WO2019003758A1 - 航跡予測装置、航跡予測方法、および、航跡予測プログラム - Google Patents
航跡予測装置、航跡予測方法、および、航跡予測プログラム Download PDFInfo
- Publication number
- WO2019003758A1 WO2019003758A1 PCT/JP2018/020513 JP2018020513W WO2019003758A1 WO 2019003758 A1 WO2019003758 A1 WO 2019003758A1 JP 2018020513 W JP2018020513 W JP 2018020513W WO 2019003758 A1 WO2019003758 A1 WO 2019003758A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- track prediction
- angular velocity
- calculation unit
- track
- predicted
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/50—Systems of measurement, based on relative movement of the target
- G01S15/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S15/60—Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/421—Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
- G01S19/426—Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between position solutions or signals derived from different modes of operation in a single system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/53—Determining attitude
- G01S19/54—Determining attitude using carrier phase measurements; using long or short baseline interferometry
Definitions
- the present invention relates to a track prediction apparatus, a track prediction method, and a track prediction program for predicting the movement position of a mobile body.
- the conventional navigation device calculates the distance by multiplying the time from the current time to the predicted time to the current speed.
- the conventional navigation device calculates the predicted position by adding the calculated distance to the current position.
- the conventional navigation device calculates the predicted track by sequentially repeating the calculation of the predicted position.
- the navigation device (display device for ships) described in Patent Document 1 further calculates a predicted position using double integration of acceleration.
- an object of the present invention is to provide a track prediction device, a track prediction method, and a track prediction program for calculating a predicted position with high accuracy.
- a track prediction device includes a horizontal ground speed calculation unit, an angular velocity calculation unit, and a predicted position calculation unit.
- the horizontal ground speed calculation unit calculates the horizontal ground speed from the attitude angle of the moving body, the ground course, and the ground boat speed.
- the angular velocity calculation unit measures or calculates the angular velocity of the moving body.
- the predicted position calculation unit calculates the predicted position using the time from the current time to the predicted time and the horizontal ground speed, and using the integration calculation of the angular velocity if the angular velocity exceeds the rotation detection threshold.
- the predicted position is calculated using the integral value of the acquired angular velocity when the moving body is performing rotational movement.
- the predicted position can be calculated with high accuracy.
- 5 is a flowchart of track prediction according to an embodiment of the present invention. It is a flow chart of calculation of anticipation position concerning an embodiment of the present invention. It is a block of the track forecasting device concerning a 2nd embodiment of the present invention.
- a track prediction device, a track prediction method, and a track prediction program according to a first embodiment of the present invention will be described with reference to the drawings.
- the structure of this invention is applicable also on other water, an underwater moving body, a land moving body, or an airborne moving body.
- FIG. 1 is a block of a track prediction apparatus according to a first embodiment of the present invention.
- FIG. 2 is a diagram for explaining the concept of calculating a predicted position according to the first embodiment of this invention.
- the track prediction device 10 includes a current position calculation unit 20, an angular velocity calculation unit 30, an attitude angle calculation unit 40, a ground course calculation unit 50, a ground ship speed calculation unit 60, a horizontal ground speed calculation unit 70, And a predicted position calculation unit 80.
- the current position calculation unit 20 calculates the current position P of the moving object equipped with the track prediction device 10.
- the current position P (0) has a latitude component Plat (0) and a longitude component Plon (0).
- the current position calculation unit 20 calculates the current position Pec (0) of the ECEF orthogonal coordinate system using, for example, the code pseudo distance of the positioning signal.
- the current position calculation unit 20 calculates the current position Pec (0) using a positioning signal received by at least one antenna mounted on the hull.
- the current position calculation unit 20 converts the current position Pec (0) of the ECEF orthogonal coordinate system to the current position P of the ENU coordinate system using a coordinate conversion matrix of the ECEF orthogonal coordinate system and the ENU coordinate system, and the current position The latitude component Plat (0) of P and the longitude component Plon (0) are calculated.
- the current position calculation unit 20 outputs the current position P (0) to the predicted position calculation unit 80.
- the angular velocity calculation unit 30 calculates the angular velocity ⁇ (t) of the hull.
- the angular velocity calculation unit 30 is, for example, a gyro sensor or the like that is an inertial sensor, and measures and outputs an angular velocity ⁇ (t).
- the angular velocity calculation unit 30 calculates an angular velocity ⁇ using the carrier wave phase difference of the positioning signal.
- the angular velocity calculation unit 30 calculates the angular velocity ⁇ (t) using the difference between the carrier wave phases received by at least two antennas disposed at different positions of the moving body.
- the angular velocity calculation unit 30 outputs the angular velocity ⁇ (t) to the predicted position calculation unit 80.
- the attitude angle calculation unit 40 calculates the attitude angle of the hull.
- the attitude angle is usually composed of a pitch angle ⁇ (t), a roll angle ⁇ (t), and a yaw angle ⁇ (t).
- the attitude angle calculation unit 40 calculates at least the yaw angle ⁇ (t).
- the attitude angle calculation unit 40 calculates an attitude angle including at least the yaw angle ⁇ (t) using the angular velocity calculation unit 30 and the measurement value of the inertial sensor or the carrier wave phase difference.
- the attitude angle calculation unit 40 may calculate the yaw angle ⁇ (t) from the angular velocity calculated by the angular velocity calculation unit 30. By using the carrier wave phase, a highly accurate attitude angle can be obtained with a simple configuration.
- the ground route calculation unit 50 calculates the ground route COG (t) using the attitude angle of the hull and the like.
- the ground route calculation unit 50 outputs the ground route COG (t) to the horizontal ground speed calculation unit 70.
- the ground ship speed calculation unit 60 calculates the ground ship speed SOG (t) using the output of the Doppler sonar or the like.
- the ground ship speed calculation unit 60 outputs the ground ship speed SOG (t) to the horizontal ground speed calculation unit 70.
- the horizontal ground speed calculation unit 70 calculates the horizontal ground speed Vb (t) of the ship coordinate system using the method described below.
- the horizontal ground speed Vb (t) is a vector quantity, and is composed of an x-direction component Vbx (t) and a y-direction component Vby (t).
- the x direction is a component parallel to the bow direction of the ship 100 as shown in FIG. 2, and the direction from the stern to the bow is a positive direction.
- the y direction is orthogonal to the bow direction (x direction), and the direction from the port side to the starboard side is a positive direction.
- the x-direction component Vbx (t) and the y-direction component Vby (t) of the horizontal ground velocity Vb (t) are obtained from the following equations as the deflection angle ⁇ (t).
- Vbx (t) SOG (t) ⁇ cos ⁇ (t)-(Expression 1)
- Vby (t) SOG (t) ⁇ sin ⁇ (t)-(equation 2)
- the declination angle ⁇ is obtained by the following equation from the ground path COG and the yaw angle ⁇ .
- the horizontal ground speed calculation unit 70 calculates the horizontal ground speed Vn (t) of the ENU coordinate system using the following equation.
- the horizontal ground velocity Vn (t) in the ENU coordinate system (NED coordinate system) and the horizontal ground velocity Vb (t) in the ship coordinate system have a yaw angle ⁇ (t) in two coordinate systems. It is in the relation of the angle of Therefore, the north direction component VnN (t) of the horizontal to ground velocity Vn (t) in the ENU coordinate system (NED coordinate system) and the east direction component VnE (t) are x of the horizontal ground velocity Vb (t) of the ship coordinate system. It is calculated from the directional component Vbx (t), the y-directional component Vby (t), and the yaw angle ⁇ (t).
- Vn N (t) Vbx (t) ⁇ cos ⁇ (t)-Vby (t) ⁇ sin ⁇ (t) -(Equation 4)
- VnE (t) Vbx (t) ⁇ sin ⁇ (t) + Vby (t) ⁇ cos ⁇ (t) -(Equation 5)
- the predicted position calculation unit 80 calculates the predicted position P ( ⁇ ) of the predicted time ⁇ using the following method.
- the predicted position calculation unit 80 determines whether the ship 100 is in translational motion or rotational motion from the angular velocity ⁇ .
- the prediction position calculation unit 80 performs prediction using the integral calculation of the prediction positions (Expression 6) and (Expression 7) during rotational movement, that is, when the yaw angle ⁇ ( ⁇ ) exceeds the rotation detection threshold.
- the position P ( ⁇ ) (Plat ( ⁇ ), Plon ( ⁇ )) is calculated.
- the predicted position calculation unit 80 calculates the predicted position P ( ⁇ ) using an operation including an integral value of an angular velocity which is an acceleration in the turning direction.
- the predicted position calculation unit 80 uses the next calculation that does not use the acceleration (angular velocity) to calculate the predicted position P (translational movement), ie, when the yaw angle ⁇ ( ⁇ ) is less than the rotation detection threshold. Calculate ⁇ ).
- the track prediction device 10 can suppress the use of the unnecessary acceleration term for the calculation of the predicted position P ( ⁇ ) according to the behavior of the ship 100. Thereby, the increase of the error by using the said acceleration term is suppressed. Therefore, the track prediction device 10 can calculate the predicted position P ( ⁇ ) with high accuracy. Furthermore, if there is position information (hull coordinates from the center of gravity position) of the inertial sensor such as a velocity sensor or angular velocity sensor, the attitude angle of the hull is corrected to the gravity center position of the hull, and the predicted position P ( ⁇ ) is made higher. It can be calculated to the accuracy.
- position information hull coordinates from the center of gravity position
- the inertial sensor such as a velocity sensor or angular velocity sensor
- FIG. 3 is a diagram simulating track prediction results of the track prediction apparatus of the present embodiment and the track prediction apparatus of the comparative example.
- FIG. 3 (A) shows a predicted track using the configuration of the present application
- FIG. 3 (B) shows a predicted track always using the speed and the variation of the speed
- FIG. 3 (C) shows only the speed
- FIG. 3 (D) shows a predicted track using speed and acceleration at all times.
- a dotted line shows an actual track
- a solid line shows a predicted track.
- FIG. 3 (A), FIG. 3 (B), FIG. 3 (C) and FIG. 3 (D) by using the configuration of the track prediction device 10 in the present embodiment, the actual track and the predicted track The difference can be reduced.
- FIG. 4 is a diagram showing standard deviations of predicted tracks with respect to actual tracks of the track prediction apparatus of the present embodiment and the track prediction apparatus of the comparative example.
- FIG. 4 (A) shows the standard deviation of the predicted track in latitude
- FIG. 4 (B) shows the standard deviation of the predicted track in longitude.
- the solid line is the standard deviation of the predicted track of the present application
- the dotted line is the standard deviation of the predicted track using only velocity
- the alternate long and short dash line is the velocity and speed.
- the variation amount is a standard deviation of a predicted track always used
- a two-dot chain line is a standard deviation of a predicted track always using velocity and acceleration.
- the standard deviation of the predicted track is reduced by using the configuration of the track prediction apparatus 10 in this embodiment. it can. That is, the error of the predicted track with respect to the actual track can be reduced.
- achieves the process performed with the track prediction apparatus 10 by several function part was shown.
- the plurality of processes described above may be programmed and stored in a storage medium, and the program may be read and executed by an arithmetic processing unit such as a computer.
- the arithmetic processing unit may execute the processing according to the flowcharts shown in FIG. 5 and FIG.
- FIG. 5 is a flowchart of track prediction according to an embodiment of the present invention.
- FIG. 6 is a flowchart of calculation of a predicted position according to an embodiment of the present invention.
- the specific realization method of each process is the same as the process of each above-mentioned function part, it abbreviate
- the arithmetic processor calculates the current position P (0) (S11).
- the arithmetic processor calculates an angular velocity ⁇ (t).
- the arithmetic processor calculates the horizontal ground speed Vn using the yaw angle ⁇ (t) of the attitude angle, the ground course COG (t), and the ground ship speed SOG (t) (S13).
- the arithmetic processor calculates the predicted position P ( ⁇ ) using the current position P (0), the angular velocity ⁇ , and the horizontal ground velocity Vn ( ⁇ ) at the predicted time ⁇ .
- the arithmetic processor detects that the angular velocity ⁇ is approximately 0, ie, less than the rotation detection threshold (S41: YES)
- the arithmetic processor does not use the acceleration.
- the predicted position P ( ⁇ ) is calculated (S42).
- the arithmetic processor detects that the angular velocity ⁇ is significantly different from 0, that is, exceeds the rotation detection threshold (S41: NO)
- the arithmetic processor predicts by integral calculation using the angular velocity which is the acceleration in the gyrus direction.
- the position P ( ⁇ ) is calculated (S43).
- FIG. 7 is a block of a track prediction device according to a second embodiment of the present invention.
- the track prediction apparatus 10A according to the second embodiment of the present invention differs from the track prediction apparatus 10 according to the first embodiment in that a display 90 is added.
- the other configuration of the track prediction device 10A is the same as that of the track prediction device 10, and the description of the same parts will be omitted.
- the predicted position calculation unit 80 outputs the calculated predicted position to the display 90.
- the display 90 displays this predicted position.
- the predicted position calculation unit 80 calculates a predicted track
- the predicted position calculation unit 80 outputs the predicted track to the display 90.
- the display 90 displays the predicted track.
- the attitude angle calculation unit 40, the ground course calculation unit 50, and the ground ship speed calculation unit 60 may be separate from the above-described track prediction devices 10 and 10A. Furthermore, the current position calculation unit 20 and the angular velocity calculation unit 30 may be separate from the track prediction device 10, 10A.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Acoustics & Sound (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
Vby(t)=SOG(t)・sinβ(t) -(式2)
-(式4)
VnE(t)=Vbx(t)・sinψ(t)+Vby(t)・cosψ(t)
-(式5)
dPlon(t)/dt=VnE(t) -(式7)
=Plat(0)+(VnN(0)・sinωτ)/ω-(VnE(0)・(1-cosωτ))/ω -(式9)
Plon(τ)=Plon(0)+(積分演算(VnE))
=Plon(0)+(VnN(0)・(1-cosωτ))/ω-(VnE(0)・sinωτ)/ω -(式10)
Plon(τ)=Plon(0)+VnE(0)・τ -(式12)
20:現在位置算出部
30:角速度算出部
40:姿勢角算出部
50:対地進路算出部
60:対地船速算出部
70:水平対地速度算出部
80:予測位置算出部
90:表示器
100:船舶
Claims (20)
- 移動体の姿勢角、対地進路、および、対地船速から水平対地速度を算出する水平対地速度算出部と、
前記移動体の角速度を計測または算出する角速度算出部と、
現在時刻から予測時刻までの時間と前記水平対地速度とを用い、前記角速度が前記回動検出閾値を超えていれば前記角速度の積分演算を用いて予測位置を算出する予測位置算出部と、
を備える、航跡予測装置。 - 請求項1に記載の航跡予測装置であって、
前記予測位置算出部は、
前記角速度が回動検出閾値以下であれば前記角速度を用いずに予測位置を算出する、
航跡予測装置。 - 請求項1または請求項2に記載の航跡予測装置であって、
測位信号の搬送波位相を用いて、前記姿勢角を算出する姿勢角算出部を備える、航跡予測装置。 - 請求項1乃至請求項3のいずれかに記載の航跡予測装置であって、
測位信号の搬送波位相を用いて、前記対地進路を算出する対地進路算出部を備える、航跡予測装置。 - 請求項3に記載の航跡予測装置であって、
前記姿勢角算出部は、前記姿勢角における少なくともヨー角を算出する、
航跡予測装置。 - 請求項1乃至請求項5のいずれかに記載の航跡予測装置であって、
前記角速度算出部は、
測位信号の搬送波位相または慣性センサの出力を用いて前記角速度を算出する、
航跡予測装置。 - 請求項1乃至請求項6のいずれかに記載の航跡予測装置であって、
前記予測位置算出部は、複数の前記予測時刻に対する予測位置を算出して、これらを繋ぐ予測航跡を算出する、
航跡予測装置。 - 請求項7に記載の航跡予測装置であって、
前記予測位置と前記予測航跡とを表示する表示部を備える、
航跡予測装置。 - 移動体の姿勢角、対地進路、および、対地船速から水平対地速度を算出し、
前記移動体の角速度を計測または算出し、
現在時刻から予測時刻までの時間と前記水平対地速度とを用い、前記角速度が前記回動検出閾値を超えていれば前記角速度の積分演算を用いて予測位置を算出する、
航跡予測方法。 - 請求項9に記載の航跡予測方法であって、
前記予測位置を算出するときに、前記角速度が回動検出閾値以下であれば前記角速度を用いずに前記予測位置を算出する、
航跡予測方法。 - 請求項9または請求項10に記載の航跡予測方法であって、
測位信号の搬送波位相を用いて、前記姿勢角を算出する、
航跡予測方法。 - 請求項9乃至請求項11のいずれかに記載の航跡予測方法であって、
測位信号の搬送波位相を用いて、前記対地進路を算出する、
航跡予測方法。 - 請求項11に記載の航跡予測方法であって、
前記姿勢角を算出する際に、前記姿勢角における少なくともヨー角を算出する、
航跡予測方法。 - 請求項9乃至請求項13のいずれかに記載の航跡予測方法であって、
前記角速度を算出する際に、
測位信号の搬送波位相または慣性センサの出力を用いて前記角速度を算出する、
航跡予測方法。 - 移動体の姿勢角、対地進路、および、対地船速から水平対地速度を算出し、
前記移動体の角速度を計測または算出し、
現在時刻から予測時刻までの時間と前記水平対地速度とを用い、前記角速度が前記回動検出閾値を超えていれば前記角速度の積分演算を用いて前記予測位置を算出する、
処理を、演算処理器に実行させる、航跡予測プログラム。 - 請求項15に記載の航跡予測プログラムであって、
前記予測位置を算出するときに、前記角速度が回動検出閾値以下であれば前記角速度を用いずに前記予測位置を算出する、
処理を、前記演算処理器に実行させる、航跡予測プログラム。 - 請求項15または請求項16に記載の航跡予測プログラムであって、
測位信号の搬送波位相を用いて、前記姿勢角を算出する、
処理を、前記演算処理器に実行させる、航跡予測プログラム。 - 請求項15乃至請求項17のいずれかに記載の航跡予測プログラムであって、
測位信号の搬送波位相を用いて、前記対地進路を算出する、
処理を、前記演算処理器に実行させる、航跡予測プログラム。 - 請求項17に記載の航跡予測プログラムであって、
前記姿勢角を算出する際に、前記姿勢角における少なくともヨー角を算出する、
処理を、前記演算処理器に実行させる、航跡予測プログラム。 - 請求項15乃至請求項19のいずれかに記載の航跡予測プログラムであって、
前記角速度を算出する際に、
測位信号の搬送波位相または慣性センサの出力を用いて前記角速度を算出する、
処理を、前記演算処理器に実行させる、航跡予測プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019526709A JP6808835B2 (ja) | 2017-06-30 | 2018-05-29 | 航跡予測装置、航跡予測方法、および、航跡予測プログラム |
EP18825136.7A EP3647817A4 (en) | 2017-06-30 | 2018-05-29 | LANE PREDICTION DEVICE, LANE PREDICTION METHOD AND LANE PREDICTION PROGRAM |
CN201880041335.4A CN110832342A (zh) | 2017-06-30 | 2018-05-29 | 航迹预测装置、航迹预测方法及航迹预测程序 |
US16/728,420 US11255675B2 (en) | 2017-06-30 | 2019-12-27 | Course estimating device, method of estimating course, and course estimating program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017128510 | 2017-06-30 | ||
JP2017-128510 | 2017-06-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/728,420 Continuation-In-Part US11255675B2 (en) | 2017-06-30 | 2019-12-27 | Course estimating device, method of estimating course, and course estimating program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019003758A1 true WO2019003758A1 (ja) | 2019-01-03 |
Family
ID=64740593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020513 WO2019003758A1 (ja) | 2017-06-30 | 2018-05-29 | 航跡予測装置、航跡予測方法、および、航跡予測プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11255675B2 (ja) |
EP (1) | EP3647817A4 (ja) |
JP (1) | JP6808835B2 (ja) |
CN (1) | CN110832342A (ja) |
WO (1) | WO2019003758A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60111214U (ja) * | 1983-12-29 | 1985-07-27 | 横河電機株式会社 | 航法装置 |
JPH0428636B2 (ja) | 1987-07-21 | 1992-05-14 | Kito Kk | |
JP2006194806A (ja) * | 2005-01-17 | 2006-07-27 | Japan Radio Co Ltd | 船舶用表示装置 |
US20110210865A1 (en) * | 2010-02-26 | 2011-09-01 | Electronics And Telecommunications Research Institute | Traffic control apparatus and method using navigation route information of vehicle for each navigational situation |
JP2014145614A (ja) * | 2013-01-28 | 2014-08-14 | Furuno Electric Co Ltd | 回頭角速度検出装置、移動体、回頭角速度検出方法、および、回頭角速度検出プログラム |
JP2015025671A (ja) * | 2013-07-24 | 2015-02-05 | 古野電気株式会社 | 状態算出装置、移動体、状態算出方法、および状態算出プログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2097822C (en) | 1991-10-04 | 2001-04-17 | Shinji Ishihara | Display system |
JP4321554B2 (ja) * | 2006-06-23 | 2009-08-26 | トヨタ自動車株式会社 | 姿勢角検出装置と姿勢角検出方法 |
JP2009115514A (ja) * | 2007-11-02 | 2009-05-28 | Seiko Epson Corp | 測位方法、プログラム、測位回路及び電子機器 |
JP5614527B2 (ja) * | 2010-03-05 | 2014-10-29 | セイコーエプソン株式会社 | 姿勢情報算出装置、姿勢情報算出システム、姿勢情報算出方法及び姿勢情報算出プログラム |
JP5419784B2 (ja) * | 2010-04-06 | 2014-02-19 | 三菱電機株式会社 | 予測装置及び予測システム及びコンピュータプログラム及び予測方法 |
-
2018
- 2018-05-29 CN CN201880041335.4A patent/CN110832342A/zh active Pending
- 2018-05-29 WO PCT/JP2018/020513 patent/WO2019003758A1/ja active Application Filing
- 2018-05-29 JP JP2019526709A patent/JP6808835B2/ja active Active
- 2018-05-29 EP EP18825136.7A patent/EP3647817A4/en not_active Withdrawn
-
2019
- 2019-12-27 US US16/728,420 patent/US11255675B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60111214U (ja) * | 1983-12-29 | 1985-07-27 | 横河電機株式会社 | 航法装置 |
JPH0428636B2 (ja) | 1987-07-21 | 1992-05-14 | Kito Kk | |
JP2006194806A (ja) * | 2005-01-17 | 2006-07-27 | Japan Radio Co Ltd | 船舶用表示装置 |
US20110210865A1 (en) * | 2010-02-26 | 2011-09-01 | Electronics And Telecommunications Research Institute | Traffic control apparatus and method using navigation route information of vehicle for each navigational situation |
JP2014145614A (ja) * | 2013-01-28 | 2014-08-14 | Furuno Electric Co Ltd | 回頭角速度検出装置、移動体、回頭角速度検出方法、および、回頭角速度検出プログラム |
JP2015025671A (ja) * | 2013-07-24 | 2015-02-05 | 古野電気株式会社 | 状態算出装置、移動体、状態算出方法、および状態算出プログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3647817A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3647817A4 (en) | 2021-01-27 |
CN110832342A (zh) | 2020-02-21 |
JPWO2019003758A1 (ja) | 2020-04-09 |
JP6808835B2 (ja) | 2021-01-06 |
US11255675B2 (en) | 2022-02-22 |
EP3647817A1 (en) | 2020-05-06 |
US20200200539A1 (en) | 2020-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3388327B1 (en) | Route setting method for underwater vehicle, underwater vehicle optimum control method using same, and underwater vehicle | |
JP2019094045A (ja) | 目的物近傍の船舶の位置を制御するシステムおよび方法 | |
JP7175252B2 (ja) | 船舶の着岸支援装置 | |
EP2972495B1 (en) | System and method for augmenting a gnss/ins navigation system of a low dynamic vessel using a vision system | |
EP3040680B1 (en) | Magnetic anomaly tracking for an inertial navigation system | |
JP2007155584A (ja) | 慣性航法システム | |
US20170363749A1 (en) | Attitude angle calculating device, method of calculating attitude angle, and attitude angle calculating program | |
JP2007276507A (ja) | 移動体制御装置及び移動体制御方法 | |
KR101763911B1 (ko) | 자기장 외란이 심한 환경에서 수중체의 선수각 추정 장치 및 그 방법 | |
JP7190500B2 (ja) | 航法装置、航法支援情報の生成方法、および、航法支援情報の生成プログラム | |
JP6808835B2 (ja) | 航跡予測装置、航跡予測方法、および、航跡予測プログラム | |
Noguchi et al. | Wide area seafloor imaging by a low-cost AUV | |
JP2528833B2 (ja) | 接岸制御装置 | |
Liu et al. | A correction method for DVL measurement error by pitch dynamics | |
JP6321914B2 (ja) | 移動体情報算出装置、移動体情報取得装置、移動体、移動体情報算出方法、移動体情報取得方法、移動体情報算出プログラム、および移動体情報取得プログラム | |
JP2019199238A (ja) | 航走制御方法および航走制御装置 | |
KR20170033608A (ko) | 실내 수조 환경에서의 선박 평면 운동 계측 시스템 및 방법 | |
JP4417812B2 (ja) | 船舶姿勢角測定装置 | |
JP2023041501A (ja) | 着岸支援装置、着岸支援方法、及び着岸支援プログラム | |
WO2023062782A1 (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
KR101019042B1 (ko) | 선박의 위치 측정 방법 및 그 장치 | |
JP7060158B2 (ja) | 制御システム、制御装置、制御対象物、制御方法、及び制御プログラム | |
WO2023238733A1 (ja) | 自律型無人潜水船 | |
CN105283733A (zh) | 用于提供方位角的设备 | |
JP2994111B2 (ja) | 潮流計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18825136 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019526709 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018825136 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018825136 Country of ref document: EP Effective date: 20200130 |