WO2008001424A1 - dispositif de communication OFDM et procédé de décision de longueur d'intervalle de garde - Google Patents

dispositif de communication OFDM et procédé de décision de longueur d'intervalle de garde Download PDF

Info

Publication number
WO2008001424A1
WO2008001424A1 PCT/JP2006/312749 JP2006312749W WO2008001424A1 WO 2008001424 A1 WO2008001424 A1 WO 2008001424A1 JP 2006312749 W JP2006312749 W JP 2006312749W WO 2008001424 A1 WO2008001424 A1 WO 2008001424A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
power
unit
interference wave
guard interval
Prior art date
Application number
PCT/JP2006/312749
Other languages
English (en)
French (fr)
Inventor
Toru Sahara
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US12/306,207 priority Critical patent/US8379776B2/en
Priority to CN200680055139XA priority patent/CN101473572B/zh
Priority to PCT/JP2006/312749 priority patent/WO2008001424A1/ja
Priority to KR1020087030857A priority patent/KR100979598B1/ko
Priority to EP06767366A priority patent/EP2034644A4/en
Priority to JP2008522230A priority patent/JP4763785B2/ja
Publication of WO2008001424A1 publication Critical patent/WO2008001424A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to an OFDM communication apparatus and a guard interval length determination method.
  • GI Guard Interval
  • Patent Document 1 describes a technique for controlling the guard interval length according to the amount of symbol delay. The longer the guard interval, the higher the SINR will increase. The communication rate will decrease, so this technology will balance the two and determine the guard internal length so that the minimum necessary SINR is obtained. .
  • Patent Document 2 also reduces interference between symbols transmitted from each transmission device in a situation where the same subcarrier is transmitted from a plurality of transmission devices, which occurs during a handover or the like. Techniques for doing so are disclosed.
  • Patent Document 3 discloses a technique related to improvement of frequency use efficiency in OF DM.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-374223
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-303826
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-252886
  • SINR is also affected by interference waves and noise (hereinafter collectively referred to as background noise) other than interference waves due to symbol delay (hereinafter referred to as symbol delay interference waves).
  • background noise interference waves and noise
  • symbol delay interference waves due to symbol delay interference waves.
  • SINR is obtained by dividing “desired signal power” by “interference wave power and noise power”, and “interference wave power and noise power” includes “symbol delayed interference wave power”.
  • background noise power are included. For this reason, even if the length of the guard interval is controlled according to the amount of symbol delay, the required minimum SINR may not be obtained.
  • one of the problems of the present invention is that an OFDM communication apparatus and a guard interval length that can control the length of the guard interval so as to obtain the minimum necessary SINR even in the presence of background noise. To provide a decision method.
  • An OFDM communication apparatus for solving the above-described problems includes a receiving unit that receives a series of symbols including a known signal portion, a series of symbols received by the receiving unit, and the known
  • a correlation calculation unit for calculating a correlation between the signal and the held signal having the same waveform
  • a desired signal power acquisition unit for acquiring a desired signal power based on the calculation result of the correlation calculation unit, and a received power of each symbol
  • a background noise power acquisition unit that acquires background noise power indicating a difference between the desired signal power acquired by the desired signal power acquisition unit, and a background noise power acquired by the background noise power acquisition unit.
  • a guard interval length determination unit that determines the length of the guard interval, and a symbol transmission with the guard interval length determined by the guard interval length determination unit.
  • a guard interval length instruction unit for instructing device characterized in that it comprises a.
  • the OFDM communication apparatus can perform the guard so that the minimum required SINR can be obtained even when there is background noise.
  • the length of the interval can be controlled.
  • a symbol delay amount acquisition unit that acquires a symbol delay amount, a desired signal power acquired by the desired signal power acquisition unit, Based on the symbol delay amount acquired by the symbol delay amount acquisition unit, the symbol delay interference wave power for acquiring the symbol delay interference wave power that is the interference wave power when a certain symbol becomes an interference wave for the subsequent symbol
  • the guard interval length determination unit acquires the background noise power
  • the length of the guard interval may be determined according to the background noise power acquired by the unit and the symbol delayed interference wave power acquired by the symbol delayed interference wave power acquisition unit.
  • the guard interval length can be determined according to both the background noise power and the symbol delay interference wave power, the OFDM communication apparatus is more suitable even when there is background noise. In addition, it is possible to control the length of the guard interval to obtain the minimum necessary SINR.
  • the guard interval length determination unit is a symbol delay interference wave required for SINR to be a predetermined value based on the background noise power acquired by the background noise power acquisition unit.
  • a required symbol delay interference wave power calculation unit for calculating power wherein the guard interval length determination unit includes the required symbol delay interference wave power calculated by the required symbol delay interference wave power calculation unit, and the symbol delay interference wave.
  • the length of the guard interval may be determined based on the symbol delay interference wave power acquired by the power acquisition unit.
  • the guard interval length can be determined so that the SINR becomes a predetermined value in consideration of the background noise.
  • a guard interval length determination method includes a reception step of receiving a series of symbols including a known signal portion, and a series of symbols received in the reception step!
  • a correlation calculation step for calculating a correlation between the known signal and the hold signal having the same waveform, a symbol delay amount acquisition step for acquiring a symbol delay amount based on the calculation result of the correlation calculation, and a calculation result of the correlation calculation
  • Based on the desired signal power acquisition step for acquiring the desired signal power, the desired signal power acquired in the desired signal power acquisition step, the symbol delay amount acquired in the symbol delay amount acquisition step, and Symbol delay interference to obtain symbol delay interference wave power, which is the interference wave power when a symbol becomes an interference wave for subsequent symbols based on
  • a background noise power acquisition step for acquiring a background noise power indicating a difference between a power acquisition step, the received power of each symbol, and the desired signal power acquired in the desired signal power acquisition step; and the background noise Background noise acquired in the power acquisition step!
  • Guard interval length determining step for determining the length of the guard interval according to the delay power and the symbol delayed interference wave power acquired in the symbol delayed interference wave power acquisition step, and the guard interval length
  • a guard interval length instructing step for instructing the transmitting apparatus to transmit symbols with the guard interval length determined in the determining step.
  • FIG. 1 is a diagram showing a system configuration and functional blocks of an OFDM communication apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining a radio signal according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram for explaining symbols according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a processing flow of the OFDM communication apparatus according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a relationship between GI length, background noise power and symbol delay interference wave power according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a system configuration and functional blocks of an OFDM communication apparatus 10 according to the present embodiment.
  • the OFDM communication device 10 is functionally composed of an RF (Radio Frequency) / lF (Inter-frequency) / BB (Base Band) unit 11, a GI deletion unit 12, an FFT (Fast Fourier Transform).
  • RF Radio Frequency
  • lF Inter-frequency
  • BB Base Band
  • FFT Fast Fourier Transform
  • GI length determination / instruction unit 23 includes a necessary symbol delay interference wave power calculation unit 24 therein.
  • the OFDM communication device 10 is a communication device used as a mobile station device or a base station device of a mobile communication system, and performs communication using OFDM. Note that the communication partner of the OFDM communication apparatus 10 is the same communication apparatus as the OFDM communication apparatus 10. Below, OFDM communication equipment The function of each of the above functional units included in the device 10 will be specifically described.
  • the RFZIFZBB unit 11 receives the radio signal transmitted by the communication partner using the superheterodyne method, and outputs it to the GI deletion unit 12.
  • FIG. 2 is an explanatory diagram for explaining a radio signal used in OFDM.
  • the vertical axis is the frequency axis and the horizontal axis is the time axis.
  • Each rectangle represents a radio signal transmission unit.
  • the time length of the transmission unit is equal to the time slot length.
  • a sequence of symbols (signal points indicating one or a plurality of bits of data obtained by one modulation) is a series of symbols corresponding to the GI length (hereinafter referred to as a unit symbol sequence).
  • Each is mapped to a complex plane, DZA transformed, and then subjected to inverse fast Fourier transform.
  • the symbol sequence is distributed into a number of subcarriers for each unit symbol sequence.
  • the transmission unit is composed of unit symbol strings distributed in this way.
  • FIG. 3 shows details of the unit symbol sequence.
  • each unit symbol string includes a plurality of symbols, and each symbol includes a GI and a data part. More specifically, the data portion includes an analog signal having a predetermined time length indicating a symbol.
  • the GI may be configured to include a part of the analog signal that constitutes the data part (usually, the end part of the data part and the analog signal for the GI length) and includes a significant signal. N / A, or as a thing! /
  • the GI deletion unit 12 also deletes the GI from the radio signal power input from the RFZIFZBB unit 11 and outputs the GI to the FFT unit 13.
  • the FFT unit 13 performs fast Fourier transform on the radio signal input from the GI deletion unit 12.
  • the FFT unit 13 acquires a unit symbol string before performing the inverse fast Fourier transform for each transmission unit, and outputs the unit symbol string to the correlation calculation unit 14.
  • the unit symbol sequence obtained here includes interference components and noise components.
  • the unit symbol sequence includes a known signal portion (also called a unique word).
  • the known signal holding unit 15 holds a signal having the same waveform as that of the known signal portion.
  • the correlation calculation unit 14 calculates the correlation between the unit symbol sequence input from the FFT unit 13 and the held signal having the same waveform as the known signal held by the known signal holding unit 15. Calculate. By this processing, the correlation calculation unit 14 determines that the part having the maximum correlation value is the known signal part included in the unit symbol string. Then, the determination result and the unit symbol sequence are output to the demodulation Z decoding unit 16.
  • Demodulation Z decoding unit 16 acquires the demodulation timing of the known signal portion included in the unit symbol sequence based on the input determination result. Then, according to the demodulation timing obtained in this way, the unit symbol sequence is demodulated by the modulation scheme used for the modulation of the unit symbol sequence. Demodulation Z decoding section 16 further decodes the bit string obtained as a result of demodulation by a predetermined encoding method, and outputs the result to reception data acquisition section 17. The reception data acquisition unit 17 acquires reception data based on the bit string input from the demodulation Z decoding unit 16.
  • the symbol delay amount acquisition unit 18 acquires the symbol delay amount based on the calculation result of the correlation calculation unit 14. That is, the difference between the reception timing of the known signal portion and the timing to be originally received is acquired as the symbol delay amount.
  • the unit symbol sequence is dispersed in time due to the influence of multipath or the like, and several signals having the same power are received.
  • the reception timing of the known signal part is also distributed to a plurality of timings.
  • the symbol delay amount acquisition unit 18 acquires the degree of delay as a symbol delay amount for each of the plurality of unit symbol sequences received in a distributed manner.
  • the desired signal power acquisition unit 19 acquires the desired signal power for each of the plurality of unit symbol sequences received in a distributed manner based on the calculation result of the correlation calculation unit 14.
  • the symbol delay interference wave power acquisition unit 20 follows a desired symbol based on the desired signal power acquired by the desired signal power acquisition unit 19 and the symbol delay amount acquired by the symbol delay amount acquisition unit 18.
  • the symbol delayed interference wave power (I) is obtained as the interference wave power when the interference wave becomes the symbol.
  • the symbol delay interference wave power acquisition unit 20 acquires the symbol delay interference wave power I by summing up the desired signal power of the unit symbol sequence when the symbol delay amount exceeds the GI length.
  • the received power acquisition unit 21 acquires the received power of the unit symbol sequence acquired by the FFT unit 13.
  • the background noise power acquisition unit 22 is a background noise indicating the difference between the received power acquired by the received power acquisition unit 21 and the desired signal power acquired by the desired signal power acquisition unit 19. Get power (I + N). This background noise power I + N is desired from the received power
  • the background noise power I is determined from fluctuations in amplitude and phase within a predetermined time (for example, GI length determination described later, within the GI length update period by the instruction unit 23).
  • the sum of the squares of the absolute values of the error vectors indicating the difference between the signal point of each symbol constituting the received unit symbol sequence and the ideal signal point is the background noise power I
  • Equation (1) This can be expressed as equation (1).
  • m is a symbol number
  • M is the number of symbols included in the predetermined time
  • k is a subcarrier number
  • K is the number of subcarriers.
  • V mk is the signal vector at symbol number m and subcarrier number k
  • V is the symbol number m mkr
  • equation (1) represents the sum of background noise components included in all of the number of symbols ⁇ and the number of subcarriers ⁇ . When this value is used for comparison or calculation with other power, the target symbol delay interference power I, background noise power I + ⁇ , required symbol delay interference power I
  • each component included in all symbols ⁇ and subcarriers ⁇ is included in all symbols ⁇ and subcarriers ⁇
  • GI length determination / instruction unit 23 includes background noise power I + I acquired by background noise power acquisition unit 22 and symbol delay interference acquired by symbol delay interference wave power acquisition unit 20.
  • the GI length is determined according to the wave power I.
  • the required symbol delay interference wave power calculation unit 24 sets the SINR to a predetermined value (establish communication) based on the background noise power I + ⁇ acquired by the background noise power acquisition unit 22.
  • the GI length determination / instruction unit 23 determines the required symbol delay interference wave power I calculated in this way and the symbol delay interference signal acquired by the symbol delay interference wave power acquisition unit 20.
  • the GI length is determined. More specifically, the GI length is determined so that the symbol delay interference wave power acquired by the symbol delay interference wave power acquisition unit 20 becomes the required symbol delay interference wave power I.
  • the instruction unit 23 instructs the communication partner to transmit a symbol with the GI length. Specifically, GI length indication information indicating the indicated GI length is generated and output to the physical layer frame generation unit 26. As a result, the GI length instruction information is transmitted to the communication partner.
  • the symbol transmission by the OFDM communication apparatus 10 will be described with reference to the details.
  • the transmission data acquisition unit 25 acquires a bit string constituting transmission data.
  • the physical layer frame generation unit 26 adds a physical layer header to the bit string acquired by the transmission data acquisition unit 25 and outputs it to the code Z modulation unit 27.
  • the physical layer frame generation unit 26 includes the GI length instruction information input from the GI length determination-instruction unit 23 in the physical layer header.
  • the code Z modulation unit 27 encodes the transmission data after adding the physical layer header input from the physical layer frame generation unit 26 using a predetermined encoding method, and acquires encoded data. Further, the code Z modulation unit 27 modulates the encoded data by a given modulation scheme to generate a symbol string, and outputs the symbol sequence to the IFFT unit 29. It is preferable that the modulation scheme used by the code key Z modulation unit 27 for the modulation of the code key data is appropriately changed according to the radio state (reception state) by the adaptive modulation method.
  • the GI length instruction acquisition unit 28 acquires the GI length instruction information transmitted from the communication partner by the same processing as that of the OFDM communication apparatus 10 from the reception data acquired by the reception data acquisition unit 17.
  • the IFFT unit 29 determines the number of symbols to be included in the unit symbol string based on the GI length instruction information acquired by the GI length instruction acquisition unit 28. In this decision, the longer the GI length, the smaller the number of symbols. Then, IFFT section 29 divides the symbol sequence input from code Z modulation section 27 into unit symbol sequences, maps them to the complex plane, performs DZA conversion, and then executes inverse fast Fourier transform. As a result, each unit symbol string is distributed over many subcarriers. The IFFT unit 29 outputs the signal thus obtained to the GI adding unit 30.
  • the GI adding unit 30 adds a length GI based on the GI length instruction information acquired by the GI length instruction acquiring unit 28 to the head of each symbol constituting the unit symbol sequence, and then adds the RFZIFZ BB unit. Output to 11.
  • the RFZIFZBB unit 11 wirelessly transmits the signal input from the GI adding unit 30 by the superheterodyne method.
  • FIG. 4 is a diagram showing a processing flow of the OFDM communication apparatus 10. As shown in the figure, the OF DM communication device 10 first obtains the minimum SINR necessary for establishment of communication. In the following, this SINR is set to SINR1 (Sl).
  • the OFDM communication apparatus 10 Upon receiving the signal (S2), the OFDM communication apparatus 10 receives the desired signal received power S (S3), the symbol delayed interference wave power I (S4), the background noise power I + N ( S5)
  • the OFDM communication apparatus 10 determines that the maximum value I of communication I can be established.
  • the OFDM communication apparatus 10 compares the I calculated in S2 with the I calculated in S6.
  • the GI length control amount to maintain the current I is determined to be 0 (S9).
  • GI length control amount is determined in the direction of increasing GI length according to the difference between I and I.
  • the OFDM communication apparatus 10 determines the GI length based on the GI length control amount determined as described above and the current GI length (Sll).
  • Fig. 5 shows the GI length, background noise power I + N and symbol delay determined as described above.
  • FIG. As shown in the figure, background noise power I + N
  • the OFDM communication apparatus 10 transmits the GI length instruction information to the communication partner,
  • the GI length is notified (S12). After receiving this, the communication partner transmits a unit symbol string of the GI length indicated by the GI length instruction information.
  • the GI length can be determined according to both the background noise power and the symbol delayed interference wave power. As a result, the OFDM communication apparatus 10 can control the GI length so as to obtain the minimum necessary SINR even when there is background noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Description

明 細 書
OFDM通信装置及びガードインターバル長決定方法
技術分野
[0001] 本発明は OFDM通信装置及びガードインターバル長決定方法に関する。
背景技術
[0002] OFDM (直交波周波数分割多重: Orthogonal Frequency Division Multiplexing)で は、あるシンボルが遅延すると、後続のシンボルに対する干渉波となり、後続のシン ボルの SINR (信号対干渉及び雑音比: Signal to Interference and Noise Ratio)が低 下する。これを防止するため、シンボルの先頭にはガードインターバル(GI : Guard In terval)が設けられる。
[0003] 特許文献 1には、ガードインターバル長を、シンボル遅延の量に応じて制御する技 術が記載されている。ガードインターバルが長いほど SINRは上昇する力 通信レー トが下がってしまうため、この技術では、両者のバランスを取り、必要最低限の SINR が得られるようにガードインターノ レ長を決定して ヽる。
[0004] また、特許文献 2には、ハンドオーバ時などに生ずる、同一のサブキャリアを複数の 送信装置から送信する場面にお!ヽて、各送信装置からそれぞれ送信されるシンボル 間の干渉を低減することに関する技術が開示されている。また、特許文献 3には、 OF DMにおける周波数使用効率の改善に関する技術が開示されている。
特許文献 1:特開 2002— 374223号公報
特許文献 2:特開 2005 - 303826号公報
特許文献 3:特開 2005 - 252886号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、 SINRは、シンボル遅延による干渉波(以下では、シンボル遅延干渉 波と称する。)以外の干渉波や雑音 (以下では、これらを背景ノイズと総称する。)によ つても影響される。このような背景ノイズがある場合、上記特許文献 1に記載の技術に よっても、必要最低限の SINRが得られな 、場合がある。 [0006] すなわち、 SINRは、「所望信号電力」を「干渉波電力及び雑音電力」により除算す ることにより求められるが、「干渉波電力及び雑音電力」には、「シンボル遅延干渉波 電力」と「背景ノイズ電力」の両方が含まれる。このため、シンボル遅延の量に応じて ガードインターバルの長さを制御しても、必要最低限の SINRが得られな 、場合があ るのである。
[0007] 従って、本発明の課題の一つは、背景ノイズがある場合にも、必要最低限の SINR が得られるようガードインターバルの長さを制御することができる OFDM通信装置及 びガードインターバル長決定方法を提供することにある。
課題を解決するための手段
[0008] 上記課題を解決するための本発明に力かる OFDM通信装置は、既知信号部分を 含む一連のシンボルを受信する受信部と、前記受信部により受信される一連のシン ボルと、該既知信号と同一波形の保持信号と、の相関を演算する相関演算部と、前 記相関演算部の演算結果に基づき、所望信号電力を取得する所望信号電力取得 部と、前記各シンボルの受信電力と、前記所望信号電力取得部により取得される所 望信号電力と、の相違量を示す背景ノイズ電力を取得する背景ノイズ電力取得部と、 前記背景ノイズ電力取得部により取得される背景ノイズ電力に応じて、ガードインタ 一バルの長さを決定するガードインターバル長決定部と、前記ガードインターバル長 決定部により決定されたガードインターバル長でシンボル送信するよう、送信装置に 指示するガードインターバル長指示部と、を含むことを特徴とする。
[0009] これによれば、背景ノイズ電力に応じてガードインターバル長を決定することができ るので、上記 OFDM通信装置は、背景ノイズがある場合にも、必要最低限の SINR が得られるようガードインターバルの長さを制御することができる。
[0010] また、上記 OFDM通信装置において、前記相関演算部の演算結果に基づき、シ ンボル遅延量を取得するシンボル遅延量取得部と、前記所望信号電力取得部により 取得される所望信号電力と、前記シンボル遅延量取得部により取得されるシンボル 遅延量と、に基づき、あるシンボルが後続のシンボルに対する干渉波となる場合の干 渉波電力であるシンボル遅延干渉波電力を取得するシンボル遅延干渉波電力取得 部と、をさらに含み、前記ガードインターバル長決定部は、前記背景ノイズ電力取得 部により取得される背景ノイズ電力と、前記シンボル遅延干渉波電力取得部により取 得されるシンボル遅延干渉波電力と、に応じて、ガードインターバルの長さを決定す る、こととしてもよい。
[0011] これによれば、背景ノイズ電力とシンボル遅延干渉波電力の両方に応じてガードィ ンターバル長を決定することができるので、上記 OFDM通信装置は、背景ノイズがあ る場合にも、より好適に、必要最低限の SINRが得られるようガードインターバルの長 さを制御することがでさる。
[0012] さらに、上記 OFDM通信装置において、前記ガードインターバル長決定部は、前 記背景ノイズ電力取得部により取得される背景ノイズ電力に基づき、 SINRが所定値 となるために必要なシンボル遅延干渉波電力を算出する必要シンボル遅延干渉波 電力算出部、を含み、前記ガードインターバル長決定部は、前記必要シンボル遅延 干渉波電力算出部により算出される必要シンボル遅延干渉波電力と、前記シンボル 遅延干渉波電力取得部により取得されるシンボル遅延干渉波電力と、に基づき、ガ ードインターバルの長さを決定する、こととしてもよい。
[0013] これによれば、背景ノイズを考慮しつつ、 SINRが所定値となるようガードインターバ ル長を決定することができる。
[0014] また、本発明に力かるガードインターバル長決定方法は、既知信号部分を含む一 連のシンボルを受信する受信ステップと、前記受信ステップにお!/ヽて受信される一連 のシンボルと、該既知信号と同一波形の保持信号と、の相関を演算する相関演算ス テツプと、前記相関演算の演算結果に基づき、シンボル遅延量を取得するシンボル 遅延量取得ステップと、前記相関演算の演算結果に基づき、所望信号電力を取得 する所望信号電力取得ステップと、前記所望信号電力取得ステップにお ヽて取得さ れる所望信号電力と、前記シンボル遅延量取得ステップにより取得されるシンボル遅 延量と、に基づき、あるシンボルが後続のシンボルに対する干渉波となる場合の干渉 波電力であるシンボル遅延干渉波電力を取得するシンボル遅延干渉波電力取得ス テツプと、前記各シンボルの受信電力と、前記所望信号電力取得ステップにおいて 取得される所望信号電力と、の相違量を示す背景ノイズ電力を取得する背景ノイズ 電力取得ステップと、前記背景ノイズ電力取得ステップにお!ヽて取得される背景ノィ ズ電力と、前記シンボル遅延干渉波電力取得ステップにお 、て取得されるシンボル 遅延干渉波電力と、に応じて、ガードインターバルの長さを決定するガードインター バル長決定ステップと、前記ガードインターバル長決定ステップにお ヽて決定された ガードインターバル長でシンボル送信するよう、送信装置に指示するガードインター バル長指示ステップと、を含むことを特徴とする。
図面の簡単な説明
[0015] [図 1]本発明の実施の形態に係る OFDM通信装置のシステム構成及び機能ブロック を示す図である。
[図 2]本発明の実施の形態に係る無線信号を説明するための説明図である。
[図 3]本発明の実施の形態に係るシンボルを説明するための説明図である。
[図 4]本発明の実施の形態に係る OFDM通信装置の処理フローを示す図である。
[図 5]本発明の実施の形態に係る GI長と、背景ノイズ電力及びシンボル遅延干渉波 電力との関係を示す図である。
発明を実施するための最良の形態
[0016] 本発明の実施の形態について、図面を参照しながら説明する。
[0017] 図 1は、本実施の形態に係る OFDM通信装置 10のシステム構成及び機能ブロック を示す図である。同図に示すように、 OFDM通信装置 10は、機能的に、 RF(Radio F requency)/lF(Inter-frequency)/BB(Base Band)部 11、 GI削除部 12、 FFT(Fast F ourier Transform)部 13、相関演算部 14、既知信号保持部 15、復調 Z復号部 16、受 信データ取得部 17、シンボル遅延量取得部 18、所望信号電力取得部 19、シンボル 遅延干渉波電力取得部 20、受信電力取得部 21、背景ノイズ電力取得部 22、 GI長 決定'指示部 23、送信データ取得部 25、物理層フレーム生成部 26、符号化 Z変調 部 27、 GI長指示取得部 28、 IFFT(Inverse Fast Fourier Transform)部 29、 GI付カロ 部 30、を含んで構成される。また、 GI長決定 ·指示部 23は、その内部に、必要シンポ ル遅延干渉波電力算出部 24を含んで構成される。
[0018] OFDM通信装置 10は、移動体通信システムの移動局装置や基地局装置として使 用される通信装置であり、 OFDMによる通信を行う。なお、 OFDM通信装置 10の通 信相手も、 OFDM通信装置 10と同様の通信装置である。以下では、 OFDM通信装 置 10が有する上記各機能部の機能について、具体的に説明する。
[0019] RFZIFZBB部 11は、通信相手が送信した無線信号を、スーパーヘテロダイン方 式により受信し、 GI削除部 12へ出力する。
[0020] ここで、 OFDMにおいて使用される無線信号について説明する。
[0021] 図 2は、 OFDMにおいて使用される無線信号を説明するための説明図である。同 図では、縦軸が周波数軸、横軸が時間軸である。各長方形は、無線信号の送信単 位を示している。送信単位の時間長は、タイムスロット長に等しい。
[0022] OFDMでは、シンボル(1回の変調で得られる 1又は複数ビットのデータを示す信 号点)列が、 GI長に応じた数の一連のシンボル(以下、単位シンボル列と称する。)ご とに複素平面にマッピングされ、 DZA変換された後、逆高速フーリエ変換が施され る。その結果、上記シンボル列は、単位シンボル列ごとに、多数のサブキャリアに分 散する。上記送信単位は、こうして分散した単位シンボル列により構成される。
[0023] 図 3は、上記単位シンボル列の内容を詳細に示したものである。同図に示すように 、各単位シンボル列は複数のシンボルを含んでなり、各シンボルは GIとデータ部とを 含んで構成される。より具体的には、データ部には、シンボルを示す所定時間長のァ ナログ信号が含まれる。 GIは、データ部を構成するアナログ信号の一部(通常は、デ ータ部の末尾カゝら GI長分のアナログ信号)を含んで構成されてもよ!ヽし、有意な信号 を含まな!/、ものとしてもよ!/、。
[0024] GI削除部 12は、 RFZIFZBB部 11より入力される無線信号力も GIを削除し、 FF T部 13に出力する。
[0025] FFT部 13は、 GI削除部 12から入力された無線信号に高速フーリエ変換を施す。
その結果、 FFT部 13は、上記送信単位ごとに、逆高速フーリエ変換を施す前の単位 シンボル列を取得し、相関演算部 14に出力する。ただし、ここで得られる単位シンポ ル列には、干渉成分や雑音成分が含まれる。
[0026] ここで、上記単位シンボル列には、既知信号部分 (ユニークワードとも呼ばれる。 ) が含まれる。また、既知信号保持部 15は、この既知信号部分と同一波形の信号を保 持している。相関演算部 14は、 FFT部 13から入力された単位シンボル列と、既知信 号保持部 15により保持される上記既知信号と同一波形の保持信号と、の相関を演 算する。この処理により、相関演算部 14は、相関値が最大となった部分を、単位シン ボル列に含まれる既知信号部分であると判定する。そして、判定結果と、単位シンポ ル列と、を復調 Z復号部 16に出力する。
[0027] 復調 Z復号部 16は、入力された判定結果に基づいて単位シンボル列に含まれる 既知信号部分の復調タイミングを取得する。そして、こうして取得した復調タイミング に応じて、単位シンボル列を、該単位シンボル列の変調に用いられた変調方式によ り、復調する。復調 Z復号部 16は、復調の結果得られるビット列を、さらに所定の符 号化方式により復号し、受信データ取得部 17に出力する。受信データ取得部 17は、 復調 Z復号部 16から入力されたビット列に基づき、受信データを取得する。
[0028] シンボル遅延量取得部 18は、相関演算部 14の演算結果に基づき、シンボル遅延 量を取得する。すなわち、上記既知信号部分の受信タイミングと、本来受信されるべ きタイミングと、のずれを、シンボル遅延量として取得する。
[0029] 一般に、マルチパスなどの影響により上記単位シンボル列は時間的に分散し、同じ もの力 Sいくつか受信される。上記既知信号部分の受信タイミングも、複数のタイミング に分散する。シンボル遅延量取得部 18は、分散受信された複数の単位シンボル列 それぞれについて、その遅延の度合いを、シンボル遅延量として取得する。
[0030] 所望信号電力取得部 19は、相関演算部 14の演算結果に基づき、分散受信された 複数の単位シンボル列それぞれにつ 、て、所望信号電力を取得する。
[0031] シンボル遅延干渉波電力取得部 20は、所望信号電力取得部 19により取得される 所望信号電力と、シンボル遅延量取得部 18により取得されるシンボル遅延量と、に 基づき、あるシンボルが後続のシンボルに対する干渉波となる場合の干渉波電力で あるシンボル遅延干渉波電力(Iとする。)を取得する。具体的には、シンボル遅延干 渉波電力取得部 20は、シンボル遅延量が GI長を超えて 、る単位シンボル列の所望 信号電力を合計することにより、シンボル遅延干渉波電力 Iを取得する。
[0032] 受信電力取得部 21は、 FFT部 13により取得された単位シンボル列の受信電力を 取得する。
[0033] 背景ノイズ電力取得部 22は、受信電力取得部 21により取得される受信電力と、所 望信号電力取得部 19により取得される所望信号電力と、の相違量を示す背景ノイズ 電力(I +Nとする。)を取得する。この背景ノイズ電力 I +Nは、受信電力から所望
2 2
信号電力を減算することによって算出してもよいし、背景ノイズがドップラー効果によ り生ずる周波数変動によるもののみであるとみなせる場合には、以下のようにして算 出することも可能である。
[0034] すなわち、所定時間内(例えば、後述する GI長決定,指示部 23による GI長の更新 周期内)の振幅と位相の変動から、背景ノイズ電力 I
2が算出される。具体的には、受 信された単位シンボル列を構成する各シンボルの信号点と、理想的な信号点と、の 差を示す誤差ベクトルの絶対値の二乗の総和が背景ノイズ電力 I
2となる。これを式で 示すと、式(1)のようになる。ただし、 mはシンボル番号、 Mは上記所定時間内に含ま れるシンボルの数、 kはサブキャリア番号、 Kはサブキャリア数であるとする。また、 V mk はシンボル番号 m、サブキャリア番号 kにおける信号ベクトル、 V はシンボル番号 m mkr
、サブキャリア番号 kにおける理想信号ベクトル、をそれぞれ示している。
[0035] [数 1]
/2 =∑∑vmk - Vm ( l )
[0036] なお、式(1)はシンボル数 Μ、サブキャリア数 Κの全てに含まれる背景ノイズ成分の 総和を示している。この値を用いて他の電力との比較や計算を行う場合、対象となる シンボル遅延干渉波電力 I、背景ノイズ電力 I +Ν、必要シンボル遅延干渉波電力 I
1 2
(後述)なども、同様にシンボル数 Μ、サブキャリア数 Κの全てに含まれる各成分
1MAX
の総和とする。
[0037] GI長決定 ·指示部 23は、背景ノイズ電力取得部 22により取得される背景ノイズ電 力 I +Νと、シンボル遅延干渉波電力取得部 20により取得されるシンボル遅延干渉
2
波電力 Iと、に応じて、 GI長を決定する。
[0038] 具体的には、必要シンボル遅延干渉波電力算出部 24は、背景ノイズ電力取得部 2 2により取得される背景ノイズ電力 I +Νに基づき、 SINRが所定値 (通信を成立させ
2
るために最低限必要な SINR)となるために必要なシンボル遅延干渉波電力 I を
1MAX 算出する。 GI長決定,指示部 23は、こうして算出される必要シンボル遅延干渉波電 力 I と、シンボル遅延干渉波電力取得部 20により取得されるシンボル遅延干渉
1MAX 波電力 ^と、に基づき、 GI長を決定する。より具体的には、シンボル遅延干渉波電力 取得部 20により取得されるシンボル遅延干渉波電力が必要シンボル遅延干渉波電 力 I となるよう、 GI長を決定する。
1MAX
[0039] GI長決定 ·指示部 23は、上述のようにして GI長を決定すると、該 GI長でシンボル 送信するよう、通信相手に指示する。具体的には、指示する GI長を示す GI長指示情 報を生成し、物理層フレーム生成部 26に出力する。これにより、 GI長指示情報が通 信相手に送信される。以下、この詳細について言及しつつ、 OFDM通信装置 10に よるシンボルの送信にっ 、て記載する。
[0040] 送信データ取得部 25は送信データを構成するビット列を取得する。物理層フレー ム生成部 26は、送信データ取得部 25により取得されたビット列に物理層ヘッダを付 加し、符号ィ匕 Z変調部 27に出力する。このとき物理層フレーム生成部 26は、 GI長決 定-指示部 23から入力される GI長指示情報を物理層ヘッダに含める。
[0041] 符号ィ匕 Z変調部 27は、物理層フレーム生成部 26から入力された物理層ヘッダ付 加後の送信データを所定の符号化方式により符号化し、符号化データを取得する。 さらに、符号ィ匕 Z変調部 27は、符号化データを所与の変調方式により変調してシン ボル列を生成し、 IFFT部 29に出力する。なお、符号ィ匕 Z変調部 27が符号ィ匕データ の変調に使用する変調方式は、適応変調方式により、無線状態 (受信状態)に応じ て適宜変更されるものとすることが好適である。
[0042] GI長指示取得部 28は、当該 OFDM通信装置 10と同様の処理により通信相手か ら送信された GI長指示情報を、受信データ取得部 17により取得された受信データか ら取得する。
[0043] IFFT部 29は、 GI長指示取得部 28により取得された GI長指示情報に基づき、単 位シンボル列に含めるべきシンボル数を決定する。この決定においては、 GI長が長 いほど、シンボル数が少なくなる。そして、 IFFT部 29は、符号ィ匕 Z変調部 27から入 力されたシンボル列を単位シンボル列に区切って複素平面にマッピングし、 DZA変 換した後、逆高速フーリエ変換を実行する。その結果、単位シンボル列ごとに、多数 のサブキャリアに分散する。 IFFT部 29は、こうして得た信号を GI付加部 30に出力す る。 [0044] GI付加部 30は、単位シンボル列を構成する各シンボルの先頭に、 GI長指示取得 部 28により取得された GI長指示情報に基づく長さの GIを付加した上で、 RFZIFZ BB部 11に出力する。
[0045] RFZIFZBB部 11は、スーパーヘテロダイン方式により、 GI付加部 30から入力さ れる信号を無線送信する。
[0046] 以上説明した処理について、 OFDM通信装置 10の処理フローを参照しながら、再 度より詳細に説明する。
[0047] 図 4は、 OFDM通信装置 10の処理フローを示す図である。同図に示すように、 OF DM通信装置 10は、まず通信の成立に必要な最低限の SINRを取得する。以下で は、この SINRを SINR1とする(Sl)。
[0048] OFDM通信装置 10は、信号を受信する(S2)と、上述のようにして、所望信号受信 電力 S (S3)、シンボル遅延干渉波電力 I (S4)、背景ノイズ電力 I +N (S5)を算出
1 2
する。これらを算出したら、 OFDM通信装置 10は、通信が成立しうる Iの最大値 I
1 1MA を算出する。換言すれば、背景ノイズ電力 I +Nがある場合に、許容できる Iの最大
X 2 1 値 I を算出する。具体的には、以下の式 (2)により算出する(S6)。
1MAX
[0049] I =S/SINR1 - (I +N) · · · (2)
1MAX 2
[0050] OFDM通信装置 10は、 S2で算出した Iと、 S6で算出した I と、を比較し、その
1 1MAX
結果に応じて異なる処理を行う(S7)。 I
1が I
1MAXより小さい場合には、 I
1がもっと大きく なるようにしても通信が成立するということを意味するので、 Iをより大きくするベぐ I と I の差に応じ、 GI長を縮める方向で、 GI長制御量を決定する(S8)。 I力 と
1MAX 1 1MAX 等しい場合には、現在の Iを維持すベぐ GI長制御量を 0と決定する(S9)。 I力
1 1 1MA より大きい場合には、このままでは通信が成立しないということを意味するので、 Iを
X 1 より小さくするベぐ Iと I の差に応じ、 GI長を伸ばす方向で、 GI長制御量を決定
1 1MAX
する(S10)。
[0051] OFDM通信装置 10は、以上のようにして決定した GI長制御量と、現在の GI長と、 に基づき、 GI長を決定する(Sl l)。
[0052] 図 5は、以上のようにして決定される GI長と、背景ノイズ電力 I +N及びシンボル遅
2
延干渉波電力 I
1との関係を示す図である。同図に示すように、背景ノイズ電力 I +N
2 が大きいほど、シンボル遅延干渉波電力 ^が小さくとも、 GI長は伸張の方向で制御さ れることとなる。逆に、背景ノイズ電力 I +Nが小さいと、シンボル遅延干渉波電力 I
2 1 力 り大きくとも、 GI長は短縮の方向で制御されることとなる。
[0053] 最後に、 OFDM通信装置 10は、通信相手に GI長指示情報を送信することにより、
GI長を通知する(S12)。これを受信した通信相手は、以降、 GI長指示情報により示 される GI長の単位シンボル列を送信するようになる。
[0054] 以上説明したように、 OFDM通信装置 10によれば、背景ノイズ電力とシンボル遅 延干渉波電力の両方に応じて GI長を決定することができる。これにより、 OFDM通 信装置 10は、背景ノイズがある場合にも、必要最低限の SINRが得られるよう GI長を 制御することができるようになる。

Claims

請求の範囲
[1] 既知信号部分を含む一連のシンボルを受信する受信部と、
前記受信部により受信される一連のシンボルと、該既知信号と同一波形の保持信 号と、の相関を演算する相関演算部と、
前記相関演算部の演算結果に基づき、所望信号電力を取得する所望信号電力取 得部と、
前記各シンボルの受信電力と、前記所望信号電力取得部により取得される所望信 号電力と、の相違量を示す背景ノイズ電力を取得する背景ノイズ電力取得部と、 前記背景ノイズ電力取得部により取得される背景ノイズ電力に応じて、ガードインタ 一バルの長さを決定するガードインターバル長決定部と、
前記ガードインターノ レ長決定部により決定されたガードインターバル長でシンポ ル送信するよう、送信装置に指示するガードインターバル長指示部と、
を含むことを特徴とする OFDM通信装置。
[2] 請求の範囲第 1項に記載の OFDM通信装置において、
前記相関演算部の演算結果に基づき、シンボル遅延量を取得するシンボル遅延 量取得部と、
前記所望信号電力取得部により取得される所望信号電力と、前記シンボル遅延量 取得部により取得されるシンボル遅延量と、に基づき、あるシンボルが後続のシンポ ルに対する干渉波となる場合の干渉波電力であるシンボル遅延干渉波電力を取得 するシンボル遅延干渉波電力取得部と、
をさらに含み、
前記ガードインターバル長決定部は、前記背景ノイズ電力取得部により取得される 背景ノイズ電力と、前記シンボル遅延干渉波電力取得部により取得されるシンボル 遅延干渉波電力と、に応じて、ガードインターバルの長さを決定する、
ことを特徴とする OFDM通信装置。
[3] 請求の範囲第 2項に記載の OFDM通信装置において、
前記ガードインターバル長決定部は、前記背景ノイズ電力取得部により取得される 背景ノイズ電力に基づき、 SINRが所定値となるために必要なシンボル遅延干渉波 電力を算出する必要シンボル遅延干渉波電力算出部、を含み、
前記ガードインターバル長決定部は、前記必要シンボル遅延干渉波電力算出部に より算出される必要シンボル遅延干渉波電力と、前記シンボル遅延干渉波電力取得 部により取得されるシンボル遅延干渉波電力と、に基づき、ガードインターバルの長 さを決定する、
ことを特徴とする OFDM通信装置。
既知信号部分を含む一連のシンボルを受信する受信ステップと、
前記受信ステップにお 、て受信される一連のシンボルと、該既知信号と同一波形 の保持信号と、の相関を演算する相関演算ステップと、
前記相関演算の演算結果に基づき、シンボル遅延量を取得するシンボル遅延量 取得ステップと、
前記相関演算の演算結果に基づき、所望信号電力を取得する所望信号電力取得 ステップと、
前記所望信号電力取得ステップにおいて取得される所望信号電力と、前記シンポ ル遅延量取得ステップにより取得されるシンボル遅延量と、に基づき、あるシンボル が後続のシンボルに対する干渉波となる場合の干渉波電力であるシンボル遅延干渉 波電力を取得するシンボル遅延干渉波電力取得ステップと、
前記各シンボルの受信電力と、前記所望信号電力取得ステップにおいて取得され る所望信号電力と、の相違量を示す背景ノイズ電力を取得する背景ノイズ電力取得 ステップと、
前記背景ノイズ電力取得ステップにおいて取得される背景ノイズ電力と、前記シン ボル遅延干渉波電力取得ステップにおいて取得されるシンボル遅延干渉波電力と、 に応じて、ガードインターバルの長さを決定するガードインターバル長決定ステップと 前記ガードインターバル長決定ステップにおいて決定されたガードインターバル長 でシンボル送信するよう、送信装置に指示するガードインターバル長指示ステップと を含むことを特徴とするガードインターバル長決定方法,
PCT/JP2006/312749 2006-06-26 2006-06-26 dispositif de communication OFDM et procédé de décision de longueur d'intervalle de garde WO2008001424A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/306,207 US8379776B2 (en) 2006-06-26 2006-06-26 OFDM communication device and guard interval length decision method
CN200680055139XA CN101473572B (zh) 2006-06-26 2006-06-26 Ofdm通信装置和保护间隔长度决定方法
PCT/JP2006/312749 WO2008001424A1 (fr) 2006-06-26 2006-06-26 dispositif de communication OFDM et procédé de décision de longueur d'intervalle de garde
KR1020087030857A KR100979598B1 (ko) 2006-06-26 2006-06-26 Ofdm 통신 장치 및 가드 인터벌 길이 결정 방법
EP06767366A EP2034644A4 (en) 2006-06-26 2006-06-26 OFDM COMMUNICATION DEVICE AND METHOD OF DECISION OF KEEP INTERVAL LENGTH
JP2008522230A JP4763785B2 (ja) 2006-06-26 2006-06-26 Ofdm通信装置及びガードインターバル長決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312749 WO2008001424A1 (fr) 2006-06-26 2006-06-26 dispositif de communication OFDM et procédé de décision de longueur d'intervalle de garde

Publications (1)

Publication Number Publication Date
WO2008001424A1 true WO2008001424A1 (fr) 2008-01-03

Family

ID=38845202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312749 WO2008001424A1 (fr) 2006-06-26 2006-06-26 dispositif de communication OFDM et procédé de décision de longueur d'intervalle de garde

Country Status (6)

Country Link
US (1) US8379776B2 (ja)
EP (1) EP2034644A4 (ja)
JP (1) JP4763785B2 (ja)
KR (1) KR100979598B1 (ja)
CN (1) CN101473572B (ja)
WO (1) WO2008001424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120044832A1 (en) * 2009-06-26 2012-02-23 Kyocera Corporation Communication device and a delay amount detection method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8121229B2 (en) * 2006-07-24 2012-02-21 Industrial Technology Research Institute Guard section length detection method and system
JP2011129976A (ja) * 2009-12-15 2011-06-30 Sony Corp 信号処理装置および方法
WO2011096024A1 (ja) * 2010-02-04 2011-08-11 パナソニック電工株式会社 遅延検波回路および受信装置
KR101647264B1 (ko) * 2012-08-21 2016-08-23 미쓰비시덴키 가부시키가이샤 무선기, 무선기의 안테나 선택 방법
US9008159B2 (en) * 2013-01-10 2015-04-14 Qualcomm Incorporated Rate adaptation for data communication
US9166853B2 (en) 2013-01-10 2015-10-20 Qualcomm Incorporated Rate adaptation for data communication
US9071390B2 (en) 2013-01-10 2015-06-30 Qualcomm Incorporated Adjusting physical layer transmission properties
US10057389B2 (en) * 2013-05-28 2018-08-21 Intel Deutschland Gmbh Methods and devices for processing a data frame
JP5842900B2 (ja) 2013-12-05 2016-01-13 株式会社デンソー 通信システム
JP6299822B2 (ja) * 2016-08-29 2018-03-28 Nttエレクトロニクス株式会社 既知信号検出方法
WO2018163359A1 (ja) * 2017-03-09 2018-09-13 三菱電機株式会社 送信装置、受信装置、通信システムおよび送信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374223A (ja) 2001-06-15 2002-12-26 Matsushita Electric Ind Co Ltd Ofdm通信システムおよびofdm通信方法
JP2005130010A (ja) * 2003-10-21 2005-05-19 Toshiba Corp 無線lanシステムおよびその通信制御方法
JP2005252886A (ja) 2004-03-05 2005-09-15 Ntt Docomo Inc 拡散及びチップ繰返しを用いる基地局、移動局、無線通信システム、及び無線伝送方法
JP2005303826A (ja) 2004-04-14 2005-10-27 Ntt Docomo Inc 無線伝送システム、無線中継システム、及び通信装置
JP2006050253A (ja) * 2004-08-04 2006-02-16 Fujitsu Ltd Ofdm方式の受信装置
JP2006180321A (ja) * 2004-12-24 2006-07-06 Toshiba Corp 無線通信システム、無線通信装置、及びこの無線通信装置のガードインターバル長の変更方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809060A (en) * 1994-02-17 1998-09-15 Micrilor, Inc. High-data-rate wireless local-area network
SE9600537L (sv) 1996-02-14 1997-05-26 Telia Ab Förfarande och anordning i ett OFDM system med variabel varaktighet av symbolskur
IL119752A0 (en) * 1996-12-04 1997-09-30 Israel State Asynchronous CDMA decorrelating detector
US7440498B2 (en) * 2002-12-17 2008-10-21 Tellabs Operations, Inc. Time domain equalization for discrete multi-tone systems
JP3805205B2 (ja) * 2000-04-06 2006-08-02 株式会社エヌ・ティ・ティ・ドコモ Cdmaセルラ方式における通信品質測定方法およびその装置
US7327798B2 (en) * 2001-10-19 2008-02-05 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals in multiple-input multiple-output communication system provided with plurality of antenna elements
JP2003319005A (ja) * 2002-02-20 2003-11-07 Mitsubishi Electric Corp シンボルタイミング補正回路、受信機、シンボルタイミング補正方法、及び復調処理方法
JP3940414B2 (ja) * 2002-08-28 2007-07-04 富士通株式会社 受信装置及びそのフレームタイミング検出方法
JP4298320B2 (ja) * 2002-11-08 2009-07-15 富士通株式会社 Ofdm伝送方式における受信装置
TW200522751A (en) * 2003-03-05 2005-07-01 Interdigital Tech Corp Received communication signal processing methods and components for wireless communication equipment
US7602696B2 (en) * 2003-06-27 2009-10-13 Intel Corporation Adaptive guard intervals in OFDM systems
WO2005011167A1 (ja) * 2003-07-29 2005-02-03 Fujitsu Limited Ofdmシステムにおけるパイロット多重方法及び送受信装置
JP4291674B2 (ja) * 2003-11-11 2009-07-08 株式会社エヌ・ティ・ティ・ドコモ Ofdm送信機及びofdm受信機
EP1994702A1 (en) * 2006-03-01 2008-11-26 Nxp B.V. Guard interval lenght selection in an ofdm system based on coherence bandwith of the channel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374223A (ja) 2001-06-15 2002-12-26 Matsushita Electric Ind Co Ltd Ofdm通信システムおよびofdm通信方法
JP2005130010A (ja) * 2003-10-21 2005-05-19 Toshiba Corp 無線lanシステムおよびその通信制御方法
JP2005252886A (ja) 2004-03-05 2005-09-15 Ntt Docomo Inc 拡散及びチップ繰返しを用いる基地局、移動局、無線通信システム、及び無線伝送方法
JP2005303826A (ja) 2004-04-14 2005-10-27 Ntt Docomo Inc 無線伝送システム、無線中継システム、及び通信装置
JP2006050253A (ja) * 2004-08-04 2006-02-16 Fujitsu Ltd Ofdm方式の受信装置
JP2006180321A (ja) * 2004-12-24 2006-07-06 Toshiba Corp 無線通信システム、無線通信装置、及びこの無線通信装置のガードインターバル長の変更方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2034644A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120044832A1 (en) * 2009-06-26 2012-02-23 Kyocera Corporation Communication device and a delay amount detection method
US8780942B2 (en) * 2009-06-26 2014-07-15 Kyocera Corporation Communication device and a delay amount detection method

Also Published As

Publication number Publication date
KR20090018141A (ko) 2009-02-19
US20090304126A1 (en) 2009-12-10
CN101473572A (zh) 2009-07-01
JPWO2008001424A1 (ja) 2009-11-19
US8379776B2 (en) 2013-02-19
EP2034644A4 (en) 2010-11-10
KR100979598B1 (ko) 2010-09-01
EP2034644A1 (en) 2009-03-11
CN101473572B (zh) 2011-10-12
JP4763785B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
WO2008001424A1 (fr) dispositif de communication OFDM et procédé de décision de longueur d'intervalle de garde
JP4664920B2 (ja) 高データ速度広帯域パケット化無線通信信号の多アンテナ受信機における信号合成装置および方法
JP4256301B2 (ja) 無線通信装置
JP5096208B2 (ja) Sc−fdma送信装置及びsc−fdma送信信号形成方法
WO2003045025A1 (fr) Appareil de transmission, appareil de reception, procede de transmission et procede de reception
JP2009544257A (ja) 無線通信システムにおいて使用される符号化および復号の方法および装置
KR100993424B1 (ko) Ofdm 통신 장치 및 가드 인터벌 길이 결정 방법
JP4564501B2 (ja) 周波数分割通信システム
CN107888522B (zh) 信道估计增强的方法及无线设备
WO2007049768A1 (ja) 送信機、通信システム及び送信方法
JPWO2004075451A1 (ja) マルチキャリア無線通信システム、送信装置および受信装置
JP2007150542A (ja) 無線受信装置及び無線受信方法
CN100558011C (zh) 帧同步和获取小区组信息的方法及系统
KR101735145B1 (ko) 무선통신시스템에서 효율적인 전송 전력 할당 방법 및 장치
JP4048111B2 (ja) 受信装置、送信装置、通信システム及び通信方法
JP2002261727A (ja) Ofdm信号伝送装置
JP4138702B2 (ja) 無線通信装置
US20230093810A1 (en) Transmission control method and information processing apparatus
JP2006014234A (ja) 無線通信装置
WO2007052571A1 (ja) 受信状態情報通知方法および受信状態情報通知装置
JP2009004892A (ja) 無線通信装置および無線受信方法
JPWO2008047556A1 (ja) 移動通信システムおよび無線装置
JP2019145950A (ja) フレームを伝送する無線通信システムおよび無線通信制御方法
JP2007181180A (ja) 通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055139.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522230

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087030857

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12306207

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006767366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10743/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU