WO2008006908A1 - alliage en aluminium et son utilisation pour un composant coulé notamment d'un vÉhicule AUTOMOBILE - Google Patents

alliage en aluminium et son utilisation pour un composant coulé notamment d'un vÉhicule AUTOMOBILE Download PDF

Info

Publication number
WO2008006908A1
WO2008006908A1 PCT/EP2007/057278 EP2007057278W WO2008006908A1 WO 2008006908 A1 WO2008006908 A1 WO 2008006908A1 EP 2007057278 W EP2007057278 W EP 2007057278W WO 2008006908 A1 WO2008006908 A1 WO 2008006908A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast
aluminum alloy
cast component
motor vehicle
weight
Prior art date
Application number
PCT/EP2007/057278
Other languages
German (de)
English (en)
Inventor
Jürgen Wüst
Markus Wimmer
Richard Weizenbeck
Dirk E. O. Westerheide
Original Assignee
Bdw Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38523382&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008006908(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bdw Technologies Gmbh filed Critical Bdw Technologies Gmbh
Priority to EP07787546A priority Critical patent/EP2041328B1/fr
Priority to DE502007002755T priority patent/DE502007002755D1/de
Priority to CA002657731A priority patent/CA2657731A1/fr
Priority to AT07787546T priority patent/ATE456682T1/de
Priority to JP2009518904A priority patent/JP2009543944A/ja
Priority to US12/373,301 priority patent/US20090297393A1/en
Publication of WO2008006908A1 publication Critical patent/WO2008006908A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • the invention relates to an aluminum alloy, in particular a die-cast alloy and its use in a cast component, in particular for a motor vehicle. Moreover, the invention relates to a cast component, in particular for a motor vehicle made of such an aluminum alloy.
  • One way describes the use of relatively inexpensive secondary alloys, for example of the type AISiI OMg, which, however, a relatively high iron content of about 0.5 to 1, 2 wt .-% Fe and a low manganese content of about 0.1 wt .-% Mn exhibit.
  • the high iron content is required, inter alia, against the background of the relatively low addition of manganese, so that the tendency of the aluminum alloy to adhere within the die is reduced and the finished cast component can be reliably removed from the mold.
  • a cast component produced from such a secondary alloy in the form of an oil pan for a motor vehicle can be taken as known from EP 0 61 1 832 B1, in which a local heat treatment is carried out at a corresponding temperature or a corresponding period of time, so that component regions differ Set hardness.
  • the oil sump in the region of a flange remains largely untreated and accordingly has a hardness of 85 to 110 HB and a ductility of 0.5 to 2.5%, while this is heat treated in a bottom area accordingly, so that it has a hardness of 55 to 80 HB and a ductility of above 4%.
  • such a primary alloy can already be taken from EP 0 997 550 B1 as known, which - in contrast to the previously described Secondary alloys - a lower iron content of 0.15 to 0.35 wt .-% Fe and a contrast high manganese content of 0.3 to 0.6 wt .-% Mn.
  • the intermetallic AlFeSi phases customary with secondary alloys do not exist in such a primary alloy. For example, this results in a rather roundish in cross-section, intermetallic Al 12 (Mn, Fe) Si 2 phase, which accordingly has no or no pronounced needle-shaped training.
  • strontium is preferably added to the above-described primary alloy, which stops the needle-shaped growth of the silicon within the AISi eutectic.
  • the cast components produced by such a primary alloy have only an elongation at break of A 5 of ⁇ 5% after demoulding, they are first used as safety components in the automotive industry in a subsequent heat treatment process at a temperature of 400 to 490 ° C partially solution-annealed for a period of 20 to 120 min and then cooled in air.
  • a significant increase in the ductility of the cast component is achieved, so that sets an elongation at break of A 5 > 12%.
  • the hardness of the cast component drops to a value of about 60 to 65 HB.
  • Object of the present invention is therefore to provide an aluminum alloy and their use for a cast component in particular a motor vehicle of the type mentioned, with which the production of such a cast component can be realized much easier and therefore cheaper. Moreover, it is an object of the invention to produce a cast component made of such an aluminum alloy in particular for the motor vehicle industry with correspondingly high mechanical requirements in a simpler and more cost-effective manner. This object is achieved by an aluminum alloy with the features of claim 1, with their use in a cast component in particular a motor vehicle with the features of claim 6 and by a cast component of such an aluminum alloy in particular for a motor vehicle with the features of claim 10.
  • Advantageous embodiments with expedient and non-trivial developments of the invention are specified in the dependent claims.
  • the aluminum alloy which is to be used in particular as a die-cast alloy, comprises the following alloying elements:
  • the proportion of AISi eutectic is significantly reduced and contrast, the proportion of aluminum mixed crystals significantly increased.
  • the aluminum-silicon alloy according to the invention can be created with the aluminum alloy according to the invention, which have a hardness of> 80 HB, and preferably between 84 HB and 88 HB already in the cast state - ie without additional heat treatment after demoulding. It should be noted that these values are measured inside the cast component, ie below the casting skin of the component.
  • the aluminum alloy according to the invention it is possible, despite the relatively high hardness, to achieve a very high ductility of the cast component, whose elongation at break is determined by the Removal - ie in the cast state and without further heat treatment - has a value of A 5 > 5%, and preferably 8% to 12%.
  • the aluminum alloy according to the invention has a selected range of between 0.22 and 0.4% by weight of magnesium compared to that according to EP 0 997 550 B1, since the hardness of the cast component produced from the aluminum alloy is not limited to Eutectic, but also depends on the resulting outsourcing. Due to the specially selected magnesium content, Mg 2 Si ultrafine precipitates are formed by which the strength or hardness of the cast component can be adjusted. In other words, the hardness of the cast component produced from the aluminum alloy according to the invention is also dependent on the magnesium content.
  • a particularly high hardness of the cast component of the aluminum alloy according to the invention can be achieved if the magnesium content is in a selected range of 0.3 to 0.4% by weight, and preferably 0 , 32 to 0.36 wt .-% is.
  • the aluminum alloy according to the invention or the cast component produced therefrom already has the above-described high hardness or high elongation at break in the cast state, this is particularly suitable for use in motor vehicle construction.
  • the use of the aluminum-silicon alloy according to the invention in oil pans for motor vehicles has proven to be particularly advantageous since it must have a relatively high ductility with an elongation at break A 5 of> 5% in order to provide adequate protection against crack formation within the oil pan to be able to, which may arise in particular due to falling rocks below the motor vehicle.
  • the sumps in the connection or flange area must be sealed with a corresponding motor housing, it is necessary that they have a correspondingly high hardness of> 80 HB. Since a cast component produced from the present aluminum-silicon alloy fulfills these requirements already in the cast state without further heat treatment, it is thus possible to create an oil pan or another component for a motor vehicle that is easy to manufacture and therefore cost-effective.
  • the aluminum alloy can be used in a die-casting process for the production of cast components, in particular for a motor vehicle, as a result, a particularly fast and cost-effective production of the cast components is possible.
  • the inventive aluminum-silicon alloy used in the Following the casting process to be subjected to a heat treatment process.
  • the component can additionally be hot-hardened after partial solution annealing in the temperature range of the precipitation hardening of Mg2Si.
  • This thermosetting is preferably carried out in a temperature range of about 190 to 240 ° C, in particular about 190 to 220 ° C.
  • the casting component produced by the new aluminum-silicon alloy is characterized in particular by the fact that it has an at least approximately uniform hardness of> 80 HB and preferably between 84 and 88 HB in the cast state in all component regions.
  • the cast component advantageously has an at least approximately uniform elongation at break A 5 of> 5% and preferably 8% to 12% in all component regions.
  • Fig. 2 is another process flow diagram of a heat treatment of a component of a motor vehicle.
  • the silicon content is between 7 and 9 wt .-% and the magnesium content between 0.32 and 0.36 wt .-%.
  • the present aluminum alloy is eminently suitable for use in die-casting of oil pans where an elongation at break A 5 of> 5% has to be achieved, in particular to prevent cracking when rockfall occurs during driving of the motor vehicle.
  • the oil pans cast by means of the above aluminum-silicon alloy have a hardness of> 80 HB, and in particular between 84 and 88 HB, so that the oil pans in the connection or flange area correspond to one another Motor housing of the motor vehicle can be tightly closed.
  • the casting skin of the as-cast condition The existing oil pans were correspondingly removed by a machining process, for example by milling, so that realistic hardness values of the oil pans in the cast state could be determined.
  • the magnesium content is in particular about 0.3 wt .-%.
  • the individual oil pans have not been heat treated. Consequently, the measured values relate to the casting state of the components, wherein the casting skin in the respective test area has in turn been correspondingly removed by a machining method, for example by milling.
  • the present aluminum alloy in turn, is particularly well suited for use in die casting of oil pans where an elongation at break A 5 of> 5% must be achieved. Also in this alloy composition, a hardness of> 80 HB could be achieved.
  • the B-pillars have been produced in a die casting process from an aluminum-silicon casting alloy in two variants, which have the following compositions:
  • Variant 1 7.8 to 8.2% by weight of silicon 0.5 to 0.6% by weight of manganese 0.15 to 0.2% by weight of iron 0.27 to 0.33% by weight of magnesium 0.04 to 0.08% by weight of titanium 140 to 180 ppm of strontium
  • Process 1 The two variants of the aluminum-silicon casting alloy - in particular variant 2 with a content of about 0.6 wt .-% magnesium - were, for example, the following, in FIGS. 1 and 2 using flowcharts explained heat treatments, subjected to:
  • the B-pillars (product P) after casting in a step 1 - using a portion of the casting heat - are solution-annealed in a step 2 and quenched in the air by means of a fan.
  • the product P is not cooled to room temperature, for example, after demolding from the casting tool, but rather solution-annealed at a temperature of about 200 ° C in step 2.
  • a sprue A or other casting residues remain on the product P.
  • the component After the solution heat treatment in step 2, the component is still relatively soft or ductile and can therefore be deburred in step 3. In this case, the sprue A or other casting residues are removed from the product P. The product P remains soft.
  • the B-pillar or product P is straightened in step 4.
  • the product P is further soft for this purpose.
  • step 5 the product P is removed in step 5, specifically at one of the aging temperatures which will be described in more detail below. Thereafter, the product which is soft until after step 4 is adjusted according to its desired material properties.
  • FIG. 2 shows a method which differs from that according to FIG. 1 in particular in that the steps 2 and 3 are reversed in their sequence and therefore no utilization of part of the casting heat takes place in the present case.
  • step 1 the product P in the present case after step 1 is cooled together with the sprue A or other casting residues to room temperature or to about 20 ° C. Thereafter, the deburring 3 and the removal of the sprue and the casting remains, wherein the product is still soft.
  • the solution annealing 2 and the subsequent cooling takes place for example in the air by means of a fan.
  • the product P remains soft.
  • Steps 4 and 5 so the straightening of the B-pillar or the product P and the outsourcing in one of the hereinafter described in more detail Auslageremperaturen, then again take place analogously to the method according to Fig.1.
  • step 5 the product which is soft until after step 4 is in turn adjusted in accordance with its desired material properties.
  • the solution annealing carried out in the respective step 2 of the two methods according to FIGS. 1 and 2 was carried out in different tests at different temperatures between 460 and 490 ° C. and during different annealing times of 15 to 120 minutes.
  • the removal performed in the respective step 5 of the two methods according to FIGS. 1 and 2 likewise took place in different tests at different temperatures between 160 and 240 ° C. and during different removal times of 20 to 240 minutes.
  • the heat treatment components were created for use, for example, in the body, in the chassis or in the drive train of the motor vehicle, which has a yield strength R p0,2 between 90 and 180 MPa, a tensile strength R m between 180 and 250 MPa and an elongation at break A 5 in the range between 8 and 22%.
  • the present aluminum alloy is again particularly good for
  • the high-strength components of a T5 annealing were subjected to different temperatures between 160 and 240 ° C and for different times from 20 to 240 min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Frames (AREA)
  • Body Structure For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Induction Machinery (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un alliage en aluminium, en particulier un alliage de coulée sous pression de préférence pour un composant coulé d'un véhicule automobile comprenant les éléments d'alliage suivants : 6,5 à <9,5 % en poids de silicium, 0,3 à 0,6 % en poids de manganèse, 0,15 à 0,35 % en poids de fer, 0,02 à 0,6 % en poids de magnésium maximum, 0,1 % en poids de titane, 90 à 180 ppm de strontium et le reste étant de l'aluminium avec individuellement 0,5 % en poids maximum et au total 0,2 % en poids maximum d'impuretés imposées par la fabrication. L'alliage convient en particulier pour la coulée sous pression de composants coulés d'un véhicule automobile comme par exemple des carters d'huile.
PCT/EP2007/057278 2006-07-14 2007-07-13 alliage en aluminium et son utilisation pour un composant coulé notamment d'un vÉhicule AUTOMOBILE WO2008006908A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07787546A EP2041328B1 (fr) 2006-07-14 2007-07-13 Alliage en aluminium et son utilisation pour un composant coule notamment d'un véhicule automobile
DE502007002755T DE502007002755D1 (de) 2006-07-14 2007-07-13 Aluminiumlegierung und deren verwendung für ein gussbauteil insbesondere eines kraftwagens
CA002657731A CA2657731A1 (fr) 2006-07-14 2007-07-13 Alliage en aluminium et son utilisation pour un composant coule notamment d'un vehicule automobile
AT07787546T ATE456682T1 (de) 2006-07-14 2007-07-13 Aluminiumlegierung und deren verwendung für ein gussbauteil insbesondere eines kraftwagens
JP2009518904A JP2009543944A (ja) 2006-07-14 2007-07-13 アルミニウム合金及び特に自動車の鋳造部品のためのその利用
US12/373,301 US20090297393A1 (en) 2006-07-14 2007-07-13 Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006032699.7 2006-07-14
DE102006032699A DE102006032699B4 (de) 2006-07-14 2006-07-14 Aluminiumlegierung und deren Verwendung für ein Gussbauteil insbesondere eines Kraftwagens

Publications (1)

Publication Number Publication Date
WO2008006908A1 true WO2008006908A1 (fr) 2008-01-17

Family

ID=38523382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057278 WO2008006908A1 (fr) 2006-07-14 2007-07-13 alliage en aluminium et son utilisation pour un composant coulé notamment d'un vÉhicule AUTOMOBILE

Country Status (9)

Country Link
US (1) US20090297393A1 (fr)
EP (1) EP2041328B1 (fr)
JP (1) JP2009543944A (fr)
AT (1) ATE456682T1 (fr)
CA (1) CA2657731A1 (fr)
DE (2) DE102006032699B4 (fr)
ES (1) ES2340218T3 (fr)
SI (1) SI2041328T1 (fr)
WO (1) WO2008006908A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010007531B4 (de) * 2010-02-11 2014-11-27 Audi Ag Verfahren zum Herstellen eines Karosseriebauteils
DE102010060670A1 (de) * 2010-11-19 2012-05-24 Martinrea Honsel Germany Gmbh Zylinderkopf für Verbrennungsmotoren aus einer Aluminiumlegierung
ES2507865T3 (es) * 2010-12-28 2014-10-15 Casa Maristas Azterlan Método para obtener propiedades mecánicas mejoradas en moldeos de aluminio reciclado libres de fases beta con forma de plaqueta
CZ306352B6 (cs) * 2015-07-28 2016-12-14 Univerzita J. E. Purkyně V Ústí Nad Labem Hliníková slitina, zejména pro výrobu odlitků segmentů forem pro lisování pneumatik, a způsob tepelného zpracování odlitků segmentů forem
MX2018001765A (es) * 2015-08-13 2018-11-22 Alcoa Usa Corp Aleaciones de fundicion de aluminio 3xx mejoradas y metodos para fabricarlas.
WO2017165962A1 (fr) * 2016-03-31 2017-10-05 Rio Tinto Alcan International Limited Alliages d'aluminium ayant des propriétés à la traction améliorées
DE102018214739A1 (de) * 2018-08-30 2020-03-05 Magna BDW technologies GmbH Hochfestes Gehäuse, sowie Verfahren zur Herstellung von hochfesten Guss-Gehäusen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283336A (ja) * 1988-05-11 1989-11-14 Honda Motor Co Ltd 鋳物用アルミニウム合金およびアルミニウム合金鋳物品の製造方法
EP0687742A1 (fr) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Alliage pour coulée sous pression
EP0997550A1 (fr) * 1998-10-05 2000-05-03 Alusuisse Technology &amp; Management AG Méthode de fabrication d' un composant d' alliage d' aluminium par moulage sous pression
FR2841164A1 (fr) * 2002-06-25 2003-12-26 Pechiney Aluminium Piece moulee en alliage d'alluminium a haute resistance au fluage
US20050163647A1 (en) * 2003-05-02 2005-07-28 Donahue Raymond J. Aluminum-silicon alloy having reduced microporosity
EP1612286A2 (fr) * 2004-06-29 2006-01-04 ALUMINIUM RHEINFELDEN GmbH Alliage d'aluminium pour moulage sous pression

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058296A (ja) * 1991-07-05 1993-01-19 Sumitomo Electric Ind Ltd 管のライニング更生工法
DE4304134C1 (de) * 1993-02-11 1994-09-15 Albert Handtmann Metallguswerk Verfahren zur Herstellung von Gußteilen
FR2721041B1 (fr) * 1994-06-13 1997-10-10 Pechiney Recherche Tôle d'alliage aluminium-silicium destinée à la construction mécanique, aéronautique et spatiale.
DE10002021C2 (de) * 1999-09-24 2002-10-17 Honsel Guss Gmbh Verfahren zur Wärmebehandlung von Strukturgußteilen aus einer dafür zu verwendenden Aluminiumlegierung
JP2002339030A (ja) * 2001-05-17 2002-11-27 Yamaha Motor Co Ltd ダイカスト用アルミニウム合金
JP2003027169A (ja) * 2001-07-19 2003-01-29 Yamaha Motor Co Ltd アルミニウム合金およびアルミニウム合金鋳物品
DE502004009801D1 (de) * 2003-01-23 2009-09-10 Rheinfelden Aluminium Gmbh Druckgusslegierung aus Aluminiumlegierung
US20050199318A1 (en) * 2003-06-24 2005-09-15 Doty Herbert W. Castable aluminum alloy
JP2005264301A (ja) * 2004-03-22 2005-09-29 Toyota Central Res & Dev Lab Inc 鋳造アルミニウム合金とアルミニウム合金鋳物およびその製造方法
JP2005281829A (ja) * 2004-03-30 2005-10-13 Honda Motor Co Ltd Al−Si系合金及びこの合金からなる合金部材
JP2006183122A (ja) * 2004-12-28 2006-07-13 Denso Corp ダイカスト用アルミニウム合金およびアルミニウム合金鋳物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283336A (ja) * 1988-05-11 1989-11-14 Honda Motor Co Ltd 鋳物用アルミニウム合金およびアルミニウム合金鋳物品の製造方法
EP0687742A1 (fr) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Alliage pour coulée sous pression
EP0997550A1 (fr) * 1998-10-05 2000-05-03 Alusuisse Technology &amp; Management AG Méthode de fabrication d' un composant d' alliage d' aluminium par moulage sous pression
FR2841164A1 (fr) * 2002-06-25 2003-12-26 Pechiney Aluminium Piece moulee en alliage d'alluminium a haute resistance au fluage
US20050163647A1 (en) * 2003-05-02 2005-07-28 Donahue Raymond J. Aluminum-silicon alloy having reduced microporosity
EP1612286A2 (fr) * 2004-06-29 2006-01-04 ALUMINIUM RHEINFELDEN GmbH Alliage d'aluminium pour moulage sous pression

Also Published As

Publication number Publication date
JP2009543944A (ja) 2009-12-10
ATE456682T1 (de) 2010-02-15
EP2041328A1 (fr) 2009-04-01
CA2657731A1 (fr) 2008-01-17
US20090297393A1 (en) 2009-12-03
DE102006032699A1 (de) 2008-01-17
DE102006032699B4 (de) 2010-09-09
ES2340218T3 (es) 2010-05-31
SI2041328T1 (sl) 2010-04-30
EP2041328B1 (fr) 2010-01-27
DE502007002755D1 (de) 2010-03-18

Similar Documents

Publication Publication Date Title
EP2735621B1 (fr) Alliage à coulée sous pression en aluminium
EP2653579B1 (fr) Alliage d&#39;aluminium
EP2954081B1 (fr) Alliage d&#39;aluminium coulé
EP3235917B1 (fr) Alliage d&#39;aluminium pour moulage sous pression
DE60029635T2 (de) Verfahren zur kornfeinung von hochfesten aluminiumgusslegierungen
EP2700727B1 (fr) Alliage fonte-Al
DE102016118729A1 (de) Ein neues Hochdruck-Spritzgussverfahren für Aluminiumlegierungen für Anwendungen bei hoher Temperatur und in korrosiver Umgebung
EP3176275B2 (fr) Alliage de coulée sous pression de silicium/aluminium. procédé de fabrication d&#39;un composant coulé sous pression en alliage et composants de carrosserie comprenant un tel composant coulé sous pression
DE102008046803B4 (de) Aluminiumgusslegierung und Verfahren zur Herstellung eines Gussbauteils
EP2041328B1 (fr) Alliage en aluminium et son utilisation pour un composant coule notamment d&#39;un véhicule automobile
DE60100370T2 (de) Druckgussmagnesiumlegierung
DE102017114162A1 (de) Hochfeste und hochkriechresistente aluminiumgusslegierungen und hpdc-motorblöcke
EP3825428B1 (fr) Composant moulé sous pression et procédé de fabrication d&#39;un composant moulé sous pression
EP1917372B1 (fr) Alliages d&#39;aluminium coules
WO2017174185A1 (fr) Alliage d&#39;aluminium destiné notamment à un procédé de coulée, et procédé de fabrication d&#39;une pièce dans un tel alliage d&#39;aluminium
AT412726B (de) Aluminiumlegierung, bauteil aus dieser und verfahren zur herstellung des bauteiles
DE102004007704A1 (de) Werkstoff auf der Basis einer Aluminium-Legierung, Verfahren zu seiner Herstellung sowie Verwendung hierfür
EP3423606B1 (fr) Alliage de coulée en aluminium
DE102012021634B4 (de) Verfahren zur Herstellung einer Fahrzeugkarosserie mit einem Karosseriebauteil aus einer Magnesiumlegierung, sowie hiermit hergestellte Fahrzeugkarosserie
EP3966358B1 (fr) Composant, en particulier pour un véhicule, ainsi que procédé de fabrication d&#39;un tel composant
DE102006040720A1 (de) AI-Gusslegierungen
DE10310453A1 (de) Druckgussbauteil und Verfahren zu seiner Herstellung
DE102004039748A1 (de) Druckgussbauteile aus Aluminium- und Magnesium-Legierungen mit mechanischen Verbindungen und Verfahren zum Verbinden
DE102005033750A1 (de) AMZ-Druckgusslegierung und Verfahren zum Herstellen von Druckgussbauteilen
DE10230275A1 (de) AM-Druckgusslegierung und Verfahren zum Herstellen eines Interieurteils aus einer derartigen AM-Druckgusslegierung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009518904

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2657731

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007787546

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12373301

Country of ref document: US