 hour and then at 0 ° C for 16 hours.
  • the reaction solution was diluted with ethyl acetate (50 ml), washed twice with ammonium chloride aqueous solution, distilled water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering off the solid, the solvent was distilled off under reduced pressure to obtain 1.0 g of a crude product. This was used in the next step without further purification.
  • Step 2 35 g of methanol and 10 ml of concentrated hydrochloric acid were added to 0.9 g of the crude product of Step 1, and reacted at 50 ° C. for 2 hours. Methanol is concentrated under reduced pressure, 20 ml of distilled water is added, and 0.75 g of concentrated sulfuric acid is added, and the mixture is reacted for 7 hours at an external temperature of 120 to 130 ° C (conversion rate 100%). did.
  • Step 3 (2R) —Methyl-3-furo-luo [(1, R) -Fu-lethylamino] propionic acid obtained in Step 2 was mixed with isopropanol, and then a nitrogen stream Below, 200 mg of 20% palladium-carbon (50% water-containing product) was added at room temperature. The reaction system was replaced with hydrogen gas and reacted at 50 ° C for 20 hours (conversion rate 100%). The catalyst was filtered off and washed with distilled water, and the pH was adjusted to 4.0 with a 30% aqueous sodium hydroxide solution. The amount of ex-methylphenolanin in this solution was quantified by high performance liquid chromatography in the same manner as in Example 13. As a result, 154.9 mg (51% total yield) of (R) a-methylphenylalanine was obtained. Purity was obtained with 100% ee.
  • the product was dissolved in 230 ml of hexane and aged for 64 hours at a crystallization temperature of ⁇ 10 ° C.
  • the crystals were separated by filtration, washed with ice-cold hexane 50 ml ⁇ 2, and dried under vacuum and reduced pressure.
  • 17.6 g (2 5.6% yield, 2,4,6 trimethylbenzaldehyde standard, 100% de of the title compound was obtained as white crystals.
  • Step 1 Anhydrous tetrahydrofuran (30 ml) containing trace amounts (less than 5 mg) of 1, 10 phenanthroline and diisopropylamine 4. lm 1 (29.4 mmol) in n-butyl at ⁇ 20 ° C under nitrogen flow Lithium 16.lml (l.6molZL; n-hexane solution, 25.7mmol) was added dropwise over 10 minutes.
  • Step 2 To the crude product of Step 1 (12.5 g), 125 ml of tetrahydrofuran and 25 ml of 2M hydrochloric acid were added, and nitrogen substitution was performed under reduced pressure. To this was added 1.25 g of 20% palladium hydroxide-carbon (50% water-containing product), the inside of the reaction system was replaced with hydrogen gas, and the reaction was carried out at 50 ° C. for 48 hours. The catalyst was filtered off, and the cake was washed with 100 ml of tetrahydrofuran and 10 ml of distilled water, and then the organic solvent was removed under reduced pressure. To this was added 10 ml of concentrated hydrochloric acid, and the mixture was heated to reflux for 3.5 hours.
  • 20% palladium hydroxide-carbon 50% water-containing product
  • reaction solution was diluted with 5 Oml of ethyl acetate and washed with water and saturated brine. Organic layer with anhydrous magnesium sulfate After drying, the solvent was distilled off under reduced pressure to obtain 4.9 g (70% yield) of the title compound as a colorless oil.
  • reaction solution was diluted with 50 ml of ethyl acetate and washed successively with 1M aqueous hydrochloric acid, distilled water, and saturated brine.
  • the organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product.
  • Step 1 A trace amount of 1,10-phenanthroline (5 mg or less) and 1-dimethylethyl (2R)-(2,6 dichlorophenol) 5-oxo 3— obtained by the method of Example 10 (1 R) —Fe-ruethyl) tetrahydro-1H—1-imidazolecarboxylate 4.0 g (9.2 mmol), benzhydryl chloride 3.
  • Step 1 n-butyllithium in a tetrahydrofuran solution (10 ml) containing a small amount of 1,10 phenanthroline (5 mg or less) and disopropylamine 1.2 ml (8.6 mmol) at 0 ° C under nitrogen flow 5.
  • Oml l. 6 mol ZL; n-hexane solution, 7.9 mmol
  • the mixture was cooled to -78 ° C and stirred for 10 minutes.
  • Step 1 Trace amounts of 1, 10 phenanthroline (5 mg or less) and diisopropylamine 1.2 ml
  • Step 2 1, 1—Dimethylenoethinole (2S)-(2, 6 Dichlorophenol-Nole)-(4R) — ((1S) —Hydroxy-1-3-propylpropyl) 5—Oxo 3 ( (1, R) -Fe-ruetyl) tetrahydro 1H— 1-imidazole carboxylate 500 mg (purity 92.2 wt%, content 461 mg, 0.81 mmol) and 6M aqueous hydrochloric acid 7.5 ml were mixed, and the external temperature was 120-130. . Heated to reflux with C for 4 hours.
  • optically active imidazolidinone derivative produced by the present invention can be widely used for the synthesis of optically active amino acids, and optically active amino acids, which are important for production in various fields including the pharmaceutical field, can be easily used. Can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
新規イミダゾリジノン誘導体とその製造方法及び光学活性アミノ酸の製造 方法
技術分野
[0001] 本発明は、光学活性アミノ酸の製造に有用なキラルグリシンシントンである、光学活 性イミダゾリジノン誘導体に関する。また当該誘導体の合成法、並びに当該誘導体を 利用した光学活性アミノ酸の製造法に関する。光学活性アミノ酸は、医薬品、農薬、 化成品等の製造上重要な中間体である。
背景技術
[0002] 光学活性アミノ酸、特に天然に存在しない非天然型光学活性アミノ酸は、医薬品、 農薬、化成品等の重要な構成要素である。このような非天然型アミノ酸を合成するた めに開発された、キラルグリシンシントンとしての光学活性イミダゾリジノン誘導体に関 しては、従来以下のような合成方法が知られている。
i)グリシンアミド誘導体とピバルアルデヒドから合成する方法 (非特許文献 1) ii)光学活性セリンアミド誘導体とピバルアルデヒドから合成する方法 (非特許文献 2) iii)光学活性メチォニンアミド誘導体とピバルアルデヒドから合成する方法 (非特許文 献 3)
iv)キラルグリシンアミド誘導体とピバルアルデヒドから合成する方法 (非特許文献 4) し力しながら i)の方法では、生成した光学異性体をマンデル酸塩として分割するた め、必然的に造塩 解塩工程が必要であり、工業的に実施し難い形態であった。ま た ii)の方法では、光学活性なセリンを用いるため、イミダゾリジノン環を合成後、この ヒドロキシメチル基を酸化'脱炭酸する必要があり、やはり工業的に実施しにくい形態 である。更に iii)の方法も、光学活性メチォニン力も ii)と同様に複数工程の誘導を経 るために煩雑な操作を必要とし、工業的な実施が困難な形態である。 iv)の方法では 、光学活性グリシンアミドを用いるため、生成するイミダゾリジノン誘導体は異性体混 合物として得られるが、この異性体混合物をシリカゲルカラム精製して純粋な単一異 性体を得る必要があり、同様に工業的実施は困難である。またこれら i)〜iv)に共通 して用いられるピバルアルデヒドは、高価な化合物であり、工業的規模での使用は実 施し難い形態である。
非特許文献 l :Angew. Chem. Int. Ed., 1986, 345
非特許文献 2 : Helv. Chim. Acta., 1985, 68, 949
非特許文献 3 : Modern Synthetic Methods, 1986, 4, 128
非特許文献 4:J. Org. Chem., 1995, 60, 6408.
発明の開示
発明が解決しょうとする課題
[0003] 本発明の目的は、上記現状に鑑み、ジァステレオマー塩分割、または光学活性アミ ノ酸からの誘導、シリカゲルカラムによる異性体分離といった、煩雑な操作を実施す ることなく、光学活性アミノ酸合成に汎用的に使用できる、光学活性イミダゾリジノン 誘導体を提供することである。また当該誘導体を簡便に製造できる方法を提供するも のである。更に当該誘導体を利用し、光学活性アミノ酸を簡便に製造する方法を提 供するものである。
課題を解決するための手段
[0004] 本発明者らは、力かる課題を解決するため鋭意検討を行 、、新規なイミダゾリジノン 誘導体異性体混合物を製造した。そして当該誘導体異性体混合物溶液から、いず れカ 1つの異性体を優先的に結晶化させることによって、光学活性な当該イミダゾリ ジノン誘導体が単離精製できることを見出した。さらに優先結晶化の際に異性ィ匕が進 行し、動的速度論分割により単一異性体を取得できることを見出した。また当該光学 活性誘導体を利用して、光学活性アミノ酸が合成できることを見出し、本発明を完成 させるに至った。
[0005] すなわち本発明は、一般式(1)
[0006] [化 1]
Figure imgf000004_0001
[0007] (式中、 n、 mは独立して、それぞれベンゼン環の置換基 、 R2の数を表す 0〜5の整 数であり、
Figure imgf000004_0002
R2は独立して、置換されていてもよい炭素数 1〜18のアルキル基、置 換されて 、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァリール基、ハロゲン原子、ヒドロキシル基、置換されていてもよい炭素数 1〜1 8のアルコキシ基、ニトロ基を示す。
Figure imgf000004_0003
R2が複数個ある場合は、すべて同一であって もよいし、異なっていてもよい。 * 1、 * 2は不斉炭素原子を示す)で表されるイミダゾ リジノン誘導体又はその光学活性体に関する。
[0008] また、本発明は、一般式 (2)
[0009] [化 2]
Figure imgf000004_0004
[0010] (式中、 n、 m、
Figure imgf000004_0005
* 1、 * 2は前記と同じ。 R3は置換されていてもよい炭素数 1〜 18のアルキル基、置換されていてもよい炭素数 2〜18のァルケ-ル基、置換されて V、てもよ 、炭素数 2〜 18のアルキ-ル基、置換されて!、てもよ 、炭素数 7〜 18のァラ ルキル基、置換されていてもよい炭素数 6〜18のァリール基を示す)で表されるイミダ ゾリジノン誘導体又はその光学活性体に関する。
[0011] また、本発明は、一般式 (3) [0012] [化 3]
[0013] (
Figure imgf000005_0001
は前記と同じ。 R4、 R5は異なって、水素原子、置 換されて 、てもよ 、炭素数 1〜30のアルキル基、置換されて!、てもよ 、炭素数 2〜1 8のァルケ-ル基、置換されていてもよい炭素数 2〜 18のアルキ-ル基、置換されて V、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァリ 一ル基を示す。 * 3は不斉炭素原子を示す)で表される光学活性イミダゾリジノン誘 導体に関する。
[0014] また、本発明は、一般式 (4)
[0015] [化 4]
Figure imgf000005_0002
[0016] (式中、 n、
Figure imgf000005_0003
* 1は前記と同じ)で表される光学活性グリシンアミド誘導体と、一般 式 (5)
[0017] [化 5]
Figure imgf000005_0004
[0018] (式中、 m、 R2は前記と同じ)で表される置換べンズアルデヒドを、酸性触媒の存在下 、縮合させることを特徴とする、前記一般式(1)で表されるイミダゾリジノン誘導体の製 造方法に関する。
[0019] また、本発明は、前記一般式(1)で表されるイミダゾリジノン誘導体を有機溶媒を用 V、て結晶化させることを特徴とする、光学活性イミダゾリジノン誘導体の晶析方法に 関する。
[0020] また、本発明は、イミダゾリジノン誘導体を異性化させながら、光学活性イミダゾリジ ノン誘導体を結晶化することを特徴とする、光学活性イミダゾリジノン誘導体の晶析方 法に関する。
[0021] また、本発明は、異性化において酸性触媒を利用することを特徴とする、光学活性 イミダゾリジノン誘導体の晶析方法に関する。
[0022] また、本発明は、前記式(1)で表されるイミダゾリジノン誘導体又はその光学活性体 に、塩基の存在下において、一般式(6)
R3OCOX (6)
(式中、 R3は前記と同じ、 Xはハロゲン原子を示す)で表される、ノ、口ゲノギ酸エステ ル、または一般式(7)
[0023] [化 6]
Figure imgf000006_0001
[0024] (式中、 R3は前記に同じであり、 2つの R3は同一である)で表される、ピロ炭酸エステ ルを作用させることを特徴とする、前記一般式 (2)で表される、イミダゾリジノン誘導体 の製造方法に関する。
[0025] また、本発明は、前記一般式 (2)で表されるイミダゾリジノン誘導体を有機溶媒を用 V、て結晶化させることを特徴とする、光学活性イミダゾリジノン誘導体の晶析方法に 関する。
[0026] また、本発明は、前記一般式 (2)で表される光学活性イミダゾリジノン誘導体に、塩 基の存在下、一般式 (8) R7Y (8)
(式中、 R7は、置換されていてもよい炭素数 1〜30のアルキル基、置換されていても ょ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18のアルキ- ル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されていてもよい炭 素数 6〜18のァリール基を示し、 Yは脱離能を有する置換基を示す)で表される 1種 または 2種の親電子剤を作用させることを特徴とする、前記一般式 (3)で表される光 学活性イミダゾリジノン誘導体の製造方法に関する。
[0027] また、本発明は、一般式(11)
[0028] [化 7]
Figure imgf000007_0001
[0029] (式中、 n、 m、
Figure imgf000007_0002
R3、 R'、 * 1、 * 2、 * 3は前記と同じ。)で表される光学活性ィ ミダゾリジノン誘導体に、塩基の存在下、一般式 (8) '
R7,Y (8),
(式中、 R7'、 Yは前記と同じ)で表される親電子剤を作用させることを特徴とする、前 記一般式 (3)で表される光学活性イミダゾリジノン誘導体の製造方法に関する。
[0030] また、本発明は、前記一般式 (3)で表される光学活性イミダゾリジノン誘導体に、有 機溶媒及び水のうち、少なくとも 1種類を用いた溶媒中で、酸または塩基を作用させ ることを特徴とする、一般式 (9)
[0031] [化 8]
[0032] (
Figure imgf000008_0001
、 * 3は前記に同じ)で表される、光学活性 N— (1—置換 フエニルェチル)アミノ酸誘導体の製造方法に関する。
[0033] また本発明は、前記式 (3)で表される光学活性イミダゾリジノン誘導体の窒素上の 置換基を脱保護し、一般式 (12)
[0034] [化 9]
[0035] (
Figure imgf000008_0002
3は前記に同じ)で表される光学活性アミノ酸アミドを合成したのち 、有機溶媒及び水のうち、少なくとも 1種類を用いた溶媒中で、酸または塩基を作用 させることを特徴とする、一般式(10)
[0036] [化 10]
[0037] (
Figure imgf000008_0003
3は前記に同じ)で表される光学活性アミノ酸の製造方法に関する
[0038] また本発明は、前記一般式 (2)で表される光学活性イミダゾリジノン誘導体に、塩基 の存在下、一般式(13)
R8 - CHO (13)
(式中、 R8は、水素原子、置換されていてもよい炭素数 1〜30のアルキル基、置換さ れて 、てもよ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18 のアルキニル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されてい てもよい炭素数 6〜18のァリール基を示す)で表されるアルデヒドを作用させることを 特徴とする、一般式 (14)
[0039] [化 11]
[0040] (
Figure imgf000009_0001
2、 * 3は前記と同じであり、 R8が水素原子で ない場合、 * 4は不斉炭素原子を示す)で表される、光学活性イミダゾリジノン誘導体 の製造方法に関する。
[0041] また本発明は、前記一般式(14)で表される光学活性イミダゾリジノン誘導体に、有 機溶媒及び水のうち、少なくとも 1種類を用いた溶媒中で、酸または塩基を作用させ ることを特徴とする、一般式 (15)
[0042] [化 12]
Figure imgf000009_0002
[0043] (式中、 r R^ R8 * 1、 * 3、 * 4は前記に同じ)で表される、光学活性 N—(l—置 換フヱニルェチル)ヒドロキシアミノ酸誘導体の製造方法に関する。
[0044] また本発明は前記一般式(15)で表されるヒドロキシアミノ酸誘導体の窒素上の置 換基を脱保護することを特徴とする、一般式 (16) [0045] [化 13]
Figure imgf000010_0001
[0046] (式中、 R8、 * 3、 * 4は前記に同じ)で表される光学活性ヒドロキシアミノ酸の製造方 法に関する。
[0047] また本発明は、前記一般式(14)で表される光学活性イミダゾリジノン誘導体の窒素 上の置換基を脱保護し、一般式 (17)
[0048] [化 14]
Figure imgf000010_0002
[0049] (式中、 R8、 * 3、 * 4は前記に同じ)で表される光学活性ヒドロキシアミノ酸アミドを合 成したのち、有機溶媒及び水のうち、少なくとも 1種類を用いた溶媒中で、酸または 塩基を作用させることを特徴とする、前記一般式(16)で表される光学活性ヒドロキシ アミノ酸の製造方法に関する。
[0050] 以下、本発明を詳述する。
まず本発明の新規な化合物について説明する。
[0051] 第 1の本発明は、下記一般式(1)
[0052] [化 15]
Figure imgf000010_0003
[0053] で表されるイミダゾリジノン誘導体の異性体混合物又は当該誘導体の光学活性体で ある。
[0054] ここで 、 R2は、それぞれ独立して、置換されていてもよい炭素数 1〜18のアルキ ル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されていてもよい炭 素数 6〜18のァリール基、ハロゲン原子、ヒドロキシル基、炭素数 1〜18のアルコキ シ基、ニトロ基を示している。
[0055] 置換されていてもよい炭素数 1〜18のアルキル基としては、例えばメチル基、ェチ ル基、 n プロピル基、イソプロピル基、 n ブチル基、 t ブチル基、 n ペンチル基 、ネオペンチル基、 tーァミル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基、 n—ノ-ル基、 n デシル基などが挙げられる。
[0056] 置換されていてもよい炭素数 7〜18のァラルキル基としては、例えばべンジル基、 p ーメトキシフエニルメチル基、ナフチルメチル基などが挙げられる。
[0057] 置換されていてもよい炭素数 6〜18のァリール基としては、例えばフエ-ル基、 p— メトキシフエ-ル基、ナフチル基、 p -トロフエ-ル基などが挙げられる。
[0058] ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる
[0059] 置換されていてもよい炭素数 1〜18のアルコキシ基としては、例えばメトキシ基、ェ トキシ基、 n プロピルォキシ基、イソプロピルォキシ基、 n ブチルォキシ基、 tーブ チルォキシ基、メトキシメチルォキシ基、ベンジルォキシメチルォキシ基、メチルチオ メチルォキシ基、 2—クロ口ェチルォキシ基、 2—ブロモェチルォキシ基などが挙げら れる。
[0060] 上記アルキル基、ァラルキル基、ァリール基、アルコキシ基は、ハロゲン原子、アル コキシ基、ヒドロキシル基、ァラルキルォキシ基、アルキルチオ基、アルキルシリルォ キシ基、ァリールアルキルシリルォキシ基などにより置換されて 、てもよ 、。
[0061] 光学活性アミノ酸を製造するにあたって、
Figure imgf000011_0001
R2としては、塩素原子、メチル基、メト キシ基、エトキシ基、ニトロ基が好ましい。
[0062] nはベンゼン環上の置換基数を表す 0〜5の整数であり、置換基は前述の R1であり 、その置換様式は特に限定されるものではない。 mはベンゼン環上の置換基数を表 す 0〜5の整数であり、置換基は前述の R2であり、その置換様式は特に限定されるも のではない。
[0063] R2が複数個ある場合、すべての R1が同一であってもよ 、し、異なって!/、てもよく 、すべての R2が同一であってもよいし、異なっていてもよい。
[0064] * 1は不斉炭素原子を表しており、その絶対立体配置は、 Rまたは Sである。なお、 本明細書において、「立体配置カ¾である」とは、不斉炭素原子に対して S配置のも のよりも R配置のものが過剰に存在していればよぐ「Sである」とは、 R配置のものより S配置のものが過剰に存在して!/、ればよ!/、。
[0065] また、一般式(1)で表される化合物は、イミダゾリジノン環の 2位炭素原子(両窒素 に挟まれた炭素原子 * 2)が不斉炭素原子であり、光学活性体であってもよいし、 R 及び S配置が当量存在するラセミ体であってもよい。従って、一般式(1)で表される 化合物は、(* 1, * 2) = (R, R)、 (R, S)、 (S, R)、 (S, S)の群力 選ばれる少なく とも 1種の立体配置を有する。
[0066] 第 2の本発明は、下記一般式 (2)
[0067] [化 16]
Figure imgf000012_0001
[0068] で表されるイミダゾリジノン誘導体の異性体混合物又は当該誘導体の光学活性体で ある。
[0069] ここで、
Figure imgf000012_0002
R2、 n、 mの定義および具体的な例については、前記と同じである。
[0070] R3は、置換されていてもよい炭素数 1〜18のアルキル基、置換されていてもよい炭 素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18のアルキ-ル基、 置換されて 、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6 〜18のァリール基を示している。 [0071] 置換されていてもよい炭素数 1〜18のアルキル基としては、例えば、メチル基、ェ チル基、 n プロピル基、イソプロピル基、 n ブチル基、 t ブチル基、 2, 2, 2—トリ クロ口ェチル基、イソブチル基、 2—クロロェチル基、 1, 1 ジメチルー 2, 2, 2—トリ クロ口ェチル基、 1—ァダマンチル基、 2—トリメチルシリルェチル基などが挙げられる
[0072] 置換されていてもよい炭素数 2〜18のァルケ-ル基としては、例えばァリル基、ビ- ル基、 3 ブテュル基、 2—メチルー 2 プロぺ-ル基、 3 フエ-ルー 2—プロべ- ル基、 3—(p -トロフエ-ル) 2—プロべ-ル基などが挙げられる。
[0073] 置換されていてもよい炭素数 2〜18のアルキ-ル基としては、例えばプロピ-ル基 、 2 ブチュル基、 3 ブチニル基、 2 ペンチニル基などが挙げられる。
[0074] 置換されていてもよい炭素数 7〜18のァラルキル基としては、例えばべンジル基、 p ーメトキシフエ-ルメチル基、 p -トロフエ-ルメチル基、 p ブロモフエ-ルメチル基 、 p クロ口フエ-ルメチル基、 2, 4 ジクロロフエ-ルメチル基、ナフチルメチル基、 9 フルォレニルメチル基などが挙げられる。
[0075] 置換されていてもよい炭素数 6〜18のァリール基としては、例えばフエ-ル基、 p— メトキシフヱニル基、ナフチル基などが挙げられる。
[0076] 上記アルキル基、ァルケ-ル基、アルキ-ル基、ァラルキル基、ァリール基は、ハロ ゲン原子、アルコキシ基、ヒドロキシル基、ァラルキルォキシ基、アルキルチオ基、ァ ルキルシリルォキシ基、ァリールアルキルシリルォキシ基、ニトロ基などにより置換さ れていてもよい。
[0077] なお、光学活性アミノ酸を製造するにあたっては、 R3としては、メチル基、ェチル基 、イソプロピル基、イソブチル基、 t ブチル基、ァリル基、 2, 2, 2—トリクロ口ェチル 基、ベンジル基、 p—メトキシフエ-ルメチル基が好ましぐ t—ブチル基、メチル基、ェ チル基、ァリル基、ベンジル基がより好ましぐ t ブチル基、ァリル基、ベンジル基が さらに好ましい。
[0078] 一般式 (2)で表される化合物は、イミダゾリジノン環の 2位炭素原子(両窒素に挟ま れた炭素原子 * 2)が不斉炭素原子であり、光学活性体であってもよいし、 R及び S 配置が当量存在するラセミ体であってもよい。従って、一般式 (2)で表される化合物 は、(* 1, * 2) = (R, R)、 (R, S)、 (S, R)、 (S, S)の少なくとも 1種の立体配置を 有する。
[0079] 第 3の本発明は、下記一般式 (3)
[0080] [化 17]
Figure imgf000014_0001
[0081] で表される光学活性イミダゾリジノン誘導体である。
[0082] ここで、
Figure imgf000014_0002
n、 mの定義および具体的な例については、前記と同じである。
[0083] R4、 R5は異なって、水素原子、置換されて!、てもよ 、炭素数 1〜30のアルキル基、 置換されて 、てもよ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2
〜18のアルキ-ル基、置換されていてもよい炭素数 7〜18のァラルキル基、置換さ れて 、てもよ 、炭素数 6〜18のァリール基を示して!/、る。
[0084] 置換されていてもよい炭素数 1〜30のアルキル基の炭素鎖としては、例えば、メチ ル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 1 メチループ口ピル基、 2—メチループ口ピル基、ペンチル基、へキシル基、ヘプチル 基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデシル基、トリデシル基、テト ラデシル基、ペンタデシル基、へキサデシル基、ヘプタデシル基、ォクタデシル基、ノ ナデシル基などが挙げられ、これらの任意の位置において、置換基を有していてもよ い。
[0085] 置換基の種類としては、ハロゲン原子、アルコキシ基、ヒドロキシル基、ァラルキル ォキシ基、アルキルチオ基、アルキルシリルォキシ基、ァリールアルキルシリルォキシ 基などが挙げられる。例として、 3 クロ口プロピル基、 2—メトキシェチル基、ベンジ ルォキシメチル基、 2—べンジルォキシェチル基、 2—(メルカプトメチル)ェチル基、 2- (tーブチルジメチルシリルォキシ)ェチル基、 2—(tーブチルジフエ-ルシリルォ キシ)ェチル基、 2—トリメチルシリルォキシェチル基などが挙げられる。
[0086] 置換されていてもよい炭素数 2〜18のァルケ-ル基としては、例えばァリル基、ビ- ル基、 3—ブテュル基、 2—メチルー 2—プロぺ-ル基、 3—フエ-ルー 2—プロべ- ル基などが挙げられる。
[0087] 置換されていてもよい炭素数 2〜18のアルキ-ル基としては、例えばプロピ-ル基
、 2—ブチュル基、 3—ブチニル基、 2—ペンチニル基などが挙げられる。
[0088] 置換されていてもよい炭素数 7〜18のァラルキル基としては、例えばべンジル基、 p ーメトキシフエ-ルメチル基、 p— -トロフエ-ルメチル基、 p—ブロモフエ-ルメチル基
、 p—クロ口フエ-ルメチル基、 2, 4—ジクロロフエ-ルメチル基、ナフチルメチル基、
1—インダノィル基、ジフエ二ルメチル基などが挙げられる。
[0089] 置換されていてもよい炭素数 6〜18のァリール基としては、例えばフエ-ル基、 p— メトキシフヱニル基、ナフチル基などが挙げられる。
[0090] 光学活性アミノ酸を製造するにあたって、 R4、 R5としては、水素原子、メチル基、ェ チル基、ベンジル基、プロピル基、ァリル基、プロピ-ル基、 1ーメチループ口ピル基
、 2—メチループ口ピル基、ベンジルォキシメチル基、 2—(メルカプトメチル)ェチル 基、 ρ—メトキシフエ-ルメチル基、 2—トリメチルシリルォキシェチル基、ジフエ-ルメ チル基が好ましい。
[0091] 一般式(3)における、イミダゾリジノン環の 2位炭素原子の不斉中心(* 2)、および イミダゾリジノン環 4位炭素原子の不斉中心(* 3)は、それぞれ R,または Sのいずれ かに決定されており、従ってその絶対立体配置の組み合わせは、(* 1, * 2, * 3) = (R, R, R)、 (R, R, S)、 (R, S, R)、(R, S, S)、 (S, R, R)、 (S, R, S)、 (S, S, R)、 (S, S, S)の組み合わせを挙げることができ、かつこれらのうち、いずれかの絶 対立体配置を持つ光学活性体である。
[0092] これら一般式(1)、 (2)、 (3)においては、 n=0であるイミダゾリジノン誘導体が好ま しい。より好ましくは、
n=0であり、 R2が塩素原子であり、 m= 2、かつ置換位置が 2, 6位または 3, 4位であ るイミダゾリジノン誘導体、または、
n=0であり、 R2力メチル基であり、 m= 3、かつ置換位置が 2, 4, 6位であるイミダゾリ ジノン誘導体である。
[0093] 特に好ましいのは、
n=0であり、 R2が塩素原子であり、 m= 2、かつ置換位置が 2, 6位または 3, 4位であ り、かつ R3力 ¾ ブチル基であるイミダゾリジノン誘導体、
n=0であり、 R2力メチル基であり、 m= 3、かつ置換位置が 2, 4, 6位であり、かつ カ^ーブチル基であるイミダゾリジノン誘導体、
n=0であり、 R2が塩素原子であり、 m= 2、かつ置換位置が 2, 6位であり、かつ R3が ベンジル基であるイミダゾリジノン誘導体、または
n=0であり、 R2が塩素原子であり、 m= 2、かつ置換位置が 2, 6位であり、かつ R3が ァリル基であるイミダゾリジノン誘導体である。
[0094] これらの一般式(1) , (2) , (3)のイミダゾリジノン誘導体は、後述する製造方法にて 製造することができる。
[0095] 次に各製造工程を更に詳細に説明する。
まず、一般式(1)で表されるイミダゾリジノン誘導体の製造方法にっ 、て説明する。
[0096] 前記一般式(1)で表されるイミダゾリジノン誘導体は、例えば、下記一般式 (4) [0097] [化 18]
Figure imgf000016_0001
[0098] (式中、 n、
Figure imgf000016_0002
* 1は前記と同じ)で表される光学活性グリシンアミド誘導体と、一般 式 (5)
[0099] [化 19]
Figure imgf000016_0003
[0100] (式中、 m、 R2は前記と同じ)で表される置換べンズアルデヒドを、酸性触媒の存在下 縮合させること〖こより製造することができる。
[0101] 一般式 (4)で表される光学活性グリシンアミドは、実施例 1に示す方法等で、容易 に製造できる。また一般式 (5)で表される、置換べンズアルデヒドは、市販品を容易 に入手可能である。
[0102] 一般式 (4)で表される光学活性グリシンアミド誘導体の使用量は、特に制限される ものではないが、置換べンズアルデヒド(5)のモル当量を基準として、一般的に、 0. 1〜10. 0モル当量の範囲内である。好ましくは 0. 1〜5. 0モル当量の範囲内であり 、より好ましくは、 0. 1〜3. 0モル当量の範囲内である。
[0103] この反応は、酸性触媒の存在下で行われる。酸性触媒は特に限定されるものでは ないが、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸などの鉱酸類;メタン スルホン酸、 p トルエンスルホン酸、カンファースルホン酸、トリフルォロメタンスルホ ン酸などのスルホン酸類;トリクロ口酢酸、トリフルォロ酢酸などのハロゲノ脂肪酸等が 挙げられる。中でもスルホン酸類の使用が好ましぐより好ましいのは p—トルエンスル ホン酸である。
[0104] 酸性触媒の量は、特に限定されるものではな 、が、用いる置換べンズアルデヒド(5 )のモル当量を基準として、好ましくは 0. 001-1. 0モル当量の間で使用できるが、 より好ましく ίま 0. 001〜0. 5モノレ当量の範囲であり、更に好ましく ίま 0. 001〜0. 1モ ル当量の範囲である。
[0105] またこの反応には、通常、有機溶媒が使用される。使用できる溶媒は、特に制限さ れるものではないが、例えば、 η—へキサン、 η—ヘプタン、 η オクタン、 η—ノナン、 シクロへキサン、メチルシクロへキサンなどの脂肪族炭化水素類;ベンゼン、トルエン 、キシレン、メシチレン、クロ口ベンゼン、 ο ジクロロベンゼンなどの芳香族炭化水素 類;酢酸メチル、酢酸ェチル、酢酸 η—ブチル、酢酸 tーブチル、酢酸イソプロピルな どの酢酸エステル類;テトラヒドロフラン、 1, 4 ジォキサン、ジイソプロピルエーテル 、 t ブチルメチルエーテル、シクロペンチルメチルエーテルなどのエーテル類;ァセ トニトリル、プロピオ-トリルなどの-トリル類; N, N ジメチルホルムアミド、 N, N ジ メチルァセトアミド、 N, N—ジブチルホルムアミド、 1ーメチルー 2—ピロリドンなどのァ ミド類等が挙げられる。
[0106] これらの溶媒は、単独で用いてもよぐまた 2種類以上の溶媒を任意に組み合わせ て使用してもよいが、中でも脂肪族炭化水素類、芳香族炭化水素類が好ましぐ n— ヘプタン、 n オクタン、シクロへキサン、メチルシクロへキサン、ベンゼン、トルエン、 クロ口ベンゼンがより好ましぐトルエンが更に好ましい。
[0107] 用いる溶媒の使用量は、特に制限されるものではないが、一般的に、前記式(5)で 表される化合物の重量を基準として、 0. 5〜50倍容量の範囲内である。中でも、 1. 5〜25倍容量が好ましい。
[0108] 反応の温度は、一般式 (4)で表される光学活性グリシンアミド誘導体と、一般式(5) で表される置換べンズアルデヒドとが縮合反応を起こす温度であれば、特に制限され るものではないが、中でも 0〜150°Cが好ましぐより好ましくは 30〜150°Cの範囲内 である。反応の時間は特に制限されるものではないが、好ましくは 0. 1〜50時間、よ り好ましくは 2〜30時間である。
[0109] このようにして一般式(1)で表される、イミダゾリジノン誘導体が製造できる力 このィ ミダゾリジノン誘導体の異性体混合物は、イミダゾリジノン環の 2位炭素原子(両窒素 原子に挟まれた炭素原子)に関して、約 1: 1の異性体混合物である。
[0110] 得られた一般式(1)で表される化合物は、このまま次の工程に用いてもよいし、前 記式(1)で表される、 2つ以上の光学異性体を含むイミダゾリジノン誘導体異性体混 合物の溶液から、いずれ力 1つの光学活性体を優先的に結晶化させて、これを次の 工程に用いてもよい。
[0111] この結晶化には有機溶媒が使用される。この結晶化は、複数の光学異性体間にお ける、有機溶媒への溶解度差を利用したものであるため、当該異性体間における溶 解度差が十分であれば、使用できる溶媒は特に制限されるものではない。
[0112] 例えば、 n—へキサン、 n—ヘプタン、 n オクタン、 n—ノナン、シクロへキサン、メチ ルシクロへキサンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、クロ口べ ンゼン、 o ジクロ口ベンゼンなどの芳香族炭化水素類;酢酸メチル、酢酸ェチル、酢 酸 n—ブチル、酢酸 tーブチル、酢酸イソプロピルなどの酢酸エステル類;テトラヒドロ フラン、 1, 4 ジォキサン、ジイソプロピルエーテル、 t ブチルメチルエーテル、シク 口ペンチルメチルエーテルなどのエーテル類;ァセトニトリル、プロピオ-トリルなどの 二トリル類; N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド、 1ーメチルー 2—ピロリドンなどのアミド類を例示することができる。
[0113] これらの溶媒は、単独で用いてもよぐまた 2種類以上の溶媒を任意に組み合わせ て使用してもよいが、中でも-トリル類が好ましぐより好ましいのはァセトニトリルであ る。
[0114] 用いる溶媒の使用量は、特に制限されるものではないが、一般的に、イミダゾリジノ ン誘導体異性体混合物の重量を基準として、 1〜: LOO倍容量の範囲内である。中で も、 1〜50倍容量が好ましぐより好ましくは 1〜20倍容量である。
[0115] 結晶化には、通常用いられる冷却晶析、濃縮晶析、溶媒置換による晶析など種々 のものを適宜組み合わせて用いてやればょ 、。
[0116] 結晶化時の温度についても、特に制限されるものではないが、 25〜80°Cの範囲 内であるのが好ましぐ中でも 10〜80°Cが好ましぐより好ましくは 0〜50°Cの範囲 内である。
[0117] 結晶化を行う時間は特に制限されるものではないが、好ましくは 0. 1〜50時間、よ り好ましくは 0. 1〜24時間である。
[0118] この優先結晶化により、いずれ力 1つの光学異性体を過剰に含む光学活性イミダゾ リジノン誘導体の結晶を得ることができる。得られる当該誘導体の光学純度は一般的 に、 80〜100%deの範囲内である。中でも 85%de以上が好ましぐ特に 90%de以 上が好適である。また、本発明の晶析方法を繰り返し用いることにより、更に光学活 性イミダゾリジノン誘導体の光学純度を高めることも可能である。
[0119] さらにこの優先結晶化においては、イミダゾリジノン誘導体を異性ィ匕させながら、光 学活性イミダゾリジノン誘導体を結晶化することも可能である。このように異性化を伴 いながら、いずれか 1つの光学異性体を過剰に含む光学活性ィ匕合物を得る方法は、 動的速度論分割として知られて ヽる(参考文献:ケミカルレビュー (Chemical Review) 、 2006年、 106卷、 2711頁)。勿論上記一般式(1)で表されるイミダゾリジノン誘導 体にぉ 、て、動的速度論分割が実施可能であることが示された例はな!/、。
[0120] このイミダゾリジノン誘導体の異性ィ匕方法は、特に制限されるものではな 、が、例え ば、酸性触媒の使用、塩基性触媒の使用、光学活性な酸または塩基の使用、加温 条件、加熱条件、光照射等の方法を例示することができる。中でもイミダゾリジノン誘 導体の異性ィ匕晶析にお 、ては、酸性触媒の利用が好まし!/、。
[0121] 酸性触媒は、イミダゾリジノン環の 2位炭素原子 (両窒素原子に挟まれた炭素原子) に関する異性体において、異性ィ匕が進行するものであれば、特に限定されるもので はないが、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸などの鉱酸類;メタ ンスルホン酸、 p トルエンスルホン酸、カンファースルホン酸、トリフルォロメタンスル ホン酸などのスルホン酸類;トリクロ口酢酸、トリフルォロ酢酸などのハロゲノ脂肪酸等 が挙げられる。中でもスルホン酸類、ハロゲノ酢酸類の使用が好ましぐより好ましい のは トルエンスルホン酸、またはトリフルォロ酢酸である。
[0122] 酸性触媒の量は、特に限定されるものではないが、用いるイミダゾリジノン誘導体の モル当量を基準として、好ましくは 0. 001-1. 0モル当量の間で使用できる力 より 好ましく ίま 0. 001〜0. 5モノレ当量の範囲であり、更に好ましく ίま 0. 001〜0. 4モノレ 当量の範囲である。
[0123] この異性ィ匕晶析においても有機溶媒が使用され、その溶媒としては上述した溶媒 をそのまま例示でき、またこれらの溶媒を単独または 2種類以上組み合わせて使用 することもできるが、好ましくは、二トリル類、酢酸エステル類、脂肪族炭化水素類であ り、より好ましくは、ァセトニトリル、酢酸ェチル、へキサンである。
[0124] 用いる溶媒の使用量も、特に制限されるものではないが、一般的に、イミダゾリジノ ン誘導体異性体混合物の重量を基準として、 1〜: LOO倍容量の範囲内であるのが好 ましい。中でも、 1〜50倍容量が好ましぐより好ましくは 1〜20倍容量である。
[0125] なお、上述のように、異性化晶析に使用するイミダゾリジノン誘導体異性体混合物 は、酸性触媒下において合成できるため、当該反応溶液を直接異性化晶析に用い ることちでさる。
[0126] また、この異性ィ匕晶析にも、通常用いられる冷却晶析、濃縮晶析、溶媒置換による 晶析など種々の方法を適宜組み合わせて用いることができる。
[0127] 異性ィ匕晶析時の温度についても、特に制限されるものではないが、一般的に、 - 2 5〜120°Cの範囲内であるのが好ましぐ中でも— 10〜100°Cが好ましぐより好まし くは 0〜100°Cの範囲内である。
[0128] 結晶化を行う時間は特に制限されるものではないが、好ましくは 0. 1〜200時間、 より好ましくは 1〜: LOO時間である。
[0129] 以上の異性化晶析により、通常の優先結晶化と比べて、一方の異性体の単離収率 をより高めることができる。得られる当該誘導体の光学純度は、通常 80〜100%deの 範囲内である。中でも 85%de以上とするのが好ましぐ特に 90%de以上が好適であ る。また、前述した本発明の晶析方法を繰り返し用いることにより、異性ィ匕晶析によつ て取得した光学活性イミダゾリジノン誘導体の光学純度を更に高めることも可能であ る。
[0130] 次に、一般式(2)で表されるイミダゾリジノン誘導体の製造方法について説明する。
[0131] 一般式(2)で表されるイミダゾリジノン誘導体は、例えば、一般式(1)で表されるイミ ダゾリジノン誘導体又はその光学活性体に、塩基の存在下において、一般式 (6) R3OCOX (6)
で表される、ハロゲノギ酸エステル、または一般式(7)
[0132] [化 20]
Figure imgf000021_0001
[0133] で表される、ピロ炭酸エステルを作用させることに製造することができる。
[0134] 本工程に用いる前記式(1)で表される化合物は、前述の優先晶出ゃ異性化晶析 によって 1種の光学異性体の含量を非常に高めたものであってもよいし、光学純度を 高める操作を実施していないものであってもよい。つまり、(* 1, * 2)の立体配置が (R, R)、 (R, S)、 (S, R)、 (S, S)のいずれかが優先的に存在していてもよいし、 2 種以上のジァステレオマーが混在して 、てもよ!/、。
[0135] 一般式(6)において、 R3は前述と同様であり、 Xはハロゲン原子を示している。 と しては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Xとしては塩素 原子が好適である。また一般式 (7)におけるめについても、前述と同じ置換基を例示 できる。 [0136] 使用される一般式 (6)、または(7)で表される化合物の例としては、例えば、ジ t ブチルジカーボネート、クロ口ギ酸メチル、クロ口ギ酸ェチル、クロロギ酸イソプロピル 、塩化べンジルォキシカルボ-ル、塩化 2, 2, 2—トリクロ口ェチルォキシカルボ-ル 、塩ィ匕ァリルォキシカルボ-ル等が挙げられる力 好ましくはジ tーブチルジカーボネ ート、塩化べンジルォキシカルボ-ル、塩化ァリルォキシカルボ-ルである。
[0137] このとき用いられる一般式(6)のハロゲノギ酸エステル、または一般式(7)のピロ炭 酸エステルのモル当量は、一般式(1)で表されるイミダゾリジノン誘導体のモル当量 を基準として、一般的に、 0. 1〜 10モル当量が好ましぐより好ましくは 0. 5〜5モル 当量である。
[0138] この反応は、塩基の存在下で行われる。塩基としては、有機塩基でも無機塩基でも よいが、有機塩基が好ましい。用いる無機塩基としては、通常、当業者が使用するも のであれば特に制限されず、 1種類または 2種類以上の無機塩基を組み合わせて用 いることができる。また、用いる有機塩基は、特に制限されるものではないが、例えば 、トリェチルァミン、ジイソプロピルェチルァミン、トリ— n—プチルァミンなどの脂肪族 ァミン; [2. 2. 2]ジァザビシクロオクタン、ジァザビシクロ [5. 4. 0]ゥンデセン、 1, 5 ージァザビシクロ [4. 3. 0]ノネンなどの縮環式ァミン;ピリジン、 2, 6—ルチジン、 2, 4, 6—コリジンなどのピリジン類; 4— (N, N ジメチルァミノ)ピリジン、 4—ピロリジノ ピリジンなどのアルキルアミノビリジン類等が挙げられる。
[0139] これらの有機塩基は、単独で用いても、 2種類以上の有機塩基を組み合わせて用 いてもよい。中でも、脂肪族ァミン、アルキルアミノビリジン類、または脂肪族ァミンとァ ルキルアミノビリジン類の併用が好ましぐ脂肪族ァミンとしては、トリェチルァミン、ァ ルキルアミノビリジン類としては 4— (N, N ジメチルァミノ)ピリジンが好ましい。
[0140] このとき用いられる塩基の総モル当量は、一般式(1)で表されるイミダゾリジノン誘 導体のモル当量を基準として、一般的に、 0. 1〜10. 0モル当量の範囲内であるが、 好ましくは、 0. 1〜5. 0モル当量の範囲内であり、より好ましくは 0. 5〜5. 0モル当 量の範囲内であり、さらに好ましくは 0. 5〜2. 5モル当量の範囲内であり、最も好まし くは 1. 0〜1. 5モル当量の範囲内である。特に、塩基として脂肪族ァミンと、アルキ ルァミノピリジン類を併用する場合、アルキルアミノビリジン類の使用量は、一般式(1 )で表されるイミダゾリジノン誘導体のモル当量を基準として、一般的に、 0. 001〜5 . 0モル当量の範囲内であり、好ましくは 0. 001〜2. 5モル当量の範囲内であり、よ り好ましくは 0. 001〜1. 0モル当量の範囲内である。
[0141] 反応には通常溶媒が使用される。使用できる溶媒は、特に制限されるものではない 1S 例えば、 n—へキサン、 n—ヘプタン、 n—オクタン、 n—ノナン、シクロへキサン、メ チルシクロへキサンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、クロ口 ベンゼン、 o—ジクロ口ベンゼンなどの芳香族炭化水素類;酢酸メチル、酢酸ェチル、 酢酸 n—ブチル、酢酸 tーブチル、酢酸イソプロピルなどの酢酸エステル類;テトラヒド 口フラン、 1, 4—ジォキサン、ジイソプロピルエーテル、 t—ブチルメチルエーテル、シ クロペンチルメチルエーテルなどのエーテル類;ァセトニトリル、プロピオ-トリルなど の-トリル類; N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 1—メチル —2—ピロリドンなどのアミド類等が挙げられる。これらの溶媒は、単独で用いてもよく 、また 2種類以上の溶媒を任意に組み合わせて使用してもよいが、中でもァセトニトリ ル、トルエン、酢酸ェチルが好適である。
[0142] 用いる溶媒の使用量は、特に制限されるものではないが、一般的に、イミダゾリジノ ン誘導体の重量を基準として、 1. 5〜50倍容量の範囲内である。中でも、 1. 5〜25 倍容量が好ましい。
[0143] 反応の温度は、特に制限されるものではないが、中でも— 50〜100°Cが好ましぐ より好ましくは—10〜100°Cの範囲内であり、最も好ましいのは—10〜50°Cの範囲 内である。
[0144] 反応を行う時間は特に制限されるものではないが、好ましくは 0. 1〜50時間、より 好ましくは 0. 1〜25時間である。
[0145] このようにして得られる一般式(2)で表されるイミダゾリジノン誘導体は、そのまま次 工程に用いてもよいし、次の操作によって、いずれか 1つの光学活性体を優先的に 結晶化させてもよい。
[0146] 一般式 (2)で表されるイミダゾリジノン誘導体の結晶化には、通常有機溶媒が使用 される。この結晶化は、複数の光学異性体間における、有機溶媒への溶解度差を利 用したものであるため、光学異性体間における溶解度差が十分であれば、使用でき る溶媒は、特に制限されるものではない。例えば、 n—へキサン、 n—ヘプタン、 n- オクタン、 n—ノナン、シクロへキサン、メチルシクロへキサンなどの脂肪族炭化水素 類;ベンゼン、トルエン、キシレン、クロ口ベンゼン、 o ジクロロベンゼンなどの芳香族 炭化水素類;酢酸メチル、酢酸ェチル、酢酸 n—ブチル、酢酸 tーブチル、酢酸イソプ 口ピルなどの酢酸エステル類;テトラヒドロフラン、 1, 4 ジォキサン、ジイソプロピル エーテノレ、 tーブチノレメチノレエーテノレ、シクロペンチノレメチノレエーテノレなどのエーテ ル類;ァセトニトリル、プロピオ-トリルなどの-トリル類; N, N ジメチルホルムアミド 、 N, N—ジメチルァセトアミド、 1—メチル—2—ピロリドンなどのアミド類等が挙げら れる。これらの溶媒は、単独で用いてもよぐまた 2種類以上の溶媒を任意の割合で 組み合わせて使用してもよ!/、が、中でも炭化水素類とエステル類とを組み合わせて 用いるのが好ましぐより好ましいのは酢酸ェチルとへキサンの組み合わせ、または へキサンを単独で用いる場合である。
[0147] 用いる溶媒の使用量は、特に制限されるものではないが、一般的に、イミダゾリジノ ン誘導体異性体混合物の重量を基準として、 1〜: L00倍容量の範囲内である。中で も、 1〜50倍容量が好ましぐより好ましくは 1〜20倍容量である。
溶媒を 2種以上用いる場合、用いる溶媒の比率にっ 、ては特に制限されるものでは ないが、例えば、酢酸ェチルの容量を基準として、へキサンを 0〜: LOO倍容量の範囲 内で使用することができる。
[0148] 結晶化には、通常用いられる冷却晶析、濃縮晶析、溶媒置換による晶析など種々 のものを適宜組み合わせて用いることができる。
[0149] 結晶化時の温度についても、特に制限されるものではないが、一般的に 30〜80 °Cの範囲内であり、中でも 20〜80°Cが好ましぐより好ましくは 15〜50°Cの範 囲内である。
[0150] 結晶化を行う時間は特に制限されるものではないが、好ましくは 0. 1〜80時間、よ り好ましくは 0. 1〜65時間である。
[0151] この優先結晶化により、いずれ力 1つの光学異性体を過剰に含む光学活性イミダゾ リジノン誘導体の結晶を得ることができる。得られる光学活性体の光学純度は、のち の工程に影響のない限り制限されるものではないが、一般的に、 80〜100%deの範 囲内である。中でも 85%de以上が好ましぐ特に 90%de以上が好適である。また、 本発明の晶析方法を繰り返し用いることにより、更に光学活性イミダゾリジノン誘導体 の光学純度を高めることも可能である。
[0152] この優先結晶化により、例えば S体を過剰に含む光学活性イミダゾリジノン誘導体 の結晶を得たあとの母液には、 R体が多く含まれている。この R体を多く含む母液を 用いて晶析操作を行い、 R体を過剰に含む結晶を得ることもできる。このようにすれば
、 S体、 R体の両方の結晶を得ることも可能である。
[0153] 以上のようにして得られた前記式(2)で表される光学活性イミダゾリジノン誘導体に
、塩基の存在下、一般式 (8)
R7Y (8)
で表される親電子剤を作用させることにより、前記一般式 (3)で表される光学活性イミ ダゾリジノン誘導体を製造することができる。
[0154] 本工程で使用される前記式(2)で表される化合物は、光学純度が高いものほど得 られる化合物(3)の光学純度が高くなるので好ま 、が、光学純度につ!、ては特に 制限するものではない。
[0155] ここで一般式(8)における R7は、置換されていてもよい炭素数 1〜30のアルキル基 、置換されていてもよい炭素数 2〜 18のアルケニル基、置換されていてもよい炭素数 2〜 18のアルキ-ル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換さ れていてもよい炭素数 6〜18のァリール基を示しており、具体的な例としては、前述 の R4、 R5と同様の置換基を例示できる。
[0156] また Yは、通常脱離能を有する置換基であり、例えば、ハロゲン原子、スルホニルォ キシ基等が挙げられる。ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素を挙げるこ とができ、またスルホ-ルォキシ基としては、例えばメタンスルホ-ルォキシ基、 p—ト ルエンスルホ-ルォキシ基、トリフルォロメタンスルホ -ルォキシ基等が挙げられる。
[0157] 使用される一般式 (8)で表される親電子剤の例としては、例えば、ヨウ化メチル、ョ ゥ化工チル、ヨウ化 n—プロピル、ヨウ化イソプロピル、ヨウィ匕 n—ブチル、ヨウ化べンジ ル、ヨウ化ァリルなどのヨウ化物、臭化メチル、臭化工チル、臭化 n—プロピル、臭化 n ーブチノレ、 2—ブロモブタン、 1ーブロモー 2—メチルプロパン、 1ーブロモー 2—ブチ ン、臭化ベンジル、臭化ァリル、臭化プロピエル、 p—メトキシ臭化ベンジル、ベンジ ルー 2—ブロモェチルエーテルなどの臭化物、塩化ベンジル、塩化ベンジルォキシメ チル、 2—クロロェチルメチルスルフイド、塩化ァリル、 2—クロ口エトキシトリメチルシラ ン、塩化べンズヒドリルなどの塩化物、ァリルメタンスルホネート、ベンジルメタンスル ホネート、ァリル ρ—トルエンスルホネート、ベンジル p—トルエンスルホネート、プロピ ル— 2—トリフルォロメタンスルホネートなどのスルホネート類等が挙げられる。
[0158] なかでも、ヨウ化メチル、臭化ベンジル、臭化ァリル、ヨウ化 n プロピル、臭化プロ ピ -ル、ヨウ化工チル、塩化ベンジルォキシメチル、 2—クロロェチルメチルスルフイド 、 2—クロ口エトキシトリメチルシラン、 2—ブロモブタン、 1ーブロモー 2—メチルプロパ ン、 1ーブロモー 2—ブチン、塩化べンズヒドリルが好ましぐヨウ化メチル、臭化ベン ジル、臭化ァリル、 p—メトキシ臭化ベンジル、ベンジル— 2—ブロモェチルエーテル 、 2—クロ口エトキシトリメチルシラン、塩ィ匕べンズヒドリルがさらに好ましい。
[0159] 一般式 (8)で表される親電子剤の使用量としては、特に制限されるものではないが 、一般的に、前記式(2)で表される光学活性イミダゾリジノン誘導体のモル当量を基 準として、 0. 1〜5当量が好ましぐ 0. 5〜2. 5当量がさらに好ましい。言うまでもなく 、収率高く前記式(3)で表される化合物を得るためには、前記式(2)で表される化合 物に対して前記式 (8)で表される化合物を 1当量以上添加することが好ま U、。
[0160] 反応は不活性気体雰囲気下で行うのが好ましい。特に窒素、またはアルゴン雰囲 気下で行うのが好適である。
[0161] 反応には塩基が用いられる。用いる塩基は特に制限されるものではないが、無機 塩基または有機塩基が好適である。中でも有機塩基が好ましぐ特に有機金属塩基 が最も好適である。有機金属塩基としては、例えば、リチウムジイソプロピルアミド、リ チウムジシクロへキシルアミド、リチウム 2, 2, 6, 6—テトラメチルピペラジド、リチウム へキサメチルジシラジド、ナトリウムへキサメチルジシラジド、カリウムへキサメチルジシ ラジド、塩化 t ブチルマグネシウム、リチウム tーブトキシド、ナトリウム tーブトキシド、 カリウム t—ブトキシド、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化力 ルシゥムなどが挙げられる。
[0162] 中でも、リチウムジイソプロピルアミド、リチウムへキサメチルジシラジド、ナトリウムへ キサメチルジシラジド、カリウムへキサメチルジシラジド、塩化 t ブチルマグネシウム 、カリウム t ブトキシド、ナトリウム t ブトキシド、リチウム t ブトキシド、水素化リチウ ム、水素化ナトリウム、水素化カリウム、水素化カルシウムが好ましぐリチウムアミド型 塩基、ジシラジド型塩基がより好ましぐリチウムジイソプロピルアミド、リチウムジシラジ ド、ナトリウムジシラジド、カリウムジシラジドが最も好適である。
[0163] これらの塩基の使用量は、特に制限されないが、通常用いる一般式(2)で表される 光学活性イミダゾリジノン誘導体のモル当量を基準として、一般的に、 0. 1〜2. 0モ ル当量の範囲内である。中でも 0. 5〜1. 5当量の範囲内が好ましぐより好ましくは 0 . 9〜: L 3当量の範囲内である。
[0164] 反応には、通常、溶媒が使用される。使用できる溶媒は、特に制限されるものでは ないが、一般的に、塩基との反応を避けるため、上述の塩基と反応しない溶媒が好ま しい。例えば、 n—へキサン、 n—ヘプタン、 n オクタン、 n—ノナン、シクロへキサン 、メチルシクロへキサンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、クロ 口ベンゼン、 o ジクロ口ベンゼン、ェチルベンゼンなどの芳香族炭化水素類;テトラヒ ドロフラン、 1, 2—ジメトキシェタン、ジェチルエーテル、ジイソプロピルエーテル、 t— ブチルメチルエーテル、シクロペンチルメチルエーテルなどのエーテル類等が挙げら れる。中でもテトラヒドロフラン、トルエン、ェチルベンゼン、 1, 2—ジメトキシェタンが 好適であり、これらの溶媒は単独で、または 2種類以上を組み合わせて用いてもよい
[0165] 用いる溶媒の使用量は、特に制限されるものではないが、イミダゾリジノン誘導体の 重量を基準として、一般的に 1. 0〜50倍容量の範囲内である。中でも、 2. 5〜25倍 容量が好ましい。
[0166] 反応時の温度は、特に制限されるものではないが、例えば、一般的に、 30°C以下 で実施される。中でも、 100〜20°Cの範囲内が好ましいが、より好ましくは— 50〜 20°Cの範囲内であり、より好ましくは、 40°C〜20°Cの範囲内であり、特に好ましく は 30〜20°Cの範囲内である。
[0167] 反応を行う時間は特に制限されるものではないが、好ましくは 0. 1〜48時間、より 好ましくは 0. 1〜24時間である。 [0168] 上記一般式(2)で表される光学活性イミダゾリジノン誘導体では、イミダゾリジノン環 の 4位の置換基は、 2つとも水素原子であるが、上記反応により、 1ポット反応で異な る置換基を同時に導入することもできるし、 1つだけ置換基を導入することもできるし、 1つだけ置換基を導入して一旦生成物を単離後に 2つ目の置換基を段階的に導入 することちでさる。
[0169] すなわち、前記式 (8)で表される親電子剤を 1種類だけ使用すれば、前記式(3)に おいて、 R4と R5のうち一方が水素原子であり、他方が前記 R7である化合物、即ち、一 般式 (11)
[0170] [化 21]
Figure imgf000028_0001
[0171] (ϊζψ, η, m, R1, R2, R3, R7, * 1、 * 2、 * 3は前記に同じ。)で表される化合物を 製造することができる。
[0172] 一方、 2種類の親電子剤、即ち親電子剤 (8)と、それとは R7部分が異なる親電子剤
(8) '
R7,Y (8),
(式中、 R7,は R7と異なり、置換されていてもよい炭素数 1〜30のアルキル基、置換さ れて 、てもよ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18 のアルキニル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されてい てもよい炭素数 6〜18のァリール基を示し、 Yは脱離能を有する置換基を示す)の 2 種類の親電子剤を使用すれば、異なる置換基 R4及び R5 (この場合、 R4, R5は、一方 が R7であり、他方が R7,である)を同時に導入することができる。
[0173] 塩基、前記式 (2)で表される化合物、前記式 (8) (—般式 (8) ' ) (以下、一般式 (8) には、一般式 (8) 'も含むものとする)で表される化合物 (親電子剤)、反応溶媒の添 加順序に特に制限はな!、。前記式 (8)で表される化合物を 2種以上使用して反応を 実施する場合は、塩基、前記式(2)で表される化合物、 2種の前記式 (8)で表される 化合物、反応溶媒の添加順序に特に制限はない。好ましくは反応溶媒中、塩基の存 在下、 1種の前記式 (8)で表される化合物と前記式(2)で表される化合物を反応させ た後、塩基を追加し、もう 1種の前記式 (8)で表される化合物を添加する方法である。 この場合、 1種の前記式 (8)で表される化合物と前記式(2)で表される化合物を反応 させて得られる前記式(11)で表される化合物はー且単離してもよ!、し、単離しなくて もよいし、さらには、前記式(11)で表される化合物を経由せず、又は、前記式(11) で表される化合物の生成を確認せず 1ポットで反応を実施してもよい。
[0174] 親電子剤として一般式 (8)で表される化合物を 1種類用いた場合、一般式 (3)で表 される化合物において、 R4と R5のうち一方は R7と同じになる。一般式 (8)で表される 化合物を 2種類用いた場合、一般式 (3)で表される化合物において、 R4、 R5は、一方 が R7、他方が R7'となる。
[0175] 一般式(11)を製造するための、前記式 (8)で表される化合物の使用量は、特に制 限されるものではないが、前記式(2)で表される化合物のモル当量を基準として、一 般的に、 0. 1〜5当量が好ましぐ 0. 5〜2. 5当量がさらに好ましい。言うまでもなぐ 収率高く前記式(11)で表される化合物を得るためには、前記式(2)で表される化合 物に対して前記式 (8)で表される化合物を 1当量以上添加することが好ま U、。前記 式 (8)で表される化合物を 2種以上用いて 1ポットで異なる置換基を導入する場合は 、各々の前記式 (8)で表される化合物に対して、上記当量を用いてやればよい。
[0176] また、前述の方法で得られた前記式(11)で表される化合物に、塩基の存在下、前 記式 (8)で表される親電子剤を作用させ、 R4、 R5がいずれも水素原子でない前記式 (3)で表される光学活性イミダゾリジノン誘導体を製造することも可能である。本製造 方法の詳細な反応条件は前述の一般式 (2)から一般式 (3)の製造方法にお 、て、 前記式 (8)で表される化合物を 1種類用いて反応を実施する方法と同一である。
[0177] このようにして製造できたイミダゾリジノン環の 4位に置換基を持つ、前記式(3)で表 される、光学活性イミダゾリジノン誘導体 (R4、 R5のいずれか一方が水素原子であつ てもよいし、共に水素原子以外の基であってもよい)にたいして、有機溶媒及び水の うち、少なくとも 1種類を用いた溶媒中で、酸または塩基を作用させることにより、一般 式 (9)
[0178] [化 22]
[0179] (
Figure imgf000030_0001
、 * 3は前記に同じ)で表される、光学活性 N— (1—置換 フエニルェチル)アミノ酸誘導体が製造できる。ここでは次の 3つの変換反応が進行 する。なお、その順序については特に問うものではない。 3つの反応とは以下である。 i)イミダゾリジノン環 1位窒素原子の、 R3置換カルボニルォキシ基の脱離反応 ii)イミダゾリジノン環 N, N 架橋型置換基の加水分解による開環反応
iii)カルボン酸アミドから、カルボン酸への加水分解反応。
[0180] この反応には、有機溶媒及び Zまたは水が用いられる。用いられる有機溶媒の種 類は、特に制限されるものではなぐ例えば、 n—へキサン、 n—ヘプタン、 n—ォクタ ン、 n—ノナン、シクロへキサン、メチルシクロへキサンなどの脂肪族炭化水素類;ベン ゼン、トルエン、キシレン、クロ口ベンゼン、 o ジクロ口ベンゼンなどの芳香族炭化水 素類;酢酸メチル、酢酸ェチル、酢酸 n—ブチル、酢酸 tーブチル、酢酸イソプロピル などの酢酸エステル類;ジイソプロピルエーテル、 t—ブチルメチルエーテル、シクロ ペンチルメチルエーテル、テトラヒドロフラン、 1, 4 ジォキサンなどのエーテル類;ァ セト-トリル、プロピオ-トリルなどの-トリル類;メタノール、エタノール、 n—プロパノ ール、イソプロパノール、 n—ブタノール、イソブタノール、 2—メチルー 2—プロパノー ルなどのアルコール類; N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド、 1—メチル 2—ピロリドンなどのアミド類等が挙げられる。
[0181] これらの有機溶媒および水は、単独で用いてもよい。また 2種類以上の有機溶媒を 任意の割合で組み合わせて使用してもよ!/、。さらには有機溶媒と水とを組み合わせ て用いてもよぐこの場合、水と任意の割合で混合して用いてもよい。なお、交じり合 わない溶媒による非混合溶媒系で用いてもよい。中でも水、アルコール類とエーテル 類の使用が好ましぐより好ましいのは水、メタノール、エタノール、イソプロパノール、 テトラヒドロフランである。
[0182] 用いる有機溶媒及び Zまたは水の使用量は、特に制限されるものではないが、一 般式 (3)で表される、光学活性イミダゾリジノン誘導体の重量を基準として、一般的に 1〜: LOO倍容量の範囲内である。中でも、 1〜80倍容量が好ましぐ更に 1〜50倍容 量がより好ましぐ最も好ましくは 1〜30倍容量である。
上記のように調製した、一般式(3)で表される光学活性イミダゾリジノン誘導体溶液に 、酸または塩基を添加し、反応を行う。
[0183] 用いる酸、または塩基については、特に制限されるものではないが、例えば、酸とし ては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、発煙硝酸などの鉱酸類;メタン スルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、トリフルォロメタンスルホン酸 などのスルホン酸類;トリフルォロ酢酸、トリクロ口酢酸などのハロゲノ脂肪酸などが挙 げられる。
[0184] また塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、水 酸化カルシウム、水酸化セシウム、水酸化バリウム、水酸化マグネシウムなどの金属ヒ ドロキシド;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、カルシウムメトキ シド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、カルシウムエトキシ ド、リチウム tーブトキシド、ナトリウム tーブトキシド、カリウム t—ブトキシドなどの金属ァ ルコキシド等が挙げられる。
[0185] 酸を用いる場合は鉱酸が好適であり、中でも塩酸、硫酸が好ましい。塩基を用いる 場合は、金属ヒドロキシドが好適であり、中でも水酸化リチウム、水酸化ナトリウム、水 酸ィ匕カリウム、水酸ィ匕カルシウムが好適である。
[0186] これらの酸または塩基の使用量についても、特に制限されるものではないが、用い る光学活性イミダゾリジノン誘導体のモル当量にたいして、一般的に、 1〜: LOOモル 当量の範囲内であり、好ましくは 1〜80モル当量であり、より好ましくは 1〜50モル当 量、特に好ましくは 1〜40モル当量の範囲内である。
[0187] このように酸または塩基を作用させて反応を行う際の温度についても特に制限され るものではない。酸性条件で反応を実施する場合では、通常、 0〜180°Cの範囲内 であり、中でも 0〜150°Cが好ましぐより好ましくは 0〜130°Cの範囲内である。塩基 性条件下で反応を実施する場合では、通常、 10〜50°Cの範囲内であり、中でも 10〜30°Cの範囲内が好適である。
[0188] 反応を行う時間は特に制限されるものではないが、好ましくは 0. 1〜72時間、より 好ましくは 0. 1〜60時間である。
[0189] このようにして、一般式(9)で表される、光学活性 2—(1 置換フエニルェチル)ァ ミノ酸誘導体が合成できる。このアミノ酸誘導体の反応液は、通常、酸性または塩基 性を示しているが、この反応液から、直接アミノ酸誘導体の塩を晶析により取得するこ とが可能である。また、適当な塩基、または酸を添加して、液性を中性付近に調整し たのち、中和晶析によって光学活性 2—(1 置換フ ニルェチル)アミノ酸誘導体を 得ることちでさる。
[0190] また一般式(9)で表される、光学活性 2—(1 置換フエニルェチル)アミノ酸誘導 体のアミノ基上の置換基である 1 (置換フエニル)ェチル基を、酸、酸化剤、接触水 素添加反応などの、通常の 1 (置換フエ-ル)ェチル基を脱保護する条件によって 脱保護することにより、一般式(10)
[0191] [化 23]
Figure imgf000032_0001
[0192] (式中、 R4、 R5、 * 3は前記に同じ)で表される、光学活性アミノ酸を製造することがで きる。
[0193] このようにして合成できた光学活性アミノ酸誘導体は、イオン交換カラム、中和晶析 、造塩晶析など、通常、アミノ酸を単離するために使用される諸条件により取得できる ことは勿論のこと、反応液から直接、 N 力ルバモイル化ゃ N ァシル化を行い、 N 誘導ィ匕アミノ酸とすることも可能である。得られた N—誘導化アミノ酸も、抽出、晶析 などの操作によって単離することが可能である。 [0194] さらに一般式 (3)で表される光学活性イミダゾリジノン誘導体の窒素上の置換基で ある、 1— (置換フエ-ル)ェチル基、およびイミダゾリジノン環を構成している N, N— 架橋型置換基を脱保護し、一般式 (12)
[0195] [化 24]
[0196] (
Figure imgf000033_0001
3は前記に同じ)で表される、アミノ酸アミドを合成したのち、有機溶 媒及び Zまたは水のうち、少なくとも 1種類を用いた溶媒中で、酸または塩基を作用 させ、一般式(10)で表される光学活性アミノ酸誘導体を製造することも可能である。
[0197] 1— (置換フエ-ル)ェチル基、およびイミダゾリジノン環を構成している N, N—架 橋型置換基の脱保護は、接触水素添加反応により、 1段階で実施することが可能で あるし、またイミダゾリジノン環 N, N—架橋型置換基に関しては、加水分解によって 開環することも当然可能であるが、この開環反応を実施しながら、接触水素添加反応 により、 1段階で 1— (置換フエ-ル)ェチル基を脱保護することも可能である。
[0198] この操作の例として、例えば前記式(3)で表されるイミダゾリジノン誘導体を、有機 溶媒および Zまたは水のうち、いずれか 1種類以上を用いた溶媒に溶解したのち、 接触水素添加触媒を加え、更に水素ガスと反応させる方法があり、これにより前記式 ( 12)で表される光学活性アミノ酸アミドが合成できる。
このとき用いる接触水素添加用触媒は、通常用いられるものであれば、特に制限され るものではないが、例えば、ノ《ラジウム—炭素、水酸化パラジウム—炭素、酸化パラ ジゥム、パラジウム黒などのパラジウム触媒、酸化白金や白金黒などの白金触媒が挙 げられ、なかでもノ《ラジウム触媒が好適であり、ノ《ラジウム—炭素、水酸化パラジウム 炭素が更に好適である。
[0199] 触媒の使用量も特に制限されないが、一般的に、基質であるイミダゾリジノン誘導 体の重量を基準として、 0. 01〜5. 0倍重量の範囲内であるのが好ましぐ好ましくは 0. 05〜: L 5倍重量の範囲内である。
[0200] 反応には水素ガスが使用され、その使用容量や圧力も、反応に影響を与えない限 り、特に制限されるものではないが、一般的に、 0. 01MPa〜100MPaの範囲内で あるのが好ましぐより好ましくは 0. l〜50MPaの範囲内である。
この反応には通常有機溶媒および Zまたは水が使用される。用いられる有機溶媒の 種類や使用量については、前述の一般式(3)から、一般式(9)への変換に用いるこ とができる有機溶媒の例をそのまま例示でき、溶媒の組み合わせや、水との併用に ついても同様である。
[0201] 中でもへキサン、ヘプタン、トルエン、酢酸メチル、酢酸ェチル、酢酸イソプロピル、 酢酸ブチル、メタノール、エタノール、イソプロパノール、 n—ブタノール、イソブタノー ル、 2—ブタノール、 2—メチルー 2—プロパノール、ジェチルエーテル、ジイソプロピ ノレエーテノレ、テトラヒドロフラン、 tert ブチルメチルエーテル、シクロペンチルメチル エーテルなどが好適であり、テトラヒドロフランがより好適である。
[0202] 更にこの反応は、酸を添加して行うこともできる。添加する酸の種類についても特に 制限されるものはないが、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、 発煙硝酸などの鉱酸類;メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸 、トリフルォロメタンスルホン酸などのスルホン酸類;トリフルォロ酢酸、トリクロ口酢酸な どのハロゲノ脂肪酸、ギ酸、酢酸、プロピオン酸などが挙げられる力 中でも塩酸、硫 酸、ギ酸、酢酸が好適である。
[0203] このようにして 1 (置換フエ-ル)ェチル基、およびイミダゾリジノン環を構成して!/ヽ る N, N 架橋型置換基を脱保護し、光学活性アミノ酸アミドを製造したのち、上記ェ 程 iii)の操作、すなわちカルボン酸アミドからカルボン酸への加水分解反応を実施す ることで、前述の一般式(10)で表される光学活性アミノ酸を製造することができる。こ のとき用いる酸または塩基の種類、使用量については、前述の一般式(3)で表され るイミダゾリジノン誘導体から、一般式(9)で表される N— (1 フエ-ルェチル置換) 光学活性アミノ酸への変換に用いられるものをそのまま例示できる。
[0204] 次に一般式(2)で表される光学活性イミダゾリジノン誘導体に、塩基の存在下、一 般式 (13)
R8 - CHO (13)
(式中、 R8は、水素原子、置換されていてもよい炭素数 1〜30のアルキル基、置換さ れて 、てもよ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18 のアルキニル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されてい てもよい炭素数 6〜18のァリール基を示す)で表されるアルデヒドを作用させ、一般 式 (14)
[0205] [化 25]
[0206] (式
Figure imgf000035_0001
2、 * 3は前記と同じであり、 R8が水素原子で ない場合、 * 4は不斉炭素原子を示す)で表される、ヒドロキシ基を持つ光学活性イミ ダゾリジノン誘導体を製造する方法につ ヽて説明する。
[0207] 本工程で使用される前記式(2)で表される化合物は、光学純度が高いものほど、得 られる化合物(14)の不斉炭素原子 * 3における光学純度が高くなるので好ましいが 、光学純度にっ 、ては特に制限されるものではな 、。
[0208] ここで一般式(13)で表される化合物はアルデヒドであり、一般式(13)における は、水素原子、置換されていてもよい炭素数 1〜30のアルキル基、置換されていても ょ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18のアルキ- ル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されていてもよい炭 素数 6〜 18のァリール基を示している。なお、 R8が水素原子である場合、 * 4は不斉 炭素原子ではない。
[0209] アルキル基の例としては、例えば、メチル基、ェチル基、 n プロピル基、イソプロピ ル基、 n ブチル基、イソブチル基、 1 メチルプロピル基、 2—メチルプロピル基、ぺ ンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシル 基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、へキサデシル基、 ヘプタデシル基、ォクタデシル基、ノナデシル基などが挙げられ、これらの任意の位 置において、置換基を有していてもよい。
[0210] 置換基の種類としては、ハロゲン原子、アルコキシ基、ヒドロキシル基、ァラルキル ォキシ基、アルキルチオ基、アルキルシリルォキシ基、ァリールアルキルシリルォキシ 基などが挙げられる。例として、 3 クロ口プロピル基、 2—メトキシェチル基、ベンジ ルォキシメチル基、 2—べンジルォキシェチル基、 2—(メルカプトメチル)ェチル基、 2- (tーブチルジメチルシリルォキシ)ェチル基、 2—(tーブチルジフエ-ルシリルォ キシ)ェチル基、 2—トリメチルシリルォキシェチル基などが挙げられる。
[0211] 置換されていてもよい炭素数 2〜18のァルケ-ル基としては、例えばァリル基、ビ- ル基、 3 ブテュル基、 2—メチルー 2 プロぺ-ル基、 3 フエ-ルー 2—プロべ- ル基などが挙げられる。置換されていてもよい炭素数 2〜18のアルキニル基としては 、例えばプロピニル基、 2 ブチニル基、 3 ブチニル基、 2 ペンチニル基などが挙 げられる。
[0212] 置換されていてもよい炭素数 7〜18のァラルキル基としては、例えばべンジル基、 p ーメトキシフエ-ルメチル基、 p -トロフエ-ルメチル基、 p ブロモフエ-ルメチル基 、 p クロ口フエ-ルメチル基、 2, 4 ジクロロフエ-ルメチル基、ナフチルメチル基、 1 インダノィル基などが挙げられる。
置換されていてもよい炭素数 6〜18のァリール基としては、例えばフエ-ル基、 p—メ トキシフエ二ル基、ナフチル基などが挙げられる。
[0213] 光学活性ヒドロキシアミノ酸を製造するにあたって、 R8としては、水素原子、メチル基 、ェチル基、ベンジル基、 2—フエ-ルェチル基、プロピル基、ァリル基、プロピ-ル 基、 1ーメチループ口ピル基、 2—メチループ口ピル基、ベンジルォキシメチル基、 2— (メルカプトメチル)ェチル基、 p—メトキシフエ-ルメチル基、 2—トリメチルシリルォキ シェチル基が好ましい。
[0214] 使用される一般式(13)で表される親電子剤の具体的な例としては、例えば、ホル ムアルデヒド、ァセトアルデヒド、プロピオンアルデヒド、フヱニルァセトアルデヒド、 3— フエ-ルプロピオンアルデヒド、ブチルアルデヒド、ァクロレイン、 3—ブテュルアルデ ヒド、 3 ブチュルアルデヒド、 2 メチルブチルアルデヒド、 3 メチルブチルアルデ ヒド、ベンジルォキシァセトアルデヒド、 2- (メルカプトメチル) プロピオンアルデヒド 、 p—メトキシフヱ-ルァセトアルデヒド、 2—トリメチルシリルプロピオンアルデヒド、ベ ンズアルデヒド、 p—メトキシベンズアルデヒドなどを例示できる。
[0215] 一般式(13)で表される親電子剤の使用量としては、特に制限されるものではない 力 一般的に、前記式(14)で表される化合物に対して 0. 1〜5当量が好ましぐ 0. 5 〜2. 5当量がさらに好ましい。言うまでもなぐ収率高く前記式(14)で表される化合 物を得るためには、前記式(2)で表される化合物に対して前記式(13)で表される化 合物を 1当量以上添加することが好ま 、。
[0216] 反応は不活性気体雰囲気下で行うのが好ましい。特に窒素、またはアルゴン雰囲 気下で行うのが好適である。
[0217] 反応には塩基が用いられる。用いる塩基は特に制限されるものではないが、無機 塩基または有機塩基が好適である。中でも有機塩基が好ましぐ特に有機金属塩基 が最も好適である。
[0218] 有機金属塩基としては、例えば、リチウムジイソプロピルアミド、リチウムジシクロへキ シルアミド、リチウム 2, 2, 6, 6—テトラメチルピペラジド、リチウムへキサメチルジシラ ジド、ナトリウムへキサメチルジシラジド、カリウムへキサメチルジシラジド、塩化 tーブ チルマグネシウム、リチウム t—ブトキシド、ナトリウム t—ブトキシド、カリウム t—ブトキ シド、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウムなどが挙 げられる。
[0219] 中でも、リチウムジイソプロピルアミド、リチウムへキサメチルジシラジド、ナトリウムへ キサメチルジシラジド、カリウムへキサメチルジシラジド、塩化 t ブチルマグネシウム 、カリウム t—ブトキシド、ナトリウム t—ブトキシド、リチウム t—ブトキシド、水素化リチウ ム、水素化ナトリウム、水素化カリウム、水素化カルシウムが好ましぐリチウムアミド型 塩基、ジシラジド型塩基がより好ましぐリチウムジイソプロピルアミド、リチウムジシラジ ド、ナトリウムジシラジド、カリウムジシラジドが最も好適である。
[0220] これらの塩基の使用量は、特に制限されないが、一般的に用いる一般式 (2)で表さ れる光学活性イミダゾリジノン誘導体のモル当量を基準として、例えば、 0. 1〜2. 0 モル当量の範囲内である。中でも 0. 5〜1. 5当量の範囲内が好ましぐより好ましく は 0. 9〜1. 3当量の範囲内である。
[0221] 反応には通常溶媒が使用される。使用できる溶媒は、特に制限されるものではない 1S 一般的に、塩基との反応を避けるため、上述の塩基と反応しない溶媒が好ましい 。例えば、 n—へキサン、 n—ヘプタン、 n—オクタン、 n—ノナン、シクロへキサン、メチ ルシクロへキサンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、クロ口べ ンゼン、 o—ジクロ口ベンゼン、ェチルベンゼンなどの芳香族炭化水素類;テトラヒドロ フラン、 1, 2—ジメトキシェタン、ジェチルエーテル、ジイソプロピルエーテル、 tーブ チルメチルエーテル、シクロペンチルメチルエーテルなどのエーテル類等が挙げられ る。中でもテトラヒドロフラン、トルエン、ェチルベンゼン、 1, 2—ジメトキシェタンが好 適であり、これらの溶媒は単独で、または 2種類以上を組み合わせて用いてもよい。
[0222] 用いる溶媒の使用量は、特に制限されるものではないが、一般的に、イミダゾリジノ ン誘導体の重量を基準として、 1. 0〜50倍容量の範囲内であるのが好ましぐ中でも 、 2. 5〜25倍容量が好ましい。
[0223] 反応時の温度は、特に制限されるものではないが、例えば、通常 30°C以下で実施 される。中でも、— 100〜0°Cの範囲内が好ましいが、より好ましくは— 100〜0°Cの 範囲内であり、特に好ましくは— 100〜― 30°Cの範囲内である。反応を行う時間は 特に制限されるものではないが、好ましくは 0. 1〜48時間、より好ましくは 0. 1〜24 時間である。
[0224] またこの反応において、 R8が水素原子でない場合、不斉炭素原子 * 4が新たに生 成する。 * 4における光学純度は、特に制限されるものではないが、一般的に、 50% de以上であることが好ましぐより好ましくは 60%de以上である。
[0225] 次に、上記一般式(14)で表される光学活性ヒドロキシイミダゾリジノン誘導体に、有 機溶媒及び Zまたは水のうち、少なくとも 1種類を用いた溶媒中で、酸または塩基を 作用させ、一般式 (15)
[0226] [化 26]
Figure imgf000039_0001
[0227] (式中、 r R^ R^ * 1、 * 3、 * 4は前記に同じ)で表される、光学活性 N— (1—フエ -ルェチル)ヒドロキシアミノ酸誘導体を製造する方法につ 、て説明する。
[0228] ここでは、次の 3つの変換反応が進行する。なお、その順序については特に問うも のではない。 3つの反応とは以下の反応である。
i)イミダゾリジノン環 1位窒素原子の、 R3置換カルボニルォキシ基の脱離反応 ii)イミダゾリジノン環 N, N 架橋型置換基の加水分解による開環反応
iii)カルボン酸アミドから、カルボン酸への加水分解反応。
[0229] この反応には、有機溶媒及び Zまたは水が用いられる。用いられる有機溶媒の種 類は、特に制限されるものではないが、例えば、 n—へキサン、 n—ヘプタン、 n—オタ タン、 n—ノナン、シクロへキサン、メチルシクロへキサンなどの脂肪族炭化水素類;ベ ンゼン、トルエン、キシレン、クロ口ベンゼン、 o ジクロロベンゼンなどの芳香族炭ィ匕 水素類;酢酸メチル、酢酸ェチル、酢酸 n—ブチル、酢酸 tーブチル、酢酸イソプロピ ルなどの酢酸エステル類;ジイソプロピルエーテル、 t—ブチルメチルエーテル、シク 口ペンチルメチルエーテル、テトラヒドロフラン、 1, 4 ジォキサンなどのエーテル類; ァセトニトリル、プロピオ-トリルなどの-トリル類;メタノール、エタノール、 n プロパノ ール、イソプロパノール、 n—ブタノール、イソブタノール、 2—メチルー 2—プロパノー ルなどのアルコール類; N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド、 1ーメチルー 2—ピロリドンなどのアミド類等が挙げられる。これらの有機溶媒および水 は、単独で用いてもよい。
[0230] また 2種類以上の有機溶媒を任意の割合で組み合わせて使用してもよい。さらには 有機溶媒と水とを組み合わせて用いてもよぐこの場合、水と任意の割合で混合して 用いてもよい。なお、交じり合わない溶媒による非混合溶媒系で用いてもよい。中で も水、またはアルコール類とエーテル類の使用が好ましぐより好ましいのは水のみの 使用、メタノール、エタノール、イソプロパノール、テトラヒドロフランである。
[0231] 用いる有機溶媒および Zまたは水の使用量は、特に制限されるものではないが、 一般式(14)で表される光学活性ヒドロキシイミダゾリジノン誘導体の重量を基準とし て、一般的に、 1〜500倍容量の範囲内である。中でも、 1〜300倍容量が好ましぐ より好ましくは 1〜 200倍容量である。
[0232] 上記のようにして調製した、一般式(14)で表される光学活性ヒドロキシイミダゾリジ ノン誘導体溶液に、酸または塩基を添加し反応を行う。用いる酸、または塩基につい ては、特に制限されるものではないが、酸としては、例えば、塩酸、臭化水素酸、ヨウ 化水素酸、硫酸、硝酸、発煙硝酸などの鉱酸類;メタンスルホン酸、ベンゼンスルホン 酸、トルエンスルホン酸、トリフルォロメタンスルホン酸などのスルホン酸類;トリフルォ 口酢酸、トリクロ口酢酸などのハロゲノ脂肪酸などが挙げられる。また塩基としては、例 えば、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕カルシウム、水酸ィ匕 セシウム、水酸化バリウム、水酸ィ匕マグネシウムなどの金属ヒドロキシド;リチウムメトキ シド、ナトリウムメトキシド、カリウムメトキシド、カルシウムメトキシド、リチウムエトキシド、 ナトリウムエトキシド、カリウムエトキシド、カルシウムエトキシド、リチウム tーブトキシド、 ナトリウム t—ブトキシド、カリウム t—ブトキシドなどの金属アルコキシド等が挙げられる
[0233] 酸を用いる場合は鉱酸が好適であり、中でも塩酸、硫酸が好ましい。塩基を用いる 場合は、金属ヒドロキシドが好適であり、中でも水酸化リチウム、水酸化ナトリウム、水 酸ィ匕カリウム、水酸ィ匕カルシウムが好適である。
[0234] これらの酸、または塩基の使用量についても、特に制限されるものではないが、用 いる光学活性ヒドロキシイミダゾリジノン誘導体のモル当量にたいして、一般的に、 1 〜200モル当量の範囲内であり、好ましくは 1〜100モル当量、より好ましくは 1〜60 モル当量の範囲内である。
[0235] このように酸または塩基を作用させて反応を行う際の温度についても特に制限され るものではない。酸性条件で反応を実施する場合では、一般的に、 0〜180°Cの範 囲内であり、中でも 0〜150°Cが好ましぐより好ましくは 0〜130°Cの範囲内である。 塩基性条件下で反応を実施する場合では、一般的に、 10〜50°Cの範囲内であり 、中でも— 10〜30°Cの範囲内が好適である。反応を行う時間は特に制限されるもの ではないが、好ましくは 0. 1〜72時間、より好ましくは 0. 1〜60時間である。
[0236] このようにして一般式(15)で表される、光学活性 2—(1 置換フエ-ルェチル) 3 -ヒドロキシアミノ酸誘導体が合成できる。このヒドロキシアミノ酸誘導体の反応液は 、通常、酸性または塩基性を示しているが、この反応液から、直接ヒドロキシアミノ酸 誘導体の塩を晶析により取得することが可能である。また、適当な塩基、または酸を 添加して、液性を中性付近に調整したのち、中和晶析によって光学活性 2— (1—置 換フエ-ルェチル) 3—ヒドロキシアミノ酸誘導体を得ることもできる。
[0237] さらに、アミノ基上の置換基である 1— (置換フエ-ル)ェチル基を、酸、酸化剤、接 触水素添加反応などの、通常の 1 (置換フエニル)ェチル基を脱保護する条件によ つて脱保護することにより、一般式(16)
[0238] [化 27]
Figure imgf000041_0001
[0239] (式中、 R8、 * 3、 * 4は前記に同じ)で表される、光学活性ヒドロキシアミノ酸を製造 することができる。このようにして合成された光学活性アミノ酸誘導体は、イオン交換 カラム、中和晶析、造塩晶析など、通常、アミノ酸を単離するために使用される諸条 件により取得できることは勿論のこと、反応液から直接、 N—力ルバモイルイ匕や N—ァ シル化を行い、 N 誘導ィ匕アミノ酸とすることも可能である。得られた N 誘導化アミ ノ酸も、抽出、晶析などの操作によって単離することが可能である。
[0240] さらに、一般式(14)で表される光学活性ヒドロキシイミダゾリジノン誘導体の窒素上 の置換基である、 1— (置換フエ-ル)ェチル基、およびイミダゾリジノン環を構成して いる N, N 架橋型置換基を脱保護し、一般式(17)
[0241] [化 28]
Figure imgf000042_0001
[0242] (式中、 R8、 * 3、 * 4は前記に同じ)で表される、ヒドロキシアミノ酸アミドとしたのち、 有機溶媒および水のうち、少なくとも 1種類を用いた溶媒中で、酸または塩基を作用 させ、光学活性アミノ酸誘導体を製造することも可能である。
[0243] 1 - (置換フエ-ル)ェチル基、およびイミダゾリジノン環を構成して ヽる N, N—架 橋型置換基の脱保護は、接触水素添加反応により、 1段階で実施することが可能で あるし、またイミダゾリジノン環 N, N—架橋型置換基に関しては、加水分解によって 開環することも当然可能であるが、この開環反応を実施しながら、接触水素添加反応 により、 1段階で 1— (置換フエ-ル)ェチル基を脱保護することも可能である。
[0244] この操作の例として、例えば前記式(14)で表されるヒドロキシイミダゾリジノン誘導 体を、有機溶媒および Zまたは水のうち、いずれか 1種類以上を用いた溶媒に溶解 したのち、接触水素添加触媒を加え、更に水素ガスと反応させる方法があり、これに より、前記式( 17)で表される光学活性アミノ酸アミドが合成できる。
[0245] このとき用いる接触水素添加用触媒は、通常用いられるものであれば、特に制限さ れるものではないが、例えば、ノ《ラジウム—炭素、水酸化パラジウム—炭素、酸化パ ラジウム、パラジウム黒などのパラジウム触媒、酸化白金や白金黒などの白金触媒が 挙げられ、中でもノラジウム触媒が好適であり、ノラジウム—炭素、水酸化パラジウム 炭素が更に好適である。
[0246] 触媒の使用量も特に制限されないが、一般的に、基質であるイミダゾリジノン誘導 体の重量を基準として、 0. 01〜5. 0倍重量の範囲内であり、好ましくは 0. 05〜: L 5倍重量の範囲内である。
[0247] 反応には水素ガスが使用され、その使用容量や圧力も、反応に影響を与えない限 り、特に制限されない。一般的に、 0. 01MPa〜100MPaの範囲内であり、より好ま しくは 0. l〜50MPaの範囲内である。
[0248] この反応には、有機溶媒および Zまたは水が使用される。用いられる有機溶媒の 種類や使用量については、前述の一般式(14)から、一般式(15)への変換に用いる ことができる有機溶媒の例をそのまま例示でき、溶媒の組み合わせや併用につ!/、て も同様である。中でもへキサン、ヘプタン、トルエン、酢酸メチル、酢酸ェチル、酢酸 イソプロピル、酢酸ブチル、メタノール、エタノール、イソプロパノール、 n—ブタノール 、イソブタノール、 2—ブタノール、 2—メチルー 2—プロパノール、ジェチルエーテル 、ジイソプロピルエーテル、テトラヒドロフラン、 t—ブチルメチルエーテル、シクロペン チルメチルエーテルなどが好適であり、テトラヒドロフランがより好適である。
[0249] このようにして 1 (置換フエ-ル)ェチル基、およびイミダゾリジノン環を構成して!/ヽ る N, N—架橋型置換基を脱保護し、光学活性ヒドロキシアミノ酸アミドを製造したの ち、上記工程 iii)の操作、すなわちカルボン酸アミド力 カルボン酸への加水分解反 応を実施することで、前述の一般式( 17)で表される光学活性ヒドロキシアミノ酸を製 造することができる。このとき用いる酸または塩基の種類、使用量についても前述の 一般式(14)で表されるイミダゾリジノン誘導体から、一般式(15)で表される N— (1 フエニルェチル置換)光学活性アミノ酸への変換に用いられるものをそのまま例示 できる。
[0250] なお、前述の化合物(1)、(2)、(3)において記載したように、以上の一般式(1)で 表されるイミダゾリジノン誘導体異性体混合物合成から、一般式 (9)で表される光学 活性 2—(1 置換フエニルェチル)アミノ酸誘導体合成、または一般式(15)で表さ れる光学活性 3 ヒドロキシ 2—( 1 置換フエ-ルェチル)アミノ酸誘導体合成に おいては、 n=0であることが好ましぐまた R2が塩素原子であり、 m= 2、かつフエ- ル基の置換位置が 2, 6位または 3, 4位である誘導体の使用が好ましい。また R2がメ チル基であり、 m= 3、かつフエ-ル基の置換位置が 2, 4, 6位である誘導体の使用 も好ましい。さらに R3カ^—ブチル基、ベンジル基、ァリル基であるイミダゾリジノン誘 導体の使用が好ましい。
[0251] また、以上にぉ 、ては、一般式(2)で表される光学活性イミダゾリジノン誘導体を一 般式 (8)で表される化合物や、一般式(13)で表される化合物との反応につ!/、て記載 したが、一般式 (2)で表される光学活性イミダゾリジノン誘導体は、その他の親電子 剤を用いて、一般的にイミダゾリジノン誘導体が縮合できる基質と反応できることは言 うまでも無い。例としてマイケル反応、マン-ッヒ反応、ァリール基とのカップリング反 応ゃ、クライゼン縮合などを挙げることができる。
発明の効果
[0252] 本発明によって製造される光学活性イミダゾリジノン誘導体は、光学活性なアミノ酸 合成に汎用的に利用することができ、医薬分野を始め多方面において製造上重要 な、光学活性アミノ酸を簡便に製造することができる。
発明を実施するための最良の形態
[0253] 以下に例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限 定されるものではない。
[0254] (実施例 1) (R)— 2—「( 1 フエ-ルェチル)ァミノ 1 エタナミド
[0255] [化 29]
Figure imgf000044_0001
[0256] クロロアセトアミド 95g (l. Omol)と(R)—フエ-ルェチルァミン 123g (l. Omol)を 含む無水ァセトニトリル溶液(570ml)に、窒素気流下において炭酸カリウム 140g (l . Omol)とヨウ化ナトリウム 15. 2g (0. lmol)を加えて穏ゃ力に加熱し、 4時間後に加 熱還流した。 17時間加熱還流後、室温へと冷却して不溶物をろ過後、ケーキをァセ トニトリル 200mlで洗浄した。母洗液を濃縮後、酢酸ェチル 1000mlに溶解し、水お よび飽和食塩水で洗浄した。有機層を濃縮後、酢酸ェチル 150mlに再溶解し、これ にへキサン 900mlを滴下して晶析操作を行い、表題の化合物を 155g (86%収率) 白色結晶として得た。
'H-NMR (400MHz, CDC1 ): δ 7. 35— 7. 23 (5Η, m) , 6. 95 (1H, Brs) , 5
3
. 76 (1H, brs) , 3. 76 (1H, q, J = 6. 6Hz) , 3. 16 (2H, s) , 1. 81 (1H, brs) , 1 . 38 (3H, d, J = 6. 6Hz;)。
[0257] (実施例 2) (2. 6 ジクロロフェニル) 1— ( (1,R) フエニルェチル)テトラヒドロ
1H— 4 イミダゾロン
[0258] [化 30]
Figure imgf000045_0001
[0259] 実施例 1の方法で得られた (R)— 2— [(1 フエ-ルェチル)ァミノ]—エタナミド 53 .5g(0.3mol)、 2, 6 ジクロロべンズアルデヒド 50g(0.3mol)、および p トルェ ンスルホン酸 1.4g(7. lmmol)のトルエン溶液(500ml)を、窒素気流下において、 外温 120 130°Cにて 22時間加熱還流を行った。室温に冷却後、反応液を濃縮し 粗生成物を得た。粗生成物を酢酸ェチル 160mlに溶解したのち、へキサン 220mlを 滴下して晶析操作を行い、表題の化合物を 69.7g(72.7%収率)白色結晶として得 た。更に母液を濃縮後、酢酸ェチル 50ml、へキサン 50mlを使用して同様の晶析操 作を 2回行い、表題の化合物を 18.5g(19.2%収率)白色結晶として得た。総収量 (総収率)は、 88.2g(91.9%)であった。
'H-NMR (400MHz, CDC1 ): δ 7.32— 7.18 (8Η, m), 6.47(1H, s), 6.2
3
1(1H, s), 3.87(1H, q, J = 6.6Hz) , 3.49(1H, dd, J = 2.4Hz, 15.1Hz), 3.21 (1H, dd, J=l.2Hz, 15.1Hz), 1.16 (3H, d, 6.6Hz)。
[0260] (実施例 3) (2R) - (2.6 -ジクロロフエ-ル_) -1-((1'R)-フエニルェチル)テト
2ヒヒ、ロー 1H— 4 イミ 'ゾロン
[0261] [化 31]
Figure imgf000045_0002
[0262] 実施例 2の方法で得られた(2, 6 ジクロ口フエ-ル)ー1 ((l'R) フエ-ルェチ ル)テトラヒドロ一 1H— 4—イミダゾロン 82.6g(0.25mol)をァセトニトリル 140mlに てスラリー洗浄し、表題の化合物と 2S異性体の異性体混合物を湿結晶として 39.5g (異性体比;2尺:23 = 73:27)得た。これをァセトニトリル 240ml、ァセトニトリル 70ml にて順次スラリー洗浄を行ったのち、真空減圧下乾燥し、表題の化合物を 16g (異性 体比; 2R: 2S = 99. 4 : 0. 6)得た。これらの母液であるァセトニトリル溶液を濃縮し粗 生成物を得たのち、ァセトニトリル 573ml、 286ml、 158mlにて順次スラリー洗浄、減 圧下乾燥を行い、表題の化合物を 5. 2g (異性体比; 2R: 2S = 97. 9 : 2. 1)得た。こ れらを合わせた収率は 25. 6% (51%回収率)であった。このとき生成した晶析母液 を混合濃縮して、 (2, 6 ジクロロフエ-ル)一 1— ( (1,R)—フエ-ルェチル)テトラヒ ドロ 1H— 4—イミダゾロンの異性体混合物を 59. lg褐色油状物として得た。
'H-NMR (400MHz, CDC1 ): δ 7. 32— 7. 18 (8Η, m) , 6. 47 (1H, s) , 6. 2
3
1 (1H, s) , 3. 87 (1H, q, J = 6. 6Hz) , 3. 49 (1H, dd, J = 2. 4Hz, 15. 1Hz) , 3. 21 (1H, dd, J= l. 2Hz, 15. 1Hz) , 1. 16 (3H, d, 6. 6Hz)。
[0263] (実施例 4) (2R) - (2. 6 ジクロロフエ二ル)一 1— ( (1,R)—フエニルェチル)テト ラヒドロ 1H— 4 イミダゾロン
[0264] [化 32]
Figure imgf000046_0001
[0265] 実施例 2で得られた(2, 6 ジクロ口フエ-ル)ー1 ((1,R) フエ-ルェチル)テト ラヒドロ一 1H— 4—イミダゾロン 8. 8g (0. 026mol)をァセトニトリル 15mlに懸濁し、 p —トルエンスルホン酸 100mg (0. 5mmol)、および蒸留水 31mg (l. 72mmol)をカロ え、 70°Cに加温して均一溶液とした。 65°Cに冷却後、実施例 3で得られた表題の化 合物を種晶として約 50mg添加した。 1時間かけて 60°Cに冷却後、 3. 5時間かけて 5 0°Cに冷却した。 50°Cで 18時間熟成した後、 9時間かけて 25°Cに冷却した。さらに 2 5°Cで 15時間熟成した後、析出した結晶をろ過した。ケーキをァセトニトリル 10ml X 2回、へキサン 10ml X 2回洗浄し、表題の化合物を湿結晶として 6. 2g (70%収率、 88. 4%de)得た。得られた結晶をァセトニトリル 10ml、 5mlで各々洗浄し、更にへキ サン 10ml X 2回洗浄後、真空下において乾燥し、表題の化合物を 5. 0g (56. 1% 収率、 99. 7%de)取得した。
[0266] (実施例 5) (2R1- (2._6—ジクロ口フエ-ル) _ 1— iil 'R)—フエ-ルェチル)テト. ラヒドロー 1H— 4 イミタゾロン
[0267] [化 33]
Figure imgf000047_0001
[0268] 実施例 2で得られた(2, 6 ジクロ口フエ-ル)ー1 ((1 R) フエ-ルェチル)テト ラヒドロ一 1H— 4—イミダゾロン 8. 8g (0. 026mol)をァセトニトリル 12. 5mlに懸濁し p—トルエンスルホン酸 100mg (0. 5mmol)、および蒸留水 31mg (l. 72mmol) を加え、 80°Cに加温して均一溶液とした。 65°Cに冷却後、実施例 3で得られた表題 の化合物を種晶として約 50mg添加した。 45分 けて 60°Cに冷却後、 2. 5時間かけ て 50°Cに冷却した。 50°Cで 15時間熟成した後、 10時間かけて 30°Cに冷却した。さ らに 30°Cで 13時間熟成した後、析出した結晶をろ過した。ケーキをァセトニトリル 15 mi x 2回、へキサン 15ml X 2回洗浄し、真空減圧下乾燥を行い、表題の化合物を 5 . 9g (67%収率、 99. 9%de)得た。
[0269] (実施例 6) (2R) - d 6— 2クロ口フエニル) _— 1— il 'R) フエニルェチル)テト ラヒドロー 1H— 4 イミタゾロン
[0270] [化 34]
Figure imgf000047_0002
[0271] 実施例 2で得られた(2, 6 ジクロ口フエ-ル)ー1 ((1 R) フエ-ルェチル)テト ラヒドロ一 1H— 4—イミダゾロン 8. 7g (0. 026mol)をァセトニトリル 12. 5mlに懸濁し 、トリフルォロ酢酸 592mg (5. 19mmol)をカ卩え、 80°Cに加温して均一溶液とした。 6 0°Cに冷却後、実施例 3で得られた表題の化合物を種晶として約 50mg添加した。 65 °Cに昇温し 4時間攪拌したのち、 60°Cに冷却して 16時間熟成した。さらに 6. 5時間 かけて 5°Cに冷却したのち、 5°Cで 4. 5時間熟成した。析出した結晶をろ過し、ケーキ をァセトニトリル 15ml X 2回、へキサン 15ml X 2回洗浄した。真空減圧下乾燥を行い
、表題の化合物を 5. 8g (67%収率、 100%de)得た。
[0272] (実施例 7) (2R) - (2. 6 ジクロロフエ二ル)一 1— ( (1,R)—フエニルェチル)テト ラヒドロ 1H— 4 イミダゾロン
[0273] [化 35]
Figure imgf000048_0001
[0274] 実施例 2で得られた(2, 6 ジクロ口フエ-ル)ー1 ((1,R) フエ-ルェチル)テト ラヒドロ一 1H— 4—イミダゾロン 8. 8g (0. 026mol)を酢酸ェチル 7. 5ml、へキサン 7. 5mlの混合溶媒に懸濁し、トリフルォロ酢酸 600mg (5. 26mmol)を加え、 80〜9 0°Cに加熱還流した。 2. 5時間後へキサン 2. 5mlを 15分かけて滴下したのち 2時間 加熱還流した。さらにへキサン 5mlを 15分かけて滴下したのち、 70°Cに冷却し 12時 間熟成した。 12時間かけて 40°Cに冷却したのち、 40°Cで 12時間熟成した。これをさ らに 30°Cに冷却し、 6時間熟成した。析出した結晶をろ過し、ケーキを酢酸ェチル Z へキサン(2Z1容量比) 10ml、 7. 5mlで各々 1回ずつ、へキサン 10ml X 2回洗浄し た。真空減圧下乾燥を行い、表題の化合物を 6. 7g (76%収率、 99. 6%de)得た。
[0275] (実施例 8) (2R) - (2. 6 ジクロロフエ二ル)一 1— ( (1,R)—フエニルェチル)テト ラヒドロ 1H— 4 イミダゾロン
[0276] [化 36]
Figure imgf000048_0002
[0277] 実施例 2で得られた(2, 6 ジクロ口フエ-ル)ー1 ((1,R) フエ-ルェチル)テト ラヒドロ一 1H— 4—イミダゾロン 137g (0. 41mol)を酢酸ェチル 120ml、へキサン 12 Omlの混合溶媒に懸濁し、トリフルォロ酢酸 9. 3mg(0.08mmol)を加え、 80〜90 °Cに加熱還流した。 1時間後へキサン 120mlを 2時間かけて滴下したのち、 60°Cに 冷却し 12時間熟成した。これを 70°Cに再加温し 12時間熟成した。このスラリー溶液 を 54時間かけて 28°Cまで冷却し、析出した結晶をろ過した。ケーキを酢酸ェチル Z へキサン(2Z1容量比)溶液 160ml、 120mlで各々 1回ずつ、へキサン 160mlで洗 浄した。真空減圧下乾燥を行い、表題の化合物を 115. lg(84. 1%収率、 98. 5% de)得た。
[0278] (実施例 9)1. 1—ジメチルェチル一(2R)— (2.6 ジクロロフエ二ル)一 5—ォキソ
-3-((1' R)_-フエ-ルェチル_)テトラヒ ロ 1H— 1—ィ ^'ゾールカルボキシレー
[0279] [化 37]
Figure imgf000049_0001
[0280] 実施例 8で得られた(2R) - (2, 6 ジクロロフエ-ル) 1— ( (1,R)—フエ-ルェ チル)テトラヒドロ 1H— 4—イミダゾロン 21g(0.06mol)のァセトニトリル 105ml溶 液に、 0°C窒素気流下においてジ tーブチルジカーボネート 20. 5g(0.09mol)、トリ ェチルァミン 9. 5g(0.09mol)、および 4— (N, N ジメチルァミノ)ピリジン 0. 3g(3 mmol)を加え、室温で 12時間攪拌した。反応液を濃縮後、酢酸ェチルで希釈し少 量のシリカゲルを充填したカラム管にて高極性物質除去処理を実施した。得られた 濾液を濃縮後、酢酸ェチル 15mlに溶解し、へキサン 150mlを滴下して晶析操作を 行い、湿結晶 26. 3gを得た。 40°C真空減圧下 5時間乾燥を行い、表題の化合物を 2 3g(84%収率、 100%de)白色結晶として得た。
'H-NMR (400MHz, CDC1 ): δ 7. 34— 7. 17(8H, m), 6.43(1Η, s), 3. 8
3
9(1Η, q, J = 6.8Hz), 3. 74 (1H, dd, J = 2. OHz, 16. 1Hz), 3. 50(1H, dd, J =1. OHz, 16. 1Hz), 1. 29 (3H, d, J = 6.8Hz), 1. 26 (9H, s)。
[0281] (実施例 10)1^ 1—ジメチルェチルー(£β) - (2^ 6 ジクロロフエ-ル)— 5—ォキ ソ— 3— ( (1 R) -フエニルェチル)テトラヒドロ 1H— 1 イミダゾールカルボキシレ
[0282] [化 38]
Figure imgf000050_0001
[0283] 実施例 8で得られた(2R) - (2, 6 ジクロロフエ-ル) - 1 - ( (1 'R)—フエ-ルェ チル)テトラヒドロ 1H— 4 イミダゾロン 50g (0. 15mol)の酢酸ェチル 200ml溶液 に、 0°C窒素気流下において、トリェチルァミン 15. 8g (0. 16mol)、および 4— (N, N ジメチルァミノ)ピリジン 0. 45g (3. 7mmol)をカ卩え、さらにジ t—ブチルジカーボ ネート 37. 4g (0. 17mol)を滴下し 0°Cで 2時間攪拌した。反応液を濃縮後、酢酸ェ チル 20mlに溶解し、へキサン 400mlを滴下して晶析操作を実施した。結晶を酢酸 ェチル Zへキサン(1Z8容量比)溶液、 40ml X 2回、へキサン 75ml X 1回洗浄し湿 結晶を得た。この母洗液を濃縮後し濃縮物 24gを得たのち、酢酸ェチル 10ml、へキ サン 65mlから晶析した。結晶を酢酸ェチル Zへキサン(1Z8容量比)溶液 20ml X 2回、へキサン 25ml X I回洗浄し湿結晶(2次結晶)を得た。得られた湿結晶を混合 し 40°C真空減圧下 24時間乾燥を行い、表題の化合物を 58g (89%収率、 100%de )白色結晶として得た。
[0284] (実施例 11) 1ージ ルェチルー(2S)_—i2._6 ジクロロフヱ二ル_)ー5—ォキ ソ一 3— ( ( 1 R) フエ-ルェチル)テトラヒドロ 1H - ―イ ダゾールカルボキシレ
[0285] [化 39]
Figure imgf000050_0002
[0286] 実施例 3で得た(2, 6 ジクロロフエ二ノレ) — 1— ( ( 1 R) フエ-ルェチル)テトラヒ ドロ 1H— 4—イミダゾロン 59g (0. 18mol)のァセトニトリル 296ml溶揿に、 0°C窒 素気流下においてジ tーブチルジカーボネート 57. 5g (0. 26mol)、トリェチルァミン 26. 8g (0. 26mol)、および 4一(N, N ジメチルァミノ)ピリジン 1. lg (9mmol)を 加え、室温で 12時間攪拌した。反応液を濃縮後、酢酸ェチルで希釈し少量のシリカ ゲルを充填したカラム管にて高極性物質除去処理を実施し、得られた濾液を濃縮し て粗生成物を 77g得た。これを酢酸ェチルおよびへキサンから晶析操作を実施し、 更に 40°C真空減圧下乾燥を行い、表題の化合物を 33. 2g (32%収率、 64%回収 率(2S体含有量基準)、 99. 7%de)白色結晶として得た。
'H-NMR (400MHz, CDC1 ): δ 7. 26— 7. 10 (8Η, m) , 6. 43 (1H, t, J= l.
3
2Hz) , 3. 95 (1H, q, J = 6. 3Hz) , 3. 53 (2H, d, J= l. 2Hz) , 1. 48 (3H, d, J =6. 3Hz) , 1. 24 (9H, s)。
[0287] (実施例 12) 1. 1—ジメチルェチル一(2R)— (2. 6 ジクロロフエ-ル)一 5—ォキ ソ— 3 Cil, R)_ フエ-ルェチル 1 - (4S) (フエニルメチル)テトラヒドロ 1H— 1 イミダゾールカルボキシレート
[0288] [化 40]
Figure imgf000051_0001
[0289] 微量(5mg以下)の 1, 10 フエナンスロリンとジイソプロピルアミン 1. 15ml (8. 2m mol)を含む無水テトラヒドロフラン(11. 5ml)溶液に、窒素気流下、 20°Cで n—ブ チルリチウム 4. 5ml (1. 6molZL ;n—へキサン溶液、 7. 2mmol)を 10分かけて滴 下した。 20分後に実施例 9で得られた 1, 1—ジメチルェチル—(2R)— (2, 6 ジク ロロフエ-ル) 5 ォキソ 3— ( ( 1, R) フエ-ルェチル)テトラヒドロ 1H— 1— イミダゾールカルボキシレート 3. 0g (6. 8mmol)の無水テトラヒドロフラン(6ml)溶液 を 10分かけて滴下した。滴下ラインを無水テトラヒドロフラン 1. 5mlで洗浄したのち、 — 20°Cで 20分間熟成した。これに臭化べンジル 1. 75g (10. 2mmol)を滴下し、 20°Cで 1時間攪拌後 0°Cで 15. 5時間攪拌した。反応液を酢酸ェチル(100ml)にて 希釈後、塩化アンモ-ゥム水溶液、蒸留水、飽和食塩水で各 2回ずつ洗浄し、有機 層に無水硫酸マグネシウムを加えて乾燥した。固体を濾別後、減圧下溶媒を留去し 粗生成物を 4. 51g得た。これをへキサンにてリスラリー洗浄し、表題の化合物を 2. 8 g (77%収率)微褐色結晶として得た。
'H-NMR (400MHz, CDC1 ): δ 7. 33— 7. 02 (13H, m) , 6. 18 (1Η, d, J = 2
3
. 2Hz) , 4. 27 (1H, m) , 3. 98 (1H, q, J = 6. 8Hz) , 3. 29 (1H, dd, J = 2. 7Hz , 14. 2Hz) , 3. 08 (1H, dd, J = 6. 1Hz, 14. 2Hz) , 1. 31 (3H, d, J = 6. 8Hz) , 1. 2 (9H, s)。
[0290] (実施例 13) (S) フエ二ルァラニン
[0291] [化 41]
Figure imgf000052_0001
[0292] (工程 1) 微量(5mg以下)の 1, 10 フエナンスロリンとジイソプロピルアミン 1. Om 1 (7. lmmol)を含む無水テトラヒドロフラン(12ml)溶液に、窒素気流下、 15°Cで n—ブチルリチウム 4. lml(l. 6molZL;n キサン溶液、 6. 5mmol)を 5分かけ て滴下した。 30分後に実施例 9で得られた 1, 1—ジメチルェチル—(2R)— (2, 6- ジクロロフエ-ル) 5 ォキソ 3— ( ( 1, R) フエ-ルェチル)テトラヒドロ 1H— 1 イミダゾールカルボキシレート 2. 5g (5. 7mmol)の無水テトラヒドロフラン(4ml)溶 液を 5分かけて滴下した。滴下ラインを無水テトラヒドロフラン 2mlで洗浄したのち、 - 15°Cで 20分間熟成した。これに臭化べンジル 1. lg (6. 5mmol)の無水テトラヒドロ フラン(2. 2ml)溶液を滴下し、 15°Cで 1時間攪拌後 0°Cで 20時間攪拌した。反応 液を酢酸ェチル(50ml)にて希釈後、塩化アンモニゥム水溶液、蒸留水、飽和食塩 水で各 2回ずつ洗浄し、有機層に無水硫酸マグネシウムを加えて乾燥した。固体を 濾別後、減圧下溶媒を留去し粗生成物を 3. 2g得たが、このものはこれ以上精製す ることなく次工程へと導いた。
[0293] (工程 2)工程 1の粗生成物 1. 6g (工程 1の 1/2重量)をエタノール 8mlと蒸留水 1 lmlに懸濁し、濃硫酸 3. Og (30mmol)を添加後、 60°Cで 24時間反応させた。蒸留 水 3. 2mlを添カ卩し、減圧下エタノールを留去した。この水溶液をトルエン 20mlにて 4 回洗浄したのち、再び減圧下有機溶媒を留去した。得られた水溶液に濃硫酸 1. 5g (15mmol)をカ卩え、外温 120〜130°Cにて 16. 5時間反応させ(変換率 99. 8%)、 3 —フエ-ルー (2S) - [ (l 'R)—フエ-ルェチルァミノ]プロピオン酸を得た。このもの はこれ以上精製することなく次工程へと導いた。
[0294] (工程 3)工程 2で得た 3—フエ-ルー(2S)— [ (l 'R)—フエ-ルェチルァミノ]プロ ピオン酸の水溶液に、エタノール 12mlと蒸留水 2mlを添カ卩したのち、窒素気流下、 室温で 20%パラジウム—炭素(50%含水品) 200mgをカ卩えた。反応系内を水素ガス で置換し、 50°Cで 2. 5時間反応した (変換率 99. 6%)。触媒を濾別し蒸留水で洗浄 後、 30%水酸ィ匕ナトリウム水溶液で pHを 3. 5に調整した。この溶液中のフエ-ルァ ラニンを高速液体クロマトグラフィーで定量した結果、(S)—フエ二ルァラニンが 218 . lmg (46. 4%通算収率)、光学純度 99. 5%eeで得られた。
[0295] (定量方法)
カラム :ダイセル化学社製 キラルパック WH (内径 4. 6mm X 25cm)
移動層 :0. 25mM硫酸銅水溶液
流速 : 1. Oml/ mm
検出器 : UV254nm
保持時間:(R)—フエ-ルァラニン 25. 8分
(S)—フエ-ルァラニン 46. 8分,
[0296] (実施例 14) (R)—フエニノレアラニン
[0297] [化 42] OH
Figure imgf000053_0001
[0298] (工程 1) 微量(5mg以下)の 1, 10—フエナンスロリンとジイソプロピルアミン 2. lm 1 (14. 8mmol)を含む無水テトラヒドロフラン(20ml)溶液に、窒素気流下、— 15°C で n—ブチルリチウム 8. 5ml(l. 6molZL ;n—へキサン溶液、 13. 6mmol)を 5分 かけて滴下した。 30分後に実施例 11で得られた 1, 1—ジメチルェチル—(2S)— (2 , 6 -ジクロロフエ-ル) 5 ォキソ 3— ( ( 1, R) フエ-ルェチル)テトラヒドロ 1 H—1—イミダゾールカルボキシレート 5. 2g (l l. 8mmol)の無水テトラヒドロフラン( 10ml)溶液を 5分かけて滴下した。滴下ラインを無水テトラヒドロフラン 2. 5mlで洗浄 したのち、 15°Cで 25分間熟成した。これに臭化べンジル 2. 3g (13. 6mmol)の無 水テトラヒドロフラン (4. 6ml)溶液を滴下し、—15°Cで 1. 5時間攪拌後 0°Cで 18時 間攪拌した。反応液を酢酸ェチル(100ml)にて希釈後、塩化アンモ-ゥム水溶液、 蒸留水、飽和食塩水で各 2回ずつ洗浄し、有機層に無水硫酸マグネシウムを加えて 乾燥した。固体を濾別後、減圧下溶媒を留去し粗生成物を 7. 3g得たが、このものは これ以上精製することなく次工程へと導 、た。
[0299] (工程 2)工程 1の粗生成物(7. 3g)にメタノール 30mlと濃塩酸 20ml、蒸留水 5ml を加え、 50°Cで 14時間反応させた。メタノール 20mlを追カ卩し、さらに 4時間反応させ たのち、室温で 3. 5時間攪拌した。反応液を減圧下濃縮後、トルエン 20mlにて水層 を 4回洗浄した。これに濃硫酸 6. 4gをカ卩え、外温 120〜130°Cにて 3時間反応させ たのち(変換率 97%)室温へと冷却した。この反応液に活性炭 520mgをカ卩えて 0. 5 時間攪拌したのち、固体を濾別し残渣を蒸留水 Zエタノール(1Z1容量比)にて洗 浄し、 3 フヱ-ルー (2R) - [ (1 'R)—フ -ルェチルァミノ]プロピオン酸を含む溶 液を得た。このものはこれ以上精製することなく次工程へと導 、た。
[0300] (工程 3)工程 2で得た 3 フヱ-ルー(2R)— [ (1,R)—フヱ-ルェチルァミノ]プロ ピオン酸の水溶液に、窒素気流下、室温で 20%パラジウム 炭素(50%含水品) 60 Omgを加えた。反応系内を水素ガスで置換し、 50°Cで 20時間反応した (変換率 65. 6%)。触媒を濾別し蒸留水で洗浄後、改めて窒素気流下、室温で 20%ノ ラジウム 炭素(50%含水品) 500mgをカ卩えた。反応系内を水素ガスで置換し、 50°Cで 5時 間反応した (変換率 95%)。触媒を濾別し蒸留水で洗浄後、 30%水酸ィ匕ナトリウム水 溶液で pHを 3. 5に調整した。この溶液中のフエ-ルァラニンを実施例 12の場合と同 様に、高速液体クロマトグラフィーで定量した結果、(R)—フエ-ルァラニンが 606. 9 mg (31. 0%通算収率)、光学純度 99. 8%eeで得られた。 [0301] (実施例 15) (S)—ノルパリン
[0302] [化 43]
Figure imgf000055_0001
[0303] (工程 1) 微量(5mg以下)の 1, 10 フエナンスロリンとジイソプロピルアミン 2. Om 1(14.2mmol)を含む無水テトラヒドロフラン(20ml)溶液に、窒素気流下、 15°C で n—ブチルリチウム 8.2ml(l.6molZL;n—へキサン溶液、 13. lmmol)を 10分 かけて滴下した。 30分後に実施例 9の方法で得られた 1, 1—ジメチルェチルー(2R )-(2, 6—ジクロロフエ-ル) 5—ォキソ 3 ((1,R)—フエ-ルェチル)テトラヒド 口一 1H—1—イミダゾールカルボキシレート 5.2g(ll.8mmol)の無水テトラヒドロフ ラン(10ml)溶液を 10分かけて滴下した。滴下ラインを無水テトラヒドロフラン 2.5ml で洗浄したのち、 15°Cで 25分間熟成した。これに臭化ァリル 1.8g(14.9mmol) を滴下し、 15°Cで 1時間攪拌後 0°Cで 19時間攪拌した。反応液を酢酸ェチル(10 Oml)にて希釈後、塩化アンモ-ゥム水溶液、蒸留水、飽和食塩水で各 2回ずつ洗浄 し、有機層に無水硫酸マグネシウムを加えて乾燥した。固体を濾別後、減圧下溶媒 を留去し粗生成物を 5.8g得た力 このものはこれ以上精製することなく次工程へと 導いた。一部の生成物を薄相シリカゲル板 (メルクシリカゲルプレート 60, 200X200 XO.25mm;3枚,展開溶媒;へキサン Z酢酸ェチル =3/1容量比)で精製し、生 成物の NMR ^ベクトルを測定した。
'H-NMR (400MHz, CDC1 ): δ 7.33— 7.10 (8Η, m), 6.59(1H, d, J = 2.
3
4Hz), 5.94(1H, m), 5.20(1H, d, J = 0.7Hz), 5.17(1H, dd, J = 2. OHz, 8.8Hz), 4.12(1H, m), 3.88(1H, q, J = 6.8Hz), 2.68— 2.54 (2H, m), 1.29-1.26(12H, m)。
[0304] (工程 2)工程 1の粗生成物にメタノール 28mlと濃塩酸 11.5ml、蒸留水 11.5ml を加え、 50°Cで 18時間反応させた。反応液を減圧下濃縮してメタノールを留去した のち、トルエン 25mlにて水層を 4回洗浄した。これに濃硫酸 2.3gを加え、外温 120 〜130°Cにて 4時間反応させたのち(変換率 100%)室温へと冷却した。この反応液 に活性炭 300mgを加えて 0. 5時間攪拌したのち、固体を濾別し残渣を蒸留水にて 洗浄し、 (2S) - [ (l 'R)—フエ-ルェチルァミノ]—4—ペンテン酸を含む溶液を得 た。このものはこれ以上精製することなく次工程へと導いた。
[0305] (工程 3)工程 2で得た(2S)— [ (l 'R) フエ-ルェチルァミノ] 4 ペンテン酸の 水溶液に、窒素気流下、室温で 20%パラジウム—炭素(50%含水品) 600mgをカロ えた。反応系内を水素ガスで置換し、 50°Cで 27時間反応した。触媒を濾別し蒸留水 で洗浄後、改めて窒素気流下、室温で 20%パラジウム 炭素(50%含水品) 500m gをカ卩えた。反応系内を水素ガスで置換し、水素圧 2. 2MPa、 50°Cにて 20時間反 応させた。触媒を濾別し蒸留水で洗浄後、 30%水酸ィ匕ナトリウム水溶液で pHを 3. 5 に調整した。この溶液中のノルパリンを、高速液体クロマトグラフィーで定量した結果 、(S)—ノルパリンが 573mg (41. 5%通算収率)、光学純度 98. 7%eeで得られた。
[0306] (定量方法)
カラム :住友化学社製 スミキラル OA— 5000 (内径 4. 6mm X I 5cm)
移動層 : 2mM硫酸銅水溶液 Zメタノール = 95Z5 (容量比)
流速 : 1. 0ml/ mm
検出器 : UV254nm
保持時間:(S) ノルパリン 12. 2分
(R)—ノルバジン 19. 8分,
[0307] (実施例 16) (R)—ノルパリン
[0308] [化 44]
Figure imgf000056_0001
[0309] (工程 1) 微量(5mg以下)の 1, 10 フエナンスロリンとジイソプロピルアミン 2. lm 1 (14. 8mmol)を含む無水テトラヒドロフラン(20ml)溶液に、窒素気流下、 15°C で n—ブチルリチウム 8. 5ml(l. 6molZL ;n—へキサン溶液、 13. 6mmol)を 5分 かけて滴下した。 30分後に実施例 11で得られた 1, 1—ジメチルェチル—(2S)— (2 , 6 -ジクロロフエ-ル) 5 ォキソ 3— ( ( 1, R) フエ-ルェチル)テトラヒドロ 1 H—1—イミダゾールカルボキシレート 5. 2g (l l. 8mmol)の無水テトラヒドロフラン( 10ml)溶液を 10分かけて滴下した。滴下ラインを無水テトラヒドロフラン 2. 5mlで洗 浄したのち、 15°Cで 25分間熟成した。これに臭化ァリル 1. 8g (14. 9mmol)を滴 下し、 15°Cで 1時間攪拌後 0°Cで 18時間攪拌した。反応液を酢酸ェチル(100ml )にて希釈後、塩化アンモ-ゥム水溶液、蒸留水、飽和食塩水で各 2回ずつ洗浄し、 有機層に無水硫酸マグネシウムを加えて乾燥した。固体を濾別後、減圧下溶媒を留 去し粗生成物を 5. 8g得たが、このものはこれ以上精製することなく次工程へと導い た。一部の生成物を薄相シリカゲル板 (メルクシリカゲルプレート 60, 200 X 200 X 0 . 25mm; 3枚,展開溶媒;へキサン Z酢酸ェチル = 3/1容量比)で精製し、生成物 の NMR ^ベクトルを測定した。
'H-NMR (400MHz, CDC1 ): δ 7. 31— 7. 12 (8H, m) , 6. 66 (1Η, d, J = 2.
3
4Hz) , 5. 90 (1H, m) , 5. 15 (1H, s) , 5. 11 (1H, dd, J= l. 5Hz, 5. 4Hz) , 4 . 00 (1H, q, J = 6. 8Hz) , 3. 81 (1H, m) , 2. 50— 2. 39 (2H, m) , 1. 26— 1. 2 4 (12H, m)。
[0310] (工程 2)工程 1の粗生成物にメタノール 30mlと濃塩酸 15ml、蒸留水 11. 5mlを加 え、 50°Cで 15時間反応させた。これに濃硫酸 2. 3gを加え、外温 120〜130°Cにて 4. 5時間反応させたのち(変換率 92%)室温へと冷却した。この反応液に活性炭 30 Omgを加えて 0. 5時間攪拌したのち、固体を濾別し残渣を蒸留水にて洗浄し、 (2R) - [ (l 'R)—フエ-ルェチルァミノ]—4—ペンテン酸を含む溶液を得た。このものは これ以上精製することなく次工程へと導 、た。
[0311] (工程 3)工程 2で得た(2R)— [ (l 'R) フエ-ルェチルァミノ ]ー4 ペンテン酸の 水溶液に、窒素気流下、室温でメタノール、および 20%パラジウム 炭素(50%含 水品) 500mgをカ卩えた。反応系内を水素ガスで置換し、 50°Cで 20時間反応した。触 媒を濾別し蒸留水で洗浄後、減圧下メタノールを留去した。改めて窒素気流下、室 温でイソプロパノール、および 20%パラジウム 炭素(50%含水品) 250mgを加え たのち、反応系内を水素ガスで置換し、水素圧 2. 2MPa、 50°Cにて 20時間反応さ せた。触媒を濾別し蒸留水で洗浄後、 30%水酸ィ匕ナトリウム水溶液で pHを 3. 5に 調整した。この溶液中のノルパリンを、実施例 15と同様の方法にて定量した結果、( R)—ノルバリンカ 88mg (42. 6%通算収率)、光学純度 99. 6%eeで得られた。
[0312] (実施例 17) 1. 1 ジメチルェチルー(2S)— (3. 4ージクロ口フエニル)ー5—ォキ ソー3—((1,R) フエニルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレ ート、および 1. 1 ジメチルェチルー(2R)— (3. 4ージクロ口フエニル)ー5—ォキソ 3—((1,R) フエニルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレー h
[0313] [化 45]
Figure imgf000058_0001
[0314] (工程 1) (R)— 2— [ (1 フエ-ルェチル)ァミノ]—エタナミド 5. 0g (28mmol)と 3 , 4 ジクロロべンズアルデヒド 4. 9g (28mmol)、および p トルエンスルホン酸 265 mg (l. 4mmol)のトルエン溶液(50ml)を、窒素気流下において、外温 120〜130 °Cにて 18時間加熱還流を行った。室温に冷却後、反応液を濃縮し粗生成物を得た 。高極性不純物を除くため、ショートパスのシリカゲルカラム(メルクシリカゲル 60 ; 75 g、展開溶媒;へキサン Z酢酸ェチル = 1 : 1容量比)を行い、 (2R) - (3, 4ージクロ 口フエ-ル)一 1— ( (1,R)—フエ-ルェチル)テトラヒドロ一 1H— 4—イミダゾロン、お よび(2S) - (3, 4 ジクロロフエ-ル)一 1— ( (1,R)—フエ-ルェチル)テトラヒドロ 1H— 4 イミダゾロンの異性体混合物を 4. 96g得た(52. 8%収率)。一部の生成 物を薄相シリカゲル板 (メルクシリカゲルプレート; 200 X 200 X 0. 25mm, 3枚;展 開溶媒;へキサン Z酢酸ェチル =3Zl容量比)にて精製し、 NMRスペクトルを測定 した。
NMR(2S異性体) (400MHz, CDC1 ): δ 7. 26— 6. 84 (8H, m), 4. 97(1
3
H, d, J=l. 7Hz), 3. 71 (1H, q, J = 6. 6Hz) , 3. 61 (1H, dd, J=l. 7Hz, 14. 9Hz), 3. 33 (1H, dd, J = 2. OHz, 14. 9Hz), 1. 39 (3H, d, J = 6. 6Hz)
NMR(2R異性体) (400MHz, CDC1 ): δ 7. 55— 6. 95 (8H, m), 5. 09(1
3
H, s), 3. 59 (1H, q, J = 6. 8Hz) , 3.45 (1H, dd, J = 2. OHz, 14. 9Hz) , 3. 2 3(1H, dd, J = 2. OHz, 14. 9Hz), 1. 38 (3H, d, J = 6. 8Hz)。
[0315] (工程 2)工程 1で得た異性体混合物 4. 96g(14mmol)の無水ァセトニトリル(50m 1)溶液に、窒素気流下 0°Cでトリェチルァミン 2. lg(14mmol)とジ t—ブチルジカー ボネート 3. 9g(16. 8mmol)、および 4— (N, N—ジメチルァミノ)ピリジン 170mg(l . 4mmol)を加え、室温で 16時間攪拌した。反応液を濃縮後、高極性不純物を除く ため、ショートパスのシリカゲルカラム (メルクシリカゲル 60; 20g、展開溶媒;へキサン Z酢酸ェチル =1:1容量比)を行い、表題の異性体混合物を 9. 5g得た。一部の生 成物を薄相シリカゲル板 (メルクシリカゲルプレート; 200X200X0. 25mm, 3枚; 展開溶媒;へキサン Z酢酸ェチル =3Zl容量比)にて精製し、 NMRスペクトルを測 定した。また精製したこれら異性体は、工程 3の種晶として用いた。
— NMR(2S異性体) (400MHz, CDC1 ): δ 7. 33— 7. 01 (8Η, m), 5.43(1
3
H, s), 3. 74 (1H, q, J = 6. 6Hz) , 3. 62(1H, d, J=16.4Hz), 3.48(1H, d, J = 16.4Hz), 1.42 (3H, d, J = 6. 6Hz), 1. 30 (9H, s)。
NMR(2R異性体) (400MHz, CDC1 ) : 67.44— 7. 07 (8H, m), 5.44(1
3
H, s), 3. 64(1H, dd, J = 0. 7Hz, 15. 9Hz), 3. 59(1H, q, J = 6. 6Hz), 3. 5 1(1H, dd, J = 0. 7Hz, 16.4Hz), 1. 35— 1. 32(12H, m)。
[0316] (工程 3)工程 2で得た異性体混合物に対し、酢酸ェチル Zへキサン(1Z3容量比 ) 30mlを加え、室温で攪拌した。これに工程 2で得た(2S)異性体の種晶を添加し、 更にへキサン 50mlを添加後、室温で 1時間攪拌した。析出した結晶をろ過し、酢酸 ェチル Zへキサン(1Z7容量比)溶液、およびへキサンで順次洗浄後、減圧下 40°C で乾燥した。この母液を濃縮後、更に酢酸ェチル 10mlおよびへキサン 100mlとから 同様の晶析操作を実施し、 1, 1—ジメチルェチル—(2S)— (3, 4—ジクロロフエ- ル) 5 ォキソ 3— ( ( 1, R) フエ-ルェチル)テトラヒドロ 1H— 1—イミダゾー ルカルボキシレートを合計 2. 14g (35. 2%収率、 100%de)白色結晶として得た。
[0317] (工程 4)工程 3で (2S)異性体が析出した母液を濃縮後、へキサン 100ml力も晶析 操作を実施すると、 1, 1—ジメチルェチル—(2R) (3, 4 ジクロロフエ-ル)— 5— ォキソ 3— ( (1,R)—フエ-ルェチル)テトラヒドロ一 1H—1—イミダゾールカルボキ シレートが 1. 23g (20%収率)白色結晶として得られた。
[0318] (実施例 18) 3 フエ二ルー(2S)—「(1 'R) フエニルェチルァミノ Ίプロピオン酸
[0319] [化 46]
Ph、 H
Figure imgf000060_0001
[0320] (工程 1)微量(5mg以下)の 1, 10 フエナンスロリンと実施例 17で得られた 1, 1— ジメチルェチル一(2R) - (3, 4 ジクロロフエ-ル) 5—ォキソ 3— ( (1,R)—フ ェ -ルェチル)テトラヒドロー 1H—1—イミダゾールカルボキシレート 2. 5g (5. 7mmo 1)を含む無水テトラヒドロフラン(20ml)溶液に、窒素気流下、—15°Cでリチウムジィ ソプロピルアミド 3. 2ml (2. OmolZL ;ヘプタン Zテトラヒドロフラン Zェチルベンゼン 溶液、 6. 3mmol)を 10分かけて滴下した。 15分後に臭化べンジル 1. 5g (8. 5mm ol)の無水テトラヒドロフラン(5ml)溶液を滴下し、 15°Cで 19時間攪拌した。反応 液を酢酸ェチル(150ml)にて希釈後、蒸留水、塩化アンモ-ゥム水溶液、蒸留水で 各 1回ずつ、飽和食塩水で 2回洗浄し、有機層に無水硫酸マグネシウムを加えて乾 燥した。固体を濾別後、減圧下溶媒を留去し粗生成物を 3. 9g得た。シリカゲルカラ ムクロマトグラフィー(メルクシリカゲル 60, 420g、 100gで各 1回ずつ、展開溶媒;へ キサン Z酢酸ェチル =3Zl容量比)で精製し、 1, 1—ジメチルェチル—(2R)— (3 , 4 ジクロロフエ-ル) 5—ォキソ 3— ( (1,R)—フエ-ルェチル) - (4S) - (フ ェ -ルメチル)テトラヒドロ 1H— 1—イミダゾールカルボキシレートを過剰に含む異 性体混合物を 1. lg (37%収率)油状物として得た。このとき原料を 1. 4g回収し、こ れを考慮した収率は 84%であった。
'H-NMR (400MHz, CDC1 ): δ 7. 25— 7. 17(10H, m), 7.03 (2Η, m), 6.
3
78 (1H, d, J = 2. 2Hz), 6.69 (1H, m), 4. 17(1H, t, 4. 2Hz), 3.82(1H, q , J = 6.8Hz), 3. 33-3. 24 (2H, m), 1. 37 (3H, d, J=6.8Hz), 1. 28 (9H,
S)0
[0321] (工程 2)工程 1で得た粗生成物 1.0g(84%含有量, 840mg、 1.6mmol)に、窒 素気流下 0°Cで、テトラヒドロフラン 18mlと蒸留水 6ml、さらに水酸化リチウム 1水和 物 168mg(4mmol)をカ卩え、 0°Cで 22. 5時間反応させた。減圧下テトラヒドロフラン を除去し、酢酸ェチルを添加 ·洗浄操作を行い有機層を廃棄した。水層を 6M塩酸 水溶液にて PH2. 5とし、再び酢酸ェチルを添加'洗浄操作を行い、有機層を廃棄し た。水溶液の pHを 6. 5に調整したところ、アミノ酸の結晶が析出した。これをろ別し、 減圧下乾燥して表題の化合物を 337mg (78%収率)オフホワイトの固体として得た。 この固体の光学純度を高速液体クロマトグラフィーで測定した結果、 3—フ 二ルー ( 2S) -[(l'R)—フエ-ルェチルァミノ]プロピオン酸が 59. 3%deで得られた。
[0322] (光学純度測定方法)
カラム :ウォーターズ社製 シンメトリー C18(内径 4.6mm X 25cm)
移動層 :50mMリン酸 1水素 2ナトリウム水溶液 (pH2. 5)/ァセトニトリル =75/
25 (容量比)
流速 :0. 5ml, min
カラム温度: 35°C
検出器 : UV254nm
保持時間 :(2S)異性体 約 16分
(2R)異性体 約 13分。
[0323] (実施例 19) (R) - a—メチルフエ二ルァラニン
[0324] [化 47]
Figure imgf000062_0001
p ヤ圓 ! cOOH
[0325] (工程 1)微量(5mg以下)の 1, 10 フエナンスロリンとジイソプロピルアミン 0.32m 1(2.3mmol)を含む無水テトラヒドロフラン(5ml)溶液に、窒素気流下、 20°Cで n ブチルリチウム 1.3ml(l.6molZL;n キサン溶液、 2. Ommol)を 10分かけ て滴下した。 20分後に実施例 9で得られた 1, 1—ジメチルェチル—(2R)— (2, 6- ジクロロフエ-ル) 5—ォキソ 3— ((1,R)—フエ-ルェチル)一(4S) - (フエ-ル メチル)テトラヒドロー 1H—1—イミダゾールカルボキシレート 1.0g(l.9mmol)の無 水テトラヒドロフラン(3.5ml)溶液を 10分かけて滴下した。滴下ラインを無水テトラヒ ドロフラン 0.5mlで洗浄したのち、—20°Cで 20分間熟成した。これにヨウ化メチル 4 05mg(2.9mmol)を滴下し、 20°Cで 1時間攪拌後、 0°Cで 16時間攪拌した。反 応液を酢酸ェチル(50ml)にて希釈後、塩化アンモニゥム水溶液、蒸留水、飽和食 塩水で各 2回ずつ洗浄し、有機層に無水硫酸マグネシウムを加えて乾燥した。固体 を濾別後、減圧下溶媒を留去し粗生成物を 1.0g得た。これは、これ以上の精製を行 わず次工程へ用いた。一部(1Z10重量)を用い、薄相シリカゲル板 (メルクシリカゲ ルプレート 60, 200X200X0.25mm; 1.5枚,展開溶媒;へキサン Z酢酸ェチル = 3Z1容量比)で精製し、生成物の NMR ^ベクトルを測定した。
[0326] 1._1—ジ 2チルェチル—(2R1— ί2._6—ジクロ口フエ-ル) _ (4R) _メチル—5— ォキソ 3— ( ( 1, R) フエニルェチル) 4 (フエニルメチル)テトラヒドロ 1H— 1 イミダゾールカルボキシレート
'H-NMR (400MHz, CDC1 ): δ 7.40— 6.75(13H, m), 6.41 (1Η, s), 4.
3
33 (1H, q, J = 6.8Hz) , 3.63 (1H, d, J=14.2Hz), 3.37(1H, d, J=14.2H z), 1.76 (3H, d, J = 6.8Hz), 1.38 (3H, s), 1.19 (9H, s)。 [0327] (工程 2)工程 1の粗生成物 0. 9gにメタノール 35mlと濃塩酸 10mlをカ卩え、 50°Cで 2時間反応させた。メタノールを減圧下濃縮後、蒸留水 20mlを添加し、さらに濃硫酸 0. 75gをカ卩え、外温 120〜130°Cにて 7時間反応させたのち(変換率 100%)室温 へと冷却した。この反応液に活性炭 200mgを加えて 0. 5時間攪拌したのち、固体を 濾別し残渣を蒸留水にて洗浄し、 (2R)—メチル— 3 フエ-ル— [ ( l ' R)—フエ-ル ェチルァミノ]プロピオン酸を含む溶液を得た。このものはこれ以上精製することなく 次工程へと導いた。
[0328] (工程 3)工程 2で得た(2R)—メチルー 3 フヱ-ルー [ ( 1,R)—フヱ-ルェチルァ ミノ]プロピオン酸の水溶液に、イソプロパノールをカ卩えたのち、窒素気流下、室温で 20%パラジウム—炭素(50%含水品) 200mgをカ卩えた。反応系内を水素ガスで置換 し、 50°Cで 20時間反応した (変換率 100%)。触媒を濾別し蒸留水で洗浄後、 30% 水酸化ナトリウム水溶液で pHを 4. 0に調整した。この溶液中の exーメチルーフエ- ルァラニンを実施例 13の場合と同様に、高速液体クロマトグラフィーで定量した結果 、(R) a—メチル—フ 二ルァラニンが 154. 9mg (51 %通算収率)、光学純度 10 0%eeで得られた。
[0329] (定量および光学純度分析条件)
カラム :ダイセル化学社製 キラルパック WH (内径 4. 6mm X 25cm)
移動層 : 2mM硫酸銅水溶液 Zメタノール = 95Z5 (容量比)
流速 : 0. 6ml/ min
検出器 : UV254nm
保持時間:(R) - a—メチル一フエ-ルァラニン 約 16分
(S)— α—メチルーフヱ-ルァラニン 約 42分,
[0330] (実施例 20) (2. 4. 6 トリメチルフ ニル)—1— ( ( 1,R)—フ ニルェチル)テトラ ヒドロ 1H— 4 イミダゾロン
[0331] [化 48]
Figure imgf000064_0001
[0332] 実施例 1の方法で得られた (R)— 2— [(1 フエ-ルェチル)ァミノ]—エタナミド 31 .6g(0.18mol)、 2, 4, 6 トリメチノレベンズァノレデヒド 25g(0.18mol)、および p— トルエンスルホン酸 805mg(4.2mmol)のトルエン溶液(50ml)を、窒素気流下にお いて、外温 120〜130°Cにて 22時間加熱還流した。室温に冷却後、反応液を濃縮し 、粗生成物を得た。高極性物質除去のため、シリカゲルカラム (メルクシリカゲル 60、 600g:展開溶媒;へキサン Z酢酸ェチル = 3Z2 (容量比) )処理を行!、、得られた溶 出液を濃縮して表題の化合物を 53g褐色油状物として得た。
'H-NMR (400MHz, CDC1 ): δ 7.33— 7.19 (6Η, m), 7.03 (4H, s)、 6.8
3
2(2H, s)、 6.63 (2H, s)、 6.06 (2H, brs), 5.62(1H, t, J = 2.2Hz)、 5.60 ( 1H, t, J = 2.0Hz)、 3.75(1H, q, J = 6.6Hz)、 3.70(1H, q, J = 6.8Hz)、 3. 48-3.34 (3H, m)、 3.14(1H, dd, J = 2.2, 14.9Hz)、 3.49 (6H, s)、 2.28 (6H, s)、 2.25 (3H, s)、 2.17(3H, s)、 1.39 (3H, d, J = 6.6Hz), 1.10 (3H , d, J = 6.6Hz)。
[0333] (実施列 21)1.1—ジメチノレエチノレー(2S)—(2.4.6 卜リメチノレフエ二ノレ) 5— ォキソ 3 ((l'R)—フエニルェチル)テトラヒドロ一 1H—1—イミダゾールカルボキ シレーヒ
[0334] [化 49]
Figure imgf000064_0002
[0335] 実施例 20で得られた(2, 4, 6 トリメチルフエ-ル)— 1— ((l'R)—フエ-ルェチ ル)テトラヒドロー 1H— 4—イミダゾロン 53g(0.17mol)の酢酸ェチル 215ml溶液に 、 0°C窒素気流下においてジ t—ブチルジカーボネート 56.2g(0.26mol)、トリェチ ルァミン 26g(0.26mol)、および 4— (N, N—ジメチルァミノ)ピリジン 520mg(4.3 mmol)を加え、室温で 17時間攪拌した。反応液を濃縮後、高極性物質除去のため シリカゲルカラム (メルクシリカゲル 60、 700g:展開溶媒;へキサン Z酢酸ェチル = 5 Z1 (容量比)処理を行い、得られた溶出液を濃縮して生成物 58.4gを得た。これを へキサン 230mlに溶解し、晶析温度— 10°Cにて 64時間熟成した。結晶を濾別し氷 冷へキサン 50mlX2回、洗浄を行い真空減圧下乾燥して表題の化合物を 17.6g(2 5.6%収率、 2, 4, 6 トリメチルベンズアルデヒド基準、 100%de)白色結晶として 得た。
'H-NMR (400MHz, CDC1 ): δ 7.25— 7.07 (5Η, m), 6.77(2H、 brs)、 5.
3
97(1H, s), 3.87(1H, q, J = 6.8Hz) , 3.45(1H, dd, J = 2.2Hz, 15.4Hz) , 3.29(1H, dd, J = 0.7Hz, 15.4Hz), 2.41 (6H, brs), 2.25 (3H, s)、 1.4 6(3H, d, J = 6.8Hz), 1.17(9H, s)。
[0336] (実施例 22) (R)—フエ二ルァラニン
[0337] [化 50]
Figure imgf000065_0001
[0338] (工程 1) 微量(5mg以下)の 1, 10 フエナンスロリンとジイソプロピルアミン 4. lm 1(29.4mmol)を含む無水テトラヒドロフラン(30ml)溶液に、窒素気流下、—20°C で n—ブチルリチウム 16. lml(l.6molZL;n—へキサン溶液、 25.7mmol)を 10 分かけて滴下した。 20分後に実施例 21の方法で得られた 1, 1—ジメチルェチル—( 2S)-(2, 4, 6—トリメチルフエ-ル)一 5—ォキソ 3— ((1,R)—フエ-ルェチル) テトラヒドロ 1H— 1—イミダゾールカルボキシレート 10g (24.5mmol)の無水テトラ ヒドロフラン(20ml)溶液を 10分かけて滴下した。滴下ラインを無水テトラヒドロフラン 2mlで洗浄したのち、—20°Cで 20分間熟成した。これに臭化べンジル 5. 0g (29. 4 mmol)を滴下し、 20°Cで 1時間攪拌後 0°Cで 18時間攪拌した。反応液を酢酸ェ チル(300ml)にて希釈後、塩化アンモ-ゥム水溶液、蒸留水、飽和食塩水で各 2回 ずつ洗浄し、有機層に無水硫酸マグネシウムを加えて乾燥した。固体を濾別後、減 圧下溶媒を留去し粗生成物を 12. 6g得たが、この粗生成物はこれ以上精製すること なく次工程へと導いた。
[0339] (工程 2)工程 1の粗生成物(12. 5g)にテトラヒドロフラン 125mlと 2M塩酸 25mlを 加え減圧下窒素置換を行った。これに 20%水酸化パラジウム—炭素(50%含水品) 1. 25gを加え反応系内を水素ガスで置換し、 50°Cで 48時間反応した。触媒を濾別 し、ケーキをテトラヒドロフラン 100ml、蒸留水 10mlで洗浄後、減圧下有機溶媒を留 去した。これに濃塩酸 10mlを加え 3. 5時間加熱還流した。蒸留水 50mlを添加後 50 °Cに加温し、トルエン (50ml X 4回)洗浄操作を行った。減圧下有機溶媒を留去し、 30%水酸ィ匕ナトリウム水溶液で pHを 2. 5に調整した。この溶液中のフエ-ルァラ- ンを、実施例 12の場合と同様に高速液体クロマトグラフィーで定量した結果、(R)— フ 二ルァラニンが 3. 5g (87%通算収率)、光学純度 100%eeで得られた。
[0340] (実施例 23)フエ-ルメチル一(2R) - (2. 6 ジクロロフエニル) 5—ォキソ 3—
IQ, Rl フエ-ルェチル)テト_5ヒト:口 1H— 1—ィ ゾールカルボキ レ一 j
[0341] [化 51]
Figure imgf000066_0001
[0342] 実施例 8の方法で得られた(2R) - (2, 6 ジクロロフヱ-ル)— 1— ( (1,R)—フエ -ルェチル)テトラヒドロー 1H— 4—イミダゾロン 5g (14. 9mmol)の酢酸ェチル 25m 1溶液に、窒素気流下室温でトリェチルァミン 4. 4g (43. 5mmol)、4 ジメチルァミノ ピリジン 180mg (l. 5mmol)をカ卩ぇ 0°Cに冷却した。これにクロロギ酸べンジル 6. Og (35. 2mmol)を 15分かけて滴下したのち、 1時間攪拌した。反応液を酢酸ェチル 5 Omlで希釈し、水および飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで 乾燥後、減圧下溶媒を留去し、表題の化合物を 4.9g (70%収率)、無色油状物とし て得た。
'H-NMR (400MHz, CDC1 ): δ 7.32— 7.12(13H, m), 6.48 (1Η, d, J=l
3
. OHz), 5.16(1H, d, J=12.0Hz), 5.02(1H, d, J=12. OHz)、 3.86(1H, q, J = 6.8Hz), 3.75(1H, dd, J=l.7Hz, 16.4Hz), 3.48 (1H, d, J=16.4 Hz), 1.26 (3H, d, J = 6.8Hz)。
[0343] (実施例 24) 2 プロぺニル—(2R) - (2.6 ジクロロフエニル)—5—ォキソ—3
-((l'R) フエニルェチル)テトラヒドロ 1H— 1 イミダゾールカルボキシレート
[0344] [化 52]
Figure imgf000067_0001
[0345] 実施例 8の方法で得られた(2R) - (2, 6 ジクロロフエ-ル)一 1— ((l'R)—フエ -ルェチル)テトラヒドロー 1H— 4—イミダゾロン 5g (14.9mmol)の酢酸ェチル 50m 1溶液に、窒素気流下 0°Cでトリェチルァミン 2.3g(22.4mmol)、 4 ジメチルァミノ ピリジン 180mg(l.5mmol)を加えた。これにクロ口ギ酸ァリル 2.2g(17.9mmol) の酢酸ェチル(10ml)溶液を 35分かけて滴下したのち、 1時間攪拌した。更にトリエ チルァミン 1.5g(14.9mmol)を添カ卩したのち、クロ口ギ酸ァリル 2.2g(17.9mmol )の酢酸ェチル(15ml)溶液を 25分かけて滴下して 1時間攪拌後、室温で 18時間攪 拌した。反応液を酢酸ェチル 50mlで希釈し、塩化アンモ -ゥム水溶液、水および飽 和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去 し、表題の化合物を 7.2g(NMRから含量 65%、 4.7g、 75%収率)、無色油状物と して得た。
'H-NMR (400MHz, CDC1 ): δ 7.33— 7.16 (8Η, m), 6.51 (1H, d, J=l.
3
OHz), 5.74 (1H, m), 5.21 (1H, dq, J=l.5Hz, 17.3Hz)、 5. 14 (1H, dq, J=l.2Hz, 10.5Hz)、4.57 (2H, m)、 3.88(1H, q, J = 6.8Hz), 3.76 (1H, dd, J=l.7Hz, 16.4Hz), 3.50 (1H, dd, J = 0.7Hz, 16.4Hz), 1.28 (3H, d, J = 6. 8Hz)。
[0346] (実施例 25) 2 プロぺニル(2R)— (2. 6 ジクロロフエ-ル_}—5—ォキソ—3— ( i_l,R)_—フエ-ルェチル - (4S1— _ (フエ-ルメチル)テトラヒ ロ— 1H— 1—イミダゾ 一ノレカノレボキシレート
[0347] [化 53]
Figure imgf000068_0001
[0348] 微量の 1, 10 フエナンスロリン(5mg以下)、実施例 24の方法で得られた 2 プロ ぺ -ル一(2R) - (2, 6 ジクロロフエ-ル) 5—ォキソ 3— ( (1,R)—フエ-ルェ チル)テトラヒドロー 1H— 1 イミダゾールカルボキシレート 4. 6g (l lmmol)、および 臭化べンジル 2. 2g (12. 6mmol)を含む、無水テトラヒドロフラン(20ml)溶液に、窒 素気流下一 35°Cでナトリウムへキサメチルジシラジド(1. 9Mテトラヒドロフラン溶液; 6. 7ml、 12. 6mmol)を約 15分かけて滴下した。 35°Cで 3時間攪拌したのち、反 応液を酢酸ェチル 50mlにて希釈し、 1M塩酸水溶液、蒸留水、飽和食塩水で順次 洗浄した。有機層を無水硫酸マグネシウムで乾燥したのち、減圧下溶媒を留去し粗 生成物を得た。これをシリカゲルカラムクロマトグラフィー(シリカゲル 60、 300g、展開 溶媒;へキサン Z酢酸ェチル =3Zl (容量比))で精製し、表題の化合物を含む無 色油状物を 6. Og取得した。
'H-NMR (400MHz, CDC1 ): δ 7. 32— 6. 98 (13H, m) , 6. 25 (1Η, d, J = 2
3
. OHz) , 5. 67 (1H, m) , 5. 13 (2H, m)、4. 48 (2H, m)、4. 31 (1H, t, J = 2. 9 Hz)、4. 00 (1H, q, J = 6. 6Hz) , 3. 31 (1H, dd, J = 2. 7Hz, 14. 2Hz) , 3. 09 (1H, dd, J = 6. 1Hz, 14. 2Hz)、 1. 33 (3H, d, J = 6. 6Hz)。
[0349] (実施例 26) (2S) - 2-ァミノ 3 3 ジフエ-ルプロピオン酸
[0350] [化 54]
Figure imgf000069_0001
[0351] (工程 1)微量の 1, 10—フエナンスロリン(5mg以下)と実施例 10の方法で得られた 1—ジメチルェチル一(2R) - (2, 6 ジクロロフエ-ル) 5—ォキソ 3— ( (1 R) —フエ-ルェチル)テトラヒドロー 1H—1—イミダゾールカルボキシレート 4. 0g (9. 2 mmol)、ベンズヒドリルクロリド 3. lg (15. 3mmol)を含む、無水テトラヒドロフラン(2 5ml)溶液に、窒素気流下— 20°Cでナトリウムジシラジド(1. 9molZL ;テトラヒドロフ ラン溶液、 10. 6mmol)を 20分間かけて滴下したのち、—20°Cで 15時間反応させ、 更に 10°Cで 1時間、 0°Cで 4時間反応した。反応液に 4M酢酸 Zテトラヒドロフラン 溶液 6. 5mlをカ卩えて反応を停止し、酢酸ェチル 100mlで希釈したのち蒸留水、飽 和食塩水で順次洗浄を行った。有機層を無水硫酸マグネシウムで乾燥したのち、減 圧下溶媒を留去し粗生成物 7. 0gを得た。これをシリカゲルカラムクロマトグラフィー( シリカゲル 60 200g、展開溶媒;へキサン Z酢酸ェチル =5Zl (容量比))で 2回、 さらにシリカゲル量 300gとする以外は同一の条件で 1回精製し、 1, 1—ジメチルェチ ル一(2R) - (2, 6—ジクロロフエ-ル) - (4S) - (ジフエ-ルメチル) 5—ォキソ一 3- ( (l 'R) フエ-ルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレート を総量 1. 63g (30%収率)白色固体として得た。
'H-NMR (400MHz, CDC1 ): δ 7. 50— 7. 05 (18H, m)、6. 25 (1Η, d, J = 2
3
. 2Hz)、4. 67 (1H, dd, J= l. 5Hz, 2. 0Hz)、4. 62 (1H, d, J= l. 5Hz)、4. 0 6 (1H, q, J = 6. 8Hz)、 1. 29 (3H, d, J = 6. 8Hz) 1. 16 (9H, s)。
[0352] (工程 2) 1, 1—ジメチルェチル—(2R) - (2, 6 ジクロロフヱ-ル) - (4S) - (ジ フエ-ルメチル) 5 ォキソ 3— ( ( 1 R) フエ-ルェチル)テトラヒドロ 1H— 1 —イミダゾールカルボキシレート 188mg (0. 31mmol)をテトラヒドロフラン 7. 5ml 1 M塩酸水溶液 lmlの混合溶媒に溶解したのち系内を窒素置換した。これに 20%水 酸ィ匕パラジウム—炭素 90mgを加え、系内を再び窒素ガスで置換したのち、系内を 水素ガスで置換した。水素圧 2. 2MPa室温で 100時間反応したのち、触媒をろ別し た。これをテトラヒドロフラン各 5mlで 3回、蒸留水 lmlで 1回洗浄し、溶媒を減圧下留 去した。これに 6M塩酸水溶液 7. 5mlをカ卩え、外温 120〜130°Cで 2. 5時間加熱還 流したのち、外温 0°Cに冷却した。これに 30%水酸ィ匕ナトリウム水溶液を加え pH6〜 7に調整したのち減圧下溶媒を留去した。残渣に含まれる(2S)— 2 アミノー 3、 3ジ フエニルプロピオン酸を下記の分析条件で定量した結果、 76%収率、 95. 7%eeで めつに。
[0353] (参考例 1) 2 アミノー 3、 3ジフ ニルプロピオン酸の合成
1—ジメチルェチル一(2R) - (2, 6 ジクロロフエ-ル) 5—ォキソ 3— ( (1,R) フエ-ルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレートの代わりに、 N— Boc グリシンメチルエステル 2. 5gを用いる以外は実施例 26と同様に反応を行 い、 2— (N— Boc ァミノ)一 3, 3 ジフエ-ルプロピオン酸メチルエステルを 640m g無色油状物として得た(14%収率)。更に 2— (N— Boc ァミノ)— 3, 3 ジフエ- ルプロピオン酸メチルエステル 354mgを 6M塩酸水溶液と混合し、 5時間加熱還流し たのち、トルエンで洗浄を行い、 30%水酸ィ匕ナトリウム水溶液で中和し、 2 ァミノ一 3、 3ジフエ-ルプロピオン酸の白色固体を取得した。これを用いて各異性体の保持 時間を確認した。
[0354] (光学純度分析条件)
カラム :ダイセル化学社製 キラルパック WH (内径 4. 6mm X 25cm)
移動層 : 2mM硫酸銅水溶液 Zメタノール = 90Z10 (容量比)
流速 : 1. Oml/ mm
検出器 : UV250nm
保持時間:(2R)異性体 約 16分
(2S)異性体 約 29分。
[0355] (実施例 27) (2S、 3R)—2 ァミノ一 3 ヒドロキシ一 5 フエ-ルペンタン酸
[0356] [化 55]
Figure imgf000071_0001
(工程 1)微量の 1, 10 フエナンスロリン(5mg以下)とジソプロピルアミン 1. 2ml (8 . 6mmol)を含む無水テトラヒドロフラン(10ml)溶液に、窒素気流下 0°Cで n—プチ ルリチウム 5. Oml (l. 6molZL;n—へキサン溶液、 7. 9mmol)を 5分間かけて滴下 した。 0°Cで 5分間攪拌後、—78°Cへと冷却し 10分間攪拌した。これに実施例 10で 得られた 1, 1—ジメチルェチル一(2R)— (2, 6 ジクロロフエ-ル)一 5—ォキソ 3 一((1,R) フエ-ルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレート 3 . 0g (6. 9mmol)の無水テトラヒドロフラン(6ml)溶液を 10分かけて滴下した。滴下ラ インを無水テトラヒドロフラン 2mlで洗浄したのち、 78°Cで 20分間熟成した。これに 3 フエ-ルプロピオンアルデヒド 0. 93g (6. 93mmol)を 10分間かけて滴下した。 - 78°Cで 3時間反応したのち、 4M酢酸 Zテトラヒドロフラン溶液 4mlをカ卩ぇ反応を停 止した。酢酸ェチル 100mlにて希釈し、塩化アンモ-ゥム水溶液、水、飽和食塩水 の順に洗浄を行った。有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去 し粗生成物を得た。これをシリカゲルカラムクロマトグラフィー(シリカゲル 60、 400g、 展開溶媒;へキサン Z酢酸ェチル = 3Zl (容量比))で精製し、 1, 1 ジメチルェチ ル(2R) - (2, 6 ジクロロフエ-ル) - (4S)— ( (1R)—ヒドロキシ一 3 フエ-ルプ 口ピル) 5 ォキソ 3— ( ( 1, R) フエ-ルェチル)テトラヒドロ 1H— 1—イミダゾ ールカルボキシレートおよび 1, 1ージメチルェチル(2R)—(2, 6 ジクロロフェニル ) - (4S)— ( (1S)—ヒドロキシ一 3—フエ-ルプロピル) 5—ォキソ 3— ( (1,R) - フエ-ルェチル)テトラヒドロ 1H— 1 イミダゾールカルボキシレートを合計 3. 5g ( 90%有姿収率)無色油状物として得た。
新たに生成したヒドロキシ基の生成比は粗生成物の NMRより R: S = 84: 16と決定し た。
[0358] (工程 2) 1, 1—ジメチルェチル(2R) - (2, 6 ジクロロフエ-ル) - (4S)— ( (1R) —ヒドロキシ一 3—フエ-ルプロピル) 5—ォキソ 3 ( (1,R)—フエ-ルェチル) テトラヒドロー 1H—1—イミダゾールカルボキシレート 477. 5mg (HPLC : 91. 5area %、 434mg、 0. 767mmol)と 6M塩酸水溶液(9. 6ml)を混合し、外温 120〜130 °Cで 4時間加熱還流した。 50°Cに冷却後、トルエン 20mlで 2回、 10mlで 1回洗浄し たのち外温を 0°Cとし、 30%水酸ィ匕ナトリウム水溶液と 1M塩酸水溶液を加え、 pH6 〜7に調製した。これに酢酸ェチル 20mlを加え 0°Cで 1時間攪拌した。析出した結晶 をろ過し、酢酸ェチル 5ml、氷冷水 10ml、へキサン 5mlで順次洗浄した。得られた 結晶を真空下 40°Cで乾燥し、 (3R)—ヒドロキシ— 5—フ ニル— (2S) - [ ( (1 'R) —フエニルェチル)ァミノ]ペンタン酸を 195mg (81 %収率)白色固体として得た。 'H-NMR (400MHz, CD OD): δ 7. 51— 7. 36 (5Η, m)、 7. 25— 7. 11 (5Η
3
, m)、4. 42 (1Η, q, J = 6. 8Hz)、 3. 89 (1H, m)、 3. 41 (1H, d, J = 6. 3Hz)、 2 . 84 (1H, m)、 2. 61 (1H, m)、 1, 92 (1H, m)、 1. 80 (1H, m)、 1. 67 (3H, d, J = 6. 8Hz)。
[0359] (工程 3) (3R)—ヒドロキシ一 5 フエ-ル一(2S)— [ ( (1,R)—フエ-ルェチル)ァ ミノ]ペンタン酸 150mg (0. 48mmol)をテトラヒドロフラン(10ml)と 1M塩酸水溶液 ( 1. 4ml)の混合溶媒に溶解し減圧下窒素置換を行った。これに 20%パラジウム—炭 素(50%含水品) 75mgをカ卩え、更に窒素置換を行ったのち系内を水素ガスで置換 し、水素圧 2. 2MPa、室温にて 50時間反応した。触媒をろ別しテトラヒドロフラン 5ml で 3回、蒸留水 lmlで 1回洗浄後、溶媒を減圧下留去した。さらに真空下 40°Cで乾 燥を行い、(2S、 3R)— 2 ァミノ 3 ヒドロキシ— 5 フエ-ルペンタン酸塩酸塩を 115mg (98%収率、 100%ee)白色固体として得た。
'H-NMR (400MHz, D O+DCl): δ 7. 21— 7. 07 (5Η, m)、 3. 99 (1Η, m)、
2
3. 81 (1Η, d, J = 3. 9Hz)、 2. 72— 2. 65 (1H, m)、 2. 58— 2. 51 (1H, m)、 1. 82- 1. 66 (2H, m) Q
[0360] (光学純度分析条件)
カラム :ダイセル化学社製 キラルパック WH (内径 4. 6mm X 25cm) 移動層 : 2mM硫酸銅水溶液 Zメタノール = 90Z10 (容量比)
流速 : 0. 5ml/ min
検出器 : UV254nm
保持時間:(2R、 3R)異性体および (2R, 3S)異性体 約 14分
(2S、 3R)異性体 約 27分
(2S、 3S)異性体 約 42分。
[0361] (実施例 28) (2R、 3S)—2 ァミノ一 3 ヒドロキシ一 5 フエ-ルペンタン酸
[0362] [化 56]
Figure imgf000073_0001
[0363] (工程 1)微量の 1, 10 フエナンスロリン(5mg以下)とジイソプロピルアミン 1. 2ml
(8. 6mmol)を含む無水テトラヒドロフラン(10ml)溶液に、窒素気流下 0°Cで n—ブ チルリチウム 4. 7ml (1. 6molZL ;n—へキサン溶液、 7. 5mmol)を 8分間かけて滴 下した。 0°Cで 10分間攪拌後、—78°Cへと冷却し 20分間攪拌した。これに実施例 1 1で得られた 1 ジメチルェチルー(2S)— (2, 6 ジクロ口フエ-ル)ー5 ォキソ 3- ( (l 'R) フエ-ルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレート 3. 0g (6. 9mmol)の無水テトラヒドロフラン(6ml)溶液を 10分かけて滴下した。滴下 ラインを無水テトラヒドロフラン 2mlで洗浄したのち、 78°Cで 20分間熟成した。これ に 3 フエ-ルプロピオンアルデヒド 0. 92g (6. 9mmol)を 10分間かけて滴下した。 — 78°Cで 2時間反応したのち、 1M酢酸 Zテトラヒドロフラン溶液 15mlをカ卩ぇ反応を 停止した。酢酸ェチル 100mlにて希釈し、塩化アンモ-ゥム水溶液、水、飽和食塩 水の順に洗浄を行った。有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留 去し粗生成物を得た。新たに生成したヒドロキシ基の生成比は粗生成物の1 H—NM Rより S :R=83 : 17と決定した。粗生成物を酢酸ェチル 5mlおよびへキサン 45mlと 力ら晶析し、 1, 1—ジメチルェチル(2S) - (2, 6 ジクロロフエ-ル) - (4R)— ( (1 S)—ヒドロキシ一 3—フエ-ルプロピル) 5—ォキソ 3 ( (1,R)—フエ-ルェチル )テトラヒドロ 1H— 1 イミダゾールカルボキシレートを 2. 3g (59%収率)黄色結晶 として得た。このとき他のジァステレオマーは NMRで NDとなった。
'H-NMR (400MHz, CDC1 ): δ 7. 36— 7. 32 (4Η, m)、7. 27— 7. 18 (7H,
3
m)、 6. 89-6. 87 (2H, m)、 6. 77 (1H, d, J = 3. 4Hz)、 3. 84— 3. 78 (2H, m )、 3. 43 (1H, d, J = 9. 8Hz) , 3. 02— 2. 95 (1H, m)、 2. 70— 2. 63 (1H, m)、 2. 10- 2. 02 (1H, m)、 1. 65— 1. 55 (1H, m)、 1, 26— 1. 24 (12H, m)。
[0364] (工程 2) 1, 1—ジメチノレエチノレ(2S) - (2, 6 ジクロロフヱ-ノレ) - (4R)— ( (1S) —ヒドロキシ一 3—フエ-ルプロピル) 5—ォキソ 3 ( (1,R)—フエ-ルェチル) テトラヒドロー 1H— 1—イミダゾールカルボキシレート 500mg (純度 92. 2wt%、含有 量 461mg、0. 81mmol)と 6M塩酸水溶液 7. 5mlを混合し、外温 120〜130。Cで 4 時間加熱還流した。外温 50°Cに冷却後トルエン各 1 Omlで 3回洗浄を行ったのち、 外温 0°Cとし 30%水酸化ナトリウム水溶液をカ卩ぇ pH7. 2とした。これに酢酸ェチル 1 5mlを加え、 0°Cで 1時間熟成した。生成した結晶をろ別し、酢酸ェチル 15ml、蒸留 水 5ml、へキサン 10mlで順次洗浄した。真空下 40°Cで乾燥し、 (3S)—ヒドロキシ— 5—フ -ル— (2R) - [ ( (1 'R)—フ -ルェチル)ァミノ]ペンタン酸を 182mg (72 %収率)白色固体として得た。
'H-NMR (400MHz, CD OD): δ 7. 48— 7. 38 (5Η, m)、 7. 22— 7, 18 (2Η
3
, m)、 7. 12- 7. 09 (3Η, m)、 4. 38 (1H, q, J = 6. 8Hz)、 3. 80 (1H, m)、 3. 0 6 (lHd, J = 6. 4Hz)、 2. 69 (1H, m)、 2. 43 (1H, m)、 1. 80—1. 63 (2H, m)、 1. 71 (3H, d, J = 6. 8Hz)。
[0365] (工程 3) (3S)—ヒドロキシ一 5 フエ-ル一(2R)— [ ( (1,R)—フエ-ルェチル)ァ ミノ]ペンタン酸 100mg (0. 32mmol)をテトラヒドロフラン(10ml)と 1M塩酸水溶液( 0. 6ml)の混合溶媒に溶解し、窒素置換を行った。これに 20%パラジウム—炭素 59 mgを加え再び窒素置換したのち、系内を水素ガスで置換し水素圧 2. 2MPa、室温 にて 70時間攪拌した。触媒をろ別後、テトラヒドロフラン各 5mlで 3回、蒸留水 lmlで 1回洗浄し、減圧下溶媒を留去した。さらに真空下 40°Cで乾燥し、(2R、 3S) - 2- ァミノ 3 ヒドロキシ - 5—フエ-ルペンタン酸(80mg、 100%ee)を白色固体として 定量的に得た。光学純度分析は実施例 27と同様の条件でを行い、 (2S, 3S)異性 体は不検出であった。
iH—NMR (400MHz, D O+DCl): δ 7. 24— 7. 10 (5Η, m)、4. 00 (1Η, m)、
2
3. 82 (1Η, d, J = 3. 4Hz)、 2. 75— 2. 68 (1H, m)、 2. 60— 2. 53 (1H, m)、 1. 81 - 1. 71 (2H, m)。
[0366] (参考例 2) 2 アミノー 3 ヒドロキシ 5 フ 二ルペンタン酸異性体混合物の合 成
1—ジメチルェチルー(2R)— (2, 6 ジクロロフエ-ル) 5—ォキソ 3— ( (1,R) フエ-ルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレートの代わりに、 N— Boc グリシンメチルエステル 2. 5gを用いる以外は実施例 27と同様に反応を行 い、 2- (N— Boc ァミノ) 3 ヒドロキシ一 5 フエ-ルペンタン酸メチルエステル を 3. 3g白色固体として得た(78%収率)。更に 2— (N— Boc ァミノ)— 3 ヒドロキ シー 5 フエ-ルペンタン酸メチルエステル 1. 0gを 6 M塩酸水溶液と混合し 4時間加 熱還流したのち、減圧下溶媒を留去することで、 2 アミノー 3 ヒドロキシ 5 フエ 二ルペンタン酸塩酸塩を合成した。これを用いて各異性体の保持時間を確認した。 また塩酸塩水溶液を 30%水酸ィ匕ナトリウム水溶液で pH6〜7とし、 2 -ァミノ 3 ヒ ドロキシ 5 フエ-ルペンタン酸を 346mg白色固体として得た(53%収率)。
[0367] (実施例 29) (2R、 3S)—2 ァミノ一 3 ヒドロキシ一 5 フエ-ルペンタン酸
[0368] [化 57]
Figure imgf000075_0001
[0369] 実施例 28 (工程 1)で得た、 1, 1ージメチルェチル(2S)—(2, 6 ジクロ口フエ-ル ) - (4R)— ( (1S)—ヒドロキシ一 3—フエ-ルプロピル) 5—ォキソ 3— ( (1,R) —フエ-ルェチル)テトラヒドロー 1H— 1—イミダゾールカルボキシレート 200mg (0. 35mmol)をテトラヒドロフラン(7. 5ml) , 1M塩酸水溶液(lml)に溶解したのち、系 内を窒素置換した。これに水酸化パラジウム—炭素(lOOmg)を加え、再び系内を窒 素置換したのち、系内を水素ガスに置換した。反応温度 40°C、水素圧 2. 2MPaで 4 2時間反応したのち、触媒をろ別し残渣をテトラヒドロフラン(10ml X 2)で洗浄した。 減圧下溶媒を留去し粗生成物を 104mg得た。これに 6M塩酸水溶液 (4ml)を加え、 外温 120〜130°Cで 4時間反応したのち、減圧下溶媒を留去した結果、(2R、 3S) 2 ァミノ 3 ヒドロキシ 5 フエ-ルペンタン酸塩酸塩を粗生成物として 109 mg得た。実施例 27と同様の条件で分析した結果、 99. 3%eeであった。
[0370] (実施例 30) (2S. 3R)— 2 アミノー 3 ヒドロキシ一 4 フエ-ノレブタン酸
[0371] [化 58]
Figure imgf000076_0001
[0372] (工程 1)微量の 1, 10 フエナンスロリン(5mg以下)とジソプロピルアミン 1. 2ml (8 . 6mmol)を含む、無水テトラヒドロフラン(10ml)溶液に、窒素気流下 0°Cで n—プチ ルリチウム 5. OrnKl. 6molZL;n—へキサン溶液)を 10分間かけて滴下した。 0°C、 - 78°Cで各 10分間ずつ熟成したのち、これに実施例 10の方法で得られた 1 ジメ チノレエチノレー (2R) - (2, 6 ジクロロフエ-ノレ) 5—ォキソ 3— ( (1,R)—フエ二 ルェチル)テトラヒドロー 1H—1—イミダゾールカルボキシレート 3. 0g (6. 9mmol)の 無水テトラヒドロフラン (6ml)溶液を 10分かけて滴下した。滴下ラインを無水テトラヒド 口フラン 2mlで洗浄したのち、 78°Cで 25分間熟成した。これにフエ-ルァセトアル デヒド 1. 0g (8. 6mmol)を 5分間かけて滴下した。 78°Cで 3時間反応したのち、 4 M酢酸 Zテトラヒドロフラン溶液 4. 2mlをカ卩ぇ反応を停止した。酢酸ェチル 100mlに て希釈し、水、飽和食塩水の順に洗浄を行った。有機層を無水硫酸マグネシウムで 乾燥後、減圧下溶媒を留去し粗生成物を 4.4g得た。新たに生成したヒドロキシ基の 生成比は粗生成物の1 H— NMRより R:S = 86: 14と決定した。粗生成物をシリカゲ ルカラムクロマトグラフィー(シリカゲル 60、 350g、展開溶媒;へキサン Z酢酸ェチル = 3Zl (容量比))で精製し、 1, 1—ジメチルェチル—(2R)— (2, 6—ジクロロフエ -ル) 4— ((1R)—ヒドロキシ一 2 フエ-ルェチル) 5—ォキソ 3— ((1,R) - フエ-ルェチル)テトラヒドロ 1H— 1—イミダゾールカルボキシレートを 2.6g (68% 有姿収率)無色油状物として得た。また薄相シリカゲル板 (メルクシリカゲルプレート 2 00X200X0.25mm; 3枚;展開溶媒;へキサン Z酢酸ェチル =3/1 (容量比) )を 用いて生成物の一部を精製し、 1, 1—ジメチルェチル—(2R)— (2, 6 ジクロロフ ェ -ル)— 4— ((1S)—ヒドロキシ一 2—フエ-ルェチル) 5—ォキソ 3— ((1,R) フエ-ルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレートを 50mg取 得し1 H— NMRを測定した。
[0373] 1.1—ジメチルェチル一(2R) - (2.6 ジクロロフヱニル) - (4S)— ((1R)—ヒド ロキシ 2 フエ-ルェチル)ー5—ォキソー3—((1'1^) フエ-ルェチル)テトラヒド ロー 1H— 1—イミダゾールカルボキシレート
'H-NMR (400MHz, CDC1) :7.37— 7.01(13H, m)、6.75 (1H, d, J = 2.
3
7Hz)、4.41 (1H, t, J = 3.4Hz)、4.00(1H, m)、 3.80(1H, d, J = 6.8Hz), 3.46 (1H, d, J=ll.5Hz)、 3.23(1H, dd, J = 2.4Hz, 13.7Hz), 2.60(1H , dd, J=10.5Hz、 13.7Hz)、 1.36 (3H, d, J = 7. lHz)、 1.27 (9H, s)。
[0374] 1.1—ジメチルェチル一(2R) - (2.6 ジクロロフエニル) - (4S)— ((1S)—ヒド ロキシ 2 フエニルェチル)ー5—ォキソー3—((1'1^) フエニルェチル)テトラヒド ロー 1H— 1 イミダゾールカルボキシレート
'H-NMR (400MHz, CDC1) :7.29— 6.97(13H, m)、6.33 (1H, s)、4.38
3
(1H, brs)、4.27(1H, q, J = 7. lHz)、 3.49 (2H, brs)、 3.36(1H, dd, J = 6. 1Hz, 13.7Hz)、 3.19 (1H, dd, J = 8.5Hz, 13.4Hz), 1.49 (3H, d, J = 7.1 Hz)、 1.21 (9H, s)。
[0375] (工程 2) 1, 1—ジメチルェチル一(2R) - (2, 6 ジクロロフエ-ル) - (4S)— ((1 R) ヒドロキシ一 2 フエ-ルェチル) 5 ォキソ 3— ( ( 1, R) フエ-ルェチル) テトラヒドロー 1H—1—イミダゾールカルボキシレート 1. 3g (含量 85. 3%;1. lg、 1 . 98mmol)と 6M塩酸水溶液 12. 9mlを混合し、外温 120〜130°Cで 4. 5時間カロ熱 還流した。外温 80°Cに冷却後トルエン各 20mlにて 3回洗浄し、外温 0°Cに冷却した 。これに 30%水酸ィ匕ナトリウム水溶液をカ卩ぇ pH6〜7としたのち、 0°Cで 2時間熟成し た。析出した結晶をろ別し、氷冷水 5ml、酢酸ェチル 5mlで洗浄後、真空下 40°Cで 乾燥した結果、(3R)—ヒドロキシ— 4—フエ-ル— (2S)— [(l'R) - (フエ-ルェチ ル)ァミノ]ブタン酸を 554mg(94%収率)白色固体として得た。これは1 H— NMRの 結果から(工程 1)で分離できな力つた(3S)—ヒドロキシ— 4 フ ニル—(2S)— [(1 ,R) - (フエ-ルェチル)ァミノ]ブタン酸を約 6. 5%含んでいることがわかった(約 86 . 9%de)0
[0376] (3R)ーヒドロキシー4 フ 二ルー(2S)—「(1,R) (フ ニルェチル)ァミノ Ίブタ JH- NMR (400MHz, CD OD) :7.46— 7. 37 (5H, m)、 7. 30— 7. 18 (5H, m
3
)、4.41 (1H, q, J = 6. 8Hz)、4. 17(1H, m)、 3.42(1H, d, J = 6. 3Hz)、 3. 0 3(1H, dd, J = 3. 9Hz, 14. 2Hz)、2. 81 (1H, dd, J = 8. 8Hz, 14. 2Hz)、 1. 6 8(3H, d, J = 6. 8Hz)。
[0377] (工程 3) (3R)—ヒドロキシ一 4—フエ-ル一(2S)— [(l'R) - (フエ-ルェチル)ァ ミノ]ブタン酸 300mgをテトラヒドロフラン 10ml、 1M塩酸水溶液 3mlの混合溶媒に溶 解し、系内を窒素ガスに置換した。これに 20%水酸化パラジウム—炭素 lOOmgをカロ え、系内を再び窒素ガスで置換したのち、系内を水素ガスで置換した。水素圧 2. 2 MPa室温で 24時間反応したのち、触媒をろ別した。これをテトラヒドロフラン各 5mlで 3回、蒸留水 lmlで 1回洗浄し、溶媒を減圧下留去した結果、(2S, 3R)—2 ァミノ 3 ヒドロキシー 4 フエ-ルブタン酸塩酸塩の白色固体を定量的( 240mg)に得 た。 HPLC分析の結果から、この結晶は(2R, 3R)異性体:(2S:3R)異性体:(2S, 3S)異性体を 6: 88: 6の比率で含んで!/ヽた。
[0378] (2S. 3R)—2 ァミノ一 3 ヒドロキシ一 4 フエニルブタン酸塩酸塩
iH—NMR (400MHz, D O+DCl): δ 6. 33— 6. 21 (5Η, m)、3. 44 (1Η, m)、
2
3. 08 (1H, m)、 1. 97(1H, dd, J=4. 2Hz, 13.4Hz), 1. 82(1H, dd, J = 9. 3 Hz, 13. 9Hz;)。
[0379] (光学純度分析条件)
カラム :ダイセル化学社製 キラルパック WH (内径 4. 6mm X 25cm)
移動層 : 2mM硫酸銅水溶液 Zメタノール = 90Z10 (容量比)
流速 : 0. 5ml/ min
検出器 : UV250nm
保持時間:(2R、3R)異性体および (2R, 3S)異性体 約 18分
(2S、3R)異性体 約 25分
(2S、3S)異性体 約 33分。
[0380] (参者例 3) 2 アミノー 3 ヒドロキシー 4 フエニルブタン酸 ¾件体混合物の合成
1—ジメチルェチル一(2R) - (2, 6 ジクロロフエ-ル) 5—ォキソ 3— ( (1,R) フエ-ルェチル)テトラヒドロー 1H— 1 イミダゾールカルボキシレートの代わりに、 N— Boc グリシンメチルエステル 2. 5gを用いる以外は実施例 30と同様に反応を行 い、 2- (N— Boc ァミノ) 3 ヒドロキシ一 4 フエ-ルブタン酸メチルエステルを 3. lg無色油状物として得た(76%収率)。更に 2— (N— Boc ァミノ)— 3 ヒドロキ シー 4 フエ-ルブタン酸メチルエステル 1. 7gを 6M塩酸水溶液と混合し 4時間加熱 還流したのち、トルエンで洗浄を行い、 30%水酸ィ匕ナトリウム水溶液で中和すること で、 2 アミノー 3 ヒドロキシ一 4 フエ-ルブタン酸の白色固体を 0. 74g取得した( 70%収率)。これを用いて各異性体の保持時間を確認した。
産業上の利用可能性
[0381] 本発明によって製造される光学活性イミダゾリジノン誘導体は、光学活性なアミノ酸 合成に汎用的に利用することができ、医薬分野を始め多方面において製造上重要 な、光学活性アミノ酸を簡便に製造することができる。

Claims

請求の範囲
一般式 (1)
[化 1]
Figure imgf000080_0001
(式中、 n、 mは独立して、
Figure imgf000080_0002
R2の数を表す 0〜5の整 数であり、
Figure imgf000080_0003
R2は独立して、置換されていてもよい炭素数 1〜18のアルキル基、置 換されて 、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァリール基、ハロゲン原子、ヒドロキシル基、置換されていてもよい炭素数 1〜1 8のアルコキシ基、ニトロ基を示す。
Figure imgf000080_0004
R2が複数個ある場合は、すべて同一であって もよいし、異なっていてもよい。 * 1、 * 2は不斉炭素原子を示す)で表されるイミダゾ リジノン誘導体又はその光学活性体。
一般式 (2)
[化 2]
Figure imgf000080_0005
(式中、 n、 mは独立して、
Figure imgf000080_0006
R2の数を表す 0〜5の整 数であり、
Figure imgf000080_0007
R2は独立して、置換されていてもよい炭素数 1〜18のアルキル基、置 換されて 、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァリール基、ハロゲン原子、ヒドロキシル基、置換されていてもよい炭素数 1〜1 8のアルコキシ基、ニトロ基を示す。 R2が複数個ある場合は、すべて同一であって もよいし、異なっていてもよい。 * 1、 * 2は不斉炭素原子を示す。 R3は置換されてい てもよ 、炭素数 1〜18のアルキル基、置換されて!、てもよ 、炭素数 2〜18のァルケ -ル基、置換されていてもよい炭素数 2〜 18のアルキ-ル基、置換されていてもよい 炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァリ一ル基を 示す)で表されるイミダゾリジノン誘導体又はその光学活性体。
一般式 (3)
[化 3]
Figure imgf000081_0001
(式中、 n、 mは独立して、
Figure imgf000081_0002
R2の数を表す 0〜5の整 数であり、
Figure imgf000081_0003
R2は独立して、置換されていてもよい炭素数 1〜18のアルキル基、置 換されて 、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァリール基、ハロゲン原子、ヒドロキシル基、置換されていてもよい炭素数 1〜1 8のアルコキシ基、ニトロ基を示す。
Figure imgf000081_0004
R2が複数個ある場合は、すべて同一であって もよいし、異なっていてもよい。 R3は置換されていてもよい炭素数 1〜18のアルキル 基、置換されていてもよい炭素数 2〜 18のアルケニル基、置換されていてもよい炭素 数 2〜 18のアルキ-ル基、置換されていてもよい炭素数 6〜 18のァリール基、置換さ れていてもよい炭素数 7〜18のァラルキル基を示す。
Figure imgf000081_0005
R5は異なって、水素原子、 置換されて 、てもよ 、炭素数 1〜30のアルキル基、置換されて!、てもよ 、炭素数 2〜 18のァルケ-ル基、置換されていてもよい炭素数 2〜18のアルキ-ル基、置換され て!、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァ リール基を示し、 * 1、 * 2、 * 3は不斉炭素原子を示す)で表される光学活性イミダ ゾリジノン誘導体。
一般式 (4)
[化 4]
Figure imgf000082_0001
(式中、 nは、ベンゼン環の置換基 R1の数を表す 0〜5の整数であり、 R1は、置換され て!、てもよ 、炭素数 1〜18のアルキル基、置換されて!、てもよ 、炭素数 7〜18のァラ ルキル基、置換されていてもよい炭素数 6〜18のァリール基、ハロゲン原子、ヒドロキ シル基、置換されていてもよい炭素数 1〜18のアルコキシ基、ニトロ基を示す。 R1が 複数個ある場合は、すべて同一であってもよいし、異なっていてもよい。 * 1は不斉 炭素原子を示す)で表される光学活性グリシンアミド誘導体と、一般式 (5)
[化 5]
Figure imgf000082_0002
(式中、 mは、ベンゼン環の置換基 R2の数を表す 0〜5の整数であり、 R2は、置換され て!、てもよ 、炭素数 1〜18のアルキル基、置換されて!、てもよ 、炭素数 7〜18のァラ ルキル基、置換されていてもよい炭素数 6〜18のァリール基、ハロゲン原子、ヒドロキ シル基、置換されていてもよい炭素数 1〜18のアルコキシ基、ニトロ基を示す。 R2が 複数個ある場合は、すべて同一であってもよいし、異なっていてもよい)で表される置 換ベンズアルデヒドを、酸性触媒の存在下、縮合させることを特徴とする、前記式(1) で表されるイミダゾリジノン誘導体の製造方法。 [5] 酸性触媒がスルホン酸類であることを特徴とする、請求項 4に記載のイミダゾリジノン 誘導体の製造方法。
[6] 前記式(1)で表されるイミダゾリジノン誘導体を有機溶媒を用いて結晶化させることを 特徴とする、光学活性イミダゾリジノン誘導体の晶析方法。
[7] イミダゾリジノン誘導体を異性化させながら、光学活性イミダゾリジノン誘導体を結晶 化することを特徴とする、請求項 6に記載の晶析方法。
[8] 異性化において酸性触媒を利用することを特徴とする、請求項 7に記載の晶析方法
[9] 更に、請求項 6〜8のいずれかに記載の方法を用いて結晶化する工程を含むことを 特徴とする請求項 4または 5に記載の製造方法。
[10] 前記式(1)で表されるイミダゾリジノン誘導体又はその光学活性体に、塩基の存在下 において、一般式(6)
R3OCOX (6)
(式中、 R3は置換されていてもよい炭素数 1〜18のアルキル基、置換されていてもよ V、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18のアルキ-ル 基、置換されていてもよい炭素数 6〜18のァリール基、置換されていてもよい炭素数 7〜 18のァラルキル基を示し、 Xはハロゲン原子を示す)で表される、ハロゲノギ酸ェ ステル、または一般式(7)
Figure imgf000083_0001
(式中、 R3は上記に同じであり、 2つの R3は同一である)で表される、ピロ炭酸エステ ルを作用させることを特徴とする、前記式(2)で表されるイミダゾリジノン誘導体の製 造方法。
[11] 前記式(1)で表される化合物が請求項 4、 5および 9のうちいずれ力 1項に記載の方 法により得られたものである請求項 10に記載の製造方法。
[12] 前記式(2)で表されるイミダゾリジノン誘導体を有機溶媒を用いて結晶化させることを 特徴とする、光学活性イミダゾリジノン誘導体の晶析方法。
前記式(2)で表される光学活性イミダゾリジノン誘導体に、塩基の存在下、一般式 (8 )
R7Y (8)
(式中、 R7は、置換されていてもよい炭素数 1〜30のアルキル基、置換されていても ょ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18のアルキ- ル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されていてもよい炭 素数 6〜18のァリール基を示し、 Yは脱離能を有する置換基を示す)で表される 1種 または 2種の親電子剤を作用させることを特徴とする、一般式 (3)
[化 7]
(式
Figure imgf000084_0001
前記と同じ。 R4, のうち少なくとも一方は R7 である。 * 3は不斉炭素原子を示す)で表される光学活性イミダゾリジノン誘導体の製 造方法。
1種の親電子剤を作用させることにより、前記式 (3)において 、 R5の一方が水素原 子であり他方が R7である、一般式(11)
[化 8]
Figure imgf000085_0001
(式中、 n、 m、
Figure imgf000085_0002
R2、 R3、 R7、 * 1、 * 2、 * 3は前記と同じ)で表される光学活性イミ ダゾリジノン誘導体を製造することを特徴とする、請求項 13記載の製造方法。
[15] 前記式 (8)で表される親電子剤として R7部分が互いに異なる 2種の親電子剤を作用 させることにより、前記式(3)において、 R4と R5が互いに異なる R7である光学活性イミ ダゾリジノン誘導体を製造することを特徴とする、請求項 13記載の製造方法。
[16] 前記式(2)で表される化合物が請求項 10〜 12のいずれか 1項に記載の方法で得ら れたものである請求項 13〜 15のいずれかに記載の製造方法。
[17] 一般式 (11)
[化 9]
Figure imgf000085_0003
(式中、 n、 mは独立して、
Figure imgf000085_0004
R2の数を表す 0〜5の整 数であり、
Figure imgf000085_0005
R2は独立して、置換されていてもよい炭素数 1〜18のアルキル基、置 換されて 、てもよ 、炭素数 7〜 18のァラルキル基、置換されて!、てもよ 、炭素数 6〜 18のァリール基、ハロゲン原子、ヒドロキシル基、置換されていてもよい炭素数 1〜1 8のアルコキシ基、ニトロ基を示す。 R2が複数個ある場合は、すべて同一であって もよいし、異なっていてもよい。 R3は置換されていてもよい炭素数 1〜18のアルキル 基、置換されていてもよい炭素数 2〜 18のアルケニル基、置換されていてもよい炭素 数 2〜 18のアルキ-ル基、置換されていてもよい炭素数 6〜 18のァリール基、置換さ れていてもよい炭素数 7〜18のァラルキル基を示す。 R7は、置換されていてもよい炭 素数 1〜30のアルキル基、置換されていてもよい炭素数 2〜18のァルケ-ル基、置 換されて 、てもよ 、炭素数 2〜 18のアルキニル基、置換されて!、てもよ 、炭素数 7〜 18のァラルキル基、置換されていてもよい炭素数 6〜18のァリール基表す。 * 1、 * 2、 * 3は不斉炭素原子を示す)で表される光学活性イミダゾリジノン誘導体に、塩基 の存在下、一般式 (8) '
R7,Y (8),
(式中、 R7'は、置換されていてもよい炭素数 1〜30のアルキル基、置換されていても ょ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18のアルキ- ル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されていてもよい炭 素数 6〜 18のァリール基を示す。ただし、 R7'は上記式(11)における R7とは互いに 異なる。 Yは脱離能を有する置換基を示す)で表される親電子剤を作用させることを 特徴とする、一般式 (3)
[化 10]
(式
Figure imgf000086_0001
上記に同じ。 R4、 R5は、一方が R'、他方が R7, と同じである。 R7、 R7'は上記に同じ。 * 3は不斉炭素原子を示す)で表される光学活 性イミダゾリジノン誘導体の製造方法。
塩基がリチウムジイソプロピルアミド、リチウムへキサメチルジシラジド、ナトリウムへキ サメチルジシラジド、カリウムへキサメチルジシラジド、塩化 t ブチルマグネシウム、 カリウム tーブトキシド、ナトリウム tーブトキシド、リチウム tーブトキシド、水素化リチウム 、水素化ナトリウム、水素化カリウム、および水素化カルシウムのうち、少なくとも 1種類 を使用することを特徴とする、請求項 13〜17のいずれか 1項に記載の光学活性イミ ダゾリジノン誘導体の製造方法。
[19] 前記式 (3)で表される光学活性イミダゾリジノン誘導体に、有機溶媒及び水のうち、 少なくとも 1種類を用いた溶媒中で、酸または塩基を作用させることを特徴とする、一 般式 (9)
[化 11]
(
Figure imgf000087_0001
、 * 3は上記に同じ)で表される、光学活性 N—(l—置換 フエニルェチル)アミノ酸誘導体の製造方法。
請求項 19に記載の方法により得られる前記式(9)で表されるアミノ酸誘導体の窒素 上の置換基を脱保護することを特徴とする、一般式 (10)
[化 12]
Figure imgf000087_0002
(式中、 R4、 R5、 * 3は前記に同じ)で表される光学活性アミノ酸の製造方法。
前記式 (3)で表される光学活性イミダゾリジノン誘導体の窒素上の置換基を脱保護し て、一般式(12)
[化 13]
Figure imgf000088_0001
(式中、 R4、 R5、 * 3は前記に同じ)で表される光学活性アミノ酸アミドとしたのち、有 機溶媒及び水のうち、少なくとも 1種類を用いた溶媒中で、酸または塩基を作用させ ることを特徴とする、前記式(10)で表される光学活性アミノ酸の製造方法。
[22] 前記式(3)で表される光学活性イミダゾリジノン誘導体力 請求項 13〜18のいずれ 力 1項に記載の方法により製造されたものであることを特徴とする、請求項 19〜21の いずれか〖こ記載の光学活性 N—(1 置換フ ニルェチル)アミノ酸誘導体または光 学活性アミノ酸の製造方法。
[23] 前記式(2)で表される光学活性イミダゾリジノン誘導体に、塩基の存在下、一般式(1 3)
R8 - CHO (13)
(式中、 R8は、水素原子、置換されていてもよい炭素数 1〜30のアルキル基、置換さ れて 、てもよ 、炭素数 2〜 18のァルケ-ル基、置換されて!、てもよ 、炭素数 2〜 18 のアルキニル基、置換されていてもよい炭素数 7〜 18のァラルキル基、置換されてい てもよい炭素数 6〜18のァリール基を示す)で表されるアルデヒドを作用させることを 特徴とする、一般式 (14)
[化 14]
(
Figure imgf000088_0002
2、 * 3は前記と同じであり、 R8が水素原子で ない場合、 * 4は不斉炭素原子を示す)で表される、光学活性イミダゾリジノン誘導体 の製造方法。
[24] 塩基がリチウムジイソプロピルアミド、リチウムへキサメチルジシラジド、ナトリウムへキ サメチルジシラジド、カリウムへキサメチルジシラジド、塩化 t ブチルマグネシウム、 カリウム tーブトキシド、ナトリウム tーブトキシド、リチウム tーブトキシド、水素化リチウム 、水素化ナトリウム、水素化カリウム、および水素化カルシウムのうち、少なくとも 1種類 を使用することを特徴とする、請求項 23に記載の光学活性イミダゾリジノン誘導体の 製造方法。
[25] 前記式(2)で表される化合物が請求項 10〜 12のいずれか 1項に記載の方法で得ら れたものである、請求項 23または 24に記載の製造方法。
[26] 前記式(14)で表される光学活性イミダゾリジノン誘導体に、有機溶媒及び水のうち、 少なくとも 1種類を用いた溶媒中で、酸または塩基を作用させることを特徴とする、一 般式 (15)
[化 15]
Figure imgf000089_0001
(式中、 r R^ R8 * 1、 * 3、 * 4は前記に同じ)で表される、光学活性 N—(l 置 換フヱニルェチル)ヒドロキシアミノ酸誘導体の製造方法。
請求項 26記載の方法により得られる前記式( 15)で表されるヒドロキシアミノ酸誘導体 の窒素上の置換基を脱保護することを特徴とする一般式(16)
[化 16]
Figure imgf000089_0002
(式中、 R8、 * 3、 * 4は前記に同じ)で表される光学活性ヒドロキシアミノ酸の製造方 法。
前記式(14)で表される光学活性イミダゾリジノン誘導体の窒素上の置換基を脱保護 し、一般式(17)
[化 17]
Figure imgf000090_0001
(式中、 R8、 * 3、 * 4は前記に同じ)で表される光学活性ヒドロキシアミノ酸アミドを合 成したのち、有機溶媒及び水のうち、少なくとも 1種類を用いた溶媒中で、酸または 塩基を作用させることを特徴とする、前記式(16)で表される光学活性ヒドロキシァミノ 酸の製造方法。
前記式(14)で表される光学活性イミダゾリジノン誘導体が、請求項 23または 24記載 の方法で得られたものである、請求項 26〜28の 、ずれか 1項に記載の光学活性 N - (1—置換フエ-ルェチル)ヒドロキシアミノ酸誘導体または光学活性ヒドロキシアミ ノ酸の製造方法。
PCT/JP2007/059826 2006-07-28 2007-05-14 Nouveau dérivé d'imidazolidinone, procédé de production de ce dérivé et procédé de production d'un acide aminé optiquement actif WO2008012974A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008526694A JP5153631B2 (ja) 2006-07-28 2007-05-14 新規イミダゾリジノン誘導体とその製造方法及び光学活性アミノ酸の製造方法
EP07743261.5A EP2050738B1 (en) 2006-07-28 2007-05-14 Novel imidazolidinone derivative, method of producing the same and method of producing optically active amino acid
US12/309,729 US7947722B2 (en) 2006-07-28 2007-05-14 Imidazolidinone derivative, method of producing the same and method of producing optically active amino acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006206431 2006-07-28
JP2006-206431 2006-07-28

Publications (1)

Publication Number Publication Date
WO2008012974A1 true WO2008012974A1 (fr) 2008-01-31

Family

ID=38981289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059826 WO2008012974A1 (fr) 2006-07-28 2007-05-14 Nouveau dérivé d'imidazolidinone, procédé de production de ce dérivé et procédé de production d'un acide aminé optiquement actif

Country Status (4)

Country Link
US (1) US7947722B2 (ja)
EP (1) EP2050738B1 (ja)
JP (1) JP5153631B2 (ja)
WO (1) WO2008012974A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176084B (zh) * 2021-12-06 2022-09-20 南京天秾生物技术有限公司 2-氨基-3-羟基-3-甲基丁酸和/或2-氨基-3-(4-羟基苯基)丁酸的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379866A (en) * 1976-12-24 1978-07-14 Basf Ag Antipodally substituted 22imidazolinee55one
JPS6335571A (ja) * 1986-07-24 1988-02-16 イ−ライ・リリ−・アンド・カンパニ− 抗生物質の中間体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379866A (en) * 1976-12-24 1978-07-14 Basf Ag Antipodally substituted 22imidazolinee55one
JPS6335571A (ja) * 1986-07-24 1988-02-16 イ−ライ・リリ−・アンド・カンパニ− 抗生物質の中間体

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., 1986, pages 345
CHEMICAL REVIEW, vol. 106, 2006, pages 2711
HELV. CHIM. ACTA., vol. 68, 1985, pages 949
J. ORG. CHEM., vol. 60, 1995, pages 6408
MODERN SYNTHETIC METHODS, vol. 4, 1986, pages 128
PFAMMATTER E. ET AL.: "Preparation of (R)- and (S)-2-alkyl-2-amino-3-(methylamino) propanoic and other-2,3-diaminoalkanoic acid derivatives from a chiral imidazoline", LIEBIGS ANNALEN DER CHEMIE, no. 12, 1991, pages 1323 - 1236, XP003020674 *
See also references of EP2050738A4

Also Published As

Publication number Publication date
EP2050738A1 (en) 2009-04-22
US20090209768A1 (en) 2009-08-20
US7947722B2 (en) 2011-05-24
EP2050738A4 (en) 2010-09-22
JPWO2008012974A1 (ja) 2009-12-17
EP2050738B1 (en) 2013-07-10
JP5153631B2 (ja) 2013-02-27

Similar Documents

Publication Publication Date Title
KR100879409B1 (ko) (s)-베포타스틴의 제조방법 및 이에 사용되는 중간체
US8367847B2 (en) Production of monatin enantiomers
CN110300756B (zh) 7H-吡咯并[2,3-d]嘧啶衍生物的制备方法及其合成中间体
CZ302497B6 (cs) Deriváty 3,3-difenylpropylaminu, zpusob jejich prípravy a použití
US10676443B2 (en) Method for producing (4S)-4-[4-cyano-2-(methylsulfonyl)phenyl]-3,6-dimethyl-2-oxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro pyrimidine-5-carbonitrile
MX2007002030A (es) Metodo para preparar irbesartan e intermediarios del mismo.
CN112154140B (zh) 化合物及其在合成布瓦西坦(Brivaracetam)原料药中的用途
WO2016002918A1 (ja) インドール化合物の製造方法
TWI732826B (zh) 一種新毒素及其中間體的製備方法
WO2008012974A1 (fr) Nouveau dérivé d'imidazolidinone, procédé de production de ce dérivé et procédé de production d'un acide aminé optiquement actif
KR101865868B1 (ko) 1-이소프로필-3-[5-[1-(3-메톡시프로필) 피페리딘-4-일]-[1,3,4]옥사디아졸-2-일]-1h-인다졸 옥살레이트의 대규모 제조공정
JP4631262B2 (ja) (シス)−4−ヒドロキシプロリン誘導体の製造方法
CA2208129C (en) Process for the preparation of chiral, nonracemic (4-aryl-2, 5-dioxoimidazo-lidin-1-yl)acetic acids
US11332433B2 (en) Process for the preparation of latanoprostene bunod and intermediate thereof and compositions comprising the same
CN110835319B (zh) 一种贝那普利中间体和贝那普利盐酸盐的合成方法
TWI854815B (zh) 7H-吡咯并[2,3-d]嘧啶衍生物的製造方法及其合成中間體
KR20100063915A (ko) 높은 광학적 순도의 s-(-)-암로디핀을 제조하는 방법 및 그 중간생성 화합물
WO2003051895A1 (fr) Procedes de preparation de sulfostine et d'analogues ou d'intermediaires de celle-ci
JP4109446B2 (ja) ジアステレオ異性体として純粋なトランス−2−[(α−メチルベンジル)アミノ]シクロペンタノールの製造方法
JP2020131172A (ja) 高立体選択的不斉アルドール反応を達成する有機分子触媒及びその利用
CN110922354A (zh) 一种1-r-3-氟哌啶-4-羧酸的化学拆分制备方法及其产物
JPH11335367A (ja) 光学活性なカルボン酸の製造法
JPWO2010079605A1 (ja) 高純度1−ベンジル−3−アミノピロリジンの製造方法
JP2007297306A (ja) 光学活性3−(1−ピロリジニル)ピロリジンの製造法
JPH10195075A (ja) Z−バラシクロビルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526694

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12309729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743261

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU