TW200824134A - Micro concentrators elastically coupled with spherical photovoltaic cells - Google Patents

Micro concentrators elastically coupled with spherical photovoltaic cells Download PDF

Info

Publication number
TW200824134A
TW200824134A TW096124657A TW96124657A TW200824134A TW 200824134 A TW200824134 A TW 200824134A TW 096124657 A TW096124657 A TW 096124657A TW 96124657 A TW96124657 A TW 96124657A TW 200824134 A TW200824134 A TW 200824134A
Authority
TW
Taiwan
Prior art keywords
semiconductor
light
electrical
electrodes
photodiode
Prior art date
Application number
TW096124657A
Other languages
Chinese (zh)
Other versions
TWI466304B (en
Inventor
Robert G Hockaday
Original Assignee
Energy Related Devices Inc
Kyosemi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Related Devices Inc, Kyosemi Corp filed Critical Energy Related Devices Inc
Publication of TW200824134A publication Critical patent/TW200824134A/en
Application granted granted Critical
Publication of TWI466304B publication Critical patent/TWI466304B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

With small dimensional optics, small photovoltaic cells, heat distribution surfaces, very high concentrations and subsequently high utilization of the semiconductors can be achieved. Discrete photodiodes can be formed as spherical and other geometric shaped, cells with high performance characteristics, precision dimensions, and low cost. This invention positions discrete photovoltaic cells by using their geometric shape, elastic electrical mounts, couples them to small optical concentrator systems of refractory and or reflective optics and makes electrical network connections to those photodiodes, reliably, adjusting for thermal expansion, and at low cost to form low cost and reliable electrical power arrays. The electrical connectors and network can form part of the reflective optics and heat removal system. The electrical interconnection system can also form a reliable network that is self-correcting and tolerant of point failures.

Description

200824134 九、發明說明: 【發明所屬之技術領域】 電池彈性耦合的微型 本發明係關於一種與球形光伏特 集中器。 【先前技術】 在晴好的天氣_,太陽向每平 :上1,::瓦特之能量。太陽能至電的轉換=200824134 IX. Description of the invention: [Technical field to which the invention pertains] Battery elastically coupled miniature The present invention relates to a spherical photovoltaic concentrator. [Prior Art] In fine weather _, the sun goes to every level: the energy of the upper 1,:: watt. Solar to electricity conversion =

球上逐步上升之能量需求之理想電源解決方案。太陽十= 主要限制為系統之高成本。當前,最佳、: 已達成約每瓦特$2的成本,然、而,為 池系統 ^ ^ ^ Γ與習知電源競爭, 而要達成四倍之成本降低或達到每瓦特$〇 5。 太陽能電池陣列的幾乎全部成本皆係由於當前 :池裝置中所使用之大量昂貴的半導體。當前太陽能電: 技術使得陣列昂貴、效率低,且有時為不可#的。吾人之 革新為-種大量生產具有彈性接觸件(其亦集中光以較好 :利用昂貴之半導體)^電池陣列,藉由較小離散光伏特 电池之有效熱移除之效應來不過度加熱及降低效率的方 法攸而’可減少系統半導體成本部分。若每單位面積之 集中光學器件成本顯著低於半導體的成本,光伏特電池之 每單位面積的總成本,產生之電功率之成本降低。吾人估 计由於相較於半導體之微光學集中系統之遠遠較低的成 本可達成*别光伏特電池成本之自四倍至數百倍範圍内 之材料成本的降低。 形成數以千計之離散光二極體之光伏特陣列的實用態 7 200824134 樣已導致在一範圍溫度内可靠且有效形成至數以千計之離 散半導體之電連接及熱連接的挑戰。吾人已發現形成長串 之安裝於塑膠基板上之聚矽氧光二極體的嘗試導致了由於 產生於總成中的差異熱膨脹之應力及破裂故障。在此專利 中’使用彈性電接觸件及熱接觸件來將半導體本體固持於 適當位置中,且使組裝之系統可彎曲且經受廣泛範圍的溫 度改k,而不損失具有一系列溫度係數之不同材料間的接 φ 觸或發生機械解體。亦可使用週期性改變基板上的電接觸 件及電路之方向的幾何形狀來避免由於系統之差異熱膨脹 或彎曲而在電接觸件中累積屈服應力。藉此,將電接觸件 =持在彈性狀態中。可將電接觸件溶接或焊接在—起,同 a守仍維持焊接或熔接點上的彈性壓縮,防止電接觸件由於 熱膨脹及機械振動而達成在焊接或熔接點中的屈服應力。 彈性接觸件使得可能在組件之構造中以較寬的公差組 列0 孩锨集中、高效及散熱An ideal power solution for the gradual rise in energy demand on the ball. Sun Ten = Mainly limited to the high cost of the system. Currently, the best, has reached a cost of about $2 per watt, but, for the pool system ^ ^ ^ 竞争 compete with the conventional power supply, and to achieve four times the cost reduction or reach $ 〇 5 per watt. Almost all of the cost of a solar array is due to the current large number of expensive semiconductors used in cell devices. Current solar power: Technology makes arrays expensive, inefficient, and sometimes impossible. Our innovation is to mass produce elastic contacts (which also concentrate light: using expensive semiconductors). The battery array is not overheated by the effect of effective heat removal of smaller discrete photovoltaic cells. The method of reducing efficiency can reduce the cost of system semiconductors. If the cost per unit area of the concentrated optical device is significantly lower than the cost of the semiconductor, the total cost per unit area of the photovoltaic special battery, the cost of the generated electric power is reduced. We estimate that the cost of materials from four to hundreds of times the cost of photovoltaic cells can be reduced due to the far lower cost of semiconductor micro-optical concentration systems. The practical state of photovoltaic arrays that form thousands of discrete photodiodes 7 200824134 has led to the challenge of reliably and efficiently forming electrical and thermal connections to thousands of discrete semiconductors over a range of temperatures. It has been found that attempts to form long strings of polyoxynitride diodes mounted on plastic substrates result in stress and crack failure due to differential thermal expansion occurring in the assembly. In this patent 'elastic electrical contacts and thermal contacts are used to hold the semiconductor body in place and the assembled system is bendable and subjected to a wide range of temperature changes without loss of a series of temperature coefficients Contact between materials or mechanical disintegration occurs. It is also possible to periodically change the geometry of the electrical contacts on the substrate and the direction of the circuit to avoid accumulation of yield stress in the electrical contacts due to differential thermal expansion or bending of the system. Thereby, the electrical contacts are held in an elastic state. The electrical contacts can be welded or welded together to maintain the elastic compression on the welding or fusion joints to prevent the electrical contacts from achieving yield stresses in the weld or weld joints due to thermal expansion and mechanical vibration. Elastic contacts make it possible to organize the components in a wide tolerance range. 0 concentrating, efficient and cooling

^ ”叫丁入1,/L* ’予命1于的 簡單觀測’諸如’樹葉上之雨滴可將陽光數百倍地集中至 小點中而不引燃樹葉。#由集中陽光’太陽能電池可較有 效且較具成本效益地運作,其使用昂貴之半導體材料,以 將太陽能電池轉變成一可生產為離散電池、電連接線且盘 微集中反射鏡及透鏡配合的實用設備光伏特陣列(美國專 利5,482,568 ^吾人已建立若干個測試該㈣之集中 統。太陽能集中器系統(其使用2(^吉/-门心 ’、 A ^ 1文用2 em直徑圓柱形玻璃棒、 铭皮背反射器,及2 mm #紝曰 見、、、〇日日先伏特電池)達成相較於 8 200824134 無集中光學器件之光伏特電池之七倍的功率輸出增加。在 具有光集中之光伏特電池中存在可忽略之有害溫度上升。 在另一實驗中,吾人已觀測到在聚矽氧光伏特電池上具有 18微米之光點尺寸之來自顯微接物鏡的焦點達成34,000 suns的光學集中,同時僅經歷2度之溫度上升。光伏特電 池之效能僅經歷歸因於光伏特電池上至單點中的較高光集 中度的3%的效能降低。從而,藉由小尺寸光學器件、小 型光伏特電池,及熱量分布表面,可達成半導體之極高集 中度及因而達成高利用度。此專利之發明著重於可靠且低 成本地形成極大數目之光學集中器及個別電池以形成實用 電力系統的實用態樣。電連接器可形成如吾人先前之美國 專利5,482,568專利中之反射光學器件的部分。此電互連 系統亦可形成一容許點故障的可靠網路。 先前技術專利及專利申請案之清單 US 4,638,110、US 4,818,337、US 4,834,805、US 5,374,317 ' US 5,482,568、US 5,942,050、US 6,008,449、 US 6,252,155、US 6,294,723 B2、US 6,366,41 1 Bl、US 6,440,769 B2、US 6,653,5 5 卜 US 5,785,768、US 6,198,03 7、 US 6,204,545、US 6,294,822、US 6,744,073、US 6,706,959、 US 6,881,893、US 6,897,085 B2、US 6,966,661 B2、美國 專利申請案20020096206、美國專利申請案20020096207、 美國專利申請案 20020109957、美國專利申請案 20040001259、美國專利申請案20040182432、美國專利申 請案20040238833、美國專利申請案20050067622、美國 9 200824134 專利申請案廳㈣购、美國專利申請案测漏仙、 吳國專利申請案20050121813,及美國專利… 20060000503 〇 【發明内容】 本發明指導安裝,連接及使用 …口 ㈣汉便用小型光二極體,且將射 線引至光二極體,以提供雷功桌 μ u 捉仏蛋功羊问時解決源自太陽射線 之电功率生產中之效率及經濟性的問題。 藉由較小尺寸光學器件、較小 主工 钗j先伙特電池、熱量分布 表面,可達成半導體之極高集中度及(因 可將離散光二極體形成A呈古古μ a 门〜用度 心成為具有尚效能特性、精確尺寸及低 成本之球形及其他幾何形狀 * 光伏特電池之幾何形狀明藉由使用離散 池,將嗲箄籬螂伞 電座条來定位離散光伏特電 …4離放光伏特f、絲合至耐火及 之較小光學集中哭糸鉍〇 ▲ 犯亢子為件 ^…、、,且可罪地、針對熱膨脹進行調整, 且以低成本形成至放榮 彼4光二極體的電網路連接, 成本且可靠之電功率陣列。電連接器及網路 學器件及熱移除系統之部分。電互連系統亦可=先 正且容許點轉的可靠㈣。 成自技 【實施方式】 在以下框牟φ &、 在此等圖式中,、將本發明之若干個典型具體實例。 在介電材料中切割:裝及配置的若干變化。在圖1中, … 糟’或由諸如鹼石灰破螭之 製該槽。該玻螭槽形+ % 喝之材枓來模 -側邊4上彎曲成為一侧邊上之扁平部分3,且在另 以匹配在圖3中隨後所示之側邊開槽半 200824134 圓形球體的曲度。槽2可在扁平部分3上具有一略微錐度, 以適應半導體之較小安裝變化,且實現半導體球體至槽2 之緊密楔入配合。其他介電材料的實例為: •聚芳醯胺塑膠(Asahi-Kasei Chemicals Corporation Co. Ltd· Aramica Division ’ 1-3-1 Yakoh,Kawaski-Ku,Kawasaki 市,Kanagwa 210-0863,日本)。 • 聚亞胺塑膠,DuPont Films,HPF客戶服務, Wilmington,DE 19880 〇^ "Single into 1, /L* 'Send a simple observation of '1' such as 'the raindrops on the leaves can concentrate the sun hundreds of times into small dots without igniting the leaves. #集中集中阳光' solar cells It can operate more efficiently and cost-effectively, using expensive semiconductor materials to transform solar cells into a practical array of photovoltaic devices that can be fabricated into discrete cells, electrical connections, and disk micro-concentration mirrors and lenses. Patent 5,482,568 ^We have established several centralized systems for testing this (4). Solar concentrator system (which uses 2 (^吉/-门心', A ^ 1 text with 2 em diameter cylindrical glass rod, Ming Peel back reflector And 2 mm #纴曰见,,,〇日日先伏电池) Achieved a seven-fold increase in power output compared to 8 200824134 Photovoltaic cells without concentrated optics. Exist in photovoltaic cells with light concentration Negligible temperature rise can be neglected. In another experiment, we have observed that the focus from the microscopy objective lens with a spot size of 18 microns on a polyoxyxide photovoltaic cell achieves 34,000 suns of optics. At the same time, only a temperature rise of 2 degrees is experienced at the same time. The performance of the photovoltaic cell only experiences a performance degradation of 3% due to the higher concentration of light on the photovoltaic cell to a single point. Thus, with small-sized optics, Small photovoltaic cells and heat distribution surfaces enable extremely high concentration of semiconductors and thus high availability. The invention of this patent focuses on the reliable and low cost formation of a large number of optical concentrators and individual cells to form practical power. A practical aspect of the system. The electrical connector can form part of a reflective optic as in the prior U.S. Patent No. 5,482,568. This electrical interconnection system can also form a reliable network that allows for point failure. Prior Art Patents and Patent Applications List of US 4,638,110, US 4,818,337, US 4,834,805, US 5,374,317 'US 5,482,568, US 5,942,050, US 6,008,449, US 6,252,155, US 6,294,723 B2, US 6,366,41 1 Bl, US 6,440,769 B2, US 6,653,5 5 US 5,785,768, US 6,198,03 7, US 6,204,545, US 6,294,822, US 6,744,073, US 6,706,959, US 6,881,893, US 6,897,08 5 B2, US 6, 966, 661 B2, U.S. Patent Application No. 20040026206, U.S. Patent Application No. 20040026207, U.S. Patent Application No. 2004009957, U.S. Patent Application No. 20040001259, U.S. Patent Application No. 20040182432, U.S. Patent Application No. 20040238833, U.S. Patent Application No. 20050067622 9 200824134 Patent Application Office (4) Purchase, US Patent Application, Detecting Missing, Wu Guo Patent Application 20050121813, and US Patent... 20060000503 发明 [Summary of the Invention] The present invention guides the installation, connection and use of the mouth (four) Han used small light two The polar body, and the ray is led to the light diode, to provide the Leigong table to solve the problem of efficiency and economy in the electric power production from the solar ray. With the smaller size optics, the smaller main workmanship, and the heat distribution surface, the extremely high concentration of the semiconductor can be achieved (since the discrete photodiode can be formed into a pale ancient μ a The heart becomes a spherical and other geometric shape with outstanding performance characteristics, precise size and low cost. * The geometry of the photovoltaic cell is clearly positioned by using a discrete cell to locate the discrete photovoltaic special electric... 4 away Putting photovoltaics f, silk to refractory and the smaller optical concentration crying ▲ 亢 为 为 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The optical diode connection of the optical diode, the cost and reliability of the electrical power array, the electrical connector and the networked device and the part of the thermal removal system. The electrical interconnection system can also be positive and allow reliable turnaround (4). [Embodiment] In the following blocks φ &, in the drawings, several typical examples of the invention are made. Cutting in a dielectric material: several variations of the mounting and configuration. In Figure 1, ... bad' or by something like The soda lime is broken into the trough. The glass trough shape + % of the material is poured into the mold - the side 4 is bent to become the flat portion 3 on one side, and the other is matched later in Fig. 3 The side is slotted half 200824134 The curvature of the circular sphere. The slot 2 can have a slight taper on the flat portion 3 to accommodate small mounting variations of the semiconductor and achieve a tight wedge fit of the semiconductor sphere to the slot 2. Examples of dielectric materials are: • Polyarsenide plastic (Asahi-Kasei Chemicals Corporation Co. Ltd. Aramica Division ' 1-3-1 Yakoh, Kawaski-Ku, Kawasaki City, Kanagwa 210-0863, Japan). Imine Plastics, DuPont Films, HPF Customer Service, Wilmington, DE 19880 〇

•聚矽氧橡膠,Sylgard® 184聚矽氧光學耦合黏著劑 Dow Corning,Dow Corning Corporation,Auburn 工廠,53〇〇 11 Mile 路,Auburn MI 4861 1 USA 〇 • EVA EWax®(乙烯醋酸乙烯酯)Dup〇nt c〇rp〇rati〇n, Wilmington,DE 19880。 在圖2中,展示了介電質u之横截面圖,其中槽i3 被切割或模製至該介電質中。此圖2亦可用作穿過固持單 個半導體珠之弧形半球形孔之橫截面的實例。在此圖2中, 將諸如聚矽氧橡膠(Sylgard® 184聚矽氧光學耦合黏著劑) 之彈性基板薄膜17沈積至介電玻璃基板材料u中之槽13 中且允許其固化。將電傳導薄膜^^、^、^(諸如, 金、鉑、鈀、銀、錫、鋁、銻、鉛、銅、鋅、鈦、鉬、鈕、 鎢、铭、鎳、碳、秒、鐵、鉻、飢、鈮、錯、铜、此等材 料之合金’或傳導化合物,諸如,氧化錫、氧化辞,或摻 雜侧之鑽石)真空蒸鍍至彈性薄膜17上。將傳導薄膜12、 沈積至槽13巾半處。當半導體珠穩固處於適當位置 200824134 中時’傳導薄膜與半導體珠接觸之接觸點i2、i4將接近 f之邊緣的頂部。電接觸薄冑12、"並不沈積於介電基 & P (槽16)上。傳導薄膜12、14中的此間隙16在 1體座架中形成電斷開部分°们3之扁平電極表面12 弓曲屯極表Φ 14與光二極體之各別扁平及彎曲電極的 接觸將界定圖3中所示之半導體珠的運動座架(kinematic mount) 〇 在圖3中’展不置放;雷所。, I双電貝21之槽31中的半導體 之球形珠25、24、29、26的;t生番二㈤ Μ的k截面圖。將諸如,Sphela_ 矽光二極體(SPhelar⑨’ Kyosemi c〇rp〇mi〇n 之商標,949 2 EbiSU-cho,Fushimi_kuKy〇t〇 shi6i2 82〇i,曰本)之光二 極體珠32之扁平側對準至槽33或孔的扁平侧。當正確: 準珠時,其應滑動至槽31或孔31中,且能夠幾乎完全地 -口而填充孔3丨。虽具有扁平側之球形珠不與孔或槽3 1 正確對準日夺,珠應不能夠一直滑動至孔或槽Μ中。此種 類似鍵的特徵避免連接電池之減極性,且使得能夠使用 耸音來振動珠或振動基板21,以將珠25、24、29、Μ、% 「搖動(shake)」至正確方位及對準方向中,同時將半導體 珠置放於槽中(最佳電接觸件23、26與槽或孔31之薄膜 接觸器32、27接觸)。藉由在孔或槽31之底部處且有一 黏性、靜電的薄膜或能量吸收表面32(諸如,聚 當珠已正確配合槽且與槽之底部接觸時,該等珠將停留在 孔或槽31中。槽可為一較大薄片框架之部分,其可在藉 由珠填充期間被撬動打開,且當珠完全在適當位置中且^ 12 200824134 填塞於槽中時,可釋放較大薄片框架,藉此在珠上形成爽 力且進行電接觸。• Polyoxyethylene rubber, Sylgard® 184 polyoxyl optical coupling adhesive Dow Corning, Dow Corning Corporation, Auburn factory, 53〇〇11 Mile Road, Auburn MI 4861 1 USA 〇• EVA EWax® (ethylene vinyl acetate) Dup 〇nt c〇rp〇rati〇n, Wilmington, DE 19880. In Figure 2, a cross-sectional view of dielectric u is shown in which slot i3 is cut or molded into the dielectric. This Figure 2 can also be used as an example of a cross section through an arcuate hemispherical hole holding a single semiconductor bead. In this Figure 2, an elastic substrate film 17, such as a polyoxyxene rubber (Sylgard® 184 polyoxyl optically coupled adhesive), is deposited into the grooves 13 in the dielectric glass substrate material u and allowed to cure. Conductive films ^^, ^, ^ (such as gold, platinum, palladium, silver, tin, aluminum, bismuth, lead, copper, zinc, titanium, molybdenum, button, tungsten, indium, nickel, carbon, seconds, iron , chromium, hunger, bismuth, erroneous, copper, alloys of such materials or conductive compounds such as tin oxide, oxidized, or doped diamonds are vacuum evaporated onto the elastic film 17. The conductive film 12 is deposited to a half of the groove 13 of the towel. When the semiconductor bead is firmly in place in 200824134, the contact points i2, i4 of the conductive film in contact with the semiconductor bead will approach the top of the edge of f. The electrical contact thin film 12, " does not deposit on the dielectric base & P (slot 16). The gap 16 in the conductive films 12, 14 forms an electrical disconnection portion in the 1-body mount. The flat electrode surface 12 of the flat 3 is in contact with the respective flat and curved electrodes of the photodiode. The kinematic mount defining the semiconductor bead shown in Figure 3 is not placed in Figure 3; , a spherical cross-section of the spherical beads 25, 24, 29, 26 of the semiconductor in the slot 31 of the double electric bell 21; a k-sectional view of the second (five) t. A flat side pair of photodiode beads 32 such as a Sphela_ ray dimmer (trademark of SPhelar9' Kyosemi c〇rp〇mi〇n, 949 2 EbiSU-cho, Fushimi_kuKy〇t〇shi6i2 82〇i, 曰本) Admit to groove 33 or the flat side of the hole. When correct: the quasi-beads should slide into the slots 31 or holes 31 and fill the holes 3丨 almost completely. Although the spherical beads with the flat sides are not properly aligned with the holes or slots 3 1 , the beads should not be able to slide all the way into the holes or slots. Such a key-like feature avoids the polarity reduction of the connected battery and enables the use of the squeak to vibrate the bead or vibrate the substrate 21 to "shake" the beads 25, 24, 29, Μ, % to the correct orientation and In the quasi-direction, the semiconductor beads are simultaneously placed in the slots (the optimal electrical contacts 23, 26 are in contact with the film contacts 32, 27 of the slots or holes 31). By the presence of a viscous, electrostatic film or energy absorbing surface 32 at the bottom of the hole or slot 31 (such as when the beads have properly fitted into the groove and are in contact with the bottom of the groove, the beads will remain in the hole or slot) 31. The trough can be part of a larger lamella frame that can be swayed open during filling by the bead and can release larger flakes when the bead is fully seated in place and ^ 12 200824134 is packed in the trough The frame thereby forms a cool force on the beads and makes electrical contact.

.在操作中’光穿透形成電子電洞對之P/N㈣推雜層 24、25區中之半導體珠24、25 (p摻雜區在内部U,且n 摻雜半導體24在外部)。電子對的分離形成珠33之扁平 h的正極性(珠26上之外部接觸件上的負極性)。可 將:壓及電流供應i p/N接面之逆向過程,且光二極 觸電子電洞對之重組合來產生光。p材料25及電接 接觸杜電極22可形成熱電偶的一接面。N材料24、電 牛26及電極27可形成熱電偶之另一接面。若由光或 二外線輻射加熱半導體接面25 兔@ 士 σ & 且β寺接觸件經設計 為-有足夠之餘,以允許何體接φ 25、24 極散熱片20、28卜斗、设危, 車又、電 托拉a 升,皿度’且具有自半導體25、24、電 極接觸點26、23,乃雪托。 % (Seedbe η 及電極20、28的溫度梯度’則席貝克 連接(正應將在電地上形成電壓。此等電池可串聯 應=:=:)/產生電功率。—^ 除來自電極20、28::此且“:,則接面24、25將移 24.25 '(Peltier) 低教導率’諸如。錢觸件26及23可經形成為具有 穿隨層。盆他1右將該等電接觸件形成為點接觸件及介電 部分地具有— 熱傳輸的可能電接觸件為使接觸件26 真空間隙穿隨可發生,將電子自^電極使 來自基板U與半導體珠接觸件23、;62==27。 上之兩個電極2〇、 13 200824134 28之子層19、34的彈性壓縮維持此等組件間之接觸尺寸, 同時系統可經受一系列溫度,且膨脹係數可在電極2〇、28, 基板21 ’及半導體24、25間極為不同。槽或孔31中之半 導體珠的總成接著為電池之較大陣列之部分,該等電池輕 合至光學器件,且串聯及並列電連接28、20用於光伏特 陣列、發光二極體、熱電偶,或帕耳帖製冷器或熱離子轉 換器的電路。在槽31之底部中,使用膠3〇來將電池固定 至槽中。膠30 (諸如,Sylgard® 184)可為光學透明的, 且用作基板材料21與半導體珠32間之光學耦合材料,若 陽光經由基板21進入至半導體珠32中,則在操作中需要 該光學耦合材料。膠30亦可連同珠之外部上的抗反射塗 層29(抗反射碳氟化合物塗層,黯繼以印㈣⑽,ns T〇ranomon,Minato_kuT〇ky〇 1〇5 8437,日本)而用作一 抗反射塗層。應注意半導體25 <棒同樣可用於此槽幾何 形狀中。 在圖4中,展示了配合珠之形狀之孔37及電連接線刊 的實例。孔具有-扁平區域(其中電接觸薄膜沈積Μ於 該f平區域上),介„ 38(電斷開區域38)經遮蔽, 且弟二電接觸件經展示39塗覆孔37之圓形側4〇。 當將展示於圖3 生 中之知、截面中的不對稱半導體珠置放 於孔3 7中時,僅每?生 玲 田珠之扁平表面36與球體平行時,才允 許珠滑動至孔中。 ]了才兄 在圖5中 接觸件54、51 展示了與至透明光學透鏡/反射鏡50之電 53、55附接的半導體球體52之陣列的橫 14 200824134In operation, light penetrates the semiconductor beads 24, 25 in the P/N (tetra) dummy layer 24, 25 of the electron hole pair (p-doped region is internal U, and n-doped semiconductor 24 is external). The separation of the electron pairs forms the positive polarity of the flat h of the beads 33 (negative polarity on the external contacts on the beads 26). The voltage and current can be supplied to the reverse process of the i p/N junction, and the photodiode is recombined to generate light. The p material 25 and the electrical contact contact electrode 22 form a junction of the thermocouple. The N material 24, the electric cattle 26 and the electrode 27 can form the other junction of the thermocouple. If the semiconductor junction 25 is heated by light or two external rays, the rabbit contact is designed to have enough - to allow the body to connect φ 25, 24 pole fins 20, 28, Set the danger, the car and the electric torah a liter, and the degree of 'from the semiconductor 25, 24, electrode contact points 26, 23, is snow. % (Seedbe η and the temperature gradient of the electrodes 20, 28' are the Schiebeck connection (the voltage should be formed on the ground. These batteries can be connected in series =:=:) / generate electric power. - ^ except from the electrodes 20, 28 ::This and ":, then the junctions 24, 25 will move 24.25' (Peltier) low teaching rate 'such as. Money contacts 26 and 23 can be formed to have a wear layer. Pot 1 right to the electrical contact The component is formed as a point contact and the dielectric portion has a heat transfer possible electrical contact for the vacuum gap of the contact member 26 to occur, and the electron from the electrode is brought from the substrate U and the semiconductor bead contact member 23; == 27. The elastic compression of the upper two electrodes 2, 13 200824134 28 sub-layers 19, 34 maintains the contact dimensions between the components, while the system can withstand a range of temperatures, and the expansion coefficient can be at the electrodes 2, 28 The substrate 21' and the semiconductors 24, 25 are very different. The assembly of the semiconductor beads in the slots or holes 31 is followed by a larger array of cells that are lightly coupled to the optics and connected in series and in parallel. 20 for photovoltaic arrays, light-emitting diodes, thermocouples, or The circuit of the ear chiller or the thermionic converter. In the bottom of the slot 31, a glue is used to secure the battery into the slot. The glue 30 (such as Sylgard® 184) can be optically transparent and used as a substrate. The optical coupling material between the material 21 and the semiconductor bead 32 is required for operation if sunlight enters the semiconductor bead 32 via the substrate 21. The glue 30 may also be accompanied by an anti-reflective coating 29 on the exterior of the bead ( Anti-reflective fluorocarbon coating, which is used as an anti-reflective coating in India (4) (10), ns T〇ranomon, Minato_kuT〇ky〇1〇5 8437, Japan). It should be noted that the semiconductor 25 < In the groove geometry, in Fig. 4, an example of a hole 37 in the shape of a mating bead and an electrical connection wire is shown. The hole has a flat region (where the electrical contact film is deposited on the flat region of the f), (Electrical disconnection region 38) is shielded, and the second electrical contact is shown through the circular side 4 of the coating hole 37. When the asymmetric semiconductor bead shown in the schematic, cross-section of Figure 3 is placed In the hole 3, only the flat surface of the Lingtian bead is 36 When the ball is parallel, the beads are allowed to slide into the holes. The contacts 54 and 51 in Figure 5 show an array of semiconductor spheres 52 attached to the electrodes 53, 55 to the transparent optical lens/mirror 50. The horizontal 14 200824134

截面圖。藉由塗覆具有_蠻A ^ 土復/、兩弓曲透鏡外部區域(其中抗反射 塗層在刖表面58上)之成形破璃件5〇來形成光二極體陣 列將玻离50之为側成形為集中反射鏡。將反射鏡塗層 及電傳導薄膜51、53、55塗覆於玻璃50的背表面上。玻 璃或透明材料EVA 50之背侧具有槽49,該槽49用於形 成於其t之半導體珠’ # 49經成形使得^形半導體珠 心入至槽切,其彈性固持珠。在珠與壁之金屬至金屬接Sectional view. Forming the photodiode array by coating a shaped frit 5 具有 having an outer region of the two curved beams (where the anti-reflective coating is on the crucible surface 58) will be separated by 50 The side is shaped as a concentrated mirror. A mirror coating and electrically conductive films 51, 53, 55 are applied to the back surface of the glass 50. The back side of the glass or transparent material EVA 50 has a groove 49 for forming a semiconductor bead of its t' 49 which is shaped such that the semiconductor bead is cut into the slot, which elastically holds the bead. Metal to metal connection between beads and walls

觸點處之槽壁之約五度之斜面的錐度將確保珠將不能滑出 才曰(由於摩擦力大大高於滑動出楔狀物之力卜藉由角度 控制真m喷墨印刷’以度㈣電㈣塗來沈積反 射鏡塗層及電極54、51、53、55,以塗覆鏡面反射器區域, 且並非在玻璃50中之槽49的底部中塗覆,以在電極間形 成電斷開部分n塗覆區4 49透光。藉由以錫塗覆玻 璃來形成用於鏡面反射器電㉟54、51、53、55之適當薄 膜錫接著氧化成氧化錫以成為透明的 插入及模入至玻璃的槽中。成形背覆蓋板置放於光二體極體 之陣列上,且藉由聚矽氧橡膠密封劑而膠合至玻璃光學器 件2二極體陣列。背板、反射器及散熱片56之置放可經 由月板56之介電薄膜59將彈性壓力施加於半導體球體 上。介電材料59可為聚矽氧橡膠或聚醯亞胺,且亦可為 ,背板附接至電極54、51、53、55,半導體珠52,及玻 璃π的膠。膠亦可向上滲透至半導體52與玻璃5〇間之 凹槽49中,且用作玻璃與半導體49間之折射率過渡材料。 亦將密封璧放於周邊或陣列纟,以密封"體防止灰塵 15 200824134 及5垢。鋁背板可具有一面向太陽能電池的光亮拋光表 面,或一白色散射表面。背板之外部表面可具有一塗層, + …、色♦石夕氧塗料,以幫助背表面輻射區域保持背平 面/京爽亦可使用聚石夕氧橡膠密封劑來密封電池之背侧, 且確保電池與背平面間的優良熱接觸。可藉由在真空爐中 加熱總成或藉由一電偏壓來進行閃光燈照明來形成較大電 *以溶接所有接觸件而確保電極54、5 1、53、55與半導 體珠52間的電接觸。其他可能的接觸確保方法為將熱引 導至界面接觸件之經由玻璃或矽珠之至接觸件的能量超音 波脈衝。·可藉由超音波脈衝來附接至電路54、55之邊緣 的焊接引線。 ' 圖δ中,將矽半導體珠65置放於背表面66上之替 :安衣配置。在此设計中,背表面66為擠製玻璃薄片、 聚醯亞胺,或輥製或衝壓鋼或鋁薄片67,其以介電質(諸 士玻螭66)塗覆,且具有形成於其中之聚矽氧珠定位槽 槽69具有一塗覆於其上之銀或錫真空蒸鍍表面的電 傳導塗層64,及—藉由遮罩或藉由槽69《肩的遮蔽所形 成之間隙69。反射材料(諸如,銀、錫,或白色散射材料) 之外邛表面塗層67可經塗覆於基板66的背側,若介電質 為透明或半透明,則該塗層將用作穿經絕緣間隙69之光 的反射器。在外部表面67上,可塗覆黑色輻射體塗層68。 某一 If开y中,可省略黑色輻射體68塗層及反射塗層Μ, 且可使用穿過電池65之光照亮陣列下的空間。 在此°又δ十中,光集中系統係在一擠製玻璃薄片60上。 16 200824134 該光集中系統具有-上部透鏡61、反射鏡62 <一下部陣 列’及經形成以圍繞石夕半導體光二_ 65鬆散配合的槽 ㈠。為了形成完整陣列’沿周邊及可能地在光二極體“ 與玻璃60間’藉由諸如聚矽氧橡膠密封劑85之膠來將玻 璃薄片60附接至光二極體區域。若聚矽氧橡膠密封劑Μ (諸如,Sylgard® 184)為光學透明的,料可置放於陣The taper of the approximately five-degree bevel of the groove wall at the contact will ensure that the bead will not slip out (because the friction is much higher than the force of the sliding wedge), the angle is controlled by the true m inkjet printing. (d) Electro (IV) coating the deposited mirror coating and electrodes 54, 51, 53, 55 to coat the specular reflector region and not in the bottom of the groove 49 in the glass 50 to form an electrical disconnect between the electrodes Part of the n-coating zone 4 49 is light transmissive. The appropriate film tin for the specular reflector electricity 3554, 51, 53, 55 is formed by coating the glass with tin and then oxidized to tin oxide to become transparently inserted and molded into In the groove of the glass, the shaped back cover plate is placed on the array of the light body body body and glued to the array of the glass optics 2 diode by the polyoxyethylene rubber sealant. The back plate, the reflector and the heat sink 56 The placement can apply an elastic pressure to the semiconductor sphere via the dielectric film 59 of the moon plate 56. The dielectric material 59 can be a polyoxyethylene rubber or a polyimide, and the backing plate can also be attached to the electrode 54. , 51, 53, 55, semiconductor beads 52, and glass π glue. The glue can also seep upwards It penetrates into the groove 49 between the semiconductor 52 and the glass 5 and serves as a refractive index transition material between the glass and the semiconductor 49. The sealing layer is also placed on the periphery or the array to seal the body to prevent dust 15 200824134 and 5. The aluminum backing plate may have a bright polished surface facing the solar cell, or a white scattering surface. The outer surface of the backing plate may have a coating, a color coating, to help the back surface radiation area. Keep the back plane / Jingshuang can also use the poly stone rubber sealant to seal the back side of the battery, and ensure excellent thermal contact between the battery and the back plane. Can be heated in a vacuum furnace or by a battery Biasing is performed to illuminate the flash to form a larger charge* to dissolve all of the contacts to ensure electrical contact between the electrodes 54, 5, 53, 55 and the semiconductor beads 52. Other possible contact assurance methods are to direct heat to interface contact An energy ultrasonic pulse through the glass or bead to the contact. - A soldering lead that can be attached to the edges of the circuits 54, 55 by ultrasonic pulses. In Figure δ, the germanium semiconductor bead 65 is placed to Replacement on surface 66: in this design, back surface 66 is extruded glass flakes, polyimide, or rolled or stamped steel or aluminum foil 67, which is dielectric (Shishibo)螭 66) coated, and having a polyxylene bead positioning groove 69 formed therein having an electrically conductive coating 64 of a silver or tin vacuum evaporation surface coated thereon, and - by masking or lending The gap 69 formed by the groove 69 "shield of the shoulder. The reflective material (such as silver, tin, or white scattering material) may be applied to the back side of the substrate 66, if the dielectric is Transparent or translucent, the coating will act as a reflector for light passing through the insulating gap 69. On the outer surface 67, a black radiator coating 68 can be applied. In some If open y, black radiation can be omitted The body 68 is coated and the reflective coating is Μ, and the space under the array can be illuminated using light that passes through the battery 65. In this case, the light concentration system is on an extruded glass sheet 60. 16 200824134 The light concentration system has an upper lens 61, a mirror 62 < a lower array' and a groove (a) formed to loosely fit around the stone semiconductor light -6. In order to form a complete array 'to the periphery and possibly between the photodiode "with glass 60", the glass flakes 60 are attached to the photodiode region by a glue such as a silicone rubber sealant 85. If the polyoxyxene rubber The sealant Μ (such as Sylgard® 184) is optically transparent and can be placed in the array.

列中,以用作―光學耗合介面。此陣列之電輸出穿經電傳 導薄膜64,且經由陣列之邊緣傳出。 圖7:具有三維光學器件之光學集中的配置。在此圖 式中,以六邊形型樣81來封裝透鏡7〇及反射鏡^。其他 可能型樣為正方形及三角形。自玻璃72帛製光學集中器 70。上部表面70幵)成透鏡之陣列’且下部表面形成反射 鏡71及散熱片。 藉由使用玻㈣至空氣界面7〇之全内反射。將電子傳導 薄膜(諸如,氧化錫)塗覆71、76至反射鏡區域77:8〇 上的玻璃表面上’且塗覆至成形孔73、75中。 藉由玻璃反射器72上之間隙79將兩個電極77、8〇分 離於玻璃反射器之任一侧邊上。 在與兩個電極71、76接觸之玻璃反射鏡的末端處,將 半導體球體74、78插入至成形孔73中。可藉由在玻璃反 射鏡72之侧邊上模製一通道且接著以電子導體材料π、 的定向源(其將不會填充間隙79之遮蔽區域)塗覆玻璃 反射器來形成絕緣體間隙79。絕緣體間隙79可藉由在玻 璃反射鏡之侧邊上模製一通道來形成,且接著以定向源(其 17 200824134In the column, used as the "optical consumption interface." The electrical output of the array passes through the electrically conductive film 64 and is transmitted through the edges of the array. Figure 7: Configuration with optical concentration of three-dimensional optics. In this figure, the lens 7〇 and the mirror ^ are packaged in a hexagonal pattern 81. Other possible models are squares and triangles. The optical concentrator 70 is fabricated from a glass 72. The upper surface 70 is formed into an array of lenses' and the lower surface forms a mirror 71 and a heat sink. By using glass (four) to the air interface 7全 total internal reflection. An electron conducting film such as tin oxide is coated 71, 76 onto the glass surface on the mirror region 77: 8 ’ and coated into the shaped holes 73, 75. The two electrodes 77, 8 are separated from either side of the glass reflector by a gap 79 in the glass reflector 72. At the end of the glass mirror in contact with the two electrodes 71, 76, the semiconductor spheres 74, 78 are inserted into the shaped holes 73. The insulator gap 79 can be formed by molding a channel on the side of the glass mirror 72 and then coating the glass reflector with a directional source of electron conductor material π, which will not fill the masking region of the gap 79. Insulator gap 79 can be formed by molding a channel on the side of the glass mirror, and then with a directional source (its 17 200824134

將不會塗覆間隙79的遮蔽區域)來塗覆至玻璃72中。在 操作中’來自太陽之光經由透鏡7G聚焦,且由反射鏡71、 %、75、77、79、80反射至光二極體電池π上。透 鏡及反射鏡71、76之集中功率越高,陣列指向太陽之 精確度需要越大。藉由低集中度,(約四倍)約15之折 射率的玻璃72充分折射來自非垂直射線之光,使得集中 器陣列有效集中來自太陽之光,而無需追蹤太陽。未直接 聚焦至光二極胃74之光(諸如,經由雲層的散射光)可 在該等反射表面71、76上反射,且部分地到達光二極體科。 可固定、安裝、傾斜集中光伏特陣列,以最大化在中午及 緯度角之輸出。可將此等類型之低集中度集中器光伏特陣 列的應用用於結構裝置及非太陽追蹤裝置。微反射鏡並非 必須垂直於表面平面,且在某些設計中,纟陣列中可傾斜 ,射鏡’以當外部表面需要在獨立於日射角之界定角處 時’最大化功率輸出及效能。 在圖8中’展示了當將電池插入至一薄可撓性基板中 日:之光伏特電池及微㈣巾H的配置。在此配置巾,藉由 :製主要表面、固化及接著自主要表面移除來形成心槽 ,孔之基板介電隔膜9〇β接著,以定向或表面塗層^、 97、1〇5來塗覆介電複本90’以僅塗覆槽或孔1〇8之外部 表面及邊緣96、102、104。在孔1〇8的情形中可藉由基 板90之溝槽或屢印區域1〇3來提供一電間隙。其他可能 技術為絲網印刷、喷墨印刷、電漿噴塗塗層、電鍍、金屬b 塗層9卜96、97、102、1〇4、1()5(諸如,銀粉或錫粉)、 18 200824134 電導體薄獏的直咖^ 幻一二沈積。此等電傳導塗層91、%、97、102、 104、105 其 φ w θ 士,, 、 八有粒子,或以其形成與半導體光二極體 92 > 93 > 94 ν 1A1 , 5、1〇1、100、99、98之可靠導體接觸的方 式固化。可將廣泛種類之紋理、凹坑、台座、纖維、冰钱 槽、切片及彈性多晶型表面模製至複本表面接觸件%、 102 1〇4中,以幫助達成具有微粒光二極體接觸件92、95、 1〇卜98上之接觸件的彈性電接觸表面。複本表面Μ、外、 97、1〇2、104、1〇5亦可含有纖維,及/或具有置放於其中 之電傳導纖維。形成電接觸件91、96、97、1〇2、1〇4、1〇5 之另-方法為將電傳導箱、導線、纖維、傳導網絲、傳導 纖維基質’或粉末層壓至介電基板中。τ_構造步驟為藉 由背反射1 106銀、錫或鈦白色散射薄膜來塗覆模製介電 質90的背側。此可為載有二氧化欽粒子之聚石夕氧塗料。 在背反㈣U)6之外部表面上,沈積—保護性及熱輕射薄 膜1 07諸如,載有以紅外線輻射且將熱自陣列之背側輻 射移除之碳黑4氧化鈦粒子的聚矽氧塗料。將具有摻雜 99、 94及電導體接觸點92、95、1〇1、%之光二極體球體 100、 93 i放於結構之槽或孔中。藉由適當形成介電美 9〇及電接觸件1〇2、1〇4,光二極體球體1〇〇將僅以I方 式彈性配合於槽孔108中,且僅達成與陣列中之其他光二 極體93的適當電接觸。藉由所連接之光二極體陣列,^ 將陣列置放於真空爐中,以退火接觸件91、96、1〇2、1〇4、 92、95、101、98,且可能地將接觸件焊接於適當位置中。 為了保濩及將光二極體陣列組裝至一較大模組系統中,其 19 200824134 ==如氯氣碳化物(需要名稱)之材料中,或塗覆 有-夕氧橡膠密封劑且層壓至諸如圖l〇A、跡㈣、應、 =、:Λ中所示的玻璃薄片。可將電池定位及夹緊於玻璃 鏡間’其中溝槽或槽經定位以將光二極體球體 “邊如圖”所示之透鏡反射鏡總成的焦點或集中點The masking area of the gap 79 will not be applied to be applied to the glass 72. In operation, light from the sun is focused via lens 7G and reflected by mirrors 71, %, 75, 77, 79, 80 onto photodiode cell π. The higher the concentrated power of the lens and mirrors 71, 76, the greater the accuracy with which the array points to the sun. With low concentration, (about four times) the refractive index of glass 72 sufficiently refracts light from non-vertical rays, allowing the concentrator array to effectively concentrate light from the sun without tracking the sun. Light that is not directly focused to the photodiode 74 (such as scattered light through the cloud) can be reflected on the reflective surfaces 71, 76 and partially reach the photodiode. The concentrated PV array can be fixed, mounted, and tilted to maximize output at noon and latitude. Applications of these types of low concentration concentrator photovoltaic arrays can be used for structural devices and non-sun tracking devices. The micromirrors do not have to be perpendicular to the surface plane, and in some designs, the array can be tilted, and the mirrors' maximize power output and performance when the outer surface needs to be at a defined angle independent of the insolation angle. In Fig. 8, 'the configuration of the photovoltaic cell and the micro (four) towel H when the battery is inserted into a thin flexible substrate is shown. Here, the towel is configured to form a core groove by making a main surface, curing, and then removing from the main surface, and the substrate dielectric film 9〇β of the hole is followed by orientation or surface coating ^, 97, 1〇5 A dielectric replica 90' is applied to coat only the outer surface and edges 96, 102, 104 of the grooves or holes 1〇8. In the case of the hole 1〇8, an electrical gap can be provided by the groove or the overprinted area 1〇3 of the substrate 90. Other possible technologies are screen printing, inkjet printing, plasma spray coating, electroplating, metal b coating 9 96, 97, 102, 1〇4, 1 () 5 (such as silver powder or tin powder), 18 200824134 The straight wire of the electric conductor thin ^ ^ 幻一二 deposition. The electrically conductive coatings 91, %, 97, 102, 104, 105 have φ w θ 士 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The solid conductors of 1〇1, 100, 99, and 98 are cured by contact. A wide variety of textures, pits, pedestals, fibers, ice sinks, slicing and elastic polymorphic surfaces can be molded into replica surface contacts %, 102 1〇4 to help achieve particle photodiode contacts 92, 95, 1 The elastic electrical contact surface of the contact on the 98. The surface top, outer, 97, 1 〇 2, 104, 1 〇 5 may also contain fibers and/or have electrically conductive fibers disposed therein. Another method of forming electrical contacts 91, 96, 97, 1〇2, 1〇4, 1〇5 is to laminate an electrically conductive box, wire, fiber, conductive mesh, conductive fibrous substrate' or powder to the dielectric In the substrate. The τ_ construction step is to coat the back side of the molded dielectric 90 by back reflecting a 1 106 silver, tin or titanium white scattering film. This can be a polyoxic coating containing dioxins. On the outer surface of the back (4) U) 6, a deposition-protective and thermal light-emitting film, such as a polyoxyl oxide carrying carbon black 4 titanium oxide particles that are irradiated with infrared radiation and that remove heat from the backside of the array. coating. The photodiode spheres 100, 93 i having doping 99, 94 and electrical conductor contact points 92, 95, 1 〇 1, % are placed in the slots or holes of the structure. By properly forming the dielectric junction 9 and the electrical contacts 1〇2, 1〇4, the photodiode sphere 1〇〇 will elastically fit into the slot 108 only in the I mode, and only achieve the other light in the array. Proper electrical contact of the pole body 93. By placing the array of photodiodes, the array is placed in a vacuum furnace to anneal the contacts 91, 96, 1〇2, 1〇4, 92, 95, 101, 98, and possibly the contacts Solder in place. In order to protect and assemble the photodiode array into a larger modular system, it is 19 200824134 == such as chlorine gas carbide (required name) material, or coated with an epoxy resin sealant and laminated to Such as the glass flakes shown in Figure l〇A, trace (four), should, =,: Λ. The battery can be positioned and clamped between the glass mirrors where the grooves or grooves are positioned to focus or concentrate the lens mirror assembly as shown in the "edge" of the photodiode sphere

肝圖中,可將各種組件與微型集中器光伏特陣列組 衣’㈣成-電力系統。可將熱移除及熱健存與光伏特陣 ㈣之廢熱之光伏特陣列㈣合併,且提供光伏特陣列的 熱e理。微型集中器光伏特陣列以橫載面展示於圖$中, 具有抗反射塗層117、模製玻璃透鏡110、介面内層126、 反射器112、彈性下層及介電基板⑴、熱傳導基板114,In the liver map, various components can be combined with a micro-concentrator photovoltaic array to form a power system. The heat removal and thermal storage can be combined with the photovoltaic array (4) of the waste heat of the photovoltaic array (4), and the thermal array of the photovoltaic array can be provided. The micro concentrator photovoltaic array is shown in FIG. $ with a cross-sectional surface, and has an anti-reflective coating 117, a molded glass lens 110, an interface inner layer 126, a reflector 112, an elastic lower layer and a dielectric substrate (1), and a heat conducting substrate 114.

度以上藉由諸如Silgard( No)之膠在介面層中壓製在一起 及光伏特陣列之輻射㈣125及背表面之組件。輻射塗層 125可經紋理化以具有纖維、散熱片、凸塊、脊或波紋, 以增加對流傳熱。塗層將具有高紅外線發射率,諸如,載 =聚梦氧橡膠塗料中的二氧化鈦及碳黑或石墨粒子。應注 意模製《 m可具有m卜部表面,其可使保持清潔 防止巧垢較為容易。當將陣列組裝於玻璃與電池之反射鏡 陣列間時,其在陣列之最大操作溫度或陣列的最大操作溫 且在此溫度被固化。由於相較於反射鏡陣列112、ιΐ3、、 125及玻璃11〇之膠126的較高膨脹係數,膠126將在操 作溫度下收縮且受到張力。此介面層中之此張力將繼續牽 拉反射鏡112、介電背襯n3,及熱傳導基板114,且維持 20 200824134Above the degree is pressed together in the interface layer by a glue such as Silgard (No) and the radiation (four) 125 of the photovoltaic array and the components of the back surface. The radiation coating 125 can be textured to have fibers, fins, bumps, ridges or corrugations to increase convective heat transfer. The coating will have a high infrared emissivity, such as titanium dioxide and carbon black or graphite particles in the polymethane rubber coating. Care should be taken to mold the m to have a surface that is easy to keep clean. When the array is assembled between the glass and the array of cells, it is cured at the maximum operating temperature of the array or the maximum operating temperature of the array. The glue 126 will shrink and be subjected to tension at the operating temperature due to the higher coefficient of expansion of the glue 126 of the mirror array 112, ι 3, 125 and glass 11 。. This tension in the interface layer will continue to pull the mirror 112, the dielectric backing n3, and the thermally conductive substrate 114, and maintain 20 200824134

對至半導體珠115之接觸件的壓縮。電流自115珠上之串 聯連接接觸件112聚集,且遞送至陣列之側邊。自光伏特 陣列的電輸出示意性地展示為正端116及負端lu。可將 封閉體120置放於光二極體陣列125之背部上。此封閉體 120可很簡單,為引導對流氣流穿過光伏特陣列125之煙 b運,或可為循環流體122 (諸如,碳氟化合物、酒精, 或水)。最小化光伏特陣列125上之腐蝕影響的典型配置 為用風扇121、123將空氣122抽吸穿過光伏特陣列125 , 且將加熱空氣122用於結構加熱。當需要冷卻光伏特陣列 125或將熱遞送至結構時’可使風扇或泵i2i、123運作。 光伏特陣列之脊或凸起㈣125彡成比平坦光伏特陣列好 的自光伏4寸陣列至流動流體! 22之加熱器傳遞耦合。可將 相變材料119置放於陣列125之背部上或流動㈣12〇中, 以溫度穩定化吸收熱且將熱熱儲存於系統中。可將DC電 輸出116 111連接至一電轉換系统118,該電轉換系統⑴ 最佳化光伏特陣列的效能,且將電輸出轉換成所要之電輸 出(諸如,11G伏特交流電)。可將電容器、可逆燃料電 池’及/或電池組併人至電子裝置轉換系统ιΐ8巾,以在陣 列125附近儲存電能量。可將熱管系統12〇、124併入光 伏将陣列125 #月部中,以將廢熱有效遞送至結構。熱管 ⑽、124可具有由卫作流體124之雜質所^之沸點,或 舞性壁120以形成熱管的怪定加壓來設定熱管之沸點,以 僅當陣列溫度適用於被遞送至結構時來移除熱。 可將各種塗層117 (諸如 欽二極體薄膜之紅外線及 21 200824134Compression of the contacts to the semiconductor bead 115. Current is collected from the series connection contacts 112 on the 115 beads and delivered to the sides of the array. The electrical output from the photovoltaic array is shown schematically as a positive terminal 116 and a negative terminal lu. The enclosure 120 can be placed on the back of the photodiode array 125. The enclosure 120 can be simple to direct convective airflow through the photovoltaic array 125, or can be a circulating fluid 122 (such as fluorocarbon, alcohol, or water). A typical configuration that minimizes the effects of corrosion on the photovoltaic array 125 is to draw air 122 through the photovoltaic array 125 with fans 121, 123 and to use heated air 122 for structural heating. The fan or pump i2i, 123 can be operated when it is desired to cool the photovoltaic array 125 or to deliver heat to the structure. The ridges or bulges of the PV array (4) are 125 彡 better than the flat PV array from the PV 4 inch array to the flowing fluid! The heater of 22 transfers the coupling. The phase change material 119 can be placed on the back of the array 125 or in the flow (four) 12 Torr to stabilize the temperature and absorb heat and store the heat in the system. The DC electrical output 116 111 can be coupled to an electrical conversion system 118 that optimizes the performance of the photovoltaic array and converts the electrical output to a desired electrical output (such as 11 G volts AC). The capacitor, reversible fuel cell' and/or battery pack can be integrated into the electronic device conversion system to store electrical energy in the vicinity of array 125. Heat pipe systems 12A, 124 can be incorporated into the array 125 month portion to effectively deliver waste heat to the structure. The heat pipes (10), 124 may have a boiling point from the impurities of the working fluid 124, or the dancing wall 120 may form a boiling point of the heat pipe to set the boiling point of the heat pipe only when the array temperature is suitable for being delivered to the structure. Remove the heat. Various coatings 117 (such as the infrared rays of the Chin diode film and 21 200824134)

紫外線吸收薄膜,諸如,TPX sol TM二氧化鈦塗層,κ〇η Corporation ^ 91-115 Miyano Yamauchi-cho,Kishima-gun Saga轄區,曰本)施加至玻璃的外部表面,以降低源自半 導體之能帶隙下未利用之紅外線太陽輻射之光電池上的熱 流通量。抗反射塗層117可為諸如二氧化鈦之材料,其吸 收紫外光,且光催化性氧化玻璃之外部表面上的有機材 料,以保持表面透明且降低對玻璃丨1〇及光伏特陣列丨丨丨5、 112、113、114、125之可能紫外損壞。 在圖 10A、10B、l〇C、l〇D、10E、10F 及 l〇G 中,可 耦合至彈性接觸電池之各種替代光集中系統。 在圖10A中,展示了具有彈性接觸件133中之光二極 體132之精確置放的透鏡陣列13〇。透鏡陣列間之氣隙 提供熱絕緣,#中此陣列可用作玻璃窗或天窗。電接觸薄 膜可為透明氧化錫。接觸斷開部分展示於電池134間,且An ultraviolet absorbing film such as TPX sol TM titanium dioxide coating, κ〇η Corporation ^ 91-115 Miyano Yamauchi-cho, Kishima-gun Saga jurisdiction, 曰本) is applied to the outer surface of the glass to reduce the energy band derived from the semiconductor The amount of heat flux on a photovoltaic cell that is not utilized by infrared solar radiation. The anti-reflective coating 117 may be a material such as titanium dioxide that absorbs ultraviolet light and photocatalyzes the organic material on the outer surface of the glass to keep the surface transparent and reduce the glass 丨 1 光伏 and the photovoltaic array 丨丨丨 5 Possible UV damage of 112, 113, 114, 125. In Figures 10A, 10B, 10C, 10D, 10E, 10F and 10G, various alternative light concentration systems can be coupled to the elastic contact cells. In Fig. 10A, a lens array 13A having an accurate placement of the photodiodes 132 in the resilient contacts 133 is shown. The air gap between the lens arrays provides thermal insulation, which can be used as a glazing or skylight. The electrical contact film can be a transparent tin oxide. The contact disconnection portion is shown between the batteries 134, and

展示了彈性介電質,諸如,聚♦氧橡膠層128,及透明介 電基板127,諸如,扁平模製玻璃薄片。在此配置中,光 131將穿經透鏡陣列130,以聚焦於半導體132上,而不 反射離開反射鏡電極133。此系統並不捕獲未到達焦點132 之光’從而,若電接觸# 133為反射或透明的,則盥1他 透鏡表面具有低以129之漫射光將反射或穿過陣 列。光透射光學配置可適用於室内照明,諸如,天窗或窗, 其中直射陽光被捕獲,同時與表面具有低角度129的光(諸 如’清晨及夜晚光、自雲層散射的光,及大氣層的散射光) 錯過光一極冑132且穿至室内。在此實例中,半導體接觸 22 200824134 件133展示為扁平基板127,但其可為成形基板127,該 成形基板127幫助固持半導體且使用離開成形電極n 彈性層12 8、基板12 7 丨、,I货 土奴i27之先反射,以將光聚集至半導體132。 可能額外特徵為使彈性層組件128為鱗光體或閃辟體,且 將待轉換的在此層中所吸收的光轉換成碟光體或閃爍體的 特性發射光。閃爍體材料之實例為蒽,其可溶解及分散至 聚合物或橡膠(Pfaltz and Bauer,m E細㈣^ 鲁w命―CT 06708 )巾。墙光體之實例為以銅或銀之养 雜劑活化的硫化辞(zns)。磷光體之另一實例為將较光 轉換成黃光的紀!呂石榴石晶體。在所有角度發射特性發射 光,但由於材料128之彈性薄片之全内反射,及離開電極 127的反射,及基板材料127内反射,將光傳遞至光二極 體’其中彈性層m改變角度及厚度。相較於碟光體,使 用閃爍體之優點為其並不吸收其自身的特性光及較低能量 光子,從而,閃爍體可用於透射組件13〇、1〇9及讓較低 • 能量光子經由光學器件聚焦的彈性層128中。由於内反射 及低特性光吸收之閃爍層可有效聚集來自大面積或容積之 光學組件130、、128的轉換光,且將其遞送至光二極 體132。預期將磷光體及散射器用於非透射組件(諸如, 電極133、彈性層228,或基板127)上,且亦可用以將非 聚焦光129重定向至光二極體i32。 在圖10B f,費涅或全像光集中器137經展示為光集 中兀件。此為可用以將光集中至離散光二極體之不同類型 光學器件的實例。在此實例中,展示了費涅透鏡137之橫 23 200824134 截面圖。光136穿經透明透鏡材料137,且接著自費淫透 鏡之小面折射,且聚焦至半導體138。光學元件137' ^可 為:像透鏡,其可藉由透明材料137 <内部表面中的繞射 型樣(諸如,溝槽)而非具有寬範圍之至光二極體US之 入射角的折射來將光集中至光二極體138。在此實例中, 基板材料139為固持矽光二極體138之接觸電極126、⑽ 的成形彈性聚醯亞胺基板。如在圖1〇A中之先前實例中, • 彈性基板I39可為一散射表面、閃爍體,或磷光體,且用 作一轉換器,及最初並未聚焦至光二極體138的光之管道。 在圖10C巾,展示了前纟面上之背反射器及光二極體 陣列的實例。在此實例中,入射光穿經143彈性基板及電 導體。光143反射離開鋁反射器145,且集中至光二極體 142上。藉由兩個透明電接觸件144、164 (諸如,氧化錫 或藉由諸如碳氟化合物之彈性基板材料固持於光二極體上 之不透明銀電導體的較薄網路)來固持光二極體142。可 φ 將透明材料I62 (諸如,聚矽氧橡膠)置放於傳導電極144 與反射鏡145間。成形透明彈性基板材料141 (諸如,碳 氟化合物塑膠),以形成圍繞半導體本體142之彈性夹具, 且亦用作直接入射光之透鏡。 在圖10D中,展示了在背表面上具有光二極體的 Cassigranian光集中系統。在此配置中,光穿經透明玻璃 覆盍薄片、穿經空氣或透明材料空腔1 53、反射離開 成形反射鏡147、在安裝147於玻璃覆蓋薄片上之成形反 射鏡上進行第二次反射,且聚焦至光二極體丨5〇。 24 200824134Elastomeric dielectrics are shown, such as polyoxyxene rubber layer 128, and a transparent dielectric substrate 127, such as a flat molded glass sheet. In this configuration, light 131 will pass through lens array 130 to focus on semiconductor 132 without being reflected off mirror electrode 133. This system does not capture light that has not reached focus 132. Thus, if electrical contact #133 is reflective or transparent, then the surface of his lens has a low 129 diffused light that will reflect or pass through the array. The light transmissive optical configuration can be adapted for indoor illumination, such as skylights or windows, where direct sunlight is captured while having a low angle 129 of light with the surface (such as 'early morning and night light, light scattered from the cloud layer, and scattered light from the atmosphere) I missed the light and walked through the room. In this example, the semiconductor contact 22 200824134 piece 133 is shown as a flat substrate 127, but it can be a shaped substrate 127 that helps hold the semiconductor and uses away from the shaped electrode n elastic layer 128, substrate 12 7 , , I The cargo slave i27 is reflected first to concentrate the light to the semiconductor 132. It may be an additional feature that the elastic layer assembly 128 is a scale or a flash body and converts the light absorbed in this layer to be converted into a characteristic emission of a light or scintillator. An example of a scintillator material is ruthenium which is soluble and dispersible into a polymer or rubber (Pfaltz and Bauer, m E (4) ^ Luw--CT 06708). An example of a wall light body is a vulcanization word (zns) activated with a copper or silver dopant. Another example of a phosphor is the conversion of light to yellow light! Lv garnet crystals. The characteristic emits light at all angles, but due to total internal reflection of the elastic sheet of material 128, and reflection from the electrode 127, and reflection within the substrate material 127, the light is transmitted to the photodiode' where the elastic layer m changes angle and thickness . Compared to a disc, the advantage of using a scintillator is that it does not absorb its own characteristic light and lower energy photons, so that the scintillator can be used for the transmissive components 13〇, 1〇9 and lower • energy photons via The optical device is in focus on the elastic layer 128. The scintillation layer due to internal reflection and low characteristic light absorption can effectively concentrate the converted light from the large area or volume of optical components 130, 128 and deliver it to the photodiode 132. Phosphors and diffusers are contemplated for use on non-transmissive components, such as electrode 133, elastomeric layer 228, or substrate 127, and can also be used to redirect unfocused light 129 to photodiode i32. In Fig. 10Bf, the Fresnel or holographic light concentrator 137 is shown as a light collection element. This is an example of a different type of optics that can be used to concentrate light to discrete photodiodes. In this example, a cross-sectional view of the Fener's lens 137 is shown in Figure 23 200824134. Light 136 passes through transparent lens material 137 and is then refracted by the facet of the self-contained lens and focused to semiconductor 138. The optical element 137' can be an image lens that can be refracted by a transparent material 137 <a diffraction pattern in the inner surface (such as a trench) rather than a wide range of incident angles to the photodiode US To concentrate the light to the light diode 138. In this example, the substrate material 139 is a shaped elastic polyimide substrate that holds the contact electrodes 126, (10) of the phosphor diode 138. As in the previous example in FIG. 1A, the elastic substrate I39 may be a scattering surface, a scintillator, or a phosphor, and function as a converter, and a light pipe that is not initially focused to the photodiode 138. . In Fig. 10C, an example of a back reflector and an array of photodiodes on the front face is shown. In this example, incident light passes through the 143 elastic substrate and the electrical conductor. Light 143 is reflected off of aluminum reflector 145 and concentrated onto photodiode 142. The photodiode 142 is held by two transparent electrical contacts 144, 164, such as tin oxide or a thinner network of opaque silver electrical conductors held on the photodiode by an elastomeric substrate material such as fluorocarbon. . A transparent material I62 such as a polyoxyethylene rubber may be placed between the conductive electrode 144 and the mirror 145. A transparent, resilient substrate material 141 (such as a fluorocarbon plastic) is formed to form a resilient clamp around the semiconductor body 142 and also serves as a lens for direct incident light. In Figure 10D, a Cassigranian light concentration system having photodiodes on the back surface is shown. In this configuration, light passes through the clear glass cover sheet, through the air or transparent material cavity 153, reflects off the shaping mirror 147, and performs a second reflection on the shaped mirror mounted on the glass cover sheet. And focus on the light diode 丨 5 〇. 24 200824134

Cassigranian光學器件具有第二反射器阻擋直接射線到達 半導體的光聚集缺點,但若存在屏蔽光二極體15G以防止 咼能κ輻射之需要,則此可為適用的。第二反射鏡147可 併入有屏蔽材料。經由聚石夕氧橡膠彈性子I⑸上之成形 !呂反射鏡接觸# 149進行至^:極體15()的電連接,且將 其組裝於聚酸亞胺介電基板152上。彈性子層i5i維持光 一極體1 5 0上之接觸壓力,即使整個系統經歷組件1 u ' 1 5 1、149目之差異膨脹。可將光學透明材料(諸如,聚石夕 氧橡膠)置放於前表面146與反射器149間。 在圖10E巾,展示了使用梯度折射率透鏡的光集中光 學器件。在此配置中,光學材料為彈性基板,諸如,經摻Cassigranian optics have the disadvantage that the second reflector blocks direct light from reaching the semiconductor, but this may be useful if there is a need to shield the photodiode 15G to prevent xenon gamma radiation. The second mirror 147 can incorporate a shielding material. The electrical connection to the pole body 15 () is carried out via the forming of the poly-stone rubber elastic member I (5), and the electrode 15 is assembled on the polyimide substrate 152. The elastic sub-layer i5i maintains the contact pressure on the light body 1 50, even if the entire system undergoes differential expansion of the components 1 u '1 5 1 , 149 mesh. An optically transparent material, such as polyoxo rubber, can be placed between the front surface 146 and the reflector 149. In Fig. 10E, a light concentrated optical device using a gradient index lens is shown. In this configuration, the optical material is an elastic substrate, such as

雜之聚梦氧橡膠及碳氟聚合物,其經分層及成形於折射率 增加之層155、156、157、161中,以將光聚焦至光二極 體160。光射線折射158離開聚矽氧橡膠之成形層155、 ⑼、157、16卜以聚焦於光二極體16〇 ±。將接觸電極⑼ 弹性壓製於光二極體上。折射材料之最後層經模製以當將 光二極體壓入至空腔中時形成壓縮空腔161。空腔Μ!"麫 設計有電極,以進行至光二極體1 6〇的接面接觸。 在圖IGF巾,展示了 -傾斜或離軸集中機制。此使陣 列可並不垂直於來自太陽之射線165 (因為可能之架構原 因),或此使陣列相對於入射光165表面幾何形狀傾斜二 利用色像差。可將相對於光譜的折射率展散用於傾斜之耐 火表面,以將光譜之不同波長部分置放於針對太陽光續' 該部分所最佳化的不同光二極體中。通當, φ 尤Μ —角度穿 25 200824134 經耐火材料會導致以最大角度折射之紅光1 7 1,及接著綠 光172,及最後為具有最低光折射的藍光169。從而,可 配置光二極體170、168、169之列以最佳截取光之光譜展 散:第一列中的紅光光二極體170、第二列中之綠光光二 極體168,及第三列光二極體169的藍光外部列,其在與 具有傾斜幾何形狀的微型集中器玻璃166耦合之反射槽167 中。將光二極體置放且藉由諸如圖3中所示之聚矽氧橡膠 膠合至彈性透明耐火材料中之成形彈性空腔中;其中電接 觸薄膜形成至電池堆疊170、168及1 69之兩侧的壓縮接 觸 167。 在圖1 1中,以橫截面展示了具有不同能帶隙之層181、 184 180的多層光一極體半球體。亦展示了光譜展散及聚A hybrid polyoxymethylene rubber and a fluorocarbon polymer which is layered and formed in layers 155, 156, 157, 161 having an increased refractive index to focus light onto the photodiode 160. The light ray refraction 158 leaves the forming layers 155, (9), 157, 16 of the polyoxyethylene rubber to focus on the photodiode 16 〇 ±. The contact electrode (9) is elastically pressed onto the photodiode. The last layer of refractive material is molded to form a compression cavity 161 when the photodiode is pressed into the cavity. The cavity is Μ!"麫 The electrode is designed to make contact with the junction of the photodiode 16 6 。. In the Figure IGF towel, a tilt- or off-axis concentration mechanism is shown. This allows the array to be non-perpendicular to the ray 165 from the sun (because of possible architectural reasons), or to tilt the array relative to the surface geometry of the incident light 165 to exploit chromatic aberrations. The refractive index relative to the spectrum can be used for the tilted fire resistant surface to place different wavelength portions of the spectrum in different photodiodes optimized for the portion of the sunlight. Circulation, φ Μ Μ — angle through 25 200824134 The refractory material causes red light 161, which is refracted at the maximum angle, and then green 172, and finally blue 169 with the lowest light refraction. Thus, the array of photodiodes 170, 168, and 169 can be configured to optimally intercept the spectral spread of light: the red light photodiode 170 in the first column, the green light photodiode 168 in the second column, and the first The blue outer tier of the three columns of photodiodes 169 is in a reflective trench 167 that is coupled to a miniature concentrator glass 166 having a sloped geometry. The photodiode is placed and glued into the shaped elastic cavity in the elastic transparent refractory by a polyoxyxene rubber such as that shown in Figure 3; wherein the electrical contact film is formed to the battery stacks 170, 168 and 169 Side compression contact 167. In Fig. 11, a multilayer light-polar body hemisphere having layers 181, 184 180 having different energy band gaps is shown in cross section. Also shows the spectrum spread and convergence

焦透鏡176之部分切口。藍光子吸收高能量能帶隙光二極 體層1 8 0為半球形光二極體之外部層。綠光吸收及中間能 帶隙能量光二極體層184為半球體的下一層。紅光吸收及 最低能帶隙層光二極體181為核心半球體。半導體之三個 層181 1 84、18〇及分離電極被展示為半球形幾何形狀之 可能分層式光二極體的實例。可使用較多或較少之光二極 體層’且可藉由中心球冑181之多個塗層來形成該等光二 =層。每一光二極體層i8i、i84、i8〇將具有形成光伏 先一極體之集中及電壓梯度的雜質摻雜或極間層。在光 -極體之外部上’添加半球體之抗反射塗^ η 此.二射塗層174可為梯度指數部分材料,或可為二之 一波長厚的透明材料塗展 致茲 复層其猎由相消干涉光之反射來達 26 200824134 成抗反射。為了最佳化至光:極體181、184、刚之光透 射,可調整抗反射塗層174,以最大化光二極體半球體之 頂部處的紅光178透射’且接著最佳化球體之側邊上之較 短波長177、179之光的透射。由於球形形狀及球體之側 邊上之光的入射角度,均勾厚度之四分之一波長抗反射塗 層174將尖峰透射位移至較長波長。從而,對於光集中系 統且當將光方向大體控制於光二極體球體上時,將在球體 鲁之側邊上薄化最佳四分之一波長抗.反射㈣174,以補償 入射角度改變。對於此特定實命卜當光被光譜分布於光二 極體球體上時,可在球體之側邊上甚至更多地薄化四分之 =波長抗反射塗層174,以最佳化入射於該等侧上之綠及 藍光177的光透射。可藉由真空蒸鍍源及使用半球體上之 入射角度的效應來完成此類型之厚度剖面變化的塗層,從 而產生較薄塗層。 將分層式光二極體半球體1 8 1、1 84、1 8〇、丨74置放於 φ 接近紅光179之焦點的聚焦光學器件176後。入射白光175 經光譜展散(具有色像差),其中折射率隨著光之波長而 變化。通常,經由玻璃之紅光178具有比綠光199及藍光 177兩的折射率。將半球體光二極體ι81、ι84、18〇置放 於透鏡176之紅光的焦點179後,使得其最佳化至分層式 光一極體中之有色光譜的空間分布,以將紅光焦點179就 置放於光二極體外部或中心紅光吸收光二極體1 81内部。 相繼地’綠光199將形成一較大點,且被更有效地吸收至 光一極體之綠光吸收能帶中(由於經由傾斜光二極體層184 27 200824134 之較長路徑長度)。藍光177點將具有最大直徑,且最有 效地吸收於針對藍光吸收及轉換所最佳化的外部光二極體 層中。較長波長之紅光178大體上將以比綠光199及藍光 177高的角度經由玻璃176折射。紅光178將以低吸收率 穿經藍光光二極體180及綠光光二極體184,因為其處於 此等兩個光二極體之激勵能帶隙下。光在分層式半球形光 二極體181、184、180上的此種光譜、空間及角分布將趨 % 向最佳化光二極體電池中之每一者的效能,而不必須實體 分離光二極體電池。綠199及紅178光中之一部分將照射 藍180及綠184最佳化之光二極體(其中此等光的光子在 藍及綠光最佳化之光二極體之能帶隙能量下),且部分地 穿過並到達綠184及紅181分層式光二極體。分層式球形 光二極體的此分層式構造可比形成接著置放於一起之不同 光電池便宜。此幾何形狀中之電極接觸件展示為附接的傳 導金屬接觸件183、181。將内部層接觸件182附接至紅光 鲁極體1 8 1之中心的暴露表面,且將外部接觸件1 8 3附接 至外部藍光二極體層18〇之表面且經由抗反射塗層174。 至此半球形珠之彈性接觸件幾何形狀之細節的實例展示於 圖3、圖128及圖14中。理想地,電接觸件182、183反 射光,且並不阻擋至光二極體之光(諸如,在圖14的彈 $接觸件實例中)以實現此圓形光點聚焦。機械接觸件將 需要進行與中心點接觸件182之中心接觸,且使用聚矽氧 球體與形成配合表面的對準,以僅允許適當電接觸及將分 層式光二極體置放成中心中之紅光及周邊上之藍光之徑向 28 200824134 光譜分散型樣。 應注思粗化或欲度梯度抗反射塗層1 7 4可有利地用於 此幾何形狀中,以避免如較早提及之典型四分 j 〜 疫長抗 反射塗層的光譜及角度選擇性。 若使用半導體固持空腔之槽型式,則中心接觸件可具 有一凸起按鈕182及一介電周邊185塗層,諸如,延伸而 覆盍綠184及藍180光二極體之邊緣以防止短接至沿溝槽 之電接觸件的抗反射塗層。 在圖12A中,藉由研磨兩侧上之微粒珠分層式光二極 體來形成光二極體的替代配置。藉由研磨兩側上之珠,内 部摻雜層274及其他光二極體272可藉由兩個電接觸件 273、275來近接。具有兩個扁平側而不是單一扁平側的此 種珠的幾何形狀亦可有利地用以進行電接觸。作為分層式 光二極體之實例,形成直徑為五百微米的InP珠274。InP 珠274經摻雜為一 n型半導體。接著,藉由金屬有機汽相 φ 蟲晶而對1ηΡ珠塗覆約兩微米厚之η型InGaAs層272。接 著’塗覆兩微米厚之p型InGaAs層271及濺鍍沈積的金 鉻塗層270。接著,在兩側上研磨珠,且藉由真空沈積之 沈積或將鎳/金接觸件272、275電鍍至中心來形成電接觸 件。存在材料之許多變化,以產生分層式光二極體或光發 射體。其他適當基板珠半導體為Ge、Si、SiC、GaAs、GaP、 Ga、GaN、CdTe、AlGaP、AlGaP、AlGaAs、CuInSe2、 Cu(InGa)Se2、GaSb、InAs、CuInSe2、Cu(InGa)Se2、CuInS、 GaAs、InGaP、AlGaP 及 CdTe。 29 200824134 在圖12B中,展示了至具有邊緣281、292及中心接 觸件286、287之光二極體珠的槽或空腔電接觸件。在此 實例中,將如圖12A中所展示的藉由研磨分層式光二極體 珠的兩側所構造之光二極體珠插入至具有兩個侧接觸件 2 80、287及一背概接觸件289之介電質288中的彈性槽295 中。自金屬箔基板289 (諸如,錫)之頂部上之諸如聚醯 亞胺或聚矽氧橡膠的彈性介電質288中模製出槽或空腔 295。將光二極體珠 281、282、283、284、290、291、292 修 壓入至槽295中。兩個側接觸件280、287壓抵於光二極 體珠之中心接觸件286、285。在來自將光二極體珠壓抵於 背接觸件的覆蓋透鏡293或反射鏡之彈性壓縮下,光二極 體珠之邊緣導體281、292與槽或空腔295之底部處的箔 接觸件289接觸。模製覆蓋玻璃293由張力固持,且經由 Silguard®透明介面膠294而密封至接觸電極28〇、287, 該介面膠294在玻璃293與電極基板288、289間之壓縮 φ 壓力下於高溫下固化。在比膠固化低的操作溫度下,介面 膠294之熱收縮形成膠中之張力,其將覆蓋玻璃與電極向 彼此拉動,且形成接觸壓縮壓力。其他機械彈性、重力或 力機制可用以維持光二極體28卜282、283、284、290、291、 292上的彈性接觸壓力。 在圖13A中,展示了 一半導體珠對準及調控系統。在 :系統中,藉由來自聲音產生器185之聲音186或經由支 备板190之振動來振動具有一扁平側189的半導體珠1^。 珠188將自旋直到其到達最低能量為止,Jt時珠之扁平側 30 200824134 安置於扁平鐵氟龍187表面上,同時重力使該等珠固定。 聲音振動186之不同強度可用以調控珠,以將其移動到表 面遠處,或使其輕輕地旋轉且休止於最低能量狀態,其中 珠189的扁平側在鐵氟龍表面187上。鐵氟龍187具有靜 電荷,從而吸引珠188,且充分增加能量而使珠的扁平側 189安置於扁平鐵氟龍表面187上。可將高壓電極置 放於鐵氟龍187表面後,且自產生器191將高壓施加至電 φ 極I90。至半導體珠188或鄰近電極193或周圍接地192 傳導表面之銳點電暈放電可完成至電荷電極19〇的充電電 路及電場線。所感應電場及半導體珠188上之電荷將該等 珠188固持抵在鐵氟龍表面187上。 圖13B中所展示地,由於鐵氟龍表面2〇4之低滑動摩 擦係數,可藉由推動桿2⑽使珠2〇1 (其中珠的扁平側對 準至表面)在鐵氟龍表面2〇4上滑動而不滾動。推動桿2〇〇 可推動半導體201,以將半導體成列地對準,同時所有扁 φ 平側相抵於支撐板205上之鐵氟龍表面204。推桿可具有 成形空腔202、203,以將個別半導體固持於離散位置中。 若半導體具有錯誤位置或對於形成單一列而言存在過多的 半導體,則此等珠將不配合至推桿2〇〇之成形空腔2〇3中, 且可與已配合至推桿之槽202或孔203中的珠201分離, 且被彈出,隨聚矽氧橡膠表面接觸帶離,或被掃出鐵氟龍 表面204及推桿2〇〇。 圖13c中展示用以將半導體珠213壓入至成形反射鏡 或電接觸件及彈性基板210中之推桿216的橫截面圖。當 31 200824134 珠213滑動至成形空腔212電辞觸件2n、2i9中時,可 釋放或顛倒支撐板218上之電荷。推桿216亦可被加熱及/ 或可經由其施加聲音脈衝,以將珠2丨3接觸件214、 焊接或熔接至電接觸件211、219( 一旦其經插入且由電接 觸件固持器210所夹緊)。可由光或磁場來加熱珠(一旦 :、、二插入至固持為中)以達成接觸件2 14、220之焊接或 熔接。半導體珠可具有由諸如鎳之磁性材料所製造的電接 觸件214、220。從而,至磁化表面2〗8之磁性吸引或磁場 中之對準可用以在固持器、218、217上對準及固持珠。可 用以對準珠的其他性質為在電場中使用珠213 t自極化電 場,以對準珠213。應注意黏性及靜電性質聚石夕氧橡膠塗 覆表面215可用作珠固持器,以使珠可被固持而不滾動及 傳遞。可實施半導體珠之插入,#中彈性㈣21〇上的成 开^孔隙212電接觸件211、219保持打開以供插入,且接 著被釋放,以機械夾緊珠213,且使弧形珠接觸件a"電 接觸至弧形電接觸件211,且内部珠接觸件22〇接觸彈性 固持器210之扁平表面接觸件219。固持器21〇的機械夾 緊亦使珠213可被固持,以使推動器216可與珠213分離, 且回縮推動器216。推動器216可在成形表面222内部具 有一聚矽氧黏性表面215,以使對準之珠可黏著於空腔中, 且未對準之珠可被搖落。 圖14。在橫截面圖式中展示了透鏡反射鏡電極壓縮配 置。連接球形接地半導體光二極體或接地棒233的另一配 置為形成具有反射鏡接觸件237、238、242之空腔,該: 32 200824134 反射鏡接觸件將僅允許在一方位中連接電池。成形凹區或 凹槽239、241具有一中心接觸件242及側接觸件239、238 (如圖14中所示地)。可藉由將電傳導粉末油墨(諸如, 銀、銅、鎳、石墨、銘、錫及合金)噴墨噴塗至介電基板 (諸如,模製或成形聚醯亞胺239、241)上來形成此等接 觸件237、238、242及通道243。形成電接觸件及電路薄 膜237、242、238、243之其他方法為將電傳導薄膜錢鑛 沈積、電漿噴塗、電鍍、箱壓印至預成形(扁平薄片)或 成形介電基板239、241上。其他選擇為塗覆或層壓一薄 片金屬基板,以固持接觸件的形式,且用作另一保護性背 表面244。側接觸件237、238具有一自電接觸件a?、2列 及介電背襯絲239、241之扁平底部向上沈積到一部分 ^ ’丨$ 土層23 5、236 ’以使半球形珠233不可與側接觸 :極237 238電接觸(若珠233的圓形表面正觸碰中心 電^觸件)。介電塗層235、236 (諸如,鐵氟龍 j聚合物)可具有一低摩擦係數’以允許半球形珠233 可谷易滑動及自旋,直釗主道 ^ 疋罝]+導體光二極體珠233之扁平侧 ==槽或凹區239,之扁平表面底部為止。 、—鬆政之珠拉向凹槽或凹1 239、241的底部, 且隨著珠最深地配合至凹槽或凹 側平行於底部),珠將到遠3之扁平 或聲立r - ^ 達取低能量狀態。若將振動能量 =二㈣加於半球形珠上,則珠可旋轉及自旋, 千截面配合相抵於凹槽或凹區239、Μ 4止。若在電極239、242、238與未展示之外部電= 33 200824134 強加電場,則可增強此重力效應。介電薄膜Μ9、Μ卜234、 236通常為永久駐極體,或可用強加的電場極化且充電。 藉由以鐵磁材料(諸如,鎳)在半球形珠⑶上形成中心 接觸件240,及由鐵磁材料(諸如,鐵或錄)製造中心接 觸件242 接著使接觸件242、24〇被磁化或置放於磁場 中,珠將在磁場中優先定向,且將經由中心接觸件24〇、242 來導向及集中磁場。此將充分增加與珠⑶之扁平表面之 對準珠的此里,該珠233之扁平表面平行於反射鏡接觸件 238、237之凹槽或凹區239、241。當正確對準珠時,侧 電極表面237、238與半球形珠233之側接觸。通常,將 摻雜光二極體半導體珠233,以具有在内部上之正電荷載 流子摻雜,及在外部上的負電荷載流子摻雜。從而,在珠 之扁平表面上的電接觸件與p内部層接觸242,且外 部表面接觸件237、238與N層接觸。由於具有介電塗層 235、236之珠233之側接觸件237、238與側接觸件如、曰 238間之摩擦係數的差,珠233將趨向黏著至凹區⑽、⑷ 中(-旦其進打金屬接觸)。可構成凹槽或凹區⑽m 之形狀及彈性’使得其在珠之任一側上形成一楔入接觸件 237、238,以固持珠(_旦其進行正確對準卜亦可 的為使對準過程在升高之溫度下發生,接近該溫度’珠之 ㈣觸件237、238將焊接或黏著至# 233的外部表面, 攸而,亦使側接觸件黏著於珠,且固持該等珠(—旦 ^平行表面對準及電接觸)。其他可能固持機制^凹 軋或凹區之底部中之介電分離器239、2 工昇有耀、聚 34 200824134 石夕氧橡膠,或黏性液體的較小小液滴,使得當對準珠 平表面時,藉由與珠233的扁 曰 十表面接觸來減少表面張力 月b 1。此將用作珠固持器,且充分辦加处旦、 於平行於凹槽或凹區之扁平夺之恥里卩將珠固持 又之扁千表面之珠的扁平表面中。 移除過量或未對準之j矣9 u '' 不τ半之珠233,總成可經倒裝且讓重力拉出 未固持於適當位置中之珠233。其他選擇為置放 = 性表面塗層(諸如,聚石夕氧橡膠)的成形工具,使得^A partial cut of the focal lens 176. The blue light absorption high energy band gap photodiode layer 180 is the outer layer of the hemispherical photodiode. The green light absorption and intermediate band gap energy photodiode layer 184 is the next layer of the hemisphere. The red light absorbing and lowest energy band gap photodiode 181 is a core hemisphere. The three layers of the semiconductor 181 1 84, 18 〇 and the separated electrodes are shown as examples of possible layered photodiodes of hemispherical geometry. More or less photodiode layers can be used and these photodiodes can be formed by multiple coatings of the central ball 181. Each of the photodiode layers i8i, i84, i8〇 will have an impurity doping or inter-electrode layer that forms the concentration and voltage gradient of the photovoltaic first pole. Adding a hemispherical anti-reflective coating on the outside of the photo-pole body. The dichroic coating 174 may be a gradient index portion material, or may be a two-wavelength thick transparent material coated with a layer of Hunting is reflected by the destructive interference light up to 26 200824134 into anti-reflection. To optimize to the light: polar bodies 181, 184, just the light transmission, the anti-reflective coating 174 can be adjusted to maximize the transmission of red light 178 at the top of the photodiode hemisphere and then optimize the sphere Transmission of light of shorter wavelengths 177, 179 on the sides. Due to the spherical shape and the angle of incidence of the light on the sides of the sphere, the quarter-wave anti-reflective coating 174 of the hook thickness shifts the peak transmission to a longer wavelength. Thus, for a light concentrating system and when the light direction is generally controlled on the photodiode sphere, the best quarter wavelength anti-reflection (four) 174 is thinned on the side of the sphere to compensate for the change in angle of incidence. For this particular life, when the light is spectrally distributed on the photodiode sphere, the quarter-wavelength anti-reflective coating 174 can be even thinned on the side of the sphere to optimize incidence on the sphere. Light transmission on the green and blue light 177 on the equal side. This type of thickness profile change coating can be accomplished by vacuum evaporation of the source and the effect of the angle of incidence on the hemisphere, resulting in a thinner coating. The layered photodiode hemispheres 18 1 , 1 84, 18 〇, 丨 74 are placed behind the focusing optics 176 near the focus of the red light 179. The incident white light 175 is spectrally spread (having chromatic aberration) in which the refractive index varies with the wavelength of the light. Typically, red light 178 via glass has a refractive index that is greater than green 199 and blue 177. The hemispherical photodiodes ι 81, ι 84, 18 〇 are placed behind the focus 179 of the red light of the lens 176, such that they are optimized to the spatial distribution of the colored spectrum in the layered photo-polar body to focus the red light. The 179 is placed outside the photodiode or inside the center red light absorbing photodiode 1 81. Successively, the green light 199 will form a larger point and be more efficiently absorbed into the green light absorbing energy band of the light-pole (due to the longer path length via the tilted light diode layer 184 27 200824134). The 177 dots of blue light will have the largest diameter and are most efficiently absorbed in the external photodiode layer optimized for blue absorption and conversion. The longer wavelength red light 178 will generally be refracted via the glass 176 at an angle higher than the green light 199 and blue light 177. The red light 178 will pass through the blue light diode 180 and the green light diode 184 at a low absorption rate because it is under the excitation band gap of the two photodiodes. This spectral, spatial and angular distribution of light on the layered hemispherical photodiodes 181, 184, 180 will tend to optimize the performance of each of the photodiode cells without the need to physically separate the light II. Polar battery. One of the green 199 and red 178 lights will illuminate the blue 180 and green 184 optimized photodiodes (where the photons of such light are at the bandgap energy of the photodiodes optimized for blue and green light), And partially through and reach the green 184 and red 181 layered photodiode. This layered construction of the layered spherical photodiode can be less expensive than forming a different photovoltaic cell that is then placed together. The electrode contacts in this geometry are shown as attached conductive metal contacts 183, 181. The inner layer contact 182 is attached to the exposed surface of the center of the red light lip body 181 and the outer contact 1 8 3 is attached to the surface of the outer blue diode layer 18 且 and via the anti-reflective coating 174 . An example of the details of the elastic contact geometry of the hemispherical beads so far is shown in Figures 3, 128 and 14. Ideally, the electrical contacts 182, 183 reflect light and do not block light to the photodiode (such as in the example of the spring contact of Figure 14) to achieve this circular spot focus. The mechanical contacts will need to be in contact with the center of the center point contact 182 and will be aligned with the forming mating surface using a polysiloxane ball to allow only proper electrical contact and placement of the layered photodiode in the center. The radial direction of the red light and the blue light on the periphery 28 200824134 Spectral dispersion pattern. It should be noted that the roughening or gradient gradient anti-reflective coating 174 can be advantageously used in this geometry to avoid the spectral and angular selection of the typical quarter-point anti-reflective coating as mentioned earlier. Sex. If a slot pattern of the semiconductor holding cavity is used, the center contact can have a raised button 182 and a dielectric perimeter 185 coating, such as extending over the edges of the green 184 and blue 180 photodiodes to prevent shorting An anti-reflective coating to electrical contacts along the trench. In Fig. 12A, an alternative configuration of the photodiode is formed by grinding the microbead layered photodiodes on both sides. The inner doped layer 274 and the other photodiode 272 can be in close proximity by the two electrical contacts 273, 275 by grinding the beads on both sides. The geometry of such beads having two flat sides instead of a single flat side can also be advantageously used for electrical contact. As an example of a layered photodiode, InP beads 274 having a diameter of five hundred microns are formed. The InP bead 274 is doped as an n-type semiconductor. Next, the 1 Ρ bead is coated with an n-type InGaAs layer 272 of about two micrometers thick by a metal organic vapor phase φ crystal. Next, a two-micron thick p-type InGaAs layer 271 and a sputter deposited gold-chromium coating 270 were applied. Next, the beads are ground on both sides and the electrical contacts are formed by vacuum deposition or by plating the nickel/gold contacts 272, 275 to the center. There are many variations in materials to produce a layered photodiode or light emitter. Other suitable substrate bead semiconductors are Ge, Si, SiC, GaAs, GaP, Ga, GaN, CdTe, AlGaP, AlGaP, AlGaAs, CuInSe2, Cu(InGa)Se2, GaSb, InAs, CuInSe2, Cu(InGa)Se2, CuInS, GaAs, InGaP, AlGaP and CdTe. 29 200824134 In Figure 12B, a slot or cavity electrical contact to the photodiode bead having edges 281, 292 and center contacts 286, 287 is shown. In this example, the photodiode beads constructed by grinding the sides of the layered photodiode bead as shown in FIG. 12A are inserted into have two side contacts 2 80, 287 and a back contact. In the elastic groove 295 in the dielectric 288 of the piece 289. A groove or cavity 295 is molded from an elastomeric dielectric 288 such as a polyimide or polyoxyxene rubber on top of a metal foil substrate 289, such as tin. The photodiode beads 281, 282, 283, 284, 290, 291, 292 are pressed into the grooves 295. The two side contacts 280, 287 are pressed against the center contacts 286, 285 of the photodiode beads. The edge conductors 281, 292 of the photodiode bead are in contact with the foil contact 289 at the bottom of the slot or cavity 295 under elastic compression from a cover lens 293 or mirror that presses the photodiode beads against the back contact. . The molded cover glass 293 is held by tension and sealed to the contact electrodes 28A, 287 via a Silguard® transparent interface adhesive 294 which cures at a high temperature under the compression φ pressure between the glass 293 and the electrode substrates 288, 289. . At a lower operating temperature than the cure of the glue, the heat shrinkage of the interface adhesive 294 creates a tension in the glue which pulls the cover glass and the electrodes toward each other and forms a contact compression pressure. Other mechanical resilience, gravity or force mechanisms can be used to maintain the elastic contact pressure on the photodiodes 28 282, 283, 284, 290, 291, 292. In Figure 13A, a semiconductor bead alignment and regulation system is shown. In the system, the semiconductor beads 1 having a flat side 189 are vibrated by the sound 186 from the sound generator 185 or by vibration of the support plate 190. The bead 188 will spin until it reaches the lowest energy, and the flat side of the Jt bead 30 200824134 is placed on the surface of the flat Teflon 187 while gravity forces the beads to be fixed. The different intensities of the acoustic vibrations 186 can be used to condition the beads to move them to the surface, or to gently rotate and rest at the lowest energy state, with the flat sides of the beads 189 on the Teflon surface 187. The Teflon 187 has a static charge to attract the beads 188 and substantially increase the energy such that the flat sides 189 of the beads are placed on the flat Teflon surface 187. The high voltage electrode can be placed on the surface of the Teflon 187, and a high voltage is applied from the generator 191 to the electric φ pole I90. An acute point corona discharge to the conductive surface of the semiconductor bead 188 or adjacent electrode 193 or surrounding ground 192 can complete the charging and electric field lines to the charge electrode 19A. The induced electric field and the charge on the semiconductor bead 188 hold the beads 188 against the Teflon surface 187. As shown in Fig. 13B, due to the low sliding friction coefficient of the Teflon surface 2〇4, the bead 2〇1 (where the flat side of the bead is aligned to the surface) can be made on the Teflon surface by pushing the rod 2(10). 4 slides over without scrolling. The pusher rod 2 can push the semiconductor 201 to align the semiconductors in a row while all of the flat sides of the flat φ abut against the Teflon surface 204 on the support plate 205. The pusher can have shaped cavities 202, 203 to hold the individual semiconductors in discrete locations. If the semiconductor has an erroneous position or there are too many semiconductors for forming a single column, the beads will not fit into the shaped cavity 2〇3 of the pusher 2〇〇 and may be mated to the slot 202 that has been mated to the push rod. Or the beads 201 in the holes 203 are separated and ejected, brought away with the surface of the polyoxymethylene rubber, or swept out of the Teflon surface 204 and the push rod 2〇〇. A cross-sectional view of the push rod 216 for pressing the semiconductor beads 213 into the forming mirror or electrical contact and the resilient substrate 210 is shown in Figure 13c. When the 31 200824134 bead 213 slides into the forming cavity 212 electrical contacts 2n, 2i9, the charge on the support plate 218 can be released or reversed. The pusher 216 can also be heated and/or can apply a sound pulse therethrough to solder, or weld the bead 2丨3 contact 214 to the electrical contacts 211, 219 (once it is inserted and by the electrical contact holder 210) Clamped). The beads may be heated by light or a magnetic field (once: , , and two are inserted into the holder) to achieve soldering or welding of the contacts 2 14, 220. The semiconductor beads may have electrical contacts 214, 220 made of a magnetic material such as nickel. Thus, alignment into the magnetic attraction or magnetic field of the magnetized surface 2 can be used to align and hold the beads on the holders 218, 217. Another property that can be used to align the beads is to use a bead 213 t self-polarizing electric field in the electric field to align the beads 213. It should be noted that the viscous and electrostatic properties of the polyoxo rubber coated surface 215 can be used as a bead holder so that the beads can be held without rolling and transferring. The insertion of the semiconductor bead can be performed, the opening of the elastic (four) 21 ^, the aperture 212 electrical contacts 211, 219 remain open for insertion, and then released to mechanically clamp the bead 213 and make the arcuate bead contact a " electrical contact to the arcuate electrical contact 211, and the inner bead contact 22 〇 contacts the flat surface contact 219 of the resilient retainer 210. Mechanical clamping of the retainer 21A also allows the bead 213 to be retained such that the pusher 216 can be separated from the bead 213 and retract the pusher 216. The pusher 216 can have a polyoxygen viscous surface 215 inside the forming surface 222 to allow the aligned beads to adhere to the cavity and the misaligned beads can be shaken. Figure 14. The lens mirror electrode compression configuration is shown in cross-sectional view. Another configuration for connecting the spherical grounded semiconductor photodiode or ground rod 233 is to form a cavity having mirror contacts 237, 238, 242, which: 32 200824134 The mirror contacts will only allow the battery to be connected in one orientation. The shaped recesses or recesses 239, 241 have a central contact 242 and side contacts 239, 238 (as shown in Figure 14). This can be formed by ink jet coating an electrically conductive powdered ink such as silver, copper, nickel, graphite, indium, tin, and alloy onto a dielectric substrate such as molded or formed polyimine 239, 241. The contacts 237, 238, 242 and the channel 243. Other methods of forming electrical contacts and circuit films 237, 242, 238, 243 are to deposit electrically conductive film deposits, plasma spray, electroplating, tanks onto preformed (flat sheets) or shaped dielectric substrates 239, 241 on. Other options are to coat or laminate a thin metal substrate in the form of a holding contact and as another protective back surface 244. The side contacts 237, 238 have a flat bottom of self-electrical contacts a?, 2 columns and dielectric backing wires 239, 241 deposited upwardly to a portion of the ''$' of soil layer 23 5, 236' to make the hemispherical beads 233 Do not touch the side: pole 237 238 electrical contact (if the circular surface of the bead 233 is touching the central electrical contact). The dielectric coatings 235, 236 (such as Teflon j polymer) may have a low coefficient of friction 'to allow the hemispherical beads 233 to slip and spin easily, straight to the main track ^ 疋罝] + conductor light dipole The flat side of the body bead 233 = = groove or recess 239, the bottom of the flat surface. - The pine needle is pulled toward the groove or the bottom of the recess 1 239, 241, and as the bead fits deepest into the groove or the concave side is parallel to the bottom), the bead will be flat to the far 3 or the sound r - ^ Take a low energy state. If the vibration energy = two (four) is applied to the hemispherical beads, the beads can be rotated and spined, and the thousand cross-section fits against the grooves or recesses 239, Μ4. This gravitational effect can be enhanced if an electric field is imposed on the electrodes 239, 242, 238 and the external electricity not shown = 33 200824134. Dielectric film Μ9, 234, 236 are typically permanent electrets or can be polarized and charged with an imposed electric field. The center contact 240 is formed on the hemispherical bead (3) with a ferromagnetic material such as nickel, and the center contact 242 is fabricated from a ferromagnetic material such as iron or magnet, and then the contacts 242, 24 are magnetized. Or placed in a magnetic field, the beads will be preferentially oriented in the magnetic field and will be directed and concentrated by the central contacts 24, 242. This will increase the alignment of the beads with the flat surface of the bead (3) which is parallel to the grooves or recesses 239, 241 of the mirror contacts 238, 237. When the beads are properly aligned, the side electrode surfaces 237, 238 are in contact with the sides of the hemispherical beads 233. Typically, the photodiode semiconductor bead 233 is doped to have a positive charge carrier doping on the inside and a negative charge carrier doping on the outside. Thereby, the electrical contacts on the flat surface of the bead contact 242 with the p inner layer and the outer surface contacts 237, 238 are in contact with the N layer. Due to the difference in friction coefficient between the side contacts 237, 238 of the beads 233 having the dielectric coatings 235, 236 and the side contacts such as 曰 238, the beads 233 will tend to adhere to the recesses (10), (4) (- Into the metal contact). The shape and elasticity of the groove or recess (10)m can be formed such that it forms a wedge contact 237, 238 on either side of the bead to hold the bead (for correct alignment) The quasi-process occurs at elevated temperatures, near which the 'beads' 237, 238 will be soldered or adhered to the outer surface of #233, and the side contacts are also adhered to the beads and the beads are held (--parallel surface alignment and electrical contact). Other possible holding mechanism ^ Dielectric separator in the bottom of the concave or concave zone 239, 2 升升耀, poly 34 200824134 石夕氧橡胶, or viscous Smaller droplets of liquid, such that when aligned with the flat surface of the bead, the surface tension month b1 is reduced by contact with the flattened surface of the bead 233. This will act as a bead holder and will be fully loaded. Remove the excess surface or the misaligned j矣9 u '' 233, the assembly can be flipped and gravity pulled out of the beads 233 that are not held in place. Other options are = Forming tool surface coating (such as polyethylene oxide Xi stone rubber), such that ^

成形工具下降於陣列之表面上苴田^ 觸。在不正確之位置中之珠233針僅與過篁珠機械接 罝Τ之珠233將在凹槽或凹區中比 表面對準珠233位詈争古 -Γ ^ ju 更回。了猎由目視檢查或具有一精確 :具來進行檢查所有珠233經對準之過程,該精確工具且 有一真空或黏性表面,該真空或黏性表面配合至凹槽或凹 區中,且僅進行接觸及移除未正確配合至凹槽或凹區m 二41中之電池。一旦料233的扁平表面對準至凹槽或凹 品239、241、237、238之扁平表面,則可藉由以閃光或 ^珠233之熱機械接觸而加熱半導體珠233來確 件 239 、 240 、 242 、 甘士上 & 238,其中加熱金屬本體使珠233觸碰 ㈣件237、242 '241。遞送能量以進行焊 接、硬焊或炼接接觸的其他可能方法為將超音波聲音能量 脈衝施加至半導體S 233及接觸件237、W、238中,以 摩擦熔接或焊接接觸件。經由電路及電池237、238、233、 24〇、242之電脈衝亦可用以形成至半導體光二極體珠233 之電接觸件的電弧溶接。另一電接觸件溶接、硬焊、退火 或焊接方法為使用來自半導體光二極冑233之自產生電脈 35 200824134 衝(若電路237、238、233、240、242短路、附接至電源 或充電電容器),且接著在電池上光柵掃描雷射光之光束, 或接近電池點燃閃光燈。形成一短電脈衝,以向熔接、硬 焊、退火或焊接接觸件提供在機械接觸點處之短熱能量脈 衝。可^又计介電基板241之頂部上的中心接觸件或侧 接觸金屬薄膜,使得其用作電保險絲,其熔化及汽化金屬 242、23 7、23 8、243及擴展下伏介電質239、241,以使 局部電路斷開(若過量電流流經該電路)。此可用以斷開 可能錯誤連接或短接之電池。亦可在將耐火透鏡及反射鏡 231下的總成置放於電池上且由耐火透鏡及反射鏡231將 該等電池固持於適當位置中後,實施接觸件確保步驟。耐 火覆盍透鏡及反射鏡231可壓抵於半導體珠233,以進行 电接觸且在太陽能電池陣列之使用壽命内維持電接觸。耐 火覆蓋層231可被壓住且藉由膠232固持,且電接觸件材 料237 ^3123124^242中之彈性張力及相抵於接觸 _ 件材料237、242、238安置於半導體233上之耐火材料的 重力可在陣列之使用壽命内維持接觸。透鏡-反射鏡總成薄 片231可在外部表面上具有一保護性或抗反射塗層23〇。 適當薄膜為碳氟(Mihama)、二氧化鈦塗層,以製造外部 表面光反應性及自清潔或硬式抗磨損塗層(諸如,反應性 鮮又鑽石薄膜)。諸如,藉由電池上之高壓擠製來分散光 學透明膠或耦合凝膠234、232(諸如,D〇w c〇rning Sylgard@ 184或旋膠Q3-6575 )。將玻璃或透明介電覆蓋透鏡-反射 鏡231置放於光學搞合材料234、232上,且藉由滾動擠 36 200824134 壓運動,將光學耦合材料234、232壓在半導體及反射鏡 上、°二由膠之型樣中的氣體通道,將氣泡壓出總成。可藉 由高溫來固化整個總成。可在壓縮下固化總成,以將透鏡· 反射鏡薄片231壓抵於半導體珠233,且維持電接觸件 237、240、242、238上之壓縮。固化過程後或期間之膠或 光學耦合材料234、232的收縮可進一步增加在固化過程 期間及後透鏡-反射鏡薄片231對珠233及接觸件237、 24〇、242、238之壓縮。在介電基板up及金屬接觸件242 之背面上,輻射傳熱及保護性塗層244 (諸如,載入碳黑 之?κ矽氧塗料或二氧化鈦聚矽氧塗料)。可測試組裝的系 統,且利用光脈衝、光柵掃描之雷射束或電脈衝,藉由熔 化或汽化電接觸件可自陣列並串聯電路移除短路電池或顛 倒的電池。預期經由玻璃材料薄片231之邊緣處的電接觸 襯墊來進行至外部電系統及電路之電連接。 圖15展示了串並聯電池之電路,其具有在光伏特電池 253間的並聯及串聯連接中之薄膜電導體介電質、保險絲 或壓敏電阻253、258及建置於輸出中的回流保護二極體254 或壓敏電阻254。如在示意性圖式! 5中所指示地,亦可藉 由具有至光二極體之逆向電子電洞梯度之在彈性成形電接 觸件中置放摻雜半導體珠的相同方法來置放逆流保護組件 254。逆流保濩二極體254並未被照明,且因此可置放於 反射鏡陣列或陣列之邊緣間之光集中區域的外部。可週期 性地將逆流保護二極體254作為陣列中之列來置放,以能 夠匹配保護二極體電壓及電流特性,且形成分布式逆流保 37 200824134 護,避免任何單保護二極體或保護二極體之串的故陳危害 整個系統。在若干並聯連接電池中變為開路之單個電池的 硭刀損耗效應為一除以連接在一起之電池的數目。串並聯 黾連接、、’罔路中之單點故障對整個系統之單點故障效應與列 中之損耗部分除以列之數目成比例,此因為自其他列的電 流將能夠圍繞單點故障流動。隨機單電池故障之數目與電 路中之笔池的總數目成比例。因此,在等電位及串聯連接 _ 處(其中任何單列中之電池的數目與陣列中之電池之總數 目的平方根成比例)之許多並聯連接電池的較大陣列中, 源自隨機單開路故障之可能部分損耗與陣列中之電池之總 數目的反平方根成比例。此統計觀測具有實用含意:對於 串並聯陣列,陣列中之個別電池之數目越高,歸因於隨機 電池故障的部分損耗越低。電池之數目越高,此等光伏特 陣列變得越可靠,此與以下典型直覺相反:電路中之電池 越多,故障及輸出損耗的機率越大。在高壓陣列中,可在 • 陣列中按列週期性地形成逆流保護電池254及旁路二極體 257。在電流旁路繞過陣列中之單個電池(其由於製造瑕 疵或被遮蔽而可能具有低效能)的情況下,電池間之並聯 電連接253為有用的。旁路二極體257可引導電流繞過電 池252之列,該等電池具有低效能或被遮蔽。用藉由在介 電絕緣體基板或壓敏電阻上沈積的較薄傳導沈積物,並聯 253及串聯258電連接線可形成有效保險絲,其中經選擇 的電導體半導體具有隨電流、電壓或溫度上升而增加的特 定電阻抗。特定實例··氧化鋅之薄膜將隨著施加之電壓而 38 200824134 θ 4 Θ等沈積物可為類似於光二極體珠連接線之 真空濺鍍沈積物、噴墨沈積物、電㈣塗沈積物、㈣印、 個別何體沈積物。大多數金屬具有在環境溫度下之低電 古接著Ik著/皿度上升而增加電阻的所需特性。若過量電 帝(諸如單個—極體之電流的若干倍)流經並聯或宰聯 電連接線,則金屬由於歐姆能量分散及材料而發孰。若電 所產生之熱足夠高,則電路將溶化金屬及(可能地) 二電基板,且永久斷開並聯電路連接。電池253間之開路 烙斷可用以水久性斷開圍繞個別光電池252的電路(若 等電池被分路或逆向連接)。可在並聯電路連接線中㈣ 諸如壓敏電阻253 <設備,其經設計以具有隨著電流上升 而增加的電阻。壓敏電p且253可經設計以對過量電流可逆 =快速回應,且有效地箝位並聯或串聯連接線中之最大 電流。在選擇性地韻照明光伏料狀情形巾(諸如, 自:枝之遮敝)’此最大電流箝位對於保護光二極體免於 過里電桃及電壓可為非常重要的。可經由周邊匯流排連接 線251、255來將示意性展示之此陣列連接25()、a%至其 他陣列或電負載。其他可能電設備為Dc至dc轉換器、 DC-AC轉換器、電容器、電池組、電解池、飛輪、馬達、 燈、泵及風扇’該等電設備亦可電連接於輸出連接線或匯 流排連接線250、256上且與如圖9中所示之陣列整合。 儘管參看特定具體實例描述了本發明’但可在不脫離 本發明之範轉(其界定於以下申請專利範圍中)的情況下 構造本發明之修改及變化。 39 200824134 基主農徵元.: 妾觸件維持彈性機械系統對半導體本體的壓縮。 使用光一極體本體之形狀或電極來定向半導體。 3·使用槽或孔來配合電池。 4·使用球體之爲平侧來固持m移動至電連接。 5·槽亦為電連接。 6·槽亦為反射鏡。 7. 亦為光透射的。 、8•球體上t電接觸件的位置及尺悄於半導體操作可 為有利的。 電接觸件具有&供保險絲及電路中斷之電性質的厚 度。 、 10·電接觸件可為反射鏡。 11 ·電接觸件可為透明的。 12·電接觸件可為不同電導體或金屬。 • u·電接觸件及半導體可基本上形成熱電接面。 14·電接觸件及半導體可形成光產生接面。 1 5 ·槽及電接觸件形成熱移除系統。 16.電接觸件及/或反射鏡為熱導體’以自光二極體移 除熱。 1 7·陣列之背側上的塗層增強輻射發射及熱移除。 18 ·反射鏡/透鏡為熱移除系統。 19·反射鏡/透鏡為機械座架及保護系統。 20·使用並串聯連接,以提供可靠電路連接。 200824134 21·可使用膠。 22·可使用光學介面橋接器或膠。 23.可使用光固化膠。 24·可使用黏性材料來將電池固定於槽中。 2 5 ·可將球體壓縮於槽中,以進行接觸。 26·可使用焊接來完成接觸件。 27·可使用熔接來達成電接觸件固定。 28.可使用閃光燈來達成電接觸件固定(其中光二極體 產生電流以炼接及/或熱加熱電池),。 29·可使用超音波能量來完成焊接或熔接。 30·可以薄膜來塗覆光學器件,作為反射器或電路。 31.珠在凹槽或孔中,在任一側上具有兩個或兩個以上 不同接觸件。 3 2 ·未必使用形狀(僅在進入槽中前定向)。The forming tool descends on the surface of the array and touches it. In the incorrect position, the bead 233 needle is only mechanically connected to the beaded bead. The bead 233 will be aligned with the surface of the bead 233 in the groove or recessed area. The hunting is performed by visual inspection or has a precision: a process for inspecting the alignment of all the beads 233, the precision tool having a vacuum or viscous surface that fits into the groove or recess, and Only the contacts and the batteries that are not properly fitted into the grooves or recesses m 21 are contacted and removed. Once the flat surface of the material 233 is aligned to the flat surface of the recess or recess 239, 241, 237, 238, the semiconductor beads 233 can be heated by thermal mechanical contact with the flash or bead 233 to confirm 239, 240. , 242, Gans & 238, wherein the metal body is heated to cause the beads 233 to touch the (four) pieces 237, 242 '241. Other possible methods of delivering energy for welding, brazing or refining contact are to apply ultrasonic sonic energy pulses to semiconductor S 233 and contacts 237, W, 238 to frictionally weld or weld the contacts. Electrical pulses through the circuit and the cells 237, 238, 233, 24A, 242 can also be used to form an arc fusion to the electrical contacts of the semiconductor photodiode bead 233. Another method of soldering, brazing, annealing or soldering the electrical contacts is to use the self-generated electrical pulse 35 from the semiconductor photodiode 233 to illuminate (if the circuits 237, 238, 233, 240, 242 are shorted, attached to a power source or charged) Capacitor), and then raster scans the beam of laser light on the battery, or approaches the battery to ignite the flash. A short electrical pulse is formed to provide a short thermal energy pulse at the mechanical contact to the fusion, brazing, annealing or soldering contact. The central contact or side contact metal film on top of the dielectric substrate 241 can be used as an electrical fuse that melts and vaporizes the metal 242, 23 7, 23, 243 and the extended underlying dielectric 239 , 241, to disconnect the local circuit (if excessive current flows through the circuit). This can be used to disconnect a battery that may be incorrectly connected or shorted. Alternatively, the contact securing step may be performed after the assembly of the refractory lens and the mirror 231 is placed on the battery and the refractory lens and the mirror 231 hold the batteries in place. The fire resistant overlay lens and mirror 231 can be pressed against the semiconductor beads 233 for electrical contact and maintain electrical contact over the life of the solar array. The refractory cover layer 231 can be pressed and held by the glue 232, and the elastic tension in the electrical contact material 237^3123124^242 and the refractory material disposed on the semiconductor 233 in contact with the contact material 237, 242, 238 Gravity maintains contact over the life of the array. The lens-mirror assembly sheet 231 can have a protective or anti-reflective coating 23 on the outer surface. Suitable films are fluorocarbon (Mihama), titanium dioxide coatings for the manufacture of external surface photoreactive and self-cleaning or hard anti-wear coatings (such as reactive fresh diamond films). For example, optically clear adhesive or coupling gels 234, 232 (such as D〇w c〇rning Sylgard@184 or spinner Q3-6575) are dispersed by high pressure extrusion on a battery. A glass or transparent dielectric cover lens-mirror 231 is placed on the optical bonding materials 234, 232, and the optical coupling materials 234, 232 are pressed against the semiconductor and the mirror by rolling motion 36200824134. Second, the gas passage in the type of glue pushes the bubble out of the assembly. The entire assembly can be cured by high temperatures. The assembly can be cured under compression to press the lens mirror sheet 231 against the semiconductor beads 233 and maintain compression on the electrical contacts 237, 240, 242, 238. The shrinkage of the glue or optical coupling material 234, 232 after or during the curing process can further increase the compression of the bead 233 and the contacts 237, 24, 242, 238 during and after the curing process. On the back side of the dielectric substrate up and metal contacts 242, a heat transfer and protective coating 244 (such as a carbon black-doped or TiO 2 polyoxyxide coating) is applied. The assembled system can be tested and the shorted or reversed cells can be removed from the array and series by melting or vaporizing the electrical contacts using light pulses, raster scanned laser beams or electrical pulses. Electrical connection to external electrical systems and circuitry is contemplated via electrical contact pads at the edges of the sheet of glass material 231. Figure 15 shows a circuit of a series-parallel battery having thin film electrical conductor dielectrics, fuses or varistors 253, 258 in parallel and series connections between photovoltaic cells 253, and reflow protection built into the output. Pole body 254 or varistor 254. As in the schematic diagram! As indicated at 5, the countercurrent protection assembly 254 can also be placed by the same method of placing the doped semiconductor beads in the elastically shaped electrical contacts with a reverse electron hole gradient to the photodiode. The counter current guard diode 254 is not illuminated and can therefore be placed outside of the concentrated area of light between the edges of the mirror array or array. The counter current protection diodes 254 can be periodically placed as a column in the array to match the voltage and current characteristics of the protection diodes, and form a distributed reverse flow protection system. The protection against any single protection diodes or Protecting the string of diodes harms the entire system. The blade loss effect of a single cell that becomes open in several parallel connected cells is divided by the number of cells connected together. The series-parallel connection, the single point of failure in the 'cluster' is a single point of failure effect on the entire system proportional to the number of losses in the column divided by the number of columns, since current from other columns will be able to flow around a single point of failure . The number of random cell failures is proportional to the total number of pen pools in the circuit. Therefore, in a larger array of parallel-connected cells at equipotential and series connections (where the number of cells in any single column is proportional to the square root of the total number of cells in the array), the possibility of a random single open fault is derived. Part of the loss is proportional to the inverse square root of the total number of cells in the array. This statistical observation has a practical implication: for a series-parallel array, the higher the number of individual cells in the array, the lower the partial loss due to random battery failure. The higher the number of batteries, the more reliable these photovoltaic arrays become, contrary to the typical intuition: the more batteries in the circuit, the greater the chance of failure and output loss. In the high voltage array, the reverse current protection battery 254 and the bypass diode 257 can be periodically formed in columns in the array. A parallel electrical connection 253 between the cells is useful where the current bypass bypasses a single cell in the array that may be inefficient due to manufacturing defects or being obscured. The bypass diode 257 can direct current around the battery 252, which has low performance or is shielded. An effective fuse can be formed by parallel connection 253 and series 258 electrical connections by thinner conductive deposits deposited on a dielectric insulator substrate or varistor, wherein the selected electrical conductor semiconductor has an increase in current, voltage or temperature. Increased specific electrical impedance. Specific examples · The film of zinc oxide will be applied with the voltage 38 200824134 θ 4 Θ and other deposits can be vacuum sputtering deposits similar to photodiode bead wires, inkjet deposits, electric (four) coating deposits (4) Printing, individual sediments. Most metals have the desirable properties of lowering the electrical resistance at ambient temperature and then increasing the resistance by increasing the Ik/dish. If an excess of electricity (such as several times the current of a single pole) flows through the parallel or slaughter electrical connection, the metal will be entangled due to ohmic energy dispersion and material. If the heat generated by the electrical power is sufficiently high, the circuit will dissolve the metal and (possibly) the two electrical substrates and permanently disconnect the parallel circuit connections. An open circuit between the batteries 253 can be used to permanently disconnect the circuit surrounding the individual photocells 252 (if the cells are shunted or reversed). It may be in a parallel circuit connection (4) such as a varistor 253 <device, designed to have an increased resistance as current increases. The varistor p and 253 can be designed to reversibly respond quickly to excess current and effectively clamp the maximum current in the parallel or series connection. This maximum current clamp can be very important to protect the photodiode from over-current peaches and voltages in selectively illuminating the photovoltaic material (such as from the concealer). This array, shown schematically, can be connected 25(), a% to other arrays or electrical loads via peripheral busbar connections 251, 255. Other possible electrical equipment are Dc to dc converters, DC-AC converters, capacitors, battery packs, electrolytic cells, flywheels, motors, lamps, pumps and fans. These electrical devices can also be electrically connected to output cables or busbars. Connection lines 250, 256 are integrated with the array as shown in FIG. The present invention has been described with reference to the specific embodiments thereof, and modifications and variations of the present invention may be constructed without departing from the scope of the invention. 39 200824134 The main agricultural levy element: The 妾 contact maintains the compression of the semiconductor body by the elastic mechanical system. The shape or electrode of the body of the light is used to orient the semiconductor. 3. Use a slot or hole to fit the battery. 4. Use the flat side of the ball to hold m to move to the electrical connection. 5. The slot is also electrically connected. The 6·slot is also a mirror. 7. Also light transmissive. 8) The position and the rule of the t-contact on the sphere can be advantageous for semiconductor operation. The electrical contacts have the thickness of the electrical properties of the fuse and circuit interruption. 10. The electrical contact can be a mirror. 11 · Electrical contacts can be transparent. 12. The electrical contacts can be different electrical conductors or metals. • u. Electrical contacts and semiconductors can form substantially thermoelectric junctions. 14. The electrical contacts and the semiconductor can form a light generating junction. 1 5 · The tank and electrical contacts form a heat removal system. 16. The electrical contacts and/or mirrors are heat conductors' to remove heat from the photodiode. The coating on the back side of the array enhances radiation emission and heat removal. 18 · The mirror/lens is a heat removal system. 19. The mirror/lens is a mechanical mount and protection system. 20. Use and connect in series to provide a reliable circuit connection. 200824134 21·Glue can be used. 22. An optical interface bridge or glue can be used. 23. A photocurable adhesive can be used. 24. Sticky materials can be used to secure the battery in the tank. 2 5 · The sphere can be compressed into the groove for contact. 26· Welding can be used to complete the contacts. 27· Welding can be used to achieve electrical contact fixing. 28. A flash can be used to secure the electrical contacts (where the light diodes generate current to refine and/or thermally heat the battery). 29. Ultrasonic energy can be used to complete welding or welding. 30. The optics can be coated with a film as a reflector or circuit. 31. The beads are in the grooves or holes with two or more different contacts on either side. 3 2 · It is not necessary to use the shape (only before it enters the slot).

“33.陣列$透鏡/反射鏡離料導體牵引電接觸件及背 覆蓋層或反射鏡之組件的總成。 3 4·可在介電質中形成槽或孔。 35.可在具有介電塗層之金屬中形成槽或孔。 从可在具有介電及電子傳導塗層之金屬中形成槽或 觸件彈性之結構。 溝槽、凸塊、台座、 用於電接觸件彈性的 37.成形空腔的壁可具有改良電接 3 8.成形空腔之壁具有流槽、縫、 用於電接觸件彈性的纖維。 39.空腔接觸表面上之電塗層具有 200824134 纖維、粉末。 40·成形空腔上之接觸件為彈性多晶型表面。 41·可以許多方式來沈積或形成塗層。真空沈積、喷墨 印刷、粉末喷塗、絲網印刷、箔壓印、焊接、衝壓或居壓 42.使用聚矽氧橡膠。 43·使用氟化烴。 44·使用玻璃、鋁、銀、錫、氡化錫、鋼、鋼、合金、 矽球體、Sphelar®矽、上面具有電接觸件之球體、焊锡膏、 _ 載入石炭的塗料、Ti02、光催化劑,或白色塗層。 45 ·使用玻璃或折射率材料之外部表面的光催化劑浸 潰,清、/糸外部表面,且阻擋高頻率光到達光二極體。 46·使用槽之遮蔽來優先定位沈積物或電路之自遮罩。 47.電連接線及基板可形成至光二極體之光聚集系統。 48·可將光二極體陣列耦合至光集中光學器件。 4 9 ·電連接糸統亦可為光學組件。 籲 50.背保護器薄片亦可在光學光聚集器上。 5 1 ·亦可在光學器件中使用光散射。 52·可使用光閃爍或轉換。 53·電接觸的半導體棒及夾緊槽亦用作有效光伏特電 池。 54.内建的逆流保護。 55·至電池組反相器及電功率柵袼之轉換 56.用於太陽追蹤系統。 57·使用光譜分裂或過濾。 42 200824134 5 8 _可將煙管道或流體流動通道置放於陣列之背部上且 使用流體或空氣的流動來冷卻光二極體陣列。 59·可將相變材料熱耦合至光二極體陣列之背部,以吸 收及儲存來自光伏特陣列的熱。 60·可附接電子裝置,以調控光伏特陣列之電輸出。 61.可將電池組附接至光伏特陣列,以儲存電能量。 62·在電接觸件下使用彈性層,以確保電接觸,且作為 熱膨脹及收縮補償器。 63·將光伏特陣列附接至太陽對準或追蹤系統。 64·爽具為彈性的,且可打開以接受半導體及關閉以進 行接觸。 65. 使用靜電元件來移動及固持半導體。 66. 使用磁性元件來移動及固持半導體。 67·使用重力來移動及固持半導體。 68·使用黏性表面來固持半導體。 69.使用黏性表面來在凹座之底部處固持半導體。 7Μ吏用光滑表面,以允許半導體之非滚動接觸運動。 .可使用重力來將玻璃覆蓋層及透鏡反射鏡壓入至電 池及電極中,以維持半導體與接觸相的壓縮。 【圖式簡單說明】 圖1 :介電材料中之槽 圖2 成形接觸槽或孔之橫截面圖 圖3:固持一球形光二極體之成形接觸槽或孔的橫截 43 200824134 圖4 :具有固持一球形光二極體之扁平侧的半球形成 形孔 圖5 ·玻璃模製透鏡/反射鏡光學器件上之系統的實例 圖6 :陣列之背反射器電池附接型式 圖7 :球形光學器件 圖8 · g將球體封裝至一薄膜陣列中時的電佈線 圖9 :夾持於透鏡/反射鏡間的摺疊薄片 圖10A :透鏡及背集中平面系統 圖10B:費涅透鏡及背集中平面系統 圖10C :單抛物線及前表面集中平面系統 圖l〇D : Cassigranian光學器件及背集中表面平面系 圖10E:指數折射梯度集中透鏡(GRIN透鏡)及背集"33. Array $ Lens / Mirror Separation Conductor Traction Electrical Contact and Assembly of Back Cover or Mirror Assembly. 3 4 · Slots or holes may be formed in the dielectric. 35. Available in dielectric Forming grooves or holes in the metal of the coating. Structures that form grooves or contacts in metals with dielectric and electronically conductive coatings. Grooves, bumps, pedestals, for electrical contact elasticity. The wall of the shaped cavity may have an improved electrical connection. 3. The wall of the shaped cavity has a flow channel, a slit, and a fiber for electrical contact. 39. The electrocoat on the cavity contact surface has 200824134 fiber, powder. 40. The contact on the shaped cavity is an elastic polycrystalline surface. 41. The coating can be deposited or formed in a number of ways. Vacuum deposition, inkjet printing, powder coating, screen printing, foil imprinting, welding, stamping Or pressure 42. Use of polyoxynized rubber 43. Use of HFCs 44. Use glass, aluminum, silver, tin, antimony tin, steel, steel, alloy, bismuth sphere, Sphelar® crucible, with electrical contact on it Sphere, solder paste, _ loading of charcoal, TiO2, photocatalysis , or a white coating. 45 • Use a photocatalyst on the outer surface of the glass or refractive index material to impregnate, clear,/twist the external surface, and block high frequency light from reaching the photodiode. 46. Use the masking of the trench to preferentially locate the deposition. Self-masking of the object or circuit 47. The electrical connection line and the substrate can form a light collecting system to the photodiode. 48. The optical diode array can be coupled to the optical focusing optical device. 4 9 · Electrical connection system can also For optical components. 50. Back protector sheets can also be used on optical light concentrators. 5 1 · Light scattering can also be used in optical devices. 52. Light flashing or conversion can be used. 53. Electrical contact semiconductor rods and The clamping groove is also used as an effective photovoltaic cell. 54. Built-in countercurrent protection 55. Conversion to battery pack inverter and electric power grid 56. For solar tracking system 57. Use spectral splitting or filtering. 200824134 5 8 _The smoke pipe or fluid flow channel can be placed on the back of the array and the flow of fluid or air can be used to cool the photodiode array. 59. The phase change material can be thermally coupled to the back of the photodiode array. To suck And storing heat from the photovoltaic array. 60. Attachable electronics to regulate the electrical output of the photovoltaic array. 61. The battery pack can be attached to a photovoltaic array to store electrical energy. The elastic layer is used underneath to ensure electrical contact and as a thermal expansion and contraction compensator. 63. Attach the PV array to the sun alignment or tracking system. 64. The device is flexible and can be opened to accept the semiconductor and shut down. 65. Use electrostatic components to move and hold the semiconductor 66. Use magnetic components to move and hold the semiconductor 67. Use gravity to move and hold the semiconductor 68. Use a sticky surface to hold the semiconductor. 69. A viscous surface is used to hold the semiconductor at the bottom of the recess. 7 Use a smooth surface to allow non-rolling contact movement of the semiconductor. Gravity can be used to press the glass cover and lens mirror into the cell and electrode to maintain compression of the semiconductor and contact phase. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1: Slot in dielectric material Figure 2 Cross-sectional view of shaped contact groove or hole Figure 3: Cross-section of shaped contact groove or hole holding a spherical photodiode 43 200824134 Figure 4: With Hemispherical shaped hole holding a flat side of a spherical photodiode Figure 5 Example of a system on a glass molded lens/mirror optic Figure 6: Array of back reflector battery attachment pattern Figure 7: Spherical optics diagram 8 · g electrical wiring when the sphere is packaged into a film array Figure 9: folded sheet sandwiched between the lens / mirror Figure 10A: lens and back focus plane system Figure 10B: Fresnel lens and back focus plane system diagram 10C: Single Parabola and Front Surface Concentrated Planar System Figure l〇D: Cassigranian Optics and Back Concentrated Surface Plane Figure 10E: Exponential Refractive Gradient Concentration Lens (GRIN Lens) and Back Set

中系統。 N 圖1 OF ··光譜展散紅_綠及傾斜光學系統。Medium system. N Figure 1 OF · · Spectral spread red _ green and tilt optical system.

註釋:應指出且可能說明光柵及全像光譜展散亦可在 此傾斜光學配置中使用。 圖Π ·耦合至半球形分層式光二極體堆疊之色像差 圖12 A ·兩側接地分層式球形光二極體堆疊。 至側 圖12B:展示用於兩侧接地電池或單側接地電池之侧 及邊緣接觸夾具的圖式。 圖13A :低摩擦係數表面上之對準的不對稱半球體。 圖13B:低摩擦係數表面上之推動器及對準的半球體 圖13C :將一對準之半球體注入至一 電接觸夾具中的 44 200824134 推動器。 圖14:至成形透鏡鏡電路夾具中之光二極體之中心扁 平點接觸及側接觸的橫截面圖。 圖1 5 :光伏特陣列之等效電路的示意圖 【主要元件符號說明】 1 :介電材料 2 ··槽 0 3 :扁平侧/扁平部分 4 :弧形侧 1〇:外部表面上的電子導體/電傳導薄膜 11 :介電基板/介電質 12 :在扁平部分上之第一電子導體塗層/電傳導薄膜/ 扁平電極表面/接觸點 13 :槽/孔 14 ·在槽之弧形空間侧上的第二電子導體/電傳導薄膜 _ /接觸點/彎曲電極表面 15·在材料之外部扁平部分上的電子導體/電傳導薄膜 1 6 :成形孔之底部/間隙 1 7 :彈性基板薄膜/彈性薄膜 19 :子層 20·第一外部電導體/電極/電連接/電極散熱片 21 ·介電基板/基板材料 22 :槽中之第一電導體/電極 23 ·球體之内部摻雜區上的接觸件/珠/電接觸件/電極 45 200824134 接觸點/半導體珠接觸件 24·外部換雜層/半導體珠/p/N接面摻雜層/半導體接 面/半導體/N層 25 ·球體之摻雜内部部分/半導體珠/p/N接面摻雜層/ 半導體接面/半導體/内部/P材料 26 ·球體上之外部摻雜區上的電接觸件/珠/電極接觸 點/半導體珠接觸件 • 27 ·槽之外部彎曲截面上的電接觸件/薄膜接觸器/電 極 28 ·介電基板之外部表面上的電接觸件/電極/電連接/ 電極散熱片 29 ·球形半導體之抗反射塗層/珠 3 G ·槽之膠或聚矽氧塗層的底部 31 :槽或孔 33 :槽之扁平侧 _ 34 :子層 35 :導體塗層 36:孔之扁平點上的導體塗層/電連接線/扁平表面 37 :介電基板中之孔 38:電截斷部分/介電質/電截斷區域 39 :外部表面上之電導體 4 Π » υ •孔之球形侧上的電連接器導體/圓形側 49 :透明介電密封劑/槽 5〇:透明透鏡/反射鏡光學器件/反射鏡/成形破璃件 46 200824134 5 1 :反射鏡位置上之電導體/電接觸件/電極 52:半導體/半導體球體/半導體珠 53:半導體上之第二接觸件/電接觸件/電極 54:電導體及外部串聯陣列接觸件/電接觸件/電極/電 路 55:在相反側電接觸件上的電導體/電接觸件/電極/電 路 56 :保護性背板/散熱片 57 :介電密封劑 5 8 :抗反射塗層及玻璃保護劑/前表面 59:介電密封劑/介電薄膜/介電材料 60 :折射器材料/玻璃薄片 61 :上部透鏡 62 :下部反射鏡 63 :光二極體罩蓋/槽 64 :外部電導體/電傳導薄膜/電傳導塗層 65 :半導體/矽半導體光二極體/矽半導體珠/電池 66 :介電基板/背表面/玻璃 67 :背板或塗層可為反射器或散射器/薄片/外部表面 塗層/反射塗層 68 :背塗層反射器或散射器/黑色輻射體塗層 69 :成形槽/間隙 70·在上部透鏡處之橫截面/透鏡/光學集中器/上部表 面/空中介面 47 134 電接觸态及反射鏡之横截面/反射鏡/電極/反射表 面 透月材料的棱截面/玻璃/玻璃反射器/玻璃反射鏡 至半導體球體之電接觸件/成形孔 半導體球體/光二極體電池 至球體之弧形側電接觸件/成形孔 至球體之若干個電接觸件的橫截面/反射表面/電Note: It should be noted and possibly stated that the grating and holographic spectral spread can also be used in this tilted optical configuration. Figure Π ·The chromatic aberration coupled to the hemispherical layered photodiode stack Figure 12 A · Both sides of the grounded layered spherical photodiode stack. To the side Figure 12B: A diagram showing the side and edge contact fixtures for grounded batteries or single-sided grounded batteries on both sides. Figure 13A: Aligned asymmetric hemispheres on a low coefficient of friction surface. Figure 13B: Pusher and aligned hemisphere on low friction coefficient surface Figure 13C: 44 200824134 pusher for injecting an aligned hemisphere into an electrical contact fixture. Figure 14: Cross-sectional view of the center flat flat contact and side contact of the photodiode in the shaped lens mirror circuit fixture. Figure 1 5: Schematic diagram of the equivalent circuit of the PV array [Main component symbol description] 1 : Dielectric material 2 ··Slot 0 3 : Flat side / Flat part 4 : Curved side 1〇: Electronic conductor on the external surface / Conductive film 11 : dielectric substrate / dielectric 12 : first electronic conductor coating / electrically conductive film / flat electrode surface / contact point 13 on the flat portion: groove / hole 14 · curved space in the groove Second electronic conductor/electrically conductive film on the side _ / contact point / curved electrode surface 15 · electronic conductor / electrically conductive film on the outer flat part of the material 16 : bottom of the shaped hole / gap 1 7 : elastic substrate film / Elastic film 19: Sublayer 20 · First external electrical conductor / electrode / electrical connection / electrode heat sink 21 · Dielectric substrate / substrate material 22: First electrical conductor / electrode 23 in the groove · Internal doping region of the sphere Contact / Bead / Electrical Contact / Electrode 45 200824134 Contact Point / Semiconductor Bead Contact 24 · External Change Layer / Semiconductor Bead / p / N Junction Doped Layer / Semiconductor Junction / Semiconductor / N Layer 25 · Doped inner portion of sphere/semiconductor bead/p/N junction doped layer / semiconductor junction/semiconductor /Internal/P material 26 ·Electrical contacts/beads/electrode contacts/semiconductor bead contacts on the outer doped area on the sphere • 27 • Electrical contacts/film contactors/electrodes 28 on the outer curved section of the groove • Electrical contacts/electrodes/electrical connections on the outer surface of the dielectric substrate/electrode heat sink 29 • Anti-reflective coating of spherical semiconductors/beads 3 G • Groove or polyoxynitride coated bottom 31: grooves or Hole 33: flat side of the groove _ 34: sub-layer 35: conductor coating 36: conductor coating on the flat point of the hole / electrical connection line / flat surface 37: hole 38 in the dielectric substrate: electrical cut-off part / Electrical/Electrical Cut-Off Area 39: Electrical Conductor on External Surface 4 Π » υ • Electrical Connector Conductor on Rounded Side of Hole / Round Side 49: Transparent Dielectric Sealant/Slot 5〇: Transparent Lens/Mirror Optics / Mirror / Formed Glass Breaker 46 200824134 5 1 : Electrical Conductor / Electrical Contact / Electrode 52 at Mirror Position: Semiconductor / Semiconductor Sphere / Semiconductor Bead 53 : Second Contact / Electrical Contact on Semiconductor /electrode 54: electrical conductor and external series array contact / electrical contact / electrode / circuit 55: on the opposite side Electrical Conductor / Electrical Contact / Electrode / Circuitry 56 on Contact: Protective Backing Plate / Heat Sink 57 : Dielectric Sealant 5 8 : Anti-Reflective Coating and Glass Protectant / Front Surface 59: Dielectric Sealant / Dielectric film/dielectric material 60: Refractor material/glass sheet 61: Upper lens 62: Lower mirror 63: Photodiode cover/groove 64: External electrical conductor/Electrically conductive film/Electrically conductive coating 65: Semiconductor /矽Semiconductor Photodiode/矽Semiconductor Bead/Battery 66: Dielectric Substrate/Back Surface/Glass 67: Back Sheet or Coating May Be Reflector or Scatter/Sheet/External Surface Coating/Reflective Coating 68: Back Coating reflector or diffuser / black radiator coating 69: forming groove / gap 70 · cross section at the upper lens / lens / optical concentrator / upper surface / empty intermediate surface 47 134 electrical contact state and cross section of the mirror Cross section/mirror/electrode/reflective surface cross section of moon-transparent material/glass/glass reflector/glass mirror to semiconductor sphere electrical contact/formed hole semiconductor sphere/photodiode battery to spherical arc-side electrical contact Cross section of several electrical contacts of a piece/formed hole to a sphere / Reflective surface / electrostrictive

77·電接觸彳塗層/反射鏡區域/電子導體材料/反射鏡 78 ^有ρν接面及電接觸件之半導體球體/光二極體 電池 79 :電截斷部分/間隙/反射鏡 80:苐二電接觸件/反射鏡區域/電極/電子導體材料/反 射鏡 81:電池間之六邊形分離/六邊形型樣 8 5 ·聚秒氧橡膠密封劑—77·Electrical contact 彳 coating/mirror area/electronic conductor material/mirror 78^Semiconductor sphere/photodiode battery with ρν junction and electrical contact 79: Electrically cut-off part/gap/mirror 80: 苐二Electrical contact / mirror area / electrode / electronic conductor material / mirror 81: hexagonal separation between batteries / hexagonal pattern 8 5 · polysecond oxygen rubber sealant -

72 73 74 75 76 90:模製介電基板/基板介電隔膜/介電複本 91:電傳導薄膜/電傳導塗層/複本表面/接觸件 92 ·在扁平侧及内部材料上之電接觸件/半導體光二極 體/微粒光二極體接觸件 93:内部摻雜半導體/半導體光二極體 94 :外部掺雜層/半導體光二極體 95 :外部掺雜表面上之接觸件/半導體光二極體/微粒 光二極體接觸件 48 200824134 96 :弧形侧接觸件/電傳導塗層/複本表面接觸件/複本 表面 97 ·接觸電極/電傳導塗層/複本表面 98 :將不配合孔上之銳正方形側的逆向半導體/半導體 光二極體/微粒光二極體接觸件 99 :外部表面摻雜層/半導體光二極體 1〇〇:内部摻雜層/半導體光二極體 1〇1 ·扁平侧電接觸件/半導體光二極體/微粒光二極體 接觸件 1〇2:扁平側接觸件/電傳導塗層/複本表面接觸件/複本 表面 1 〇 3 ·溝槽或壓印區域 104 :弧形侧電接觸件/電傳導塗層/複本表面接觸件/複 本表面 105 :靜電傳導薄膜/電傳導塗層/複本表面 106 ·具有變黑之外部表面的背反射器或散射器 I 07 ·變黑之外部表面/保護性及熱輻射薄膜 108 :模製槽或孔 :氣隙/光學組件 II 〇 ·形成之透明透鏡及反射鏡/模製玻璃透鏡 III :電連接耳片/負端 112 ·電子傳導塗層/反射鏡陣列/反射器 113 :介電基板/反射鏡陣列/介電背襯 1 1 4 ·背金屬板/反射鏡陣列 49 200824134 115 ·半導體球體/半導體珠 116.電輪出連接線/正端 117抗反射塗層或Ti〇2及/或抗擦傷或抗磨損或其他 | ^圭集中機制或紫外光濾光器 118·電子裝置或電池組/電轉換系統 11 9 ·熱相變材料 120 ·絕緣容器或盒狀物/封閉體/熱管系統/彈性壁 121 ·風扇馬達或致動器/風扇 12 2 ·氣流/流動流體 123 :風扇或閥門 124:熱管或熱循環系統/工作流體 125 ·變黑之背表面/反射鏡陣列/光伏特陣列/光二極體 陣列 126:光學耦合及密封材料/接觸電極/第二電極及光反 射器 127 :介電基板層/電極/基板材料/基板 128 :彈性層/光學組件 129 :具有與透鏡表面之低角度的光射線 130 :透鏡/光學組件 13 1 :光射線/光 132 :光二極體/半導體/焦點 133 :光二極體基板表面及電極/電接觸件 134 :電截斷部分/電池 136 :光射線/光 50 200824134 137:費涅透鏡/光學元件/透明透鏡材料 138 ·•光二極體/半導體 139 :介電基板/基板材料 140 ·第一電接觸件及反射器/接觸電極 141 :透明介電窗/透明彈性基板材料 142 :光二極體/半導體本體 143 :光射線/光72 73 74 75 76 90: Molded dielectric substrate/substrate dielectric diaphragm/dielectric replica 91: Conductive film/electrically conductive coating/replica surface/contact 92 • Electrical contacts on flat sides and internal materials /Semiconductor photodiode/particle photodiode contact 93: Internal doped semiconductor/semiconductor photodiode 94: external doped layer/semiconductor photodiode 95: contact on the external doped surface / semiconductor photodiode / Particulate photodiode contact 48 200824134 96 : Curved side contact / electrically conductive coating / replica surface contact / replica surface 97 · Contact electrode / electrically conductive coating / replica surface 98 : will not fit the sharp square on the hole Side reverse semiconductor/semiconductor photodiode/particle photodiode contact 99: external surface doping layer/semiconductor photodiode 1〇〇: internal doped layer/semiconductor photodiode 1〇1 · flat side electrical contact /Semiconductor photodiode/particulate photodiode contact 1〇2: flat side contact/electrically conductive coating/replica surface contact/replica surface 1 〇3 • Trench or embossed area 104: curved side electrical contact Piece/electrically conductive coating/replica surface contact / replica surface 105: electrostatically conductive film / electrically conductive coating / replica surface 106 · back reflector or diffuser with blackened outer surface I 07 · blackened external surface / protective and thermal radiation film 108 : molding Slot or hole: Air gap / optical component II 〇 · Formed transparent lens and mirror / molded glass lens III : Electrical connection tab / negative end 112 · Electronically conductive coating / mirror array / reflector 113 : Dielectric Substrate/mirror array/dielectric backing 1 1 4 · Back metal plate/mirror array 49 200824134 115 · Semiconductor sphere/semiconductor bead 116. Electrical wheel connection cable / positive end 117 anti-reflective coating or Ti〇2 and / or anti-scratch or anti-wear or other | ^ concentrating mechanism or ultraviolet filter 118 · electronic device or battery / electric conversion system 11 9 · thermal phase change material 120 · insulated container or box / enclosure / Heat pipe system / elastic wall 121 · Fan motor or actuator / fan 12 2 · Air flow / flowing fluid 123 : Fan or valve 124 : Heat pipe or thermal cycle system / working fluid 125 · Blackened back surface / mirror array / photovoltaic Array/Photodiode Array 126: Optical Coupling and Sealing Material/contact electrode/second electrode and photo reflector 127: dielectric substrate layer/electrode/substrate material/substrate 128: elastic layer/optical component 129: light ray 130 having a low angle to the lens surface: lens/optical component 13 1 : Light ray / light 132 : Photodiode / Semiconductor / Focus 133 : Photodiode substrate surface and electrode / electrical contact 134 : Electrically cut off part / Battery 136 : Light ray / light 50 200824134 137: Fresnel lens / Optical Element/Transparent Lens Material 138 ·•Photodiode/Semiconductor 139: Dielectric Substrate/Substrate Material 140 ·First Electrical Contact and Reflector/Contact Electrode 141: Transparent Dielectric Window/Transparent Elastic Substrate Material 142: Photodiode Body/semiconductor body 143: light ray/light

144:電接觸件/傳導電極 145 :抛物線反射器/鋁反射器 146 ··透明窗/透明玻璃覆蓋薄片 147·第二反射器/成形反射鏡 14 8 :光射線 149:第一反射器/成形鋁反射鏡接觸件/組件 150 :光二極體 15 1 :電導體/組件/彈性子層 1 5 2 ·介電基板/組件 153··空氣或透明介質/空氣或透明材料空腔 155:高折射率層/折射率層/聚石夕氧橡膠之成形層 156:: 一最高折射率層/折射率層/聚梦氧橡膠之成形 157:Γ最高折射率層/折射率層/㈣氧橡膠之成形 1 5 8 :光射線 159·電導體/接觸電極 51 200824134 160 :光二極體 161 :最低折射率/折射率層/聚矽氧橡膠之成形層/壓縮 空腔 162:空氣或透明介質/透明材料 164 :透明電極/透明電接觸件 165 :光射線 166:具有高色像差(或干涉光柵)之折射率材料/微 型集中器玻璃144: electrical contact/conducting electrode 145: parabolic reflector/aluminum reflector 146 · transparent window / transparent glass cover sheet 147 · second reflector / shaping mirror 14 8 : light ray 149: first reflector / forming Aluminum Mirror Contact/Component 150: Light Diode 15 1 : Electrical Conductor / Assembly / Elastic Sublayer 1 5 2 · Dielectric Substrate / Assembly 153 · Air or Transparent Medium / Air or Transparent Material Cavity 155: High Refraction Forming layer/refractive index layer/polygala oxide forming layer 156:: a highest refractive index layer/refractive index layer/polymoxy rubber forming 157: Γ highest refractive index layer / refractive index layer / (iv) oxy rubber Forming 1 5 8 : Light ray 159 · Electrical conductor / contact electrode 51 200824134 160 : Light diode 161 : Minimum refractive index / refractive index layer / Polyoxyethylene rubber forming layer / Compression cavity 162: Air or transparent medium / transparent Material 164: transparent electrode / transparent electrical contact 165: light ray 166: refractive index material with high chromatic aberration (or interference grating) / micro concentrator glass

167:電接觸件及反射器/反射槽 16 8 :綠光二極體 169 :藍光二極體 170 :紅光二極體 1 7 1 :紅光射線 172:綠光射線 173 :藍光射線 174 :抗反射塗層/分層式光二極體半球體 175 :光射線 176 :透鏡 177 :藍射線 178 :紅射線 179 :紅光之焦點 180:藍光二極體層上的藍光點或區/光二極體/分層式 光二極體半球體/分層式半球形光二極體 181 :紅光光二極體層/光二極體/分層式光二極體半球 52 200824134 體/傳導金屬接觸件/分層式半球形光二極體 182 :中心電接觸件 1 83 :外部層接觸件/傳導金屬接觸件 184:綠光吸收層/光二極體/分層式光二極體半球體/分 層式半球形光二極體 185 :聲源 186 :聲波 187 :鐵氟龍表面 188 :成形半導體珠 189 :珠之扁平側 190 ··背電表面/電極 191 :高壓源/產生器 192 :電接地 193 :推板或柵格之上部接地表面/電極 199 :綠光光子 200 :推板/推桿 201 :板上之對準的球體/珠 202 :推板上之成形槽/成形空腔/槽 203 :推板上之半球形成形凹座/成形空腔/孔 204 :鐵氟龍表面介電質 205 :金屬板/支撐板 210 :介電基板夾具/彈性基板 211 :電接觸件及反射鏡 212 :成形空腔/成形開口 53 200824134 213 :不對稱光二極體珠 2 14 :電接觸件 215 :在成形推動器之底部處的聚矽氧橡膠接觸表面襯 墊 216 :推板/推動器 2 1 7 :鐵氟龍薄膜 21 8 :背板 219 :在介電成形基板及反射鏡上之第二電極/電接觸 件 220 .在珠之扁平側上的第二接觸件/内部珠接觸件 221 :珠之扁平侧 222 ·•推板上之成形空腔 230 :外部透明抗反射及保護性塗層 231 :耐火介電材料透鏡_反射鏡 232 · /|電光學透明朦或光學麵合材料 23 3 :半導體光二極體 234 :光學透明膠或光學耦合材料 23 5 :可具有低摩擦係數之介電塗層 23 6 ··可具有低摩擦係數之介電塗層 237:邊緣接觸電極/接觸件/電接觸件材料 238:邊緣接觸電極/接觸件/電接觸件材料 239:背介電基板及電接觸分離器/聚醯亞胺/電接觸件 材料 240 :中心電傳導中心接觸件/珠 54 200824134 241 :背介電基板/聚醯亞胺/電接觸件材料 242 :至光二極體中心接觸件之電接觸件及電路/電接 觸件材料 243 :在光二極體中心接觸件與鄰近光二極體之邊緣接 觸件間的通道電連接線/通道 244 :輻射傳熱及保護性塗層 250 :輸出連接操作性正極性/連接線 251 :匯流排電連接線 252 :光二極體/電池 253 :介電絕緣體熱敏電阻或壓敏電阻上的薄導線或金 屬薄膜 254:逆向電流核對二極體/回流保護二極體/壓敏電阻 255 :匯流排電連接線 256 :電連接操作性負極性/連接線 257 :旁路二極體 25 8:介電質或壓敏電阻上的薄膜電導體 270:外部邊緣接觸件/金鉻塗層 271 :外部光二極體層 272 :中間光二極體層/光二極體 273 :中心電接觸件 274:中心光二極體層/内部摻雜層 275 :中心電接觸件 280:電接觸件/側接觸件/接觸電極 281 :邊緣電接觸件/光二極體珠/邊緣邊緣導體/光二極 55 200824134 282:外部光二極體層/光二極體珠/光二極體 283:中間光二極體層/光二極體珠/光二極體 284 :中心光二極體/光二極體珠/光二極體 285 :中心電接觸件 286 :中心電接觸件 287 :電接觸件/中心接觸件/側接觸件/接觸電極 288 :介電基板/電極基板/介電質 289 :背電接觸件/箔接觸件/電極基板/金屬箔基板/背 襯接觸件 290:中間光二極體層/光二極體珠/光二極體 291 :外部光二極體層/光二極體珠/光二極體 292 :外部邊緣電接觸件/光二極體珠/邊緣/邊緣導體/ 光二極體 293 :模製玻璃覆蓋透鏡或反射鏡/玻璃 294 :彈性透明介面材料/透明介面膠 295 :介電材料中之槽或空腔/彈性槽 56167: Electrical contact and reflector/reflecting groove 16 8 : Green diode 169 : Blue diode 170 : Red diode 1 7 1 : Red light 172 : Green light 173 : Blue light 174 : Anti Reflective coating/layered photodiode hemisphere 175: light ray 176: lens 177: blue ray 178: red ray 179: red light focus 180: blue light point or region/light diode on blue light diode layer / Layered photodiode hemisphere/layered hemispherical photodiode 181: red photodiode layer/photodiode/layered photodiode hemisphere 52 200824134 Body/conducting metal contact/layered hemisphere Light diode 182: central electrical contact 1 83 : outer layer contact / conductive metal contact 184: green light absorbing layer / light diode / layered light diode hemisphere / layered hemispherical light diode 185 : Sound source 186 : Sound wave 187 : Teflon surface 188 : Shaped semiconductor beads 189 : Flat side of the bead 190 · · Back surface / electrode 191 : High voltage source / generator 192 : Electrical ground 193 : Push plate or grid Upper Ground Surface/Electrode 199: Green Photon 200: Pusher/Pusher 201: Aligned Sphere/Bead 202 on the Plate: Forming groove/forming cavity/groove 203 on the plate: hemispherical forming recess/formed cavity/hole 204 on the push plate: Teflon surface dielectric 205: metal plate/support plate 210: dielectric substrate holder / Elastomeric Substrate 211 : Electrical Contact and Mirror 212 : Forming Cavity / Forming Opening 53 200824134 213 : Asymmetric Photodiode Bead 2 14 : Electrical Contact 215 : Polyoxygenated Rubber Contact at the Bottom of the Forming Pusher Surface liner 216: push plate/pusher 2 1 7 : Teflon film 21 8 : back plate 219: second electrode/electrical contact 220 on the dielectric forming substrate and mirror. On the flat side of the bead Second contact/internal bead contact 221: flat side of the bead 222 • Formed cavity 230 on the push plate: external transparent anti-reflective and protective coating 231: refractory dielectric material lens _ mirror 232 · / Electro-optical transparent germanium or optical facing material 23 3 : semiconductor photodiode 234 : optically clear adhesive or optical coupling material 23 5 : dielectric coating which can have a low coefficient of friction 23 6 ·· can have a low coefficient of friction Electrocoat 237: edge contact electrode / contact / electrical contact material 238: edge contact / Contact / Electrical Contact Material 239: Back Dielectric Substrate and Electrical Contact Separator / Polyimide / Electrical Contact Material 240 : Center Electrical Conduction Center Contact / Bead 54 200824134 241 : Back Dielectric Substrate / Poly Imine/electrical contact material 242: electrical contact to the photodiode center contact and circuit/electrical contact material 243: electrical connection between the photodiode center contact and the edge contact of the adjacent photodiode Line/Channel 244: Radiative Heat Transfer and Protective Coating 250: Output Connection Operational Positive/Connector 251: Busbar Electrical Connection Wire 252: Light Diode/Battery 253: Dielectric Insulator Thermistor or Varistor Thin wire or metal film 254 on the reverse: reverse current check diode/reflow protection diode/varistor 255: bus bar electrical connection line 256: electrical connection operational negative polarity / connection line 257: bypass diode 25 8: Thin film electrical conductor 270 on dielectric or varistor: external edge contact / gold chrome coating 271 : external photodiode layer 272 : intermediate photodiode layer / photodiode 273 : central electrical contact 274: Central photodiode layer/internal doped layer 275 : Center electrical contact 280: electrical contact / side contact / contact electrode 281: edge electrical contact / photodiode bead / edge edge conductor / photodiode 55 200824134 282: external photodiode layer / photodiode bead / light two Polar body 283: intermediate photodiode layer / photodiode bead / photodiode 284: central photodiode / photodiode bead / photodiode 285 : central electrical contact 286 : central electrical contact 287 : electrical contact / Center contact/side contact/contact electrode 288: dielectric substrate/electrode substrate/dielectric 289: back contact/foil contact/electrode substrate/metal foil substrate/backing contact 290: intermediate photodiode layer / Photodiode Beads / Photodiode 291 : External Light Diode Layer / Photodiode Bead / Photodiode 292 : External Edge Electrical Contact / Photodiode Bead / Edge / Edge Conductor / Light Diode 293 : Molded Glass Covering Lens or Mirror/Glass 294: Elastic Transparent Interface Material / Transparent Interface Adhesive 295: Slot or Cavity / Elastic Slot 56 in Dielectric Material

Claims (1)

200824134 十、申請專利範圍: .種衣置,其包含直接或間接的光子轉換器或產生 器1及電連接裝置,該電連接裝置包含重複成形之粒狀 半導體本體、重複形成之槽、孔、多個槽或多個孔以固持 。亥等半導體本體、至該半導體本體或該等半導體本體的光 管道,及至少兩個為該槽或孔之部分之電極,其藉由彈性 壓縮觸碰每一半導體本體。 2·如申請專利範圍帛1項之裝置,其中該光管道進- V 3反射鏡透鏡、透明材料、閃燦體、填光體、散射 表面、燒射或干涉結構。 3. 如申請專利_ 1項之裝置,其中該光管道包含 反射鏡、折射器、透鏡、閃爍體、磷光體、散射表面,或 干涉結構,其將光集中至該等光子轉換器。 4. 如申請專利範圍f !項之裝置,其進一步包含一非 扁平光透明折射霜芸屏,兮t 1曰忒非扁平光透明折射覆蓋層經成 形以配合於該等成形半導體本體上,且將光集中至該等半 導體本體,且其中娘雷;查垃夕_&amp; 、甲、、二包連接之該荨本體形成光伏特電池的 一陣列。 5. 如申請專利範圍第i項之裝置,其中該孔、槽、多 個孔或多個槽經成形以配合該等半導體本體之形狀。 6·如申請專利範圍帛1項之裝置’其中每-半導體本 體具有一形狀,且每一槽戋孔且古 母褶次孔具有一形狀,該等形狀將不 允許導致不正確電連接的任何方向中的組裝。 7.如申請專利範圍第1項之裝置,其;每—半導體本 57 200824134 體具有-形狀及結構,且每一槽或孔具有一形狀及結構, 此導致該半導體本體上的一彈性壓縮。 8·如申請專利範㈣i項之|置,其中每—半導體本 體具有-形狀及結構,且每一槽或孔具有一形狀及結構, 此導致該等半導體本體中之每一者的兩個不同區域上之該 至少兩個電極的—彈性壓縮,以形成—光二極體或熱電 偶。 • 9·如中請專利範圍帛1項之裝置’其中每-半導體本 粗具有配合每一槽或孔形狀及結構的特定重複形狀結構, ^其^步包含置放於該等半導體本體上的光透射覆蓋 ^ 士田β半導體本體置放於該槽或孔與該光透射覆蓋層之 該光透射覆蓋層導致每—半導體本體之兩個不同區 ν上之該至少兩個電極的—彈性壓縮或彈性附且,以形成 —光二極體。 赢如中請專利範圍第1項之裝置,其中每—半導體本 鲁 光透射介電覆蓋層之形狀及結構, =有-形狀及結構,此導致每一半導體本體之兩個不同 s上之5亥至少兩個電極的一彈性壓縮或彈性圍阻,以形 成一光二極體。 蹄且I1.、如申請專利範圍第1項之裝置,其中每一半導體本 光透射介電覆蓋層之形狀及結構,且其中每一槽或 孔具有一形狀及結構, ^ 此¥致該體之兩個不同區域上 一〜至少兩個電極的一彈性壓縮或彈性圍阻,以形成一光 -才系 5 ±b T. J- /、中自光之光集中經由該光透射介電覆蓋層折 58 200824134 射、繞射、散射、干涉、發螢光或反射,或/及自該等電極 反射、折射、散射、繞射、干涉,或發榮光。 12·如申請專利範圍第!項之裝置,其中每一成 體本體係藉由使用每一槽或孔來電連接,該槽或孔具有該 兩個或兩個以上的電極,作為該孔或槽之部分,且每一槽 或孔具有—形狀及結構,該形狀及結構導致每—半導體本 體之兩個不同區域卜&gt; +加$ &gt; , ^ 兩個包極的一彈性壓縮或彈性圍 本、# A 2仃電!觸且形成一光二極體;其進-步包含成形 、…射&quot;书覆盍層,其中自光之光集中經由該光透射介電 覆蓋層折射、繞射、散射、干涉、發螢光或反射,或/及自 该專電極反射、折射、散射、繞射、干涉,或發榮光。 13·如申請專利範圍第1項之裝置,其中每-成形半導 體本體係藉由使用每一槽或孔來電連接,該槽或孔具有該 兩個或兩個以上的電極’作為該孔或槽之部分,每一槽或 /、有I狀及、、Ό構,§貞形狀及結構導致該半導體本體之 、不同區域上之該至少兩個電極的—冑性璧縮或彈性圍 阻’以進行電接觸且形成一光二極體;其進一步包含一成 :光透射介電覆蓋層’丨中自光之光集中經由該光透射介 電覆盍層折射、繞射、散射、干涉、發螢光或反射,或/及 自該等電極反射、折射、散射、'繞射、干涉,或發螢光, 及一在該等電極與-外部彈性覆蓋層間之彈性介電材料, 及一,該光透射介電覆蓋層與該半導體本體及/或該外部彈 性覆盍層間之光透射介電材料。 14.如申請專利範圍第i項之裝置,其中每一孔或槽為 59 200824134 一彈性結構’該彈性結構可被彈性撬動打開以接受該半導 體且接著撬動力經釋放,或該半導體本體經推動楔入至該 孔或槽中,且該半導體本體保持受到來自該彈性結構的壓 縮力。200824134 X. Patent application scope: A clothing arrangement comprising a direct or indirect photon converter or generator 1 and an electrical connection device comprising a repeatedly formed granular semiconductor body, repeatedly formed grooves, holes, A plurality of slots or a plurality of holes are retained. A semiconductor body such as a ray, an optical conduit to the semiconductor body or the semiconductor body, and at least two electrodes that are part of the slot or aperture, which are resiliently compressed to each semiconductor body. 2. A device as claimed in claim 1, wherein the light pipe is incorporated into a V 3 mirror lens, a transparent material, a flash body, a fill body, a scattering surface, a fired or an interference structure. 3. The device of claim 1, wherein the light pipe comprises a mirror, a refractor, a lens, a scintillator, a phosphor, a scattering surface, or an interference structure that concentrates light to the photon converters. 4. The device of claim 5, further comprising a non-flat light transparent refractive frosting screen, the 曰忒t 1曰忒 non-flat light transparent refractive cover layer being shaped to fit over the shaped semiconductor body, and The light is concentrated to the semiconductor bodies, and wherein the body of the scorpion; the scorpion _&amp;, A, and the two packages are connected to form an array of photovoltaic cells. 5. The device of claim i, wherein the aperture, slot, plurality of apertures or slots are shaped to match the shape of the semiconductor bodies. 6. The device of claim 1, wherein each of the semiconductor bodies has a shape, and each of the slots and the ancient female pleats have a shape that will not allow any of the incorrect electrical connections. Assembly in the direction. 7. The apparatus of claim 1, wherein each of the semiconductors has a shape and structure, and each of the slots or holes has a shape and structure which results in an elastic compression on the semiconductor body. 8. The method of claim 4, wherein each of the semiconductor bodies has a shape and structure, and each of the slots or holes has a shape and structure, which results in two differentities in each of the semiconductor bodies. The at least two electrodes of the region are elastically compressed to form a photodiode or a thermocouple. • 9. The device of claim 1 wherein each of the semiconductors has a specific repeating shape structure that fits the shape and structure of each slot or hole, and the steps include placement on the semiconductor body. Light transmissive coverage ^ The Shift beta semiconductor body is placed in the slot or aperture and the light transmissive cover layer of the light transmissive cover layer to cause elastic compression of the at least two electrodes on two different regions ν of the semiconductor body Or elastically attached to form a photodiode. Win the device of the first item of the patent scope, in which the shape and structure of each of the semiconductor light-transmissive dielectric covering layers, =-shape and structure, which results in 5 different s on each semiconductor body An elastic compression or elastic containment of at least two electrodes of the sea to form a photodiode. The device of claim 1, wherein each semiconductor light transmissive dielectric cover layer has a shape and structure, and each of the slots or holes has a shape and structure, An elastic compression or elastic containment of at least two electrodes on two different regions to form a light-based system 5 ± b T. J- /, medium self-lighting light concentrated through the light transmission dielectric cover Layer folding 58 200824134 Shooting, diffracting, scattering, interfering, fluorescing or reflecting, or/and reflecting, refracting, scattering, diffracting, interfering, or honing light from such electrodes. 12·If you apply for a patent scope! Device wherein each adult system is electrically connected by using each slot or hole having the two or more electrodes as part of the hole or slot and each slot or The hole has a shape and a structure which results in two different regions of each semiconductor body. &gt; + plus $ &gt; , ^ an elastic compression or elastic perforation of the two cladding poles, # A 2仃! Touching and forming a photodiode; the further step comprises forming, ..., and covering the book, wherein the light from the light is concentrated through the light transmissive dielectric cover layer to refract, diffract, scatter, interfere, and fluoresce Or reflection, or / and reflection, refraction, scattering, diffraction, interference, or glory from the dedicated electrode. 13. The device of claim 1, wherein the per-forming semiconductor system is electrically connected by using each slot or hole having the two or more electrodes 'as the hole or slot a portion, each slot or/, having an I-shape and/or a Ό-shape, and a shape and structure resulting in a crucible collapse or elastic containment of the at least two electrodes on different regions of the semiconductor body Electrically contacting and forming a photodiode; further comprising: a light transmissive dielectric cover layer 自 自 自 自 集中 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射 折射Light or reflection, or/and reflection, refraction, scattering, 'diffraction, interference, or fluorescing from the electrodes, and an elastic dielectric material between the electrodes and the outer elastic cover layer, and A light transmissive dielectric material between the light transmissive dielectric cover layer and the semiconductor body and/or the outer elastic cover layer. 14. The device of claim i, wherein each hole or slot is 59 200824134 an elastic structure 'the elastic structure can be elastically opened to accept the semiconductor and then the power is released, or the semiconductor body is The wedge is pushed into the hole or slot and the semiconductor body remains subjected to compressive forces from the resilient structure. 15·如申請專利範圍第1項之裝置,其中每一半導體本 脸具有一开&gt;狀及結構,其進一步包含一光透射覆蓋層,且 其中每一槽或孔具有一形狀及結構,此導致該半導體之兩 個不同區域上之兩個電極的一彈性壓縮,以形成一光二極 體,且該等電極經熔接、漫射、焊接、硬焊在一起,且該 光透射覆蓋層及该等槽或孔結構係相互附著。 I6·如申請專利範圍第1項之裝置,其中由該光子轉換 器所轉換之光為陽光、自一電光源之熱輻射、放射性光發 射、化學光發射,或雷射光。 17.如申請專利範圍第8項之裝置,其中光管道及該槽 或孔結構藉㈣、焊接、熔接、夹具、緊固件,或聯鎖組 件相互附著。 18·如申請專利範圍第j 真空沈積、粉末沈積、喷墨 塗、電鍍、膠合或合併而附 等孔。 19.如申請專利範圍第i 體本體具有用以在該槽或孔 域。 項之裝置,其中該等電極藉由 印刷、層壓、箔壓印、電漿喷 著至該槽、該等槽、該孔或該 項之裝置,其中每一成形半導 中疋向該半導體本體的扁平區 20.如申請專利範圍第 1項之裝置,其中至少一半導體 60 200824134 本體經摻雜’以形成剩餘電子之一區域,&amp;剩餘電洞的— 品或X形成检數梯度,且其中該至少兩個電極包含一 接觸該剩餘電子區域的電導體,及一接觸該剩餘電洞區域 之電導體,及-外部電壓梯度,以形成一光二極體。 21. 如申請專利範圍帛i項之裝置,其中至少一使用兩 個不同材料電子傳導之半導體本體接觸至該半導體本體, 且形成-熱電接面、多個熱電接面、一電子穿随接面、多 個電子穿隨接面、_熱離子接面,或多個熱離子接面。 22. 如巾請專利範圍第丨項之裝置,其用作—光伏特電 池、光發射器、熱能量至電轉換器或製冷器。 23·如申請專利範圍第1項之裝置系、統,其進-步包含 J料接線,該電連接線亦為一光反射蒸、折射反射器、 政射益、閃爍體或磷光體的一光聚集系統。 24^請專利範圍第i項之裝置,其中該光管道為— 耦&amp;至該等形成之光二極體的光集中光學器件。 M·如中請專利範圍f Μ之裝置’其中該形成之槽或 孔或5亥等形成之槽或孔為該光管道之部分。 一 孔二如申請專利範圍第1項之裝置,其中該形成之槽或 孔或料形成之槽或孔具有亦用作光聚集組件的電載體。 27.如申請專利範圍第】項之裝置,其進一步 接線,該等電連接線藉由具有在介電材料上或由介電 所圍繞之少量電導體而亦用作保險絲。 ” 28·如中請專利範圍第】項之裝置,其㈣等電極係由 、的電傳導荡、薄膑、纖維、基質、台座、金屬細絲、 200824134 織品、網絲、、粉末、彈性多晶型表面,或膜所製造。 29.如中請專利_帛1項之裝置,其中該等電極係藉 由濺鍛I工游錢、電聚喷塗、粉末喷塗、喷墨印刷、絲 網印刷、電鍍或箔層壓之技術沈積於一介電基板上。 一 30.::請專利範圍帛1項之裝置,其中該等電極藉由 :在另-彈性電子傳導材料之頂部上的彈性介電材料所支15. The device of claim 1, wherein each semiconductor face has an open shape and a structure, further comprising a light transmissive cover layer, wherein each of the slots or holes has a shape and structure. Causing an elastic compression of two electrodes on two different regions of the semiconductor to form a photodiode, and the electrodes are welded, diffused, soldered, brazed together, and the light transmissive cover layer and the The equal grooves or pore structures are attached to each other. I6. The device of claim 1, wherein the light converted by the photon converter is sunlight, thermal radiation from an electric source, radioactive light emission, chemical light emission, or laser light. 17. The apparatus of claim 8 wherein the optical conduit and the slot or aperture structure are attached to each other by (4), welding, welding, clamps, fasteners, or interlocking components. 18. Included in the scope of the patent application, vacuum deposition, powder deposition, inkjet coating, electroplating, gluing or merging. 19. The i-body body as claimed in the patent application has a groove or a bore. Device wherein the electrodes are printed, laminated, foil imprinted, plasma sprayed onto the trough, the slots, the holes or the device, wherein each of the shaped semiconductors is directed toward the semiconductor Flat region of the body 20. The device of claim 1, wherein at least one semiconductor 60 200824134 body is doped to form a region of residual electrons, & residual hole-- or X forms a check gradient, And wherein the at least two electrodes comprise an electrical conductor contacting the remaining electron region, and an electrical conductor contacting the remaining hole region, and an external voltage gradient to form a photodiode. 21. The device of claim ii, wherein at least one of the semiconductor bodies electrically conductive with two different materials is in contact with the semiconductor body, and forming a thermoelectric junction, a plurality of thermoelectric junctions, an electron through interface , multiple electrons follow the interface, _thermal ion junction, or multiple thermal ion junctions. 22. The device of the scope of the patent application is to be used as a photovoltaic cell, a light emitter, a thermal energy to electrical converter or a refrigerator. 23. If the device system and system of claim 1 are included in the patent, the further step comprises a J material connection, and the electrical connection line is also a light reflection steaming, a refractive reflector, a political projection, a scintillator or a phosphor. Light gathering system. 24^ The device of claim i, wherein the light pipe is a light-concentrating optical device that is coupled to the formed photodiode. M. The device of the patent range f Μ wherein the groove or hole formed by the groove or the hole or the hole formed by the hole is a part of the light pipe. A device according to the first aspect of the invention, wherein the groove or hole formed by the groove or the hole has an electric carrier which also functions as a light collecting member. 27. The device of claim 5, wherein the electrical connection is further used as a fuse by having a small number of electrical conductors on or surrounded by a dielectric material. 28) The device of the scope of the patent scope is as follows: (4) The electrode is made of electric conduction, thin raft, fiber, substrate, pedestal, metal filament, 200824134 fabric, mesh, powder, elastic The surface of the crystal form, or the film is manufactured. 29. The device of the patent _帛1, wherein the electrodes are sprayed by forging money, electro-polymerization spraying, powder coating, inkjet printing, silk The technique of screen printing, electroplating or foil lamination is deposited on a dielectric substrate. A 30.:: The device of claim 1 wherein the electrodes are: on top of the other - elastic electronically conductive material Elastic dielectric material 31.如申請專利範圍第丨項之裝置,其中該等電 彈性壓縮彈性地橋接或緩衝差異熱膨脹尺寸分量差。 32·如申請專利範圍第1項之裝置,其中該等電極且有 電接觸件,且其中哕#其、音々斗冰 不八有 接觸^ A 構及光學組件,及該等電 織牛及,丨面材料形成於權皺、波紋、多晶型表面、曲線, 弓頭中卩重疋向或分散材料間的熱膨脹應力。 33 ·如申請專利範圍第32 Jg夕# $ ^ , 件及該等電接觸件及二二:之裝置…該等光學組 曰 及3亥荨”面材料形成於褶皺、波紋、多 日日1表面、曲線及彎通巾, W .4 p, “改輻射傳熱及至鄰近於該 每性圍阻之流體的傳熱。 34·如申請專利範圍第”項之裝置,其進-步 輻射發射或對流增強傳熱結 件之一外部表面上。塗1於該等接觸 1項之裝置,其中該等成形半導 之前經定向及移動及固持於一低 35.如申請專利範圍第 體在置放於該等孔或槽中 摩擦表面上。 其中該等槽或孔具 36·如申請專利範圍第i項之裝置 62 200824134 土復;^ 4電極之部分上的介電薄膜。 3 7 _如申請專利筋图 圍 裝置,其中該等槽或孔具 有作為沈積至該孔之立β八士山# 邠刀中的奴氟化合物或聚矽氧潤滑劑 的一低摩擦係數介電質。 …,38.如申請專利範圍第1項之裝置,其進-步包含可在 :等半導體上用以定向或固持該等半導體的重力、靜電 有、電場或磁場。 39.如申請專利範圍第1項之襄置,其進-步包含定位 於該形成之槽或孔内且用以將該等成形半導體固持於該等 成开/槽或孔内或作為_臨相持表面的黏性表面。 价如申請專利範圍第i項之裝置,其中該成形半導體 本體為-光二極體,且為在一或多個侧邊上經研磨、切割、 模製或平整化之球體,且該等電極中的至少一者附接至該 扁平側。 一如申明專利範圍第1項之裝置,其中該成形半導體 本體自帛導體之一球體或粒狀本體形成一A二極體,該球 敕或粒狀本體在一或多個側邊上經研磨、切割、模製或平 且該等電極中的至少一者附接至該研磨側邊,且該 寺電極中之另一者附接至該成形半導體本體之另一區域, 以使該等電極並不相互接觸。 ,、42·如申請專利範圍第J項之裝置,其中該成形半導體 形成有摻雜劑或材料之層以形成多個光二極體。 、,43 ·如申請專利範圍第1項之裝置,其中該光管道分裂 先譜且將該分裂之光譜最佳置放至該成形半導體本體的不 63 200824134 同區域中。 44·如申请專利範圍帛1項之裝置,其中該等電極自該 半導體移除熱。 ,45.如申明專利範圍帛ι項之裝置,其進一步包含一自 該光源遮蔽之在該轉換器之-表面上的塗層,Λ中該塗層 i曰強自此表面之輻射熱發射或對流,$塗層進一步包含凸 塊滅維、政熱片波紋,或脊,或載入有二氧化鈦粒子、 石墨粒子,或碳黑粒子的聚合物或橡膠薄膜。 46·如中請專利範圍帛1項之裝置,其中該光管道係熱 柄合至該半導體。 47·如申明專利範圍第丨項之裝置,其中該光管道亦形 成一部分或全部圍繞該半導體的覆蓋層。 〃 8 · 士申明專利範圍第1項之裝置,其中至該半導體之 該等電連接線形成並聯及串聯電路的一陣列。 49·如申請專利範圍第1項之裝置,其中至該半導體之 該等電連接線為鄰近於較大量之絕緣體的電導體,其用以 在忒包導體過熱、熔化或汽化的情況下斷開該電路。 5〇·如申請專利範圍第丨項之裝置,其中至該半導體之 该等電連接線形成並聯及串聯電路的一陣列,其中半導體 間之該等並聯電連接線為隨著電流流動而具有一增加之電 阻率的電導體。 ^ 51·如申請專利範圍第1項之裝置,其中該半導體或該 等電極係藉由膠來固持。 52·如申請專利範圍第丨項之裝置,其中該等光管道藉 64 200824134 由膠而固持至該等光二極體。 A $月專利圍第1項之裝置,其中該半導體或該 寻電極係藉由膠來固持’該膠亦降低該光管道與該 間的光學反射。 54.如申請專利範圍第1項之裝置,其中-外部盘該半 導體間之界面處的光管道具有表面處理 由相消干涉塗層或折料梯度綺低統射。 如申°月專利範圍第1項之裝置,其中該半導體戋該 等電極可藉由膠來固持,該膠具有一由光、熱、溫度改變、 濕度、化學接觸、化學擴散、振動,或輻射所起始的固化。 56. 如申請專利範圍第1項之裝置,其中該半導體可藉 由黏性材料來固持’以將該半導體肢於該等槽或孔中。曰 57. 如申請專利範圍第1項之裝置,其中該半導體及該 等電極藉由利用自熱傳導、減接觸、閃光吸收、雷射光 吸收、振動能量或電流之加熱的焊接、熔接、漫射、硬焊 或熔合來固定電接觸件。 58·如申請專利範圍第1項之裝置,其中該等電極為薄 膜電路。 / 59·如申請專利範圍第i項之裝置,其中該等電極為沈 積於财火光學器件上的薄膜電路。 6〇·如申請專利範圍第〗項之裝置,其中該等電極為沈 積於亦將光反射至該半導體之耐火光學器件上的薄膜電 路。 . 61·如申請專利範圍第1項之裝置,其中一第二成形 65 200824134 槽、孔或多個孔用以固持及定位該等 V體置放至該形成之槽、孔、該等槽或該等孔中。+ 62.如申請專利範圍第】項之裝置, -剩餘部分及孔及槽經形成至具有一電路網路之::體的 :·如申請專利範圍第Μ之裝置,其中半導體本體的 剩餘部分及孔及槽經形成至一陣列中,該陣列具有 2導體之光集以學器件且具有與該等半導體電 電路網路。 J —64.如申請專利範圍第μ之裝置,其中半導體本體的 一剩餘部分及孔及槽形成光轉換電路,其中多個半導體電 並聯連接且該等電並聯連接之半導體串聯連接至其他電並 聯連接的半導體,以形成一電矩陣。 65.如申請專利範圍第〗項之裝置,其中半導體本體的 一剩餘部分及孔及槽可形成光轉換電路,其中多個半導體 電並聯連接且此等電並聯連接之半導體串聯連接至其他電 並%連接的半導體,以形成一電矩陣,該電矩陣具有置放 於槽、並聯電連接之多個孔或槽中的半導體本體,該等 半導體本體用作圍繞並聯連接之光子轉換半導體的高壓條 件旁路二極體。 66.如申請專利範圍第1項之裝置,其中半導體本體的 一剩餘部分及孔及槽形成光轉換電路,其中多個半導體電 並聯連接且此等電並聯連接之半導體串聯連接至其他電並 聯連接的半導體,以形成一電矩陣,該電矩陣具有置放於 一槽、多個孔或多個槽中的半導體本體,該等半導體本體 66 200824134 用作逆向電流流動條件阻隔二極體。 、67·如中請專利範圍第1項之裝置,其中該等槽或孔形 成於一介電材料中。 68. 如申請專利範圍第1項之裝置,其中該等槽或孔由 一塗覆一電傳導材料之介電材料所形成。 69. 如申請專利範圍第1項之裝置,其中該等槽、孔或 私極具有紋理、凸塊、微粒、脊、流槽、散熱片、金屬細 絲或彈性多晶型表面。31. The device of claim 3, wherein the electroelastic compression elastically bridges or buffers differential thermal expansion dimensional component differences. 32. The device of claim 1, wherein the electrodes have electrical contacts, and wherein: 哕#, 々 々 々 , , , , , , , , , , , , , , The kneading material is formed on the wrinkles, corrugations, polycrystalline surfaces, curves, and the thermal expansion stress between the orbiting materials in the bow. 33 · If the patent application scope is 32 Jg 夕 # $ ^ , pieces and the electrical contacts and 22: the device... these optical group 3 and 3 荨 荨 face materials are formed in folds, ripples, multiple days 1 Surface, curve and curved towel, W.4 p, "Change radiation heat transfer and heat transfer to the fluid adjacent to the barrier. 34. The device of claim 1, wherein the device is on the outer surface of one of the radiation-emitting or convective-enhanced heat-transfer junctions. The device is coated with the device of the first contact, wherein the shaped semiconductor is Orientation and movement and retention at a low level 35. As claimed in the patent scope, the first body is placed on the friction surface of the holes or slots. wherein the grooves or holes 36 are as in the device of the scope of claim i 62 200824134 Earth complex; ^ 4 dielectric film on the part of the electrode. 3 7 _ as claimed in the patented ribbed device, wherein the groove or hole has the slave fluorine as the sediment in the standing β 八山# 邠A low coefficient of friction dielectric of a compound or a polyxanthene lubricant. 38. The apparatus of claim 1, wherein the step further comprises: or the like for orienting or holding the semiconductors on: Gravity, static electricity, electric field or magnetic field. 39. The device of claim 1, wherein the step further comprises positioning in the formed groove or hole and for holding the shaped semiconductor in the opening / slot or hole or as a _ phase The device of claim i, wherein the shaped semiconductor body is a photodiode and is a ball that is ground, cut, molded, or planarized on one or more sides, and The apparatus of claim 1, wherein the shaped semiconductor body forms an A diode from one of the spheres or the granular body of the conductor, the ball Or the granular body is ground, cut, molded or flat on one or more sides and at least one of the electrodes is attached to the abrasive side, and the other of the temple electrodes is attached to Forming another region of the semiconductor body such that the electrodes are not in contact with each other. The apparatus of claim J, wherein the shaped semiconductor is formed with a layer of a dopant or a material to form a plurality of The device of claim 1, wherein the light pipe splits the first spectrum and the split spectrum is optimally placed in the same region of the shaped semiconductor body. Such as applying for a patent The device of claim 1, wherein the electrodes remove heat from the semiconductor. 45. The device of claim 1, wherein the device further comprises a coating on the surface of the converter that is shielded from the light source The coating i is reluctant to radiate heat or convection from the surface, and the coating further comprises bumps, politicians, or ridges, or loaded with titanium dioxide particles, graphite particles, or carbon black particles. A polymer or rubber film. 46. The device of claim 1, wherein the light pipe is thermally coupled to the semiconductor. 47. The device of claim </ RTI> wherein the light pipe is also formed A part or all of the surrounding layer of the semiconductor. The apparatus of claim 1, wherein the electrical connection lines to the semiconductor form an array of parallel and series circuits. 49. The device of claim 1, wherein the electrical connection to the semiconductor is an electrical conductor adjacent to a relatively large amount of insulator for disconnecting the package conductor if it is overheated, melted, or vaporized. The circuit. 5. The device of claim 2, wherein the electrical connection to the semiconductor forms an array of parallel and series circuits, wherein the parallel electrical connections between the semiconductors have a current flow An electrical conductor that increases the resistivity. The device of claim 1, wherein the semiconductor or the electrodes are held by a glue. 52. The device of claim 3, wherein the optical conduits are held by the glue to the optical diodes by means of 64 200824134. A device of claim 1, wherein the semiconductor or the susceptor is held by a glue which also reduces optical reflection between the light pipe and the light pipe. 54. The device of claim 1, wherein the light pipe at the interface between the outer plates of the outer disk has a surface treatment that is degraded by a destructive interference coating or a folding gradient. The device of claim 1, wherein the electrode is held by a glue having a light, heat, temperature change, humidity, chemical contact, chemical diffusion, vibration, or radiation The initial cure. 56. The device of claim 1, wherein the semiconductor is held by a viscous material to cause the semiconductor to be in the slots or holes.曰57. The device of claim 1, wherein the semiconductor and the electrodes are welded, welded, diffused, by heating using self-heating, subtractive contact, flash absorption, laser light absorption, vibration energy or current, Brazing or fusing to secure the electrical contacts. 58. The device of claim 1, wherein the electrodes are thin film circuits. / 59. The device of claim i, wherein the electrodes are thin film circuits deposited on the fiscal optical device. 6. The device of claim </RTI> wherein said electrodes are thin film circuits deposited on refractory optics that also reflect light to the semiconductor. 61. The apparatus of claim 1, wherein the second forming 65 200824134 slot, hole or holes are for holding and positioning the V bodies to the formed slots, holes, slots or These holes are in. + 62. For the device of the scope of the patent application, the remainder and the holes and slots are formed to have a circuit network: body: • as in the device of the patent application, wherein the remainder of the semiconductor body The apertures and slots are formed into an array having a 2-conductor set of light and having a network of such semiconductor electrical circuits. J-64. The apparatus of claim 5, wherein a remaining portion of the semiconductor body and the holes and the slots form a light conversion circuit, wherein the plurality of semiconductors are electrically connected in parallel and the semiconductors connected in parallel are connected in series to other electrical parallels Connected semiconductors to form an electrical matrix. 65. The device of claim 1, wherein a remaining portion of the semiconductor body and the holes and slots form a light conversion circuit, wherein the plurality of semiconductors are electrically connected in parallel and the semiconductors connected in parallel are connected in series to other % connected semiconductors to form an electrical matrix having semiconductor bodies disposed in a plurality of holes or slots electrically connected in parallel, the semiconductor bodies serving as high voltage conditions surrounding the photoconducting semiconductors connected in parallel Bypass diode. 66. The device of claim 1, wherein a remaining portion of the semiconductor body and the holes and slots form a light conversion circuit, wherein the plurality of semiconductors are electrically connected in parallel and the semiconductors connected in parallel are connected in series to other electrical parallel connections. The semiconductor is formed to form an electrical matrix having a semiconductor body disposed in a slot, a plurality of holes or a plurality of slots, and the semiconductor body 66 200824134 is used as a reverse current flow condition blocking diode. The apparatus of claim 1, wherein the slots or holes are formed in a dielectric material. 68. The device of claim 1, wherein the grooves or holes are formed from a dielectric material coated with an electrically conductive material. 69. The device of claim 1, wherein the grooves, holes or private electrodes have textures, bumps, particles, ridges, runners, fins, metal filaments or elastomeric polycrystalline surfaces. 7〇.如申請專利範圍帛!項之裝置,其中該等半導體本 體由半導體或其層所製造,諸如,摻料 石夕、⑽仙、㈣Se2、帥nGa)Se2儀s、GaA= CdTe、AlGaAs、AlGaP、Ge 〇 71·如申請專利範圍第i項之裝置,其中該等槽或孔製 造於-介電質+,諸如,該玻璃、聚醯亞胺塑膠、聚芳醯 胺塑膠、$1旨、氟化烴、陶£、塗覆聚石夕氧橡膠之鋼,或 鋁、塗覆聚矽氧碳氟化合物之鋼或鋁、塗覆破璃的鋼、銅、 黃銅,或鋁、塗覆陶瓷之鋼,或塗覆塑膠之鋼或鋁。 72·如申明專利範圍弟丨項之裝置,其中該等電極由電 導體所製造,諸如,金、鉑、鈀、銀、錫、鋁、銻、鉛、 銅、辞、鈦、鉬、鈕、鎢、鋁、鎳、碳、矽、鐵、鉻、鈒、 鈮、錘、銦、含有此等材料中之一者的合金,或傳導化合 物,諸如,氧化錫、氧化辞,或摻雜硼之鑽石。 73·如申請專利範圍第〗項之裝置,其進一步包含由玻 璃、光透射塑膠、碳氟化合物塑膠,及聚矽氧碳氟化合物 67 200824134 所製造的介電覆蓋層。 74. 如申請專利範圍第2項之裝置,其中該散射器由二 氧化鈦之粒子所製造。 75. 如申請專利範圍第2項之裝置,其中該 雜葱之塑膠或橡膠所製造。 “體由掺 76.如申請專利範圍f 2項之裝置,其中該磷光體由推 雜有銅或銀或釔鋁石榴石的硫酸鋅所製造。7〇. If you apply for a patent scope帛! The device of the invention, wherein the semiconductor body is made of a semiconductor or a layer thereof, such as a compound of Shi Xi, (10) Xian, (4) Se2, handsome nGa) Se2 instrument s, GaA=CdTe, AlGaAs, AlGaP, Ge 〇71· The device of claim i, wherein the grooves or holes are made in -dielectric+, such as the glass, polyimine plastic, polyarsenide plastic, $1, fluorinated hydrocarbon, ceramic, coated Agglomerated steel, or aluminum, coated with bismuth oxycarbonate steel or aluminum, coated steel, copper, brass, or aluminum, coated ceramic steel, or coated plastic Steel or aluminum. 72. The device of claim 2, wherein the electrodes are made of electrical conductors, such as gold, platinum, palladium, silver, tin, aluminum, bismuth, lead, copper, rhodium, titanium, molybdenum, buttons, Tungsten, aluminum, nickel, carbon, niobium, iron, chromium, niobium, tantalum, hammer, indium, alloys containing one of these materials, or conductive compounds such as tin oxide, oxidized, or boron doped diamond. 73. The device of claim </RTI> wherein the device further comprises a dielectric cover made of glass, light transmissive plastic, fluorocarbon plastic, and polyoxyxafluorocarbon 67 200824134. 74. The device of claim 2, wherein the diffuser is made of particles of titanium dioxide. 75. The device of claim 2, wherein the scallions are made of plastic or rubber. The apparatus is a device according to claim 2, wherein the phosphor is made of zinc sulfate doped with copper or silver or yttrium aluminum garnet. 77·如申請專利範圍第2項之裝置,其中該半導體由具 有至少一扁平側之經摻雜的石夕球體所製造。 78·如申請專利範圍第丨項之裝置,其中該半導體由一 經摻雜之料體所製造,其中一載體掺雜於該球體的内部 上,且另一載體摻雜於該球體之表面層上,其中至少一切 割或研磨侧邊足夠的扁平,以暴露該内部摻雜之區域,一 電導體材料點附接至該内部摻雜區域的暴露之扁平區域。 9·如申請專利範圍帛!項之裝置,#中該等半導體本 體電並聯連接至其他類似半導體的—陣列,且串聯連接至 類似半導體,且連接至電組件,諸如,導線、二極體、開 關H絲、電容器、電池組Λ燃料電池、飛輪、DC叹 轉換器、DC至AC轉換器。 8〇_如申請專利範圍第3項之裝置,其中該等光集中光 學器件經指向及追蹤至太陽的一圓盤,以將光集中至該等 光二極體中。 、 其中該陣列在朝向 ’其使流體通過該 81·如申請專利範圍第4項之裝置, 避開光源之陣列的表面上具有一封閉體 68 200824134 表面’以諸如藉由對流、抽吸之流體流動及汽化來移除熱。 82.如申請專利範圍第4項之裝置,其中該陣列在朝向 避開該光源之該陣列的該表面上具有一封閉體,其固持一 經受-熱相變的材料,以自該等光二極體吸收熱。 十一、圖式·· 如次頁77. The device of claim 2, wherein the semiconductor is fabricated from a doped stone sphere having at least one flat side. 78. The device of claim 2, wherein the semiconductor is fabricated from a doped body, wherein one carrier is doped on the interior of the sphere and the other carrier is doped on the surface layer of the sphere And wherein at least one of the cut or ground sides is sufficiently flat to expose the inner doped region, and an electrical conductor material point is attached to the exposed flat region of the inner doped region. 9. If you apply for a patent range 帛! In the device, the semiconductor bodies are electrically connected in parallel to other semiconductor-like arrays, and are connected in series to similar semiconductors and to electrical components such as wires, diodes, switching H wires, capacitors, battery packs. Λ Fuel cell, flywheel, DC sigma converter, DC to AC converter. 8A. The device of claim 3, wherein the light-concentrating optical device is directed to and tracked to a disk of the sun to concentrate light into the light-emitting diodes. Wherein the array is in the direction of 'the fluid passing through the apparatus of the invention, as in the apparatus of claim 4, avoiding the surface of the array of light sources having an enclosure 68 200824134 surface' such as by convection, suction of fluid Flow and vaporization to remove heat. 82. The device of claim 4, wherein the array has an enclosure on the surface facing the array that avoids the source of light, which holds a material that undergoes a thermal phase change from the photodiode The body absorbs heat. XI, schema ·· as the next page 6969
TW096124657A 2006-07-07 2007-07-06 Micro concentrators elastically coupled with spherical photovoltaic cells TWI466304B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81927306P 2006-07-07 2006-07-07

Publications (2)

Publication Number Publication Date
TW200824134A true TW200824134A (en) 2008-06-01
TWI466304B TWI466304B (en) 2014-12-21

Family

ID=38895248

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096124657A TWI466304B (en) 2006-07-07 2007-07-06 Micro concentrators elastically coupled with spherical photovoltaic cells

Country Status (9)

Country Link
EP (1) EP2038936A2 (en)
JP (1) JP2009543376A (en)
KR (1) KR101443043B1 (en)
CN (1) CN101501979A (en)
AU (1) AU2007269559A1 (en)
CA (1) CA2657099C (en)
MX (1) MX2009000045A (en)
TW (1) TWI466304B (en)
WO (1) WO2008005557A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661456B (en) * 2018-07-31 2019-06-01 聚鼎科技股份有限公司 Protection device
CN110828254A (en) * 2018-08-07 2020-02-21 聚鼎科技股份有限公司 Protective element

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090025789A1 (en) 2007-02-02 2009-01-29 Hing Wah Chan Alignment of optical element and solar cell
US20110120526A1 (en) * 2008-05-26 2011-05-26 Impel Microchip Ltd. Monolithic Low Concentration Photovoltaic Panel Based On Polymer Embedded Photovoltaic Cells And Crossed Compound Parabolic Concentrators
DE102008064313A1 (en) * 2008-12-20 2010-07-08 Schott Solar Gmbh Photovoltaic-module for use in e.g. pitched roof of house, has ventilator increasing air stream at lower side, and control system comparing initial temperature with reference temperature of module and for adjusting power of ventilator
FR2942058B1 (en) * 2009-02-06 2011-03-11 Univ Sud Toulon Var METHOD FOR OPTIMIZED CALCULATION OF A DEVICE FOR CONCENTRATING RADIUSES, IN PARTICULAR SOLAR RAYS, AND A RADIATION CONCENTRATOR THUS OBTAINED
CN101764167B (en) * 2009-12-25 2011-08-24 赵耀华 High-efficient solar photovoltaic cell heat dissipating device and electricity and heat cogeneration system
US8884156B2 (en) 2010-11-29 2014-11-11 Palo Alto Research Center Incorporated Solar energy harvesting device using stimuli-responsive material
WO2013084119A1 (en) 2011-12-05 2013-06-13 Koninklijke Philips Electronics N.V. A lighting system
US8752380B2 (en) 2012-05-22 2014-06-17 Palo Alto Research Center Incorporated Collapsible solar-thermal concentrator for renewable, sustainable expeditionary power generator system
JP6024529B2 (en) * 2013-03-11 2016-11-16 株式会社豊田自動織機 Solar cell module and method for manufacturing solar cell module
JP5983471B2 (en) * 2013-03-11 2016-08-31 株式会社豊田自動織機 Solar cell module
JP2014175538A (en) * 2013-03-11 2014-09-22 Toyota Industries Corp Solar cell module
ES2527969B1 (en) * 2013-08-01 2015-11-23 Instituto Holográfico Andaluz, S.L. Three-dimensional thermal or photovoltaic solar panel with built-in holography
EP2916151B1 (en) 2014-03-05 2020-01-01 Corning Optical Communications LLC Method of forming a fiber coupling device
CN104852677B (en) * 2015-03-19 2017-04-19 华南理工大学 Micro-lens light-absorbing and micro-spherical silicon light-condensing combined solar cell
KR101961834B1 (en) * 2017-11-06 2019-03-26 전북대학교산학협력단 Method of fabricating a led display apparatus
CN108306610A (en) * 2018-02-12 2018-07-20 张明永 A kind of solar energy photovoltaic generator
CN109541668B (en) * 2018-12-03 2020-05-22 西安交通大学 Power-free radiation monitoring device and method
CN110390863B (en) * 2019-07-22 2021-08-20 中国原子能科学研究院 Thermal ion power generation experimental device adopting electrode assembly integral welding process

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854684A (en) * 1981-09-08 1983-03-31 テキサス・インスツルメンツ・インコ−ポレイテツド Solar energy converter
US4514580A (en) * 1983-12-02 1985-04-30 Sri International Particulate silicon photovoltaic device and method of making
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
WO1998031054A1 (en) * 1997-01-13 1998-07-16 Hitachi, Ltd. Photoelectric transducer and device using the same
JPH1131837A (en) * 1997-07-14 1999-02-02 Hitachi Ltd Light collecting type solar generator and module using it
JP2000022184A (en) * 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> Spherical or rod-shaped crystal solar cell and its manufacture
JP2001210843A (en) * 1999-11-17 2001-08-03 Fuji Mach Mfg Co Ltd Photovoltaic power generating panel and method of manufacturing it
US6355873B1 (en) * 2000-06-21 2002-03-12 Ball Semiconductor, Inc. Spherical shaped solar cell fabrication and panel assembly
US6706959B2 (en) * 2000-11-24 2004-03-16 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles
JP3490969B2 (en) * 2000-11-24 2004-01-26 圭弘 浜川 Photovoltaic generator
KR100652916B1 (en) * 2002-05-02 2006-12-01 죠스케 나카다 Light-receiving panel or light-emitting panel, and manufacturing method thereof
ES2616177T3 (en) * 2004-03-12 2017-06-09 Sphelar Power Corporation Multilayer solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661456B (en) * 2018-07-31 2019-06-01 聚鼎科技股份有限公司 Protection device
CN110828254A (en) * 2018-08-07 2020-02-21 聚鼎科技股份有限公司 Protective element
CN110828254B (en) * 2018-08-07 2022-11-25 聚鼎科技股份有限公司 Protective element

Also Published As

Publication number Publication date
CA2657099A1 (en) 2008-01-10
CN101501979A (en) 2009-08-05
KR101443043B1 (en) 2014-10-02
AU2007269559A1 (en) 2008-01-10
KR20090042229A (en) 2009-04-29
TWI466304B (en) 2014-12-21
MX2009000045A (en) 2009-03-24
EP2038936A2 (en) 2009-03-25
WO2008005557A9 (en) 2008-02-21
WO2008005557A2 (en) 2008-01-10
JP2009543376A (en) 2009-12-03
WO2008005557A3 (en) 2009-04-02
CA2657099C (en) 2016-03-29

Similar Documents

Publication Publication Date Title
TWI466304B (en) Micro concentrators elastically coupled with spherical photovoltaic cells
US8013238B2 (en) Micro concentrators elastically coupled with spherical photovoltaic cells
JP3174549B2 (en) Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system
US5482568A (en) Micro mirror photovoltaic cells
US20090293934A1 (en) Photoelectric Conversion Device
US20120234390A1 (en) Method and system for integrated solar cell using a plurality of photovoltaic regions
US7910392B2 (en) Method and system for assembling a solar cell package
CN101093864A (en) Solar concentrating photovoltaic device with resilient cell package assembly
CN101075646A (en) Passive cooling type sular energy projector photoelectric device
US10418501B2 (en) Wafer-integrated, ultra-low profile concentrated photovoltaics (CPV) for space applications
JP2009543376A5 (en)
JP2002289896A (en) Concentrating solar cell module and concentrating photovoltaic power generation system
WO2018204388A1 (en) Solar pv generator with dish reflector and fly&#39;s eye receiver
JP2008543111A (en) Method and system for integrated solar cells using multiple photovoltaic regions
US20110100423A1 (en) Light Scattering and Transport for Photosensitive Devices
JP2003069070A (en) Solar cell module
US8207008B1 (en) Affixing method and solar decal device using a thin film photovoltaic
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
JP4969337B2 (en) Photoelectric conversion device
WO2014028336A2 (en) Solar receiver and conversion apparatus for concentrated photovoltaic systems
AU2008351529A1 (en) Photovoltaic concentration module and device
JP2008060207A (en) Photoelectric converter
CELL MODULATED LIQUID LENS WITHOUT METHOD OF MANUFACTURING A SPHERICAL ABERRATION HAVING MEANS PHOTOVOLTAIC DEVICE FOR ABSORBING THE SOLAR ENERGY CONDENSER AND PROVIDED WITH A HEAT
WO2008097806A9 (en) Direct attachment of optically-active device to optical element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees