WO2008005557A2 - Micro concentrators elastically coupled with spherical photovoltaic cells - Google Patents

Micro concentrators elastically coupled with spherical photovoltaic cells Download PDF

Info

Publication number
WO2008005557A2
WO2008005557A2 PCT/US2007/015623 US2007015623W WO2008005557A2 WO 2008005557 A2 WO2008005557 A2 WO 2008005557A2 US 2007015623 W US2007015623 W US 2007015623W WO 2008005557 A2 WO2008005557 A2 WO 2008005557A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor
electrical
electrodes
slot
Prior art date
Application number
PCT/US2007/015623
Other languages
English (en)
French (fr)
Other versions
WO2008005557A9 (en
WO2008005557A3 (en
Inventor
Robert G. Hockaday
Original Assignee
Energy Related Devices, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Related Devices, Inc. filed Critical Energy Related Devices, Inc.
Priority to KR1020097000238A priority Critical patent/KR101443043B1/ko
Priority to EP07810263A priority patent/EP2038936A2/en
Priority to MX2009000045A priority patent/MX2009000045A/es
Priority to CA2657099A priority patent/CA2657099C/en
Priority to AU2007269559A priority patent/AU2007269559A1/en
Priority to JP2009519476A priority patent/JP2009543376A/ja
Publication of WO2008005557A2 publication Critical patent/WO2008005557A2/en
Publication of WO2008005557A9 publication Critical patent/WO2008005557A9/en
Publication of WO2008005557A3 publication Critical patent/WO2008005557A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the geometry of periodically changing the direction of the electrical contacts and circuits on a substrate can also be used to avoid accumulating yield stress in electrical contacts due to differential thermal expansion or flexure of the system. Thereby keeping the electrical contacts in the elastic regime. Electrical contacts may be welded or soldered together while still maintaining the elastic compression on the solder or weld points prevents the electrical contacts from achieving yielding stresses in tine soldered or weld points due to thermal expansion and mechanical vibrations .
  • the elastic contacts make it possible to assemble the arrays with wide tolerances in the construction of the components.
  • the micro-concentration, efficient, and heat-sinking concept comes from the simple observation that smaller optics such as raindrops on leaves can concentrate sunlight hundreds of times into small spots without thermally burning the leaves.
  • the solar cells can be run more efficiently and more cost effectively using the expensive semiconductor materials to transform them into a practical device photovoltaic array that can be produced as discrete cells, electrical connections, and mated with micro concentrating mirrors and lenses (US Patent 5,482,568).
  • a solar concentrator system using a 2 cm diameter cylindrical glass rod, a sheet aluminum back reflector, and a 2 mm wide crystalline photovoltaic cell achieved seven times increase in the power output compared to the photovoltaic cell without the concentrating optics.
  • the back plate or coating can be reflector or scatter
  • This cell may also be square packing.
  • Molded hemisphere with flat side hole dielectric could also be a scintillator
  • Figure 10 A Lens and back concentration plane system
  • Figure 1OF Spectral spread Red-Green and tilted optics systems.
  • Figure 11 Chromatic aberration coupled to a semi-spherical layered photodiode stack.
  • Figure 12A Two-side ground layered spherical photodiode stack.
  • Figure 12B Drawing showing the side to side and rim contact clamp for two sided ground cells or single side ground cells.
  • FIG. 13C Pusher injecting an aligned semi-sphere into an electrical contact clamp.
  • Pusher plate 217 Teflon film.
  • Shaped cavity on pusher plate- Figure 14 Cross-sectional view of the center flat point contact and side contact to the photodiode in a shaped lens mirror circuit clamp.
  • Exterior transparent antireflective and protective coating .
  • Dielectric optically transparent glue or optical coupling material Dielectric optically transparent glue or optical coupling material.
  • Optically transparent glue or optical coupling material Optically transparent glue or optical coupling material .
  • Dielectric coating which could have a low coefficient of friction.
  • Dielectric coating which could have a low coefficient of friction.
  • Output connection operationally positive polarity.
  • Bus electrical connection 252.
  • Photodiode .
  • a slot is cut in a dielectric material or molded from a material such as soda lime glass.
  • the glass slot is formed as a flat 3 on one side and curved on the other side 4 to match the curvature of the side grooved semicircular spheres shown later in Figure 3.
  • the slot 2 may have a slight taper on the flat 3 to accommodate small mounting variations of the semiconductor and assume a tight wedging fit of the semiconductor sphere to the slot 2.
  • dielectric materials are:
  • polyaramid plastic (Asahi-Kasei Chemicals Corporation Co. Ltd. Aramica Division, 1-3-1 Yakoh, Kawaski-Ku, Kawasaki City, Kanagwa 210-0863 Japan) .
  • EVA Elvax ® Ethylene-vinyl acetate
  • EVA Elvax ® Ethylene-vinyl acetate
  • This Figure 2 can also serve as an example of the cross section through a round hemispheric hole to hold single semiconductor bead.
  • an elastic substrate film 17 such as silicone rubber (Sylgard ® 184 Silicone optical coupling adhesive) is deposited into slot 13 in the dielectric glass substrate material 11 and allowed to cure.
  • An electrically- conducting film, 10, 12, 14, 15 such as gold, platinum, palladium, silver, tin, aluminum, antimony, lead, copper, zinc, titanium, molybdenum, tantalum, tungsten, aluminum, nickel, carbon, silicon, iron, chromium, vanadium, niobium, zirconium, indium, alloys of these materials or conductive compounds such as tin oxide, zinc oxide or boron doped diamond is vacuum evaporated onto the elastic film 17.
  • the conductive film 12, 14 is deposited part way into the slot 13.
  • the contact point 12, 14 of the conductive film with the semiconductor beads contacts will be near the top of the edge of the slot when the bead is firmly in place.
  • the electrical contacts film 12, 14 are not deposited on the bottom of the dielectric substrate, slot 16. This gap 16 in the conductive films 12, 14 forms the electrical break in the semiconductor mount . Contact by the flat electrode surface 12 and the curved electrode surface 14 of the hole 13 with the respective flat and curved electrodes of the photodiode will define a kinematic mount of the semiconductor bead shown in Figure 3.
  • a cross-sectional view of spherical bead of semiconductor is shown 25, 24, 29, 26 placed into the slot 31 the dielectric 21.
  • the flat side of the photodiode bead 32 such as a Sphelar ® silicon photodiode (Sphelar ® Trademark of Kyosemi Corporation 949-2 Ebisu-cho, Fushimi-ku Kyoto-shi 612-8201 Japan) , is aligned to the flat side of the slot 33 or hole.
  • Sphelar ® silicon photodiode Sphelar ® Trademark of Kyosemi Corporation 949-2 Ebisu-cho, Fushimi-ku Kyoto-shi 612-8201 Japan
  • the slot can be part of a larger sheet frame that can be pried open during the filling with - the beads and when the beads are all in place and can be tamped in the slots, the larger sheet frame can be released, thereby creating a clamping force on the beads and making electrical contact .
  • the contacts are designed to have sufficient thermal resistance to allow the semiconductor junction 25, 24 rise in temperature compared to the electrodes heat sink 20, 28 and have a temperature gradient from the semiconductors 25, 24 electrodes contact points 26, 23, and the electrodes 20, 28 then the Seebeck effect will create a voltage across the cell .
  • These cells can be connected in series just like the photovoltaic cells and produce electrical power. If current is passed through these cells in the reverse direction to the Seebeck effect the junctions 24,25 will remove heat from the electrodes 20, 28 and heat the semiconductor junction 24, 25 by the Peltier effect.
  • the electrical contacts 26, and 23 can be formed to have low thermal conductivity such as forming them point contacts and dielectric tunneling layers.
  • contact 26 Other possible electrical contacts with low thermal transport is to make the contact 26 partially with a dielectric and have close proximity electrodes that allow vacuum gap tunneling to occur moving electrons from the N layer 24 to the electrodes 27.
  • the elastic compression from the substrate 21 and the sub layers 19, 34 of the two electrodes 20, 28 on the semiconductor bead contacts 23, 26 maintains contact dimensions between these components while the system may go through a range of temperatures and the coefficients of expansion may be very different between the electrodes 20, 28, substrate 21, and semiconductors 24, 25.
  • the assembly of the semiconductor bead in the slot, or hole 31 is then part of a larger array of cells that are coupled to optics and electrically connected 28, 20 in series and parallel circuits for photovoltaic arrays, light emitting diodes, thermocouples, or Peltier refrigerators or thermionic converters.
  • a glue 30 be used to secure the cell into the slot.
  • the glue 30, such as Sylgard ® 184, can be optically transparent and act as the optical coupling material between the substrate material 21 and the semiconductor bead 32, which is desirable in operation if the sunlight is coming through, the substrate 21 into the semiconductor bead 32.
  • the glue 30, can also act as an anti-reflective coating along with an antireflective coating 29 on the outside of the bead (anti-reflective fluorocarbon coatings, Mihama Corporation, 1-2-8 Toranomon, Minato-ku, Tokyo 105-8437 Japan) It should be mentioned that rods of the semiconductor 25 could be used in this slot geometry as well .
  • FIG 4 an example of a hole 37 fits the shape of the bead is shown and the electrical connection 36.
  • the hole has a flat area with the electrical contact film deposited 35 on the flat area the dielectric 38 a electrical break area 38 is masked off and a second electrical contact is shown 39 coating the circular side 40 of the hole 37.
  • FIG. 5 a cross-sectional view of an array of semiconductor spheres 52 attached with electrical contacts 54,51,53,55 to the transparent optical lens/mirror 50 is shown.
  • the photodiode array is formed by coating a shaped piece of glass 50 that has a curved lens outer area with an anti-reflective coating on the front surface 58.
  • the back side of the glass 50 is shaped into concentrating mirrors. Mirror coatings and an electrical conductive film 51, 53, 55. are coated on the back surface of the glass 50.
  • the back side of glass or transparent material EVA 50 has the slots 49 for the semiconductor beads formed in it that is shaped such that when the shaped semiconductor bead is wedged into the slot it is elastically holding the bead.
  • a taper of roughly a five degree slope of the slot wall at the metal to metal contact point of the bead with the walls will insure that the bead will be unable to slip out of the slot due to frictional forces being much higher than the force of sliding out of the wedge.
  • the mirror coatings and electrodes 54, 51, 53, 55 are deposited with angular controlled vacuum evaporation, ink jet printing, or angular controlled plasma spraying to coat the mirror reflector areas and not in the bottom of the slots 49 in the glass 50 to form an electrical break between electrodes. This uncoated region 49 is transparent to light.
  • a suitable film for the mirror reflector electrodes 54, 51, 53, 55 is formed by coating the glass with tin which is then oxidized to tin oxide to be transparent.
  • the semiconductor spheres 52 are inserted and wedged into the slot of the glass.
  • a shaped back cover plate is placed over the array of photo-diodes and glued to the glass optic and diode array with silicone rubber sealant.
  • the placement of the back plate, reflector, and heat sink 56 can apply elastic pressure on the semi conductor spheres through the dielectric film 59 of the back plate 56.
  • the dielectric material 59 could be silicone rubber, or polyimide , and may also be the glue that attaches the back plate to the electrodes 54, 51, 53, 55, semiconducting bead 52 and glass 50.
  • the glue can also penetrate up into the trough 49 between the semiconductor 52 and the glass 50 and act as an index of refraction transition material between the glass and the semiconductor 49.
  • the sealant is also placed at the perimeter or the array to seal the semiconductor from dust and dirt .
  • the aluminum back plate can have a bright polish surface facing the solar cells, or a white scattering surface.
  • the exterior surface of the back plate can have a coating such as black, silicone paint to help the back surface radiate area keep the back plane cool.
  • Silicone rubber sealant can also be used to seal the back side of the cells and insure good thermal contact between the cells and the back plane. Electrical contact between the electrodes 54, 51, 53, 55 and the semiconductor beads 52 may be assured by heating the assembly in a vacuum oven or a flash lamp illumination with an electric bias to create a large current to weld all the contacts.
  • FIG. 6 an alternative mounting arrangement of placing the silicon semiconductor beads 65 on the back surface 66.
  • the back surface 66 is an extruded glass sheet, polyimide, or a rolled or stamped steel or aluminum sheet 67, that is coated with a dielectric such as glass 66 and has the silicone bead locating slot 69 formed in it.
  • the slot 69 has an electrical conducting coating 64 of the silver or tin vacuum evaporated surface coated on it and a gap 69 that is formed by masking or by the shadow of the shoulder of the slot 69.
  • An outer surface coating 67 of a reflective material such as silver, tin or a white scattering material may be coated the back side of the substrate 66, if the dielectric is transparent or translucent it will act as a reflector of light the goes though the insulating gap 69.
  • a black radiator coating 68 could be put on. In some cases the black radiator 68 coating and reflective coating 67 could be omitted and the light that gets past the cells 65 could be used for lighting the space under the array.
  • the light concentrating system is on an extruded sheet of glass 60. It has an upper lens 61 a lower array of mirror 62 and slots 63 formed to fit loosely around the silicon semiconductor photo-diodes 65.
  • the glass sheet 60 is attached to the photodiode area with glue such as silicone rubber sealant 85 along the perimeter and possibly between the photodiodes 65 and the glass 60. If the silicone rubber sealant 85 such as Sylgard ® 184 is optically transparent it can be placed throughout the array to act as an optical coupling interface. The electrical output of this array goes through the electrical conductive film 64 and out through the edges of the array.
  • Figure 7 the arrangement of optical concentration with three-dimensional optics.
  • the lens 70 and mirrors 71 are packed in a hexagonal pattern 81. Other possible patterns are squares, and triangles.
  • the optical concentrator 70 are molded from glass 72.
  • the upper surface 70 forms an array of lenses and the lower surface forms mirrors 71 and the heat fins.
  • Total internal reflection of the glass to air interface 70 is used.
  • An electronically conducting film such as tin oxide is coated 71, 76, onto the surface of the glass on the mirror areas 77, 80 and into the shaped hole 73, 75.
  • the two electrodes 77, 80 are separated on either side of the glass reflector by a gap 79 on the glass reflector 72.
  • the semiconductor sphere 74, 78 is inserted into the shaped hole 73 at the end of the glass mirrors making contact with the two electrodes 71, 76.
  • the insulator gap 79 could be formed by molding a channel on the side of the glass mirror 72 and then coating the glass reflector with a directional source of electron conductor material 77, 80 that will not fill the shadowed area of the gap 79.
  • the insulator gap 79 could be formed by molding a channel on the side of the glass mirror and then coated into the glass 72 with a directional source that will not coat the shadowed area of the gap 79.
  • the light from the sun is focused through the lens 70 and reflected off the mirrors 71, 76, 75, 77, 79, 80 onto the photodiode cells 74, 78.
  • the index refraction of glass 72 of approximately 1.5 refracts light from non-perpendicular rays sufficiently such that the concentrator array effectively concentrates light from the sun without the need to track the sun.
  • Light that is not directly focused to the photodiode 74 such as scattered light through clouds can reflect on the reflective surfaces 71, 76 and partially reach the photodiode 74.
  • the concentrating photovoltaic array can be fixed mounted tilted to maximize the output at noon and the latitude angle.
  • Application of these types of low concentration concentrator photovoltaic arrays could be used for structural installations and non- solar tracking installations.
  • the micro mirrors do not have to be perpendicular onto the surface plane and in some designs the mirror could be tilted in the array to maximize power output and performance when outer surface needs to be at a defined angle independent of the insolation angles.
  • FIG 8 the arrangement of the photovoltaic cell and micro concentrator when the cells are inserted into a thin flexible substrate is shown.
  • a substrate dielectric membrane 90 with slots or holes 108 is formed by- replicating a master surface, curing and then removing from the master surface.
  • the dielectric replica 90 is then coated with a directional or surface coating 91, 97,105 to only coat the outer surfaces and the edges 96,102,104 of the slots or holes 108.
  • an electric gap can be provided by a groove slot or impression area 103 of the substrate 90
  • other possible techniques are, screen printing, ink jet printing, plasma spray coating, electroplating, the metal coatings 91, 96, 97, 102, 104,105 such as silver powder or tin powder, vacuum deposition of the electrical conductor film.
  • These electrical conductive coatings 91, 96, 97, 102, 104,105 can have particles in them or cure in such a way that they form a reliable conductor contact with the semiconductor photodiode 92, 93, 94, 95 101, 100, 99, 98.
  • a wide variety of texturing, dimpling, pedestals, fibers, fluting, slitting, and an elastic polymorphic surface can be molded into the replica surface contact 96, 102, 104 to help achieve and elastic electrical contact surface with the contacts on the particulate photodiode contacts 92, 95, 101, 98.
  • the replica surface 91, 96, 97, 102, 104, 105 can also contain fibers and/or have electrical conducting fibers placed in it.
  • Another method of forming electrical contacts 91, 96, 97, 102, 104, 105 is to laminate electrical conductive foils, wires, fibers, conductive mesh, conductive fiber matrix, or powders into the dielectric substrate.
  • the next construction step is to coat the back side of the molded dielectric 90 with, a back reflector 106 silver, tin, or a titanium white scattering film.
  • a back reflector 106 silver, tin, or a titanium white scattering film This could be a silicone paint loaded with titanium dioxide particles.
  • a protective and thermal radiating film 107 such as silicone paint loaded with carbon black or titanium oxide particles ,that radiate in the infrared and radiantly remove heat from the back side of the array is deposited.
  • the photodiode spheres 100, 93 with the doping 99, 94 and electrical conductor contact points 92, 95, 101, 98 are placed in the slots or holes of the structure.
  • the photodiode array in to a larger module system they can be embalmed in a material such as chlorofluorocarbon or coated with silicone rubber sealant and laminated to a sheet of glass such as shown in Figure 10 A, 1OB, 1OC, 10D, 1OE, 1OF.
  • the cells can be positioned and clamped between a glass lens and mirror with groves or slots located to hold the photodiode spheres at the focus or concentration spot of the lens mirror assembly such as shown in Figure 9.
  • FIG. 9 a variety of components could be assembled with the micro concentrator photovoltaic array to form a power system. Heat removal and thermal storage can be incorporated with the photovoltaic array management of the waste heat off the photovoltaic arrays and provide a thermal management of the photovoltaic array.
  • the micro concentrator photovoltaic array is shown in cross section in Figure 9 with the components of anti-reflective coating 117, molded glass lens 110, in interface layer 126, reflector 112, elastic under layer and dielectric substrate 113, thermal conductive substrate 114, and radiant coating 125 and back surface of the photovoltaic array.
  • the radiant coating 125 could be textured to have, fibers, fins, bumps, ridges, or dimples to increase convective heat transfer.
  • the coatings would have a high infrared emissivity such as titanium dioxide and carbon black or graphite particles loaded in silicone rubber paint .
  • the molded glass 110 could have a flat outer surface, which may make it easier to keep clean from dirt.
  • the glue in interface layer such as Sylgard ®
  • the glue 126 will shrink and be under tension at the operating temperatures.
  • This tension in this interface layer will pull on the mirror 112, dielectric backing 113, and thermal conductive substrate 114 and maintain compression on the contacts to the semiconductor beads 115.
  • the electrical current is collected from the series connection contacts 112 on the 115 beads and delivered to the side of the array.
  • the electrical output from the photovoltaic array is shown schematically as positive 116 and negative terminals 111.
  • An enclosure 120 can be placed on the back of the photodiode array 125. This enclosure 120 could be a simple as a chimney to direct convective air flow past the photovoltaic arrays 125 or could be a circulated fluid 122 such as fluorocarbon, alcohol, or water.
  • a typical arrangement that minimizes the corrosion impact on the photovoltaic array 125 is to have air 122 pumped with a fan 121, 123 past the photovoltaic array 125, and the heated air 122 is used for structural heating.
  • the fan or pump 121, 123 can be run when it is necessary to cool the photovoltaic arrays 125 or deliver heat to the structure.
  • the ridge or bumpy exterior 125 of the photovoltaic array achieves a better heater transfer coupling from the photovoltaic array into the flowed fluid 122 than a planar photovoltaic array.
  • a phase change material 119 can be placed on the back of the array 125 or in the flow plenum 120 to temperature stabilize absorb heat and thermally store heat in the system.
  • the DC electrical output 116, 111 can be connected to an electrical conversion system 118 that optimizes the performance of the photovoltaic array and converts the electrical output to a desirable electrical output such as 110 Volt alternating current.
  • Capacitors, reversible fuel cells, and/or batteries could be incorporated in to the electronics conversion system 118 to store electrical energy adjacent the array 125.
  • a heat pipe system 120,124 could be incorporated in the back of the photovoltaic array 125 to delivery waste heat efficiently to structures.
  • the heat pipe 120, 124 could have a boiling point set by an impurity with the working fluid 124 or elastic walls 120 to create a constant pressurization of the heat pipe to set the boiling point of the heat pipe to only remove heat when the array temperatures are useful to be delivered to the structure.
  • Various coatings 117 such as infrared and UV absorbing film of titanium diode films, such as TPX solTM titanium dioxide coating, Kon Corporation, 91-115 Miyano Yamauchi-cho, Kishima-gun Saga prefecture, Japan, may be applied to the outer surface of the glass to reduce the heat flux on the photocell from the un-utilized infrared solar radiation, bellow the band gap of the semi-conductor.
  • the antireflective coating 117 could be a material such as titanium dioxide that absorbs UV light and photo catalytically oxidizes organic material on the outer surface of the glass to keep the surface transparent and reducing possible UV damage to the glass 110 and photovoltaic array 1115, 112, 113, 114, 125.
  • Figures 1OA, 1OB, 1OC, 10D, 1OE, 1OF and 1OG show various alternatives light concentrating systems that can be coupled to the elastic contacted cells.
  • a lens array 130 with precision placement of photodiodes 132 in elastic contacts 133 is shown.
  • An air gap 109 between the lens arrays provides for thermal insulation where this array may be used as a glass window or skylight.
  • the electrical contact film can be a transparent tin oxide.
  • Contact breaks 134 are shown between the cells, and elastic dielectric such as silicone rubber layer 128 and a transparent dielectric substrate 127, such as a flat molded glass sheet, are shown.
  • light 131 would pass through the lens array 130 to focus onto the semiconductors 132 without reflecting off mirror electrodes 133. This system does not capture light that does not reach the focus at the photodiode 132.
  • the electrical contacts 133 are reflective or transparent.
  • the light transmission optical arrangement could be useful for room lighting such as a skylight or windows where the direct sunlight is captured while light that has a low angle to the surface 129, such as morning and evening light, scattered light off the clouds and scattered light of the atmosphere misses the photodiode 132 and passes into the room.
  • the semiconductor contacts 133 are shown on a flat substrate 127, but it could be a shaped substrate 127 that helps hold the semiconductors and uses light reflections off the shaped electrodes 133 on the elastic layer 128 and the substrate 127 to collect light to the semiconductor 132.
  • the elastic layer component 128 be a phosphor or scintillator and convert light that is absorbed in this layer converted to a characteristic emission light of the phosphor or scintillator.
  • scintillator materials are anthacene that can be dissolved and dispersed into polymers or rubber (Pfaltz and Bauer, 172 E. Aurora St. Waterbury CT 06708) .
  • An example of a phosphor is zinc sulfide (ZnS) activated with dopants of copper or silver.
  • ZnS zinc sulfide
  • Another example of a phosphor is yttrium aluminum garnet crystals that convert blue light to yellow light.
  • the characteristic emission light is emitted at all angles but due to total internal reflection of the elastic sheet of material 128 and the reflections off the electrodes 127 and the a substrate material 127 internal reflections the light is conveyed to the photodiode where the elastic layer 128 changes angle and thickness.
  • the scintillating layer due to internal reflections and low characteristic light absorption can effectively collect converted light from a large area or volume of optical components 130, 109, 128 and deliver it to the photodiodes 132.
  • Phosphors and scatterers would be expected to be used on non-tranmissive components such as the electrodes 133, elastic layer 228, or substrate 127 and could also be used to redirect non-focused light 129 to the photodiodes 132.
  • a Fresnel or holographic light concentrator 137 is shown as the light concentrating element. This is an example of different types of optics .could be used to concentrate light to the discrete photodiodes.
  • a cross sectional view of a Fresnel lens 137 is shown. Light 136 passes through the transparent lens material 137 and then is refracted from the facets of the Fresnel lens and is focused to the semi conductor 138.
  • the optical element 137 could also be a holographic lens that can concentrate light to the photodiodes 138 by a diffraction pattern such as grooves in the interior surface of the transparent material 137 instead of refraction with a wide range of incident angles to the photodiode 138.
  • the substrate material 139 is a shaped elastic polyimide substrate for the contact electrodes 126, 140 holding- the silicon photodiode 138.
  • the elastic substrate 139 could be a scattering surface, scintillator, or phosphor and act like a converter and conduit of light that is not initially focused to the photodiode 138.
  • FIG. 1OC an example of a back reflector and photodiode array on front ⁇ surface is shown.
  • the incident light passes 143 through the elastic substrate and the electrical conductors.
  • the light 143 reflects off the aluminum reflector 145 and is concentrated onto the photodiode 142.
  • the photodiode 142 is held with two transparent electrical contacts 144, 164 such as tin oxide or thin network of opaque silver electrical conductors that are held onto the photodiode with elastic substrate material such as fluorocarbon.
  • a transparent material 162, such as silicone rubber, could be placed between the conductive electrodes 144 and the mirrors 145.
  • the transparent elastic substrate material 141 such as fluorocarbon plastic is shaped to form an elastic clamp around the semiconductor body 142 and also act as a lens for the direct incident light.
  • FIG. 1OD a Cassigranian light concentrating system with photodiode 150 on the back surface is shown.
  • the light passes through a transparent glass cover sheet 146, through air or transparent material cavity 153, reflects off a shaped mirror 147, makes a second reflection off a shaped mirror mounted 147 on the glass cover sheet, and is focused to the photodiode 150.
  • the cassigranian optics have a light collecting disadvantage that the second reflector blocks direct rays from reaching the semiconductor, but this could be useful if there is a need to shield the photodiode 150 from high energy radiation.
  • the second mirror 147 could incorporate shielding material .
  • the optical material is the elastic substrate, such as doped silicone rubbers and fluorocarbon polymers, are layered and shaped in increasing index of refraction layers 155, 156, 157, 161 to focus the light to the photodiode 160.
  • the contact electrodes 159 are elastically pressed onto the photodiodes .
  • the last layer of the refractive material is molded to form compression cavity 161 when the photodiode is pressed into the cavity.
  • the cavity 161 is designed with the electrodes to make junction contacts onto the photodiode 160.
  • a tilted or off-axis concentration scheme is ' shown. This allows the array to not be perpendicular to the rays 165 from the sun for possible architectural reasons or this tilted to incident light 165 surface geometry to take advantage of chromatic aberration.
  • the index of refraction spread to the light spectrum can be used with the tilted refractory surface to place different wavelength portions of the light spectrum into different photodiodes that are optimized for that portion of the solar spectrum. Typically light passing at an angle through a refractory material resulting in red light 171 refracting with the largest angle and then green light 172 and finally blue light 169 with the lowest light refraction.
  • a row of photodiodes 170,168, 169 can be arranged to optimally intercept the • spectral spread of light: red light photodiodes 170 in the first row, green light photodiodes 168 in the second row and blue light outer 3 rd row of photodiodes 169 in reflective slots 167 coupled with micro concentrator glass 166 with a tilted geometry.
  • the photodiodes are placed and glued into the shaped elastic cavities in the elastic transparent refractory material with a silicone rubber such as shown in Figure 3 ; with electrical contact film making compression contact 167 to the two sides of the cells stacks 170, 168, and 169.
  • a multilayered photodiodes semi-sphere with layers of different band gaps 181, 184, 180 are shown in cross-section.
  • a partial cutout of a spectral spreading and focusing lens 176 is also shown.
  • the blue photon absorbing high energy band gap photodiode layer 180 is the outer layer of the semi-spherical photodiode.
  • a green light absorbing and intermediate band gap energy photodiode layer 184 is the next layer of the semi-sphere.
  • a red light absorbing and lowest band gap layer photodiode 181 is the core semi-sphere.
  • Three layers of semiconductors 181, 184, 180 and separating electrodes are shown as an example of possible layered photo diodes in a semi-spherical geometry.
  • photodiode layers could be used and can be formed by multiple coatings of the central sphere 181.
  • Each photodiode layer 181,184, 180 will have impurity doping or inter-electrode layers that create a concentration- and voltage gradient of a photovoltaic photodiode.
  • an anti- reflective coating 174 outer layer of the semi-sphere is added.
  • This anti-reflective coating 174 could be a gradient index fraction material or could be a quarter wavelengths thick transparent material coating that achieves anti- reflection by destructively interfering with the reflection of light.
  • the anti-reflective coating 174 could be adjusted to maximize the red light 178 transmission at the top of the photodiode semi-sphere and then optimize the transmission for the shorter wavelength 177, 199 of light on the sides of the sphere. Due to the spherical shape and the angle of incidence of the light on the sides of the sphere a uniform thickness quarter wavelength anti-reflective coating 174 will shift the peak transmission to longer wavelengths. Thus, for light concentration systems and when the light direction is controlled onto the photodiode spheres in general the "optimum quarter wavelength anti-reflective coating 174 would be thinned on the sides of the sphere to compensate for the angle of incidence change.
  • the quarter wavelength antireflective coating 174 can be thinned even more on the sides of the sphere to optimize the light transmission for the green and blue light 177 incident on the sides.
  • a thickness profile varied coating of this type could be accomplished with a vacuum evaporated source and using the effect of angle of incidence on semi-sphere producing thinner coatings .
  • the layered photodiode semi-sphere 181, 184, 180, 174 is placed behind the focusing optics 176 near the focal point for red light 179.
  • Incident white light 175 is spectrally spread with chromatic aberration where the index of refraction varies with the wavelength of the light.
  • red light 178 through glass has a higher index of refraction than green 199 and blue 177.
  • the semi-sphere photodiodes 181, 184, 180 are placed after the focus point 179 of the red light of the lens 176 such that it optimizes the spatial distribution of colored light spectrum into the layered photo diodes to place the red light focus 179 just outside the photodiodes or inside the central red light absorbing photodiode 181.
  • the green light 199 will form a larger spot and is absorbed more efficiently into the green light absorption band of the photodiode due to the longer path length through the tilted photodiode layer 184.
  • the blue light 177 spot will be the largest diameter and most efficiently absorbed in the outer photodiode layer optimized for blue light absorption and conversion.
  • the longer wavelength red light 178 in general will refract through glass 176 at a higher angle than the green 199 and blue light 177.
  • the red light 178 will pass through the blue 180 and green light photodiodes 184 with low absorption due to being below the excitation band gap of these two photodiodes.
  • This spectral, spatial, and angular distribution of light on to the layered semi-spherical photodiode 181, 184, 180 will tend to optimize the performance of each of the photodiode cells without having to have physically separate the photodiode cells.
  • Some of the green 199 and red 178 light will strike the blue 180 and green 184 optimized photodiodes with these light photons below the band gap energy of the blue and green light optimized photodiodes and partially passes through and onto the green 184 and red 181 layered photodiodes .
  • This layered construction of a layered spherical photodiodes could be less expensive than forming distinct photocells that are then placed together.
  • the electrode contacts in this geometry are shown as attached conductive metal contacts 183, 181.
  • the inner layer contact 182 is attached to the exposed surface of the center of the red photodiode 181, and the outer contact 183 is attached to the surface of the outer blue photodiode layer 180 and through the anti-reflective coating 174.
  • Examples of details of elastic contact geometries to this semi-spherical bead are shown in Figure 3 , Figure 12B and Figure 14.
  • the electrical contacts 182, 183 reflect light and do not block light to the photodiode such as in the elastic contact example of Figure 14 for this circular spot focus.
  • a mechanical contact would need to make central contact with the central spot contact 182 and use the alignment of the silicon sphere with the form fitting surface to allow only proper electrical contact and placement of the layered photodiode into the radial spectral dispersion pattern of red light in the center and blue light on the perimeter.
  • a roughened or density gradient antireflective coating 174 may be advantageously used in this geometry to avoid spectral and angular selectivity of the typical quarter wavelength anti reflective coating and mentioned earlier. If a slot version of the semiconductor holding cavity is used the central contact could have a raised button 182 and a dielectric perimeter 185 coating such as the anti-reflective coating extended to cover the edges of the green 184 and blue 180 photodiodes to prevent shorting to the electrical contacts along the groove.
  • FIG 12A an alternative arrangement of forming photodiodes by grinding the particulate bead layered photodiodes on two sides.
  • the inner doped layer 274 and other photodiodes 272 can be accessible with two electrical contacts 273, 275.
  • This geometry of a bead with two flat sides versus a single flat side can also be advantageously used to make electrical contacts.
  • an InP bead five hundred microns in diameter is formed 274.
  • the InP bead 274 is doped to be an n-type semiconductor.
  • the InP bead is then coated with an n-type InGaAs layer 272 by organometallic vapor phase epitaxy approximately two microns thick.
  • a p-type InGaAs layer 271 two microns thick and a sputter deposited gold chromium coating 270.
  • the bead is then ground on two sides and the electrical contact is formed deposited by vacuum deposition or electroplating a nickel/gold contact 272, 275 to the center.
  • materials to produce layered photodiodes or photo emitters There are many variations of materials to produce layered photodiodes or photo emitters.
  • substrate bead semiconductors are Ge, Si, SiC, GaAs, GaP, Ga, GaN, CdTe, AlGaP, AlGaP, AlGaAs, CuInSe 2 , Cu(InGa)Se 2 , GaSb, InAs, CuInSe 2 , Cu(InGa)Se 2 , CuInS, GaAs, InGaP, AlGaP and CdTe.
  • FIG 12B slot or cavity electrical contact to photodiode bead with rim 281, 292 and center contacts 286, 287 are shown.
  • the photodiode bead as constructed by grinding a layered photodiode bead on two sides, as shown in Figure 12A, is inserted into the elastic slot 295 in a dielectric 288 with two side contacts 280, 287 and a backing contact 289.
  • the slot or cavity 295 is molded out of an elastic dielectric 288 such as polyimide or silicone rubber on top of a metal foil substrate 289 such as tin.
  • the photodiode bead 281, 282, 283, 284, 290, 291, 292 is pressed into the slot 295.
  • the two side contacts 280, 287 compress against the to center contacts 286, 285 of the photodiode bead.
  • the rim conductor 281, 292 of the photodiode bead makes contact with the foil contact 289 at the bottom of the slot or cavity 295 with elastic compression from the cover lens 293 or mirror pressing the photodiode bead against the back contact.
  • the molded cover glass 293 is held by tension and sealed to the contact electrodes 280, 287 through a Sylgard ® transparent interface glue 294 that is cured at elevated temperature under compression pressure between the glass 293 and the electrode substrates 288, 289.
  • the thermal contraction of the interface glue 294 creates a tension in the glue pulling the cover glass and the electrodes word each other and creating contact compression, pressure.
  • Other mechanical elastic, gravity or force schemes can be used to maintain the elastic contact pressure on the photodiode 281, 282, 283, 284, 290, 291, 292.
  • FIG 13A a semiconductor bead alignment and manipulation system is shown.
  • the semiconductor beads 188 that have a flat side 189 are vibrated by sound 186 from a sound generator 185 or vibrations through the support plate 190.
  • the beads 188 wil] spin until they reach the lowest energy on the flat side of the beads resting on the flat Teflon 187 surface with gravity holding them down.
  • 186 can be used to manipulate the beads to move them far off the surfaces or to have them gently rotate and settle to the lowest energy state flat side of the bead 189 on the Teflon surface 187.
  • the Teflon 187 has an electrostatic charge thuj attracting the beads 188 and increases the energy well for the beads to stay on the flat side 189 resting on the flat Teflon surface 187.
  • a high voltage electrode 190 can be placed behind the Teflon 187 surface and high voltage applie from a generator 191 to the electrode 190.
  • a sharp point corona discharge to the semiconductor beads 188 or adjacent electrode 193 or surrounding grounded 192 conductive surfaces can complete the electrical charging circuit and electric field lines to the charge electrode 190. The induced electric field and the charge on the semiconductor beads 188 hold them against the Teflon surface 187.
  • the pushing bar 200 can push the semiconductors 201 to align the semiconductors in rows with all the flat sides against the Teflon surface 204 on a support plate 205.
  • the pusher bar can have shaped cavities 202, 203 to hold individual semiconductors in discrete positions.
  • FIG 13C Shown in Fig 13C a cross-sectional view of the pusher bar 216 being used to press the semiconductor beads 213 into the shaped mirrors or electrical contacts and elastic substrate 210.
  • the electrical charge on the support plate 218 can be released or reversed as the beads 213 are slipped into the shaped cavity 212 electrical contacts 211, 219.
  • the pusher bar 216 can also be heated and/or can have sound pulsed through it to solder or weld the beads 213 contacts 214, 220 to the electrical contacts 211, 219 once they are inserted and clamped by the electrical contact holder 210.
  • the beads can be heated by light or magnetic fields once they are inserted into the holders to achieve soldering or welding of contacts 214, 220.
  • the semiconductor beads could have electrical contacts 214, 220 that are made of magnetic material such as nickel.
  • the magnetic attraction to a magnetized surface 218 or alignment in a magnetic field could be used to align and hold the beads on a holder 218, 217.
  • Other properties that may be utilized to align the beads is to use the self polarized electric field of the beads 213 in an electric field to align the beads 213. It should be mentioned that sticky and electrostatic properties of silicone rubber coated surfaces 215 can act as bead holders allow beads to held without rolling and transferred.
  • the insertion of the semiconductor beads can done with the shaped aperture 212 electrical contacts 211, 219 on the elastic backing 210 being held open for the insertion and then released to mechanically clamp down on the beads 213 and make electrical contact of the round bead contact 214 to the rounded electrical contact 211 and the inner bead contact 220 making contact with the flat surface contact 219 of the elastic holder 210.
  • the mechanical clamping of the holder 210 also allows the beads 213 to be held to allow the pusher 216 to separate from the beads 213 and retract the pusher 216.
  • the pusher 216 could have a silicone sticky surface 215 inside the formed surfaces 222 to allow aligned beads to stick in the cavities and non-aligned beads to be shaken off.
  • the lens mirror electrode compression arrangement is shown in cross-section.
  • Another arrangement of connecting the spherical ground semiconductor photodiode or ground rod 233 is to form a cavity with the mirror contacts 237, 238, 242 that will only permit the cell to be connected in one orientation.
  • the shaped depression, or troughs 239, 241 have a center contact 242 and side contacts 239, 238 as shown in Figure 14.
  • These contacts 237, 238, 242 and vias 243 can be formed by ink jet spraying electrically conductive powder inks such as silver, copper, nickel, graphite, aluminum, tin, and alloys onto the dielectric substrate such as molded or shaped polymimide 239, 241.
  • electrical contacts and circuit films 237, 242, 238, 243 are sputter deposit, plasma sprays, electroplating, foil embossing, electrically conductive films onto the pre-formed flat sheet or formed dielectric substrate 239, 241.
  • Other options are to coat or laminate a sheet metal substrate to hold the form of the contacts and act as another back protective surface 244.
  • the side contacts 237, 238 have a dielectric coating 235, 236 deposited part way up from the flat bottom of the electrical contact 237,238 and dielectric backing substrate 239, 241 to not allow the semi- spherical bead 233 to make electrical contact with the side contact electrodes 237, 238 if the rounded surface of the bead 233 is touching the center electrical contact.
  • the beads can rotate and spin until the flat section of the beads fits against the flat bottom of the trough or depression 239, 241.
  • This gravitational effect can be enhanced if electric fields are imposed between the electrodes 239, 242, 238 and an exterior electrode not shown.
  • the dielectric films 239, 241, 234, 236 often are permanent electrets or can be poled and charged with imposed electric fields.
  • center contact 240 By forming the center contact 240 on the semi- spherical bead 233 with a ferromagnetic material such as nickel and making the center contact 242 out of a ferromagnetic material such as iron or nickel and then having the contacts 242 , 240 be magnetized or placed in a magnetic field the bead will preferentially be oriented in the magnetic field and the magnetic fields will be channeled and concentrated through the center contacts 240, 242. This would increase the energy well of the aligned beads with the flat surface of the bead 233 parallel to the trough or depression 239,241 of the mirror contacts 238,237.
  • the side electrode surfaces 237, 238, make contact with the sides of the semi-spherical bead 233 when the beads are correctly aligned.
  • the photodiodes semiconductor bead 233 will typically be doped to have a positive charge carrier doping on the interior and a negative charge carrier doping on the outside.
  • electrical contact on the flat surface of the bead 240 is making contact 242 with the P interior layer and the outer surface contacts 237, 238 are making contact with the N layer. Due to the differences in coefficient of friction between the side contacts 237, 238 of the bead 233 with the dielectric coating 235, 236 and the side contacts 237, 238 the beads 233 will tend to stick into the depression 239, 241 once they make metal contact.
  • the shape and elasticity of the trough or depression 239, 241 can be made such that it forms a wedging contact 237, 238 on either side of the bead to hold the bead once it makes correct alignment. It may also be useful to have the alignment process occur at an elevated temperature near where the bead side contacts 237, 238 will solder or sick to the bead 233 outer surface, thus also making the side contacts sticky to the beads and holding the beads once they have made parallel surface alignment and electrical contact.
  • the beads 233 in the incorrect positions will rest higher in the troughs or depressions than the parallel surface aligned beads 233.
  • a process of checking that all beads 233 are aligned could be done by visual inspection or having a precision tool with a vacuum or sticky surface that fits into the trough or depression and only makes contact and remove cells that are not fitting correctly into the troughs or depressions 239, 241.
  • the electrical contacts 239, ' 240, 242, 238 can be assured by heating the semiconductor bead 233 with a flash of light, or thermo mechanical contact to the beads 233 with heated metal body touching and compressing the beads 233 against the electrical contacts 237, 242, 241.
  • Other possible methods of delivering energy to make solder, brazing, or welding contacts are to pulse ultrasonic sound energy into the semiconductor beads 233 and contacts 237, 242, 238 to friction weld or solder the contacts.
  • An electrical pulse through the circuit and cells 237, 238, 233, 240, 242 can also be used to create arc welding of the electrical contacts to the semiconductor photodiode beads 233.
  • Another electrical contact welding, brazing, annealing, or solder method is to use self generated electrical pulse from the semiconductor photodiode 233 if the electrical circuit 237, 238, 233, 240, 242, is short circuited, attached to an electrical source, or charged capacitor and then a beam of laser light is rastered across the cells or a flash lamp is fired next to the cells. Creating a short electrical pulse to provide a short thermal energy pulse at the mechanical contact points to the welding, brazing, annealing or soldering the contacts.
  • the center contact 242 or side contact metal films on top of the dielectric substrate 241 can be designed such, that they act as an electric fuse melting and vaporizing the metal 242, 237, 238, 243 and expanding the underling dielectric 239, 241 to open the circuit if the local circuit if excessive current flows through the circuit . This could be used to disconnect cells that may have been miss-connected or are shorted.
  • the contact assurance step can also be done after the assembly under the refractory lens and mirror 231 is placed over the cells and they are held in place by the refractory lens and mirror 231.
  • the refractory cover lens and mirror 231 can press against the semiconductor bead 233 to make electrical contacts and maintain electrical contact throughout the lifetime of the solar array.
  • the refractory cover 231 can be pressed and held with glues 232 and elastic tension in the electrical contact material 237, 239, 238, 241, 242 and gravity of the refractory material resting on the semiconductor 233 against the contact material 237, 242, 238 can maintain contact over the life of the array.
  • the lens-mirror assembly sheet 231 can have a protective or antireflective coating 230 on the outer surface. Suitable films are fluorcarbons (Mihama) , titanium dioxide coatings to make the outer surface photo reactive and self cleaning or hard anti- scratch coatings such as reactive sputtered diamond films.
  • Optically transparent glue or coupling gel 234, 232 (such as Dow Corning Sylgard ® 184 or gel Q3-6575) is dispersed such as with a high pressure extrusion over the cells.
  • optical coupling material 234, 232 is places over optical coupling material 234, 232 and with a roll squeezing motion optical coupling material 234,
  • 232 is pressed around the semiconductor and mirrors the gas bubbles are pressed out of the assembly through gas channels in the pattern of the glue.
  • the entire assembly can be cured with elevated temperatures .
  • the assembly can be cured under compression to press the lens-mirror sheet 231 against the semiconductor beads 233 and maintain compression on the electrical contacts 237, 240, 242, 238. Shrinkage of the glue or optical coupling material 234, 232 after or during the curing process could further increase the compression of the lens-mirror sheet 231 onto the beads 233 and contacts 237, 240, 242, 238 during and after the curing process.
  • a radiant heat transfer and protective coating 244 such as carbon black loaded silicone paint or titanium dioxide silicone paint.
  • the assembled system can be tested and with light pulses, rastered laser beams, or electrical pulses shorted cells or reversed cells can be removed from the array parallel series electrical circuit by melting or vaporizing electrical contacts. Electrical connections to the outside electrical systems and circuits are expected to be made through electrical contact pads at the edges of the glass material sheet 231.
  • FIG. 15 an electrical circuit of series parallel cells with thin film electrical conductors or dielectrics, fuse, or varistors 253, 258 in the parallel and series connections between photovoltaic cells 253 and back flow protection diodes 254 or varistors 254 built in on the output is shown.
  • the reverse flow protection component 254 can also be placed by the same method of doped semiconductor beads placed in elastic shaped electrical contacts with the reverse electron hole gradient to the photodiodes as indicated in the schematic drawing Fig. 15.
  • the reverse current protection diodes 254 are not illuminated and therefore can be placed outside of the light concentration regions either between the mirror arrays on the edges of the arrays .
  • the reverse current protection diodes 254 can be placed periodically as rows in the array to be able to match the protection diodes voltage and current characteristics and create distributed reverse current protection avoiding any single protection diode or string of protection diode failures jeopardizing the entire system.
  • the fractional loss effect of a single cell becoming an open circuit in parallel connected cells is one divided by the number of cells connected together.
  • the effect of a single point failure on the entire system from a single point failure in a series parallel electrically connected network is proportional to the fraction of loss in a row divided by the number of rows since the current from the other rows will be able to flow around the single point failure.
  • the number of random single cell failures is proportional to the total number of cells in the circuit.
  • the parallel electrical connections 253 between cells are useful in having a current bypass around single cells in the array that may have low performances due to manufacturing defects or shading.
  • the bypass diodes 257 can route current around a row of cells 252 that have a low performance or be shadowed.
  • the parallel 253 and series 258 electrical connections can form effective fuses by thin conductive deposits on dielectric insulator substrates or varistors by depositing with the electrical conductors semiconductors that have been chosen to have a specific electrical resistively increase as the current, voltage or temperature rises. A particular example a film of zinc oxide will increase its resistance with applied voltage.
  • the deposits can be vacuum sputter deposits, spray ink deposits, plasma spray deposits, foil embossed, individual semiconductor deposits similar to the photodiode bead connections.
  • the varistors 253 could be designed to reversibly respond rapidly to excessive current and effectively clamp the maximum current in the parallel or series connections .
  • This maximum current clamping can be very important to protect the photodiodes from excessive currents and voltages in situations where an illuminated photovoltaic array is selectively shadowed such as a shadow from a tree limb.
  • This array schematically shown can be connected 250, 256 through the perimeter bus connections 251, 255 to other arrays or the electrical loads.
  • Other possible electrical devices that could also be electrically connected on the output connection or bus connection 250, 256 and integrated with the array as shown in Figure 9 are DC to DC converters, DC-AC converters, capacitors, batteries, electrolysis cells, flywheels, motors, lights, pumps, and fans .
  • Some features and elements of the invention include: 1.
  • the electrical contacts maintain compression on the semiconductor bodies with elastic mechanical systems. 2.
  • the slot is also an electrical connection.
  • the slot is also a mirror.
  • the slot is also light transmitting.
  • the position and dimensions of the electrical contacts on the spheres can be advantageous for semiconductor operation.
  • the electrical contacts have thickness to provide for electrical properties of fuse and circuit interruption.
  • the electrical contacts can be mirrors.
  • the electrical contacts can be transparent.
  • the electrical contacts can be dissimilar electrical conductors or metals.
  • the electrical contacts and semiconductor can essentially form a thermoelectric junction.
  • the electrical contacts and semiconductor can form a light producing junction.
  • the slot and electrical contacts form a heat removal • system.
  • the electrical contacts and or mirrors are heat conductors to remove heat from the photodiodes.
  • a coating on the back side of array enhances the radiant emission and heat removal .
  • the mirror/lens is a heat removal system.
  • the mirror/lens is a mechanical mount and protection system.
  • the arrays are an assembly of components of lens/mirror discrete semiconductor tow electrical contacts and back cover or mirror.
  • the slots or holes can be made in a dielectric.
  • the slots or holes can be made in metal with dielectric coating.
  • the slots or holes can be made in metal with dielectric and electron conducting coatings.
  • the walls of the shaped cavities can have structure to improve the electrical contact elasticity.
  • the walls of the shaped cavities have flutes, slits, grooves, bumps, pedestals, fibers for electrical contact elasticity.
  • the electrical coatings on the cavities contact surfaces have fibers, powders for electrical contact elasticity.
  • the contacts on the shaped cavities are elastic polymorphic surfaces .
  • the coatings can be deposited or formed in many ways. Vacuum deposited, ink jet printing, powder sprayed, screen printed, foil impression, soldered, stamped or laminated .
  • the electrical connections and substrate can form a light collecting system to the photo diode
  • the photodiode array can be coupled to a light concentrating optic
  • the electrical connection system can also be an optical component
  • a back protector sheet can also be on optical light collector
  • Light scattering can also be used in the optic
  • the clamp is elastic and can be opened to accept the semiconductors and closed to make contact .
  • Gravity can be used to press the glass cover and lens mirror into the cell and electrodes to maintain compression between the semiconductor and contacts.
PCT/US2007/015623 2006-07-07 2007-07-09 Micro concentrators elastically coupled with spherical photovoltaic cells WO2008005557A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020097000238A KR101443043B1 (ko) 2006-07-07 2007-07-09 구형 광전지와 탄성적으로 결합되는 마이크로 콘센트레이터
EP07810263A EP2038936A2 (en) 2006-07-07 2007-07-09 Micro concentrators elastically coupled with spherical photovoltaic cells
MX2009000045A MX2009000045A (es) 2006-07-07 2007-07-09 Microconcentradores acoplados elasticamente con celdas fotovoltaicas esfericas.
CA2657099A CA2657099C (en) 2006-07-07 2007-07-09 Micro concentrators elastically coupled with spherical photovoltaic cells
AU2007269559A AU2007269559A1 (en) 2006-07-07 2007-07-09 Micro concentrators elastically coupled with spherical photovoltaic cells
JP2009519476A JP2009543376A (ja) 2006-07-07 2007-07-09 球状太陽電池と伸縮自在に連結したマイクロ集光器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81927306P 2006-07-07 2006-07-07
US60/819,273 2006-07-07

Publications (3)

Publication Number Publication Date
WO2008005557A2 true WO2008005557A2 (en) 2008-01-10
WO2008005557A9 WO2008005557A9 (en) 2008-02-21
WO2008005557A3 WO2008005557A3 (en) 2009-04-02

Family

ID=38895248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/015623 WO2008005557A2 (en) 2006-07-07 2007-07-09 Micro concentrators elastically coupled with spherical photovoltaic cells

Country Status (9)

Country Link
EP (1) EP2038936A2 (ja)
JP (1) JP2009543376A (ja)
KR (1) KR101443043B1 (ja)
CN (1) CN101501979A (ja)
AU (1) AU2007269559A1 (ja)
CA (1) CA2657099C (ja)
MX (1) MX2009000045A (ja)
TW (1) TWI466304B (ja)
WO (1) WO2008005557A2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144715A2 (en) * 2008-05-26 2009-12-03 Impel Microchip Ltd. A monolithic low concentration photovoltaic panel based on polymer embedded photovoltaic cells and crossed compound parabolic concentrators
JP2010518255A (ja) * 2007-02-02 2010-05-27 ソルフォーカス インコーポレーテッド 太陽集光器製造用の熱溶射
DE102008064313A1 (de) * 2008-12-20 2010-07-08 Schott Solar Gmbh Modulkühlung mittels Lüfter
WO2010089480A1 (fr) * 2009-02-06 2010-08-12 Universite Du Sud Toulon Var Procédé de calcul optimisé d'un dispositif de concentration de rayons, notamment de rayons solaires, et concentrateur de rayons ainsi obtenu
US8752380B2 (en) 2012-05-22 2014-06-17 Palo Alto Research Center Incorporated Collapsible solar-thermal concentrator for renewable, sustainable expeditionary power generator system
US8884156B2 (en) 2010-11-29 2014-11-11 Palo Alto Research Center Incorporated Solar energy harvesting device using stimuli-responsive material
US9279551B2 (en) 2011-12-05 2016-03-08 Koninklijke Philips N.V. Lighting system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764167B (zh) * 2009-12-25 2011-08-24 赵耀华 太阳能光伏电池高效散热装置及热电联供系统
JP5983471B2 (ja) * 2013-03-11 2016-08-31 株式会社豊田自動織機 太陽電池モジュール
JP2014175538A (ja) * 2013-03-11 2014-09-22 Toyota Industries Corp 太陽電池モジュール
JP6024529B2 (ja) * 2013-03-11 2016-11-16 株式会社豊田自動織機 太陽電池モジュール、および太陽電池モジュールの製造方法
ES2527969B1 (es) * 2013-08-01 2015-11-23 Instituto Holográfico Andaluz, S.L. Panel solar tridimensional térmico o fotovoltaico con holografía incorporada
EP2916151B1 (en) 2014-03-05 2020-01-01 Corning Optical Communications LLC Method of forming a fiber coupling device
CN104852677B (zh) * 2015-03-19 2017-04-19 华南理工大学 一种微透镜吸光和微球硅聚光组合的太阳能电池
KR101961834B1 (ko) * 2017-11-06 2019-03-26 전북대학교산학협력단 Led 디스플레이 장치 제조방법
CN108306610A (zh) * 2018-02-12 2018-07-20 张明永 一种太阳能光伏发电装置
TWI661456B (zh) * 2018-07-31 2019-06-01 聚鼎科技股份有限公司 保護元件
CN110828254B (zh) * 2018-08-07 2022-11-25 聚鼎科技股份有限公司 保护元件
CN109541668B (zh) * 2018-12-03 2020-05-22 西安交通大学 一种无电源辐射监测装置及方法
CN110390863B (zh) * 2019-07-22 2021-08-20 中国原子能科学研究院 采用电极组件整体焊接工艺的热离子发电实验装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514580A (en) * 1983-12-02 1985-04-30 Sri International Particulate silicon photovoltaic device and method of making
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US6355873B1 (en) * 2000-06-21 2002-03-12 Ball Semiconductor, Inc. Spherical shaped solar cell fabrication and panel assembly
US20020096206A1 (en) * 2000-11-24 2002-07-25 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles
US6528717B2 (en) * 1999-11-17 2003-03-04 Fuji Machine Mfg. Co., Ltd. Photovoltaic panel and method of producing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854684A (ja) * 1981-09-08 1983-03-31 テキサス・インスツルメンツ・インコ−ポレイテツド 太陽エネルギ−変換装置
WO1998031054A1 (fr) * 1997-01-13 1998-07-16 Hitachi, Ltd. Transducteur photoelectrique et dispositif l'utilisant
JPH1131837A (ja) * 1997-07-14 1999-02-02 Hitachi Ltd 集光型太陽光発電装置及びこれを用いたモジュール
JP2000022184A (ja) * 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> 球状または棒状結晶太陽電池およびその製造方法
JP3490969B2 (ja) * 2000-11-24 2004-01-26 圭弘 浜川 光発電装置
JP3902210B2 (ja) * 2002-05-02 2007-04-04 仗祐 中田 受光又は発光用パネルおよびその製造方法
CN100561755C (zh) * 2004-03-12 2009-11-18 京半导体股份有限公司 叠层型太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514580A (en) * 1983-12-02 1985-04-30 Sri International Particulate silicon photovoltaic device and method of making
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US6528717B2 (en) * 1999-11-17 2003-03-04 Fuji Machine Mfg. Co., Ltd. Photovoltaic panel and method of producing same
US6355873B1 (en) * 2000-06-21 2002-03-12 Ball Semiconductor, Inc. Spherical shaped solar cell fabrication and panel assembly
US20020096206A1 (en) * 2000-11-24 2002-07-25 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518255A (ja) * 2007-02-02 2010-05-27 ソルフォーカス インコーポレーテッド 太陽集光器製造用の熱溶射
US8624102B2 (en) 2007-02-02 2014-01-07 Palo Alto Research Center Incorporated Metal trace fabrication for optical element
WO2009144715A2 (en) * 2008-05-26 2009-12-03 Impel Microchip Ltd. A monolithic low concentration photovoltaic panel based on polymer embedded photovoltaic cells and crossed compound parabolic concentrators
WO2009144715A3 (en) * 2008-05-26 2010-10-28 Impel Microchip Ltd. A monolithic low concentration photovoltaic panel based on polymer embedded photovoltaic cells and crossed compound parabolic concentrators
DE102008064313A1 (de) * 2008-12-20 2010-07-08 Schott Solar Gmbh Modulkühlung mittels Lüfter
WO2010089480A1 (fr) * 2009-02-06 2010-08-12 Universite Du Sud Toulon Var Procédé de calcul optimisé d'un dispositif de concentration de rayons, notamment de rayons solaires, et concentrateur de rayons ainsi obtenu
FR2942058A1 (fr) * 2009-02-06 2010-08-13 Univ Sud Toulon Var Procede de calcul optimise d'un dispositif de concentration de rayons, notamment de rayons solaires, et concentrateur de rayons ainsi obtenu
US8884156B2 (en) 2010-11-29 2014-11-11 Palo Alto Research Center Incorporated Solar energy harvesting device using stimuli-responsive material
US9279551B2 (en) 2011-12-05 2016-03-08 Koninklijke Philips N.V. Lighting system
US8752380B2 (en) 2012-05-22 2014-06-17 Palo Alto Research Center Incorporated Collapsible solar-thermal concentrator for renewable, sustainable expeditionary power generator system

Also Published As

Publication number Publication date
JP2009543376A (ja) 2009-12-03
CA2657099A1 (en) 2008-01-10
CA2657099C (en) 2016-03-29
KR101443043B1 (ko) 2014-10-02
WO2008005557A9 (en) 2008-02-21
KR20090042229A (ko) 2009-04-29
WO2008005557A3 (en) 2009-04-02
TWI466304B (zh) 2014-12-21
AU2007269559A1 (en) 2008-01-10
TW200824134A (en) 2008-06-01
CN101501979A (zh) 2009-08-05
MX2009000045A (es) 2009-03-24
EP2038936A2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US8013238B2 (en) Micro concentrators elastically coupled with spherical photovoltaic cells
CA2657099C (en) Micro concentrators elastically coupled with spherical photovoltaic cells
JP5424889B2 (ja) 太陽光熱電変換
US5482568A (en) Micro mirror photovoltaic cells
JP3174549B2 (ja) 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法
US9331228B2 (en) Concentrated photovoltaic system modules using III-V semiconductor solar cells
US20080185034A1 (en) Fly&#39;s Eye Lens Short Focal Length Solar Concentrator
JP2009543376A5 (ja)
US20100319755A1 (en) Solar Augmentation System
US20110155217A1 (en) Concentrated Photovoltaic System Modules Using III-V Semiconductor Solar Cells
WO2009008996A2 (en) Design and fabrication of a local concentrator system
US4151005A (en) Radiation hardened semiconductor photovoltaic generator
AU2002259326A1 (en) Solar energy converter using optical concentration through a liquid
Horne et al. IR filters for TPV converter modules
WO2020027730A1 (en) Improved solar panel
TWI467785B (zh) 太陽能電池基座
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
US11302839B2 (en) Integrated micro-lens for photovoltaic cell and thermal applications
EP2221881A1 (en) System for irradiating photovoltaic cells with an electromagnetic radiation and photovoltaic module
WO2014028336A2 (en) Solar receiver and conversion apparatus for concentrated photovoltaic systems
WO2008097806A9 (en) Direct attachment of optically-active device to optical element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025743.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07810263

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007269559

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2657099

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020097000155

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2009519476

Country of ref document: JP

Ref document number: 1020097000238

Country of ref document: KR

Ref document number: MX/A/2009/000045

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007810263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007810263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007269559

Country of ref document: AU

Date of ref document: 20070709

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU