WO2008010337A1 - Vibrateur de type fourche et gyroscope à vibrations l'utilisant - Google Patents

Vibrateur de type fourche et gyroscope à vibrations l'utilisant Download PDF

Info

Publication number
WO2008010337A1
WO2008010337A1 PCT/JP2007/057825 JP2007057825W WO2008010337A1 WO 2008010337 A1 WO2008010337 A1 WO 2008010337A1 JP 2007057825 W JP2007057825 W JP 2007057825W WO 2008010337 A1 WO2008010337 A1 WO 2008010337A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating body
sound piece
piece type
main surface
vibrator
Prior art date
Application number
PCT/JP2007/057825
Other languages
English (en)
French (fr)
Inventor
Katsumi Fujimoto
Masato Koike
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2007800277703A priority Critical patent/CN101495836B/zh
Priority to JP2008525800A priority patent/JP4687790B2/ja
Publication of WO2008010337A1 publication Critical patent/WO2008010337A1/ja
Priority to US12/355,034 priority patent/US7770450B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5621Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5656Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks

Definitions

  • the present invention relates to a sound piece type vibrator and a vibration gyro using the same, and particularly, for example,
  • the present invention relates to a sound piece type vibrator using bending vibration and a vibration gyro using the same.
  • FIG. 12 is a perspective view showing an example of a conventional sound piece type vibrator.
  • the sound piece type resonator 1 includes two strip-shaped piezoelectric substrates 2a and 2b. These piezoelectric substrates 2 a and 2 b are stacked via the electrode 3. These piezoelectric substrates 2a and 2b are polarized in opposite directions as indicated by arrows in FIG.
  • On the main surface of one piezoelectric substrate 2a two divided electrodes 4 and 4 are formed. These divided electrodes 4 and 4 are formed so as to be divided at the center in the width direction of the piezoelectric substrate 2a and to extend in the longitudinal direction of the piezoelectric substrate 2a.
  • the common electrode 5 is formed on the entire main surface of the other piezoelectric substrate 2b.
  • This sound piece type vibrator 1 is flexibly vibrated in a direction perpendicular to the principal surfaces of the piezoelectric substrates 2a and 2b by connecting an oscillation circuit between the divided electrodes 4 and 4 and the common electrode 5.
  • Support members 6 and 6 are formed at the node portion of the bending vibration.
  • This sound piece type vibrator 1 is used as, for example, a vibration gyro.
  • an oscillation circuit is connected between the divided electrodes 4 and 4 and the common electrode 5. Further, the divided electrodes 4 and 4 are connected to a differential circuit, and a difference between output signals of the divided electrodes 4 and 4 is detected. Due to the drive signal of the oscillation circuit, the sound piece type vibrator 1 bends and vibrates in a direction perpendicular to the principal surfaces of the piezoelectric substrates 2a and 2b. Here, the sound piece type vibrator 1 is bent and vibrated by self-excited driving that vibrates at the resonance frequency.
  • the resonance frequency cor of the above-mentioned sound piece type vibrator is L, the length of the sound piece type vibrator, the thickness H, the density p, the Young's modulus E, and the inertia moment I. Is represented by the following equation.
  • the resonance frequency of a typical vibration gyro is 50 kHz or less.
  • a typical piezoelectric ceramic bimorph resonator has a thickness of 0.4 mm and a length of 7 mm, and the resonance frequency is about 30 kHz. is there.
  • the sound piece type resonator As described above, if the sound piece type resonator is reduced in size, the detection sensitivity of the rotational angular velocity is lowered, and if the resonance frequency is lowered in order to increase the detection sensitivity of the rotational angular velocity, the sound piece type resonance is achieved. The child gets bigger.
  • the thickness of the piezoelectric body is indispensable, and there is a limit to reducing the height of the vibration gyro.
  • a main object of the present invention is a sound piece type vibrator that can be used as a vibration gyro that is small in size, can be reduced in height, and has good detection sensitivity, and a vibration gyro using the same Is to provide.
  • the present invention is a meander-shaped vibrating body having one main surface and the other main surface, and a width direction of the vibrating body formed so as to extend from one longitudinal end of the one main surface of the vibrating body to the central portion.
  • Two drive electrodes divided into two a detection electrode formed to extend from the other longitudinal end of one main surface of the vibrating body to the central portion, a metal film formed on the other main surface of the vibrating body,
  • a sound piece type vibrator including a support portion for hollowly supporting a vibrating body formed at a portion that becomes a node point when the vibrating body undergoes bending vibration.
  • the vibrating body By applying a drive signal to the drive electrode, it is possible to excite bending vibration in the vibrating body.
  • the length of the vibrator necessary to keep the resonance frequency low can be ensured even if the entire sound piece type vibrator is downsized. Therefore, even if the entire sound piece type resonator is reduced in size, the resonance frequency can be prevented from increasing.
  • the drive electrode is formed so as to extend from one end side in the longitudinal direction of the vibrating body to the central portion
  • the detection electrode is formed so as to extend from the other end side in the longitudinal direction of the vibrating body to the central portion.
  • the one end side and the other end side are the one end side and the other end side in the longitudinal direction with respect to the central portion of the vibrating body, and indicate the direction of the end of the vibrating body. In a sense, ⁇ ⁇ . Therefore, it does not indicate that the drive electrode and the detection electrode are formed as a whole from the end to the center on both sides of the vibrating body! /.
  • a long first detection unit extending in a direction intersecting the longitudinal direction of the vibrating body is formed at a substantially central portion in the longitudinal direction of the vibrating body, and the first The detection electrode may be formed on one main surface of the detection unit.
  • a rotational angular velocity is added to the sound piece type vibrator that vibrates and vibrates.
  • Coriolis works on the first detector.
  • the first detection unit is deformed in response to Coriolis, a signal corresponding to Coriolis is generated in the first detection unit, and the detection electrode force is also output as a signal.
  • the configuration includes a second detection unit that is formed so as to be connected to the end of the first detection unit and that extends in the longitudinal direction of the vibration body on both sides in the width direction of the vibration body. It may be.
  • the second detection unit By forming the second detection unit at the end of the first detection unit, the deformation of the first detection unit by Coriolis can be increased, and the detection electrode cap also has a larger signal corresponding to Coriolis. Can be output.
  • the vibrator may be formed by bonding two piezoelectric substrates, and the two piezoelectric substrates may be polarized in opposite directions in the thickness direction on one main surface side and the other main surface side of the vibrator.
  • the vibrating body may be formed by bonding a piezoelectric substrate polarized in the thickness direction and a non-piezoelectric substrate.
  • the vibrating body may be formed of a thin film including a piezoelectric film.
  • the vibrating body may be configured to bend and vibrate according to the drive signal. Therefore, the vibrating body may be formed by bonding two piezoelectric substrates, or the vibrating body may be formed by bonding a piezoelectric substrate and a non-piezoelectric substrate.
  • the sound piece type vibrator can be made low-profile by making the vibrating body a thin film structure.
  • the present invention provides the sound piece type vibrator according to any one of the above, drive means for applying a drive signal between the drive electrodes of the sound piece type vibrator, the detection electrode, and the metal film And a detecting means for detecting a signal generated between the two and the vibration gyro.
  • Driving means force
  • the sound type vibrator is flexed and oscillated by the applied driving signal, and the rotational angular velocity is applied, so that a detection signal corresponding to Coriolis is output from the detection electrode, and this detection signal is output by the detection means. Detected. Therefore, the rotational angular velocity applied to the sound piece type vibrator can be known from the detection signal corresponding to the Coriolis force detected by the detecting means.
  • the present invention it is possible to prevent the resonance frequency from increasing even if the sound piece type resonator is downsized. Therefore, a vibration gyro having a small size and good sensitivity can be obtained by using such a sound piece type vibrator. Furthermore, the sound piece type vibrator can be reduced in height by making the vibrator of the sound piece type vibrator a thin film structure. Therefore, a vibration gyro with a reduced height can be obtained by using such a sound piece type vibrator.
  • FIG. 1 is a plan view showing an example of a sound piece type vibrator of the present invention.
  • FIG. 2 is a perspective view showing a vibrating body used in the sound piece type vibrator shown in FIG.
  • FIG. 3 is a cross-sectional view of the support portion indicated by the one-dot chain line of the sound piece type vibrator shown in FIG. [4]
  • FIG. 4 is an illustrative view showing one example of a vibrating gyroscope using the sound piece type vibrator shown in FIG. [5] It is an illustrative view showing the bending vibration of the vibrating body.
  • FIG. 6 is an illustrative view showing a vibration state of a vibrating body having a second detection unit.
  • FIG. 7 is a plan view showing another example of the sound piece type resonator according to the present invention.
  • FIG. 8 is an illustrative view showing a vibration state of a vibrating body in a vibration gyro using the sound piece type vibrator shown in FIG.
  • FIG. 9 is a perspective view showing an example of a connecting portion of vibrating pieces constituting a vibrating body.
  • FIG. 10 is a perspective view showing another example of a connecting portion of vibrating pieces constituting a vibrating body.
  • FIG. 11 is a perspective view showing still another example of a connecting portion of vibrating pieces constituting a vibrating body.
  • FIG. 12 is a perspective view showing an example of a conventional sound piece type vibrator.
  • FIG. 1 is a plan view showing an example of a sound piece type transducer according to the present invention.
  • the sound piece type vibrator 10 is supported in a hollow manner on a rectangular plate-like substrate 12, for example.
  • the sound piece type vibrator 10 includes a vibrating body 14.
  • the vibrating body 14 can be made to have a thin film structure of an SiO film and a piezoelectric film.
  • the vibrating body 14 is formed to have a meander shape as a whole. That is, a plurality of rectangular vibrating pieces are arranged in parallel, and the vibrating piece at the center and the adjacent vibrating piece are connected at the center. In addition, on both sides of the three connected vibrating pieces, the respective vibrating pieces are alternately connected at different ends, and are formed to have a meandering meander shape. On both sides of the central resonator element, adjacent resonator elements are connected at opposite ends, and formed so as to be rotationally symmetric with respect to the center point of the central resonator element.
  • the vibrating body 14 is supported by the substrate 12 at two locations that are node points of the bending vibration.
  • Two drive electrodes 16 and 18 are formed so as to extend from one support portion 14a of the vibrating body 14 to the vibrating piece adjacent to the vibrating piece at the center. These drive electrodes 16 and 18 are divided in the width direction of each vibrating piece and formed in a meander shape so as to be parallel to each other. Further, the detection electrode 20 and the common electrode 22 are formed on one main surface of the vibration piece in the center so as to be divided on both sides in the width direction, that is, on both sides in the longitudinal direction of the entire vibration body 14. Is done.
  • the detection electrode 20 is formed to extend in a meander shape on the vibrating piece side opposite to the drive electrodes 16 and 18, and is formed up to the other support portion 14b. Note that the support portions 14a and 14b are formed in a columnar shape from metal or grease.
  • a common electrode 22 is formed on the other main surface of the vibrating body 14 by a metal film.
  • a through hole 24 is formed in the vibrating piece at the center of the vibrating body 14, and the common electrode 22 on the other main surface of the vibrating body 14 and the one main surface of the supporting piece at the center through the through hole 24. Formation The common electrode 22 is connected.
  • the two drive electrodes 16 and 18 are connected to extraction electrodes 26 and 28 that are extracted on the substrate 12.
  • the extraction electrodes 26 and 28 are arranged on both sides in the width direction of the vibrating body 14 and are drawn to one end side in the longitudinal direction of the vibrating body 14.
  • the detection electrode 20 is connected to the extraction electrode 30 that is extracted on the substrate 12.
  • the common electrode 22 formed on the other main surface of the vibrating body 14 is connected to the extraction electrode 32 drawn on the substrate 12.
  • the extraction electrodes 30 and 32 are arranged on both sides of the vibrating body 14 in the width direction, respectively, and are drawn out to the other end side in the longitudinal direction of the vibrating body 14.
  • FIG. 3 is an illustrative view showing a longitudinal section of the substrate 12 of the sound piece type vibrator 10 in the other support portion 14 b of the vibrating body 14, as indicated by a one-dot chain line in FIG. 1.
  • the sound piece type vibrator 10 is formed via a cavity 34 having a trapezoidal cross-sectional shape. Therefore, the common electrode 22 is formed on the substrate 12.
  • the common electrode 22 is formed so as to rise obliquely upward from the substrate 12 and further extend substantially parallel to the main surface of the substrate 12.
  • the portion of the common electrode 22 that contacts the substrate 12 is formed to be continuous with the extraction electrode 32.
  • An SiO film 36 is formed on the common electrode 22.
  • the SiO film 36 covers the cavity 34.
  • the rising partial force of the common electrode 22 is also formed so as to cover a portion substantially parallel to the main surface of the substrate 12, and further formed so as to be inclined obliquely toward the substrate 12 on the opposite side of the common electrode 22.
  • the piezoelectric film 38 is formed on the SiO film 36 by, for example, A1N.
  • the piezoelectric film 38 is formed at a position facing the common electrode 22 in a portion substantially parallel to the main surface of the substrate 12.
  • the detection electrode 20 is formed on the piezoelectric film 38.
  • the detection electrode 20 is formed from the piezoelectric film 38 to the SiO film 36, and the common electrode 22 is pulled.
  • the detection electrode 20 drawn on the substrate 12 is formed to be continuous with the extraction electrode 30.
  • FIG. 3 the region where the common electrode 22, the SiO film 36, the piezoelectric film 38, and the detection electrode 20 overlap is shown.
  • the vibrating body 14 is configured.
  • two drive electrodes are provided on the piezoelectric film 38.
  • 16 and 18 are formed at intervals, and are pulled out to both sides of the SiO film 36. Both SiO films 36
  • the drive electrodes 16 and 18 drawn to the 2 2 side are formed so as to be continuous with the draw electrodes 26 and 28.
  • the common electrode 22, the SiO film 36, the piezoelectric film 38, and the drive electrodes 16, 18 or the detection are carried out while floating from the substrate 12.
  • the electrode 20 is formed in a stacked state. Therefore, in these portions, the vibrating body 14 and each electrode are not in contact with the substrate 12.
  • the substrate 12 is prepared.
  • a Zn 2 O thin film is formed on the substrate 12.
  • the ZnO thin film is removed in a later process in order to support the sound piece type resonator 10 in the support portion in a hollow manner and to form the sound piece type resonator 10 away from the substrate 12 in the portion other than the support portion. This is a so-called sacrificial layer.
  • the ZnO thin film is formed, for example, on the substrate 12 by an epitaxial growth method or the like. This ZnO thin film is patterned into the shape of the sound piece type resonator 10 by reactive ion etching (RIE) or the like.
  • RIE reactive ion etching
  • the common electrode 22 is formed by forming a metal film such as Au by a thin film technique such as RF magnetron sputtering, plating, or vapor deposition. At this time, an extraction electrode 32 is also formed on the substrate 12 so as to be extracted from the common electrode 22. Furthermore, an SiO film 36 and a piezoelectric film 38 are formed on the common electrode 22 by thin film technology.
  • a through hole 24 for connecting the upper and lower common electrodes 22 is formed in the center of the two films 36 and the piezoelectric film. Then, a metal film is formed on the piezoelectric film 38 by Au or the like by thin film technology. The metal film is patterned into a predetermined shape, so that the common electrodes 22 on one main surface of the drive electrodes 16, 18, the detection electrode 20, and the vibrating body 14 are formed. At this time, a metal film is also formed in the through hole 24 and the upper and lower common electrodes 22 are connected. Furthermore, when the metal film is formed, the extraction electrodes 26, 28, 30 are also formed on the substrate 12. Finally, by removing the Zn 2 O film by etching or the like, the sound piece type resonator 10 is manufactured.
  • the sound piece type vibrator 10 is used as a vibrating gyroscope 50, for example.
  • an oscillation circuit 52 as a drive means is connected to the extraction electrodes 26 and 28 to which the drive electrodes 16 and 18 are connected.
  • the oscillation circuit 52 consists of an AGC circuit, a phase correction circuit, and a drive amplifier. Includes a width circuit.
  • a self-excited oscillation loop is formed by the vibrating body 14, the drive electrodes 16 and 18, the extraction electrodes 26 and 28, and the oscillation circuit 52.
  • the extraction electrodes 30 and 32 to which the detection electrode 20 and the common electrode 22 are connected are connected to the differential amplifier circuit 54.
  • the output signal of the differential amplifier circuit 54 is input to the synchronous detection circuit 56.
  • An oscillation circuit 52 is connected to the synchronous detection circuit 56, and the output signal of the differential amplifier circuit 54 is detected in synchronization with the signal of the oscillation circuit 52.
  • a smoothing circuit 58 and a DC amplifier 60 are sequentially connected to the synchronous detection circuit 56.
  • the differential amplifier circuit 54, the synchronous detection circuit 56, the smoothing circuit 58, the DC amplifier 60, and the like constitute detection means for detecting a signal corresponding to the rotational angular velocity. Since the signal corresponding to the rotational angular velocity is generated in the central vibrating piece where the detection electrode 20 and the common electrode 22 are formed, the first vibrating piece in the central portion detects the rotational angular velocity. It becomes the detection unit 62.
  • bending vibration is excited in the sound piece type resonator 10 by a self-excited oscillation loop including the oscillation circuit 52. As shown in FIG. 5, this bending vibration is a bending vibration excited in a plane parallel to the main surface of the vibrating body 14 around the two node points of the vibrating body 14. At this time, the position of the first detection unit 62 is changed by the bending vibration of the vibrating body 14, but the shape is not deformed.
  • the Coriolica signal is synchronously detected by the synchronous detection circuit 56, smoothed by the smoothing circuit 58, and further amplified by the DC amplifier 60. Therefore, by measuring the output signal of the DC amplifier 60, the rotational angular velocity applied to the sound piece type vibrator 10 can be detected.
  • the piezoelectric body is composed of SiO film 36 and piezoelectric film 38.
  • the height of the sound piece type resonator 10 can be reduced.
  • Sarakuko, SiO film and piezoelectric film 38 the sound piece using a thin film process
  • the resonator can be manufactured, the sound piece resonator 10 can be easily downsized.
  • the second detectors 64 may be formed at both ends of the first detector 62.
  • the second detection unit 64 is formed along both sides of the vibrating body 14 in the width direction.
  • the second detection unit 64 functions as a weight that increases the deformation of the first detection unit 62 when Coriolis operates. Therefore, when a rotational angular velocity is applied to the sound piece type transducer 10, the first detector 62 is greatly deformed by Coriolis, and a large signal can be obtained from the differential circuit 54. Therefore, if such a sound piece type vibrator 10 is used, a vibration gyro 50 having good sensitivity can be obtained.
  • the second detection unit 64 functions as a weight, and it is not necessary to form an electrode in this part.
  • the detection electrode 20 may be formed on substantially the entire surface of one main surface of the first detection unit 62, and the common electrode may be formed on the other main surface.
  • the rotational angular velocity about the axis extending in the longitudinal direction of the sound piece type vibrator 10 is detected. That is, when such a rotational angular velocity is applied in a state where the sound piece type vibrator 10 is flexibly oscillating as shown in FIG. 5, the direction is perpendicular to the main surface of the sound piece type vibrator 10.
  • Coriolica works. As a result, as shown in FIG.
  • the first detection unit 62 is bent in the thickness direction, and a signal is generated between the detection electrode 20 and the common electrode 22 facing each other in the first detection unit 62. Since this signal is output from the differential circuit 54, the rotational angular velocity applied to the sound piece transducer 10 can be detected by measuring the output signal of the DC amplifier 60. Togashi.
  • A1N formed as the piezoelectric film 38 has a negative Young's modulus temperature coefficient
  • the frequency of the detection signal changes depending on the temperature, and the rotational angular velocity may not be detected accurately. Therefore, in combination with SiO film 36 whose Young's modulus temperature coefficient has a positive value.
  • the temperature characteristic of the frequency of the detection signal can be stabilized.
  • a SiO film 36 and a piezoelectric film 38 are formed by a thin film process.
  • two piezoelectric substrates having the shape of the vibrating body 14 may be stacked, and these piezoelectric substrates may be polarized in opposite thickness directions.
  • a piezoelectric substrate having a shape of the vibrating body 14 and a non-piezoelectric substrate may be laminated. Even in the sound piece type vibrator 10 using such a vibrator 14, the length as the vibrator can be kept long by making the both side portions of the first detection unit 62 into a meander shape. Therefore, it is possible to provide a small sound piece type resonator with a small resonance frequency.
  • the central vibrating piece and the adjacent vibrating piece are connected at the central portion as shown in FIG. As shown in FIG. 9, the ends are connected.
  • the portion connected at the end of the resonator element may be connected at the connecting portion as shown in FIG. 10. Even in this case, the meandering length of the vibrator can be increased.
  • the meandering length can be maximized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Gyroscopes (AREA)

Description

明 細 書
音片型振動子およびそれを用いた振動ジャイロ
技術分野
[0001] この発明は、音片型振動子およびそれを用いた振動ジャイロに関し、特にたとえば
、屈曲振動を利用した音片型振動子と、それを用いた振動ジャイロに関する。
背景技術
[0002] 図 12は、従来の音片型振動子の一例を示す斜視図である。音片型振動子 1は、短 冊状の 2つの圧電体基板 2a, 2bを含む。これらの圧電体基板 2a, 2bは、電極 3を介 して積層される。これらの圧電体基板 2a, 2bは、図 12の矢印で示すように、互いに 逆向きに分極される。一方の圧電体基板 2aの主面上には、 2つの分割電極 4, 4が 形成される。これらの分割電極 4, 4は、圧電体基板 2aの幅方向の中央部で分割され 、圧電体基板 2aの長手方向に延びるように形成される。また、他方の圧電体基板 2b の主面上には、その全面に共通電極 5が形成される。この音片型振動子 1は、分割 電極 4, 4と共通電極 5との間に発振回路を接続することにより、圧電体基板 2a, 2bの 主面に直交する向きに屈曲振動するが、その屈曲振動のノード部に支持部材 6, 6が 形成される。
[0003] この音片型振動子 1は、たとえば振動ジャイロとして使用される。この場合、分割電 極 4, 4と共通電極 5との間に発振回路が接続される。また、分割電極 4, 4は差動回 路に接続され、分割電極 4, 4の出力信号の差が検出される。発振回路の駆動信号 によって、音片型振動子 1は、圧電体基板 2a, 2bの主面に直交する向きに屈曲振動 する。ここで、音片型振動子 1は、その共振周波数で振動する自励振駆動により屈曲 振動させられる。この状態で、音片型振動子 1の中心軸を中心として回転角速度が 印加されると、無回転時における屈曲振動の向きと直交する向きにコリオリカが働く。 そのため、音片型振動子 1の屈曲振動の向きが変わり、 2つの分割電極 4, 4力らコリ オリ力に対応した逆位相の信号が出力され、差動回路力 これらの信号の差が出力 される。したがって、差動回路の出力信号を測定することにより、音片型振動子 1に加 わった回転角速度を検出することができる (特許文献 1参照)。 特許文献 1:特開平 7— 332988号公報
発明の開示
発明が解決しょうとする課題
[0004] 振動ジャイロを搭載するビデオカメラなどの小型化に伴い、振動ジャイロも小型化お よび低背化の要求が強くなつてきている。ここで、上述のような音片型振動子の共振 周波数 corは、音片型振動子の長さを L、厚みを H、密度を p、ヤング率を E、慣性モ 一メントを Iとしたとき、次式で表される。
[0005] [数 1]
Figure imgf000004_0001
[0006] 上式から、音片型振動子が小型化すると、その共振周波数が高くなることがわかる 。一方、音片型振動子の共振周波数が高くなると、ビデオカメラなどに加わる手ブレ の周波数との差が大きくなり、回転角速度の検出感度が低下する。一般的な振動ジ ャイロの共振周波数は 50kHz以下であり、たとえば、一般的な圧電セラミックバイモ ルフ振動子では、その厚みが 0. 4mm,長さが 7mmのもので、共振周波数は約 30k Hzである。
[0007] このように、音片型振動子を小型化すれば、回転角速度の検出感度が低下し、回 転角速度の検出感度を上げるために共振周波数を低くしょうとすれば、音片型共振 子が大型化してしまう。また、圧電体を積層した音片型振動子では、圧電体の厚みが 必須となり、振動ジャイロの低背化にも限界がある。
[0008] それゆえに、この発明の主たる目的は、小型で、低背化が可能であり、検出感度が 良好な振動ジャイロとして使用することができる音片型振動子と、それを用いた振動 ジャイロを提供することである。
課題を解決するための手段
[0009] この発明は、一方主面および他方主面を有するミアンダ形状の振動体と、振動体 の一方主面の長手方向一端側から中央部に延びるように形成され振動体の幅方向 に分割された 2つの駆動電極と、振動体の一方主面の長手方向他端側から中央部 に延びるように形成される検出電極と、振動体の他方主面に形成される金属膜と、振 動体が屈曲振動したときのノード点となる部分に形成される振動体を中空に支持する ための支持部とを含む、音片型振動子である。
駆動電極に駆動信号を印加することにより、振動体に屈曲振動を励振させることが できる。ここで、振動体をミアンダ形状とすることにより、音片型振動子全体を小型化 しても、共振周波数を低く保つのに必要な振動子の長さを確保することができる。そ のため、音片型振動子全体を小型化しても、その共振周波数が高くなることを防止す ることがでさる。
なお、駆動電極は振動体の長手方向の一端側から中央部に延びるように形成され 、検出電極は振動体の長手方向の他端側から中央部に延びるように形成されている 力 ここでいう一端側および他端側とは、振動体の中央部に対する長手方向の一端 側および他端側と!ヽぅ向きを示すものであって、振動体の端部と!ヽぅ意味ではな 、。 したがって、振動体の両側における端部から中央部まで、全体的に駆動電極や検出 電極が形成されて 、ることを示して 、るわけではな!/、。
[0010] このような音片型振動子において、振動体の長手方向の略中央部において振動体 の長手方向と交差する向きに延びる長尺状の第 1の検出部が形成され、第 1の検出 部の一方主面に検出電極が形成された構成としてもよい。
振動体の長手方向の略中央部において振動体の長手方向と交差する向きに延び る長尺状の第 1の検出部を形成することにより、屈曲振動する音片型振動子に回転 角速度が加わったときに、第 1の検出部にコリオリカが働く。それにより、コリオリカに 対応して第 1の検出部が変形し、第 1の検出部にコリオリカに対応する信号が発生し て、検出電極力もその信号が出力される。
[0011] また、第 1の検出部の端部に連結するように形成され、かつ振動体の幅方向の両側 において振動体の長手方向に延びるように形成される第 2の検出部を含む構成とし てもよい。
第 1の検出部の端部に第 2の検出部を形成することにより、コリオリカによる第 1の検 出部の変形を大きくすることができ、検出電極カもコリオリカに対応するより大きい信 号を出力させることができる。
[0012] 振動体は 2つの圧電体基板を貼り合せて形成され、 2つの圧電体基板が振動体の 一方主面側と他方主面側とで互いに厚み方向逆向きに分極された構成としてもよい また、振動体は、厚み方向に分極された圧電体基板と非圧電体基板とを貼り合せ て形成されてもよい。
さらに、振動体は、圧電膜を含む薄膜により形成されてもよい。
振動体は、駆動信号によって屈曲振動する構成のものであればよい。したがって、 2つの圧電体基板を貼り合わせて振動体を形成してもよ ヽし、圧電体基板と非圧電 体基板とを貼り合せて振動体を形成してもよ ヽ。
さらに、振動体を薄膜構造とすることにより、音片型振動子を低背化することができ る。
[0013] また、この発明は、上述のいずれかに記載の音片型振動子と、音片型振動子の駆 動電極間に駆動信号を印加するための駆動手段と、検出電極と金属膜との間に発 生する信号を検出するための検出手段とを含む、振動ジャイロである。
駆動手段力 印加される駆動信号により、音片型振動子が屈曲振動し、回転角速 度が加わることにより、検出電極からコリオリカに対応した検出信号が出力され、この 検出信号が、検出手段によって検出される。したがって、検出手段で検出されるコリ オリ力に対応した検出信号により、音片型振動子に印加された回転角速度を知ること ができる。
発明の効果
[0014] この発明によれば、音片型振動子を小型化しても、その共振周波数が高くなること を防止することができる。そのため、このような音片型振動子を用いることにより、小型 で、良好な感度を有する振動ジャイロを得ることができる。さらに、音片型振動子の振 動体を薄膜構造とすることにより、音片型振動子を低背化することができる。したがつ て、このような音片型振動子を用いることにより、低背化された振動ジャイロを得ること ができる。
[0015] この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う 以下の発明を実施するための最良の形態の説明から一層明ら力となろう。
図1—面 〇の簡単な説明
[図 1]この発明の音片型振動子の一例を示す平面図である。
圆 2]図 1に示す音片型振動子に用いられる振動体を示す斜視図である。
圆 3]図 1に示す音片型振動子の一点鎖線で示す支持部における断面図である。 圆 4]図 1に示す音片型振動子を用いた振動ジャイロの一例を示す図解図である。 圆 5]振動体の屈曲振動の様子を示す図解図である。
圆 6]第 2の検出部を有する振動体の振動状態を示す図解図である。
圆 7]この発明の音片型振動子の他の例を示す平面図である。
圆 8]図 7に示す音片型振動子を用いた振動ジャイロにおける振動体の振動状態を 示す図解図である。
圆 9]振動体を構成する振動片の連結箇所の一例を示す斜視図である。
[図 10]振動体を構成する振動片の連結箇所の他の例を示す斜視図である。
圆 11]振動体を構成する振動片の連結箇所のさらに他の例を示す斜視図である。 圆 12]従来の音片型振動子の一例を示す斜視図である。
符号の説明
音片型振動子
12 基板
14 振動体
16, 18 駆動電極
20 検出電極
22 共通電極
34 空洞部
36 SiO膜
2
38 圧電膜
50 振動ジャイロ
52 発振回路
54 差動回路 56 同期検波回路
58 平滑回路
60 DCアンプ
62 第 1の検出部
64 第 2の検出部
発明を実施するための最良の形態
[0018] 図 1は、この発明の音片型振動子の一例を示す平面図である。音片型振動子 10は 、たとえば矩形板状の基板 12上において中空に支持される。音片型振動子 10は、 振動体 14を含む。振動体 14は、たとえば SiO膜と圧電膜とで薄膜構造となるよう〖こ
2
形成される。振動体 14は、図 2に示すように、全体としてミアンダ形状となるように形 成される。つまり、複数の長方形状の振動片が平行するように配置され、中央部の振 動片とそれに隣接する振動片とが中央部で連結される。また、連結された 3つの振動 片の両側においては、それぞれの振動片が交互に異なる端部で接続され、蛇行した ミアンダ形状となるように形成される。中央部の振動片の両側においては、互いに逆 の端部において隣接する振動片が接続され、中央部の振動片の中心点に対して回 転対称となるように形成される。
[0019] 振動体 14には屈曲振動が励振されるが、その屈曲振動のノード点となる 2箇所に おいて、振動体 14が基板 12に支持される。振動体 14の一方の支持部 14aから中央 部の振動片に隣接する振動片まで延びるように、 2つの駆動電極 16, 18が形成され る。これらの駆動電極 16, 18は、各振動片の幅方向に分割されて、互いに平行する ようにしてミアンダ形状に形成される。また、中央部の振動片の一方主面上には、そ の幅方向の両側、つまり振動体 14全体の長手方向の両側に分割されるようにして、 検出電極 20と共通電極 22とが形成される。検出電極 20は、駆動電極 16, 18と反対 側の振動片側にミアンダ形状に延びて形成され、他方の支持部 14bまで形成される 。なお、支持部 14a, 14bは、金属あるいは榭脂等により柱状に形成される。
[0020] 振動体 14の他方主面には、金属膜によって共通電極 22が形成される。そして、振 動体 14の中央部の振動片にはスルーホール 24が形成され、このスルーホール 24を 介して、振動体 14の他方主面の共通電極 22と中央部の支持片の一方主面に形成 された共通電極 22とが接続される。
[0021] 振動体 14の一方の支持部 14aにおいて、 2つの駆動電極 16, 18は、基板 12上に 引き出された引出し電極 26, 28に接続される。引出し電極 26, 28は、それぞれ振動 体 14の幅方向の両側に配置され、振動体 14の長手方向の一端側まで引き出される 。また、振動体 14の他方の支持部 14bにおいて、検出電極 20は、基板 12上に引き 出された引出し電極 30に接続される。また、振動体 14の他方の支持部 14bにおいて 、振動体 14の他方主面に形成された共通電極 22が、基板 12上に引き出された引出 し電極 32に接続される。引出し電極 30, 32は、それぞれ振動体 14の幅方向の両側 に配置され、振動体 14の長手方向の他端側まで引き出される。
[0022] 図 3は、図 1の一点鎖線で示すように、振動体 14の他方の支持部 14bにおける音 片型振動子 10の基板 12の長手方向の断面を示す図解図である。基板 12上には、 たとえば台形の断面形状を有する空洞部 34を介して、音片型振動子 10が形成され る。そのため、基板 12上に、共通電極 22が形成される。共通電極 22は、基板 12から 斜上方に上昇し、さらに基板 12の主面とほぼ平行に延びるように形成される。この共 通電極 22の基板 12に接触する部分は、引出し電極 32に連続するように形成される
[0023] 共通電極 22上には、 SiO膜 36が形成される。 SiO膜 36は、空洞部 34を覆うよう
2 2
にして、共通電極 22の上昇部分力も基板 12の主面とほぼ平行な部分を覆うように形 成され、さらに共通電極 22の反対側において基板 12に向力つて斜めに下降するよう に形成される。さら〖こ、 SiO膜 36上には、たとえば A1Nなどによって、圧電膜 38が形
2
成される。圧電膜 38は、基板 12の主面とほぼ平行な部分において、共通電極 22と 対向する位置に形成される。また、圧電膜 38上には、検出電極 20が形成される。検 出電極 20は、圧電膜 38上から SiO膜 36上にわたって形成され、共通電極 22が引
2
き出された側の反対側において基板 12上に引き出される。そして、基板 12上に引き 出された検出電極 20は、引出し電極 30に連続するように形成される。図 3において、 共通電極 22、 SiO膜 36、圧電膜 38および検出電極 20が重なり合つている領域が
2
振動体 14を構成する。
[0024] また、振動体 14の一方の支持部 14aにおいては、圧電膜 38上に、 2つの駆動電極 16, 18が間隔を隔てて形成され、 SiO膜 36の両側に引き出される。 SiO膜 36の両
2 2 側に引き出された駆動電極 16, 18は、引出し電極 26, 28に連続するように形成され る。振動体 14の 2つの支持部 14a, 14b以外の部分においては、基板 12から浮いた 状態で、共通電極 22、 SiO膜 36、圧電膜 38、および駆動電極 16, 18または検出
2
電極 20が積層された状態で形成される。したがって、これらの部分においては、振動 体 14や各電極は、基板 12と接触していない。
[0025] 音片型振動子 10を作製するために、基板 12が準備される。この基板 12上に、 Zn O薄膜が形成される。 ZnO薄膜は、支持部において音片型振動子 10を中空に支持 し、支持部以外の部分においては基板 12から離れて音片型振動子 10を形成するた めに、後工程において除去されるいわゆる犠牲層となる。 ZnO薄膜は、たとえば基板 12上に、ェピタキシャル成長法などによって形成される。この ZnO薄膜は、反応性ィ オンエッチング (RIE)などにより、音片型振動子 10の形状にパターユングされる。
[0026] ZnO薄膜上には、たとえば RFマグネトロンスパッタ法、めっき法、蒸着法などの薄 膜技術により、 Auなどの金属膜を形成することによって共通電極 22が形成される。こ のとき、基板 12上に、共通電極 22から引き出されるようにして、引出し電極 32も形成 される。さらに、共通電極 22上には、薄膜技術により、 SiO膜 36および圧電膜 38が
2
順次形成される。これらの共通電極 22、 SiO膜 36および圧電膜 38も、 RIEなどによ
2
つて所定の形状にパターユングされる。さらに、 SiO 38
2膜 36および圧電膜 の中央部 に、上下の共通電極 22を接続するためのスルーホール 24が形成される。そして、圧 電膜 38上に、薄膜技術により、 Auなどによって金属膜が形成される。この金属膜が 所定の形状にパターユングされて、駆動電極 16, 18、検出電極 20および振動体 14 の一方主面上の共通電極 22が形成される。このとき、スルーホール 24にも金属膜が 形成され、上下の共通電極 22が接続される。さらに、金属膜を形成する際に、基板 1 2上に、引出し電極 26, 28, 30も形成される。最後に、エッチングなどによって、 Zn O膜が除去されることにより、音片型振動子 10が作製される。
[0027] この音片型振動子 10は、図 4に示すように、たとえば振動ジャイロ 50として使用され る。この場合、駆動電極 16, 18が接続された引出し電極 26, 28に、駆動手段として の発振回路 52が接続される。発振回路 52は、 AGC回路、位相補正回路、駆動用増 幅回路などを含む。そして、振動体 14、駆動電極 16, 18、引出し電極 26, 28、発振 回路 52によって、自励発振ループが形成される。
[0028] さらに、検出電極 20および共通電極 22が接続された引出し電極 30, 32は、差動 増幅回路 54に接続される。差動増幅回路 54の出力信号は、同期検波回路 56に入 力される。同期検波回路 56には、発振回路 52が接続され、発振回路 52の信号に同 期して差動増幅回路 54の出力信号が検波される。さらに、同期検波回路 56には、 平滑回路 58および DCアンプ 60が順次接続される。これらの差動増幅回路 54、同 期検波回路 56、平滑回路 58および DCアンプ 60などによって、回転角速度に対応 した信号を検出するための検出手段が構成される。なお、回転角速度に対応した信 号は、検出電極 20と共通電極 22とが形成された中央部の振動片に発生するため、 この中央部の振動片が回転角速度を検出するための第 1の検出部 62となる。
[0029] この振動ジャイロ 50では、発振回路 52を含む自励発振ループにより、音片型振動 子 10に屈曲振動が励振される。この屈曲振動は、図 5に示すように、振動体 14の 2 つのノード点を中心として、振動体 14の主面に平行な面内において励振される屈曲 振動である。このとき、第 1の検出部 62の位置は、振動体 14の屈曲振動によって変 位するものの、その形状は変形しない。
[0030] この状態で、振動体 14の主面に直交する向きの軸を中心として回転角速度が印加 されると、振動体 14の主面に平行な面内で、屈曲振動の向きと直交する向きにコリオ リカが働く。このコリオリカにより、第 1の検出部 62には、振動体 14の長手方向に屈 曲するような変形が発生する。第 1の検出部 62の変形量は、コリオリカに対応してい るため、検出電極 20と共通電極 22との間には、コリオリカに対応した信号が発生す る。したがって、差動回路 54からは、コリオリカに対応した信号が出力される。
[0031] このコリオリカによる信号は、同期検波回路 56で同期検波され、平滑回路 58で平 滑され、さらに DCアンプ 60で増幅される。したがって、 DCアンプ 60の出力信号を測 定することにより、音片型振動子 10に印加された回転角速度を検出することができる
[0032] この音片型振動子 10においては、振動体 14の中央部にある第 1の検出部 62の両 側部分がミアンダ形状に形成されて ヽるため、振動体 14全体としての直線的な長さ に比べて、振動子としての蛇行した長さを長くすることができる。そのため、音片型振 動子 10を小型化しても、振動子としての長さを長く保つことができ、音片型振動子 10 の共振周波数が高くならな 、ようにすることができる。
[0033] このように、この音片型振動子 10を使用すれば、小型化しても、共振周波数の低い 振動ジャイロ 50を得ることができる。そのため、振動ジャイロ 50をビデオカメラなどに 搭載したとき、手ブレの周波数との差が小さい共振周波数で音片型振動子 10を励振 することができる。そのため、手ブレなどに対して、良好な感度を有する小型の振動 ジャイロ 50を得ることができる。また、圧電体として、 SiO膜 36および圧電膜 38で構
2
成された薄膜構造を採用することにより、音片型振動子 10の低背化を図ることができ る。さら〖こ、 SiO膜や圧電膜 38を採用することにより、薄膜プロセスを利用して音片
2
型振動子を作製できるため、音片型振動子 10の小型化も容易である。
[0034] このような振動ジャイロ 50において、図 6に示すように、第 1の検出部 62の両端部に 第 2の検出部 64が形成されてもよい。第 2の検出部 64は、振動体 14の幅方向の両 側に沿って形成される。第 2の検出部 64は、コリオリカが働いたときに、第 1の検出部 62の変形を大きくする重りとして働く。したがって、音片型振動子 10に回転角速度が 印加されたとき、コリオリカによって第 1の検出部 62は大きく変形し、差動回路 54から 大きい信号を得ることができる。したがって、このような音片型振動子 10を用いれば、 感度の良好な振動ジャイロ 50を得ることができる。なお、上述のように、第 2の検出部 64は重りとして働くものであり、この部分に電極を形成する必要はない。
[0035] また、図 7に示すように、第 1の検出部 62の一方主面のほぼ全面に検出電極 20を 形成し、他方主面に共通電極を形成してもよい。このような音片型振動子 10を用い た振動ジャイロ 50では、音片型振動子 10の長手方向に延びる軸を中心とした回転 角速度が検出される。つまり、音片型振動子 10が、図 5に示すように屈曲振動してい る状態で、そのような回転角速度が印加されると、音片型振動子 10の主面に直交す る向きにコリオリカが働く。それにより、図 8に示すように、第 1の検出部 62が厚み方 向に屈曲し、第 1の検出部 62において対向する検出電極 20と共通電極 22との間に 信号が発生する。この信号が差動回路 54から出力されるため、 DCアンプ 60の出力 信号を測定することにより、音片型振動子 10に印加された回転角速度を検出するこ とがでさる。
[0036] なお、圧電膜 38として形成される A1Nは、ヤング率の温度係数が負の値をもっため 、温度により検出信号の周波数が変化し、正確に回転角速度を検出できない可能性 がある。そこで、ヤング率の温度係数が正の値をもつ SiO膜 36と組み合わせることに
2
より、検出信号の周波数の温度特性を安定なものにすることができる。
[0037] 振動体 14としては、薄膜プロセスによって SiO膜 36および圧電膜 38を形成したも
2
のでなくてもよい。たとえば、振動体 14の形状の 2枚の圧電体基板を積層し、これら の圧電体基板が互いに逆向きの厚み方向に分極されたものでもよい。また、振動体 1 4の形状の圧電体基板と非圧電体基板とを積層したものであってもよ ヽ。このような振 動体 14を用いた音片型振動子 10であっても、第 1の検出部 62の両側部分をミアン ダ形状にすることにより、振動子としての長さを長く保つことができ、小型で共振周波 数の低 ヽ音片型振動子とすることができる。
[0038] また、振動体 14を構成する平行に配置された振動片の連結箇所としては、図 9〖こ 示すように、振動片の端部で連結することができる。また、図 10に示すように、振動片 の端部と中央部の間で連結することができるし、図 11に示すように、振動片の中央部 で連結することもできる。上述の音片型振動子 10に用いられる振動体 14では、中央 部の振動片とそれに隣接する振動片とは、図 11に示すように、中央部で連結され、 その両側における振動片は、図 9に示すように、端部で連結されている。しかしながら 、振動片の端部で連結されている部分を、図 10に示すような連結箇所で連結しても よぐこの場合でも、振動子としての蛇行した長さを長くすることができる。なお、図 1に 示す音片型振動子 10のように、図 9および図 11に示す振動片の連結を組み合わせ ることにより、振動体 14の直線的な長さに対して、振動子としての蛇行した長さを最も 長くすることができる。

Claims

請求の範囲
[1] 一方主面および他方主面を有するミアンダ形状の振動体、
前記振動体の一方主面の長手方向一端側から中央部に延びるように形成され前 記振動体の幅方向に分割された 2つの駆動電極、
前記振動体の一方主面の長手方向他端側から中央部に延びるように形成される検 出電極、
前記振動体の他方主面に形成される金属膜、および
前記振動体が屈曲振動したときのノード点となる部分に形成される前記振動体を中 空に支持するための支持部を含む、音片型振動子。
[2] 前記振動体の長手方向の略中央部において前記振動体の長手方向と交差する向 きに延びる長尺状の第 1の検出部が形成され、前記第 1の検出部の一方主面に前記 検出電極が形成された、請求項 1に記載の音片型振動子。
[3] 前記第 1の検出部の端部に連結するように形成され、かつ前記振動体の幅方向の 両側において前記振動体の長手方向に延びるように形成される第 2の検出部を含む
、請求項 2に記載の音片型振動子。
[4] 前記振動体は 2つの圧電体基板を貼り合せて形成され、 2つの前記圧電体基板が 前記振動体の一方主面側と他方主面側とで互いに厚み方向逆向きに分極された、 請求項 1な 、し請求項 3の 、ずれかに記載の音片型振動子。
[5] 前記振動体は、厚み方向に分極された圧電体基板と非圧電体基板とを貼り合せて 形成された、請求項 1な!、し請求項 3の 、ずれかに記載の音片型振動子。
[6] 前記振動体は、圧電膜を含む薄膜により形成された、請求項 1な!、し請求項 3の 、 ずれかに記載の音片型振動子。
[7] 請求項 1な!、し請求項 6の 、ずれかに記載の音片型振動子、
前記音片型振動子の前記駆動電極間に駆動信号を印加するための駆動手段、お よび
前記検出電極と前記金属膜との間に発生する信号を検出するための検出手段を 含む、振動ジャイロ。
PCT/JP2007/057825 2006-07-21 2007-04-09 Vibrateur de type fourche et gyroscope à vibrations l'utilisant WO2008010337A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800277703A CN101495836B (zh) 2006-07-21 2007-04-09 音片型振子以及使用了该音片型振子的振动陀螺仪
JP2008525800A JP4687790B2 (ja) 2006-07-21 2007-04-09 音片型振動子およびそれを用いた振動ジャイロ
US12/355,034 US7770450B2 (en) 2006-07-21 2009-01-16 Tuning bar vibrator and vibrating gyroscope using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006199147 2006-07-21
JP2006-199147 2006-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/355,034 Continuation US7770450B2 (en) 2006-07-21 2009-01-16 Tuning bar vibrator and vibrating gyroscope using the same

Publications (1)

Publication Number Publication Date
WO2008010337A1 true WO2008010337A1 (fr) 2008-01-24

Family

ID=38956672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057825 WO2008010337A1 (fr) 2006-07-21 2007-04-09 Vibrateur de type fourche et gyroscope à vibrations l'utilisant

Country Status (4)

Country Link
US (1) US7770450B2 (ja)
JP (1) JP4687790B2 (ja)
CN (1) CN101495836B (ja)
WO (1) WO2008010337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130902A1 (ja) * 2008-04-25 2009-10-29 パナソニック株式会社 ミアンダ形振動子およびこれを用いた光学反射素子およびこれを用いた画像投影装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490506B (zh) * 2006-07-21 2011-09-21 株式会社村田制作所 音叉型振动器以及使用了该音叉型振动器的振动陀螺仪
JP5272880B2 (ja) * 2009-04-30 2013-08-28 セイコーエプソン株式会社 屈曲振動片
TWI522307B (zh) * 2013-03-25 2016-02-21 財團法人工業技術研究院 複合材料的微機電裝置與其製作方法
WO2015033737A1 (ja) * 2013-09-06 2015-03-12 株式会社村田製作所 多層基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050751A (ja) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd 角速度センサ
JP2001082963A (ja) * 1999-09-13 2001-03-30 Yoshiaki Kato 運動センサ振動体および振動ジャイロスコープ
JP2004061486A (ja) * 2002-06-04 2004-02-26 Murata Mfg Co Ltd 音叉形振動子およびそれを用いた振動ジャイロおよびそれを用いた電子装置および音叉形振動子の製造方法
JP2004242256A (ja) * 2003-02-10 2004-08-26 River Eletec Kk 水晶振動子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539917B2 (ja) * 1973-05-02 1978-04-10 Suwa Seikosha Kk
US3946257A (en) * 1973-09-17 1976-03-23 Kabushiki Kaisha Daini Seikosha Quartz crystal vibrator with partial electrodes for harmonic suppression
US4410827A (en) * 1980-04-24 1983-10-18 Kabushiki Kaisha Suwa Seikosha Mode coupled notched tuning fork type quartz crystal resonator
JPS58182311A (ja) * 1982-04-20 1983-10-25 Seiko Instr & Electronics Ltd 音叉型振動子
JP2780643B2 (ja) 1994-06-03 1998-07-30 株式会社村田製作所 振動ジャイロ
US5698784A (en) * 1996-01-24 1997-12-16 Gyration, Inc. Vibratory rate gyroscope and methods of assembly and operation
EP1306908A4 (en) * 2000-06-16 2006-10-04 Ngk Insulators Ltd PIEZOELECTRIC / ELECTROSTRICTIVE COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
JP2002228449A (ja) * 2001-01-29 2002-08-14 Murata Mfg Co Ltd 振動ジャイロの製造方法
EP1367658B1 (en) * 2001-12-18 2016-04-13 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
JP4415383B2 (ja) * 2005-01-24 2010-02-17 セイコーエプソン株式会社 振動ジャイロ素子、振動ジャイロ素子の支持構造およびジャイロセンサ
CN101490506B (zh) * 2006-07-21 2011-09-21 株式会社村田制作所 音叉型振动器以及使用了该音叉型振动器的振动陀螺仪
JP4629094B2 (ja) * 2007-12-28 2011-02-09 日本電波工業株式会社 圧電振動片、圧電デバイス及びそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050751A (ja) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd 角速度センサ
JP2001082963A (ja) * 1999-09-13 2001-03-30 Yoshiaki Kato 運動センサ振動体および振動ジャイロスコープ
JP2004061486A (ja) * 2002-06-04 2004-02-26 Murata Mfg Co Ltd 音叉形振動子およびそれを用いた振動ジャイロおよびそれを用いた電子装置および音叉形振動子の製造方法
JP2004242256A (ja) * 2003-02-10 2004-08-26 River Eletec Kk 水晶振動子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130902A1 (ja) * 2008-04-25 2009-10-29 パナソニック株式会社 ミアンダ形振動子およびこれを用いた光学反射素子およびこれを用いた画像投影装置
JP2009265362A (ja) * 2008-04-25 2009-11-12 Panasonic Corp ミアンダ形振動子およびこれを用いた光学反射素子
US8508826B2 (en) 2008-04-25 2013-08-13 Panasonic Corporation Meandering oscillator, optical reflecting element using meandering oscillator, and image projection device using meandering oscillator

Also Published As

Publication number Publication date
CN101495836A (zh) 2009-07-29
JPWO2008010337A1 (ja) 2009-12-17
CN101495836B (zh) 2011-07-27
US7770450B2 (en) 2010-08-10
JP4687790B2 (ja) 2011-05-25
US20090133497A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4687789B2 (ja) 音叉型振動子およびそれを用いた振動ジャイロ
US8191216B2 (en) Vibrating piece manufacturing method and vibrator manufacturing method
JP4214412B2 (ja) 圧電振動片と圧電デバイスならびにジャイロセンサ
WO2002018875A1 (fr) Capteur de vitesse angulaire
JP4687790B2 (ja) 音片型振動子およびそれを用いた振動ジャイロ
JP5266437B2 (ja) 水晶振動子と水晶ユニットと水晶発振器の各製造方法
JP3941736B2 (ja) 水晶振動片とその製造方法及び水晶振動片を利用した水晶デバイス、ならびに水晶デバイスを利用した携帯電話装置および水晶デバイスを利用した電子機器
US9217642B2 (en) Vibrating gyroscope that prevents changes in sensitivity
JP3783708B2 (ja) 角速度センサ
JP3355998B2 (ja) 振動ジャイロ
JP3767212B2 (ja) 振動ジャイロの支持構造および支持方法
JP5353651B2 (ja) 角速度センサの製造方法
JP4441729B2 (ja) 電子機器
US7571648B2 (en) Piezoelectric vibration angular velocity sensor
JP3819343B2 (ja) 圧電振動ジャイロ用柱状振動子およびその製造方法
JP4453017B6 (ja) 水晶ユニットの製造方法
JPH1183497A (ja) 角速度センサ
JP2000002541A (ja) 振動ジャイロ
JP2000009477A (ja) 振動ジャイロ
JP2004251791A (ja) 圧電材料を利用したセンサ及びジャイロセンサ
JP2005168066A (ja) 電子機器
JPH04353714A (ja) 角速度センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027770.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525800

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07741261

Country of ref document: EP

Kind code of ref document: A1