EP2242849A2 - Modulateurs de egr1 dans le traitement de l'alopécie - Google Patents

Modulateurs de egr1 dans le traitement de l'alopécie

Info

Publication number
EP2242849A2
EP2242849A2 EP08858303A EP08858303A EP2242849A2 EP 2242849 A2 EP2242849 A2 EP 2242849A2 EP 08858303 A EP08858303 A EP 08858303A EP 08858303 A EP08858303 A EP 08858303A EP 2242849 A2 EP2242849 A2 EP 2242849A2
Authority
EP
European Patent Office
Prior art keywords
expression
gene
anagen
egr1
transcription factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08858303A
Other languages
German (de)
English (en)
Inventor
Sandrine Rethore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Galderma Research and Development SNC
Original Assignee
Galderma Research and Development SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galderma Research and Development SNC filed Critical Galderma Research and Development SNC
Publication of EP2242849A2 publication Critical patent/EP2242849A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/20Dermatological disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Definitions

  • the invention relates to the identification and use of Early Growth Response 1 (EGR1) transcription factor modulator compounds for the treatment of alopecia. It also relates to methods of in vitro diagnosis or prognosis in vitro of this pathology.
  • EGR1 Early Growth Response 1
  • hair growth is cyclic and comprises three successive phases: the anagen phase, the catagen phase and the telogen phase.
  • Each follicle of the hair thus renews continuously, cyclically and independently to the adjacent follicles (Kligman 1959, Montagna and Parakkal, 1974).
  • the anagen phase or growth phase during which the hair lengthens, lasts several years. This phase recapitulates hair morphogenesis and is divided into 7 different stages (anagen I to anagen VII) (Muller-Rover et al., 2001).
  • the anagen phase is generally reduced to three stages, each grouping several stages: early for stages I-III, anagen medium for stages IV to V and late anagen for stages VI and VII.
  • the catagen phase that follows the anagen phase is very short and lasts only a few weeks. This phase is divided into 8 different stages (catagene I to catagen VIII) (Muller-Rover et al., 2001). During this phase, the hair undergoes an involution, the follicle atrophies and its dermal implantation appears more and more. higher. The telogen phase, which lasts a few months, corresponds to a rest period of the follicle where the hair eventually falls. After this resting phase a new follicle is regenerated, on the spot, and a new cycle begins again. (Montagna and Parakkal, 1974).
  • the hair follicles In mice and other fur mammals, the hair follicles also have a renewal cycle comprising the three phases anagen, catagen and telogen, cut into different stages.
  • the hair cycles of young animals are often "synchronized", that is to say in the same phase of the cycle at the same time within the same anatomical region (Muller-Rover et al., 2001).
  • the fall or natural loss of hair is a physiological phenomenon that occurs constantly and can be estimated, on average, a few hundred hairs a day for a normal physiological state. However, it happens that the hair cycle can be disrupted and that hair loss accelerates and leads to a temporary or permanent loss of hair called alopecia. Different causes can cause alopecia.
  • Hereditary androgenetic alopecia is the most common: it is manifested by a decrease in hair volume, even baldness, and affects 70% of men;
  • the hair loss is directly related to the hair cycle, the follicle no longer entering the anagen phase, or the anagen phase is not maintained, which implies that the follicle no longer produces hair shaft so more hair.
  • the Applicant has now found that the gene coding for Early Growth Response 1 is expressed specifically in the keratocytes of the hair follicle, and that its expression was induced at the time of entry into anagen, in vivo, in a model of induction of Anagene entry by gonadectomy It therefore proposes to target this gene or its expression product, to prevent or improve the phenomena of alopecia.
  • Alopecia refers to all forms of alopecia, namely androgenetic alopecia, acute or areata
  • EGRl The Early Growth Response 1 gene (or "EGR1") encodes a zinc finger protein of the type
  • EGR1 gene or "EGR1 nucleic acid” means the gene or nucleic acid sequence that encodes the EGR1 protein. If the targeted target is preferably the human gene or its expression product, the invention may also use cells expressing the transcription factor Early Growth Response 1, by genomic integration or transient expression of an exogenous nucleic acid coding for the transcription factor.
  • EGR1 is a nuclear protein that functions as a transcription factor by modulating genes involved in differentiation and mitogenesis.
  • EGR1 is known to be expressed and play an important role during tooth morphogenesis (Karavanova, 1992).
  • a large number of genes and signaling pathways, present during tooth morphogenesis, are involved in the hair cycle and especially at the time of entry into anagen.
  • the BMP pathway controls the development of the teeth and the entry into the growth phase of the adult hair follicle (Botchkarev and Sharov, 2004).
  • the specific expression of the EGR1 transcription factor in hair keratinocytes and its induction during anagen entry suggests that it plays an important role in the homeostasis of the hair follicle.
  • An object of the invention is an in vitro method for diagnosing or monitoring alopecia evolution in a subject, comprising comparing the expression or activity of the Early Growth Response 1 (EGR1) protein. , the expression of its gene or the activity of at least one of its promoters, in a biological sample of a subject relative to a control subject.
  • EGR1 Early Growth Response 1
  • the expression of the protein can be determined by an assay of this EGR1 protein by an immunohistochemical or immunoassay test, for example by ELISA assay. Another method, especially for measuring the expression of the gene, is to measure the amount of corresponding mRNA, by any method as described above. An assay of the activity of the transcription factor EGR1 can also be envisaged. In the context of a diagnosis, the subject "control” is a "healthy" subject.
  • control subject refers to the same subject at a different time, which preferably corresponds to the beginning of treatment (To).
  • This measurement of the difference in the expression or activity of the EGR1 protein, the expression of its gene or the activity of at least one of its promoters makes it possible in particular to monitor the efficacy of a treatment. , including treatment with a modulator of the transcription factor EGR1, as envisaged above or by another treatment against alopecia
  • Such monitoring may support the patient as to the merits, or the need, to continue this treatment.
  • Another aspect of the present invention relates to an in vitro method for determining susceptibility of a subject to develop alopecia, comprising comparing the expression or activity of the Early Growth Response 1 (EGR1) protein, the expression of its gene or the activity of at least one of its promoters, in a biological sample of a subject in relation to a control subject
  • EGR1 Early Growth Response 1
  • the expression of the protein may be determined by an assay of the EGR1 protein, by an immunohistochemical or immunoassay test, for example by ELISA assay.
  • Another method, especially for measuring the expression of the gene is to measure the amount of mRNA corresponding by any method as described above.
  • An assay of the activity of the transcription factor EGR1 can also be envisaged
  • the tested subject is here an asymptomatic subject, having no hair disorder related to alopecia.
  • the subject "control” in this method means a "healthy" reference subject or population. The detection of this susceptibility allows the establishment of a preventive treatment and / or increased monitoring of the signs related to alopecia.
  • the biological sample tested may be any sample of biological fluid or a sample of a biopsy.
  • the sample may nevertheless be a preparation of skin cells, obtained by example by hair removal or biopsy
  • Another subject of the invention is an in vitro method for screening candidate compounds for the preventive and / or curative treatment of alopecia, comprising determining the ability of a compound to modulate the expression or activity of the alopecia.
  • transcription factor Early Growth Response 1 (EGR1) or the expression of its gene or the activity of at least one of its promoters said modulation indicating the utility of the compound for the preventive or curative treatment of alopecia
  • EGR1 Early Growth Response 1
  • the method thus makes it possible to select the compounds capable of modulating the expression or the activity of the transcription factor EGR1, or the expression of its gene, or the activity of at least one of its promoters
  • the invention relates to an in vitro method for screening candidate compounds for the preventive and / or curative treatment of alopecia, comprising the following steps: a. preparation of at least two biological samples or reaction mixtures; b. contacting one of the samples or reaction mixtures with one or more of the test compounds; vs. measuring the expression or the activity of the EGR1 protein, the expression of its gene or the activity of at least one of its promoters, in the biological samples or reaction mixtures; d. selection of compounds for which a modulation of the expression or activity of the EGR1 protein, the expression of its gene or the activity of at least one of its promoters, is measured in the sample or the mixture treated in b), relative to the untreated sample or mixture.
  • Modulation means any effect on the level of expression or activity of the EGR1 transcription factor, the expression of its gene or the activity of at least one of its promoters, namely possibly an inhibition, but preferably a stimulation, partial or complete.
  • the compounds tested in step d) above preferably induce the expression or the activity of the EGR1 protein, the expression of its gene or the activity of at least one of its promoters.
  • expression of a protein means the amount of that protein
  • protein activity is meant its biological activity
  • promoter activity is meant the ability of this promoter to trigger the transcription of the coded DNA sequence downstream of this promoter (and thus indirectly the synthesis of the corresponding protein).
  • the compounds tested can be of any type. They can be of natural origin or have been produced by chemical synthesis. It can be a library of structurally defined chemical compounds, compounds or uncharacterized substances, or a mixture of compounds
  • the biological samples are cells transfected with a reporter gene that is operatively all or part of the promoter of the EGR1 gene, and step c) described above consists in measuring the expression of said gene. reporter.
  • the reporter gene may in particular code for an enzyme which, in the presence of a given substrate, leads to the formation of colored products, such as CAT (chloramphenicol acetyltransferase), GAL (beta galactosidase), or GUS (beta glucuronidase).
  • the assay of the protein encoded by the reporter gene, or its activity is carried out conventionally, by colorimetric, fluorometric or chemiluminescence techniques. , among others
  • the biological samples are cells expressing the gene coding for the transcription factor EGR1, and the step c) described above consists in measuring the expression of said gene.
  • the cell used here can be of any type. It may be a cell expressing the EGR1 gene endogenously, such as for example a liver cell, a prostate cell, or even better a skin cell, hair follicle keratinocytes or dermal papilla fibroblasts. . It is also possible to use organs of human or animal origin, for example hair, or hair follicles of vibrissae. It may also be a cell transformed with a heterologous nucleic acid, encoding the transcription factor EGR1, preferably human or mammalian. A wide variety of host cell systems can be used, such as, for example, Cos-7, CHO, BHK, 3T3, HEK293 cells. The nucleic acid can be stably or transiently transfected by any method known to those skilled in the art, for example by calcium phosphate, DEAE-dextran, liposome, virus, electroporation, or microinjection.
  • the expression of the EGR1 gene can be determined by measuring the transcription rate of said gene, or its translation rate
  • transcription rate of a gene is meant the amount of corresponding mRNA produced by translation rate of the gene.
  • a gene is understood to mean the amount of corresponding protein produced.
  • detection markers such as fluorescent agents. , radioactive, enzymatic or other ligands (eg avidme / biotme).
  • the expression of the gene can be measured by real-time PCR or by RNase protection.
  • RNase protection is meant the detection of a known mRNA from the poly (A) RNAs of a tissue that can be done by means of specific hybridization with a labeled probe.
  • the probe is a labeled complementary RNA (for example radioactive or enzymatic) of the messenger to look for. It can be constructed from a known mRNA whose cDNA, after RT-PCR, has been cloned into a phage.
  • RNA-poly (A) of the tissue where the sequence is to be searched is incubated with this probe under slow hybridization conditions in a liquid medium.
  • RNA hybrids are formed between the desired mRNA and the antisense probe.
  • the hybrid medium is then incubated with a mixture of ribonucleases specific for single-stranded RNA, so that only the hybrids formed with the probe can resist this digestion.
  • the digestion product is then deproteinized and repurified, before being analyzed by electrophoresis.
  • the labeled hybrid RNAs are detected for example by autoradiography or chemiluminescence.
  • the translation rate of the gene is evaluated, for example, by immunological assay of the product of said gene.
  • the antibodies used for this purpose may be of polyclonal or monoclonal type. Their production is based on conventional techniques.
  • a polyclonal anti-Early growth response antibody 1 can, inter alia, be obtained by immunizing an animal such as a rabbit or a mouse, using the entire protein. The antiserum is removed and then exhausted according to methods known per se to those skilled in the art.
  • a monoclonal antibody can, inter alia, be obtained by the conventional method of Kohler and Milstein (Nature (London), 256: 495-497 (1975)). Other methods of preparing monoclonal antibodies are also known.
  • the immunoassay can be carried out in solid phase or in homogeneous phase; in a time or in two stages; sandwich method or competitive method, by way of non-limiting examples.
  • the capture antibody is immobilized on a solid phase.
  • solid phase it is possible to use microplates, in particular polystyrene microplates, or particles or solid beads. , paramagnetic beads
  • ELISA assays immunoassays, or any other detection technique can be used to reveal the presence of the antigen-antibody complexes formed.
  • the characterization of antigen / antibody complexes, and more generally isolated or purified but also recombinant proteins (obtained in vitro and in vivo) can be performed by mass spectrometry analysis. This identification is made possible thanks to the analysis (determination of the mass) of the peptides generated by the enzymatic hydrolysis of the proteins (trypsin in general). In general, the proteins are isolated according to the methods known to those skilled in the art. prior to enzymatic digestion.
  • Peptide analysis in the form of a hydrolyzate is carried out by separation of the peptides by HPLC (nano-HPLC) based on their physico-chemical properties (reverse phase).
  • HPLC nano-HPLC
  • the determination of the mass of the peptides thus separated is carried out by ionization of the peptides and either by direct coupling to the mass spectrometer (electrospray mode ESI) or after deposition and crystallization in the presence of a matrix known to those skilled in the art ( analysis in MALDI mode).
  • the proteins are then identified through the use of appropriate software (eg Mascot)
  • the transcription factor EGR1 can be produced according to standard techniques using Cos-7, CHO, BHK, 3T3, HEK293 cells. It can also be produced using microorganisms such as bacteria (e.g. E. coli or B. subtilis), yeasts (e.g. Saccharomyces, Pichia) or insect cells, such as Sf9 or Sf21.
  • bacteria e.g. E. coli or B. subtilis
  • yeasts e.g. Saccharomyces, Pichia
  • insect cells such as Sf9 or Sf21.
  • the subject of the invention is also the use of a modulator of the transcription factor EGR1 that can be obtained according to one of the methods described above for the preparation of a medicament intended for the preventive and / or curative treatment of alopecia.
  • a method of preventive and / or curative treatment of alopecia which method comprises administering a therapeutically effective amount of a transcription factor modulator EGR1, to a patient in need of such treatment is described herein.
  • modulators are activators (or inducers) of the transcription factor EGR1.
  • the invention comprises the use of EGR1 transcription factor inducing compounds, such as those identified by the screening method described above, for the preventive and / or curative treatment of alopecia.
  • the modulating compounds are formulated in pharmaceutical compositions, in association with a pharmaceutically acceptable vehicle. These compositions may be administered, for example, enterally, parenterally, or topically. Preferably, the pharmaceutical composition is applied topically orally.
  • pharmaceutical composition may be in the form of tablets, capsules, dragees, syrups, suspensions, solutions, powders, granules, emulsions, suspensions of microspheres or nanospheres or lipid or polymeric vesicles allowing controlled release .
  • the pharmaceutical composition may be in the form of solutions or suspensions for infusion or for injection.
  • the pharmaceutical composition is more particularly intended for the treatment of the skin, the mucous membranes and the scalp and may be in the form of ointments, creams, milks, ointments, powders, soaked swabs, solutions, gels, sprays, lotions or suspensions. It may also be in the form of suspensions of microspheres or nanospheres or lipid or polymeric vesicles or polymeric patches or hydrogels allowing controlled release.
  • This composition for topical application may be in anhydrous form, in aqueous form or in the form of an emulsion.
  • the pharmaceutical composition is in the form of a gel, a cream or a lotion.
  • the composition may comprise an Early Growth Response 1 transcription factor modulator content ranging from 0.001 to 10% by weight, especially from 0.01 to 5% by weight relative to the total weight of the composition.
  • the pharmaceutical composition may further contain inert additives or combinations of these additives, such as:
  • osmotic pressure modifying agents emulsifying agents
  • UV-A and UV-B filters are UV-A and UV-B filters
  • antioxidants such as alpha-tocopherol, butylhydroxyanisole or butylhydroxytoluene, superoxide dismutase, ubiquinol or certain metal chelators.
  • Figure 1 illustrates the induction of passage to anagen by oophorectomy
  • Female mice whose hair follicles in the dorsal region were in telogen on Day 0, were subjected to ovanotomy or not (control) on day 1 of the study
  • a skin sample from the back region of the mice was taken on days 0, 6 and 8 of the study.
  • Figure 1A represents a histological section of skin from the dorsal region of a mouse at day 0 of the study.
  • Figure 1B is a photograph of a histological section of skin from the dorsal region of an ovanectomized mouse at day 7 of the study.
  • Figure IC shows a histological section of skin of the dorsal region of an ovanectomized mouse at day 8 of the study.
  • Figure ID shows a histological section of skin from the dorsal region of a control mouse at day 8 of the study. Histological analysis clearly shows that ovariectomy induced passage to anagen ( Figure
  • FIG. 2 is a table 1 which shows the modulation of the level of expression of the transcription factor EGR1, expressed with respect to Day 0 of the study, in the skin of the dorsal region of ovariectomized mice at day 8 of the study and in the skin of the dorsal region of control mice (telogen phase skin) at day 8 of the study using the Affymetrix chip technology.
  • Female mice with dorsal hair follicles in telogen on Day 0 were ovariotomized on day 1 of the study. Non-ovariectomized mice were kept as a control group.
  • a skin sample from the dorsal region of the mice was taken on days 0 and 8 of the study.
  • RNAs were isolated and gene expression was analyzed by Affymetrix chip technology.
  • Figure 3 is a histogram showing the modulation of the EGR1 transcription factor, in the dorsal region skin of female mice expressed relative to day 0 of the study, during ovariectomy-induced anagen entry.
  • a skin sample from the dorsal region of the mice was performed on days 0, 1, 2, 4, 6 and 8 of the study.
  • RNAs were isolated and gene expression was analyzed by the Affymetrix chip technique. gene expression clearly shows that the EGR1 gene is induced in animals entering anagen.
  • Figure 4 shows the expression, by in situ hybridization, of the EGR1 transcription factor in the hair follicles at the beginning of the skin anagen of the mouse dorsal region.
  • Figure 4A is the photograph of the dark-field image of a section of skin of a mouse, whose hair follicles of the dorsal region are in early anagen, subjected to in situ hybridization using a sense probe of the EGR1 transcription (negative control)
  • Figure 4B is the photograph of the same histological section counter-stained with hematoxylin This photograph (4B) is used to locate on the black background image (4A)
  • FIG. 4C is the photograph of the dark-field image of a section of skin of a mouse, the hair follicles of the dorsal region of which are in early anagen, subjected to in situ hybridization using an antisense probe of EGR1 transcription factor, the histological structures radioactively labeled by the probe are revealed by the accumulation of light spots (silver grains).
  • Figure 4D is the photograph of the same histological section counter-stained with hematoxylin. This photograph (4D) is used to locate on the black background image (4C). Marking areas are indicated by arrows.
  • Figure 5 shows the expression, by in situ hybridization, of the EGR1 transcription factor in the late-aged hair follicles of the mouse dorsal region skin.
  • Figure 5A is the photograph of the dark-field image of a section of the skin of a mouse, whose hair follicles of the dorsal region are in late anagen, subjected to in situ hybridization using a sense probe of the transcription factor EGR1 (negative control).
  • Figure 5B is the photograph of the same histological section counter-stained with hematoxylin.
  • FIG. 5B is used to locate on the black background image
  • Figure 5C is the photograph of the black background image of a section of skin of a mouse, including the hair follicles of the region dorsal are in late anagen, subjected to in situ hybridization using an EGR1 transcription factor antisense probe, the histological structures radiolabelled by the probe are revealed by the accumulation of light spots (silver grains).
  • Figure 5D is the photograph of the same histological section counter-stained with hematoxylin. This photograph (5D) is used to locate on the black background image (5C). Marking areas are indicated by arrows. In situ hybridization analysis clearly shows that transcripts are specifically expressed in anagen hair follicles.
  • EXPERIMENTAL DATA Example 1: Expression of EGR1 during entry into anagen induced by rovariectomy by Affymetrix chip technology.
  • RESULTS 42 day old female C57BL / 6 mice with dorsal hair follicles in telogen (Chase, 1954) were ovariectomized or not on day 1 of the study. Oophorectomy performed during the telogen phase induces a massive entry of hair follicles from the anagenic dorsal region within one week (Chanda, 2000.) while the hair follicles of the dorsal region of the control animals are still in telogen. skin were made in the dorsal region at day 0, 1, 2, 4, 6 and 8 of the study Part of the sample was used to confirm the passage to anagen by histological analysis The other part of the sample was used to perform transcriptome analysis with Affymetrix chip technology.
  • RNA expression was analyzed on an Affymetrix station (microfluidic module, hybridization oven, scanner, computer) according to the supplier's recommendations.
  • Affymetrix station microfluidic module, hybridization oven, scanner, computer
  • total RNAs isolated from tissues are transcribed into cDNA.
  • biotin-labeled cRNAs are synthesized using T7 polymerase and a biotin-conjugated NTP precursor. The cRNAs are then fragmented into small fragments. All molecular biology steps are controlled using Agilent's "Lab on a chip" system to confirm the effectiveness of enzyme reactions.
  • the Affymetrix chip is hybridized with the biotinylated cRNA, rinsed and then fluorescently labeled using a streptavidin conjugated fluorophore.
  • the chip is scanned and the results are calculated using the MAS5 software provided by Affymetrix.
  • An expression value is obtained for each gene as well as an indication of the presence or absence of the value obtained.
  • the calculation of the significance of the expression is based on the analysis of the signals that are obtained following the hybridization of the cRNA of a given gene with a perfectly matched oligonucleotide ("perfect match") versus an oligonucleotide that contains a mutation ("single mismatch”) in the central region of the oligonucleotide.
  • the transcription factor EGR1 is expressed in the telogen phase and in the anagen phase of the hair cycle. Differential analysis between the expression at the telogenic stage at (JO) and the anagen (O8 ovariectomized) shows that the expression is stronger (factor 1.4) in early anagen compared with the telogen stage. In control mice, the expression of the transcription factor EGR1 is not induced but reduced compared to the beginning of study.
  • FIG. 3 The kinetics of expression of the transcription factor EGR1 during the entry anagen phase following ovariectomy indicates that in the first days after ovariectomy the expression of the factor EGR1 is reduced.
  • EGR1 expression is strongly induced compared to previous days. . This induction is well correlated with the entry into the anagen phase, since in the control animals whose hair follicles of the dorsal region remained in telogen, the expression of the EGR1 gene is not induced.
  • Sense and antisense probes were prepared from the transcription factor EGR1 by incubation of the linearized gene (2 ⁇ g) with 63 ⁇ Ci of [ 35 S] UTP (1250 Ci / mmol, NEN, Massachusetts, USA) in the presence of RNA. T7 or T3 polymerase. In situ hybridization was performed on formaldehyde-fixed mouse tissue wrapped in paraffin. Sections (4 ⁇ m wide) were then deparaffinized in toluene and rehydrated in an alcohol gradient. After drying, the different sections were incubated in prehybridization buffer for two hours.
  • Hybridization was carried out overnight in hybridization buffer (prehybridization buffer with 10mM DTT and 2X10 6 cpm RNA / 35 S labeled) at 53 ° C.
  • the excess probe was removed and the sections were slanted in LM1 photographic emulsion (Amersham Biosciences, UK) and exposed in the dark at 4 ° C for at least one month.
  • the sections were then developed and counter-stained with hematoxylin and eosin. Following the incubation in the presence of a photographic emulsion, the histological structures radiolabelled by the probe are revealed (accumulation of silver grains). A specific signal is shown by positive labeling with the antisense probe ( Figure 4B and Figure 5B) and the absence of labeling with the sense probe ( Figure 3A and Figure 4A) used as a negative control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne une méthode in vitro de criblage de composés candidats pour le traitement préventif ou curatif de l'alopécie, comprenant la détermination de la capacité d'un composé à moduler l'expression ou l'activité du facteur de transcription Early Growth Response 1 (EGRl), ainsi que l'utilisation de modulateurs de l'expression ou de l'activité de ce facteur de transcription pour le traitement de l'alopécie. L'invention concerne aussi des méthodes de diagnostic ou pronostic in vitro de cette pathologie.

Description

Modulateurs de EGRl dans le traitement de l'alopécie
L'invention concerne l'identification et l'utilisation de composés modulateurs du facteur de transcription Early Growth Response 1 (EGRl), pour le traitement de l'alopécie. Elle concerne aussi des méthodes de diagnostic in vitro ou pronostic in vitro de cette pathologie.
Chez l'être humain, la croissance des cheveux est cyclique et comporte trois phases successives : la phase anagène, la phase catagène et la phase télogène. Chaque follicule de la chevelure se renouvelle donc en permanence, de façon cyclique et indépendante aux follicules adjacents (Kligman 1959, Montagna et Parakkal, 1974). La phase anagène ou phase de croissance, au cours de laquelle les cheveux s'allongent, dure plusieurs années. Cette phase récapitule la morphogenèse du cheveux et est divisée en 7 différentes stades (anagène I à anagène VII) (Muller-Rover et col., 2001). Pour simplifier, la phase anagène est généralement réduite à trois étapes qui regroupent chacune plusieurs stades : précoce pour les étapes I-III, milieu d' anagène pour les étapes IV à V et anagène tardive pour les étapes VI et VII.
La phase catagène qui succède à la phase anagène est très courte et ne dure que quelques semaines. Cette phase est divisée en 8 différentes stades (catagène I à catagène VIII) (Muller- Rover et col., 2001) Au cours de cette phase, le cheveu subit une involution, le follicule s'atrophie et son implantation dermique apparaît de plus en plus haute. La phase télogène, qui dure quelques mois, correspond à une période de repos du follicule où le cheveu finit par tomber. Après cette phase de repos un nouveau follicule est régénéré, sur place, et un nouveau cycle recommence. (Montagna et Parakkal, 1974).
A chaque instant, tous les cheveux ne sont pas dans la même phase au même moment. Ainsi, sur les 150 000 cheveux environ que comporte une chevelure, seuls 10% d'entre eux environ sont au repos et seront donc remplacés en quelques mois selon une horloge biologique propre à chaque cheveu (Montagna, 1974).
Chez la souris et les autres mammifères à fourrures, les follicules pileux possèdent également un cycle de renouvellement comportant les trois phases anagène, catagène et télogène, découpées en différents stades. Par contre, les cycles pilaires des jeunes animaux sont souvent « synchronisés », c'est-à-dire dans la même phase du cycle au même moment au sein d'une même région anatomique (Muller-Rover et col., 2001).
La chute ou perte naturelle des cheveux est un phénomène physiologique qui se produit en permanence et peut être estimée, en moyenne, à quelques cent cheveux par jour pour un état physiologique normal. Cependant, il arrive que le cycle pilaire puisse se dérégler et que la chute des cheveux s'accélère et conduise à une perte temporaire ou définitive des cheveux appelée alopécie. Différentes causes peuvent être à l'origine d'une alopécie.
II existe différentes types d'alopécie, les formes principales sont : • l'alopécie androgénétique héréditaire est la plus fréquente : elle se manifeste par une diminution du volume des cheveux, voire une calvitie, et touche 70% des hommes ;
• l'alopécie aigué : elle peut être liée à un traitement par chimiothérapie, un stress, des carences alimentaires importantes, une carence en fer, des troubles hormonaux, au sida, une irradiation aiguë ;
• l'alopécie Areata qui semble être d'origine auto-immune (mécanisme de médiation cellulaire) qui se caractérise par une atteinte en "patch" plus ou moins gros et à un ou plusieurs endroits Cette forme de pelade peut atteindre toute la tête et on parle d'alopécie Totalis et parfois l'ensemble du corps c'est l'alopécie Universalis et dans ce cas il n'y a plus aucun poil ni cheveu sur l'ensemble du corps.
Dans tous ces trois cas, la chute des cheveux est en relation directe avec le cycle pilaire, le follicule n'entrant plus dans la phase anagène, ou la phase anagène n'étant pas maintenue, ce qui implique que le follicule ne produit plus de tige pilaire donc plus de cheveux. Pour lutter contre l'alopécie, il est donc nécessaire de relancer le cycle pilaire en activant la phase anagène
On recherche ainsi depuis de nombreuses années, dans l'industrie cosmétique ou pharmaceutique, des compositions permettant de supprimer ou de réduire l'alopécie, et notamment d'induire ou de stimuler l'entrée en phase anagène ou la croissance des cheveux.
La demanderesse a maintenant trouvé que le gène codant pour Early Growth Response 1 était exprimé spécifiquement dans les kératmocytes du follicule pileux, et que son expression était induite au moment de l'entrée en anagène, in vivo, dans un modèle d'induction de l'entrée en anagène par gonadectomie Elle propose dès lors de cibler ce gène ou son produit d'expression, pour prévenrr ou améliorer les phénomènes d'alopécie
Par alopécie, on entend toutes les formes d'alopécie, à savoir notamment les alopécies androgénétiques, aiguë ou areata
EGRl Le gène Early Growth Response 1 (ou "EGRl") code pour une protéine à doigt de zinc de type
C2H2 membre de la famille EGR.
Dans le contexte de l'invention, le terme « gène EGRl » ou « acide nucléique EGRl » signifie le gène ou la séquence d'acide nucléique qui code pour la protéine EGRl. Si la cible visée est de préférence le gène humain ou son produit d'expression, l'invention peut également faire appel à des cellules exprimant le facteur de transcription Early Growth Response 1, par intégration génomique ou expression transitoire d'un acide nucléique exogène codant pour le facteur de transcription.
La séquence nucléique humaine (SEQ ID No.1) et la séquence protéique humaine (SEQ ID
No.2) du facteur de transcription EGRl sont reproduites en annexe II s'agit d'une protéine nucléaire qui fonctionne comme un facteur de transcription en modulant des gènes impliqués dans la différenciation et la mitogenèse. EGRl est connu pour être exprimé et jouer un rôle important au cours de la morphogénèse de la dent (Karavanova, 1992). Un nombre importants de gènes et voies de signalisation, présents au cours de la morphogenèse des dents, sont impliqués dans le cycle pilaire et en particulier au moment de l'entrée en anagène. Par exemple, la voie BMP contrôle la mise en place du développement des dents et l'entrée en phase de croissance du follicule pileux adulte (Botchkarev et Sharov, 2004). L'expression spécifique du facteur de transcription EGRl dans les kératinocytes du poil et son induction au cours de l'entrée en anagène suggère qu'il joue un rôle important dans l'homéostasie du follicule pileux
Applications diagnostiques
Un objet de l'invention concerne une méthode in vitro de diagnostic ou de suivi de l'évolution de l'alopécie chez un sujet, comprenant la comparaison de l'expression ou de l'activité de la protéine Early Growth Response 1 (EGRl), de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans un échantillon biologique d'un sujet par rapport à un sujet contrôle.
L'expression de la protéine peut être déterminée par un dosage de cette protéine EGRl par un test immunohistochimique ou immunoessai, par exemple par dosage ELISA. Une autre méthode, notamment pour mesurer l'expression du gène, est de mesurer la quantité d'ARNm correspondant, par toute méthode telle que décrit plus haut Un dosage de l'activité du facteur de transcription EGRl peut être également envisagé. Dans le cadre d'un diagnostic, le sujet « contrôle » est un sujet « sain ».
Dans le cadre d'un suivi de l'évolution de l'alopécie, le « sujet contrôle » fait référence au même sujet à un temps différent, qui correspond de préférence au début du traitement (To). Cette mesure de la différence de l'expression ou d'activité de la protéine EGRl, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, permet notamment de suivre l'efficacité d'un traitement, notamment un traitement par un modulateur du facteur de transcription EGRl, tel qu'envisagé plus haut ou par un autre traitement contre l'alopécie Un tel suivi peut conforter le patient quant au bien fondé, ou à la nécessité, de poursuivre ce traitement.
Un autre aspect de la présente invention concerne une méthode in vitro de détermination d'une susceptibilité d'un sujet à développer une alopécie, comprenant la comparaison de l'expression ou de l'activité de la protéine Early Growth Response 1 (EGRl), de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans un échantillon biologique d'un sujet par rapport à un sujet contrôle
Là encore, l'expression de la protéine peut être déterminée par un dosage de la protéine EGRl, par un test immunohistochimique ou immunoessai, par exemple par dosage ELISA. Une autre méthode, notamment pour mesurer l'expression du gène, est de mesurer la quantité d'ARNm correspondant par toute méthode telle que décrit plus haut. Un dosage de l'activité du facteur de transcription EGRl peut être également envisagé
Le sujet testé est ici un sujet asymptomatique, ne présentant aucun trouble capillaire lié à une alopécie. Le sujet « contrôle », dans cette méthode, signifie un sujet ou une population de référence « saine ». La détection de cette susceptibilité permet la mise en place d'un traitement préventif et/ou d'une surveillance accrue des signes liés à l'alopécie.
Dans ces méthodes de diagnostic ou pronostic in vitro, l'échantillon biologique testé peut être n'importe quel échantillon de liquide biologique ou un échantillon d'une biopsie De préférence l'échantillon peut être néanmoins une préparation de cellules de la peau, obtenues par exemple par épilation de cheveux ou biopsie
Méthodes de criblage
Un autre objet de l'invention est une méthode in vitro de criblage de composés candidats pour le traitement préventif et/ou curatif de l'alopécie, comprenant la détermination de la capacité d'un composé à moduler l'expression ou l'activité du facteur de transcription Early Growth Response 1 (EGRl) ou l'expression de son gène ou l'activité d'au moins un de ses promoteurs, ladite modulation indiquant l'utilité du composé pour le traitement préventif ou curatif de l'alopécie La méthode permet donc de sélectionner les composés capables de moduler l'expression ou l'activité du facteur de transcription EGRl, ou l'expression de son gène, ou l'activité d'au moins un de ses promoteurs
Plus particulièrement, l'invention concerne une méthode in vitro de criblage de composés candidats pour le traitement préventif et/ou curatif de l'alopécie, comprenant les étapes suivantes : a. préparation d'au moins deux échantillons biologiques ou mélanges réactionnels ; b. mise en contact d'un des échantillons ou mélanges réactionnels avec un ou plusieurs des composés à tester ; c. mesure de l'expression ou de l'activité de la protéine EGRl, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans les échantillons biologiques ou mélanges réactionnels ; d. sélection des composés pour lesquels une modulation de l'expression ou de l'activité de la protéine EGRl, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, est mesurée dans l'échantillon ou le mélange traité en b), par rapport à l'échantillon ou au mélange non traité.
Par « modulation », on entend tout effet sur le niveau d'expression ou d'activité du facteur de transcription EGRl, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, à savoir éventuellement une inhibition, mais de préférence une stimulation, partielle ou complète.
Ainsi, les composés testés à l'étape d) ci-dessus induisent de préférence l'expression ou l'activité de la protéine EGRl, l'expression de son gène ou l'activité d'au moins un de ses promoteurs.
Dans l'ensemble du présent texte, à moins qu'il ne soit spécifié autrement, par « expression d'une protéine », on entend la quantité de cette protéine ;
Par « activité d'une protéine », on entend son activité biologique ;
Par « activité d'un promoteur », on entend la capacité de ce promoteur à déclencher la transcription de la séquence d'ADN codée en aval de ce promoteur (et donc indirectement la synthèse de la protéine correspondante).
Les composés testés peuvent être de tout type. Ils peuvent être d'origine naturelle ou avoir été produits par synthèse chimique. Il peut s'agir d'une banque de composés chimiques structurellement définis, de composés ou de substances non caractérisés, ou d'un mélange de composés
Différentes techniques peuvent être mises en œuvre pour tester ces composés et identifier les composés d'intérêt thérapeutique, modulateurs de l'expression ou de l'activité du facteur de transcription EGRl.
Selon un premier mode de réalisation, les échantillons biologiques sont des cellules transfectées avec un gène rapporteur hé de manière opérante à tout ou partie du promoteur du gène EGRl, et l'étape c) décrite ci-dessus consiste à mesurer l'expression dudit gène rapporteur. Le gène rapporteur peut notamment coder pour une enzyme qui, en présence d'un substrat donné, conduit à la formation de produits colorés, telle que CAT (chloramphenicol acétyltransférase), GAL (beta galactosidase), ou GUS (beta glucuronidase). Il peut également s'agir du gène de la luciférase ou de la GFP (Green Fluorescent Protein) Le dosage de la protéine codé par le gène rapporteur, ou de son activité, est réalisé classiquement, par des techniques colorimétriques, fluorométriques, ou de chimioluminescence, entre autres
Selon un deuxième mode de réalisation, les échantillons biologiques sont des cellules exprimant le gène codant pour le facteur de transcription EGRl, et l'étape c) décrite ci-dessus consiste à mesurer l'expression dudit gène
La cellule utilisée ici peut être de tout type. Il peut s'agir d'une cellule exprimant le gène EGRl de manière endogène, comme par exemple une cellule de foie, une cellule de prostate, ou encore mieux une cellule de la peau, des kératinocytes du follicule pileux ou des fibroblastes de papille dermique. On peut également utiliser des organes d'origine humaine ou animale, comme par exemple des cheveux, ou des follicules pileux de vibrisses. II peut également s'agir d'une cellule transformée par un acide nucléique hétéro logue, codant pour le facteur de transcription EGRl, de préférence humaine ou de mammifère. Une grande variété de systèmes de cellules hôtes peut être utilisée, telle que par exemples les cellules Cos-7, CHO, BHK, 3T3, HEK293. L'acide nucléique peut être transfecté de manière stable ou transitoire, par toute méthode connue de l'homme du métier, par exemple par phosphate de calcium, DEAE-dextran, liposome, virus, électroporation, ou microinjection.
Dans ces méthodes, l'expression du gène EGRl peut être déterminée en mesurant le taux de transcription dudit gène, ou son taux de traduction Par taux de transcription d'un gène, on entend la quantité d'ARNm correspondant produite Par taux de traduction d'un gène, on entend la quantité de protéine correspondante produite L'homme du métier est familier avec les techniques permettant la détection quantitative ou semi-quantitative de l'ARNm d'un gène d'intérêt. Les techniques basées sur l'hybridation de 1'ARNm avec des sondes nucléotidiques spécifiques sont les plus usuelles (Northern Blot, RT- PCR, protection à la Rnase) II peut être avantageux d'utiliser des marqueurs de détection, tels que des agents fluorescents, radioactifs, enzymatiques or autres ligands (par exemple, avidme/biotme) .
En particulier, l'expression du gène peut être mesurée par PCR en temps réel ou par protection à la RNase. Par protection à la RNase, on entend la détection d'un ARNm connu parmi les ARN-poly(A) d'un tissu qui peut se faire à l'aide d'une hybridation spécifique avec une sonde marquée. La sonde est un ARN complémentaire marqué (par exemple radioactif ou enzymatique) du messager à rechercher. Elle peut être construite à partir d'un ARNm connu dont l'ADNc, après RT-PCR, a été clone dans un phage. De l'ARN-poly(A) du tissu où la séquence est à rechercher est incubé avec cette sonde dans des conditions d'hybridation lente en milieu liquide. Il se forme des hybrides ARN:ARN entre l'ARNm recherché et la sonde antisens. Le milieu hybride est alors incubé avec un mélange de ribonucléases spécifiques de l'ARN simple brin, de telle sorte que seuls les hybrides formés avec la sonde peuvent résister à cette digestion. Le produit de digestion est ensuite déprotéinisé et repurifié, avant d'être analysé par électrophorèse Les ARN hybrides marqués sont détectés par exemple par autoradiographie ou chimiolummescence.
Le taux de traduction du gène est évalué par exemple par dosage immunologique du produit dudit gène Les anticorps utilisés à cet effet peuvent être de type polyclonal ou monoclonal. Leur production relève de techniques conventionnelles. Un anticorps polyclonal anti-Early growth response 1 peut, entre autres, être obtenu par immunisation d'un animal tel qu'un lapin ou une souris, à l'aide de la protéine entière. L 'antisérum est prélevé puis épuisé selon des méthodes en soi connues par l'homme du métier. Un anticorps monoclonal peut, entre autres, être obtenu par la méthode classique de Kôhler et Milstein (Nature (London), 256: 495- 497 (1975)) D'autres méthodes de préparation d'anticorps monoclonaux sont également connues On peut, par exemple, produire des anticorps monoclonaux par expression d'un acide nucléique clone à partir d'un hybπdome On peut également produire des anticorps par la technique d'expression sur phage ("phage display"), en introduisant des ADNc d'anticorps dans des vecteurs, qui sont typiquement des phages filamenteux qui présentent des banques de gènes V à la surface du phage (par exemple fUSE5 pour E coli).
Le dosage immunologique peut être réalisé en phase solide ou en phase homogène; en un temps ou en deux temps; en méthode sandwich ou en méthode compétitive, à titre d'exemples non limitatifs. Selon un mode de réalisation préféré, l'anticorps de capture est immobilisé sur une phase solide On peut utiliser, à titre d'exemples non limitatifs de phase solide, des microplaques, en particulier des microplaques de polystyrène, ou des particules ou des billes solides, des billes paramagnétiques
Des dosages ELISA, des immunoessais, ou toute autre technique de détection peuvent être mis en oeuvre pour révéler la présence des complexes antigènes-anticorps formés. La caractérisation des complexes antigène/anticorps, et plus généralement des protéines isolées ou purifiées mais également recombinantes (obtenues in vitro et in vivo) peut être réalisée par analyse en spectrométrie de masse. Cette identification est rendue possible grâce à l'analyse (détermination de la masse) des peptides générée par l'hydrolyse enzymatique des protéines (trypsine en générale) De façon générale, les protéines sont isolées selon les méthodes connues de l'homme du métier, préalablement à la digestion enzymatique. L'analyse des peptides (sous forme d'hydrolysat) est effectuée par séparation des peptides par HPLC (nano-HPLC) basé sur leurs propriétés physico-chimique (phase inverse). La détermination de la masse des peptides ainsi séparés est réalisée par ionisation des peptides et soit par couplage direct au spectromètre de masse (mode electrospray ESI) soit après dépôt et cristallisation en présence d'une matrice connue de l'homme de l'art (analyse en mode MALDI). Les protéines sont ensuite identifiées grâce à l'utilisation d'un logiciel approprié (par exemple Mascot)
Le facteur de transcription EGRl peut être produit selon des techniques usuelles en utilisant les cellules Cos-7, CHO, BHK, 3T3, HEK293. Il peut également être produit à l'aide de microorganismes tels que des bactéries (par exemple E. coli ou B. subtilis), des levures (par exemple Saccharomyces, Pichia) ou des cellules d' insecte, telles que Sf9 ou Sf21.
Modulateurs du facteur de transcription
L'invention a également pour objet l'utilisation d'un modulateur du facteur de transcription EGRl susceptible d'être obtenu selon l'une des méthodes décrites ci-dessus pour la préparation d'un médicament destiné au traitement préventif et/ou curatif de l' alopécie.
Il est ainsi décrit ici une méthode de traitement préventif et/ou curatif de l'alopécie, méthode comprenant l'administration d'une quantité thérapeutiquement efficace d'un modulateur du facteur de transcription EGRl, à un patient nécessitant un tel traitement De préférence, de tels modulateurs sont des activateurs (ou inducteurs) du facteur de transcription EGRl.
L'invention comprend l'utilisation de composés inducteurs du facteur de transcription EGRl, tels que ceux identifiés par la méthode de criblage décrite plus haut, pour le traitement préventif et/ou curatif de l'alopécie.
Les composés modulateurs sont formulés au sein de compositions pharmaceutiques, en association avec un véhicule pharmaceutiquement acceptable Ces compositions peuvent être administrées par exemple par voie entérale, parentérale, ou topique De préférence, la composition pharmaceutique est appliquée par voie topique Par voie orale, la composition pharmaceutique peut se présenter sous forme de comprimés, de gélules, de dragées, de sirops, de suspensions, de solutions, de poudres, de granules, d'émulsions, de suspensions de microsphères ou nanosphères ou de vésicules lipidiques ou polymériques permettant une libération contrôlée. Par voie parentérale, la composition pharmaceutique peut se présenter sous forme de solutions ou suspensions pour perfusion ou pour injection.
Par voie topique, la composition pharmaceutique est plus particulièrement destinée au traitement de la peau, des muqueuses et du cuir chevelu et peut se présenter sous forme d'onguents, de crèmes, de laits, de pommades, de poudres, de tampons imbibés, de solutions, de gels, de sprays, de lotions ou de suspensions. Elle peut également se présenter sous forme de suspensions de microsphères ou nanosphères ou de vésicules lipidiques ou polymériques ou de patchs polymériques ou d'hydrogels permettant une libération contrôlée. Cette composition pour application topique peut se présenter sous forme anhydre, sous forme aqueuse ou sous la forme d'une émulsion. Dans une variante préférée, la composition pharmaceutique se présente sous la forme d'un gel, d'une crème ou d'une lotion.
La composition peut comprendre une teneur en modulateur du facteur de transcription Early Growth Response 1 allant de 0,001 à 10 % en poids, notamment de 0,01 à 5 % en poids par rapport au poids total de la composition.
La composition pharmaceutique peut en outre contenu- des additifs inertes ou des combinaisons de ces additifs, tels que :
- des agents mouillants;
- des agents d'amélioration de la saveur; - des agents conservateurs tels que les esters de l'acide parahydroxybenzoique;
- des agents stabilisants;
- des agents régulateurs d'humidité;
- des agents régulateurs de pH;
- des agents modificateurs de pression osmotique; - des agents émulsionnants;
- des filtres UV-A et UV-B ;
- et des antioxydants, tels que l'alpha-tocophérol, le butylhydroxyanisole ou le butylhydroxytoluene, la Super Oxyde Dismutase, I'Ubiquinol ou certains chélatants de métaux.
Les figures et exemples suivants illustrent l'invention sans en limiter la portée.
Légende des figures :
La Figure 1 illustre l' induction du passage en anagène par ovariectomie Des souris femelles, dont les follicules pileux de la région dorsale étaient en télogène au Jour 0, ont été soumises à une ovanotomie ou non (contrôle) au jour 1 de l'étude Un prélèvement de la peau de la région du dos des souris a été effectué aux jours 0, 6 et 8 de l'étude. La Figure IA représente une coupe histologique de peau de la région dorsale d'une souris au jour 0 de l'étude. La Figure IB est la photographie d'une coupe histologique de peau de la région dorsale d'une souris ovanectomisée au jour 7 de l'étude. La Figure IC représente une coupe histologique de peau de la région dorsale d'une souris ovanectomisée au jour 8 de l'étude. La Figure ID représente une coupe histologique de peau de la région dorsale d'une souris contrôle au jour 8 de l'étude. L'analyse histologique montre clairement que l'ovariectomie a induit le passage en anagène (Figure IC).
La Figure 2 est un tableau 1 qui présente la modulation du niveau d'expression du facteur de transcription EGRl, exprimée par rapport au Jour 0 de l'étude, dans la peau de la région dorsale de souris ovariectomisées au jour 8 de l'étude et dans la peau de la région dorsale de souris contrôle (peau en phase télogène) au jour 8 de l'étude par utilisation de la technologie des puces Affymetrix. Des souris femelles, dont les follicules pileux de la région dorsale étaient en télogène au Jour 0, ont été soumises à une ovariotomie au jour 1 de l'étude. Des souris non ovariectomisées ont été conservées pour servir de groupe contrôle. Un prélèvement de la peau de la région dorsale des souris a été effectué aux jours 0 et 8 de l'étude. Les ARN ont été isolés et l'expression des gènes a été analysée par la technologie des puces Affymetrix.
La Figure 3 est un histogramme représentant la modulation du facteur de transcription EGRl, dans la peau de la région dorsale de souris femelles exprimée par rapport au jour 0 de l'étude, au cours de l'entrée en anagène induite par l'ovariectomie. Des souris femelles, dont les follicules pileux de la région dorsale étaient en télogène au Jour 0, ont été soumises à une ovariectomie ou non (contrôle) au jour 1 de l'étude Un prélèvement de la peau de la région dorsale des souris a été effectué aux jours 0, 1, 2, 4, 6 et 8 de l'étude. Les ARN ont été isolés et l'expression des gènes a été analysée par la technique des puces Affymetrix L'analyse de l'expression génique montre clairement que le gène EGRl est induit chez les animaux entrant en anagène.
La Figure 4 montre l'expression, par hybridation in situ, du facteur de transcription EGRl dans les follicules pileux en début d' anagène de la peau de la région dorsale de souris. La Figure 4A est la photographie de l'image en fond noir d'une coupe de peau d'une souris, dont les follicules pileux de la région dorsale sont en anagène précoce, soumise à une hybridation in situ utilisant une sonde sens du facteur de transcription EGRl (contrôle négatif) La Figure 4B est la photographie de la même coupe histologique contre-colorée à l'hématoxyline Cette photographie (4B) sert à se repérer sur l'image en fond noir (4A)
La Figure 4C est la photographie de l'image en fond noir d'une coupe de peau d'une souris, dont les follicules pileux de la région dorsale sont en anagène précoce, soumise à une hybridation in situ utilisant une sonde anti-sens du facteur de transcription EGRl, les structures histologiques marquées de façon radioactive par la sonde sont révélées par l'accumulation de points lumineux (grains argentés). La Figure 4D est la photographie de la même coupe histologique contre-colorée à l'hématoxyline. Cette photographie (4D) sert à se repérer sur l'image en fond noir (4C). Les zones de marquage sont signalées par des flèches.
La Figure 5 montre l'expression, par hybridation in situ, du facteur de transcription EGRl dans les follicules pileux en anagène tardive de la peau de la région dorsale de souris La Figure 5 A est la photographie de l'image en fond noir d'une coupe de peau d'une souris, dont les follicules pileux de la région dorsale sont en anagène tardive, soumise à une hybridation in situ utilisant une sonde sens du facteur de transcription EGRl (contrôle négatif). La Figure 5B est la photographie de la même coupe histologique contre-colorée à l'hématoxyline. Cette photographie (5B) sert à se repérer sur l'image en fond noir (5A) La Figure 5C est la photographie de l'image en fond noir d'une coupe de peau d'une souris, dont les follicules pileux de la région dorsale sont en anagène tardive, soumise à une hybridation in situ utilisant une sonde anti-sens du facteur de transcription EGRl, les structures histologiques marquées de façon radioactive par la sonde sont révélées par l'accumulation de points lumineux (grains argentés). La Figure 5D est la photographie de la même coupe histologique contre-colorée à l'hématoxyline. Cette photographie (5D) sert à se repérer sur l'image en fond noir (5C). Les zones de marquage sont signalées par des flèches. L'analyse par hybridation in situ montre clairement que les transcrits sont exprimés de façon spécifique dans les follicules pileux en anagène.
Exemples DONNEES EXPERIMENTALES Exemple 1 : Expression de EGRl au cours de l'entrée en anagène induite par rovariectomie par la technologie des puces Affymetrix.
Méthodes : Des souris C57BL/6 femelles de 42 jours dont les follicules pileux de la région dorsale étaient en télogène (Chase, 1954) ont été ovariectomisées ou non au jour 1 de l'étude. L'ovariectomie pratiquée pendant la phase télogène provoque sous une semaine une entrée massive des follicules pileux de la région dorsale en phase anagène (Chanda, 2000.) alors que les follicules pileux de la région dorsale des animaux contrôles sont toujours en télogène Des prélèvements de peau ont été réalisés dans la région dorsale au jour 0, 1, 2, 4, 6 et 8 de l'étude Une partie du prélèvement a été utilisé pour confirmer le passage en anagène par analyse histologique L'autre partie du prélèvement a été utilisé pour réaliser une analyse du transcriptome par la technologie des puces Affymetrix. L'expression des gènes a été analysée sur une station Affymetrix (module microfluidique, four à hybridation; scanner; ordinateur) en suivant les recommandations du fournisseur. En résumé, les ARN totaux isolés des tissus sont transcrits en ADNc. A partir d'ADNc double brin, les ARNc marqués à la biotine sont synthétisés en utilisant la polymérase T7 et un précurseur NTP conjugué à la biotine. Les ARNc sont ensuite fragmentés en fragments de petites tailles. Toutes les étapes de biologie moléculaire sont contrôlées en utilisant le système « Lab on a chip » d'Agilent pour confirmer la bonne efficacité des réactions enzymatiques. La puce Affymetrix est hybridée avec l'ARNc biotinylé, rincée et ensuite marquée par fluorescence en utilisant un fluorophore conjugué à la Streptavidme. Après différents lavages, la puce est scannée et les résultats sont calculés en utilisant le logiciel MAS5 fourni par Affymetrix On obtient une valeur d'expression pour chaque gène ainsi que l'indication de la présence ou l'absence de la valeur obtenue. Le calcul de la significativité de l'expression est basé sur l'analyse des signaux qui sont obtenus suite à l'hybridation de l'ARNc d'un gène donné avec un oligonucléotide hybridant parfaitement (« perfect match ») versus un oligonucléotide qui contient une mutation, (« single mismatch ») dans la région centrale de l' oligonucléotide.
Résultats- Figure 1 :
En début d'étude au jour 0, l'analyse histologique montre que les follicules pileux de la région dorsale de la peau des souris sont en phase télogène (IA). Chez les souris soumises à une ovaπectomie, les follicules pileux restent en phase télogène jusqu'au jour 6 de l'étude (IB). Au jour 8 de l'étude, les follicules pileux de la région dorsale de peau de toutes les souris soumises à l'ovariectomie sont en début de phase anagène (IC) A l'inverse, les follicules pileux de la région dorsale de peau des souris contrôle (non ovariectomisées) sont restés en phase télogène. Ainsi, l'ovariectomie à induit la transition de la phase télogène à la phase anagène. La phase anagène a été initiée après le jour 6 de l'étude et est avérée par l'analyse histologique au jour 8 de l'étude. Figure 2
Le facteur de transcription EGRl est exprimé en phase télogène et en phase anagène du cycle pilaire. L'analyse différentielle entre l'expression au stade télogène à (JO) et anagène (J8 ovariectomisé) montre que l'expression est plus forte (facteur 1.4) en anagène précoce par rapport au stade télogène. Chez les souris contrôles, l'expression du facteur de transcription EGRl n'est pas induite mais réduite par rapport au début d'étude.
Figure 3 La cinétique d'expression du facteur de transcription EGRl au cours de l'entrée phase anagène suite à l'ovariectomie indique que dans les premiers jours suivant l'ovariectomie l'expression du facteur EGRl est réduite. De façon surprenante, lorsque la peau de la région du dos des souris ovariectomisés présente les premiers signes morphologiques de l'entrée en anagène (au jour 8 de l'étude), l'expression de facteur EGRl est fortement induite par rapport aux jours précédents. Cette induction est bien corrélée à l'entrée en phase anagène, puisque chez les animaux contrôles dont les follicules pileux de la région dorsale sont restés en télogène, l'expression du gène EGRl n'est pas induite.
Exemple 2 : Expression de EGRl dans les follicules pileux de peau de la région dorsale de souris par « hybridation in situ »
Méthodes :
Des sondes sens et antisens ont été préparées à partir du facteur de transcription EGRl par incubation du gène linéarisé (2μg) avec 63 μCi de [35S]UTP (1250 Ci/mmol ; NEN, Massachusetts, USA) en présence de l'ARN polymérase T7 ou T3. L'hybridation in situ a été réalisée sur un tissu de souris fixé au formaldéhyde et enveloppé dans de la paraffine. Des sections (4μm de large) ont ensuite été déparaffinées dans du toluène et réhydratées dans un gradient d'alcool. Après séchage, les différentes sections ont été incubées dans un tampon de préhybridation pendant deux heures. L'hybridation s'est déroulée sur la nuit dans un tampon d'hybridation (tampon de préhybridation avec 1OmM DTT et 2X106 cpm ARN/μl 35S marqué) à 53°C. L'excès de sonde a été éliminé et les coupes ont été inclinées dans une émulsion photographique LMl (Amersham Biosciences, UK) et exposées dans le noir à 4°C pendant au moins un mois. Les coupes ont alors été développées et contre-colorées avec de l'hématoxyline et de l'éosine. Suite à l'incubation en présence d'une émulsion photographique, les structures histologiques marquées de façon radioactive par la sonde sont révélées (accumulation de grains argentés). Un signal spécifique se manifeste par un marquage positif avec la sonde antisense (Figure 4B et Figure 5B) et l'absence de marquage avec la sonde sens (Figure 3 A et Figure 4A) utilisé comme contrôle négatif.

Claims

RESULTATS:Figure 4Les images (A à C) montrent des follicules pileux de peau de dos de souris en tout début d'anagène. Au niveau de la Figure 4A, il n'y a pas d'accumulation de grains argentés (pas de marquage) ce qui est en accord avec les attentes des inventeurs car elle correspond au contrôle négatif. La Figure 4C montre que le facteur de transcription EGRl est exprimé en début d'anagène et de façon spécifique dans la partie épithéliale des follicules pileux. Plus particulièrement, la colonne de kératinocytes qui se forme en anagène II juste au dessus de la papille dermique est très fortement marquée (flèche pleine) et la gaine épithéliale interne qui apparait au stade anagène III est marquée (flèche hachurée)Figure 5Les images (A à C) montrent des follicules pileux de peau de dos de souris en milieu d'anagène. On observe sur la Figure 5A qu'il n'y a pas d'accumulation de grains argentés (pas de marquage) ce qui est en accord avec les attentes des inventeurs car elle correspond au contrôle négatif. La Figure 5C montre que le facteur de transcription EGRl est exprimé en milieu d'anagène et de façon spécifique dans la partie épithéliale des follicules pileux. De façon plus précise, les games épithéliales interne et externe du follicule pileux en milieu d'anagène tardive (IV-V) sont fortement marquées.ConclusionL'exemple 1 indique qu'EGRl est exprimé dans la peau et, de façon surprenante, est induit au cours de la transition entre la phase télogène et la phase anagène. L'exemple 2 confirme l'expression d'EGRl dans la peau dont les follicules pileux en anagène précoce et milieu d'anagène. Egalement, il indique que le gène EGRl est de façon surprenante spécifiquement exprimé dans les kératinocytes des follicules pileux en anagèneL'ensemble de ces travaux permet de soutenir l'utilisation de modulateurs de l'expression du facteur EGRl chez l'Homme pour obtenir une stimulation de la croissance des follicules pileux en induisant l'entrée en phase anagène. Egalement, ils soutiennent l'intérêt de l'utilisation deEGRl pour diagnostiquer ou prognostiquer cette pathologie REVENDICATIONS
1. Méthode in vitro de criblage de composés candidats pour le traitement préventif et/ou curatif de l'alopécie, comprenant les étapes suivantes : a. Préparation d'au moins deux échantillons biologiques ou mélanges réactionnels ; b. Mise en contact d'un des échantillons ou mélanges réactionnels avec un ou plusieurs des composés à tester ; c Mesure de l'expression ou de l'activité de la protéine Early Growth Response 1, de l'expression de son gène ou de l'activité d'au moins un de ses promoteurs, dans les échantillons biologiques ou mélanges réactionnels ; d Sélection des composés pour lesquels une modulation de l'expression ou de l'activité de la protéine Early Growth Response 1, ou une modulation de l'expression de son gène ou une modulation de l'activité d'au moins un de ses promoteurs, est mesurée dans l'échantillon ou le mélange traité en b) par rapport à l'échantillon ou au mélange non traité.
2. Méthode selon la revendication 1, caractérisée en ce que les composés sélectionnés à l'étape d) activent l'expression ou l'activité de la protéine Early Growth Response 1, ou l'expression de son gène ou l'activité d'au moins un de ses promoteurs.
3. Méthode selon la revendication 1 ou 2, caractérisée en ce que les échantillons biologiques sont des cellules transfectées avec un gène rapporteur lié de manière opérante à tout ou partie du promoteur du gène codant pour le facteur de transcription Early Growth Response 1, et en ce que l'étape c) consiste à mesurer l'expression dudit gène rapporteur
4. Méthode selon la revendication 1 ou 2, caractérisée en ce que les échantillons biologiques sont des cellules exprimant le gène codant pour le facteur de transcription Early Growth Response 1, et en ce que l'étape c) consiste à mesurer l'expression dudit gène.
5. Méthode selon la revendication 3 ou 4, dans laquelle les cellules sont choisies parmi les kératmocytes et les fibroblastes de la papille dermique ou du derme.
6. Méthode selon la revendication 3 ou 4, dans laquelle les cellules sont des cellules transformées par un acide nucléique hétérologue codant pour le facteur de transcription Early Growth Response 1
EP08858303A 2007-11-26 2008-11-26 Modulateurs de egr1 dans le traitement de l'alopécie Withdrawn EP2242849A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759323A FR2924128A1 (fr) 2007-11-26 2007-11-26 Modulateurs de egr1 dans le traitement de l'alopecie
PCT/FR2008/052131 WO2009071841A2 (fr) 2007-11-26 2008-11-26 Modulateurs de egr1 dans le traitement de l'alopécie

Publications (1)

Publication Number Publication Date
EP2242849A2 true EP2242849A2 (fr) 2010-10-27

Family

ID=39638956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08858303A Withdrawn EP2242849A2 (fr) 2007-11-26 2008-11-26 Modulateurs de egr1 dans le traitement de l'alopécie

Country Status (5)

Country Link
US (1) US20100260736A1 (fr)
EP (1) EP2242849A2 (fr)
CA (1) CA2706672A1 (fr)
FR (1) FR2924128A1 (fr)
WO (1) WO2009071841A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082382A2 (fr) * 2009-12-31 2011-07-07 The Trustees Of Columbia University In The City Of New York Procédés pour la détection et la régulation de l'alopécie en aires, et de cohortes de gènes de celle-ci
FR3143040A1 (fr) * 2022-12-12 2024-06-14 L'oreal Méthode de pronostic et/ou de diagnostic d’une perte de densité capillaire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69910202T2 (de) * 1998-06-02 2004-06-17 Glaxo Group Ltd., Greenford EGR-1 zur Herstellung eines Medikamentes zur Behandlung von Wunden
US20030124554A1 (en) * 1999-12-01 2003-07-03 Martin Braddock Screening method for compounds capable of modularing egr-1-regulated expression
AU2003235768A1 (en) * 2002-01-07 2003-07-24 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Molecular trichogram

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE MEDLINE [online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; November 2005 (2005-11-01), RENDL MICHAEL ET AL: "Molecular dissection of mesenchymal-epithelial interactions in the hair follicle.", Database accession no. NLM16162033 *
PLOS BIOLOGY NOV 2005 LNKD- PUBMED:16162033, vol. 3, no. 11, November 2005 (2005-11-01), pages e331, ISSN: 1545-7885 *

Also Published As

Publication number Publication date
US20100260736A1 (en) 2010-10-14
FR2924128A1 (fr) 2009-05-29
WO2009071841A3 (fr) 2009-10-15
CA2706672A1 (fr) 2009-06-11
WO2009071841A2 (fr) 2009-06-11

Similar Documents

Publication Publication Date Title
CA2737993A1 (fr) Modulateurs de fzd2 dans le traitement de l'alopecie
FR2938341A1 (fr) Modulateurs de la monoglyceride lipase dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938338A1 (fr) Modulateurs de l'acetyl-coenzyme a acyltransferase 1 ou 2 dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2903999A1 (fr) Modulateurs de sc4mol dans le traitement de l'acne ou de l'hyperseborrhee
EP2242849A2 (fr) Modulateurs de egr1 dans le traitement de l'alopécie
CA2656838A1 (fr) Modulateurs du transporteur abcd3 dans le traitement de l'acne ou de l'hyperseborrhee
WO2008009859A2 (fr) Modulateurs de scarb-1 dans le traitement de l'acné ou de l'hyperséborrhée
FR2904001A1 (fr) Modulateurs de la udp-glucose ceramide glucosyltransferase dans le traitement de l'acne ou de l'hyperkeratinisation
EP2331705A1 (fr) Modulateurs de lgr5 dans le traitement de l'alopecie
FR2938342A1 (fr) Ciblage de modulateurs de ces1 et/ou ces3 dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
EP2046979A2 (fr) Modulateurs de elovl5 dans le traitement de l'acné ou de l'hyperséborrhée
EP2340316A1 (fr) Modulateurs de sox dans le traitement de l'alopecie
FR2938334A1 (fr) Modulateurs de l'adfp dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
EP2046980A2 (fr) Modulateurs de la lanostérol synthétase dans le traitement de l'acné ou de l'hyperséborrhée
WO2011154639A2 (fr) Modulateurs de edn3 et/ou ednrb dans le traitement du melasma
WO2011154640A2 (fr) Modulateurs de trmp1, mmp2, mia ou ptgs1 dans le traitement du melasma
FR2938339A1 (fr) Modulateurs de la pctp dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938340A1 (fr) Modulateurs de la carnitine octanoyltransferase dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938336A1 (fr) Modulateurs de gos2 dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee
FR2938335A1 (fr) Modulateurs de l'isovaleryl-coenzyme a dehydrogenase dans le traitement de l'acne, d'une dermatite seborrheique ou de l'hyperseborrhee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100628

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20101227

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120531