WO2008001855A1 - Composition durcissable par rayonnement de haute énergie, film transparent fabriqué à partir de la composition et disque optique utilisant le film - Google Patents

Composition durcissable par rayonnement de haute énergie, film transparent fabriqué à partir de la composition et disque optique utilisant le film Download PDF

Info

Publication number
WO2008001855A1
WO2008001855A1 PCT/JP2007/063020 JP2007063020W WO2008001855A1 WO 2008001855 A1 WO2008001855 A1 WO 2008001855A1 JP 2007063020 W JP2007063020 W JP 2007063020W WO 2008001855 A1 WO2008001855 A1 WO 2008001855A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
composition
weight
parts
Prior art date
Application number
PCT/JP2007/063020
Other languages
English (en)
French (fr)
Inventor
Kaoru Niimi
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Priority to JP2008522626A priority Critical patent/JPWO2008001855A1/ja
Publication of WO2008001855A1 publication Critical patent/WO2008001855A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters

Definitions

  • Active energy ray-curable composition transparent film comprising the composition, and optical disk using the film
  • the present invention relates to an active energy ray-curable composition suitable for optical applications such as transparent and optically small distortion films, optical function-adjusted windows, components such as displays and optical disks, and the like.
  • the present invention relates to a transparent film made of material and an optical disk using the film as a constituent member.
  • the film has a thickness of 1 ⁇ m and a very thin thickness of about 2000 ⁇ m with high thickness accuracy, high transparency, and low optical distortion, so that the next-generation type It is suitable for forming at least one layer of a high-density recording medium of a disk, for example, an optical disk such as a Blu-ray disk or UDO.
  • a high-density recording medium of a disk for example, an optical disk such as a Blu-ray disk or UDO.
  • a plastic film with a small optical distortion has been formed on the spacer of an optical function adjusting film such as a liquid crystal display and a plasma display, and on the spacer immediately above the recording layer of the optical disk. 'Applied force
  • the film is formed by the casting method or coating method, so the material is limited, and heat distortion resistance, heat decomposition resistance, film processing property, cost, etc. are not combined. Usage is restricted by the conditions.
  • Patent Document 1 discloses an active energy ray-curable composition containing an oligomer component such as urethane (meth) atreatoi compound and a specific (meth) acrylic ester compound.
  • the active energy ray-curable composition having the composition disclosed in Patent Document 1 has been shown to be superior to the coating method, particularly the spin coater method, as a processing method of an active energy ray-curable composition of 50 to 100 m.
  • the coating method particularly the spin coater method
  • the thickness accuracy is not sufficient.
  • the processing process of the active energy ray curable composition to be used It is difficult to say that it is practical because it has a large loss such as scattering.
  • UV-cured epoxy resin and acrylic resin films are easy to manufacture, but they are brittle as in the case of the above-mentioned resins, and these resins obtain films with a thickness of several meters or less. Although it is used for coating methods and casting methods, it has been known to be processed into a film with a thickness of several tens; zm to several hundreds / zm.
  • Patent Document 2 for an optical article, the deformation is not restored to the original shape, the phenomenon (placement mark) is solved, the transparency, the refractive index, the surface hardness, etc. are excellent, and the productivity is also excellent.
  • ionizing radiation curable resin compositions include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and the like, and epoxy acrylates having a cyclic structure and having two or more acrylate groups (a) And a monofunctional acrylate (b) having a cyclic structure, and a resin composition containing a specific amount of an acrylate functional group is described.
  • the ionizing radiation curable resin composition for optical articles described in Patent Document 2 is also sufficient in terms of toughness, heat resistance and secondary cache properties, and is not suitable for optical applications! ,. For this reason, there is a demand for the development of a resin fiber and a composition that is excellent in physical properties such as toughness and heat resistance, and secondary workability, and is suitable mainly for optical applications.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-231725
  • Patent Document 2 Japanese Patent Laid-Open No. 9-61601
  • the present inventors may be able to absorb and cure active energy rays such as light and electron beams.
  • active energy rays such as light and electron beams.
  • acrylates with a specific composition are mixed at a specific mixing ratio and reacted under irradiation with active energy.
  • the inventors have found that the intended resin composition, transparent film, and optical disk can be obtained, and the present invention has been developed.
  • the present invention adopts the following configurations (1) to (18).
  • a transparent phenol having the ability of any of the following active energy ray-curable compositions (A) to (C).
  • A Active energy ray curable containing 30 to 60 parts by weight of urethane (meth) acrylate, 20 to 50 parts by weight of phenoxy (meth) acrylate, and 0 to 30 parts by weight of epoxy (meth) acrylate.
  • (B) Active energy ray-curing property containing 40 to 60 parts by weight of urethane (meth) acrylate, 10 to 40 parts by weight of epoxy (meth) acrylate and 0 to 30 parts by weight of alicyclic (meth) acrylate.
  • the storage elastic modulus ( ⁇ ') at 25 ° C is 2000 MPa or more and the storage elastic modulus ( ⁇ ') at 100 ° C is less than lOOMPa (1) Transparent film as described in 1.
  • n represents an integer of 4 or more.
  • the phenoxy (meth) acrylate is a composition having at least one tamil group in the molecule, an alkyl group composition having 8 or more carbon atoms, an epichlorohydrin condensation composition, and an ethylene glycol condensation composition!
  • the transparent Finolem according to any one of (1) to (3) above, wherein the transparent Finolem has any deviation.
  • the phenoxy (meth) acrylate is composed of at least one tamil group composition or an alkyl group composition having 8 or more carbon atoms and an epichlorohydrin condensation composition or ethylene glycol condensation composition in the molecule.
  • the epoxy (meth) acrylate is bisphenol A glycidyl ether (meth) acrylate.
  • the transparent film as described in any one of (1) to (5) above,
  • the bifunctional or higher functional (meth) acrylate having the alkylene oxide group is The transparent film according to any one of (1) to (7), which is represented by the general formula [4].
  • R represents hydrogen or a methyl group
  • n and m represent an integer of 1 to 4.
  • the protective film includes the protective film for an optical disk according to (9), and the thickness of the protective film The optical disk as described in (10) above, wherein is 0.2 mm or less.
  • the phenoxy (meth) acrylate has a composition of at least one Tamyl group, an alkyl group having 8 or more carbon atoms, an epichlorohydrin condensation composition, and an ethylene glycol condensation composition in the molecule!
  • the active energy single line curable composition as described in (12) or (13) above, wherein
  • the phenoxy (meth) acrylate is composed of at least one Tamyl group composition or an alkyl group composition having 8 or more carbon atoms in the molecule, an epichlorohydrin condensation composition, or an ethylene glycol condensation composition.
  • the active energy single-line curable composition as described in (12) or (13) above,
  • R represents hydrogen or a methyl group
  • n and m represent an integer of 1 to 4.
  • the active energy ray-curable composition of the present invention is transparent, has optically small toughness and heat resistance, has excellent secondary caking properties, and has an extremely thin force of about 1 to 2000 m.
  • the film up to the extreme thickness can be continuously and easily formed with high thickness accuracy.
  • the transparent film made of the active energy ray-curable composition of the present invention has not only excellent toughness and heat resistance with small optical distortion, but also ease of lamination, thickness accuracy, and cost. Also excellent.
  • the optical disc obtained by laminating this film has the effect of further improving the warpage of the disc in addition to the excellent optical / physical properties described above. It can be used very effectively as an optical disk such as a disk or UDO.
  • the active energy ray-curable composition of the present invention has a urethane (meth) acrylate, a phenoxy (meth) acrylate, an epoxy (meth) acrylate, an alicyclic (meth) acrylate, and an alkylene oxide group.
  • Urethane (meth) acrylate 30-30 parts by weight, phenoxy (meth) acrylate 20-20 parts by weight, epoxy (meth) acrylate 9-30 parts by weight
  • the urethane (meth) acrylate which is one of the components of the active energy ray-curable composition of the present invention is at least a bifunctional or more urethane (meth) acrylate oligomer having the following general formula [1] It is represented by
  • R represents a hydroxy group-containing (meth) acrylic acid ester
  • R represents isocyanate residue
  • R represents alcohol residue or polyether diester
  • At least one diol residue selected from all, polyester diol, and polycarbonate diol, R represents hydrogen or a methyl group, and n represents an integer of 2 to 20
  • the method for synthesizing urethane (meth) acrylate is not particularly limited.
  • a hydroxyl group is contained in a compound obtained by urethane condensation of aliphatic polyol or aliphatic polyol daricidyl ether and alicyclic diisocyanate. It can be synthesized by adding (meth) atarylate.
  • R in the general formula [1] is a hydroxy group-containing (meth) acrylic acid ester residual chain having at least one (meth) atalyloyl group and at least one hydroxy group in the molecule.
  • hydroxy group-containing (meth) acrylic acid ester component examples include, for example, 2-hydroxyxetyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxy Cibutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, cyclohexane dimethanol mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate and adduct of prolatathone, 4— Examples include adducts of hydroxybutyl (meth) atalylate and force prolatatone, trimethylolpropane diatalylate, pentaerythritol triatalylate, and dipentaerythritol pentaatalylate. These can be used singly or in combination of two or more. Among them, 2-hydroxyethyl (meth) atalylate, 2.
  • R in the general formula [1] is a diisocyanate residue.
  • aromatic diisocyanates such as isocyanate and 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, bis (4 isocyanatocyclohexyl) methane, 1 1, 2 Hydrogenated xylylene diisocyanate, 1, 4 monohydrogenated xylylene diisocyanate, hydrogenated tetramethylxylylene diisocyanate, norbornane diisocyanate, and the like.
  • aromatic diisocyanates such as isocyanate and 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, bis (4 isocyanatocyclohexyl) methane, 1 1, 2 Hydrogenated xylylene diisocyanate, 1, 4 monohydrogenated xylylene diisocyanate, hydrogenated tetramethylxylylene diisocyanate,
  • isophorone diisocyanate and alicyclic diisocyanate such as bis (4isocyanatocyclohexyl) methane are preferred, but isophorone diisocyanate has light transmittance, heat distortion resistance, and heat decomposability. Better in terms, better in terms.
  • R in the general formula [1] is a bifunctional alcohol residue, for example, ethylene
  • glycol compounds such as polyether polyols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, polyethylene glycol, polypropylene glycol, and polybutylene glycol.
  • Polyether diols such as 1-methylenobutylene glycol; neopentyl glycol, ethylene glycolate, diethylene glycol, propylene glycol, 1,6 hexanediol, 1,4 butanediol, 1,9-nonanediol, 1,10 decanediol, 3 —Methylpentanediol, 2,4 jetylpentanediol, tricyclodecane dimethanol, 1,4-cyclohexanedimethanol 1, 2 cyclohexane dimethanol, 1, 3 cyclo Diols such as hexanedimethanol, cyclohexanediol, hydrogenated bisphenol A, and bisphenol A; polyether-modified diols obtained by attaching alkylene oxide such as ethylene oxide, propylene oxide, and butylene oxide to the diols.
  • alkylene oxide such as ethylene oxide, propylene oxide, and buty
  • polyester diols By reacting the diols with polybasic acids such as succinic acid, phthalic acid, hexahydrophthalic acid, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic acid, or acid anhydrides of these polybasic acids; Polyester diols such as polystrength prolataton diol obtained by reaction of the resulting polyester diol, and diols with latatones such as ⁇ -strength prolatatatone, ⁇ -butyrolatatone, ⁇ -valerolatatone, ⁇ -valerolatatone; And the polybasic Propylataton-modified polyester diols obtained by the reaction of lacquers with other latatones such as ⁇ -strength prolatatone, y petitloratatone, ⁇ -valerolataton, ⁇ -valerolataton; polycarbonate diols such
  • tetramethylene glycol skeleton polyether diols, polyester diols, and polycarbonate diols are preferable.
  • the cured product is tough, an aliphatic polycarbonate diol is preferred. Further, when emphasizing the coatability of the composition, it is preferable to have a tetramethylene glycol skeleton.
  • urethane (meth) acrylates in which (meth) acrylated urethane (meth) acrylate obtained by urethane condensation of isophorone diisocyanate and tetraethylenedaricol has a number average molecular weight of 600 to 1000, more preferably 1000 to 4000.
  • a structure obtained by reacting 4-hydroxybutyl acrylate at the end of a structure having 10 to 18 urethane bonds in the molecule is represented by the following structural formula [2].
  • n represents an integer of 4 or more.
  • the phenoxy (meth) acrylate which is one of the components of the active energy ray-curable composition of the present invention is not particularly limited, but in detail, phenoxy (meth) having two or less (meth) taroloyl groups. It is an acrylate monomer that has a relatively low molecular weight, low viscosity, and a large elongation of a single polymer. As a result, it has a structure that can easily reduce the viscosity of the composition and improve toughness.
  • one having at least one Tamyl group composition, an alkyl group composition having 8 or more carbon atoms, an epichlorohydrin condensation composition, or an ethylene glycol condensation composition in the molecule, or in the molecule Those having at least one Tamyl group composition or an alkyl group composition having 8 or more carbon atoms and an epichlorohydrin condensation composition or an ethylene glycol condensation composition are preferable.
  • phenoxychetyl (meth) acrylate phenoxypolyethylene dallicol (meth) acrylate, phenoxy propyl (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, nourphenoxy Ethylene glycol (meth) acrylate, nourphenoxy polyethylene glycol (meth) acrylate, nour phenoxy propylene glycol (meth) acrylate, nour phenoxy polypropylene glycol (meth) acrylate, paracumyl phenoxy ethylene glycol ( (Meth) attalylate, paracumyl phenoxy polyethylene glycol (meth) acrylate, paracumyl phenoxypropylene glycol
  • nourphenoxyethylene glycol (meth) atalylate nourphenoxypropylene Glycol (meth) acrylate
  • paracumyl phenoxyethylene glycol (meth) acrylate 2-hydroxy-1-3-phenoxy propyl (meth) acrylate
  • epoxychlorohydrin-modified phenoxy (meth) acrylate More preferred ,.
  • the epoxy (meth) acrylate which is one of the components of the active energy ray-curable composition of the present invention is not particularly limited, but an epoxy having two or more (meth) attalyloyl groups. It is a (meth) acrylate oligomer with high molecular weight and polarity, and has a structure that is easy to improve the physical properties by reaction of the allyloyl group.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, phenol Novolac epoxy resin, Cresolol novolac epoxy resin, bisphenoxyfluor orange glycidyl ether, bisphenoxyfluorene ethanol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy Epoxy resin such as coconut resin, cyclohexane dimethanol diglycidyl ether, tricyclodecane dimethanol diglycidyl ether, (meth) acrylic acid, (meth) acrylic acid dimer, force prolatatone modified (meth) acrylic acid, etc. Examples thereof include epoxy (meth) acrylates obtained by reacting unsaturated monobasic acids.
  • epoxy (meth) acrylates since the heat resistance of the resulting composition can be improved after curing, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol A ethylene oxide force Glycidyl ether, bisphenol A, propylene oxide, bisphenol-type epoxy (meth) atalytoy compound, bisphenol A type, a (meth) acrylic acid adduct of polyfunctional epoxy compounds such as diglycidyl ether Epoxy (meth) acrylate, bisphenol F-type epoxy (meth) acrylate, bisphenol S-type epoxy (meth) acrylate, tetrabromobisphenol A-type epoxy (meth) acrylate, hydrogenated bisphenol Type A epoxy (meth) acrylate, hydrogenated bisphenol Bisphenol-type epoxy (meth) atalylates such as F-type epoxy (meth) atalylate are suitable.
  • polyfunctional epoxy compounds such as diglycidyl ether Epoxy (meth) acrylate, bisphenol F
  • bisphenol type epoxy (meth) represented by the following general formula [3] is particularly preferable.
  • Rl and R2 represent hydrogen or a methyl group, and n represents 1 to 12 Represents an integer.
  • the weight average molecular weight is preferably in the range of 700 to 4000, in view of lowering the volume shrinkage due to polymerization of the resulting composition.
  • a range of n 2 to 12 is preferred.
  • the weight average molecular weight is lower than 700, the above-mentioned bisphenol type epoxy (meth) acrylate is large in volume shrinkage due to polymerization of the resulting composition, and the resulting active energy line curable composition is obtained.
  • the warp of the optical disc tends to increase.
  • the weight average molecular weight of the bisphenol type epoxy (meth) acrylate exceeds 4000, the viscosity of the composition becomes extremely high and the processability tends to be lowered. Therefore, in the present invention, when using a bisphenol type epoxy (meth) acrylate, it is more preferable to use one having a weight average molecular weight of 700 to 4000. Or two or more types can be mixed and used.
  • the alicyclic (meth) acrylate component which is one of the components of the active energy ray-curable composition of the present invention, is not particularly limited, but in detail, at least one or more functional (meth) attalyloyl is used.
  • a alicyclic (meth) acrylate oligomer with a group, and the alicyclic structure has a structure that imparts hardness to the cured composition.
  • alicyclic (meth) acrylate components can be used alone or in admixture of two or more if desired.
  • the bifunctional or higher functional (meth) acrylate having an alkylene oxide which is one of the components of the active energy ray-curable composition of the present invention, is not particularly limited.
  • those having a relatively low viscosity and a relatively high surface tension before curing are preferred. This is because when a composition is formed by a general film formation method such as die coating, a coating with a low viscosity can be obtained with high thickness accuracy, and a coating with a high surface tension can be stabilized immediately. This is because the smoothness of the surface is improved.
  • a structure that imparts appropriate hardness is necessary to ensure dimensional stability of the coating film.
  • the coating structure has a cross-linked structure with bifunctional or higher (meth) acrylate functional groups, and the main chain is moderately It is preferably a rigid skeleton, and can be represented by the following structural formula [4].
  • R represents hydrogen or a methyl group
  • n and m represent an integer of 1 to 4.
  • composition of the bifunctional or higher functional (meth) atalytoi compound having an alkylene oxide includes ethylene glycol modified bisphenol A diatalylate, ethylene glycol modified bisphenol F diatalylate, (poly) ethylene glycol diatalylate, (poly ) Propylene glycol modified bisphenol A diatalylate, (poly) propylene glycol modified bisphenol F diatalylate, (poly) ethylene propylene glycol modified bisphenol A diatalate, (poly) ethylene propylene glycol modified bisphenol F diatalylate, (poly) propylene Glycol ditalylate, glycerin glycidyl ether diatalylate, tripropylene glycol glycidyl ether diatalylate, butanediol di Atallate, hexanediol diatalylate, EO-modified neopentylglycol diatalylate,
  • each of the above-mentioned constituents has the following ratios (A) to (C): It is preferable from the viewpoint of toughness, heat distortion resistance, heat decomposability, secondary workability, and cost, especially for obtaining films for high-density recording media (Blu-ray Disc, UDO, etc.) for next-generation disks. .
  • the urethane (meth) acrylate is less than 30 parts by weight, the toughness is inferior, and if it exceeds 60 parts by weight, the thermal decomposition resistance is inferior.
  • phenoxy (meth) acrylate is formed into a film to obtain a very thick film of 1 ⁇ m and a very thin thickness of 2000 ⁇ m with high thickness accuracy. It is inferior in workability, and when it exceeds 50 parts by weight, it is too soft and inferior in strength and secondary cache property.
  • Epoxy (meth) acrylate is blended as necessary, and if blended, it can obtain the effects of heat distortion resistance, heat decomposability, secondary workability, and cost improvement.
  • the resin composition becomes highly viscous, which is disadvantageous for film formation, and the strength and light transmittance of the cured product are reduced.
  • high-density recording media e.g., Blu-ray discs and UDO
  • Etc. which is preferable in obtaining the film used in the above.
  • the urethane (meth) acrylate is less than 40 parts by weight, the toughness is poor, and if it exceeds 60 parts by weight, the thermal decomposition resistance is poor.
  • the epoxy (meth) acrylate is less than 10 parts by weight, the composition is inferior in heat distortion resistance.If it exceeds 40 parts by weight, the composition has a high viscosity and inferior in film formability, and the light transmittance of the cured product decreases. .
  • Alicyclic (meth) acrylate is If blended, the film forming processability, heat distortion resistance, heat decomposability, and cost improvement effects of the composition can be obtained. Curing shrinkage increases, and the cured product becomes brittle, making it difficult to form into a roll film and poor secondary workability.
  • the urethane (meth) acrylate is less than 20 parts by weight, the toughness is inferior, and if it exceeds 70 parts by weight, the thermal decomposition resistance is inferior.
  • Bifunctional or higher-functional (meth) atalylate having alkylene oxide exceeds 60 parts by weight, and the cured product is brittle and has poor toughness. If it is less than 10 parts by weight, the coating property of the composition and the linear expansion coefficient of the cured product are reduced. Is high, that is, the dimensional stability of the film is inferior.
  • the viscosity of the composition is high and the film processability is poor, and if it exceeds 50 parts by weight, it is too soft and inferior in strength and secondary processability.
  • Epoxy (meth) acrylate is blended as needed.If blended, it can provide effects of heat distortion resistance, heat decomposition resistance, secondary workability, and cost improvement. If the amount exceeds 50 parts, the rosin composition has a high viscosity, which is disadvantageous for film formation, and the light transmittance of the cured product also decreases, which is not preferable.
  • the viscosity before curing is preferably not more than lOOOOmPa's, and the surface tension of the composition is preferably 35 to 45 mNZm.
  • the viscosity exceeds 10000 mPa's, it is difficult to supply the liquid when forming the film, and it is difficult to obtain coating accuracy.
  • the surface tension is a factor that affects the coated surface. If the surface tension is too low, the liquid becomes unstable when the composition is supplied to the process film, and coating defects are likely to occur immediately. On the other hand, if the surface tension is too high, the composition tends to repel on the process film and the smoothness of the coated surface is impaired.
  • the glass transition temperature is 60 ⁇ : LO It is preferably within the range of o ° c. If the glass transition temperature is too high, it becomes fragile and difficult to be formed into a roll film, and when the film is applied to the light transmission layer of an optical disk, warping will occur immediately, especially in adverse conditions such as high temperature and high humidity. Large warping occurs when saved below.
  • the glass transition temperature of the film is too low, it is not possible to obtain a self-supporting film at room temperature, and when applied as a light transmission layer of an optical disk, the strength is insufficient and the effect of protecting the information recording layer is insufficient. Even if a surface layer with higher strength is provided thereon, a sufficient protective effect cannot be obtained.
  • the film preferably has a linear expansion coefficient of 170 ppm or less in a temperature range of 5 ° C to 55 ° C.
  • the linear expansion coefficient When the linear expansion coefficient is too high, when the film is applied to a light transmission layer of an optical disc, the linear expansion coefficient becomes larger than that of a general optical disc, and the warp tends to occur in the operating temperature range.
  • compositions include other photocurable oligomers / monomers, photoinitiators, sensitizers, crosslinking agents, UV absorbers, polymerization inhibitors, fillers, thermoplastic resins * dyeing Colorants such as pigments can be added in a range that is effective and does not interfere with physical properties such as curing, transparency, and heat resistance.
  • a photoinitiator is essential, and a benzoin type, a acetophenone type, a thixanthone type, a phosphine oxide type, a baroxide type, and the like can be used without limitation.
  • Photoinitiators include, for example, benzophenone, 4,4 bis (jetylamino) benzophenone, 2,4,6 trimethylbenzophene, methylorthobenzoylbenzoate, 4 phenylbenzophenone, and t-butyl.
  • benzoin series specifically 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propiol) -benzyl] phenol] -2-methyl-propane-1 -ON etc. are suitable in terms of transparency and durability.
  • the amount of the photoinitiator is appropriately adjusted according to the curability and the like of the composition, but typically 1 to: L0 part by weight with respect to 100 parts by weight of the active energy ray-curable composition of the present invention. It is.
  • Film formation of the active energy ray-curable composition of the present invention is not particularly limited, such as application of an existing coating method, but is preferable. Is as follows.
  • the release film for the process 'Belt' roll is mixed and dispersed sufficiently.
  • the composition is quantitatively supplied and shaped into a film by the effect of surface tension, heating and pressurization, and active energy rays. It is cured by irradiating the film, and the release film, belt, and roll are peeled off to form a film.
  • the release film for the process releasability such as polyethylene film, biaxially stretched polypropylene film, poly 4-methylpentene 1 film, biaxially stretched polyethylene terephthalate film, biaxially stretched polyethylene naphthalate film, fluorine resin film
  • a film with excellent dimensional stability and smoothness can be used, preferably a biaxially stretched polyethylene terephthalate film with excellent optical smoothness, more preferably optical smoothness which has been subjected to release treatment with a silicone coating. It is a biaxially stretched polyethylene terephthalate film with excellent resistance.
  • the degree of releasability is adjusted by the balance between the releasability after curing the composition, the wetting stability of the film form when coated, and the adhesion.
  • the thickness of the release film is adjusted mainly by the balance of stability when coating the composition of the present invention, suppression of warpage due to cure shrinkage after curing, active energy ray permeability related to curing, and release film cost. In practice, it is 50 to 250 ⁇ m.
  • the release belt for the process is seamlessly connected to two or more rolls by seamlessly connecting sheet materials with excellent smoothness and dimensional stability, such as stainless steel and surface-finished steel, and continuously driven at a constant speed by driving the rolls. Used for processing. The surface can be further coated with a fluorine resin or the like to increase the mold release. Process release rolls are released by coating surface-finished steel with fluorine resin or ceramic.
  • the composition can be shaped while only one side is in contact, and the other side can be processed in contact with the atmosphere. You can also.
  • ultraviolet rays are applied as active energy rays, at least air or (transparent plastic) film is essential on one side due to the low transmittance restriction, and irradiation is limited to the air or (transparent plastic) film side.
  • gravure coating roll coating, rod coating, knife coating, blade coating, screen coating, die coating, curtain flow coating and the like can be used.
  • an appropriate method may be selected according to the thickness of the film when the composition of the present invention is formed into a film.
  • the purpose of the present invention is to obtain a transparent film having a thickness of 1 to 2000 m, most of which is 5 to 2000 m, more of which is 10 to 500 m, and most of which is 20 to 200 m.
  • the thickness of the film obtained by processing is in a thick region, and considering the thickness accuracy, processing effort, appearance, etc., the composition is made into a solvent-free system with a hardening component of 100%, especially with the die coating method. A combination is preferred.
  • 100% of the composition formula does not use solvents or volatile components, or it is removed under specified conditions. Residual solvent residues and residual photoinitiators are negligible due to low adverse effects on actual performance. Shall.
  • the influence on the coating processability due to the increase in viscosity due to the solvent-free composition can be adjusted by selecting the material in the composition and heating.
  • UV rays are particularly easy to use when comprehensively judged, such as transmission thickness, energy, equipment cost, cost of additives such as photoinitiators and sensitizers, and load on quality.
  • Various UV emission sources such as low-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, and the like can be used without particular limitation, and can be appropriately adjusted according to film thickness and curing conditions. Also can be similarly adjusted with respect to energy, it is approximately 0. l ⁇ 5j / cm 2 as illuminance.
  • the irradiation atmosphere is an inert gas such as nitrogen or the molded composition is heated.
  • the film can be wound into a tool as it is, cut into a single sheet, etc. Will be used for various purposes.
  • a process release film when used, it can be obtained as a laminated film with it. Therefore, the process release film can be peeled off after curing to provide the same response as described above, and it can be laminated without peeling.
  • the content of the process release film as a protective film or a process release film for a specific application in a specific application in the form is also within the scope of the present invention.
  • the active energy curable composition of the present invention preferably has a cure shrinkage of 7% or less, more preferably 5% or less. Curing shrinkage of 7% or more increases curling during film formation, and when the film is applied to the light transmission layer of an optical disc, warping and distortion are likely to occur due to the residual stress of the film due to curing shrinkage.
  • the film formed using the composition of the present invention preferably has a tensile elongation at break of 5 to 70%, more preferably 15 to 50%. If the tensile elongation at break is too small, it becomes brittle and difficult to be formed into a roll film, and when the film is applied to the light transmission layer of an optical disk, warping occurs immediately, especially at high temperatures such as high humidity. Large warpage occurs when stored under conditions.
  • the film formed using the composition of the present invention has a storage elastic modulus ( ⁇ ⁇ ⁇ ⁇ ') at 25 ° C of 2000 MPa or more and a storage elastic modulus ( ⁇ ') at 100 ° C of lOOMPa. Less than It is preferable that
  • the film of the present invention in which the viscoelastic behavior is adjusted, can be processed into a film that does not cause problems such as brittleness and breakage, lack of waist and difficulty in handling. It can be applied to protective films that protect layers.
  • the optical disk of the present invention has, for example, a concave-convex pattern such as pits and groups formed on the surface to be a signal recording surface!
  • a film made of the active energy ray-curable composition of the present invention is used as the transmission layer.
  • the composition of the present invention is applied to the surface of a recording film (signal recording surface) formed on the disk substrate to form a coating film, and then the coating is performed.
  • the film may be cured by irradiating the film with active energy rays.
  • the composition of the present invention is applied to one side or both sides of an optical disc substrate, and a plurality of disc substrates are formed via the composition. After sticking, the composition may be cured by irradiating active energy rays through the substrate.
  • the cured film comprising the active energy curable composition of the present invention has a thickness of 380 to 800 nm.
  • the transmittance of light in the wavelength range is 88% or more, and in particular, the transmittance of light in the wavelength range of 400 to 410 nm is 90% or more.
  • the wavelength of the optical signal applied to the optical disc of the present invention is not particularly limited, but laser light having a wavelength in the range of 380 to 800 nm generally used for reading and writing of the optical disc may be used.
  • a blue-violet laser beam of about 400 nm before and after which can increase the recording capacity is extremely preferable because of the fact that the transmittance in this wavelength region is 90% or more as described above.
  • a separately prepared adhesive or pressure-sensitive adhesive or a film material thereof is used.
  • adhesive or adhesive in this case, after applying adhesive or adhesive to the film or optical disk substrate surface, drying, softening (in the case of adhesive), or hardening (in the case of adhesive), the optical disk substrate and the film are laminated respectively. Hardened or cold Solidify (in the case of adhesive).
  • the same film material is laminated on the optical disk substrate surface 'softening (in the case of adhesive)' curing (in the case of adhesive), then the optical disk substrate and film are laminated and cured or cooled and solidified (in the case of adhesive) )
  • the adhesive there are no particular restrictions on the adhesive, the pressure-sensitive adhesive, or the film material thereof, but the heat resistance, transparency, and cost in terms of adhesiveness in addition to cost are preferred.
  • the total thickness of the light transmission layer in the optical disc of the present invention is not particularly limited as long as desired characteristics are obtained.
  • the force is in the range of 20 to 200 m, more preferably in the range of 50 to 150 m. .
  • the thickness of the film comprising the active energy curable composition of the present invention constituting the light transmission layer ranges from an ultrathin of 1 to 2000 / ⁇ ⁇ to an extremely thick one. From the viewpoint of suppressing the amount of warp of an optical disk that is preferably 20 m or more because deterioration due to moisture is easily suppressed, it is 200 / zm or less, more preferably 100 m or less.
  • urethane acrylate represented by the following structural formula [2] as a urethane acrylate component
  • bisphenol A glycidyl ether type as an epoxy acrylate component 20 parts by weight of epoxy acrylate
  • 2-hydroxy- [4- [4- (2-hydroxy-2-methyl-propyl) -benzyl] phenol] -2-methyl-propane as a polymerization initiator 2 parts by weight of 1-one were mixed and dissolved to obtain the curable composition of Example 1.
  • n represents an integer of 4 to 8.
  • the viscosity of the obtained composition was lOOOOmPa's at 25 ° C, and was a pale yellow transparent and viscous liquid.
  • Example 1 The curable yarn composition of Example 1 was unwound from a roll on a surface of a biaxially stretched polyethylene terephthalate film having a thickness of 250 m and excellent in optical smoothness at a temperature of 28 ° C. With a 250 mm wide die coater, it is applied to a thickness of 80 ⁇ m, irradiated with UV light with a metal halide lamp at an illuminance of UZcm 2 , cured and wound up, and a biaxially stretched polyethylene terephthalate film is separated for processing. The transparent film of Example 1 laminated as a mold film was obtained.
  • This sample (transparent film of Example 1) was cut into a rectangle with a plane dimension of 60 mm x 10 mm with a cutter knife to make a test piece, and this test piece was used to make IM-20 made of INTECONE earth according to JIS K7127-1989. Tensile fracture elongation was measured with a mold tester.
  • the measured value range is less than 0.005 mm and the standard deviation is less than 0.0010 mm.
  • The measured value range is less than 0.005 mm or the standard deviation is less than 0.0000 mm.
  • X The measured value range is 0.005 mm or more. Standard deviation is more than 0.000020mm
  • the film surface was the moving blade side and the cutting force of the Thomson blade was 10 sheets at 20 ° C. The following judgment was made according to the state of the film cut surface.
  • the release film for process was peeled off from the obtained laminated film, and the light transmittance at an initial wavelength of 400 nm was measured.
  • the cured product was allowed to stand for 500 hours under an environmental condition of 80 ° C. and 85% RH, and the light transmittance at a wavelength of 400 nm after the environmental test was measured again in the same manner as the initial light transmittance.
  • the light transmittance after the initial and environmental tests was evaluated 1 based on the following criteria.
  • the transparent film of Example 1 made of the product was bonded to each other so that the average film thickness became 100 m using a 20 m thick adhesive, and the cured film layer made of the curable composition of Example 1 was provided.
  • the optical disk of Example 1 was manufactured, the following evaluation was performed, and the results obtained are shown in Table 1.
  • the lead brush hardness of the light transmission layer was measured in accordance with JIS K-5400, and the following determination was made.
  • the obtained optical disc of Example 1 was placed at 80 ° C. and 85% relative humidity for 500 hours!
  • The difference between the initial warp angle and the warp angle after 500 hours at 80 ° C and 85% relative humidity is less than 0.3 °.
  • Examples 2 to 4 were applied to the substrate in the same manner as in Example 1 except that the compounds shown in Examples 2 to 4 and Comparative Examples 1 to 5 in Table 1 were prepared with the compounds shown in the column of curable compositions and the mixing ratios thereof. And the optical disk of Examples 2-4 and Comparative Examples 1-5 which formed the layer which becomes the hardening composition power of Comparative Examples 1-5 was obtained.
  • Epoxy acrylate Bisphenol A glycidyl ether epoxy acrylate
  • (* 5) polymerization initiator: 2-hydroxy 1— ⁇ 4— [4 (hydroxy-2 methyl-propiol) benzyl] phenol ⁇ 2-methyl-propane 1-one.
  • the urethane (meth) acrylate ratio in the active energy curable composition is in the range of 30 to 60 parts by weight, and the phenoxy (meth) acrylate is 20 to 50 parts by weight.
  • the composition (the composition of Examples 1 to 4) in the range of 0 to 30 parts by weight of epoxy (meth) acrylate is the same as the composition of each of the above Examples Even if the composition is composed of urethane (meth) acrylate, phenoxy (meth) acrylate, and epoxy (meth) acrylate, any one of these three components is In the composition in the content range different from the composition (compositions of Comparative Examples 1 to 5), it was excellent in comprehensive judgment that comprehensively viewed all the evaluation items described above.
  • urethane acrylate represented by the above general formula [1] as a urethane (meth) acrylate component
  • bisphenol A glycidyl ether type epoxy represented by the above general formula [2] as an epoxy (meth) acrylate component
  • Atarylate (weight average molecular weight 2000) 20 parts by weight, alicyclic (meth) atallylate component as tricyclodecane ditalylate 30 parts by weight, polymerization initiator as 2-hydroxy-1--1- [4- [4- ( 2-Hydroxy-2-methyl-propiol) -benzyl] phenol] -2-methyl-propan-1-one 2 parts by weight of the mixture were mixed and dissolved to obtain the curable composition of Example 1.
  • a composition was obtained.
  • the curable composition had a viscosity of 9000 mPa's at 60 ° C., and was a pale yellow transparent and viscous liquid.
  • Example 5 The curable composition of Example 5 was placed on the surface of a biaxially stretched polyethylene terephthalate film for optical use having a thickness of 250 ⁇ m, which was unwound from a roll, at a temperature of 60 ° C. It is applied to a thickness of 80 ⁇ m with a die coater with a width of 50 mm, irradiated with an illuminance of lj / cm 2 with a metal halide lamp, cured by ultraviolet rays emitted from the lamp, and wound up to form a biaxially stretched polyethylene terephthalate film.
  • the film of Example 1 laminated as a release film for the process was obtained.
  • Curing shrinkage (%) [(d2) one (dl) Z (d2)] X 100
  • a transparent disc-shaped mirror substrate made of polycarbonate resin with an optical disk shape (diameter 12cm The thickness of the cured film obtained in [3] above (the film from which the process release film was peeled off) was 20 ⁇ m on one side of the plate thickness 1. lmm, warp angle 0 °, hereinafter abbreviated as substrate.
  • An optical disk having a transparent film layer was prepared by using an adhesive having a thickness so that the average film thickness was 100 m, and the following evaluation was performed. The results are shown in Table 2.
  • Examples 6 to 8 and Comparative Example 6 to Table 2 below An optical disc having a cured film layer formed on a substrate in the same manner as in Example 5 except that the curable composition shown in the LO column was used. Obtained.
  • the composition of Table 2 the cured film obtained from the composition, and the optical disk laminated with the film were evaluated in the same manner as in Example 5, and the results are shown in the evaluation result column of Table 2, respectively. It was.
  • the urethane (meth) acrylate ratio in the active energy curable composition is in the range of S40-60 weight, and the epoxy (meth) acrylate is 10-40 weight 0 /
  • a composition in the range of 0 and in the range of alicyclic (meth) atalylate 0 to 30% by weight is a urethane (meth) acrylate, epoxy (meta ) Even if the composition is composed of atallate and alicyclic (meth) atallylate, the composition in which the contents of these three components are different from the composition of each example. Compared with the product and the composition with different components (compositions of Comparative Examples 6 to 10), it was excellent in the overall judgment of all the evaluation items.
  • the obtained composition had a viscosity of 6000 mPa's at 25 ° C., and was a pale yellow transparent and viscous liquid.
  • This curable composition was applied to a surface of a biaxially stretched polyethylene terephthalate film excellent in optical smoothness with a thickness of 188 ⁇ m that was also unwound by a roll of 250 mm under a temperature condition of 25 ° C. It is applied to a thickness of 75 m with a die coater with a width, cured by irradiating with ultraviolet light at an illuminance of lj / cm 2 with a metal nitride lamp, and wound to release a biaxially stretched polyethylene terephthalate film for the process. A film laminated as a film was obtained. The following evaluation was performed regarding the adjusted curable composition and the film obtained by curing the composition.
  • the viscosity of the active energy line curable composition at 25 ° C was measured using a “viscosity measuring device” TVH-10 manufactured by Toki Sangyo Co., Ltd.
  • the load was set to 5 g in the presence of nitrogen, and the temperature of the film obtained in the tensile mode was adjusted at a rate of 2 ° C per minute. After raising the temperature from 0 ° C to 60 ° C and holding for 10 minutes, cool the temperature to 0 ° C at a rate of 2 ° C per minute and measure the value at 5 ° C to 55 ° C. It was determined that the linear expansion coefficient was less than 170 ppm and that the greater was X.
  • the surface shape of the curable composition on the air side was measured using a surface roughness meter (manufactured by Kosaka Laboratory Co., Ltd., Surfcorder ET4000AK) and three-dimensional surface roughness. Analysis was performed using shape analysis software (TDA-22). The measurement conditions for the surface shape were stylus feed speed of 0.5 mmZs, feed pitch of 10 ⁇ m, number of lines of 101, and Z magnification of 500,000 times. At this time, if the center surface average roughness Ra of the measurement surface is 10 nm or less, The above was judged as X.
  • the release film for the process was peeled and removed from the obtained laminated film, and the light transmittance at an initial wavelength of 400 nm was measured and evaluated 1 based on the following criteria.
  • the substrate for process of the obtained laminated film was peeled off, and 10 sheets were cut with a Thomson blade, and the following evaluations were performed according to the situation at the time of cutting.
  • the optical disk-shaped transparent disk-shaped mirror substrate made of polycarbonate resin (diameter: 12 cm, plate thickness: 1.1 mm, warp angle: 0 °, hereinafter abbreviated as “base material”) is coated with the curable composition obtained in the examples.
  • An optical disk having a cured product layer was prepared by bonding using an m-thick adhesive, and the following evaluation was performed.
  • the obtained optical disc was placed at 80 ° C. and 85% relative humidity for 500 hours, and the following determination was made regarding the warping after the optical disc was placed.
  • The difference between the initial warp angle and the warp angle after 500 hours at 80 ° C and 85% relative humidity is less than 0.4 °.
  • The difference between the warp angle under the temperature environment of 25 ° C and the warp angle when the environment is suddenly changed to 55 ° C is less than 0.4 ° C.
  • X The difference between the warp angle under the temperature environment of 25 ° C and the warp angle when the environment is suddenly changed to 55 ° C is 0.4 ° C or less.
  • An optical disk having a cured product layer formed on a substrate was obtained in the same manner as in Example 9 except that the curable compositions shown in the columns of Example 10 13 and Comparative Example 11 15 in Table 3 were used.
  • the obtained composition and the optical disk were evaluated in the same manner as in Example 9, and the results are shown in the evaluation result column of Table 3, respectively.
  • composition described above is excellent in heat resistance and workability, and as a result, a film formed from the composition is excellent in toughness, heat resistance and secondary workability, and is an optical disc obtained by laminating the film. Is superior in stacking convenience, thickness accuracy and cost, and its added value is industrially useful.
  • Example 9 As shown in 13, the cured film is good in curl condition, film smoothness, light transmittance, secondary workability, environmental resistance test, and heat shock test.
  • the mixture clay is less than lOOOOmPa's and the composition
  • the surface tension of the object is in the range of 35 45m NZm, and the glass transition temperature after curing of this film is 60 100 ° C
  • the linear expansion coefficient can be adjusted to 170 ppm / ° C or less in the range of 5 ° C to 55 ° C, and the required characteristics can be satisfied in the above test.
  • a film suitable for use in forming at least a part of layers such as films, optically adjusted windows, displays, optical disks, etc.
  • a film that satisfies all the required characteristics cannot be produced.
  • Transparent film force in each of the above examples The process release film was peeled and removed, and the transparent film was used at a temperature increase rate of 3 ° CZ using a DVA-200 manufactured by IT Measurement Control Co. The temperature was raised to 150 ° C, the tensile modulus at 25 ° C and 100 ° C was measured, and the following evaluation was performed.
  • Storage modulus at room temperature 25 ° C is 2000MPa or more ⁇
  • Storage modulus at 25 ° C is less than 2000MPa X
  • Storage modulus at high temperature modulus of 100 ° C is less than lOOMPa ⁇
  • Storage modulus at 100 ° C is lOOMPa or more X
  • the release film for the process was peeled and removed from the laminated transparent film cover of each example, and the transparent film was measured with a 20-point micrometer according to JIS K7130A-1 method with a uniform width in the 250 mm width direction. Judgment was made.
  • the measured value range is less than 0.005 mm and the standard deviation is less than 0.0000 mm.
  • X The measured value range is less than 0.005 mm or the standard deviation is less than 0.0000 mm.
  • the release film for process was peeled and removed from the laminated transparent film, wound 10 m on a 6-inch ABS core, left to stand for 1 week, and then subjected to the following judgment.
  • the film surface was the moving blade side and the cutting force of the Thomson blade was 10 sheets at 20 ° C., and the following judgment was made according to the state of the cut surface of the film.
  • the raw materials in Table 4 are as follows.
  • Urethane acrylate 1 Urethane acrylate (weight average molecule; 1000-4000) obtained by adding 4-hydroxybutyl acrylate to the end of urethane condensation of isophorone diisocyanate and tetramethylene glycol.
  • Urethane atylate 3 Urethane atylate obtained by adding 4-hydroxybutyl atylate to the end of urethane condensed bis (4-isocyanatocyclohexyl) methane and aliphatic polycarbonate diol ( Polymerization average molecular weight 5000)
  • Epoxy acrylate 1 Bisphenol A glycidyl ether epoxy acrylate (molecular weight 484)
  • Epoxy acrylate 2 Poly (bisphenol A glycidyl ether) epoxy acrylate (weight average molecular weight 1000)
  • the transparent film comprising the curable compositions (A) to (C) of the present invention has a storage elastic modulus at room temperature (25 ° C) of 2000 Mpa or more.
  • the storage elastic modulus at high temperature (100 ° C) is adjusted to be less than lOOMpa, even if it is processed into a film, problems such as brittleness, fragility, lack of waist and difficulty in handling can occur. Excellent results were obtained for each evaluation item.
  • the transparent film of the comparative example did not satisfy all the evaluation items because the storage elastic modulus was not within the above range.
  • the active energy curable composition of the present invention has high transmittance of light in the near-ultraviolet to near-infrared wavelength region, is transparent and has low optical distortion, and has toughness and heat resistance. It has excellent secondary processability, and can be used as a protective layer for conventional optical discs such as CDs and as an adhesive and light transmission layer for multilayer recording optical discs such as DVDs.
  • the transparent film having the active energy curable composition power of the present invention has a high light transmittance in the wavelength range of 400 to 410 nm. It can be used effectively as a component of substitute optical discs (eg Blu-ray Disc, UDO, etc.).
  • substitute optical discs eg Blu-ray Disc, UDO, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Description

明 細 書
活性エネルギー線硬化性組成物、該組成物からなる透明フィルム、及び 該フィルムが使用された光ディスク
技術分野
[0001] 本発明は、透明で光学的に歪みの小さいフィルムや光学機能調整された窓、ディ スプレイ ·光ディスクなどの構成部材等の光学用途として好適な活性エネルギー線硬 化性組成物、該組成物カゝらなる透明フィルム、及び該フィルムを構成部材として用い た光ディスクに関する。
特に、前記フィルムは、厚さが 1 μ mと極薄のもの力 2000 μ m程度のものまでを 高い厚さ精度で得ることができ、高い透明度で光学的に歪みが小さいため、次世代 型ディスクの高密度記録媒体、例えばブルーレイディスク、 UDO等の光ディスクの少 なくとも 1つの層を形成するのに好適である。
[0002] 従来、液晶ディスプレイ、プラズマディスプレイなどの光学機能調整用フィルムのべ 一スゃスぺーサ一、光ディスクの記録層直上のスぺーサ一に、光学的に歪みの小さ いプラスチックフィルムが形成'応用されている力 該フィルムは、流延法ゃコーティン グ法などで成形されているため、材料が限定され、耐熱変形性、耐熱分解性、フィル ム化加工性、コストなどが折り合わず、使用用途'条件に制約を受けている。
[0003] 例えば特許文献 1には、ウレタン (メタ)アタリレートイ匕合物などのオリゴマー成分と、 特定の (メタ)アクリル酸エステル化合物とを含有する活性エネルギー線硬化性組成 物が開示されており、 50ないし 100 mの活性エネルギー線硬化性組成物の加工 方法として、コーティング法、特にスピンコーター法の優位性が示されている力 特許 文献 1に開示の組成を有する活性エネルギー線硬化性組成物をスピンコーター法に より膜形成した場合、これを 50ないし 100 mの厚肉に加工しょうとすると厚さ精度が 十分でなぐさらに、使用される活性エネルギー線硬化性組成物の加工工程中にお ける飛散等のロスが大きくて実用的とは言 、難 、。
[0004] また、光学的な歪みが小さぐ耐熱変形性の高!、フィルム材として、変性ポリイミド、 ポリエーテルスルフォン等各種エンジニアリングプラスチックが知られて 、るが、これ らは高価でし力も成形温度が高く用途が限定される。また、流延法によるポリカーボ ネートフィルムは製造に手間が力かり高価で使いにくぐ熱硬化のフエノール榭脂、ェ ポキシ榭脂、アクリル榭脂フィルムは脆く製造に手間がかかり、これらの榭脂はフィル ム用素材としては適当でな 、。
また、紫外線 (UV)硬化のエポキシ榭脂、アクリル榭脂フィルムは、製造が容易であ るが前記の榭脂と同様に脆ぐさらにはこれらの榭脂は厚さ数 m以下の膜を得るた めのコーティング法や注型法などには用いられるものの、厚さ数十; z m〜数百/ z mの フィルムに加工した例は知られて 、な 、。
[0005] 例えば特許文献 2には、変形が元の形に復元しな 、現象 (置き痕)を解決し、かつ 透明性、屈折率、表面硬度等に優れ、生産性にも優れる光学物品用電離放射線硬 化型榭脂組成物として、ビスフエノール A型エポキシ榭脂、ビスフエノール F型ェポキ シ榭脂等の、環状構造を有し二つ以上のアタリレート基を有するエポキシアタリレート (a)と、環状構造を有する単官能アタリレート (b)とからなり、特定量のアタリレート官 能基を含んだ榭脂組成物が記載されて ヽる。
しかし、特許文献 2に記載の光学物品用電離放射線硬化型榭脂組成物も靭性、耐 熱性及び 2次カ卩ェ性の点では十分と 、えず、光学用途への適性は十分でな!、。 そのため、光学的に歪みが小さぐより靭性、耐熱性等の物性、及び 2次加工性に 優れ、主として光学用途に適した榭脂糸且成物の開発が要望されている。
[0006] 特許文献 1 :特開 2003— 231725号公報
特許文献 2:特開平 9— 61601号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、透明で光学的に歪みが小さぐ靭性、耐熱性、及び 2次加工性 に優れ、連続したロール状フィルムに容易に成形が可能な活性エネルギー線硬化性 組成物、該組成物力 なる透明フィルム、及び該透明フィルム層を構成部材の一部と して含む、反りの少ない光ディスクを提供することにある。
課題を解決するための手段
[0008] 本発明者等は光、電子線等の活性エネルギー線を吸収して硬化し得る可能性ある 種々の材料について、それら組み合わせて反応せたときに得られる反応生成物の物 性を調べた結果、特定組成のアクリル酸塩を特定の配合比で配合して活性エネルギ 一線照射下において反応させることによって、前記目的とする榭脂組成物、透明フィ ルム及び光ディスクが得られることを見い出し、本発明を開発するに至った。
[0009] すなわち本発明は下記(1)〜(18)の構成を採るものである。
[0010] (1)以下の (A)〜(C)の 、ずれかの活性エネルギー線硬化性組成物力もなる透明フ イノレム。
(A)ウレタン (メタ)アタリレート 30〜60重量部と、フエノキシ (メタ)アタリレート 20〜5 0重量部と、エポキシ (メタ)アタリレート 0〜30重量部とを含有する活性エネルギー線 硬化性組成物
(B)ウレタン (メタ)アタリレート 40〜60重量部と、エポキシ (メタ)アタリレート 10〜40 重量部と、脂環 (メタ)アタリレート 0〜30重量部とを含有する活性エネルギー線硬化 性組成物
(C)ウレタン (メタ)アタリレート 20〜70重量部と、アルキレンオキサイド基を有する 2 官能以上の(メタ)アタリレート 10〜60重量部と、エポキシ (メタ)アタリレート 0〜30重 量部と、フエノキシ (メタ)アタリレート 10〜50重量部とを含有する活性エネルギー線 硬化性組成物
[0011] (2) 25°Cにおける貯蔵弾性率 (Ε')が 2000MPa以上であり、かつ 100°Cにおける貯 蔵弾性率 (Ε')が lOOMPa未満であることを特徴とする前記(1)に記載の透明フィル ム。
[0012] (3)前記ウレタン (メタ)アタリレートが、下記一般式 [1]又は [2]で表されることを特徴 とする前記(1)又は(2)に記載の透明フィルム。
[化 1]
H2C=CR4— C00-R,—0C0NH- [R2- NH-C00- Ra—OCONHil n—R NHCOO-RrOGO— CR4=CH。 [ 1 ]
[化 2]
Figure imgf000005_0001
(但し、前記一般式 [1]において、 はヒドロキシ基含有 (メタ)アクリル酸エステル の残鎖部分、 Rはイソシァネート残基を表し、 Rはアルコール残基又はポリエーテル
2 3
ジオール、ポリエステルジオール、及びポリカーボネートジオールから選ばれる少なく とも 1種のジオール残基、 Rは水素又はメチル基を表し、 nは 2〜20の整数を表す。
4
また、前記一般式 [2]において、 nは 4以上の整数を表す。 )
[0013] (4)前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成、炭 素数 8以上のアルキル基組成、ェピクロロヒドリン縮合組成、及びエチレングリコール 縮合組成の!/、ずれかを有することを特徴とする前記(1)〜(3)の 、ずれかに記載の 透明フイノレム。
[0014] (5)前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成若しく は炭素数 8以上のアルキル基組成と、ェピクロロヒドリン縮合組成若しくはエチレング リコール縮合組成とを有することを特徴とする前記(1)〜(3)の 、ずれかに記載の透 明フイノレム。
[0015] (6)前記エポキシ (メタ)アタリレートが、下記一般式 [3]で表されることを特徴とする前 記(1)〜(5)の!、ずれかに記載の透明フィルム。
[化 3]
Figure imgf000005_0002
(但し、 Rl、 R2は水素又はメチル基を表し、 nは 1〜12の整数を表す。 ) [0016] (7)前記エポキシ (メタ)アタリレートが、ビスフエノール Aグリシジルエーテル (メタ)ァ タリレートであることを特徴とする前記(1)〜(5)の 、ずれかに記載の透明フィルム。
[0017] (8)前記アルキレンオキサイド基を有する 2官能以上の (メタ)アタリレートが、下記一 般式 [4]で表される前記(1)〜(7)のいずれかに記載の透明フィルム。
[化 4]
Figure imgf000006_0001
(但し、 Rは水素又はメチル基を表し、 n、 mは 1〜4の整数を表す。 )
[0018] (9)前記(1)〜(8)の 、ずれか記載の透明フィルム力もなる光ディスク用保護フィル ム。
[0019] (10)前記(9)記載の光ディスク用保護フィルムを少なくとも一層積層して形成された 光ディスク。
[0020] (11)少なくとも基板と記録層と保護膜とがこの順に積層されてなる光ディスクにおい て、前記保護膜が、前記 (9)記載の光ディスク用保護フィルムを含み、該保護膜の厚 みが 0. 2mm以下であることを特徴とする前記(10)記載の光ディスク。
[0021] (12)以下の (A)〜(C)の 、ずれかを含有する活性エネルギー線硬化性組成物。
(A)ウレタン (メタ)アタリレート 30〜60重量部と、フエノキシ (メタ)アタリレート 20〜5 0重量部と、エポキシ (メタ)アタリレート 0〜30重量部
(B)ウレタン (メタ)アタリレート 40〜60重量部と、エポキシ (メタ)アタリレート 10〜40 重量部と、脂環 (メタ)アタリレート 0〜30重量部
(C)ウレタン (メタ)アタリレート 20〜70重量部と、アルキレンオキサイド基を有する 2 官能以上の(メタ)アタリレート 10〜60重量部と、エポキシ (メタ)アタリレート 0〜30重 量部と、フエノキシ (メタ)アタリレート 10〜50重量部
[0022] (13)前記ウレタン (メタ)アタリレートが、下記一般式 [1]又は [2]で表されることを特 徴とする前記( 12)記載の活性エネルギー線硬化性組成物。
[化 1]
H2C=CR4-C00- -0C0NH- [R2-NH-C00-R3_OCONH] n-R2- NHC00- R,- 0C0 - GR4=CH2 [ 1 ] [化 2]
Figure imgf000007_0001
(但し、前記一般式 [1]において、 はヒドロキシ基含有 (メタ)アクリル酸エステル の残鎖部分、 Rはイソシァネート残基を表し、 Rはアルコール残基又はポリエーテル
2 3
ジオール、ポリエステルジオール、及びポリカーボネートジオールから選ばれる少なく とも 1種のジオール残基、 Rは水素又はメチル基を表し、 nは 2〜20の整数を表す。
4
また、前記一般式 [2]において、 nは n=4以上の整数を表す。 )
[0023] (14)前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成、炭 素数 8以上のアルキル基組成、ェピクロロヒドリン縮合組成、及びエチレングリコール 縮合組成の!/ヽずれかを有することを特徴とする前記(12)又は(13)に記載の活性ェ ネルギ一線硬化性組成物。
[0024] (15)前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成若し くは炭素数 8以上のアルキル基組成と、ェピクロロヒドリン縮合組成若しくはエチレン グリコール縮合組成とを有することを特徴とする前記(12)又は(13)に記載の活性ェ ネルギ一線硬化性組成物。
[0025] (16)前記エポキシ (メタ)アタリレートが、下記一般式 [3]で表されることを特徴とする 前記( 12)〜( 15)の 、ずれか〖こ記載の活性エネルギー線硬化性組成物。
[化 3]
Figure imgf000007_0002
(但し、 Rl、 R2は水素又はメチル基を表し、 nは 1〜12の整数を表す。 ) [0026] (17)前記エポキシ (メタ)アタリレートが、ビスフエノール Aグリシジルエーテル (メタ)ァ タリレートであることを特徴とする前記(12)〜(15)のいずれかに記載の活性エネル ギ一線硬化性組成物。
[0027] (18)前記アルキレンオキサイド基を有する 2官能以上の (メタ)アタリレートが、下記一 般式 [4]で表される前記(12)〜(17)のいずれかに記載の活性エネルギー線硬化 性組成物。
[化 4]
Figure imgf000008_0001
(但し、 Rは水素又はメチル基を表し、 n、 mは 1〜4の整数を表す。 )
発明の効果
[0028] 本発明の活性エネルギー線硬化性組成物は、透明で光学的に歪みが小さぐ靭性 、耐熱性を有し、 2次カ卩ェ性に優れ、 1〜2000 m程度の極薄力 極厚までのフィ ルムを高 、厚さ精度を有して、連続して容易に成形することができる。
また、本発明の活性エネルギー線硬化性組成物カゝらなる透明フィルムは、光学的 に歪みが小さぐ優れた靭性、耐熱性を有するのみならず、積層の簡便性、厚さ精度 、コスト的にも優れている。
このフィルムを積層して得られる光ディスクは、上記の優れた光学的 ·物理的特性に 加えてディスクの反りがより改善される効果をも有し、次世代型ディスクの高密度記録 媒体、例えばブルーレイディスク、 UDO等の光ディスクとして極めて効果的に使用す ることがでさる。
発明を実施するための最良の形態
[0029] 本発明の活性エネルギー線硬化性組成物は、ウレタン (メタ)アタリレート、フエノキ シ (メタ)アタリレート、エポキシ (メタ)アタリレート、脂環 (メタ)アタリレート、アルキレン オキサイド基を有する 2官以上の (メタ)アタリレートの 、ずれかを所定の割合で含有し てなる以下の (A)〜(C)の榭脂組成物である。 (A)ウレタン (メタ)アタリレート 30〜60重量部と、フエノキシ (メタ)アタリレート 20〜5 0重量部と、エポキシ (メタ)アタリレート 0〜30重量部
(B)ウレタン (メタ)アタリレート 40〜60重量部と、エポキシ (メタ)アタリレート 10〜40 重量部と、脂環 (メタ)アタリレート 0〜30重量部
(C)ウレタン (メタ)アタリレート 20〜70重量部と、アルキレンオキサイド基を有する 2 官能以上の(メタ)アタリレート 10〜60重量部と、エポキシ (メタ)アタリレート 0〜30重 量部と、フエノキシ (メタ)アタリレート 10〜50重量部
[0030] 本発明の活性エネルギー線硬化性組成物の構成成分の 1つであるウレタン (メタ) アタリレートとしては、少なくとも二官能以上のウレタン (メタ)アタリレートオリゴマーで 、下記一般式 [1]で表される。
[化 1]
H2C=CR4-C00-R1-0C0NH- [R2-NH-C00-R3-0C0NH] n-R2-NHC00-R -0C0-CR4=CH2 [ 1 ]
(但し、前記一般式 [1]において、 Rはヒドロキシ基含有 (メタ)アクリル酸エステルの
1
残鎖部分、 Rはイソシァネート残基を表し、 Rはアルコール残基又はポリエーテルジ
2 3
オール、ポリエステルジオール、及びポリカーボネートジオールから選ばれる少なくと も 1種のジオール残基、 Rは水素またはメチル基を表し、 nは 2から 20の整数を表す
4
o )
[0031] ウレタン (メタ)アタリレートの合成方法は特に限定されないが、例えば、脂肪族ポリ オールまたは脂肪族ポリオールダリシジルエーテルと脂環式ジイソシァネートとをウレ タン縮合させたィ匕合物に水酸基含有 (メタ)アタリレートを付加させることにより合成す ることがでさる。
[0032] 前記一般式 [1]における Rは、分子内に少なくとも 1個の (メタ)アタリロイル基と少 なくとも 1個のヒドロキシ基を有するヒドロキシ基含有 (メタ)アクリル酸エステル残鎖で ある。
ヒドロキシ基含有 (メタ)アクリル酸エステル成分の具体例としては、例えば、 2—ヒド ロキシェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリレート、 4—ヒドロキ シブチル (メタ)アタリレート、 6—ヒドロキシへキシル (メタ)アタリレート、シクロへキサン ジメタノールモノ(メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレートと力プロラタ トンの付加物、 4—ヒドロキシブチル (メタ)アタリレートと力プロラタトンの付加物、トリメ チロールプロパンジアタリレート、ペンタエリスリトールトリアタリレート、ジペンタエリスリ トールペンタアタリレート等が挙げられる。これらは、一種単独で、又は二種以上を併 用して用いることができる。それらの中でも、 2—ヒドロキシェチル (メタ)アタリレート、 2 しい。
[0033] 前記一般式 [1]における Rは、ジイソシァネート残基で、具体例としては、トリレンジ
2
イソシァネート、 4, 4ージフエ-ルメタンジイソシァネート等の芳香族系のジイソシァネ ートの他、へキサメチレンジイソシァネート、イソホロンジイソシァネート、ビス(4 イソ シアナトシクロへキシル)メタン、 1, 2 水添キシリレンジイソシァネート、 1, 4一水添 キシリレンジイソシァネート、水添テトラメチルキシリレンジイソシァネート、ノルボルナ ンジイソシァネート等の脂肪族系のジイソシァネートが挙げられる。これらは、一種単 独で、又は二種以上を併用して用いることができる。これらの中でも、イソホロンジイソ シァネート、ビス(4 イソシアナトシクロへキシル)メタン等の脂環式ジイソシァネート が好ましぐ中でもイソホロンジイソシァネートが、光線透過率、耐熱変形性、耐熱分 解性の面で優れて 、るためより好まし 、。
[0034] 前記一般式 [1]における Rは 2官能アルコール残基で、具体例としては、エチレン
3
グリコール、プロピレングリコール、テトラメチレングリコール、へキサンジォーノレ等の アルキルポリオールの他、ポリエチレングリコール,ポリプロピレングリコール,ポリテト ラメチレングリコールなどのポリエーテルポリオール等のグリコール系化合物、ポリエ チレングリコール、ポリプロピレングリコール、ポリブチレングリコーノレ、 1ーメチノレブチ レングリコール等のポリエーテルジオール類;ネオペンチルグリコール、エチレングリ コーノレ、ジエチレングリコール、プロピレングリコール、 1, 6 へキサンジオール、 1, 4 ブタンジオール、 1, 9ーノナンジオール、 1, 10 デカンジオール、 3—メチルぺ ンタンジオール、 2, 4 ジェチルペンタンジオール、トリシクロデカンジメタノール、 1 , 4ーシクロへキサンジメタノール、 1, 2 シクロへキサンジメタノール、 1, 3 シクロ へキサンジメタノール、シクロへキサンジオール、水添ビスフエノール A、ビスフエノー ル A等のジオール類;前記ジオール類にエチレンオキサイド、プロピレンオキサイド、 ブチレンオキサイド等のアルキレンオキサイドを付カ卩したポリエーテル変性ジオール 類;前記ジオール類と、コハク酸、フタル酸、へキサヒドロフタル酸、テレフタル酸、ァ ジピン酸、ァゼライン酸、テトラヒドロフタル酸等の多塩基酸類又はこれら多塩基酸の 酸無水物類との反応によって得られるポリエステルジオールや、前記ジオール類と、 ε一力プロラタトン、 γ ブチロラタトン、 γ バレロラタトン、 δ バレロラタトン等の ラタトン類との反応によって得られるポリ力プロラタトンジオール等のポリエステルジォ ール類;前記ジオール類及び前記多塩基酸類と、 ε一力プロラタトン、 y プチロラ タトン、 Ύ—バレロラタトン、 δ—バレロラタトン等のラタトン類との反応によって得られ る力プロラタトン変性ポリエステルジオール類;芳香族ポリカーボネートや、脂肪族ポリ カーボネート等のポリカーボネートジオール類;ポリブタジエンジオール類等が挙げら れる。
これらは、一種単独で、又は二種以上を併用して用いることができる。それらの中で も、テトラメチレングリコール骨格やポリエーテルジオール類、ポリエステルジオール 類、ポリカーボネートジオール類が好ましい。
硬化物に靱性をもたせる場合には、脂肪族ポリカーボネートジオールが好ま 、。 また組成物の塗工性をも重視する場合には、テトラメチレングリコール骨格を有するも のが好ましい。
[0035] イソホロンジイソシァネートとテトラエチレンダリコールをウレタン縮合させた末端を( メタ)アクリル化したウレタン (メタ)アタリレートの中でも、数平均分子量が 600〜1000 0、さらに好ましくは 1000〜4000で、分子内にウレタン結合が 10〜18存在している 構造の末端に 4ーヒドロキシブチルアタリレートを反応させて得た構造が望ましぐ下 記構造式 [2]で表される。
[0036] [化 2]
Figure imgf000012_0001
(但し、前記構造式 [2]において nは 4以上の整数を表す。 )
本発明の活性エネルギー線硬化性組成物の構成成分の 1つであるフエノキシ (メタ )アタリレートとしては、特に制約はないものの詳しくは、二つ以下の (メタ)アタリロイル 基を有するフエノキシキシ (メタ)アタリレートモノマーで比較的低分子量で粘度が低く 単独の重合物の伸びが大きいもので、結果、組成物の粘度を下げ靭性を改良しや すい構造が良い。特に、分子内に少なくとも 1個のタミル基組成、炭素数 8以上のァ ルキル基組成、ェピクロロヒドリン縮合組成、及びエチレングリコール縮合組成のいず れかを有するもの、或いは、分子内に少なくとも 1個のタミル基組成若しくは炭素数 8 以上のアルキル基組成と、ェピクロロヒドリン縮合組成若しくはエチレングリコール縮 合組成とを有するものが良い。
具体的には、例えばフエノキシェチル (メタ)アタリレート、フエノキシポリエチレンダリ コール (メタ)アタリレート、フエノキシプロピル (メタ)アタリレート、フエノキシポリプロピ レングリコール (メタ)アタリレート、ノユルフェノキシエチレングリコール (メタ)アタリレー ト、ノユルフェノキシポリエチレングリコール (メタ)アタリレート、ノユルフェノキシプロピ レングリコール (メタ)アタリレート、ノユルフェノキシポリプロピレングリコール (メタ)ァク リレート、パラクミルフエノキシエチレングリコール (メタ)アタリレート、パラクミルフエノキ シポリエチレングリコール(メタ)アタリレート、パラクミルフエノキシプロピレングリコール
(メタ)アタリレート、パラクミルフエノキシポリプロピレングリコール (メタ)アタリレート、 2 —ヒドロキシ一 3—フエノキシ一プロピル (メタ)アタリレート、ビスフエノ一ル Aエチレン オキサイド付加ジ (メタ)アタリレート、ビスフエノ一ル Aポリエチレンオキサイド付加ジ( メタ)アタリレート、ビスフエノ一ル Aプロピレンオキサイド付加ジ (メタ)アタリレート、ビ スフエノール Aポリプロピレンオキサイド付加ジ (メタ)アタリレート等が挙げられる。特 にノユルフェノキシエチレングリコール (メタ)アタリレート、ノユルフェノキシプロピレン グリコール (メタ)アタリレート、パラクミルフエノキシエチレングリコール (メタ)アタリレー ト、 2—ヒドロキシ一 3—フエノキシ一プロピル (メタ)アタリレート(=ェピクロロヒドリン変 性フエノキシ (メタ)アタリレート)がより好まし 、。
[0038] 本発明の活性エネルギー線硬化性組成物の構成成分の 1つであるエポキシ (メタ) アタリレートとしては、特に制約はないものの、二つ以上の(メタ)アタリロイル基を有す るエポキシ (メタ)アタリレートオリゴマーで分子量や極性が高 、もので、アタリロイル基 の反応で容易に物性が向上しやすい構造が良ぐ例えば、 1, 4ブタンジオールジグ リシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコー ルジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレング リコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプ ロピレングリコールジグリシジルエーテル、 1, 6へキサンジオールジグリシジルエーテ ル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、 水添ビスフエノール Aジグリシジルエーテル、 2, 2—ジブロモネオペンチルグリコール ジグリシジルエーテル、トリメチロールェタントリグリシジルエーテル、脂肪族ポリオ一 ルポリグリシジルエーテル、ポリグリコールジェポキサイド、ヒマシ油ポリグリシジルェ 一テル、シクロへキサンジメタノールジグリシジルエーテル、レゾルシノールジグリシジ ルエーテル、ビスフエノール Aジグリシジルエーテル、ビスフエノール Fジグリシジルェ 一テル、ビスフエノール Sジグリシジルエーテル、ビスフエノール Aエチレンオキサイド 付力卩ジグリシジルエーテル、ビスフエノール Aプロピレンオキサイド付力卩ジグリシジル エーテル、フタル酸およびジヒドロフタル酸等の二塩基酸とェピハロヒドリンとの反応 によって得られるジグリシジルエステル化合物;ァミノフエノールおよびビス(4ーァミノ フエ-ル)メタン等の芳香族ァミンとェピハロヒドリンとの反応によって得られるェポキ シ化合物; 1, 1, 1, 3, 3, 3—へキサフルオロー 2, 2- [4- (2, 3—エポキシプロボ キシ)フエ-ル]プロパン、フエノールノボラック型エポキシ榭脂およびクレゾ一ルノボ ラック型エポキシ榭脂等の多官能エポキシィ匕合物の (メタ)アクリル酸付加体が挙げら れる。
[0039] さらに、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビスフ ェノール S型エポキシ榭脂、テトラブロモビスフエノール A型エポキシ榭脂、フエノール ノボラック型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、ビスフエノキシフル オレンジグリシジルエーテル、ビスフエノキシフルオレンエタノールジグリシジルエー テル、水添ビスフエノール A型エポキシ榭脂、水添ビスフエノール F型エポキシ榭脂、 シクロへキサンジメタノールジグリシジルエーテル、トリシクロデカンジメタノールジグリ シジルエーテル等のエポキシ榭脂に、(メタ)アクリル酸、(メタ)アクリル酸ダイマー、 力プロラタトン変性 (メタ)アクリル酸等の不飽和一塩基酸類を反応させて得られるェ ポキシ (メタ)アタリレート類等が挙げられる。
これらエポキシ (メタ)アタリレートの中でも、得られる組成物の硬化後の耐熱性を向 上できることから、ビスフエノ一ル Aジグリシジルェ一テル、ビスフエノ一ル Fジグリシジ ルエーテル、ビスフエノール Aエチレンオキサイド付力卩ジグリシジルエーテル、ビスフ ェノール Aプロピレンオキサイド付力卩ジグリシジルエーテル等の多官能エポキシ化合 物の (メタ)アクリル酸付加体であるビスフエノール型エポキシ (メタ)アタリレートイ匕合 物類、ビスフエノール A型エポキシ (メタ)アタリレート、ビスフエノール F型エポキシ (メ タ)アタリレート、ビスフエノール S型エポキシ (メタ)アタリレート、テトラブロモビスフエノ ール A型エポキシ (メタ)アタリレート、水添ビスフエノール A型エポキシ (メタ)アタリレ ート、水添ビスフエノール F型エポキシ (メタ)アタリレート等のビスフエノール型ェポキ シ (メタ)アタリレート類が好適であり、その中でも、粘度と耐熱性のバランスに優れるこ と力 、ビスフエノール A型エポキシ (メタ)アタリレートおよびビスフエノール F型ェポキ シ (メタ)アタリレートがさらに好ましぐビスフエノール Aグリシジルエーテル (メタ)アタリ レートが特に好ましい。
[0040] また、下記一般式 [3]で表されるビスフエノール型エポキシ (メタ)が特に好ましい。
[0041] [化 3]
Figure imgf000014_0001
(但し、前記一般式 [3]において、 Rl、 R2は水素またはメチル基を表し、 nは 1から 12 の整数を表す。 )
[0042] また、得られる組成物の重合に伴う体積収縮率を低くする点にぉ 、ては、重量平均 分子量 700〜4000の範囲にあることが好ましぐ上記一般式 [3]においては、 n= 2 〜 12の範囲が好ましい。
[0043] 上記のビスフエノール型エポキシ (メタ)アタリレートは、重量平均分子量が 700より 低いと、得られる組成物の重合に伴う体積収縮率が大きくなり、得られる活性エネル ギ一線硬化性組成物を光ディスクの保護膜や光透過層として用いたとき、光ディスク の反りが大きくなる傾向にある。また、ビスフエノール型エポキシ (メタ)アタリレートの 重量平均分子量が 4000を超えると組成物の粘度が極端に高くなり、加工性が低下 する傾向にある。よって、本発明では、ビスフエノール型エポキシ (メタ)アタリレートを 使用する場合、重量平均分子量が 700〜4000のものを使用することがより好まし ヽ これらエポキシ (メタ)アタリレートは所望により 1種もしくは 2種以上を混合して使用 することができる。
[0044] 本発明の活性エネルギー線硬化性組成物の構成成分の 1つである脂環 (メタ)ァク リレート成分としては、特に制約はないものの、詳しくは少なくとも 1官能以上の (メタ) アタリロイル基をもつ脂環 (メタ)アタリレートオリゴマーで、脂環構造は硬化物組成に 硬度を付与させる構造がよぐノルボルニル環、ァダマンチル環、ジシクロペンタン環 、トリシクロデカン環、テトラシクロドデカン環、ボルネン環、デカヒドロナフタレン環、ポ リヒドロアントラセン環、トリシクレン、コレステリック環などのステロイド骨格、胆汁酸、ジ ギタロイド環、ショウノウ環、イソショウノウ環、セスキテルペン環、サントン環、ジテルべ ン環、トリテルペン環、ステロイドサポニン環などが好ましい例として挙げられ、中でも 、得られる活性エネルギー線硬化組成物の表面硬度に優れることから、トリシクロデ カン骨格をもつ (メタ)アタリレートが好ましい。
これら脂環 (メタ)アタリレート成分は、所望により 1種もしくは 2種以上を混合して使 用することができる。
[0045] 本発明の活性エネルギー線硬化性組成物の構成成分の 1つであるアルキレンォキ サイドを有する 2官能以上の (メタ)アタリレートとしては、特に制約はないものの、塗工 性を向上させる為に硬化前は比較的粘度が低くかつ表面張力が比較的高いものが 好ましい。これはダイコート等一般的な製膜方法で組成物を製膜する際、粘度が低 い方が高い厚み精度で塗膜が得られやすぐかつ表面張力が高い方が塗膜を安定 させやすぐ表面の平滑性が向上する為である。硬化後は塗膜の寸法安定性を持た せるため適当な硬度を付与させる構造がよぐ 2官能以上の (メタ)アタリレート官能基 により塗膜に架橋構造を持たせ、かつ主鎖が適度に剛直な骨格であることが好ましく 、下記構造式 [4]で表すことができる。
[0046] [化 4]
Figure imgf000016_0001
〔但し、 Rは水素またはメチル基を表し、 n、 mは 1〜4の整数を表す。〕
[0047] アルキレンオキサイドを有する 2官能以上の (メタ)アタリレートイ匕合物組成としては エチレングリコール変性ビスフエノール Aジアタリレート、エチレングリコール変性ビス フエノール Fジアタリレート、(ポリ)エチレングリコールジアタリレート、(ポリ)プロピレン グリコール変性ビスフエノール Aジアタリレート、(ポリ)プロピレングリコール変性ビスフ ェノール Fジアタリレート、(ポリ)エチレンプロピレングリコール変性ビスフエノール Aジ アタリレート、(ポリ)エチレンプロピレングリコール変性ビスフエノール Fジアタリレート、 (ポリ)プロピレングリコールジアタリレート、グリセリングリシジルエーテルジアタリレート 、トリプロピレングリコールグリシジルエーテルジアタリレート、ブタンジオールジアタリ レート、へキサンジオールジアタリレート、 EO変性ネオペンチルグリコールジアタリレ ート、 PO変性ネオペンチルグリコールジアタリレート、 EO変性トリメチロールプロパント リアタリレート、 PO変性トリメチロールプロパントリアタリレート、 EO変性ペンタエリスリト ールトリアタリレート、 PO変性ペンタエリスリトールトリアタリレート、 EO変性ペンタエリス リトールテトラアタリレート、 PO変性ペンタエリスリトールテトラアタリレート、 EO変性ジ ペンタエリスリトールペンタ及びへキサアタリレート、 PO変性ジペンタエリスリトールべ ンタ及びへキサアタリレート、等が例として挙げられる。中でも、低粘度で硬化前の表 面張力が比較的高ぐ硬化後の塗膜に適度な硬度を持たせることが出来ることから、
EO変性ビスフエノール Aジアタリレートが好ましい。
[0048] 本発明の活性エネルギー線硬化性組成物を調製する場合、前記各構成成分は、 以下の (A)〜(C)の割合に配合するの力 適度な粘度 (フィルム化加工性)、靭性、 耐熱変形性、耐熱分解性、 2次加工性、コストの面から好ましぐ特に次世代型デイス クの高密度記録媒体 (ブルーレイディスクや UDO等)に用いるフィルムを得る上で好 ましい。
[0049] [本発明の第一の硬化性組成物 (A) ]
(A)ウレタン (メタ)アタリレート 30〜60重量部、フエノキシ (メタ)アタリレート 20〜50 重量部、及びエポキシ (メタ)アタリレート 0〜 30重量部
この場合、ウレタン (メタ)アタリレートが 30重量部未満では靱性が劣り、 60重量部を 越えると耐熱分解性の面で劣り好ましくない。フエノキシ (メタ)アタリレートは、 20重量 部未満では、組成物の粘度が高ぐ 1 μ mと極薄のものから 2000 μ mと極厚のフィル ムを高い厚さ精度で得る際のフィルム化加工性に劣り、 50重量部を超えると、軟質す ぎて強度、 2次カ卩ェ性の面で劣る。なお、エポキシ (メタ)アタリレートは、必要に応じ て配合するものであり、配合すれば、耐熱変形性、耐熱分解牲、 2次加工性、コスト 向上の効果を得ることができるが、 30重量部を超えると、榭脂組成物が高粘度になる ためフィルム形成に不利となり、し力も硬化物の光線透過率もが低下し、特に次世代 型ディスクの高密度記録媒体 (例えばブルーレイディスクや UDO等)に用いるフィル ムを得る上で好ましくな 、。
[0050] [本発明の第二の硬化性組成物 (B) ]
(B)ウレタン (メタ)アタリレート 40〜60重量部、エポキシ (メタ)アタリレート 10〜40重 量部、及び脂環 (メタ)アタリレート 0〜30重量部
この場合、ウレタン (メタ)アタリレートが 40重量部未満では靱性が劣り、 60重量部を 越えると耐熱分解性の面で劣る。エポキシ (メタ)アタリレートが 10重量部未満では組 成物の耐熱変形性が劣り、 40重量部を超えると組成物の粘度が高くフィルム化加工 性に劣り、硬化物の光線透過率が低下する。脂環 (メタ)アタリレートは、必要に応じ て配合するものであり、配合すれば、組成物のフィルム化加工性、耐熱変形性、耐熱 分解牲、コスト向上の効果を得ることができるが、 30重量部を超えると、榭脂組成物 の硬化収縮が大きくなり、しかも硬化物が脆くなるためロール状フィルムに成形する のが困難となり、 2次加工性も劣る。
[0051] [本発明の第三の硬化性組成物 (C) ]
(C)ウレタン (メタ)アタリレート 20〜70重量部、アルキレンオキサイド基を有する 2 官能以上の(メタ)アタリレート 10〜60重量部、エポキシ (メタ)アタリレート 0〜30重量 部、及びフエノキシ (メタ)アタリレートを 10〜50重量部
この場合、ウレタン (メタ)アタリレートが 20重量部未満では靱性が劣り、 70重量部を 越えると耐熱分解性の面で劣り好ましくな 、。
アルキレンオキサイドを有する 2官能以上の (メタ)アタリレートは、 60重量部を超え ると硬化物が脆く靱性が劣り、 10重量部未満では、組成物の塗工性、硬化物の線膨 張係数が高くなり、即ちフィルムの寸法安定性に劣り好ましくない。
フエノキシ (メタ)アタリレートは、 10重量部未満では、組成物の粘度が高くフィルム ィ匕加工性に劣り、 50重量部を超えると、軟質すぎて強度、 2次加工性の面で劣る。 エポキシ (メタ)アタリレートは、必要に応じて配合するものであり、配合すれば、耐 熱変形性、耐熱分解牲、 2次加工性、コスト向上の効果を得ることができるが、 30重 量部を超えると、榭脂組成物が高粘度になるためフィルム形成に不利となり、しかも 硬化物の光線透過率もが低下するため好ましくない。
また、上記第三の硬化組成物(C)については、硬化前の粘度が lOOOOmPa' s以 下、かつ組成物の表面張力が 35〜45mNZmであることが好ましい。粘度が 10000 mPa' sを超えるものは、製膜する際の液供給が困難になり、塗工精度が得られにく い。表面張力は塗工面に影響を与える因子であり、表面張力が低すぎると該組成物 を工程用フィルムに供給する際液が不安定になりやすぐコーティング欠陥が発生し やすくなる。また表面張力が高すぎると工程用フィルム上で組成物がはじきやすくな り、塗工面の平滑性が損なわれる。
[0052] また、本発明の第三の硬化性組成物 (C)を用いて形成されたフィルムは、柔軟性、 強靭性、耐熱性を併せ持つことが好ましぐその観点より、ガラス転移温度は 60〜: LO o°cの範囲内にあることが好ましい。ガラス転移温度が高すぎると脆くロール状フィル ムに成形するのが困難になり、当該フィルムを光ディスクの光透過層に応用したもの は反りが発生しやすぐ特に、高温,高湿等の悪条件下で保存したときに大きな反り が発生してしまう。一方、フィルムのガラス転移温度が低すぎると、室温にて自立した フィルムを得ることが出来ず、光ディスクの光透過層として応用した際強度が不十分 で情報記録層を保護する効果が不十分となり、その上により強度の高い表面層を設 けたとしても、十分な保護効果を得ることができなくなる。
また、該フィルムは、 5°C〜55°Cの温度範囲において線膨張係数が 170ppm以下 であることが好ましい。線膨張係数が高すぎると、当該フィルムを光ディスクの光透過 層に応用した際、一般的な光ディスクの線膨張係数より大きくなり、使用温度範囲に おいてディスクに反りが発生しやすくなる。
[0053] 組成物として上記以外の成分としては、他の光硬化性のオリゴマー ·モノマーや光 開始剤、増感剤、架橋剤、紫外線吸収剤、重合禁止剤、充填材、熱可塑性樹脂 *染 料'顔料等の着色剤等が硬化や透明性、耐熱性等の物性に効果的かつ支障となら な!ヽ範囲で添加できる。特に活性エネルギー線として紫外線照射を応用する場合、 光開始剤は必須であり、ベンゾイン系、ァセトフエノン系、チォキサントン系、フォスフ インォキシド系、及びバーオキシド系等が制限なく使用できる。
[0054] 光開始剤としては、例えば、ベンゾフエノン、 4, 4 ビス(ジェチルァミノ)ベンゾフエ ノン、 2, 4, 6 トリメチルベンゾフェン、メチルオルトベンゾィルベンゾエイト、 4 フエ ニルベンゾフエノン、 tーブチルアントラキノン、 2—ェチルアントラキノン、ジエトキシァ セトフエノン、 2—ヒドロキシ一 2—メチル 1—フエ-ルプロパン一 1—オン、 2-ヒロド キシ- 1- [4- [4- (2-ヒドロキシ- 2-メチル -プロピオ-ル)-ベンジル]フエ-ル]- 2-メチル -プロパン- 1-オン、ベンジルジメチルケタール、 1ーヒドロキシシクロへキシルーフエ 二ルケトン、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソプ 口ピルエーテル、ベンゾインイソブチルエーテル、 2—メチルー〔4 (メチルチオ)フエ -ル〕 2—モルホリノ一 1—プロパノン、 2—ベンジル一 2—ジメチルァミノ一 1— (4 モルホリノフエニル)ーブタノン 1、ジェチルチオキサントン、イソプロピルチォキ サントン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、ビス(2, 6— ジメトキシベンゾィル)一2, 4, 4 トリメチルペンチルホスフィンオキサイド、ビス(2, 4 , 6—トリメチルベンゾィル)—フエ-ルホスフィンオキサイド、メチルベンゾィルホルメ 一ト等を例示することができる。これらは 1種を単独で又は 2種以上を併用して用いる ことができる。
なかでもべンゾイン系、具体的には 2-ヒロドキシ - 1-[4- [4-(2-ヒドロキシ -2-メチル- プロピオ-ル)-ベンジル]フエ-ル] -2-メチル -プロパン- 1-オン等が透明性、耐久性 の面で好適である。
光開始剤の量は、組成物の硬化性等に応じて適宜調整されるが、典型的には本発 明の活性エネルギー線硬化性組成物 100重量部に対して、 1〜: L0重量部である。
[0055] 本発明の活性エネルギー線硬化性組成物 (本発明の組成物)のフィルム化 (本発 明の透明フィルムの製造方法)は既存のコーティング法の応用等特に制約はな 、が 、好ましくは以下の方法による。
連続して定速駆動する工程用離型フィルム'ベルト'ロール上に十分混合分散した 該組成物を定量供給して表面張力や加熱、加圧効果によりフィルム状に賦形し、活 性エネルギー線を照射して硬化させ、離型フィルム ·ベルト ·ロールを剥離してフィル ムに成形される。
[0056] 工程用離型フィルムとしてはポリエチレンフィルム、 2軸延伸ポリプロピレンフィルム、 ポリ 4メチルペンテン 1フィルム、 2軸延伸ポリエチレンテレフタレートフィルム、 2軸 延伸ポリエチレンナフタレートフィルム、フッ素榭脂フィルム等の離型性、寸法安定性 、平滑性に優れたフィルムが利用でき、好ましくは光学用の平滑性に優れた 2軸延伸 ポリエチレンテレフタレートフィルムで、より好ましくはさらにシリコーンコーティングで 離型処理された光学用の平滑性に優れた 2軸延伸ポリエチレンテレフタレートフィル ムである。
離型性の程度は組成物を硬化させた後の離型性の他、コーティングした時のフィル ム形態のぬれ安定性、密着性とのバランスで調整される。
また離型フィルムの厚さとしては主に本発明の組成物をコーティングする時の安定 性、硬化後の硬化収縮による反り抑制、硬化に関わる活性エネルギー線透過性、離 型フィルムコストのバランスで調整され、実用的には 50〜250 μ mである。 [0057] 工程用離型ベルトはステンレスや表面メツキカ卩工鋼など平滑性、寸法安定性に優 れたシート材をシームレスに継いで 2本以上のロールに掛けてロールの駆動により連 続定速加工に利用する。表面をさらにフッ素榭脂ゃセラミック等でコーティングして高 離型化することもできる。工程用離型ロールは表面メツキ加工鋼にさらにフッ素榭脂 やセラミック等でコーティングして離型化される。これらはフィルム化にあたり片面のみ 接触した状態で組成物を賦形してもう片面は大気接触状態で加工することもできるし 、種々の組み合わせで両面工程用離型材を接触させてカ卩ェすることもできる。ただし 、活性エネルギー線として紫外線を応用した場合にはその低透過性の制約により片 面は少なくとも大気もしくは (透明プラスチック)フィルムが必須で照射も大気もしくは( 透明プラスチック)フィルム側に限定される。
[0058] 本発明の組成物の定量供給にあたってはグラビアコーティング、ロールコーティン グ、ロッドコーティング、ナイフコーティング、ブレードコーティング、スクリーンコーティ ング、ダイコーティング、カーテンフローコーティング等を用いることができる。これらの なかから本発明の組成物をフィルム化する際の該フィルムの厚さなどに応じて適当な 方式を選択すればよい。
本発明では、厚さ 1〜2000 m、多くは 5〜2000 m、より多くは 10〜500 m、 さらに多くは 20〜200 mの透明フィルムを得ることを目的としており、これらの厚さ はコーティング加工で得るフィルムの厚さとしては厚い領域にあり、厚さ精度、加工の 手間、外観などを考慮すると、特にダイコーティング方式で、組成物を硬化成分が実 質 100%の無溶剤系とした組み合わせが好ましい。
ここで実質 100%は組成物処方上溶剤や揮発成分を使用しな ヽか、もしくは所定 の条件で除去した内容で溶剤残留や光開始剤残さは実性能上への弊害の低さから 無視できるものとする。組成物の無溶剤化による粘度の上昇に伴うコーティング加工 性への影響に対しては組成物での材料選択や加熱により調整できる。
[0059] 各化合物原料の混合物に照射して硬化させるための活性エネルギー線としては特 に制約なぐ工業的に利用できるものが応用でき、紫外線、電子線、 γ線、 X線等が 挙げられるが、透過厚さ、エネルギー、設備コスト、光開始剤や増感剤等添加剤のコ スト'品質への負荷等総合的に判断すると特に紫外線が利用しやすい。 紫外線源としては低圧水銀ランプ、高圧水銀ランプ、キセノンランプ等の紫外線ラ ンプをはじめ、各種発光特性のものが特に制限なく利用でき、フィルム厚さや硬化状 況等に応じて適宜調整ができる。また、エネルギーに関しても同様に調整することが でき、照度として概ね 0. l〜5j/cm2である。
さらに照射効率を向上するために照射雰囲気を窒素等の不活性ガスとしたり、成形 した組成物を加温したりしながら照射することも可能である。
[0060] 工程用離型フィルムを用いない場合は単独のフィルムが得られるので、そのまま口 ール状に巻き取り断裁して枚葉化するなどの形態で、光学機能調整用フィルム化等 具体的な用途に供することになる。一方、工程用離型フィルムを用いた場合にはそれ との積層フィルムとして得られるので、硬化後に工程用離型フィルムを剥離して首記 同様の対応ができるほか、剥離せずにそのまま積層された形態で具体的な用途に供 し工程用離型フィルムを保護フィルムないし具体的な用途での工程用離型フィルムと した内容も本主旨の範囲である。
[0061] 本発明の活性エネルギー硬化性組成物は、硬化収縮率が 7%以下であることが好 ましぐより好ましくは 5%以下である。硬化収縮率が 7%以上ではフィルム形成時の カールが大きくなり、当該フィルムを光ディスクの光透過層に応用したものは、硬化収 縮に伴うフィルムの残留応力から反りや歪みが発生しやすくなる。
[0062] 本発明の組成物を用いて形成されたフィルムは引張破壊伸びが 5〜70%であるこ と力 子ましく、より好ましくは 15〜50%である。引張破壊伸びが小さすぎると脆くロー ル状フィルムに成形するのが困難になり、当該フィルムを光ディスクの光透過層に応 用したものは反りが発生しやすぐ特に、高温'高湿等の悪条件下で保存したときに 大きな反りが発生してしまう。
一方フィルムの引張破壊伸びが大きすぎると、柔らかくなりすぎて自立したフィルム を得ることができず、光ディスクの光透過層として応用した際強度が不十分で情報記 録層を保護する効果が不十分となり、その上により強度の高い表面層を設けたとして も、十分な保護効果を得ることができなくなる。
[0063] また、本発明の組成物を用いて形成されたフィルムは、 25°Cにおける貯蔵弾性率( Ε')が 2000MPa以上であり、かつ 100°Cにおける貯蔵弾性率 (Ε')が lOOMPa未満 であることが好ましい。このように粘弾性挙動が調節された本発明のフィルムは、脆く 壊れやすい、腰がなく取り回し辛い等の問題を生じることがなぐフィルム状に加工す ることが可能となり、例えば、光ディスク等の記録層を保護する保護フィルム等に応用 できる。
[0064] 本発明の光ディスクは、例えば、表面にピット、グループ等の凹凸パターンが形成さ れて信号記録面とされて!/ヽるディスク基板上に保護膜を兼ねた光透過層を設け、こ の光透過層側力 レーザー光を照射して情報の記録、再生を行うようにした光デイス クであって、該光透過層として前記の本発明の活性エネルギー線硬化性組成物から なるフィルムが用いられる。
ディスク基板上に光透過層を形成するには、例えば、ディスク基板上に形成された 記録膜 (信号記録面)の表面に、本発明の組成物を塗布し塗膜を形成した後、該塗 膜に対して活性エネルギー線を照射し、硬化させればよい。また、多層記録型光ディ スクの接着剤兼光透過層を形成するには、例えば、光ディスク基板の片側若しくは両 側に本発明の組成物を塗布し、該組成物を介して複数のディスク基板を貼着した後 、基板を通して活性エネルギー線を照射し、組成物を硬化させればよい。
[0065] この場合、光信号の劣化を防止するには該フィルムの光透過率は高ければ高いほ どがよいが、本発明の活性エネルギー硬化性組成物からなる硬化フィルムは、 380 〜800nmの範囲の波長域の光の透過率は 88%以上であり、特に 400〜410nmの 範囲の波長域の光の透過率は 90%以上である。
本発明の光ディスクに対して適用される光信号の波長は特に限定されないが、一 般に光ディスクの読み取りや書き込みに使用されている波長 380〜800nmの範囲 のレーザー光であってよぐ特に光ディスクの記録容量を高密度にできる 400nm前 後の青紫色レーザー光であれば、上記のようにこの波長域の透過率が 90%以上も あること力ら、極めて好ましい。
[0066] なお、本発明の透明フィルムを光ディスクの保護膜として積層する場合は、別途準 備した接着剤や粘着剤あるいはそのフィルム材などを使用する。この場合はフィルム もしくは光ディスク基板面に接着剤や粘着剤を塗工 ·乾燥 ·軟化 (接着剤の場合) ·硬 ィ匕 (粘着剤の場合)した後、各々光ディスク基板とフィルムとを積層し、硬化もしくは冷 却固化 (接着剤の場合)させる。同フィルム材では同フィルム材を光ディスク基板面に 積層'軟化 (接着剤の場合) '硬化 (粘着剤の場合)した後、光ディスク基板とフィルム とを積層して硬化もしくは冷却固化 (接着剤の場合)させる。
接着剤や粘着剤あるいはそのフィルム材につ ヽては特に制約はな 、が、耐熱性、 透明性、コストの他接着性の観点力 アクリル系が好適である。
[0067] 本発明の光ディスクにおける光透過層の全厚みは、所望する特性が得られれば特 に限定されない力 20〜200 mの範囲力 子ましく、より好ましくは 50〜150 mの 範囲である。光透過層を構成する本発明の活性エネルギー硬化性組成物カゝらなるフ イルムの厚みは、 1〜2000 /ζ πιの極薄から極厚のものまであるが、記録層の酸化劣 化や、水分による劣化を抑制しやすいことから、 20 m以上が好ましぐ得られる光 ディスクの反り量を抑制する観点から、 200 /z m以下、より好ましくは 100 m以下で ある。
実施例
[0068] 〔実施例 1〕
[1]硬化性組成物 (A)の調製
ウレタンアタリレート成分として下記構造式〔2〕に示したウレタンアタリレート 50重量 部、フエノキシアタリレート成分としてノ-ルフエノール EO変性アタリレート 30重量部、 エポキシアタリレート成分としてビスフエノール Aグリシジルエーテル型エポキシアタリ レート 20重量部、重合開始剤として 2-ヒロドキシ -ト [4- [4- (2-ヒドロキシ- 2-メチル -プ 口ピオ-ル)-ベンジル]フエ-ル]- 2-メチル -プロパン- 1-オン 2重量部を、混合溶解し 、実施例 1の硬化性組成物を得た。
[0069] [化 2]
Figure imgf000024_0001
(但し、前記構造式 [2]において nは 4〜8の整数を表す。 ) 得られた組成物の粘度は、 25°Cにおいて lOOOOmPa' sであり、淡黄色透明で粘 稠な液体であった。
[0070] この実施例 1の硬化性糸且成物を、巻物から巻き出された厚さ 250 mの光学用の 平滑性に優れた 2軸延伸ポリエチレンテレフタレートフィルム面に 28°Cの温度条件下 で 250mm幅のダイコーターにて 80 μ mの厚さに塗布し、紫外線をメタルハライドラ ンプで UZcm2の照度で照射して硬化させて巻き取り、 2軸延伸ポリエチレンテレフタ レートフィルムを工程用離型フィルムとして積層された実施例 1の透明フィルムを得た この過程で硬化以降のフィルムの硬化収縮に伴う積層されたフィルムの伸び、カー ルの具合、厚さ精度、 2次加工性、光線透過率に関して以下に示す評価を行い、得 られた結果を表 1に示した。
[0071] <フィルムの伸び >
このサンプル(実施例 1の透明フィルム)をカッターナイフで平面寸法 60mm X 10m mの矩形に切り取って試験片とし、この試験片を用いて、 JIS K7127-1989に準じてィ ンテスコネ土製の IM - 20型試験機により引張破壊伸びを測定した。
[0072] <カールの具合 >
巻き取りロールの張力で硬化以降巻き取りまでに走行している積層フィルムは平面 状が保たれているが、硬化収縮によりフィルムが縮もうとして、その応力度合いゃェ 程用離型フィルムの腰に応じて積層フィルムの両端がフィルム側にカールしようとす る。その時のフィルムへの張力によって平面に戻そうとする作用によるフィルムへの亀 裂'割れ、巻き取り位置での両端部の折り込みゃシヮ入り'蛇行の状況に応じて次の 判定を行った。
〇:カールは見られなかった。
カールにより一部シヮ入りもしくは蛇行が見られたがフィルムへの亀裂'割れや 両端部の折り込みは見られな力つた。
X:カールによりシヮ入りもしくは蛇行が見られ、フィルムへの亀裂'割れや両端部 の折り込みのいずれかが起こり部分的にフィルムが得られな力つた。
[0073] <厚さ精度 > 得られた積層された実施例 1の透明フィルムカゝら工程用離型フィルムを剥離除去し 、フィルム 250mm幅方向に均等幅で JIS K7130A— 1法に準じて 20点マイクロメ一 タにより測定し次の判定を行った。
〇:測定値の範囲が 0. 005mm未満かつ標準偏差が 0. 0020mm未満 △:測定値の範囲が 0. 005mm未満もしくは標準偏差が 0. 0020mm未満 X:測定値の範囲が 0. 005mm以上で標準偏差が 0. 0020mm以上
[0074] < 2次加工性 >
得られた積層されたフィルムのままフィルム面を移動刃側としてトムソン刃による断 裁力卩ェを 20°C下で 10枚行、、フィルムの切断面の状況に応じて次の判定を行った
〇:全てきれいに問題なく切断された
△:切断面に細かい亀裂が入るものが 3枚未満見られた
X:切断面に細かい亀裂が入るものが 3枚以上見られた
[0075] <光線透過率 >
得られた積層フィルムから工程用離型フィルムを剥離除去し、初期の波長 400nm における光線透過率を測定した。次いで、その硬化物を 80°C、 85% RHの環境条 件下に 500時間放置した後、初期の光線透過率と同様にして、再度環境試験後の 波長 400nmにおける光線透過率を測定した。なお、初期及び環境試験後の光線透 過率につ 、ては、下記基準に基づ 1、て評価を行った。
〇:90%以上
△ : 88%以上
X : 88%未満
[0076] [2]硬化物層を有する光ディスクの作製及び評価
(評価用光ディスク基材の作製)
光ディスク形状を有するポリカーボネート榭脂製透明円盤状鏡面基板 (直径 12cm 、板厚 1. lmm,反り角 0度、以下基材と略基)の片面に、上記 [1]で得られた硬化性 組成物からなる実施例 1の透明フィルムを 20 m厚さの粘着剤を用いて平均膜厚が 100 mとなるように貼りあわせて、実施例 1の硬化性組成物からなる硬化物層を有 する実施例 1の光ディスクを作製し、以下の評価を行い、得られた結果を表 1に示し た。
<鉛筆硬度 >
得られた実施例 1の光ディスクにつ 、て、 JIS K- 5400に準拠して光透過層の鉛 筆硬度を測定し、以下の判定を行った。
〇:鉛筆硬度 5B以上
X:鉛筆硬度 5B未満
[0077] <反り >
得られた実施例 1の光ディスクを 80°C、 85%の相対湿度下で 500時間置!、た後の 反りにつ 、て次の判定を行った。
〇:初期反り角と 80°C85%相対湿度下で 500時間後の反り角の差が 0. 3° 未満。
X:初期反り角と 80°C85%相対湿度下で 500時間後の反り角の差が 0. 3° 以上。
[0078] 〔実施例 2〜4、比較例 1〜5〕
表 1の実施例 2〜4及び比較例 1〜 5の硬化性組成物の欄に示す化合物及びその 配合比で調製した以外は実施例 1と同様にして、基材にそれぞれ実施例 2〜4及び 比較例 1〜5の硬化組成物力 なる層を形成した、実施例 2〜4及び比較例 1〜5の 光ディスクを得た。
また、得られた実施例 2〜4及び比較例 1〜5の透明フィルム及び光ディスクにつ!/ヽ て、実施例 1と同様に評価した結果を表 1の評価結果欄にそれぞれ示す。
[0079] なお、表 1における原料は、次の通りである。
( * 1) :ウレタンアタリレート [1]:イソホロンジイソシァネートとテトラメチレングリコールを ウレタン縮合させた末端に 4—ヒドロキシブチルアタリレートを付加して得たウレタンァ タリレート(重量平均分子; 1000〜4000)。
( * 2):ウレタンアタリレート [2]:トリレンジイソシァネートとテトラメチレングリコールをゥ レタン縮合させた末端に 4—ヒドロキシブチルアタリレートを付加して得たウレタンァク リレート(重量平均分子; 1000〜5000)。
( * 3):フエノキシアタリレート:ノユルフェノキシエチレングリコールアタリレート。
( * 4):エポキシアタリレート:ビスフエノール Aグリシジルエーテルエポキシアタリレート ( * 5):重合開始剤: 2 -ヒドロキシ 1— {4— [4 (ヒドロキシ - 2 メチル -プロピオ -ル)ベンジル]フエ-ル} 2—メチループロパン 1 オン。
[0080] [表 1]
Figure imgf000028_0001
[0081] 表 1からわ力るように、活性エネルギー硬化性組成物中のウレタン (メタ)アタリレート 力 30〜60重量部の範囲内にあり、フエノキシ (メタ)アタリレートが 20〜50重量部の 範囲内にあって、かつ、エポキシ (メタ)アタリレート 0〜30重量部の範囲内にある組 成物(実施例 1〜4の組成物)は、前記の各実施例の組成物と同様にウレタン (メタ) アタリレート、フエノキシ (メタ)アタリレート、及びエポキシ (メタ)アタリレートからなる組 成物であっても、これら 3つの成分の中のいずれかの成分が前記の各実施例の組成 物とは異なる含有量範囲にある組成物(比較例 1〜5の組成物)では、前記の各評価 項目の全てを総合的に見た総合判断にぉ 、て優れて!/、た。
[0082] (実施例 5)
[3]硬化性組成物 (B)の調製
ウレタン (メタ)アタリレート成分として前記一般式〔1〕で示したウレタンアタリレートを 50重量部、エポキシ (メタ)アタリレート成分として前記一般式〔2〕で示したビスフエノ ール Aグリシジルエーテル型エポキシアタリレート(重量平均分子量 2000) 20重量部 、脂環 (メタ)アタリレート成分として、トリシクロデカンジアタリレート 30重量部、重合開 始剤として 2-ヒロドキシ -1- [4- [4- (2-ヒドロキシ- 2-メチル -プロピオ-ル)-ベンジル] フエ-ル] -2-メチル-プロパン- 1-オン 2重量部を混合溶解し、実施例 1の硬化性組 成物を得た。この硬化性組成物の粘度は、 60°Cにおいて 9000mPa' sであり、淡黄 色透明で粘稠な液体であった。
[0083] 実施例 5の硬化性組成物を、巻物から巻き出された厚さ 250 μ mの平滑性に優れ た光学用の 2軸延伸ポリエチレンテレフタレートフィルム面に 60°Cの温度条件下で 2 50mm幅のダイコーターにて 80 μ mの厚さに塗布し、メタルハライドランプで lj/cm 2の照度で照射して該ランプから出る紫外線により硬化させて巻き取り、 2軸延伸ポリ エチレンテレフタレートフィルムを工程用離型フィルムとして積層された実施例 1のフ イルムを得た。この過程での実施例 1の硬化性組成物の硬化収縮、フィルムの硬化 収縮に伴う積層されたフィルムのカールの具合、厚さ精度、 2次加工性、及び光透過 率に関して以下に示す評価を行い、結果を表 2に示した。
[0084] 〔評価項目及び評価方法〕
<硬化収縮 >
紫外線照射前の組成物原料混合物 20mlを精密に秤量して重量を測定し、この組 成物の密度 (dl)を求めた。積層された実施例 1のフィルムから工程用離型フィルム を剥離除去し、 JIS K7112に準じて硬化物の密度 (d2)を求め、下記式に従い硬化 収縮率を算出した。
硬化収縮率 (%) =〔 (d2)一(dl) Z (d2)〕 X 100
[0085] <カールの具合 >
実施例 1のくカールの具合 >と同様に試験を行 、、同様の判定を行なった。
[0086] <厚さ精度 >
実施例 1のく厚さ精度〉と同様に試験を行い、同様の判定を行なった。
[0087] < 2次加工性 >
実施例 1のく 2次加工性〉と同様に試験を行い、同様の判定を行なった。
[0088] <光線透過率 >
実施例 1のく光線透過率 >と同様に試験を行 、、同様の評価を行なった。
[0089] [4]硬化物層を有する光ディスクの作製及び評価
(評価用光ディスク基材の作製)
光ディスク形状を有するポリカーボネート榭脂製透明円盤状鏡面基板(直径 12cm 、板厚 1. lmm,反り角 0度、以下基材と略記する)の片面に、上記 [3]で得られた硬 化フィルム(工程用離型フィルムを剥離除去したフィルム)を 20 μ m厚さの粘着剤を 用いて平均膜厚が 100 mとなるように貼りあわせて、透明フィルム層を有する光デ イスクを作製し、以下の評価を行い、結果を表 2に示した。
<反り>
実施例 1のく反り >と同様に試験を行い、同様の判定を行なった。
[0090] 〔実施例 6〜8、比較例 6〜10〕
下記の表 2の実施例 6〜8及び比較例 6〜: LOの欄に示す硬化性組成物を用いる以 外は、実施例 5と同様にして、基材に硬化フィルム層を形成した光ディスクを得た。ま た、表 2の組成物、該組成物カゝら得られた硬化フィルム、及び該フィルムを積層した 光ディスクについて、実施例 5と同様に評価し、結果を表 2の評価結果欄にそれぞれ 示した。
[0091] なお、表 2における原料は、次の通りである。
( * 1):ビス (4 イソシアナトシクロへキシル)メタンと脂肪族ポリカーボネートジォー ルをウレタン縮合させた末端に 4—ヒドロキシブチルアタリレートを付加して得たウレタ ンアタリレート(重量平均分子; 5000)。
( * 2):ポリ(ビスフエノール Aグリシジルエーテル)エポキシアタリレート(重量平均分子 ; 1000)。
( * 3):ビスフエノール A基本エポキシアタリレート(重量平均分子; 484)。
( * 4):トリシクロデカンジアタリレート。
( * 5): 2 ヒドロキシ 1— {4— [4 (ヒドロキシ - 2 メチル -プロピオ-ル)ベンジ ル]フエ-ル} 2—メチループロパン 1 オン。
[0092] [表 2]
Figure imgf000031_0001
[0093] 表 2からわ力るように、活性エネルギー硬化性組成物中のウレタン (メタ)アタリレート 力 S40〜60重量の範囲内にあり、エポキシ (メタ)アタリレートが 10〜40重量0 /0の範囲 内にあって、かつ脂環 (メタ)アタリレート 0〜30重量%の範囲内にある組成物(実施 例 5〜8の組成物)は、ウレタン (メタ)アタリレート、エポキシ (メタ)アタリレート、及び脂 環 (メタ)アタリレートからなる組成物であっても、これら 3つの成分の中のレ、ずれかの 成分が各実施例の組成物とは異なる含有量範囲にある組成物や、異なる成分による 組成物(比較例 6〜: 10の組成物)と比較して、各評価項目の全てを総合的に見た総 合判断にお 、て優れて 1、た。
[0094] (実施例 9)
[5]硬化性組成物 (C)の調製
ウレタン (メタ)アタリレート成分として上記 [2]に示したウレタンアタリレートを 30質量 部、アルキレンオキサイド含有 (メタ)アタリレート成分としてビスフエノール Aエチレン オキサイド 2mol変性ジアタリレート 20質量部、フエノキシアタリレート成分として 2—ヒ ドロキシ一 3 フエノキシプロピルアタリレート 30質量部、エポキシ (メタ)アタリレート成 分としてビスフエノール Aグリシジルエーテル型エポキシアタリレート 20質量部、重合 開始剤として 2 ヒロドキシ 1— [4—〔4— (2 ヒドロキシ一 2—メチル一プロピオ二 ル) ベンジル〕フエニル] 2—メチループロパン 1 オン 2質量部を混合溶解し、 硬化性組成物を得た。
得られた組成物の粘度は、 25°Cにおいて 6000mPa' sであり、淡黄色透明で粘稠 な液体であった。
[0095] この硬化性組成物を、巻物力も巻き出された厚さ 188 μ mの光学用の平滑性に優 れた 2軸延伸ポリエチレンテレフタレートフィルム面に 25°Cの温度条件下で 250mm 幅のダイコーターにて 75 mの厚さに塗布し、紫外線をメタルノヽライドランプで lj/c m2の照度で照射して硬化させて巻き取り、 2軸延伸ポリエチレンテレフタレートフィル ムを工程用離型フィルムとして積層されたフィルムを得た。調整した硬化性組成物と、 組成物を硬化させて得られたフィルムに関して以下に示す評価を行った。
〔評価項目及び評価方法〕
<組成物の粘度 >
東機産業社製「粘度測定装置」〃 TVH— 10〃を用いて、 25°Cにおける活性エネル ギ一線硬化性組成物の粘度を測定した。
<組成物の表面張力 >
協和界面科学社製「接触角測定装置」" Drop master DM500"を用いて懸滴法 により表面張力を測定した。
<カールの具合 >
実施例 1のくカールの具合 >と同様に試験を行 、、同様の判定を行なった。
<硬化物のガラス転位温度 >
アイティ計測制御社 STDVA— 200"を用いて、 10Hz、 3°CZ分の速度で— 50°C 力も 150°Cまで昇温させ、 tan δの最大値をガラス転位温度とした。
<フィルムの線膨張係数 >
セイコー電子 (株)製" TMAZSS 120C型"熱応力歪測定装置を用いて、窒素の存 在下、荷重を 5gにし、引張モードにて得られたフィルムを 1分間に 2°Cの割合で温度 を 0°Cから 60°Cまで上昇させて 10分間保持した後、 1分間に 2°Cの割合で温度を 0 °Cまで冷却し、 5°C〜55°Cの時の値を測定して求め、線膨張係数が 170ppmより小 さいものを〇、大きいものを Xと判定した。
<フィルム平滑性 >
作製した積層フィルムにつ 、て、硬化性組成物の空気側の表面形状を表面粗さ測 定器 ( (株)小阪研究所製、サーフコーダ ET4000AK)を用いて測定するとともに三 次元表面粗さ形状解析ソフト (TDA— 22)を用いて解析した。表面形状の測定条件 は、触針の送り速さを 0. 5mmZs、送りピッチを 10 μ m、ライン数 101、 Z倍率を 500 00倍とした。この際、測定面の中心点平均粗さ Raが 10nm以下のものを〇、 10nm 以上のものを Xと判定した。
<光線透過率 >
得られた積層フィルムから工程用離型フィルムを剥離除去し、初期の波長 400nm における光線透過率を測定し、下記基準に基づ 1、て評価を行った。
〇:90%以上
X : 90%未満
< 2次加工性 >
得られた積層フィルムの工程用基材を剥がしてトムソン刃による裁断加工を 10枚行 い、裁断時の状況に応じて以下の評価を行った。
〇:全てきれいに問題なく切断された
X:切断面に細かい亀裂が入るものが見られた
[6]〔硬化物層を有する光ディスクの作製及び評価〕
(評価用光ディスク基材の作製)
光ディスク形状を有するポリカーボネート榭脂製透明円盤状鏡面基板(直径 12cm 、板厚 1. 1mm、反り角 0° 、以下基材と略記)の片面に、実施例で得られた硬化性 組成物を 25 m厚さの粘着剤を用いて貼り合わせ、硬化物層を有する光ディスクを 作製し、以下の評価を行った。
<耐環境試験 >
得られた光ディスクを 80°C85%相対湿度下で 500時間置 、た後の反りにつ 、て次 の判定を行った。
〇:初期反り角と 80°C85%相対湿度下で 500時間後の反り角の差が 0. 4° 未満
X:初期反り角と 80°C85%相対湿度下で 500時間後の反り角の差が 0. 4° 以上。 くヒートショック試験 >
得られた光ディスクを 25°Cから 55°Cの温度環境下に急変させた時の反り変化量に ついて次の判定を行った。
〇:25°C温度環境下における反り角と 55°Cに環境急変させたときの反り角の差が 0 . 4°C未満 X : 25°C温度環境下における反り角と 55°Cに環境急変させたときの反り角の差が 0 . 4°C以下
[0098] 〔実施例 10 13、比較例 11 15〕
表 3の実施例 10 13及び比較例 11 15の欄に示す硬化性組成物を用 V、る以外 は、実施例 9と同様にして、基材に硬化物層を形成した光ディスクを得た。また、得ら れた組成物及び光ディスクにつ!/、て、実施例 9と同様に評価した結果を表 3の評価 結果欄にそれぞれ示した。
以上に示した方法により組成物は耐熱性、加工性に優れ、結果同組成物で成形さ れたフィルムは靭性、耐熱性、 2次加工性に優れ、同フィルムを積層して得られる光 ディスクは積層の簡便性、厚さ精度、コストに優れ、その付加価値は工業的に有用で ある。
[0099] [表 3]
Figure imgf000034_0002
Figure imgf000034_0001
[0100] 表 3から以下のようなことが分かった。
実施例 9 13に示すように、硬化したフィルムは、カール具合、フィルム平滑性、光 線透過率、 2次加工性、耐環境試験、ヒートショック試験で良好であり、このような物性 は、ウレタンアタリレート、アルキレンオキサイド含有アルキレート、フエノキシアタリレ ート、及び、場合によりエポキシアタリレートの配合を本発明の配合範囲に調整するこ とで、混合物粘土が lOOOOmPa' s以下であり、かつ組成物の表面張力が 35 45m NZmの範囲内にあり、さらにこのフィルムの硬化後のガラス転移温度が 60 100°C の範囲で、かつ線膨張係数が 5°C〜55°Cの範囲で 170ppm/°C以下に調整が可 能となり、上記の試験で、要求される特性を満足できる、本発明の目的である、透明 で光学的に歪みの小さ!/ヽフィルムや光学機能調整された窓 ·ディスプレイ ·光ディスク 等の少なくとも一部の層を形成する際に用いて好適なフィルムを製造する事ができる しカゝしながら、上記混合榭脂においては、配合範囲からはずれた場合は、比較例 1 1〜15で明らかなように、要求特性を全て満足するフィルムを製造することができな い。
[0101] 次に、上記硬化性組成物 (A)〜(C)よりなる透明フィルム(上記実施例 1、 4、 5、 7、 9、 10、 12)に対して、貯蔵弾性率測定、厚さ精度、耐ブロッキング性、 2次加工性に 関する以下に示した評価を行い、貯蔵弾性率と、フィルムの加工性に伴う特性の評 価結果を表 4に示した。
[0102] 〔評価項目及び評価方法〕
<貯蔵弾性率測定 >
上記各実施例の透明フィルム力 工程用離型フィルムを剥離除去し、該透明フィル ムを、アイティ計測制御社製 DVA— 200を用い、 3°CZ分の昇温速度にて— 50°C 〜150°Cまで昇温させ、 25°Cと 100°Cにおける引っ張り弾性率を測定し、以下の評 価を行なった。
室温弾性率 25°Cにおける貯蔵弾性率が 2000MPa以上 〇
25°Cにおける貯蔵弾性率が 2000MPa未満 X
高温弾性率 100°Cにおける貯蔵弾性率が lOOMPa未満 〇
100°Cにおける貯蔵弾性率が lOOMPa以上 X
[0103] <厚さ精度 >
積層された各実施例の透明フィルムカゝら工程用離型フィルムを剥離除去し、該透 明フィルム 250mm幅方向に均等幅で JIS K7130A— 1法に準じて 20点マイクロメ ータにより測定し次の判定を行った。
〇:測定値の範囲が 0. 005mm未満かつ標準偏差が 0. 0020mm未満 X:測定値の範囲が 0. 005mm未満もしくは標準偏差が 0. 0020mm未満 [0104] <耐ブロッキング'性 >
積層された透明フィルムから工程用離型フィルムを剥離除去し、 6インチの ABSコ ァに 10m巻き取り、これを 1週間放置した後、以下の判定を行った。
〇:ブロッキングを起こさず問題なく巻き出しができる
X:フィルム同士が密着して巻き出し時剥離跡が見られる
[0105] く 2次加工性 >
積層されたフィルムのままフィルム面を移動刃側としてトムソン刃による断裁力卩ェを 2 0°C下で 10枚行 、、フィルムの切断面の状況に応じて次の判定を行った。
〇:全てきれいに問題なく切断された
X:切断面に細かい亀裂が入るものが見られた
[0106] また、上記 it較 f列 1、 2、 5、 7、 9、 10、 13、 15の酉己合よりなるフイノレム【こつ!ヽても上 記と同様に評価し、結果を表 4に示した。
なお、表 4における原料は、次の通りである。
( * 1):ウレタンアタリレート 1 :イソホロンジイソシァネートとテトラメチレングリコールを ウレタン縮合させた末端に 4—ヒドロキシブチルアタリレートを付加して得たウレタンァ タリレート(重量平均分子; 1000〜4000)。
( * 2):ウレタンアタリレート 2 :トリレンジイソシァネートとテトラメチレングリコールをウレ タン縮合させた末端に 4—ヒドロキシブチルアタリレートを付加して得たウレタンアタリ レート(重量平均分子; 1000〜5000)。
( * 3):ウレタンアタリレート 3:ビス (4—イソシアナトシクロへキシル)メタンと脂肪族ポリ カーボネートジオールをウレタン縮合させた末端に 4ーヒドロキシブチルアタリレートを 付加して得たウレタンアタリレート (重合平均分子量 5000)
( * 4):エポキシアタリレート 1:ビスフエノール Aグリシジルエーテルエポキシアタリレ ート(分子量 484)
( * 5):エポキシアタリレート 2:ポリ(ビスフエノール Aグリシジルエーテル)エポキシァ タリレート (重量平均分子量 1000)
( * 6):ァノレキレンオキサイド含有アタリレート:ビスフエノーノレ A エチレンオキサイド 4 mol変'性ジアタリレート ( * 7):フエノキシアタリレート 1:ノユルフェノキシエチレングリコールアタリレート。 ( * 8):フエノキシアタリレート 2 : 2—ヒドロキシ一 3—フエノキシプロピルアタリレー ( * 9):脂環アタリレート:トリシクロデカンジアタリレート
( * 10):アルキルアタリレート:イソデシルアタリレート
( * 11 ):光重合開始剤: 2—ヒドロキシ— 1— { 4一 [4— (ヒドロキシ— 2—メチル - 口ピオ-ル)ベンジル]フエ二ル}— 2—メチル—プロパン— 1—オン。
[表 4]
Figure imgf000037_0001
[0108] 表 4からわ力るように、本発明の硬化性組成物 (A)〜(C)よりなる透明フィルムは、 室温域(25°C)での貯蔵弾性率が 2000Mpa以上であり、
かつ高温域(100°C)での貯蔵弾性率が lOOMpa以下となるように調整されているた め、フィルム状に加工させても、脆く壊れやすい、腰がなく取り回し辛い等の問題が 生ずることなぐ各評価項目で優れた結果となった。
一方、比較例の透明フィルムは、貯蔵弾性率が上記の範囲内にない為、各評価項 目全てを満足するものはな力 た。
産業上の利用可能性
[0109] 本発明の活性エネルギー硬化性組成物は、近紫外〜近赤外の波長域の光の透過 率が高ぐ透明で光学的に歪みが小さい上に、靭性、耐熱性を有し、 2次加工性に優 れ、これをフィルム化して CD等の従来の光ディスクの保護層や DVD等の多層記録 型光ディスクの接着剤兼光透過層として利用できる。
特に、本発明の活性エネルギー硬化性組成物力もなる透明フィルムにおいては、 4 00 410nmの波長域の光線透過率が高ぐこの波長域の光信号を利用する次世 代型光ディスク (例えばブルーレイディスク、 UDO等)の構成部材として有効に使用 することができる。

Claims

請求の範囲
[1] 以下の (A)〜(C)の 、ずれかの活性エネルギー線硬化性組成物力もなる透明フィ ノレム。
(A)ウレタン (メタ)アタリレート 30〜60重量部と、フエノキシ (メタ)アタリレート 20〜5 0重量部と、エポキシ (メタ)アタリレート 0〜30重量部とを含有する活性エネルギー線 硬化性組成物
(B)ウレタン (メタ)アタリレート 40〜60重量部と、エポキシ (メタ)アタリレート 10〜40 重量部と、脂環 (メタ)アタリレート 0〜30重量部とを含有する活性エネルギー線硬化 性組成物
(C)ウレタン (メタ)アタリレート 20〜70重量部と、アルキレンオキサイド基を有する 2 官能以上の(メタ)アタリレート 10〜60重量部と、エポキシ (メタ)アタリレート 0〜30重 量部と、フエノキシ (メタ)アタリレート 10〜50重量部とを含有する活性エネルギー線 硬化性組成物
[2] 25°Cにおける貯蔵弾性率 (Ε')が 2000MPa以上であり、かつ 100°Cにおける貯蔵 弾性率 (Ε')が lOOMPa未満であることを特徴とする請求項 1に記載の透明フィルム
[3] 前記ウレタン (メタ)アタリレートが、下記一般式 [1]又は [2]で表されることを特徴と する請求項 1又は 2に記載の透明フィルム。
[化 1]
H2C=CR -C00-R -0C0NH- [R2-NH-C00-R3-0C0NH] n-R2-NHC00-R1-0C0-CR4=CH„ [ 1 ]
[化 2]
Figure imgf000039_0001
(但し、前記一般式 [1]において、 Rはヒドロキシ基含有 (メタ)アクリル酸エステルの
1
残鎖部分、 Rはイソシァネート残基を表し、 Rはアルコール残基又はポリエーテルジ
2 3
オール、ポリエステルジオール、及びポリカーボネートジオールから選ばれる少なくと も 1種のジオール残基、 Rは水素又はメチル基を表し、 nは 2
4 〜20の整数を表す。ま た、前記一般式 [2]において、 nは 4以上の整数を表す。 )
[4] 前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成、炭素 数 8以上のアルキル基組成、ェピクロロヒドリン縮合組成、及びエチレングリコール縮 合組成のいずれかを有することを特徴とする請求項 1〜3のいずれかに記載の透明 フイノレム。
[5] 前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成若しくは 炭素数 8以上のアルキル基組成と、ェピクロロヒドリン縮合組成若しくはエチレングリコ 一ル縮合組成とを有することを特徴とする請求項 1〜3のいずれか〖こ記載の透明フィ ノレム。
[6] 前記エポキシ (メタ)アタリレートが、下記一般式 [3]で表されることを特徴とする請求 項 1〜5のいずれかに記載の透明フィルム。
[化 3]
Figure imgf000040_0001
(但し、 Rl、 R2は水素又はメチル基を表し、 nは 1〜12の整数を表す。 ) 前記エポキシ (メタ)アタリレートが、ビスフエノール Aグリシジルエーテル (メタ)アタリ レートであることを特徴とする請求項 1〜5のいずれかに記載の透明フィルム。
前記アルキレンオキサイド基を有する 2官能以上の (メタ)アタリレートが、下記一般 式 [4]で表される請求項 1〜7のいずれかに記載の透明フィルム。
[化 4]
Figure imgf000041_0001
(但し、 Rは水素又はメチル基を表し、 n、 mは 1〜4の整数を表す。 )
[9] 請求項 1〜8の 、ずれか記載の透明フィルムカゝらなる光ディスク用保護フィルム。
[10] 請求項 9記載の光ディスク用保護フィルムを少なくとも一層積層して形成された光 ディスク。
[11] 少なくとも基板と記録層と保護膜とがこの順に積層されてなる光ディスクにおいて、 前記保護膜が、請求項 9記載の光ディスク用保護フィルムを含み、該保護膜の厚み が 0. 2mm以下であることを特徴とする請求項 10記載の光ディスク。
[12] 以下の (A)〜(C)の 、ずれかを含有する活性エネルギー線硬化性組成物。
(A)ウレタン (メタ)アタリレート 30〜60重量部と、フエノキシ (メタ)アタリレート 20〜5 0重量部と、エポキシ (メタ)アタリレート 0〜30重量部
(B)ウレタン (メタ)アタリレート 40〜60重量部と、エポキシ (メタ)アタリレート 10〜40 重量部と、脂環 (メタ)アタリレート 0〜30重量部
(C)ウレタン (メタ)アタリレート 20〜70重量部と、アルキレンオキサイド基を有する 2 官能以上の(メタ)アタリレート 10〜60重量部と、エポキシ (メタ)アタリレート 0〜30重 量部と、フエノキシ (メタ)アタリレート 10〜50重量部
[13] 前記ウレタン (メタ)アタリレートが、下記一般式 [1]又は [2]で表されることを特徴と する請求項 12記載の活性エネルギー線硬化性組成物。
[化 1]
HjC^R^COO-RrOCONH-C^-NH-COO-^-OCONHj n-Rj-NHCOO-R -OCO-CR^CH, [ 1 ]
[化 2]
Figure imgf000042_0001
(但し、前記一般式 [1]において、 はヒドロキシ基含有 (メタ)アクリル酸エステル の残鎖部分、 Rはイソシァネート残基を表し、 Rはアルコール残基又はポリエーテル
2 3
ジオール、ポリエステルジオール、及びポリカーボネートジオールから選ばれる少なく とも 1種のジオール残基、 Rは水素又はメチル基を表し、 nは 2
4 〜20の整数を表す。 また、前記一般式 [2]において、 nは 4以上の整数を表す。 )
[14] 前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成、炭素 数 8以上のアルキル基組成、ェピクロロヒドリン縮合組成、及びエチレングリコール縮 合組成のいずれかを有することを特徴とする請求項 12又は 13に記載の活性ェネル ギ一線硬化性組成物。
[15] 前記フエノキシ (メタ)アタリレートが、分子内に少なくとも 1個のタミル基組成若しくは 炭素数 8以上のアルキル基組成と、ェピクロロヒドリン縮合組成若しくはエチレングリコ 一ル縮合組成とを有することを特徴とする請求項 12又は 13に記載の活性エネルギ 一線硬化性組成物。
[16] 前記エポキシ (メタ)アタリレートが、下記一般式 [3]で表されることを特徴とする請求 項 12〜 15の 、ずれかに記載の活性エネルギー線硬化性組成物。
[化 3]
Figure imgf000042_0002
(但し、 Rl、 R2は水素又はメチル基を表し、 nは 1〜12の整数を表す。 ) 前記エポキシ (メタ)アタリレートが、ビスフエノール Aグリシジルエーテル (メタ)アタリ レートであることを特徴とする請求項 12〜 15の 、ずれかに記載の活性エネルギー線 硬化性組成物。
前記アルキレンオキサイド基を有する 2官能以上の (メタ)アタリレートが、下記一般 式 [4]で表される請求項 12〜 17の 、ずれかに記載の活性エネルギー線硬化性組 成物。
[化 4]
Figure imgf000043_0001
(但し、 Rは水素又はメチル基を表し、 n、 mは 1〜4の整数を表す。 )
PCT/JP2007/063020 2006-06-30 2007-06-28 Composition durcissable par rayonnement de haute énergie, film transparent fabriqué à partir de la composition et disque optique utilisant le film WO2008001855A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522626A JPWO2008001855A1 (ja) 2006-06-30 2007-06-28 活性エネルギー線硬化性組成物、該組成物からなる透明フィルム、及び該フィルムが使用された光ディスク

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-182805 2006-06-30
JP2006182805 2006-06-30
JP2006-184871 2006-07-04
JP2006184871 2006-07-04
JP2007-111363 2007-04-20
JP2007111363 2007-04-20

Publications (1)

Publication Number Publication Date
WO2008001855A1 true WO2008001855A1 (fr) 2008-01-03

Family

ID=38845619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063020 WO2008001855A1 (fr) 2006-06-30 2007-06-28 Composition durcissable par rayonnement de haute énergie, film transparent fabriqué à partir de la composition et disque optique utilisant le film

Country Status (3)

Country Link
JP (1) JPWO2008001855A1 (ja)
TW (1) TW200810922A (ja)
WO (1) WO2008001855A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242681A (ja) * 2008-03-31 2009-10-22 Taiyo Ink Mfg Ltd 活性エネルギー線硬化性樹脂組成物、およびその硬化物と透明成型品
JP2009272557A (ja) * 2008-05-09 2009-11-19 Disco Abrasive Syst Ltd ウェーハの製造方法及び製造装置、並びに硬化性樹脂組成物
JP2010180328A (ja) * 2009-02-05 2010-08-19 Inoac Corp 導光体形成用組成物及び導光シート
EP2096637A4 (en) * 2006-12-19 2011-01-19 Mitsubishi Chem Corp RADIATION HARDENING COMPOSITION FOR OPTICAL RECORDING MEDIUM AND OPTICAL RECORDING MEDIUM
KR101123007B1 (ko) 2008-01-08 2012-03-12 주식회사 엘지화학 투명한 수지 조성물
JP2012164375A (ja) * 2011-02-03 2012-08-30 Sony Corp 光情報記録媒体
US8293841B2 (en) 2008-01-08 2012-10-23 Lg Chem, Ltd. Optical film and information technology apparatus comprising the same
US8344083B2 (en) 2008-04-30 2013-01-01 Lg Chem, Ltd. Resin composition and optical films formed by using the same
US8613986B2 (en) 2008-04-30 2013-12-24 Lg Chem, Ltd. Optical film and information technology apparatus comprising the same
WO2020039892A1 (ja) * 2018-08-23 2020-02-27 東レ株式会社 樹脂フィルム、積層体及び積層体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279436A (ja) * 1992-03-30 1993-10-26 Japan Synthetic Rubber Co Ltd 光学的立体造形用樹脂組成物
JPH1173684A (ja) * 1997-07-03 1999-03-16 Sumitomo Chem Co Ltd Dvdの保護コート兼接着用樹脂組成物
JP2001163937A (ja) * 1999-12-07 2001-06-19 Nippon Kayaku Co Ltd レンズ用樹脂組成物およびレンズシ−ト

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689462A (ja) * 1992-09-07 1994-03-29 Three Bond Co Ltd 光ディスク
JPH10182779A (ja) * 1996-12-24 1998-07-07 Dainippon Ink & Chem Inc 紫外線硬化型組成物
JP3897583B2 (ja) * 2000-11-30 2007-03-28 三菱レイヨン株式会社 光ディスク
JP4549657B2 (ja) * 2003-11-25 2010-09-22 株式会社三共 遊技機
JP2006257342A (ja) * 2005-03-18 2006-09-28 Dainippon Ink & Chem Inc 光ディスク用紫外線硬化型組成物及びそれを用いた光ディスク
JP2007169450A (ja) * 2005-12-21 2007-07-05 Mitsubishi Plastics Ind Ltd 活性エネルギー線硬化性組成物、該組成物を用いた硬化フィルム及び光ディスク

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279436A (ja) * 1992-03-30 1993-10-26 Japan Synthetic Rubber Co Ltd 光学的立体造形用樹脂組成物
JPH1173684A (ja) * 1997-07-03 1999-03-16 Sumitomo Chem Co Ltd Dvdの保護コート兼接着用樹脂組成物
JP2001163937A (ja) * 1999-12-07 2001-06-19 Nippon Kayaku Co Ltd レンズ用樹脂組成物およびレンズシ−ト

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096637A4 (en) * 2006-12-19 2011-01-19 Mitsubishi Chem Corp RADIATION HARDENING COMPOSITION FOR OPTICAL RECORDING MEDIUM AND OPTICAL RECORDING MEDIUM
US8293841B2 (en) 2008-01-08 2012-10-23 Lg Chem, Ltd. Optical film and information technology apparatus comprising the same
US9168694B2 (en) 2008-01-08 2015-10-27 Lg Chem, Ltd. Transparent resin composition
US8512825B2 (en) 2008-01-08 2013-08-20 Lg Chem, Ltd. Optical film and information technology apparatus comprising the same
KR101123007B1 (ko) 2008-01-08 2012-03-12 주식회사 엘지화학 투명한 수지 조성물
US8513358B2 (en) 2008-01-08 2013-08-20 Lg Chem, Ltd. Composition of (Meth)acrylate resin and hydroxy group-containing aromatic resin
JP2009242681A (ja) * 2008-03-31 2009-10-22 Taiyo Ink Mfg Ltd 活性エネルギー線硬化性樹脂組成物、およびその硬化物と透明成型品
US8344083B2 (en) 2008-04-30 2013-01-01 Lg Chem, Ltd. Resin composition and optical films formed by using the same
US8613986B2 (en) 2008-04-30 2013-12-24 Lg Chem, Ltd. Optical film and information technology apparatus comprising the same
JP2009272557A (ja) * 2008-05-09 2009-11-19 Disco Abrasive Syst Ltd ウェーハの製造方法及び製造装置、並びに硬化性樹脂組成物
JP2010180328A (ja) * 2009-02-05 2010-08-19 Inoac Corp 導光体形成用組成物及び導光シート
JP2012164375A (ja) * 2011-02-03 2012-08-30 Sony Corp 光情報記録媒体
WO2020039892A1 (ja) * 2018-08-23 2020-02-27 東レ株式会社 樹脂フィルム、積層体及び積層体の製造方法
JPWO2020039892A1 (ja) * 2018-08-23 2021-08-10 東レ株式会社 樹脂フィルム、積層体及び積層体の製造方法
JP7226324B2 (ja) 2018-08-23 2023-02-21 東レ株式会社 樹脂フィルム、積層体及び積層体の製造方法

Also Published As

Publication number Publication date
TW200810922A (en) 2008-03-01
JPWO2008001855A1 (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
WO2008001855A1 (fr) Composition durcissable par rayonnement de haute énergie, film transparent fabriqué à partir de la composition et disque optique utilisant le film
US20110033650A1 (en) Ultraviolet-curable composition for light-transmission layer and optical disk
WO2003077243A1 (en) Optical information medium
JP2009173888A (ja) 積層シート及び光記録媒体
JP2010043194A (ja) 硬化性組成物及び光情報記録媒体
WO2006051895A1 (ja) 紫外線硬化型樹脂組成物およびその硬化物
JP2009173016A (ja) 積層シート及び光記録媒体
JP4323279B2 (ja) 光記録媒体の中間層用硬化性組成物、および光記録媒体
EP2112660A1 (en) Ultraviolet-curable composition for optical disk and optical disk using the same
US20100055376A1 (en) Ultraviolet-curable composition for optical disc and optical disc
JP5133116B2 (ja) 硬化性組成物及び光情報媒体
JPWO2005019282A1 (ja) 紫外線硬化型樹脂組成物およびその硬化物
JP2007080448A (ja) 光情報媒体
JP2011246517A (ja) 活性エネルギー線硬化型樹脂組成物、凹凸形状物品及び光記録媒体
JP2008088382A (ja) 硬化性組成物、その硬化物および光情報媒体
EP2413317B1 (en) Ultraviolet-curable composition for optical disc and optical disc
JP4863468B2 (ja) 光ディスクの製造方法
JP2008192217A (ja) 光情報媒体用硬化性組成物および光情報媒体
JP2006016500A (ja) 組成物および物品
JP2010222451A (ja) 放射線硬化性組成物及びそれを用いた硬化物、及び積層体
JP2009292950A (ja) 放射線硬化性組成物及びその硬化物、並びにそれを用いた光記録媒体
JP2010065193A (ja) 硬化性組成物、硬化物及び光情報媒体
JP2007169450A (ja) 活性エネルギー線硬化性組成物、該組成物を用いた硬化フィルム及び光ディスク
WO2009081556A1 (ja) 積層シート及び光記録媒体
JP2011146082A (ja) 光情報媒体用硬化性組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522626

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767813

Country of ref document: EP

Kind code of ref document: A1