WO2007148818A1 - 姿勢角検出装置と姿勢角検出方法 - Google Patents

姿勢角検出装置と姿勢角検出方法 Download PDF

Info

Publication number
WO2007148818A1
WO2007148818A1 PCT/JP2007/062707 JP2007062707W WO2007148818A1 WO 2007148818 A1 WO2007148818 A1 WO 2007148818A1 JP 2007062707 W JP2007062707 W JP 2007062707W WO 2007148818 A1 WO2007148818 A1 WO 2007148818A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
calculating
component
angle
moving
Prior art date
Application number
PCT/JP2007/062707
Other languages
English (en)
French (fr)
Inventor
Akihiro Ueda
Iwao Maeda
Kiyomi Nagamiya
Naoto Shibata
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/306,013 priority Critical patent/US8200452B2/en
Priority to CN200780023332XA priority patent/CN101473193B/zh
Priority to EP07767513.0A priority patent/EP2034270B1/en
Priority to KR1020087031073A priority patent/KR101049362B1/ko
Publication of WO2007148818A1 publication Critical patent/WO2007148818A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/08Means for compensating acceleration forces due to movement of instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement

Definitions

  • the present invention relates to a posture angle detection apparatus and method for a moving body.
  • INS inertial navigation device
  • the inertial sensor used in this INS consists of an acceleration sensor that detects changes in speed and a gyro sensor that detects changes in posture.
  • INS can know its own position and speed by accumulating changes in speed and attitude from the starting point using an inertial sensor.
  • the front and rear (axis) direction of the moving body is the x (roll) axis, the left and right (axis) direction 3 ⁇ 4 pitch) axis, and the vertical (axis) direction is ⁇ 1)
  • An orthogonal three-axis coordinate system is used.
  • the mobile axis When the moving object is placed on a horizontal ground, the mobile axis is almost oriented in the direction of the earth's vertical axis (X axis), and the roll axis and pitch axis are the earth's local horizontal plane (X— X plane) Is almost parallel to Then, the roll axis is the angle at which the local horizontal plane X-axis force is also tilted, the pitch axis is the local horizontal plane ⁇ axial force The tilt angle is the roll angle, and the roll axis or pitch axis on the X-— plane is The angle of deviation is represented by three angles: A triaxial gyro sensor is used to measure these three angles.
  • the invention of Patent Document 1 calculates the posture angle by weighting the output values of the three-axis gyro sensor and the acceleration sensor, respectively.
  • the output result of the gyro sensor is integrated for posture angle detection.
  • the gyro sensor has a phenomenon (drift) that outputs an error in the same direction as time passes. If a value including the error is integrated, the error is accumulated.
  • the gyro sensor is expensive, in order to satisfy the function at a low cost, there is a method of calculating the attitude angle by detecting the gravity with the acceleration sensor.
  • Patent Document 2 detects the posture angle of a moving body based on the output results of two acceleration sensor forces.
  • the output of the acceleration sensor includes the acceleration accompanying the movement of the moving body, it is difficult to detect an accurate posture angle in the invention disclosed in Patent Document 2. That's right.
  • Patent Document 1 JP-A-8-178687
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-139536
  • the present invention has been made in view of the above problems, and provides an attitude angle detection apparatus and method for accurately detecting an attitude angle during movement of a moving body by correcting an output value from an acceleration sensor.
  • the purpose is to do.
  • the present inventor Since the present inventor has calculated the attitude angle only from the acceleration applied to the moving body, it is difficult to accurately detect the attitude angle during movement of the moving body.
  • the present invention has been completed by paying attention to the fact that (such as centrifugal force) requires the speed and angular velocity of the moving body.
  • An attitude angle detection device of the present invention includes an acceleration sensor that measures acceleration applied to a moving body, a short rate sensor that measures the baud rate of the moving body, a speed sensor that measures the speed of the moving body, and the speed The force also calculates the actual acceleration, calculates the centrifugal force from the current rate and the velocity, calculates the moving component acceleration that is the resultant force of the actual acceleration and the centrifugal force, the moving component acceleration calculating means, and the moving component acceleration And an attitude angle calculation means for calculating an attitude angle from the gravitational acceleration obtained by correcting the acceleration.
  • the acceleration applied by the acceleration sensor to the moving body is measured in three directions, ie, the roll axis direction, the pitch axis direction, and the yo axis direction, and the yorate sensor detects the rotation of the moving body in the yo axis direction. Measure the angular rate. Then, the acceleration (momentum) related to the movement (motion) is calculated from the speed of the moving body and calculated as the actual acceleration. Similarly, the centrifugal force applied to the moving body is calculated using the speed and the rate of the moving body. Actual acceleration and centrifugal force are accelerations (moving component accelerations) generated by the movement of the moving object, and are included in the acceleration obtained by the acceleration sensor.
  • the posture angle detection device of the present invention if the gyro sensor uses one for detecting a single angle by detecting the acceleration of the three orthogonal axes of the moving body and the velocity of the moving body, The posture angle of the body can be obtained. Therefore, the number of expensive gyro sensors can be reduced. However, the number of gyro sensors is not limited to one, but more accurate detection results can be obtained by using three orthogonal axes and detecting the attitude angle of the moving object from acceleration and velocity.
  • the attitude angle calculation means used in the attitude angle detection device of the present invention calculates the gravitational acceleration calculation means for calculating the gravitational acceleration obtained by removing the moving component acceleration from the acceleration, and calculates the roll angle of the moving object from the gravitational acceleration. It is preferable to comprise roll angle calculation means and pitch angle calculation means for calculating the pitch angle of the gravitational acceleration force moving body.
  • the posture angle of a moving object is expressed by a roll angle and a pitch angle. Since the gravitational acceleration calculation means calculates the gravitational acceleration in each direction, the roll angle and the gravitational acceleration force in the roll angular axis direction can also calculate the pitch angle from the gravitational acceleration in the pitch axis direction. Since the gravitational force can be used to determine the posture angle of the moving body with respect to the roll angle and the pitch angle, a more accurate posture angle can be detected.
  • the moving component acceleration calculating means used in the posture angle detecting device of the present invention is a longitudinal axis calorie velocity calculating means that differentiates the speed with respect to time and calculates the actual acceleration to obtain a component force in the front-rear direction of the moving component acceleration.
  • the left-right axis acceleration calculation means that calculates the centrifugal force from the current rate and the speed to obtain the lateral component of the moving component acceleration, and the component of the centrifugal force in the vertical direction of the moving body to calculate the moving component acceleration It is preferable that the vertical axis acceleration calculation means is used as a force component in the vertical direction.
  • the movement component acceleration is the momentum related to the movement (movement) of the moving object, and represents the component force corresponding to the three orthogonal axes of the moving object. Therefore, the gravitational acceleration can be obtained more accurately in order to detect the attitude angle of the moving body by removing the acceleration force related to the moving body obtained every three orthogonal axes of the moving body.
  • the calculation of the component force of the centrifugal force in the vertical axis acceleration calculating means used in the posture angle detecting device of the present invention is performed based on the roll angle or the pitch angle calculated by the posture angle calculating means.
  • the posture angle calculation means calculates at least one of the roll angle and the pitch angle based on the calculated component force of the centrifugal force.
  • the centrifugal force component is calculated based on the roll angle or pitch angle, and the centrifugal force component is reflected in the calculation of the pitch angle and roll angle so that the posture angle of the moving body can be increased. Can be determined accurately
  • the posture angle detection method of the present invention includes a measurement step for measuring acceleration applied to a moving body, a yorate of the moving body, and a speed of the moving body, and calculating the velocity force actual acceleration, A moving component acceleration calculating step for calculating a moving component acceleration which is a resultant force of the actual acceleration and the centrifugal force, and correcting the caloric velocity with the moving component acceleration. A gravitational acceleration force obtained by the step, and a posture angle calculation step for calculating a posture angle.
  • the acceleration applied by the acceleration sensor to the moving body is measured in three directions of the roll axis direction, the pitch axis direction, and the yo axis direction, and the yorate sensor detects the rotation of the moving body in the yo axis direction. Measure the rate. Then, the acceleration related to the movement is calculated from the speed of the moving body, and it is used as the actual acceleration. Similarly, the centrifugal force applied to the moving object is calculated using the speed of the moving object.
  • the actual acceleration and the centrifugal force are accelerations (movement component acceleration) generated by the movement of the moving body, and are included in the acceleration obtained by the acceleration sensor. Therefore, by removing the moving component acceleration from the acceleration force, the momentum related to the movement of the moving body is removed and the gravitational acceleration is obtained. Then, the attitude angle is obtained using gravitational acceleration.
  • the posture angle of the moving body can be obtained by detecting the speed of the moving body and the acceleration of three orthogonal axes. Only the number of expensive gyro sensors can be reduced. In addition, it is not possible to use the output results of the speed sensor and acceleration sensor as they are to detect the posture angle, but to calculate the acceleration accompanying the movement of the moving body and remove it from the acceleration sensor to calculate the accurate posture angle. Can do.
  • the posture angle calculation step used in the posture angle detection method of the present invention includes a gravitational acceleration calculation step for calculating a gravitational acceleration obtained by removing the moving component acceleration from the acceleration, and a gravitational acceleration. It is preferable to include a roll angle calculating step for calculating the roll angle of the force moving body and a pitch angle calculating step for calculating the pitch angle of the moving body from the gravitational acceleration.
  • the posture angle of the moving object is represented by a roll angle and a pitch angle. Since the gravitational acceleration calculation means calculates the gravitational acceleration in each direction, the roll angle and the gravitational acceleration force pitch angle in the roll angular axis direction can be calculated from the gravitational acceleration in the pitch axis direction. Using this gravitational force, the posture angle of the moving object can be obtained from the roll angle and the pitch angle, so that a more accurate posture angle can be detected.
  • the moving component acceleration calculating step used in the attitude angle detection method of the present invention includes a longitudinal axis acceleration calculating step in which the actual acceleration is calculated by differentiating the speed with respect to time to obtain the component force in the front-rear direction of the moving component acceleration And the left and right axis acceleration calculation step to calculate the centrifugal force from the current rate and the speed to obtain the horizontal component of the moving component acceleration, and the component of the centrifugal force in the vertical direction of the moving object to calculate the moving component acceleration It is preferable to include a vertical axis acceleration calculation step that uses a vertical component force.
  • the moving component acceleration is the momentum related to the movement (movement) of the moving object, and represents the component force corresponding to the three orthogonal axes of the moving object. Therefore, by obtaining the acceleration force associated with the moving body for every three orthogonal axes of the moving body, more accurate gravitational acceleration can be obtained in order to detect the attitude angle of the moving body.
  • the gravitational acceleration calculation step used in the attitude angle detection method of the present invention calculates the gravitational acceleration by dividing it into component forces in the front-rear axis direction, the left-right axis direction, and the vertical axis direction, and calculates a roll angle calculation step and a pitch angle. It is a step of calculating a part of each component force based on the roll angle or pitch angle calculated in one of the calculation steps.
  • One of the roll angle calculation step and the pitch angle calculation step calculates a roll angle or a pitch angle based on the remainder of each component force, and the other of the roll angle calculation step and the pitch angle calculation step It is preferable to calculate the roll angle or the pitch angle based on a part or all of each component force.
  • the component force in each axial direction of the gravitational acceleration calculated in the gravitational acceleration calculation step is calculated based on the roll angle or the pitch angle.
  • the component force of the heavy acceleration is reflected in the calculation of the roll angle and the pitch angle, so the posture angle of the moving body can be obtained more accurately.
  • the posture angle detection apparatus and method of the present invention since one expensive gyro sensor functions instead of using three orthogonal axes, the posture angle of the moving body is detected at low cost. be able to. In addition, since the gyro sensor output uses an angular velocity and the value including the error due to the draft of the gyro sensor is not used in the calculation, an accurate posture angle can be detected.
  • FIG. 1 is a configuration diagram of an attitude angle detection device according to the present embodiment.
  • FIG. 2 is a diagram showing an absolute axis and a relative axis used in the posture angle detection apparatus and method of the present embodiment.
  • FIG. 3 is a flowchart of an attitude angle detection method according to the present embodiment.
  • FIG. 4 is a diagram illustrating a forward bank state of the mobile body according to the present embodiment.
  • FIG. 5 is a diagram showing a reverse bank state of the mobile unit of the present example.
  • FIG. 6 is a flowchart for determining a bank and a turn used in the attitude angle detection method of the present embodiment.
  • FIG. 1 is a configuration diagram of the attitude angle detection device of the present embodiment.
  • the attitude angle detection device 1 includes an acceleration sensor 2, a parallel sensor 3, a speed sensor 4, a moving acceleration component calculation means 5, and an attitude angle calculation means 6.
  • the moving acceleration component calculation means 5 and the posture angle calculation means 6 are realized as logic on a computer.
  • the movable body 7 to which the attitude angle detection device 1 is attached has a vertical axis (shown axis) 81 when the movable body 7 is placed on a horizontal ground.
  • Earth's vertical axis (Z axis) 9 Oriented almost in the 1 direction, and the front / rear axis (roll axis) 82 and the left / right axis (pitch axis) 83 of the moving body 7 are almost parallel to the earth's horizontal plane (XY plane) 94 To be.
  • the roll axis 8 2 of the moving body 7 is tilted from the local horizontal plane X-axis 92!
  • the pitch angle 71 is the pitch angle
  • the pitch axis 83 is tilted from the local horizontal plane Y-axis 93 force.
  • Is the roll angle 72, and the angle at which the roll axis 82 or the pitch axis 83 is displaced on the XY plane is represented as a single angle 73
  • the attitude angle of the moving body 7 is represented by three angles.
  • the acceleration sensor 2 includes Ax21, Ay22, and Ax23 that measure accelerations of three axes orthogonal to each other of the roll axis 82, the pitch axis 83, and the show axis 81, respectively.
  • the acceleration sensor 2 measures the acceleration of the moving body and outputs it to the moving acceleration component calculation means 5 and the posture angle calculation means 6.
  • the acceleration sensor 2 is installed such that the three orthogonal roll axes 82 coincide with the front-rear direction of the moving body 7, the pitch axis 83 coincides with the left-right direction of the moving body 7, and the show shaft 81 coincides with the up-down direction of the moving body 7. It rotates simultaneously with the rotation of the moving body 7.
  • the high rate sensor 3 is a gyro sensor that measures an angular velocity (a high rate) of the high axis 81 that is the vertical axis of the moving body 7 and outputs the angular velocity to the moving acceleration component calculation means 5.
  • the speed sensor 4 is a means for measuring the speed of the moving body 7 and outputting it to the moving acceleration component calculating means 5. If the moving body is a vehicle, measure the wheel speed.
  • the moving component acceleration calculating means 5 is a means for calculating the acceleration associated with the movement of the moving body 7 for each of three orthogonal axes based on the correct rate and the speed input from the correct sensor 3 and the speed sensor 4.
  • the moving component acceleration calculating means 5 outputs the calculation result to the attitude angle calculating means 6.
  • the longitudinal acceleration calculation means 51 is a means for calculating the longitudinal acceleration associated with the movement of the moving body 7.
  • the left / right axis acceleration calculating means 52 is a means for calculating a lateral acceleration related to the movement of the moving body 7.
  • the vertical axis acceleration calculation means 53 is a means for calculating the vertical acceleration related to the movement of the moving body 7.
  • the posture angle calculation means 6 includes a gravitational acceleration calculation means 61, a roll angle calculation means 62, and a pitch angle calculation means 63.
  • the gravitational acceleration calculating means 61 is a means for calculating the corrected gravitational acceleration from the acceleration input from the acceleration sensor 2 using the moving component acceleration input from the moving component acceleration calculating means 5.
  • the roll angle calculating means 62 is means for calculating the roll angle 72 based on the gravitational acceleration input from the gravitational acceleration calculating means 61.
  • the pitch angle calculation means 63 is a means for calculating the pitch angle 73 based on the gravitational acceleration input from the gravitational acceleration calculation means 61.
  • FIG. 3 is a flowchart showing a posture angle detection method (hereinafter, posture angle detection routine) used in the posture angle detection apparatus 1 of the present embodiment.
  • This routine is a posture angle detection device. 1 is executed every predetermined time during a predetermined period after activation.
  • the acceleration sensor 2 measures the acceleration applied to the moving body 7, the rate sensor 3 measures the rate ( ⁇ ), and the rate sensor 4 measures the velocity (Vw). And output to the moving component acceleration calculating means 5 and the attitude angle calculating means 6 (measurement step S1). Acceleration sensor 2 measures the roll axis acceleration (Ax—sensor) at Ax21, the pitch axis acceleration (Ay—sensor) at Ay22, and the Az23 acceleration (Az—sensor). Measure.
  • the movement component acceleration calculation means 5 calculates acceleration (movement component acceleration) related to movement (movement) related to the moving body 7 from the rate and speed (movement component acceleration calculation step).
  • the posture angle calculation means 6 is a gravitational acceleration obtained by correcting the acceleration measured by the acceleration sensor 2 with the movement component acceleration input from the movement component acceleration degree calculation means 5, and a roll angle (Roll) 72, Pitch angle 71 is calculated (attitude angle calculation step).
  • the longitudinal axis acceleration calculating means 51 calculates the actual acceleration by differentiating the velocity (Vw) with respect to time, and calculates the component force (Ax-cor) in the longitudinal direction of the moving component acceleration. It has a longitudinal acceleration calculation step S21. Then, the left / right axis acceleration calculation means 52 calculates the centrifugal force from the current rate ( ⁇ ) and the velocity (Vw), and calculates the left / right axis acceleration calculation step S22 as the left / right component force (Ay-cor) of the moving component acceleration.
  • the vertical axis acceleration calculation means 53 has a vertical axis acceleration calculation step S23 which calculates the component force of the centrifugal force in the vertical direction of the moving body 7 to obtain the upward / downward component force (Az-cor) of the moving component acceleration. .
  • Ay_cor Speed (Vw) X Short rate ( ⁇ )
  • the vertical component force (Az-cor) of the movement component acceleration is calculated based on the Roll calculated by the posture angle calculation step of the posture angle calculation means 6.
  • the posture angle calculation means 6 includes a gravitational acceleration calculation step S31 in which the gravitational acceleration calculation means 61 calculates a gravitational acceleration obtained by correcting the acceleration with a moving component acceleration, There are a roll angle calculation step S32 for calculating the roll of 7 and a pitch angle calculation step S33 for calculating the pitch of the gravitational acceleration force moving body 7.
  • the Ay-sensor calculates with different mathematical formulas for the forward bank shown in FIG. 4 and the reverse bank shown in FIG. 5 depending on the direction in which the moving body 7 tilts.
  • Ay sensor Ay — cor— g X sin (Roll)
  • g Gravitational acceleration in the region
  • Ay sensor Ay — cor + g X sin (Roll)
  • g Gravity acceleration in the area
  • Equation 2 and Equation 3 is a component force in the left-right direction of the moving component acceleration.
  • equation 2 and equation 3 are shifted so as to obtain the component force in the left-right direction, it is drawn whether the centrifugal force is applied to the measured Ay-sensor depending on which of the moving body 7 is inclined. It will be different. Therefore, as shown in FIG. 6, comparing the magnitude of the Ay-sensor with the magnitude of the centrifugal force, the bank is forward when the centrifugal force is small, and the bank is reverse when the centrifugal force is large.
  • 1 is for reverse bank—1 is the value of bank flag (B—flag).
  • Pitch is acceleration (Ax sensor, Ay sensor, Az sensor)
  • the gravitational acceleration force is calculated by correcting each of the three orthogonal force components (Ax—cor, Ay—cor, Az—cor) of the moving component acceleration.
  • Pitch tan ((Ax one sensor—Ax one cor) /
  • the component forces (Ax-cor, Ay-cor, Az-cor) orthogonal to the moving component acceleration are obtained in steps S21, S22, and S23 of the moving component force / velocity calculating means 5. .
  • the attitude angle detection device 1 and the method of the present embodiment by using an acceleration sensor and a speed sensor, the attitude of the moving body can be reduced at a low cost without using an expensive gyro sensor for all three orthogonal axes. Corners can be detected. In addition, an accurate attitude angle can be detected because a value including an error due to the draft of the gyro sensor is not used for the calculation.
  • the gravitational acceleration is obtained after removing the acceleration related to the movement of the moving body, which is not directly used for the calculation of the output value of the acceleration sensor, the posture angle is accurately determined even if the moving body is moving. Can be detected.
  • the present invention is not limited to the above-described embodiments.
  • the speed of the moving body is measured if the moving body is a car with wheels, etc., and the wheel speed is measured, and when calculating the pitch, the vertical angle of the moving component acceleration is determined by the pitch angle and speed.
  • the moving body is an aircraft that does not have wheels, it is conceivable to measure the rotation speed of the propeller as the speed of the moving body.
  • the attitude angle detection device and the attitude angle detection method of the present invention can be used in the fields of industry, for example, the automobile industry and the aerospace industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Gyroscopes (AREA)

Abstract

 加速度センサからの出力値を補正することで移動体の移動中の姿勢角を精度良く検出する姿勢角検出装置及びその方法を提供する。  移動体7に加わる加速度を測定する加速度センサ2と、移動体7のヨーレートを測定するヨーレートセンサ3と、移動体7の速度を測定する速度センサ4と、速度から実加速度を計算し、ヨーレートと速度とから遠心力を計算し、実加速度と遠心力との合力である移動成分加速度を計算する移動成分加速度計算手段5と、移動成分加速度で加速度を補正して得られる重力加速度から姿勢角を計算する姿勢角計算手段6と、からなることを特徴とする。

Description

明 細 書
姿勢角検出装置と姿勢角検出方法
技術分野
[0001] 本発明は、移動体の姿勢角検出装置とその方法に関する。
背景技術
[0002] 車両などの移動体自身の位置や速度を知る装置 (航法装置)の一種に、地上の設 備の助けを必要としない慣性航法装置 (INS)がある。この INSに使用される慣性セ ンサは、速度の変化を検出する加速度センサと姿勢の変化を検出するジャイロセン サとからなる。 INSは、慣性センサを用いて出発点からの速度や姿勢の変化を、計算 機で積み上げていくことにより、自分の位置や速度を知ることができる。
[0003] 通常、移動体の姿勢状態を特定するために、移動体の前後(軸)方向を x(ロール) 軸、左右 (軸)方向 ¾ ピッチ)軸、上下 (軸)方向を ζ (ョ一)軸とする直交 3軸の座標 系を用いる。移動体が水平な地面に置かれたとき、移動体のョー軸は地球の鉛直軸 (Ζ軸)方向にほぼ向けられ、ロール軸及びピッチ軸は地球の局地水平面 (X— Υ平 面)にほぼ平行になるとする。そして、ロール軸が局地水平面 X軸力も傾いている角 度をピッチ角、ピッチ軸が局地水平面 Υ軸力 傾いている角度をロール角、 X— Υ平 面上でロール軸又はピッチ軸がずれている角度をョ一角、の 3角度で姿勢角を表す 。この 3角度を測定するために、 3軸ジャイロセンサが用いられる。
[0004] 例えば特許文献 1の発明は、 3軸ジャイロセンサと加速度センサとの出力値にそれ ぞれ重み付けを行い、姿勢角を計算している。ジャイロセンサの出力結果は、姿勢角 検出のために積分される。しかし、ジャイロセンサは時間の経過とともに誤差を同じ方 向に出力する現象 (ドリフト)があり、誤差を含んだ値を積分すれば、誤差が積み上げ られることとなる。その上、ジャイロセンサは高価なため、低コストで機能を満たすため には、加速度センサで重力を検出し姿勢角を計算する方法がある。
[0005] 特許文献 2の発明は、 2つの加速度センサ力 の出力結果を基に移動体の姿勢角 を検出している。しかし、加速度センサの出力は、移動体の移動に伴う加速度を含ん でいるため、特許文献 2に示されている発明では、正確な姿勢角を検出することが難 しい。
特許文献 1:特開平 8— 178687号公報
特許文献 2 :特開 2003— 139536号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記課題に鑑みてなされたもので、加速度センサからの出力値を補正 することで移動体の移動中の姿勢角を精度良く検出する姿勢角検出装置及びその 方法を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者は、移動体に加わる加速度からのみ姿勢角を計算したのでは、移動体の 移動中の姿勢角が正確に検出されにくいことから、移動体の移動に係る加速度の分 力(遠心力など)が移動体の速度や角速度力 求められることに着目し、本発明を完 成させた。
[0008] 本発明の姿勢角検出装置は、移動体に加わる加速度を測定する加速度センサと、 該移動体のョーレートを測定するョーレートセンサと、該移動体の速度を測定する速 度センサと、該速度力も実加速度を計算し、該ョーレートと該速度とから遠心力を計 算し、該実加速度と該遠心力との合力である移動成分加速度を計算する移動成分 加速度計算手段と、該移動成分加速度で該加速度を補正して得られる重力加速度 から姿勢角を計算する姿勢角計算手段と、を有することを特徴とする。
[0009] 本発明の姿勢角検出装置では、加速度センサが移動体に加わる加速度をロール 軸方向、ピッチ軸方向、ョー軸方向の 3方向について測定し、ョーレートセンサが移 動体のョー軸方向の回転に対するョーレート(角速度)を測定する。そして、移動体 の速度から移動 (運動)に関する加速度 (運動量)を計算によって求め実加速度とす る。同様に、移動体に係る遠心力を移動体の速度及びョーレートを用いて計算する。 実加速度と遠心力とは、移動体の移動によって生じる加速度 (移動成分加速度)であ り、加速度センサで得られた加速度に含まれている。そこで、加速度から移動成分加 速度を取り除くことで、移動体の移動に関する運動量が除去されて重力加速度が得 られる。そして、重力加速度を用いて姿勢角が求められる。 [0010] 本発明の姿勢角検出装置では、移動体の直交 3軸の加速度と移動体の速度とを検 出することで、ジャイロセンサはョ一角を検出するための 1つを用いれば、移動体の 姿勢角を求めることができる。そのため、高価なジャイロセンサの数を減らすことがで きる。しかし、ジャイロセンサの個数を 1つに限定せず、直交 3軸で用いかつ加速度と 速度とから移動体の姿勢角を検出することで、より正確な検出結果を得ることができ る。また、速度センサ及び加速度センサの出力結果をそのまま姿勢角の検出に用い るのではなぐ移動体の移動に伴う加速度 (運動量)を計算し、加速度センサの加速 度力も取り除くことで、正確な姿勢角を計算することができる。
[0011] 本発明の姿勢角検出装置で用いられる姿勢角計算手段は、移動成分加速度を加 速度から除去した重力加速度を計算する重力加速度計算手段と、重力加速度から 移動体のロール角を計算するロール角計算手段と、重力加速度力 移動体のピッチ 角を計算するピッチ角計算手段とからなることが好ましい。移動体の姿勢角は、ロー ル角とピッチ角とで表す。重力加速度計算手段では、各方向の重力加速度が求めら れるため、ピッチ軸方向の重力加速度からロール角、ロール角軸方向の重力加速度 力もピッチ角を計算することができる。この重力分力を用いて移動体の姿勢角をロー ル角とピッチ角とについて求めることができるため、より正確な姿勢角を検出すること ができる。
[0012] 本発明の姿勢角検出装置で用いられる移動成分加速度計算手段は、速度を時間 で微分して実加速度を計算して移動成分加速度の前後方向の分力とする前後軸カロ 速度計算手段と、ョーレートと速度とから遠心力を計算して移動成分加速度の左右 方向の分力とする左右軸加速度計算手段と、移動体の上下方向における遠心力の 分力を計算して移動成分加速度の上下方向の分力とする上下軸加速度計算手段と 力 なることが好ましい。移動成分加速度は、移動体の移動(運動)に関する運動量 であり、移動体の直交 3軸に対応した分力を表す。よって、移動体の直交 3軸ごとに 求め移動体に係る加速度力も取り除くことで、移動体の姿勢角を検出するために、よ り正確な重力加速度を求めることができる。
[0013] 本発明の姿勢角検出装置で用いられる上下軸加速度計算手段における遠心力の 分力の計算は、姿勢角計算手段により計算したロール角又はピッチ角に基づいて行 い、姿勢角計算手段は、計算した遠心力の分力に基づきロール角及びピッチ角のう ちの少なくとも一方を計算することが好ましい。上下軸加速度計算手段において、遠 心力の分力の計算をロール角又はピッチ角に基づいて行い、遠心力の分力をピッチ 角及びロール角の計算に反映させることで移動体の姿勢角がより正確に求めること ができる
[0014] 本発明の姿勢角検出方法は、移動体に加わる加速度と、該移動体のョーレートと、 該移動体の速度と、を測定する測定ステップと、該速度力 実加速度を計算し、該ョ 一レートと該速度とから遠心力を計算し、該実加速度と該遠心力との合力である移動 成分加速度を計算する移動成分加速度計算ステップと、該移動成分加速度で該カロ 速度を補正して得られた重力加速度力 姿勢角を計算する姿勢角計算ステップと、 を有することを特徴とする。
[0015] 本発明の姿勢角検出方法は、加速度センサが移動体に加わる加速度をロール軸 方向、ピッチ軸方向、ョー軸方向の 3方向について測定し、ョーレートセンサが移動 体のョー軸方向の回転に対するョーレートを測定する。そして、移動体の速度から移 動に関する加速度を計算によって求め実加速度とする。同様に、移動体に係る遠心 力を移動体の速度を用いて計算する。実加速度と遠心力とは、移動体の移動によつ て生じる加速度 (移動成分加速度)であり、加速度センサで得られた加速度に含まれ ている。そこで、加速度力も移動成分加速度を取り除くことで、移動体の移動に関す る運動量が除去されて重力加速度が得られる。そして、重力加速度を用いて姿勢角 が求められる。
[0016] 本発明の姿勢角検出方法では、移動体の速度及び直交 3軸の加速度を検出する ことで、移動体の姿勢角を求めることができるため、ョ一角を検出するジャイロセンサ 力 S1つのみで高価なジャイロセンサの数を減らすことができる。また、速度センサ及び 加速度センサの出力結果をそのまま姿勢角の検出に用いるのではなぐ移動体の移 動に伴う加速度を計算し、加速度センサの加速度から取り除くことで、正確な姿勢角 を計算することができる。
[0017] 本発明の姿勢角検出方法で用いられる姿勢角計算ステップは、移動成分加速度を 加速度から除去した重力加速度を計算する重力加速度計算ステップと、重力加速度 力 移動体のロール角を計算するロール角計算ステップと、重力加速度から移動体 のピッチ角を計算するピッチ角計算ステップとからなることが好ましい。移動体の姿勢 角は、ロール角とピッチ角とで表す。重力加速度計算手段では、各方向の重力加速 度が求められるため、ピッチ軸方向の重力加速度からロール角、ロール角軸方向の 重力加速度力 ピッチ角を計算することができる。この重力分力を用いて移動体の姿 勢角をロール角とピッチ角とにつ 、て求めることができるため、より正確な姿勢角を検 出することができる。
[0018] 本発明の姿勢角検出方法で用いられる移動成分加速度計算ステップは、速度を時 間で微分して実加速度を計算して移動成分加速度の前後方向の分力とする前後軸 加速度計算ステップと、ョーレートと速度とから遠心力を計算して移動成分加速度の 左右方向の分力とする左右軸加速度計算ステップと、移動体の上下方向における遠 心力の分力を計算して移動成分加速度の上下方向の分力とする上下軸加速度計算 ステップとからなることが好ましい。移動成分加速度は、移動体の移動(運動)に関す る運動量であり、移動体の直交 3軸に対応した分力を表す。よって、移動体の直交 3 軸ごとに求め移動体に係る加速度力 取り除くことで、移動体の姿勢角を検出するた めに、より正確な重力加速度を求めることができる。
[0019] 本発明の姿勢角検出方法で用いられる重力加速度計算ステップは、重力加速度を 前後軸方向、左右軸方向及び上下軸方向の分力に分けて計算し、ロール角計算ス テツプ及びピッチ角計算ステップのうちの一方で計算したロール角又はピッチ角に基 づいて各分力のうちの一部を計算するステップである。そして、ロール角計算ステツ プ及びピッチ角計算ステップのうちの一方は各分力のうちの残部に基づいてロール 角又はピッチ角を計算し、ロール角計算ステップ及びピッチ角計算ステップのうちの 他方は各分力のうちの一部乃至全部に基づいてロール角又はピッチ角を計算するこ とが好ましい。本発明の姿勢角検出方法では、ロール角及びピッチ角を計算するた めに重力加速度計算ステップで計算する重力加速度の各軸方向の分力を、ロール 角又はピッチ角に基づいて計算する。これにより、ロール角及びピッチ角の計算に重 力加速度の分力が反映されるため、移動体の姿勢角をより正確に求めることができる 発明の効果
[0020] 本発明の姿勢角検出装置及びその方法によれば、高価なジャイロセンサを直交 3 軸分使用するのではなく 1つでも機能するので、低コストで移動体の姿勢角を検出す ることができる。また、ジャイロセンサの出力は角速度(ョーレート)を用い、ジャイロセ ンサのドラフトによる誤差を含んだ値を計算に用いることがないため、正確な姿勢角 を検出することができる。
[0021] そして、加速度センサの出力値をそのまま計算に用いるのではなぐ移動体の運動 に関する加速度を取り除 、た重力加速度を求めて 、るため、移動体が移動して 、て も正確に姿勢角を検出することができる。
図面の簡単な説明
[0022] [図 1]本実施例の姿勢角検出装置の構成図である。
[図 2]本実施例の姿勢角検出装置及び方法で用いられる絶対軸と相対軸とを示す図 である。
[図 3]本実施例の姿勢角検出方法のフローチャートである。
[図 4]本実施例の移動体の順バンク状態を示す図である。
[図 5]本実施例の移動体の逆バンク状態を示す図である。
[図 6]本実施例の姿勢角検出方法で用いられるバンクと旋回とを判定するフローチヤ ートである。
符号の説明
[0023] 1 :姿勢角検出装置
2 :加速度センサ
3 :ョーレートセンサ
4 :速度センサ
5 :移動加速度成分計算手段
6 :姿勢角計算手段
7 :移動体
51 :前後軸加速度計算手段
52 :左右軸加速度計算手段 53 ::上下軸加速度計算手段
61 : :重力加速度計算手段
62 : :ロール角計算手段
63 : :ピッチ角計算手段
71 : :ピッチ角
72 : :ローノレ角
73 : :ョ一角
81 : :移動体 7の上下軸 (ョー軸)
82 : :移動体 7の前後軸(ロール軸)
83 : :移動体 7の左右軸 (ピッチ軸)
91 : :地球の鉛直軸 (Z軸)
92 : :局地水平面 X軸
93 : :局地水平面 Y軸
94 : :地球の水平面(X— Y平面)
発明を実施するための最良の形態
[0024] 以下、実施例を用いて本発明を具体的に説明する。
(実施例)
図 1は、本実施例の姿勢角検出装置の構成図である。
[0025] 姿勢角検出装置 1は、加速度センサ 2と、ョーレートセンサ 3と、速度センサ 4と、移 動加速度成分計算手段 5、姿勢角計算手段 6とからなる。移動加速度成分計算手段 5、姿勢角計算手段 6は、コンピュータ上のロジックとして実現される。
[0026] 姿勢角検出装置 1が取り付けられる移動体 7は、図 2に示されるように、移動体 7を 水平な地面に置 、たときに、移動体 7の上下軸 (ョー軸) 81が地球の鉛直軸 (Z軸) 9 1方向にほぼ向けられ、移動体 7の前後軸(ロール軸) 82及び左右軸 (ピッチ軸) 83 が地球の水平面 (X— Y平面) 94にほぼ平行になるようにする。移動体 7のロール軸 8 2が局地水平面 X軸 92から傾!、て!/、る角度をピッチ角 71、ピッチ軸 83が局地水平面 Y軸 93力ら傾 、て!/、る角度をロール角 72、 X—Y平面上でロール軸 82又はピッチ軸 83がずれている角度をョ一角 73として、移動体 7の姿勢角を 3角度で表す。 [0027] 加速度センサ 2は、ロール軸 82、ピッチ軸 83及びョー軸 81の直交する 3軸の加速 度をそれぞれ測定する Ax21、 Ay22、 Ax23からなる。加速度センサ 2は、移動体の 加速度を測定し、移動加速度成分計算手段 5及び姿勢角計算手段 6に出力する。加 速度センサ 2は、直交 3軸のロール軸 82が移動体 7の前後方向、ピッチ軸 83が移動 体 7の左右方向、ョー軸 81が移動体 7の上下方向に一致するように設置され、移動 体 7の回転と同時に回転する。
[0028] ョーレートセンサ 3は、移動体 7の上下軸であるョー軸 81の角速度(ョーレート)を測 定し移動加速度成分計算手段 5に出力するジャイロセンサである。速度センサ 4は、 移動体 7の速度を測定し移動加速度成分計算手段 5に出力する手段である。移動体 が車両の場合は、車輪速を測定する。
[0029] 移動成分加速度計算手段 5は、ョーレートセンサ 3及び速度センサ 4から入力され たョーレート及び速度を元に、移動体 7の移動に係る加速度を直交 3軸の軸毎に計 算する手段であり、前後軸加速度計算手段 51と、左右軸加速度計算手段 52と、上 下軸加速度計算手段 53とからなる。移動成分加速度計算手段 5は計算結果を姿勢 角計算手段 6に出力する。
[0030] 前後軸加速度計算手段 51は、移動体 7の移動に係る前後方向の加速度を計算す る手段である。左右軸加速度計算手段 52は、移動体 7の移動に係る左右方向の加 速度を計算する手段である。上下軸加速度計算手段 53は、移動体 7の移動に係る 上下方向の加速度を計算する手段である。
[0031] 姿勢角計算手段 6は、重力加速度計算手段 61とロール角計算手段 62とピッチ角 計算手段 63とからなる。重力加速度計算手段 61は、加速度センサ 2より入力される 加速度から移動成分加速度計算手段 5より入力される移動成分加速度を用いて補 正した重力加速度を計算する手段である。ロール角計算手段 62は、重力加速度計 算手段 61から入力される重力加速度を元にロール角 72を計算する手段である。ピッ チ角計算手段 63は、重力加速度計算手段 61から入力される重力加速度を元にピッ チ角 73を計算する手段である。
[0032] 本実施例の姿勢角検出装置 1で用いられる姿勢角検出方法 (以下、姿勢角検出ル 一チン)をフローチャートで示したものが図 3である。本ルーチンは、姿勢角検出装置 1が起動後、所定期間中に所定時間毎に実行されるものである。
[0033] 本ルーチンの処理開始後、加速度センサ 2が移動体 7にカ卩わる加速度を測定し、ョ 一レートセンサ 3がョーレート ( ω )を測定し、速度センサ 4が速度 (Vw)を測定し、移 動成分加速度計算手段 5及び姿勢角計算手段 6へ出力する (測定ステップ S 1)。加 速度センサ 2は、 Ax21でロール軸方向の加速度(Ax— sensor)が測定され、 Ay22 でピッチ軸方向の加速度 (Ay— sensor)が測定され、 Az23でョー軸方向の加速度( Az— sensor)が測定する。
[0034] 次に、移動成分加速度計算手段 5は、ョーレート及び速度より移動体 7に係る移動( 運動)に関する加速度 (移動成分加速度)の計算を行う (移動成分加速度計算ステツ プ)。
[0035] そして、姿勢角計算手段 6は、加速度センサ 2で測定した加速度を移動成分加速 度計算手段 5から入力された移動成分加速度で補正して求めた重力加速度で、ロー ル角(Roll) 72、ピッチ角(Pitch) 71の計算を行う(姿勢角計算ステップ)。
[0036] 移動成分加速度計算手段 5は、前後軸加速度計算手段 51が、速度 (Vw)を時間 で微分して実加速度を計算し、移動成分加速度の前後方向の分力 (Ax— cor)とす る前後軸加速度計算ステップ S21を持つ。そして、左右軸加速度計算手段 52がョー レート( ω )と速度 (Vw)とから遠心力を計算し、移動成分加速度の左右方向の分力( Ay— cor)とする左右軸加速度計算ステップ S22を持ち、上下軸加速度計算手段 53 が移動体 7の上下方向における遠心力の分力を計算して移動成分加速度の上下方 向の分力(Az— cor)とする上下軸加速度計算ステップ S23を持つ。
[0037] 遠心力(Ay_cor)は、
式 1
[0038] Ay_cor= 速度(Vw) X ョーレート(ω )
[0039] で求められる。
[0040] 移動成分加速度の上下方向の分力 (Az— cor)は、姿勢角計算手段 6の姿勢角計 算ステップによって計算される Rollを元に計算される。
[0041] 姿勢角計算手段 6は、重力加速度計算手段 61が加速度を移動成分加速度で補正 した重力加速度を計算する重力加速度計算ステップ S31と、重力加速度から移動体 7の Rollを計算するロール角計算ステップ S32と、重力加速度力 移動体 7の Pitch を計算するピッチ角計算ステップ S33とがある。
[0042] S32において、移動体 7が傾く方向により、 Ay— sensorは、図 4に示される順バン クと図 5に示される逆バンクとで異なる数式で計算する。
[0043] 順バンクの場合:
式 2
[0044」 Ay sensor = Ay — cor— g X sin (Roll) g =その地域での重力加速度
[0045] 逆バンクの場合:
式 3
[004り」 Ay sensor = Ay — cor +g X sin (Roll) g =その地域での重力加速度
[0047] 式 2及び式 3の g ' sin (Roll) 1S 移動成分加速度の左右方向の分力である。式 2及 び式 3を左右方向の分力を求めるように移項した場合、移動体 7がどちらに傾いてい るかで、測定された Ay— sensorに遠心力が加わっているのか引かれているのか違 つてくる。そこで、図 6に示されるように、 Ay— sensorの大きさと遠心力の大きさとを比 ベて、遠心力が小さいと順バンクであり、遠心力が大きいと逆バンクである。順バンク の時に 1を逆バンクの時に— 1をバンクフラグ (B— flag)の値とする。また、移動体 7 の旋回についても左旋回と右旋回とで Ay— sensorと遠心力との力の作用する向き が異なるため、図 6に示されるように、 ωによって判断し、右旋回の時に 1を左旋回の 時に— 1を方向フラグ (RL— flag)の値とする。 gの重力加速度は定数であるため、左 右方向の分力が求めることができれば、 Rollが計算できる。
式 4
[0048] Roll= sin_1 ( ( | Ay— sensor | - | Vw X ω | ) /g) X
RL— f lag X B— f lag
[0049] 次に、 S33において、 Pitchが加速度(Ax sensor, Ay sensor, Az sensor) を移動成分加速度の直交 3軸の各分力(Ax— cor, Ay— cor, Az— cor)により補正 した重力加速度力 計算される。
式 5
[0050] Pitch =tan ( (Ax一 sensor— Ax一 cor) /
( (Ay— sensor— Ay— cor) 2 +
(Az― sensor— Az― cor);) ) )
[0051] 移動成分加速度の直交 3軸の各分力(Ax— cor, Ay— cor, Az— cor)は、移動成 分力卩速度計算手段 5のステップ S21、 S22、 S23で求められている。
[0052] 本実施例の姿勢角検出装置 1及びその方法によれば、加速度センサと速度センサ とを用いることで高価なジャイロセンサを直交 3軸すべてに使用することなぐ低コスト で移動体の姿勢角を検出することができる。また、ジャイロセンサのドラフトに伴う誤差 を含んだ値を計算に用いることもないため、正確な姿勢角を検出することができる。
[0053] そして、加速度センサの出力値をそのまま計算に用いるのではなぐ移動体の運動 に関する加速度を取り除いた上で重力加速度を求めているため、移動体が移動して いても正確に姿勢角を検出することができる。
[0054] 以上、本発明の好適な実施例について説明したが、本発明は上記実施例に限定さ れているものではない。例えば、移動体の速度は移動体が車輪を有する自動車など であれば車輪速を測定し、 Pitchを求めるときは、移動成分加速度の上下方向の分 力の求め方について、ピッチ角と速度とにより計算した移動体の加速度を追加するこ とで、より高精度の姿勢角を検出することができる。また、移動体が車輪を有しない航 空機などであれば、移動体の速度としてプロペラの回転速度を測定することが考えら れる。
産業上の利用可能性
[0055] 本発明の姿勢角検出装置と姿勢角検出方法は、工業、例えば自動車産業、航空 機産業などの分野に使用できる。

Claims

請求の範囲
[1] 移動体に加わる加速度を測定する加速度センサと、
該移動体のョーレートを測定するョーレートセンサと、
該移動体の速度を測定する速度センサと、
該速度力も実加速度を計算し、該ョーレートと該速度とから遠心力を計算し、該実 加速度と該遠心力との合力である移動成分加速度を計算する移動成分加速度計算 手段と、
該移動成分加速度で該加速度を補正して得られる重力加速度から姿勢角を計算 する姿勢角計算手段と、
力 なることを特徴とする姿勢角検出装置。
[2] 前記姿勢角計算手段は、前記移動成分加速度を前記加速度から除去した前記重 力加速度を計算する重力加速度計算手段と、該重力加速度から該移動体のロール 角を計算するロール角計算手段と、該重力加速度から該移動体のピッチ角を計算す るピッチ角計算手段とからなる請求項 1に記載の姿勢角検出装置。
[3] 前記移動成分加速度計算手段は、前記速度を時間で微分して前記実加速度を計 算して前記移動成分加速度の前後軸方向の分力とする前後軸加速度計算手段と、 前記ョーレートと該速度とから遠心力を計算して該移動成分加速度の左右軸方向の 分力とする左右軸加速度計算手段と、該移動体の上下軸方向における該遠心力の 分力を計算して該移動成分加速度の上下軸方向の分力とする上下軸加速度計算手 段とからなる請求項 1又は 2に記載の姿勢角検出装置。
[4] 前記上下軸加速度計算手段における前記遠心力の分力の計算は、前記姿勢角計 算手段により計算した前記ロール角又は前記ピッチ角に基づいて行い、
該姿勢角計算手段は、計算した該遠心力の分力に基づき該ロール角及び該ピッ チ角のうちの少なくとも一方を計算する請求項 3に記載の姿勢角検出装置。
[5] 移動体に加わる加速度と、該移動体のョーレートと、該移動体の速度と、を測定す る測定ステップと、
該速度力も実加速度を計算し、該ョーレートと該速度とから遠心力を計算し、該実 加速度と該遠心力との合力である移動成分加速度を計算する移動成分加速度計算 ステップと、
該移動成分加速度で該加速度を補正して得られた重力加速度から姿勢角を計算 する姿勢角計算ステップと、
を有することを特徴とする姿勢角検出方法。
[6] 前記姿勢角計算ステップは、前記移動成分加速度を前記加速度から除去した前記 重力加速度を計算する重力加速度計算ステップと、該重力加速度力 該移動体の口 一ル角を計算するロール角計算ステップと、該重力加速度力 該移動体のピッチ角 を計算するピッチ角計算ステップとからなる請求項 5に記載の姿勢角検出方法。
[7] 前記移動成分加速度計算ステップは、前記速度を時間で微分して前記実加速度 を計算して前記移動成分加速度の前後軸方向の分力とする前後軸加速度計算ステ ップと、前記ョーレートと該速度とから遠心力を計算して該移動成分加速度の左右軸 方向の分力とする左右軸加速度計算ステップと、該移動体の上下軸方向における該 遠心力の分力を計算して該移動成分加速度の上下軸方向の分力とする上下軸加速 度計算ステップとからなる請求項 5又は 6に記載の姿勢角検出方法。
[8] 前記重力加速度計算ステップは、前記重力加速度を前後軸方向、左右軸方向及 び上下軸方向の分力に分けて計算し、前記ロール角計算ステップ及び前記ピッチ角 計算ステップのうちの一方で計算した前記ロール角又は前記ピッチ角に基づ!、て該 各分力のうちの一部を計算するステップであり、
該ロール角計算ステップ及び該ピッチ角計算ステップのうちの一方は各分力のうち の残部に基づ!、て該ロール角又は該ピッチ角を計算し、該ロール角計算ステップ及 び該ピッチ角計算ステップのうちの他方は各分力のうちの一部乃至全部に基づいて 該ロール角又は該ピッチ角を計算するステップである請求項 7に記載の姿勢角検出 方法。
PCT/JP2007/062707 2006-06-23 2007-06-25 姿勢角検出装置と姿勢角検出方法 WO2007148818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/306,013 US8200452B2 (en) 2006-06-23 2007-06-25 Attitude-angle detecting apparatus and attitude-angle detecting method
CN200780023332XA CN101473193B (zh) 2006-06-23 2007-06-25 姿势角检测装置与姿势角检测方法
EP07767513.0A EP2034270B1 (en) 2006-06-23 2007-06-25 Attitude angle detecting device and attitude angle detecting method
KR1020087031073A KR101049362B1 (ko) 2006-06-23 2007-06-25 자세각 검출 장치와 자세각 검출 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-173964 2006-06-23
JP2006173964A JP4321554B2 (ja) 2006-06-23 2006-06-23 姿勢角検出装置と姿勢角検出方法

Publications (1)

Publication Number Publication Date
WO2007148818A1 true WO2007148818A1 (ja) 2007-12-27

Family

ID=38833551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062707 WO2007148818A1 (ja) 2006-06-23 2007-06-25 姿勢角検出装置と姿勢角検出方法

Country Status (6)

Country Link
US (1) US8200452B2 (ja)
EP (1) EP2034270B1 (ja)
JP (1) JP4321554B2 (ja)
KR (1) KR101049362B1 (ja)
CN (1) CN101473193B (ja)
WO (1) WO2007148818A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151780A1 (en) * 2008-06-11 2009-12-17 Trimble Navigation Limited Inclinometer
US7856336B2 (en) 2008-06-11 2010-12-21 Trimble Navigation Limited Forward-looking altitude detector
WO2011077626A1 (ja) * 2009-12-21 2011-06-30 ヤマハ発動機株式会社 ロール角推定装置および輸送機器
JP2012141219A (ja) * 2010-12-28 2012-07-26 Pioneer Electronic Corp 傾斜角検出装置、方法、プログラムおよび記録媒体
US9157737B2 (en) 2008-06-11 2015-10-13 Trimble Navigation Limited Altimeter with calibration

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039349B2 (ja) * 2006-09-27 2012-10-03 ヤマハ発動機株式会社 鞍乗型車両の姿勢検知装置、エンジン制御装置、及び鞍乗型車両
JP4946562B2 (ja) * 2007-03-23 2012-06-06 日本電気株式会社 姿勢検出装置および方法
US8566034B1 (en) * 2008-06-11 2013-10-22 Trimble Navigation Limited Inclinometer with calibration
EP2140916B1 (en) 2008-06-30 2018-10-31 Nintendo Co., Ltd. Coordinate calculation apparatus and storage medium having coordinate calculation program stored therein
EP2140915B1 (en) 2008-06-30 2019-03-06 Nintendo Co., Ltd. Orientation calculation apparatus, storage medium having orientation calculation program stored therein, game apparatus, and storage medium having game program stored therein
JP5455191B2 (ja) * 2009-04-08 2014-03-26 任天堂株式会社 姿勢算出装置、姿勢算出プログラム、姿勢算出システム、および姿勢算出方法
US8209065B2 (en) * 2009-01-21 2012-06-26 The Boeing Company Steering logic for spacecraft slew maneuvers
EP2228110B1 (en) 2009-03-09 2017-08-30 Nintendo Co., Ltd. Coordinate calculation apparatus and storage medium having coordinate calculation program stored therein
JP5438382B2 (ja) * 2009-05-27 2014-03-12 任天堂株式会社 情報処理プログラムおよび情報処理装置
JP5352922B2 (ja) * 2009-10-07 2013-11-27 多摩川精機株式会社 角速度算出装置、ナビゲーション装置
DE102009055776A1 (de) * 2009-11-25 2011-05-26 Conti Temic Microelectronic Gmbh Verfahren zur Schätzung des Rollwinkels in einem fahrenden Fahrzeug
KR101240578B1 (ko) * 2010-03-31 2013-03-08 (주)블루포인트 차량의 경사각 측정방법 및 그 측정장치
JP6094026B2 (ja) * 2011-03-02 2017-03-15 セイコーエプソン株式会社 姿勢判定方法、位置算出方法及び姿勢判定装置
CN102730000B (zh) * 2011-03-31 2016-06-01 比亚迪股份有限公司 车辆动态质心的计算方法、横摆力矩的计算方法和系统
CN102506822B (zh) * 2011-11-30 2013-10-23 北京天地玛珂电液控制系统有限公司 一种矿用倾角传感器
JP5931198B2 (ja) 2012-08-01 2016-06-08 三菱電機株式会社 傾斜角検出装置および車載機器
CN103171561B (zh) * 2013-03-25 2016-06-08 广州市雄兵汽车电器有限公司 汽车姿态检测方法
JP5996572B2 (ja) * 2014-03-27 2016-09-21 本田技研工業株式会社 車体のロール角推定装置
KR101601104B1 (ko) * 2014-09-22 2016-03-08 현대자동차주식회사 G센서를 이용한 도로 구배 연산 장치 및 방법
DE102015002601A1 (de) * 2015-02-28 2016-09-01 Audi Ag Verfahren zum Erfassen einer Neigung einer Fahrbahn
JP6454857B2 (ja) * 2015-05-27 2019-01-23 多摩川精機株式会社 姿勢検出装置及び姿勢検出方法
CN105035091B (zh) * 2015-08-10 2017-09-29 北京经纬恒润科技有限公司 一种车身姿势变化的检测方法及装置
JP6380468B2 (ja) * 2016-06-21 2018-08-29 マツダ株式会社 四輪駆動車の制御装置
ES2946946T3 (es) * 2016-11-09 2023-07-28 Salunda Ltd Sensor para un elemento giratorio
WO2019003758A1 (ja) * 2017-06-30 2019-01-03 古野電気株式会社 航跡予測装置、航跡予測方法、および、航跡予測プログラム
KR101910515B1 (ko) * 2017-10-26 2018-10-22 엘아이지넥스원 주식회사 수중 운동체 항법 제어 장치 및 방법
FR3077792B1 (fr) * 2018-02-14 2020-10-02 Aml Systems Procede et dispositif autonomes de determination d’une assiette d’un vehicule automobile.
CN108627155B (zh) * 2018-03-30 2020-10-23 华南农业大学 一种农业机械非直线作业向心加速度估算及倾角融合方法
CN108592878A (zh) * 2018-05-17 2018-09-28 中国人民解放军海军工程大学 海洋和航空重力仪平台静态水平倾角的测量方法
JPWO2019230198A1 (ja) * 2018-05-30 2021-07-01 パナソニックIpマネジメント株式会社 位置調整装置およびそれを備えた投影システム
CN109204317B (zh) * 2018-07-24 2020-05-22 吉林大学 轮毂驱动电动汽车纵、横和垂向力集成控制优化方法
JPWO2022154103A1 (ja) * 2021-01-18 2022-07-21

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783659A (ja) * 1993-09-10 1995-03-28 Mitsubishi Electric Corp 車両用傾斜角度検出装置
JPH08178687A (ja) 1994-12-26 1996-07-12 Pioneer Electron Corp 姿勢検出方法及び装置
JPH11230742A (ja) 1998-02-09 1999-08-27 Nippon Soken Inc 道路形状計測装置
JP2001356014A (ja) * 2000-06-13 2001-12-26 Mitsubishi Motors Corp 路面勾配検出装置
JP2003139536A (ja) 2001-11-05 2003-05-14 Japan Aviation Electronics Industry Ltd 方位計および方位測定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885125B2 (ja) * 1995-03-30 1999-04-19 トヨタ自動車株式会社 車両の旋回に伴って変化する運動状態量の推定方法
JPH095104A (ja) 1995-06-23 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> 移動物体の三次元姿勢角測定法および三次元姿勢角計測装置
JP2904118B2 (ja) 1996-05-27 1999-06-14 日本電気株式会社 姿勢角検出装置及び方法
US6332104B1 (en) 1999-12-21 2001-12-18 Ford Global Technologies, Inc. Roll over detection for an automotive vehicle
US6263261B1 (en) * 1999-12-21 2001-07-17 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
WO2006028013A1 (ja) * 2004-09-07 2006-03-16 Vodafone K.K. 加速度推定方法、加速度推定装置及び移動端末装置
CN100400331C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法
JP2007040763A (ja) * 2005-08-01 2007-02-15 Toyota Motor Corp 加速度センサの補正装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783659A (ja) * 1993-09-10 1995-03-28 Mitsubishi Electric Corp 車両用傾斜角度検出装置
JPH08178687A (ja) 1994-12-26 1996-07-12 Pioneer Electron Corp 姿勢検出方法及び装置
JPH11230742A (ja) 1998-02-09 1999-08-27 Nippon Soken Inc 道路形状計測装置
JP2001356014A (ja) * 2000-06-13 2001-12-26 Mitsubishi Motors Corp 路面勾配検出装置
JP2003139536A (ja) 2001-11-05 2003-05-14 Japan Aviation Electronics Industry Ltd 方位計および方位測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2034270A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151780A1 (en) * 2008-06-11 2009-12-17 Trimble Navigation Limited Inclinometer
US7856336B2 (en) 2008-06-11 2010-12-21 Trimble Navigation Limited Forward-looking altitude detector
US8150651B2 (en) 2008-06-11 2012-04-03 Trimble Navigation Limited Acceleration compensated inclinometer
US9157737B2 (en) 2008-06-11 2015-10-13 Trimble Navigation Limited Altimeter with calibration
WO2011077626A1 (ja) * 2009-12-21 2011-06-30 ヤマハ発動機株式会社 ロール角推定装置および輸送機器
JP2011128093A (ja) * 2009-12-21 2011-06-30 Yamaha Motor Co Ltd ロール角推定装置および輸送機器
US9630672B2 (en) 2009-12-21 2017-04-25 Yamaha Hatsudoki Kabushiki Kaisha Roll angle estimation device and transport equipment
JP2012141219A (ja) * 2010-12-28 2012-07-26 Pioneer Electronic Corp 傾斜角検出装置、方法、プログラムおよび記録媒体

Also Published As

Publication number Publication date
CN101473193A (zh) 2009-07-01
US20090326858A1 (en) 2009-12-31
KR20090018659A (ko) 2009-02-20
EP2034270A4 (en) 2012-11-28
KR101049362B1 (ko) 2011-07-13
EP2034270B1 (en) 2014-03-19
CN101473193B (zh) 2012-05-09
JP2008002992A (ja) 2008-01-10
US8200452B2 (en) 2012-06-12
EP2034270A1 (en) 2009-03-11
JP4321554B2 (ja) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2007148818A1 (ja) 姿勢角検出装置と姿勢角検出方法
US11167816B2 (en) Control of a two-wheeled self-balancing vehicle
CN100565111C (zh) 测量运动物体速度的设备和方法
JP4673314B2 (ja) 角速度センサユニット及び角速度センサ診断装置
JP6191580B2 (ja) 移動体のセンサ校正方法
JP2013145168A (ja) 車載用ジャイロの角速度誤差補正装置
JP6383907B2 (ja) 車輌位置計測装置及び方法
JP6604175B2 (ja) ピッチ角速度補正値算出装置、姿勢角算出装置およびピッチ角速度補正値算出方法
EP3429910B1 (en) Control of a two-wheeled self-balancing vehicle
EP3543647A1 (en) Posture angle calculation apparatus, moving apparatus, posture angle calculation method, and program
US7437242B2 (en) Navigation apparatus
TW201024684A (en) System and method for measuring tilt using lowest degrees of freedom of accelerometer
JP6594546B2 (ja) 角度計測装置
CN106931992B (zh) 用于检测物体翻滚的方法和装置
JP6632727B2 (ja) 角度計測装置
JP2012141219A (ja) 傾斜角検出装置、方法、プログラムおよび記録媒体
JP6409625B2 (ja) 車両位置算出装置
JP6454857B2 (ja) 姿勢検出装置及び姿勢検出方法
JP2003139536A (ja) 方位計および方位測定方法
JP2006126178A (ja) ナビゲーション装置
JP3884742B2 (ja) 方位計
JP2008249561A (ja) 車両加速度計測方法、車両加速度計測装置、及び車両加速度計測プログラム
JP2016031283A (ja) 角速度センサ装置および角速度センサ補正方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023332.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767513

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007767513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12306013

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)