WO2008009857A2 - Modulateurs de la udp-glucose céramide glucosyltransférase dans le traitement de l'acné ou de l'hyperkératinisation - Google Patents

Modulateurs de la udp-glucose céramide glucosyltransférase dans le traitement de l'acné ou de l'hyperkératinisation Download PDF

Info

Publication number
WO2008009857A2
WO2008009857A2 PCT/FR2007/051684 FR2007051684W WO2008009857A2 WO 2008009857 A2 WO2008009857 A2 WO 2008009857A2 FR 2007051684 W FR2007051684 W FR 2007051684W WO 2008009857 A2 WO2008009857 A2 WO 2008009857A2
Authority
WO
WIPO (PCT)
Prior art keywords
expression
gene
udp
activity
glucose ceramide
Prior art date
Application number
PCT/FR2007/051684
Other languages
English (en)
Other versions
WO2008009857A3 (fr
Inventor
Fernand Labrie
Van Luu-The
Ezequiel L. Calvo
Irina Safonova
Michel Rivier
Isabelle Carlavan
Original Assignee
Galderma Research & Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galderma Research & Development filed Critical Galderma Research & Development
Priority to CA002656842A priority Critical patent/CA2656842A1/fr
Priority to EP07823603A priority patent/EP2046978A2/fr
Publication of WO2008009857A2 publication Critical patent/WO2008009857A2/fr
Publication of WO2008009857A3 publication Critical patent/WO2008009857A3/fr
Priority to US12/320,168 priority patent/US20100028878A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/10Anti-acne agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/12Keratolytics, e.g. wart or anti-corn preparations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/91091Glycosyltransferases (2.4)
    • G01N2333/91097Hexosyltransferases (general) (2.4.1)
    • G01N2333/91102Hexosyltransferases (general) (2.4.1) with definite EC number (2.4.1.-)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/20Dermatological disorders

Definitions

  • the invention relates to the identification and use of modulating compounds of UDP-glucose ceramide glucosyltransferase for the treatment of acne, as well as cutaneous disorders associated with hyperkeratinization. It also relates to methods of diagnosis or prognosis in vitro of these pathologies.
  • Acne is generally due to the involvement of three factors: - an excessive production of sebum (hyperseborrhoea), under the effect of hormones and puberty, a thickening of the skin (hyperkeratinization) whose pores and more particularly the sebaceous glands become clogged causing the formation of blackheads and comedones, and - the development of bacteria, causing inflammation and the appearance of red or white pimples often painful.
  • Cornification of keratinocytes is a complex process that involves the degradation of a large number of intracellular components. This process is the final step in epidermal differentiation and is associated with the formation of organized lamellar bilayers enriched with ceramides, cholesterol and fatty acids.
  • the formation of ceramides is a key point leading to the formation of a normal stratum corneum and regulating skin barrier function and desquamation (Holleran WM et al., J. Lipid Res., 1994, 35, 905- 912). Reduction of stratum corneum ceramide and barrier function is observed in acne patients (Yamamoto A et al., Arch Dermatol Res., 1995, 187, 214-218).
  • Topical application of retinoids or oral administration of isotretinoin has been shown to increase ceramide levels in acne patients.
  • the increase in ceramide is correlated with a decrease in comedones after treatment with topically applied retinoids (Melnic B et al., Arch Dermatol Res., 1988, 280, 97-102, Thielnitz A, Br. Dermatol., 2001, 1995, 95, 2903-2909).
  • Retinoids are generally highly irritating and stripping compounds, causing unattractive facial redness.
  • UDP-glucose ceramide glucosyltransferase UGCG
  • UGCG UDP-glucose ceramide glucosyltransferase
  • acne we mean all forms of acne, namely in particular vulgar acne, comedonal, polymorphic, nodulocystic acne, conglobata, or secondary acne such as solar acne, drug or professional.
  • the Applicant also proposes in vitro diagnostic methods or in vitro prognosis, based on the detection of UGCG expression or activity.
  • the UGCG enzyme refers to UDP-glucose ceramide glucosyltransferase. This enzyme is involved in the process of keratinization. This process is the last stage of epidermal differentiation, and is associated with the formation of a highly organized lamellar double layer enriched with ceramides, cholesterols and free fatty acids. These lipids are derived from the epidermal lamellar body, secretory organelles containing phospholipids, glucosylceramides and also hydrolytic enzymes. UDP-glucose ceramide glucosyltransferase is the enzyme responsible for the formation of ceramides from the glucosylceramide cell pool.
  • Ceramide production has been shown to be a critical step for the formation of normal stratum corneum, and thereby regulates the permeable barrier and desquamation of the skin (Hollerman WM et al., J. Lipid Res 1994, 355: 905). -912).
  • a defect in UDP-glucose ceramide glucosyltransferase causes skin abnormalities described in patients with Gaucher disease.
  • a new therapeutic protocol has been proposed for the management of Gaucher disease. This approach aims to reduce the biosynthesis of glucosylceramide using glucosylceramide synthase inhibitors.
  • One of these inhibitors, N-butyldeoxynojirimycin (Miglustat) has recently been approved by the FDA for the treatment of Gaucher disease.
  • glycosylceramides and ceramides appear to regulate cell proliferation and differentiation.
  • changes in the level of glucosylceramides stimulated keratinocyte proliferation (Uchida Y et al., J Invest Dermatol, 1994, 102: 594a, Marsh NL et al, J Clin Invest, 1995, 95, -2903-2909).
  • UGCG gene or "UGCG nucleic acid” means the gene or nucleic acid sequence that encodes UDP-glucose ceramide glucosyltransferase. If the targeted target is preferably the human gene or its expression product, the invention may also use cells expressing a heterologous UDP-glucose ceramide glucosyltransferase, by genomic integration or transient expression of an exogenous nucleic acid coding for the enzyme.
  • a human cDNA sequence of UGCG is reproduced in the appendix (SEQ ID No.1). It is the NM003358.1 sequence whose coding portion is from acid 291 to 1475.
  • Another subject of the invention relates to an in vitro method for diagnosing or monitoring the progression of acne lesions or a skin disorder associated with hyperkeratinization in a subject, comprising comparing the expression or the activity of the UDP glucose ceramide glucosyltransferase (UGCG) protein, the expression of its gene or the activity of at least one of its promoters, in a biological sample of a subject relative to a biological sample of a subject control.
  • UGCG UDP glucose ceramide glucosyltransferase
  • the expression of the UGCG protein can be determined by assaying this protein by radioimmunoassay, for example by ELISA assay. Another method, especially for measuring the expression of the UGCG gene, is to measure the amount of corresponding mRNA by any method as described above. An assay of the activity of the UGCG protein can also be envisaged.
  • control is a "healthy” subject.
  • control subject refers to the same subject at a different time, which preferably corresponds to the beginning of the treatment (To ).
  • This measurement of the expression difference or the activity of the UGCG protein, the expression of its gene or the activity of at least one of its promoters makes it possible in particular to monitor the efficacy of a treatment. , in particular treatment with a UGCG modulator, as envisaged above or by another treatment against acne or a skin disorder associated with hyperkeratinization.
  • Another aspect of the present invention relates to an in vitro method for determining susceptibility of a subject to develop acne lesions or skin disorder associated with hyperkeratinization, including comparing the expression or activity of the subject.
  • the expression of the UGCG protein can be determined by an assay of this protein by radioimmunoassay, for example by ELISA assay.
  • Another method, especially for measuring the expression of the UGCG gene is to measure the amount of corresponding mRNA by any method as described above.
  • An assay of the activity of the UGCG can also be envisaged.
  • the tested subject is here an asymptomatic subject, presenting no skin disorder linked to hyperkeratinization or acne.
  • the subject "control” in this method means a "healthy" reference subject or population. The detection of this susceptibility allows the establishment of a preventive treatment and / or increased monitoring of signs related to acne or skin disorder associated with hyperkeratinization.
  • the biological sample tested may be any sample of biological fluid or a sample of a biopsy.
  • the sample may be a preparation of skin cells, obtained for example by desquamation or biopsy. It can also be sebum.
  • Another subject of the invention is an in vitro method for screening candidate compounds for the preventive and / or curative treatment of acne, or skin disorders associated with hyperkeratinization, comprising the determination of the capacity of a compound to modulating the expression or the activity of the UDP-glucose ceramide glucosyltransferase or the expression of its gene or the activity of at least one of its promoters, said modulation indicating the utility of the compound for the preventive or curative treatment acne or skin disorders associated with hyperkeratinization.
  • the method therefore makes it possible to select the compounds capable of modulating the expression or the activity of the UDP-glucose ceramide glucosyltransferase, or the expression of its gene, or the activity of at least one of its promoters.
  • the invention relates to an in vitro method for screening candidate compounds for the preventive and / or curative treatment of acne, or skin disorders associated with hyperkeratinization, comprising the following steps: a) Preparation of at least two biological samples or reaction mixtures; b) bringing one of the samples or reaction mixtures into contact with one or more of the compounds to be tested; c) measuring the expression or the activity of the UDP-glucose ceramide glucosyltransferase protein, the expression of its gene or the activity of at least one of its promoters, in the biological samples or reaction mixtures; d) Selection of compounds for which a modulation of the expression or activity of UDP-glucose ceramide glucosyltransferase, or a modulation of the expression of its gene or a modulation of the activity of at least one of its promoters, is measured in the sample or mixture treated in b) relative to the untreated sample or mixture.
  • step d) preferably inhibit the expression or the activity of the UGCG protein, the expression of its gene or the activity of at least one of its promoters.
  • the difference in expression obtained with the test compound compared to a control carried out in the absence of the compound is significant from 25% or more.
  • expression of a protein means the amount of that protein
  • protein activity is meant its biological activity
  • promoter activity is meant the ability of this promoter to trigger the transcription of the coded DNA sequence downstream of this promoter (and thus indirectly the synthesis of the corresponding protein).
  • the compounds tested can be of any type. They can be of natural origin or have been produced by chemical synthesis. It can be a library of structurally defined chemical compounds, compounds or uncharacterized substances, or a mixture of compounds. Various techniques can be implemented to test these compounds and to identify the compounds of therapeutic interest, modulators of the expression or the activity of the UDP-glucose ceramide glucosyltransferase.
  • the biological samples are cells transfected with a reporter gene operably linked to all or part of the promoter of the UGCG gene, and step c) described above consists in measuring the level of expression.
  • the reporter gene may in particular code for an enzyme which, in the presence of a given substrate, leads to the formation of colored products, such as CAT (chloramphenicol acetyltransferase), GAL (beta galactosidase), or GUS (beta glucuronidase). It may also be the gene for luciferase or GFP (Green Fluorescent Protein).
  • the assay of the protein encoded by the reporter gene, or its activity is carried out conventionally, by colorimetric, fluorometric or chemiluminescent techniques, among others.
  • the biological samples are cells expressing the UGCG gene coding for the UDP-glucose ceramide glucosyltransferase, and step c) above consists in measuring the expression of said gene.
  • the cell used here can be of any type. It can be a cell expressing the gene
  • UGCG endogenously such as a liver cell, an ovarian cell, or more preferably a keratinocyte or a sebocyte. It is also possible to use organs of human or animal origin, such as, for example, the preputial gland, clitoral gland or the sebaceous gland of the skin. It may also be a cell transformed with a heterologous nucleic acid, encoding a UDP-glucose ceramide glucosyltransferase, preferably human, or mammalian.
  • a wide variety of host cell systems can be used, such as, for example, Cos-7, CHO, BHK, 3T3, HEK293 cells.
  • the nucleic acid can be stably or transiently transfected by any method known to those skilled in the art, for example by calcium phosphate, DEAE-dextran, liposome, virus, electroporation, or microinjection.
  • the expression of the UGCG gene or the reporter gene can be determined by evaluating the transcription rate of said gene, or its translation rate.
  • transcription rate of a gene is meant the amount of mRNA produced.
  • translation rate of a gene is meant the amount of protein produced.
  • RNAs of a gene of interest are the most common (Northern Blot, RT-PCR, Rnase protection). It may be advantageous to use detection markers, such as fluorescent, radioactive, enzymatic or other ligands (e.g., avidin / biotin).
  • detection markers such as fluorescent, radioactive, enzymatic or other ligands (e.g., avidin / biotin).
  • the expression of the gene can be measured by real-time PCR or by RNase protection.
  • RNase protection is meant the detection of a known mRNA from the poly (A) RNAs of a tissue that can be done by means of specific hybridization with a labeled probe.
  • the probe is a complementary RNA labeled (radioactive) messenger to look for. It can be constructed from a known mRNA whose cDNA, after RT-PCR, has been cloned into a phage. RNA-poly (A) of the tissue where the sequence is to be searched is incubated with this probe under slow hybridization conditions in a liquid medium. RNA: RNA hybrids are formed between the desired mRNA and the antisense probe. The hybrid medium is then incubated with a mixture of ribonucleases specific for single-stranded RNA, so that only the hybrids formed with the probe can resist this digestion. The digestion product is then deproteinized and repurified, before being analyzed by electrophoresis. The labeled hybrid RNAs are detected by autoradiography.
  • the translation rate of the gene is evaluated for example by immunological assay of the product of said gene.
  • the antibodies used for this purpose may be of polyclonal or monoclonal type. Their production is based on conventional techniques.
  • a polyclonal anti-UDP-glucose ceramide glucosyltransferase antibody may, inter alia, be obtained by immunizing an animal such as a rabbit or a mouse, using the entire enzyme. The antiserum is removed and then exhausted according to methods known to those skilled in the art.
  • a monoclonal antibody can, inter alia, be obtained by the conventional method of Kohler and Milstein (Nature (London), 256: 495-497 (1975)). Other methods of preparing monoclonal antibodies are also known.
  • monoclonal antibodies can be produced by expression of a cloned nucleic acid from a hybridoma.
  • Antibodies can also be produced by the phage display technique, by introducing antibody cDNAs into vectors, which are typically filamentous phages that have V gene libraries on the surface of the phage. (for example fUSE5 for E.coli).
  • the immunoassay can be carried out in solid phase or in homogeneous phase; in a time or in two stages; sandwich method or competitive method, by way of non-limiting examples.
  • the capture antibody is immobilized on a solid phase.
  • solid phase it is possible to use microplates, in particular polystyrene microplates, or particles or solid beads, paramagnetic beads.
  • ELISA assays radioimmunoassays, or any other detection technique can be used to reveal the presence of the antigen-antibody complexes formed.
  • the characterization of antigen / antibody complexes, and more generally isolated or purified but also recombinant proteins (obtained in vitro and in vivo) can be performed by mass spectrometry analysis. This identification is made possible thanks to the analysis (determination of the mass) of the peptides generated by the enzymatic hydrolysis of the proteins (trypsin in general). In general, the proteins are isolated according to methods known to those skilled in the art, prior to enzymatic digestion.
  • Peptide analysis in the form of a hydrolyzate is carried out by separation of the peptides by HPLC (nano-HPLC) based on their physicochemical properties (reverse phase).
  • HPLC nano-HPLC
  • the determination of the mass of the peptides thus separated is carried out by ionization of the peptides and either by direct coupling to the mass spectrometer (electrospray mode ESI), or after deposition and crystallization in the presence of a matrix known to those skilled in the art (MALDI mode analysis).
  • the proteins are then identified through the use of appropriate software (eg Mascot).
  • step a) described above consists in preparing reaction mixtures each comprising a UDP-glucose ceramide glucosyltransferase enzyme and a substrate of the enzyme, and step c) described above consists of to measure enzymatic activity.
  • the enzyme can be produced according to usual techniques using Cos-7 cells,
  • CHO BHK, 3T3, HEK293. It can also be produced using microorganisms such as bacteria (for example E. coli or B. subtilis), yeasts (for example
  • Saccharomyces, Pichia Saccharomyces, Pichia
  • insect cells such as Sf9 or Sf21.
  • the determination of the enzyme activity preferably comprises the determination of the transferase activity, by extraction of the lipids produced and chromatographic analysis. Assays for the enzymatic activity of UGCG are described in the literature (see, for example, Futerman et al., 1991, Biochem J, 280, 295-302). Thus, the activity of UDP-glucose ceramide glucosyltransferase can be evaluated as follows: Liver fractions are incubated with a BSA complex (bovine serum albumin) - [ 14 C] hexanoyl ceramide in the presence of UDP-glucose, then the amount of [ 14 C] hexanoyl glucose-ceramides produced is analyzed.
  • BSA complex bovine serum albumin
  • the lipids are separated by thin layer chromatography (TLC) and recovered from the plate by friction.
  • TLC thin layer chromatography
  • the radioactivity is determined by measuring the scintillation related to the incubation of lipids in scintillant. Measurement of background is made by incubating [ 14 C] hexanoyl-ceramides in 25mM KCL / 50mMTris pH 7.4 at 37 ° C in the absence of liver extract.
  • the subject of the invention is also the use of a modulator of the human enzyme UDP-glucose ceramide glucosyltransferase obtainable by one of the above methods, for the preparation of a medicinal product intended for preventive treatment. and / or curative acne or skin disorders associated with hyperkeratinization.
  • a method for the preventive and / or curative treatment of acne, or skin disorders associated with hyperkeratinization which method comprises the administration of a therapeutically effective amount of a modulator of the human enzyme UDP, is described.
  • a modulator of the human enzyme UDP glucose ceramide glucosyltransferase
  • the invention finally relates to the cosmetic use of a modulator of the human enzyme UDP-glucose ceramide glucosyltransferase for the aesthetic treatment of desquamation problems.
  • the modulator is an inhibitor of the enzyme.
  • inhibitor refers to a compound or a chemical substance that substantially eliminates or reduces the enzymatic activity of the UDP-glucose ceramide glucosyltransferase.
  • substantially means a reduction of at least 25%, preferably at least 35%, more preferably at least 50%, and more preferably at least 70% or 90%. More particularly it may be a compound that interacts with, and blocks, the catalytic site of the enzyme, as competitive inhibitory type compounds.
  • a preferred inhibitor interacts with the enzyme in solution at inhibitor concentrations of less than 1 ⁇ M, preferably less than 0.1 ⁇ M, more preferably less than 0.01 ⁇ M.
  • the modulator compound may be an inhibitory anti-UDP-glucose ceramide glucosyltransferase antibody, preferably a monoclonal antibody.
  • a such inhibitory antibody is administered in an amount sufficient to obtain a plasma concentration of about 0.01 ⁇ g per ml to about 100 ⁇ g / ml, preferably about 1 ⁇ g per ml to about 5 ⁇ g / ml.
  • the modulator compound may also be a polypeptide, an antisense DNA or RNA polynucleotide, an si-RNA, or a PNA ("Peptide nucleic acid", a polypeptide chain substituted with purine and pyrimidine bases, whose spatial structure mimes that of DNA and allows hybridization to it).
  • PNA Peptide nucleic acid
  • UDP-glucose ceramide glucosyltransferase inhibitor compounds for the preventive and / or curative treatment of acne, or cutaneous disorders associated with hyperkeratinization.
  • examples of inhibitors of UDP-glucose ceramide glucosyltransferase include the following compounds:
  • PDMP 1-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol
  • D-PDMP D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol
  • modulator compounds identified by the screening method described above are also useful.
  • the modulating compounds are formulated within a pharmaceutical composition, in association with a pharmaceutically acceptable vehicle.
  • These compositions may be administered, for example, orally, enterally, parenterally, or topically.
  • the pharmaceutical composition is applied topically.
  • the pharmaceutical composition can be in the form of tablets, capsules, dragees, syrups, suspensions, solutions, powders, granules, emulsions, suspensions of microspheres or nanospheres or lipid vesicles or polymers for controlled release.
  • the pharmaceutical composition may be in the form of solutions or suspensions for infusion or for injection.
  • the pharmaceutical composition is more particularly intended for the treatment of skin and mucous membranes and may be in the form of ointments, creams, milks, ointments, powders, soaked swabs, solutions, gels , sprays, lotions or suspensions. It may also be in the form of suspensions of microspheres or nanospheres or lipid or polymeric vesicles or polymeric patches or hydrogels allowing controlled release.
  • This composition for topical application may be in anhydrous form, in aqueous form or in the form of an emulsion.
  • the pharmaceutical composition is in the form of a gel, a cream or a lotion.
  • the composition may comprise a modulator content of UGCG ranging from 0.001 to 10% by weight, especially from 0.01 to 5% by weight relative to the total weight of the composition.
  • the pharmaceutical composition may further contain inert additives or combinations of these additives, such as:
  • preserving agents such as esters of parahydroxybenzoic acid; stabilizing agents;
  • osmotic pressure modifying agents emulsifying agents
  • antioxidants such as alpha-tocopherol, butylhydroxyanisole or butylhydroxytoluene, superoxide dismutase, ubiquinol or certain metal chelators.
  • Figures 1A and 1B are graphs that show the extent of UGCG gene expression in male gonadectomized and vehicle-treated mice, DHT, DHEA, or the combination of DHEA-Flutamide for a period of 7 days. times a day (long-term treatment).
  • the results obtained by the Affymetrix technique (FIG. 1A) were confirmed by the RT-PCR technique in real time (FIG. 1B).
  • GDX gonadectomized and vehicle-treated mice
  • DHT gonadectomized mice treated with Dihydrotestosterone (androgen receptor agonist)
  • DHEA gonadectomized mice treated with dihydroepiandrosterone (precursor of steroid hormones, in the preputial glands metabolized to active androgen)
  • DHEA-FIu gonadectomized mice treated with a combination of dihydroepiandrosterone and flutamide (androgen receptor antagonist, which blocks the effects DHT and DHEA agonists).
  • Level of expression level of expression of mRNA
  • FIG. 2 is a graph reporting a kinetic study from 15 minutes to 96 hours.
  • Expression level Square mRNA expression level: expression in gonadectomized mice following treatment with DHT at zero time.
  • Rhombus expression in gonadectomized mice without DHT treatment.
  • RNA samples were prepared from the sebaceous glands and from the epidermis.
  • RNA expression was analyzed on an Affymetrix station (microfluidic module, hybridization oven, scanner, computer) following the protocols provided by the company.
  • Affymetrix station microfluidic module, hybridization oven, scanner, computer
  • the total RNA isolated from the tissues is transcribed into cDNA.
  • biotin-labeled cRNA is synthesized using T7 polymerase and a precursor NTP conjugated to biotin.
  • the cRNAs are then fragmented into small fragments. All molecular biology steps are controlled using Agilent's "lab on a chip" system to confirm the good efficiencies of the enzymatic reactions.
  • the Affymetrix chip is hybridized with the biotinylated cRNA, rinsed and then fluorescently labeled using a streptavidin-conjugated fluorophore. After washes, the chip is scanned and the results are calculated using the MAS5 software provided by Affymetrix. An expression value is obtained for each gene as well as an indication of the significance of the value obtained. The calculation of the significance of the expression is based on the analysis of the signals that are obtained following the hybridization of the cRNA of a given gene with a perfectly matched oligonucleotide ("perfect match") versus an oligonucleotide that contains a mutation ("single mismatch") in the central region of the oligonucleotide (see Table 1).
  • Table 1 Measurement of the expression of UDP-glucose ceramide glycosyltransferase in the epidermis and in the human sebaceous gland via the use of the Affymetrix chip technology.
  • mice show differentiation of the sebocyte type and are used as an experimental model of the sebaceous gland. They are of sufficient size to allow isolation of RNA without the use of microdissection technologies.
  • UGCG expression in the mouse preputial glands was performed under conditions of steroid hormone deficiency (especially in androgenic hormones) following gonadectomy.
  • the gonadectomized animals were then treated with physiological amounts of Dihydrotestosterone (DHT) or Dihydroepiandrosterone (DHEA) to restore a physiological level of the androgenic hormones, or as a control experiment with a combination of DHEA-Flutamide in which Flutamide, a Androgen receptor antagonist blocks the effect of DHEA.
  • DHT Dihydrotestosterone
  • DHEA Dihydroepiandrosterone
  • the comparison of the gene expression under these experimental conditions makes it possible to unambiguously identify the modulation or not of the gene expression of a gene in question by the androgenic hormones.
  • Gene expression was analyzed using the Affymetrix technology described above ( Figure 1A) and the results were then confirmed by the real-time PCR technique ( Figure 1B).
  • RNA isolated from the tissues is transcribed (RT) into cDNA and this is amplified by PCR (Polymerase Chain Reaction).
  • PCR Polymerase Chain Reaction
  • the progress of the PCR is monitored in real time using fluorescent TaqMan probes, allowing precise quantification of the amount of mRNA of a given gene present in the biological sample at the start.
  • Figure 2 represents the relative level of expression of mRNA as a function of time.
  • Gonadectomy which causes a deficiency of steroid hormones induces a slight induction of UGCG expression in the mouse preputial gland.
  • the mRNA of UGCG in the mouse preputial gland is decreased by a medium-term treatment with DHT (visible effect at 96 hours).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

L'invention concerne une méthode in vitro de criblage de composés candidats pour le traitement préventif ou curatif de l'acné, comprenant la détermination de la capacité d'un composé à moduler l'expression ou l'activité de la UDP-glucose céramide glucosyltransférase (UGCG), ainsi que l'utilisation de modulateurs de l'expression ou de l'activité de cette enzyme pour le traitement de l'acné ou des désordres cutanés associés à une hyperkératinisation. L'invention concerne aussi des méthodes de diagnostic ou pronostic in vitro de ces pathologies.

Description

Modulateurs de la UDP-glucose céramide glucosyltransférase dans le traitement de l'acné ou de l'hyperkératinisation
L'invention concerne l'identification et l'utilisation de composés modulateurs de la UDP- glucose céramide glucosyltransférase pour le traitement de l'acné, ainsi que des désordres cutanés associés à une hyperkératinisation. Elle concerne aussi des méthodes de diagnostic ou pronostic in vitro de ces pathologies.
L'acné est généralement due à l'implication de trois facteurs : - une production excessive de sébum (l'hyperséborrhée), sous l'effet des hormones et de la puberté, un épaississement de la peau (l'hyperkératinisation) dont les pores et plus particulièrement les glandes sébacées se bouchent entraînant la formation des points noirs et comédons, et - le développement des bactéries, provoquant une inflammation et l'apparition des boutons rouges ou blancs souvent douloureux.
La cornification des kératinocytes est un processus complexe qui implique la dégradation d'un grand nombre de composants intracellulaires. Ce processus constitue l'étape finale de la différentiation épidermique et est associé à la formation de bicouches lamellaires organisées enrichies en céramides, cholestérol et acides gras. La formation des céramides est un point clé menant à la formation d'un stratum corneum normal et permettant de réguler la fonction barrière de la peau et la desquamation (Holleran WM et al., J. Lipid Res., 1994, 35, 905-912). La réduction du taux de céramides du stratum corneum et de la fonction barrière est observée chez les patients acnéiques (Yamamoto A et al., Arch. Dermatol. Res., 1995, 187, 214-218). Il a été montré que l'application topique de rétinoïdes ou l'administration orale d'isotrétinoïne augmente le taux de céramides chez les patients acnéiques. L'augmentation de céramides est corrélée avec une diminution des comédons après traitement avec des rétinoïdes appliqués par voie topique (Melnic B et al., Arch. Dermatol. Res., 1988, 280, 97-102 ; Thielnitz A , Br. J. Dermatol., 2001 , 1995, 95, 2903-2909). Les rétinoïdes sont généralement des composés fortement irritants et décapants, provoquant des rougeurs au niveau du visage peu esthétiques.
Il existe donc un besoin d'identifier de nouveaux composés actifs, dont le profil thérapeutique sera similaire, mais avec des effets secondaires réduits. La demanderesse a maintenant découvert que le gène codant pour la UDP-glucose céramide glucosyltransférase (UGCG) était exprimé dans l'épiderme et dans les glandes sébacées humaines, et que son expression était régulée par les androgènes, in vivo, dans un modèle de glande préputiale de souris. Elle propose dès lors de cibler le gène UGCG ou son produit d'expression, pour prévenir et/ou améliorer l'acné et/ou tout désordre cutané associé à une hyperkératinisation.
Par acné, on entend toutes les formes d'acné, à savoir notamment les acnés vulgaires, comédoniennes, polymorphes, les acnés nodulokystiques, conglobata, ou encore les acnés secondaires telles que l'acné solaire, médicamenteuse ou professionnelle. La demanderesse propose également des méthodes de diagnostic in vitro ou pronostic in vitro, basées sur la détection de l'expression ou de l'activité de UGCG.
UGCG L'enzyme UGCG désigne la UDP-glucose céramide glucosyltransférase. Cette enzyme est impliquée dans le processus de kératinisation. Ce processus constitue la dernière étape de la différenciation épidermique, et est associé à la formation d'une double couche lamellaire très organisée enrichie en céramides, cholestérols et en acides gras libres. Ces lipides sont dérivés du corps lamellaire épidermique, des organites sécrétoires contenant des phospholipides, des glucosylcéramides et aussi des enzymes hydrolytiques. La UDP- glucose céramide glucosyltransférase est l'enzyme responsable de la formation de céramides à partir du pool cellulaire de glucosylcéramides. Il a été démontré que la production de céramides est une étape critique permettant la formation de stratum corneum normal, et de ce fait régule la barrière perméable et la desquamation de la peau (Hollerman WM et al., J Lipid Res 1994,35 :905-912). Un défaut de UDP-glucose céramide glucosyltransférase provoque des anomalies de la peau décrites chez les patients atteints de la maladie de Gaucher. Récemment, un nouveau protocole thérapeutique a été proposé pour la gestion de la maladie de Gaucher. Cette approche a comme but de réduire la biosynthèse de glucosylcéramide en utilisant des inhibiteurs de la glucosylcéramide synthase. Un de ces inhibiteurs, le N-butyldeoxynojirimycin (Miglustat), a été récemment approuvé par la FDA pour le traitement de la maladie de Gaucher. L'effet du traitement avec le miglustat sur l'acné n'a pas été étudié jusqu'à présent. En plus de leurs propriétés structurales, les glycosylcéramides et les céramides apparaissent comme régulateurs de la prolifération et de la différenciation cellulaire. Des études In vitro ont montré que des changements dans le niveau de glucosylcéramides stimulaient la prolifération kératinocytaire (Uchida Y et al., J Invest Dermatol, 1994, 102 : 594a ; Marsh NL et al, J Clin Invest, 1995, 95 . -2903-2909).
Dans le contexte de l'invention, le terme « gène UGCG » ou « acide nucléique UGCG » signifie le gène ou la séquence d'acide nucléique qui code pour la UDP-glucose céramide glucosyltransférase. Si la cible visée est de préférence le gène humain ou son produit d'expression, l'invention peut également faire appel à des cellules exprimant une UDP- glucose céramide glucosyltransférase hétérologue, par intégration génomique ou expression transitoire d'un acide nucléique exogène codant pour l'enzyme. Une séquence d'ADNc humain de UGCG est reproduite en annexe (SEQ ID No.1 ). Il s'agit de la séquence NM003358.1 dont la partie codante se situe de l'acide 291 à 1475.
Applications diagnostiques
Un autre objet de l'invention concerne une méthode in vitro de diagnostic ou de suivi de l'évolution de lésions acnéiques ou d'un désordre cutané associé à une hyperkératinisation chez un sujet, comprenant la comparaison de l'expression ou de l'activité de la protéine UDP glucose céramide glucosyltransférase (UGCG), de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans un échantillon biologique d'un sujet par rapport à un échantillon biologique d'un sujet contrôle.
L'expression de la protéine UGCG peut être déterminée par un dosage de cette protéine par radioimmunoessai, par exemple par dosage ELISA. Une autre méthode, notamment pour mesurer l'expression du gène UGCG, est de mesurer la quantité d'ARNm correspondant, par toute méthode telle que décrit plus haut. Un dosage de l'activité de la protéine UGCG peut être également envisagé.
Dans le cadre d'un diagnostic, le sujet « contrôle » est un sujet « sain ». Dans le cadre d'un suivi de l'évolution des lésions acnéiques ou d'un désordre cutané lié à une hyperkératinisation, le « sujet contrôle » fait référence au même sujet à un temps différent, qui correspond de préférence au début du traitement (To). Cette mesure de la différence d'expression ou de l'activité de la protéine UGCG, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, permet notamment de suivre l'efficacité d'un traitement, notamment un traitement par un modulateur de la UGCG, tel qu'envisagé plus haut ou par un autre traitement contre l'acné ou un désordre cutané associé à une hyperkératinisation. Un tel suivi peut conforter le patient quant au bien fondé, ou à la nécessité, de poursuivre ce traitement. Un autre aspect de la présente invention concerne une méthode in vitro de détermination d'une susceptibilité d'un sujet à développer des lésions acnéiques ou un désordre cutané associé à une hyperkératinisation, comprenant la comparaison de l'expression ou de l'activité de la protéine UGCG, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans un échantillon biologique d'un sujet par rapport à un échantillon biologique d'un sujet contrôle.
Là encore, l'expression de la protéine UGCG peut être déterminée par un dosage de cette protéine par radioimmunoessai, par exemple par dosage ELISA. Une autre méthode, notamment pour mesurer l'expression du gène UGCG, est de mesurer la quantité d'ARNm correspondant par toute méthode telle que décrit plus haut. Un dosage de l'activité de la UGCG peut être également envisagé.
Le sujet testé est ici un sujet asymptomatique, ne présentant aucun trouble cutané lié à une hyperkératinisation ou une acné. Le sujet « contrôle », dans cette méthode, signifie un sujet ou une population de référence « saine ». La détection de cette susceptibilité permet la mise en place d'un traitement préventif et/ou d'une surveillance accrue des signes liés à l'acné ou à un désordre cutané associé à une hyperkératinisation.
Dans ces méthodes de diagnostic ou pronostic in vitro, l'échantillon biologique testé peut être n'importe quel échantillon de liquide biologique ou un échantillon d'une biopsie. De préférence l'échantillon peut être une préparation de cellules de la peau, obtenues par exemple par desquamation ou biopsie. Il peut également s'agir de sébum.
Méthodes de criblage
Un autre objet de l'invention est une méthode in vitro de criblage de composés candidats pour le traitement préventif et/ou curatif de l'acné, ou des désordres cutanés associés à une hyperkératinisation, comprenant la détermination de la capacité d'un composé à moduler l'expression ou l'activité de l'UDP-glucose céramide glucosyltransférase ou l'expression de son gène ou l'activité d'au moins un de ses promoteurs, ladite modulation indiquant l'utilité du composé pour le traitement préventif ou curatif de l'acné ou des désordres cutanés associés à une hyperkératinisation. La méthode permet donc de sélectionner les composés capables de moduler l'expression ou l'activité de l'UDP- glucose céramide glucosyltransférase, ou l'expression de son gène, ou l'activité d'au moins un de ses promoteurs. Plus particulièrement, l'invention concerne une méthode in vitro de criblage de composés candidats pour le traitement préventif et/ou curatif de l'acné, ou des désordres cutanés associés à une hyperkératinisation, comprenant les étapes suivantes : a) Préparation d'au moins deux échantillons biologiques ou mélanges réactionnels ; b) Mise en contact d'un des échantillons ou mélanges réactionnels avec un ou plusieurs des composés à tester ; c) Mesure de l'expression ou de l'activité de la protéine UDP-glucose céramide glucosyltransférase, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans les échantillons biologiques ou mélanges réactionnels ; d) Sélection des composés pour lesquels une modulation de l'expression ou de l'activité de la UDP-glucose céramide glucosyltransférase, ou une modulation de l'expression de son gène ou une modulation de l'activité d'au moins un de ses promoteurs, est mesurée dans l'échantillon ou le mélange traité en b) par rapport à l'échantillon ou au mélange non traité. Par « modulation », on entend tout effet sur l'expression ou l'activité de l'enzyme, à savoir éventuellement une stimulation, mais de préférence une inhibition, partielle ou complète. Ainsi, les composés testés à l'étape d) ci-dessus inhibent de préférence l'expression ou l'activité de la protéine UGCG, l'expression de son gène ou l'activité d'au moins un de ses promoteurs. La différence d'expression obtenue avec le composé testé par rapport à un contrôle réalisé en l'absence du composé est significative à partir de 25% ou plus.
Dans l'ensemble du présent texte, à moins qu'il ne soit spécifié autrement, par « expression d'une protéine », on entend la quantité de cette protéine ;
Par « activité d'une protéine », on entend son activité biologique ;
Par « activité d'un promoteur », on entend la capacité de ce promoteur à déclencher la transcription de la séquence d'ADN codée en aval de ce promoteur (et donc indirectement la synthèse de la protéine correspondante).
Les composés testés peuvent être de tout type. Ils peuvent être d'origine naturelle ou avoir été produits par synthèse chimique. Il peut s'agir d'une banque de composés chimiques structurellement définis, de composés ou de substances non caractérisés, ou d'un mélange de composés. Différentes techniques peuvent être mises en œuvre pour tester ces composés et identifier les composés d'intérêt thérapeutique, modulateurs de l'expression ou de l'activité de l'UDP-glucose céramide glucosyltransférase.
Selon un premier mode de réalisation, les échantillons biologiques sont des cellules transfectées avec un gène rapporteur lié de manière opérante à tout ou partie du promoteur du gène UGCG, et l'étape c) décrite ci-dessus consiste à mesurer le niveau d'expression dudit gène rapporteur. Le gène rapporteur peut notamment coder pour une enzyme qui, en présence d'un substrat donné, conduit à la formation de produits colorés, telle que CAT (chloramphenicol acétyltransférase), GAL (beta galactosidase), ou GUS (beta glucuronidase). Il peut également s'agir du gène de la luciférase ou de la GFP (Green Fluorescent Protein). Le dosage de la protéine codée par le gène rapporteur, ou de son activité, est réalisé classiquement, par des techniques colorimétriques, fluorométriques, ou de chimioluminescence, entre autres.
Selon un deuxième mode de réalisation, les échantillons biologiques sont des cellules exprimant le gène UGCG codant pour l'UDP-glucose céramide glucosyltransférase, et l'étape c) ci-dessus consiste à mesurer l'expression dudit gène. La cellule utilisée ici peut être de tout type. Il peut s'agir d'une cellule exprimant le gène
UGCG de manière endogène, comme par exemple une cellule de foie, une cellule ovarienne, ou encore mieux un kératinocyte ou un sébocyte. On peut également utiliser des organes d'origine humaine ou animale, comme par exemple la glande préputiale, clitoridienne, ou encore la glande sébacée de la peau. II peut également s'agir d'une cellule transformée par un acide nucléique hétérologue, codant pour une UDP-glucose céramide glucosyltransférase, de préférence humaine, ou de mammifère.
Une grande variété de systèmes de cellules hôtes peut être utilisée, telle que par exemples les cellules Cos-7, CHO, BHK, 3T3, HEK293. L'acide nucléique peut être transfecté de manière stable ou transitoire, par toute méthode connue de l'homme du métier, par exemple par phosphate de calcium, DEAE-dextran, liposome, virus, électroporation, ou microinjection.
Dans ces méthodes, l'expression du gène UGCG ou du gène rapporteur peut être déterminée en évaluant le taux de transcription dudit gène, ou son taux de traduction. Par taux de transcription d'un gène, on entend la quantité d'ARNm produite. Par taux de traduction d'un gène, on entend la quantité de protéine produite.
L'homme du métier est familier des techniques permettant la détection quantitative ou semi-quantitative de l'ARNm d'un gène d'intérêt. Les techniques basées sur l'hybridation de l'ARNm avec des sondes nucléotidiques spécifiques sont les plus usuelles (Northern Blot, RT-PCR, protection à la Rnase). Il peut être avantageux d'utiliser des marqueurs de détection, tels que des agents fluorescents, radioactifs, enzymatiques or autres ligands (par exemple, avidine/biotine). En particulier, l'expression du gène peut être mesurée par PCR en temps réel ou par protection à la RNase. Par protection à la RNase, on entend la détection d'un ARNm connu parmi les ARN-poly(A) d'un tissu qui peut se faire à l'aide d'une hybridation spécifique avec une sonde marquée. La sonde est un ARN complémentaire marqué (radioactif) du messager à rechercher. Elle peut être construite à partir d'un ARNm connu dont l'ADNc, après RT-PCR, a été clone dans un phage. De l'ARN-poly(A) du tissu où la séquence est à rechercher est incubé avec cette sonde dans des conditions d'hybridation lente en milieu liquide. Il se forme des hybrides ARN:ARN entre l'ARNm recherché et la sonde antisens. Le milieu hybride est alors incubé avec un mélange de ribonucléases spécifiques de l'ARN simple brin, de telle sorte que seuls les hybrides formés avec la sonde peuvent résister à cette digestion. Le produit de digestion est ensuite déprotéinisé et repurifié, avant d'être analysé par électrophorèse. Les ARN hybrides marqués sont détectés par autoradiographie.
Le taux de traduction du gène est évalué par exemple par dosage immunologique du produit dudit gène. Les anticorps utilisés à cet effet peuvent être de type polyclonal ou monoclonal. Leur production relève de techniques conventionnelles. Un anticorps polyclonal anti-UDP-glucose céramide glucosyltransférase peut, entre autres, être obtenu par immunisation d'un animal tel qu'un lapin ou une souris, à l'aide de l'enzyme entière. L'antisérum est prélevé puis épuisé selon des méthodes en soi connues de l'homme du métier. Un anticorps monoclonal peut, entre autres, être obtenu par la méthode classique de Kôhler et Milstein (Nature (London), 256: 495- 497 (1975)). D'autres méthodes de préparation d'anticorps monoclonaux sont également connues. On peut, par exemple, produire des anticorps monoclonaux par expression d'un acide nucléique clone à partir d'un hybridome. On peut également produire des anticorps par la technique d'expression sur phage ("phage display"), en introduisant des ADNc d'anticorps dans des vecteurs, qui sont typiquement des phages filamenteux qui présentent des banques de gènes V à la surface du phage (par exemple fUSE5 pour E.coli). Le dosage immunologique peut être réalisé en phase solide ou en phase homogène; en un temps ou en deux temps; en méthode sandwich ou en méthode compétitive, à titre d'exemples non limitatifs. Selon un mode de réalisation préféré, l'anticorps de capture est immobilisé sur une phase solide. On peut utiliser, à titre d'exemples non limitatifs de phase solide, des microplaques, en particulier des microplaques de polystyrène, ou des particules ou des billes solides, des billes paramagnétiques.
Des dosages ELISA, des radioimmunoessais, ou toute autre technique de détection peuvent être mis en oeuvre pour révéler la présence des complexes antigènes-anticorps formés. La caractérisation des complexes antigène/anticorps, et plus généralement des protéines isolées ou purifiées mais également recombinantes (obtenues in vitro et in vivo) peut être réalisée par analyse en spectrométrie de masse. Cette identification est rendue possible grâce à l'analyse (détermination de la masse) des peptides générée par l'hydrolyse enzymatique des protéines (trypsine en générale). De façon générale, les protéines sont isolées selon les méthodes connues de l'homme du métier, préalablement à la digestion enzymatique. L'analyse des peptides (sous forme d'hydrolysat) est effectuée par séparation des peptides par HPLC (nano-HPLC) basé sur leurs propriétés physicochimiques (phase inverse). La détermination de la masse des peptides ainsi séparés est réalisée par ionisation des peptides et soit par couplage direct au spectromètre de masse (mode electrospray ESI), soit après dépôt et cristallisation en présence d'une matrice connue de l'homme de l'art (analyse en mode MALDI). Les protéines sont ensuite identifiées grâce à l'utilisation d'un logiciel approprié (par exemple Mascot).
Selon un troisième mode de réalisation, l'étape a) décrite ci-dessus consiste à préparer des mélanges réactionnels comprenant chacun une enzyme UDP-glucose céramide glucosyltransférase et un substrat de l'enzyme, et l'étape c) décrite ci-dessus consiste à mesurer l'activité enzymatique.
L'enzyme peut être produite selon des techniques usuelles en utilisant les cellules Cos-7,
CHO, BHK, 3T3, HEK293. Elle peut également être produite à l'aide de microorganismes tels que des bactéries (par exemple E. coli ou B. subtilis), des levures (par exemple
Saccharomyces, Pichia) ou des cellules d'insecte, telles que Sf9 ou Sf21.
La détermination de l'activité enzymatique comprend de préférence la détermination de l'activité transférase, par extraction des lipides produits et analyse chromatographique. Des dosages de l'activité enzymatique de la UGCG sont décrits dans la littérature (voir par exemple Futerman et al., 1991 , Biochem J, 280, 295-302) Ainsi l'activité de l'UDP-glucose céramide glucosyltransférase peut être évaluée de la manière suivante : des fractions de foie sont incubées avec un complexe BSA(sérumalbumine bovine)-[14C]hexanoyl-céramide en présence de UDP-glucose , puis on analyse la quantité de [14C]héxanoyl glucose-céramides produits. Les lipides sont séparés par chromatographie sur couche mince (TLC) et récupérés de la plaque par frottement. La radioactivité est déterminée par mesure de la scintillation liée à l'incubation des lipides dans du scintillant. La mesure du bruit de fond est faite par incubation de [14C]hexanoyl -céramides dans une solution 25mM KCL/50mMTris pH 7.4 à 37°C en absence d'extrait de foie.
Modulateurs de l'enzyme
L'invention a également pour objet l'utilisation d'un modulateur de l'enzyme humaine UDP-glucose céramide glucosyltransférase susceptible d'être obtenu par l'une des méthodes ci-dessus, pour la préparation d'un médicament destiné au traitement préventif et/ou curatif de l'acné ou des désordres cutanés associés à une hyperkératinisation.
Il est ainsi décrit ici une méthode de traitement préventif et/ou curatif de l'acné, ou des désordres cutanés associés à une hyperkératinisation, méthode comprenant l'administration d'une quantité thérapeutiquement efficace d'un modulateur de l'enzyme humaine UDP-glucose céramide glucosyltransférase, à un patient nécessitant un tel traitement.
L'invention vise enfin l'utilisation cosmétique d'un modulateur de l'enzyme humaine UDP- glucose céramide glucosyltransférase, pour le traitement esthétique des problèmes de desquamation. De manière préférentielle, le modulateur est un inhibiteur de l'enzyme. Le terme « inhibiteur » se réfère à un composé ou une substance chimique qui élimine ou réduit substantiellement l'activité enzymatique de la UDP-glucose céramide glucosyltransférase. Le terme « substantiellement » signifie une réduction d'au moins 25%, de préférence d'au moins 35%, de préférence encore d'au moins 50%, et de manière plus préférée d'au moins 70% ou 90%. Plus particulièrement il peut s'agir d'un composé qui interagit avec, et bloque, le site catalytique de l'enzyme, comme des composés de type inhibiteur compétitif.
Un inhibiteur préféré interagit avec l'enzyme en solution à des concentrations en inhibiteur de moins de 1 μM, de préférence moins de 0,1 μM, de préférence encore moins de 0,01 μM. Le composé modulateur peut être un anticorps inhibiteur anti-UDP-glucose céramide glucosyltransférase, de préférence un anticorps monoclonal. De manière avantageuse, un tel anticorps inhibiteur est administré en une quantité suffisante pour obtenir une concentration plasmatique d'environ 0.01 μg par ml à environ 100μg/ml, de préférence d'environ 1 μg par ml à environ 5μg/ml.
Le composé modulateur peut également être un polypeptide, un polynucleotide antisens d'ADN OU d'ARN, un si-ARN, ou un PNA ("Peptide nucleic acid", chaîne polypeptidique substituée par des bases puriques et pyrimidiques, dont la structure spatiale mime celle de l'ADN et permet l'hybridation à celui-ci).
Plusieurs inhibiteurs de la UDP-glucose céramide glucosyltransférase sont connus, et proposés notamment pour le traitement de la maladie de Gaucher. L'invention comprend l'utilisation de tels composés inhibiteurs de la UDP-glucose céramide glucosyltransférase pour le traitement préventif et/ou curatif de l'acné, ou des désordres cutanés associés à une hyperkératinisation.
Plus particulièrement, à titre non limitatif, on peut citer comme exemples d'inhibiteurs de la UDP-glucose céramide glucosyltransférase, les composés suivants :
N-butyldeoxynojirimycine (Miglustat)
D-threo-1 -(3',4'-ethylenedioxy) phenyl-2-palmitoylamino-3-pyrrolidino-1 -propanol
1 -Threo-1 -phenyl-2-decanoylamino-3-morpholino-1 -propanol (PDMP) D-threo-1 -phenyl-2-decanoylamino-3-morpholino-1 -propanol (D-PDMP),
D-threo-1 -phenyl-2-palmitoylamino-3-pyrrolidino-1 -propanol (P4),
D-threo-1 -phenyl-2-benzyloxycarbonylamino-3-pyrrolidino-1 -propanol (PBPP)
D-threo-4'-hydroxy- D-threo-1 -phenyl-2-palmitoylamino-3-pyrrolidino-1 -propanol (D-threo-
4'-hydroxy-P4) D-threo-1 -(3',4'-methylenedioxy) phenyl-2-palmitoylamino-3-pyrrolidino-1 -propanol
D-threo-1 -(3',4'-ethylenedioxy) phenyl-2-palmitoylamino-3-pyrrolidino-1 -propanol
D-threo-1 - (3',4'-trimethylenedioxy) phenyl-2-palmitoylamino-3-pyrrolidino-1 -propanol
1 -Threo-1 -phenyl-2-hexanoylamino-3-morpholino-1 -propanol
1 -Threo-1 -phenyl-2-heptanoylamino-3-morpholino-1 -propanol 1 -Threo-1 -phenyl-2-octanoylamino-3-morpholino-1 -propanol
1 -Threo-1 -phenyl-2-nonanoylamino-3-morpholino-1 -propanol
1 -Threo-1 -phenyl-2-undecanoylamino-3-morpholino-1 -propanol
1 -Threo-1 -phenyl-2-dodecanoylamino-3-morpholino-1 -propanol
1 -Threo-1 -phenyl-2-tridecanoylamino-3-morpholino-1 -propanol 1 -Threo-1 -phenyl-2-tetradecanoylamino-3-morpholino-1 -propanol
1 -Threo-1 -phenyl-2-pentadecanoylamino-3-morpholino-1 -propanol 1 -Threo-1 -phenyl-2-hexadecanoylamino-3-morpholino-1 -propanol 1 -Threo-1 -phenyl-2-heptadecanoylamino-3-morpholino-1 -propanol 1 -Threo-1 -phenyl^-octadecanoylamino-S-morpholino-i -propanol
D'autres composés modulateurs identifiés par la méthode de criblage décrite plus haut sont également utiles.
Les composés modulateurs sont formulés au sein de composition pharmaceutique, en association avec un véhicule pharmaceutiquement acceptable. Ces compositions peuvent être administrées par exemple par voie orale, entérale, parentérale, ou topique. De préférence, la composition pharmaceutique est appliquée par voie topique. Par voie orale, la composition pharmaceutique peut se présenter sous forme de comprimés, de gélules, de dragées, de sirops, de suspensions, de solutions, de poudres, de granules, d'émulsions, de suspensions de microsphères ou nanosphères ou de vésicules lipidiques ou polymériques permettant une libération contrôlée. Par voie parentérale, la composition pharmaceutique peut se présenter sous forme de solutions ou suspensions pour perfusion ou pour injection.
Par voie topique, la composition pharmaceutique est plus particulièrement destinée au traitement de la peau et des muqueuses et peut se présenter sous forme d'onguents, de crèmes, de laits, de pommades, de poudres, de tampons imbibés, de solutions, de gels, de sprays, de lotions ou de suspensions. Elle peut également se présenter sous forme de suspensions de microsphères ou nanosphères ou de vésicules lipidiques ou polymériques ou de patchs polymériques ou d'hydrogels permettant une libération contrôlée. Cette composition pour application topique peut se présenter sous forme anhydre, sous forme aqueuse ou sous la forme d'une émulsion. Dans une variante préférée, la composition pharmaceutique se présente sous la forme d'un gel, d'une crème ou d'une lotion.
La composition peut comprendre une teneur en modulateur de l'UGCG allant de 0,001 à 10 % en poids, notamment de 0,01 à 5 % en poids par rapport au poids total de la composition.
La composition pharmaceutique peut en outre contenir des additifs inertes ou des combinaisons de ces additifs, tels que :
- des agents mouillants; - des agents d'amélioration de la saveur;
- des agents conservateurs tels que les esters de l'acide parahydroxybenzoïque; - des agents stabilisants;
- des agents régulateurs d'humidité;
- des agents régulateurs de pH;
- des agents modificateurs de pression osmotique; - des agents émulsionnants;
- des filtres UV-A et UV-B
- et des antioxydants, tels que l'alpha-tocophérol, le butylhydroxyanisole ou le butylhydroxytoluene, la Super Oxyde Dismutase, l'Ubiquinol ou certains chelatants de métaux.
Les figures et exemples suivants illustrent l'invention sans en limiter la portée.
Légende des figures :
Les Figures 1A et 1 B sont des graphes qui montrent la mesure de l'expression du gène UGCG chez des souris mâles gonadectomisées et traitées avec le véhicule, le DHT, le DHEA ou la combinaison de DHEA-Flutamide pendant une période de 7 jours une fois par jour (traitement long terme). Les résultats obtenus par la technique Affymetrix (Figure 1A) ont été confirmés par la technique de RT-PCR en temps réel (Figure 1 B). GDX: souris gonadectomisées et traitées avec le véhicule DHT: souris gonadectomisées et traitées avec le Dihydrotestosterone (agoniste du récepteur aux androgènes)
DHEA: souris gonadectomisées et traitées avec le Dihydroepiandrosterone (précurseur des hormones stéroïdiennes; dans les glandes préputiales métabolisé en androgène actif) DHEA-FIu: souris gonadectomisées et traitées avec une combinaison de Dihydroepiandrosterone et Flutamide (antagoniste du récepteur aux Androgènes; qui bloque les effets des agonistes DHT et DHEA). Niveau d'expression : niveau d'expression de l'ARNm
La figure 2 est un graphe rapportant une étude cinétique de 15 minutes à 96 heures. Dans la Figure 2, les points I24a et I24b montrent le niveau d'expression d'UGCG de souris contrôles (= souris non gonadectomisées; duplicat) au point 24 heures. Les points suivants proviennent de souris gonadectomisées et indiquent les temps successifs (en heures) de l'étude cinétique.
Niveau d'expression : niveau d'expression de l'ARNm Carré: expression dans les souris gonadectomisées suite au traitement avec le DHT à temps zéro. Losange: expression dans les souris gonadectomisées sans traitement DHT.
Exemples : DONNEES EXPERIMENTALES
Exemple 1 : Expression de l'UDP-qlucose céramide qlucosyltransférase (UGCG) dans la glande sébacée humaine et dans l'épiderme humain.
Des glandes sébacées humaines ont été séparées de l'épiderme humain par traitement à la dispase et dissection sous une loupe binoculaire. Des échantillons d'ARN totaux ont été préparés à partir des glandes sébacées et à partir de l'épiderme.
L'expression des gènes a été analysée sur une station d'Affymetrix (module microfluidic; four à hybridation; scanner; ordinateur) en suivant les protocoles fournis par la société. En bref, l'ARN total isolé des tissus est transcrit en ADNc. A partir de l'ADNc double brin, on synthétise un ARNc marqué à la biotine en utilisant la polymérase T7 et un NTP précurseur conjugué à la biotine. Les ARNc sont ensuite fragmentés en fragments de petites tailles. Toutes les étapes de biologie moléculaire sont contrôlées en utilisant le système « lab on a chip» d'Agilent pour confirmer les bonnes efficacités des réactions enzymatiques. La puce Affymetrix est hybridée avec l'ARNc biotinylé, rincée et ensuite marquée par fluorescence en utilisant un fluorophore conjugué à la Streptavidine. Après des lavages, la puce est scannée et les résultats sont calculés en utilisant le logiciel MAS5 fourni par Affymetrix. On obtient une valeur d'expression pour chaque gène ainsi que l'indication de la significativité de la valeur obtenue. Le calcul de la significativité de l'expression est basé sur l'analyse des signaux qui sont obtenus suite à l'hybridation de l'ARNc d'un gène donné avec un oligonucléotide hybridant parfaitement (« perfect match ») versus un oligonucléotide qui contient une mutation (« single mismatch ») dans la région centrale de l'oligonucléotide (voir tableau 1 ).
Tableau 1 : mesure de l'expression de la UDP-glucose céramide glycosyltransférase dans l'épiderme et dans la glande sébacée humaine via l'utilisation de la technologie des puces Affymetrix.
Figure imgf000014_0001
Figure imgf000015_0001
"Indicateur de la significativité de l'expression du gène analysé dans l'échantillon indiqué : présence (=1 ) ou absence (=0).
Résultats: La UGCG est bien exprimée dans les deux tissus (glande sébacée, épiderme). L'analyse différentielle entre l'expression dans la glande sébacée humaine et l'épiderme humain montre que l'expression est significativement plus forte dans l'épiderme (tableau 1 ).
Exemple 2 : Expression de la UDP-qlucose céramide qlvcosyltransférase dans la glande préputiale de souris
A. Les glandes préputiales de souris montrent une différenciation du type sébocytaire et sont utilisées comme modèle expérimental de glande sébacée. Elles ont une taille suffisante pour permettre l'isolement d'ARN sans avoir recours à des technologies de microdissection.
L'analyse de l'expression de la UGCG dans les glandes préputiales de souris a été réalisée dans des conditions de déficiences en hormones stéroïdiennes (notamment en hormones androgéniques) suite à une gonadectomie. Les animaux gonadectomisés ont ensuite été traités avec des quantités physiologiques de Dihydrotestosterone (DHT) ou de Dihydroepiandrosterone (DHEA) pour restituer un niveau physiologique des hormones androgéniques, ou bien comme expérience de contrôle avec une combinaison de DHEA- Flutamide dans laquelle le Flutamide, un antagoniste du récepteur aux Androgènes bloque l'effet de la DHEA. La comparaison de l'expression génique dans ces conditions expérimentales permet d'identifier de façon non ambiguë la modulation ou non de l'expression génique d'un gène en question par les hormones androgéniques. L'expression génique a été analysée en utilisant la technologie Affymetrix décrite ci- dessus (Figure 1A) et les résultats ont ensuite été confirmés par la technique de PCR en temps réel (Figure 1 B).
La PCR en temps réel a été menée en suivant les protocoles fournis par la société Applied Biosystems en utilisant le « 7900HT Séquence Détection System ». L'ARN total isolé des tissus est transcrit (RT) en ADNc et celui-ci est amplifié par PCR (Réaction en Chaine par Polymérase). La progression de la PCR est suivie en temps réel en utilisant des sondes TaqMan fluorescentes, permettant une quantification précise de la quantité d'ARNm d'un gène donné, présent dans l'échantillon biologique au départ.
Résultat: La quantité d'ARNm de l'UGCG est diminuée suite à un traitement chronique pendant 7 jours aux androgènes dans la glande préputiale.
B. Des souris maies ont été gonadectomisées et traitées avec le véhicule, ou le DHT. Les glandes preputiales ont été prélevées pendant une période allant jusqu'à 4 jours (traitement androgénique unique - observation d'une cinétique de court terme). L'ARN a été isolé et l'expression des gènes a été analysée par la technique Affymetrix. La Figure 2 représente le niveau d'expression relative de l'ARNm en fonction du temps.
Résultats:
La gonadectomie (qui provoque une déficience d'hormones stéroïdiennes) induit une légère induction de l'expression de l'UGCG dans la glande préputiale de la souris.
L'ARNm de l'UGCG dans la glande préputiale de la souris est diminué par un traitement moyen terme avec le DHT (effet visible à 96 heures).
Exemple 3 : Formulations
A- VOIE ORALE Comprimé de 0,2 g
- D-threo-1 -phenyl-2-palmitoylamino-3-pyrrolidino-1 -propanol 0,001 g
- Amidon 0,1 14 g
- Phosphate bicalcique 0,020 g
- Silice 0,020 g
- Lactose 0,030 g

Claims

- Talc 0,010 g- Stéarate de magnésium 0,005 gB- VOIE TOPIQUE(a) Onguent-1 -Threo-1 -phenyl-2-decanoylamino-3-morpholino-1 -propanol 0,300 g- Vaseline blanche codex qsp 100 g(b) Lotion- N-butyldeoxynojirimycine 0,100 g- Polyéthylène glycol (PEG 400) 69,900 g - Ethanol à 95% 30,000 g REVENDICATIONS
1 . Méthode in vitro de criblage de composés candidats pour le traitement préventif et/ou curatif de l'acné, ou des désordres cutanés associés à une hyperkératinisation, comprenant la détermination de la capacité d'un composé à moduler l'expression ou l'activité de l'UDP-glucose céramide glucosyltransférase ou l'expression de son gène ou l'activité d'au moins un de ses promoteurs.
2. Méthode in vitro de criblage de composés candidats pour le traitement préventif et/ou curatif de l'acné ou des désordres cutanés associés à une hyperkératinisation selon la revendication 1 , comprenant les étapes suivantes : a) Préparation d'au moins deux échantillons biologiques ou mélanges réactionnels ; b) Mise en contact d'un des échantillons ou mélanges réactionnels avec un ou plusieurs des composés à tester ; c) Mesure de l'expression ou de l'activité de la protéine UDP-glucose céramide glucosyltransférase, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans les échantillons biologiques ou mélanges réactionnels ; d) Sélection des composés pour lesquels une modulation de l'expression ou de l'activité de la UDP-glucose céramide glucosyltransférase, ou une modulation de l'expression de son gène ou une modulation de l'activité d'au moins un de ses promoteurs, est mesurée dans l'échantillon ou le mélange traité en b) par rapport à l'échantillon ou au mélange non traité.
3. Méthode selon la revendication 2, caractérisée en ce que les composés sélectionnés à l'étape d) inhibent l'expression ou l'activité de la protéine UDP- glucose céramide glucosyltransférase, l'expression de son gène ou l'activité d'au moins un de ses promoteurs.
4. Méthode selon la revendication 2 ou 3, caractérisée en ce que les échantillons biologiques sont des cellules transfectées avec un gène rapporteur lié de manière opérante à tout ou partie du promoteur du gène codant pour la protéine UDP- glucose céramide glucosyltransférase, et en ce que l'étape c) consiste à mesurer l'expression dudit gène rapporteur.
5. Méthode selon la revendication 2 ou 3, caractérisée en ce que les échantillons biologiques sont des cellules exprimant le gène codant pour la protéine UDP- glucose céramide glucosyltransférase, et en ce que l'étape c) consiste à mesurer l'expression dudit gène.
6. Méthode selon la revendication 4 ou 5, dans laquelle les cellules sont des kératinocytes ou des sébocytes.
7. Méthode selon la revendication 5, dans laquelle les cellules sont des cellules transformées par un acide nucléique hétérologue codant pour la UDP-glucose céramide glucosyltransférase.
8. Méthode selon l'une des revendications 2 à 7, dans laquelle l'expression du gène est déterminée en mesurant le taux de transcription dudit gène.
9. Méthode selon l'une des revendications 2 à 7, dans laquelle l'expression du gène est déterminée en mesurant le taux de traduction dudit gène.
10. Méthode selon la revendication 2 ou 3, caractérisée en ce que l'étape a) consiste à préparer des mélanges réactionnels comprenant chacun une enzyme UDP- glucose céramide glucosyltransférase et un substrat de l'enzyme, et en ce que l'étape c) consiste à mesurer l'activité enzymatique.
PCT/FR2007/051684 2006-07-19 2007-07-18 Modulateurs de la udp-glucose céramide glucosyltransférase dans le traitement de l'acné ou de l'hyperkératinisation WO2008009857A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002656842A CA2656842A1 (fr) 2006-07-19 2007-07-18 Modulateurs de la udp-glucose ceramide glucosyltransferase dans le traitement de l'acne ou de l'hyperkeratinisation
EP07823603A EP2046978A2 (fr) 2006-07-19 2007-07-18 Modulateurs de la udp-glucose céramide glucosyltransférase dans le traitement de l'acné ou de l'hyperkératinisation
US12/320,168 US20100028878A1 (en) 2006-07-19 2009-01-21 Modulators of UDP-glucose ceramide glucosyltransferase for treating acne or hyperkeratinization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653030 2006-07-19
FR0653030A FR2904001A1 (fr) 2006-07-19 2006-07-19 Modulateurs de la udp-glucose ceramide glucosyltransferase dans le traitement de l'acne ou de l'hyperkeratinisation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/320,168 Continuation US20100028878A1 (en) 2006-07-19 2009-01-21 Modulators of UDP-glucose ceramide glucosyltransferase for treating acne or hyperkeratinization

Publications (2)

Publication Number Publication Date
WO2008009857A2 true WO2008009857A2 (fr) 2008-01-24
WO2008009857A3 WO2008009857A3 (fr) 2008-04-24

Family

ID=37719181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051684 WO2008009857A2 (fr) 2006-07-19 2007-07-18 Modulateurs de la udp-glucose céramide glucosyltransférase dans le traitement de l'acné ou de l'hyperkératinisation

Country Status (5)

Country Link
US (1) US20100028878A1 (fr)
EP (1) EP2046978A2 (fr)
CA (1) CA2656842A1 (fr)
FR (1) FR2904001A1 (fr)
WO (1) WO2008009857A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312019B1 (fr) 2009-10-01 2013-02-27 Rhein Chemie Rheinau GmbH Utilisation des additifs anticorrosives pour la protection d'aluminium et /ou des alliages d'aluminium dans un procédé de finissage.
US20140350049A1 (en) * 2011-11-29 2014-11-27 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and pharmaceutical compositions for the treatment of darier disease
WO2019236722A1 (fr) * 2018-06-05 2019-12-12 Chatterjee Subroto B Inhibiteurs de synthèse de glycosphingolipides et méthodes d'utilisation
WO2020085414A1 (fr) * 2018-10-25 2020-04-30 学校法人 麻布獣医学園 Utilisation d'un lymphocyte t déficient en gène de la glucosylcéramide synthase et son utilisation thérapeutique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052270A2 (fr) * 2000-12-22 2002-07-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Methode permettant d'identifier des substances qui influencent positivement des affections inflammatoires de maladies chroniques inflammatoires des voies respiratoires
US20050049235A1 (en) * 2002-04-29 2005-03-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20050259483A1 (en) * 2002-09-30 2005-11-24 Oncotherapy Science, Inc. Genes and polypeptides relating to prostate cancers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052270A2 (fr) * 2000-12-22 2002-07-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Methode permettant d'identifier des substances qui influencent positivement des affections inflammatoires de maladies chroniques inflammatoires des voies respiratoires
US20050049235A1 (en) * 2002-04-29 2005-03-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20050259483A1 (en) * 2002-09-30 2005-11-24 Oncotherapy Science, Inc. Genes and polypeptides relating to prostate cancers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1996, SANDO G. ET AL.: "Retinoic acid suppresses glucosylceramide formation in cultured human keratinocytes" XP009078992 Database accession no. PREV199698804821 & JOURNAL OF INVESTIGATIVE DERMATOLOGY, vol. 106, no. 4, 1996, page 916, ANNUAL MEETING OF THE SOCIETY FOR INVESTIGATIVE DERMATOLOGY; WASHINGTON, D.C., USA; MAY 1-5, 1996 ISSN: 0022-202X *
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; avril 1999 (1999-04), MADISON K. ET AL.: "A specific inhibitor of ceramide glucosyltransferase alters lamellar granule assembly in cultured human keratinocytes" XP009079001 Database accession no. PREV199900228013 & JOURNAL OF INVESTIGATIVE DERMATOLOGY, vol. 112, no. 4, avril 1999 (1999-04), page 543, 60TH ANNUAL MEETING OF THE SOCIETY FOR INVESTIGATIVE DERMATOLOGY; CHICAGO, ILLINOIS, USA; MAY 5-9, 1999 ISSN: 0022-202X *
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; avril 1999 (1999-04), SANDO G. ET AL.: "Ceramide glucosyltransferase expression is regulated by protein kinase C in cultured human keratinocytes" XP009079003 Database accession no. PREV199900226802 & JOURNAL OF INVESTIGATIVE DERMATOLOGY, vol. 112, no. 4, avril 1999 (1999-04), page 542, 60TH ANNUAL MEETING OF THE SOCIETY FOR INVESTIGATIVE DERMATOLOGY; CHICAGO, ILLINOIS, USA; MAY 5-9, 1999 ISSN: 0022-202X *
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; mars 2004 (2004-03), SANDO G. ET AL.: "Ceramide glucosyltransferase expression is regulated by a MAPK pathway involving non-classical PKC isoforms, PI3K, MEK1/2, and ERK" XP009078998 Database accession no. PREV200510114425 & JOURNAL OF INVESTIGATIVE DERMATOLOGY, vol. 122, no. 3, mars 2004 (2004-03), page A79, 65TH ANNUAL MEETING OF THE SOCIETY-FOR-INVESTIGATIVE-DERMATOLOGY; PROVIDENCE, RI, USA; APRIL 28 -MAY 01, 2004 ISSN: 0022-202X *
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; septembre 2006 (2006-09), THIEME F. ET AL.: "Effects of exogenously administered sphingolipid derivatives on keratinocyte lipid metabolism using a combination of lipid profiling and gene expression analysis" XP009079009 Database accession no. PREV200600653185 & CHEMISTRY AND PHYSICS OF LIPIDS, vol. 143, no. 1-2, septembre 2006 (2006-09), page 68, 47TH INTERNATIONAL CONFERENCE ON BIOSCIENCE OF LIPIDS; PECS, HUNGARY; SEPTEMBER 05 -10, 2006 ISSN: 0009-3084 *

Also Published As

Publication number Publication date
US20100028878A1 (en) 2010-02-04
CA2656842A1 (fr) 2008-01-24
FR2904001A1 (fr) 2008-01-25
EP2046978A2 (fr) 2009-04-15
WO2008009857A3 (fr) 2008-04-24

Similar Documents

Publication Publication Date Title
EP2329036A1 (fr) Modulateurs de fzd2 dans le traitement de l'alopecie
FR2938341A1 (fr) Modulateurs de la monoglyceride lipase dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938338A1 (fr) Modulateurs de l'acetyl-coenzyme a acyltransferase 1 ou 2 dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
WO2008009857A2 (fr) Modulateurs de la udp-glucose céramide glucosyltransférase dans le traitement de l'acné ou de l'hyperkératinisation
WO2008009855A2 (fr) Modulateurs de sc4mol dans le traitement de l'acné ou de l'hyperséborrhée
WO2008009856A2 (fr) Modulateurs de hsd17b7 dans le traitement de l'acné ou de l'hyperséborrhée
EP2046976A2 (fr) Modulateurs du transporteur abcd3 dans le traitement de l'acné ou de l'hyperséborrhée
WO2008009859A2 (fr) Modulateurs de scarb-1 dans le traitement de l'acné ou de l'hyperséborrhée
FR2938333A1 (fr) Modulateurs de cidea dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
WO2008009858A2 (fr) Modulateurs de elovl5 dans le traitement de l'acné ou de l'hyperséborrhée
FR2938342A1 (fr) Ciblage de modulateurs de ces1 et/ou ces3 dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
WO2008009852A2 (fr) Modulateurs de la lanostérol synthétase dans le traitement de l'acné ou de l'hyperséborrhée
WO2009071841A2 (fr) Modulateurs de egr1 dans le traitement de l'alopécie
FR2938340A1 (fr) Modulateurs de la carnitine octanoyltransferase dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
EP2331705A1 (fr) Modulateurs de lgr5 dans le traitement de l'alopecie
FR2938339A1 (fr) Modulateurs de la pctp dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938335A1 (fr) Modulateurs de l'isovaleryl-coenzyme a dehydrogenase dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938336A1 (fr) Modulateurs de gos2 dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938337A1 (fr) Modulateurs de mcam dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
EP2340316A1 (fr) Modulateurs de sox dans le traitement de l'alopecie
FR2938343A1 (fr) Ciblage de modulateurs de cyp2b15 et/ou gpd1 pour le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823603

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007823603

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2656842

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU