WO2007144990A1 - 変異型ルシフェラーゼ - Google Patents

変異型ルシフェラーゼ Download PDF

Info

Publication number
WO2007144990A1
WO2007144990A1 PCT/JP2007/051279 JP2007051279W WO2007144990A1 WO 2007144990 A1 WO2007144990 A1 WO 2007144990A1 JP 2007051279 W JP2007051279 W JP 2007051279W WO 2007144990 A1 WO2007144990 A1 WO 2007144990A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
fragment
seq
protein
Prior art date
Application number
PCT/JP2007/051279
Other languages
English (en)
French (fr)
Inventor
Kosei Kawasaki
Yousuke Morita
Satoru Ohgiya
Yoshihiro Ohmiya
Yasushi Ohyama
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2008521100A priority Critical patent/JP5224457B2/ja
Priority to GB0823611A priority patent/GB2452457B/en
Priority to US12/304,631 priority patent/US8147842B2/en
Publication of WO2007144990A1 publication Critical patent/WO2007144990A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • the present invention relates to a mutant luciferase having a luciferase activity with a changed emission spectrum, for example.
  • Reporter assembly is one of means for quantifying the transcriptional activity of a transcriptional regulatory sequence.
  • reporter gene a gene encoding a reporter protein (hereinafter referred to as “reporter gene”) is linked under the control of the transcriptional control sequence (promoter, enhancer, etc.) to be examined, introduced into a host cell, and expressed.
  • transcriptional control sequence promoter, enhancer, etc.
  • Reporter assembly can be performed using various proteins as reporter proteins.
  • the fluorescent protein is a reporter protein
  • the relative amount of the reporter protein can be quantified by irradiating the expressed fluorescent protein with excitation light and measuring the intensity of the generated fluorescence (fluorescence). Called the law).
  • reporter assembly can be performed using an enzyme such as j8-galactosidase or alkaline phosphatase as a reporter protein.
  • the enzyme is a reporter protein
  • the relative amount of the reporter protein can be quantified by colorimetry by using a substrate that is decomposed by the action of the enzyme and generates a color substance (called colorimetric method).
  • colorimetric method a substrate that is decomposed by the action of the enzyme and generates a color substance
  • the relative amount of reporter protein can be quantified by measuring the amount of luminescence (referred to as luminescence method).
  • the light emitting method has the following excellent features. First, since no excitation light is required unlike the fluorescence method, a high signal / noise ratio with a small knock ground can be obtained. In addition, it has high sensitivity and a wide dynamic range. Furthermore, the quantitative property is excellent. [0006]
  • An enzyme reaction system generally used in the luminescence method includes a luciferase / luciferin reaction system.
  • luciferases derived from various organisms including fireflies and renilla.
  • Each luciferase is limited to some extent in the type of luciferin recognized as a substrate.
  • a technique commonly referred to as Dual Reporter Atsease a sample containing a mixture of firefly-derived luciferase (hereinafter referred to as ⁇ firefly luciferase ''! And rumilla mushroom-derived luciferase (hereinafter referred to as ⁇ Rumilla luciferase '').
  • Firefly luciferase and firefly luciferin (hereinafter referred to as ⁇ firefly luciferin '') and luciferin derived from renilla (hereinafter referred to as ⁇ renilla luciferin '') (coelenterazine) are added to the solution in order. Measure each activity of Renilla luciferase separately.
  • the sea fireflies include species such as Vargula hilgendorffi and Cypridina noctiluca.
  • luciferase is released outside the body (that is, in seawater), and luciferin reacts with oxygen in seawater due to the catalytic action of luciferase to emit light.
  • VLuc Valgra Hilgendolphy
  • CLuc sipridina 'noctil force
  • luciferase gene when used as a reporter gene, it is possible to measure the transcriptional activity of a transcription control sequence such as a promoter without disrupting the cells (international Published 2006/132350 Pan Fret).
  • the secretory luciferase can be used as a test solution as it is, and is suitable for constructing a so-called high-throughput reporter assay system that processes a large number of samples.
  • non-secretory luciferase it is essential to collect cells by centrifugation and crush cells (or to increase cell permeability) by sonication, surfactant treatment, organic solvent treatment, etc.
  • CLuc is secreted into the culture medium 320 times when expressed in NIH3T3 cells and 410 times when expressed in HeLaS 3 cells compared to VLuc. (Non-patent document 2). Therefore, compared to VLuc, CLuc is suitable for use in a high-sensitivity, high-throughput reporter assay system using cultured cells as a host!
  • the luminescence mechanism of the luciferase / luciferin reaction system is generally considered as follows. First, luciferin is oxidized to oxyluciferin in an excited state by the catalytic action of luciferase. Next, the excited state oxyluciferin immediately returns to the ground state, but releases (emits) energy as light in the process. The amount of luminescence per unit time at this time is considered to be proportional to the amount of luciferase present in the system, and the relative amount of luciferase can be quantified by luminescence.
  • multi-reporter assembly there are at least the following two methods for simultaneously performing two or more promoters with one activity of reporter assembly using a luciferase gene as a reporter gene (referred to as multi-reporter assembly).
  • a method using luciferin of a plurality of different chemical species and a luciferase having substrate specificity for each luciferin there is a method using luciferin of a plurality of different chemical species and a luciferase having substrate specificity for each luciferin.
  • the conditions (reaction solution composition, hydrogen ion concentration, etc.) suitable for each luciferase / luciferin reaction system reaction are also different.
  • this method has a problem when the measurement operation becomes complicated.
  • luciferin of the same chemical species As a second method, there is a method using luciferin of the same chemical species as a substrate.
  • a plurality of types of luciferases using luciferin of the same chemical species as substrates are used as reporter proteins.
  • the amino acid sequences of these luciferases are partially different, and each luciferase is characterized by producing different emission spectra. The intensity of luminescence derived from each luciferase needs to be discriminated and quantified by the difference in spectrum.
  • the multi-reporter assembly using the second method has an advantage of being simple because it can use only one kind of substrate and can perform the luminescence reaction and the measurement at a time.
  • a multi-reporter assembly using the principle of the second method is derived from a luminescent beetle.
  • a luminescent beetle There is one using a luciferase gene and its mutant gene (Non-patent Document 4).
  • the luminescent beetle-derived luciferase is non-secretory. Therefore, it is not suitable for high throughput due to the reasons described above.
  • BRET Bioluminescence resonance energy transfer
  • f column a method for detecting structural changes in proteins at the biochemical level or the cell level
  • a light emitter and a fluorophore form a pair.
  • bioluminescence such as luciferase / lucifrin is used as the illuminant.
  • the fluorophore for example, a fluorescent chemical substance or a fluorescent protein such as green fluorescent protein (GFP) is used.
  • GFP green fluorescent protein
  • each phosphor has its own excitation spectrum, and the excitation efficiency depends on the emission spectrum of the phosphor and the excitation spectrum of the phosphor.
  • a phosphor that emits light having a wavelength that efficiently excites the phosphor is most preferable.
  • the luciferase used uses light of a wavelength that efficiently excites the luminescent material with reference to the excitation spectrum of the fluorescent material used as a pair. What emits is preferred. Therefore, the presence of mutant luciferases with different wavelengths of emitted light makes it possible to form appropriate BRET pairs for various fluorophores.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-30678
  • Patent Document 2 JP 2004-333457 A
  • Non-Special Reference 1 Thompson, EM, Nagata S., Tsuji FI, “Proceedings of the National Academy of Sciences of the United States of America J, 1989, 86th, p.6567—65
  • Non-Patent Document 2 Nakajima, Y., Kobayashi, K., Yamagishi, K., Enomoto, T., Ohmiya, Y., [Bioscience and Biotechnology and BiochemistryJ, 2004, Brother 8 ⁇ , p.565-570
  • Non-Patent Document 3 Viviani, V "Uchida, A” Suenaga, N "Ryuluku, M., Ohmiya, Y", Bioc hemistry and Biophysics Research Communication J, 2001, No. 280, p.1286- 1291
  • Non-Patent Document 4 Yoshihiro Nakajima, Katsuhiro Omiya, “Biotechnology Journal”, 2006, Vol. 6, No. 2, p.230
  • Non-Patent Document 5 Otsuji, T “Okuda-Ashitaka, E” Kojima, S “Akiyama, H” Ito, S., Ohmiya, Y., "Analytical Biochemistry J, 2004, No. 329, p.230-237
  • an object of the present invention is to provide a mutant luciferase having a luciferase activity with a changed emission spectrum.
  • wild-type luciferase is obtained by substituting specific amino acid residues in luciferase (CLuc) derived from Cypridina noctiluca.
  • CLuc luciferase derived from Cypridina noctiluca.
  • the inventors have found that a mutant luciferase having a luciferase activity that imparts a different emission spectrum can be obtained, and has completed the present invention.
  • the present invention includes the following.
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 375th amino acid, and the light emission is 457 nm or more.
  • a mutant luciferase comprising any one of the following (a) to (1):
  • amino acid sequence of (a) above consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added at positions other than the 178th amino acid, and luminescence of 449 nm or less Protein with spectral peak luciferase activity
  • a protein comprising an amino acid sequence in which the first to 18th amino acids are deleted and the 178th methionine is replaced with another amino acid in the amino acid sequence shown in SEQ ID NO: 2.
  • amino acid sequence of (c) above consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added at a position other than the 178th amino acid, and luminescence of 449 nm or less Protein with spectral peak luciferase activity
  • a mutant luciferase consisting of any one of the following (a) to (). [0037] (a) a protein comprising an amino acid sequence in which the 167th threonine is substituted with another amino acid in the amino acid sequence shown in SEQ ID NO: 2
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 167th amino acid, and the light emission is 458 nm or more.
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 404th amino acid, and the light emission is 458 nm or more.
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 404th amino acid, and the light emission is 458 nm or more.
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 406th amino acid, and the light emission is 460 nm or more.
  • amino acid sequence of (c) above consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added at positions other than the above amino acids, and has an emission spectrum peak of 466 nm or more.
  • a mutant luciferase comprising the following (a) to (no! /, Shear force: one protein.
  • amino acid sequence of (c) above consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added at positions other than the above amino acids, and has an emission spectrum peak of 435 nm or less.
  • (33) comprising a step of contacting the culture or culture supernatant of the transformant according to (32) with luciferin or a derivative thereof, and a step of measuring the luminescence intensity of an emission spectrum based on each luciferase activity.
  • a method for evaluating the transcriptional activity of a promoter comprising evaluating the transcriptional activity of the promoter.
  • a mutant luciferase having a luciferase activity that imparts an emission spectrum different from that of a wild-type luciferase is provided.
  • the mutant luciferase according to the present invention when used, a simple and highly sensitive multi-reporter assembly system can be provided.
  • the mutant luciferase according to the present invention is an excellent energy donor.
  • FIG. 1 shows relative luminescence intensity versus wavelength for each luciferase.
  • the first mutant luciferase according to the present invention comprises any one of the following (a) to ( (Hereinafter referred to as “first mutant luciferase”).
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 375th amino acid, and the light emission is 457 nm or more. Protein with spectral peak luciferase activity.
  • a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 is luciferase (CLuc) derived from Cypridina noctyl force.
  • the base sequence shown in SEQ ID NO: 1 is a gene (cDNA) encoding CLuc.
  • the mutant luciferase described in (a) above in the first mutant luciferase is a protein comprising an amino acid sequence in which the 375th lysine is substituted with another amino acid in the amino acid sequence of CLuc.
  • the protein exhibits luciferase activity like CLuc.
  • the protein emits light during luciferin oxidation due to luciferase activity, and the emission spectrum peak due to CLuc is 454 nm, whereas it is 457 nm or more, particularly 457 ⁇ ! An emission spectrum peak of ⁇ 490 nm (for example, 457 ⁇ ! To 463 nm).
  • the other amino acid any amino acid other than lysine may be used.
  • the mutant luciferase described in (b) above in the first mutant luciferase is the mutant luciferase described in (a). 1-10 (preferably 1-5, particularly preferably 1-3) amino acid sequence having an amino acid deleted, substituted or added, and having a luminescence spectrum peak of 457 nm or more. It is what you have. Positions other than the 375th amino acid Examples of the position include the 167th threonine, the 403th glutamine, the 404th asparagine, the 405th threonine, the 406th serine, and the 407th isoleucine.
  • the mutant luciferase described in (c) above has the amino acid sequence ability of the mutant luciferase described in (a) CLuc secretion signal peptide (of the amino acid sequence represented by SEQ ID NO: 2). It is a mature protein excluding the first to 18th amino acid sequences.
  • secreted proteins including CLuc are synthesized in the form of a precursor having a secretory signal peptide at the N-terminus. This precursor is cleaved by a signal peptidase during the transmembrane process to become a mature protein.
  • the mature protein means a protein secreted outside the cell membrane or outside the cell wall.
  • the second mutant luciferase according to the present invention is any one of the following proteins (a) to (hereinafter referred to as “second mutant luciferase”).
  • amino acid sequence of (a) above consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added at positions other than the 178th amino acid, and luminescence of 449 nm or less A protein having spectral peak luciferase activity;
  • amino acid sequence of (c) above consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added at a position other than the 178th amino acid, and luminescence of 449 nm or less Protein with spectral peak luciferase activity.
  • the mutant luciferase described in (a) above is CLuc
  • the 178th methionine is a protein consisting of an amino acid sequence in which another amino acid is substituted.
  • the protein exhibits luciferase activity like CLuc.
  • the protein emits light during luciferin oxidation by luciferase activity!
  • the emission spectrum peak by CLuc is 454 ⁇ m, whereas it is 449 nm or less, particularly 420 nm to 449 nm ( For example, the emission peak is 447 ⁇ ! ⁇ 449nm).
  • the other amino acid may be any amino acid other than methionine, but lysine is particularly desirable.
  • the mutant luciferase described in (b) above in the second mutant luciferase is the mutant luciferase described in (a), and in the mutant luciferase described in (a), one or more (for example, at a position other than the 178th amino acid) (1 to 10, preferably 1 to 5, particularly preferably 1 to 3) amino acid sequence having an amino acid deleted, substituted or added, and having a luminescence spectrum peak of 449 nm or less of luciferase activity It is what you have.
  • the position other than the 178th amino acid include the 197th leucine.
  • the mutant luciferase described in (c) above is a mature protein from which the secretory signal peptide of amino acid sequence CLuc of the mutant luciferase described in (a) is excluded.
  • mutant luciferase described in (d) above in the second mutant luciferase is a mature protein obtained by removing the CLuc secretion signal peptide from the amino acid sequence of the mutant luciferase described in (b).
  • the third mutant luciferase according to the present invention is one of the following proteins (a) to (hereinafter referred to as “third mutant luciferase”).
  • amino acid sequence shown in SEQ ID NO: 2 the amino acid sequence consists of an amino acid sequence in which the 1st to 18th amino acids are deleted and the 167th threonine is replaced with another amino acid. Tannotype;
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 167th amino acid, and the light emission is 458 nm or more. Protein with spectral peak luciferase activity.
  • the mutant luciferase described in (a) above in the third mutant luciferase is a protein comprising an amino acid sequence in which the 167th threonine is substituted with another amino acid in the amino acid sequence of CLuc.
  • the protein exhibits luciferase activity like CLuc. However, by this amino acid substitution, the protein emits light upon luciferin oxidation by luciferase activity!
  • the emission spectrum peak by CLuc is 454 ⁇ m, whereas it is 458 nm or more, particularly 458 nm to 490 nm ( For example, the emission spectrum peak is 458 ⁇ ! ⁇ 460nm).
  • the other amino acid may be any amino acid other than threonine, and examples thereof include isoleucine, leucine, and lysine.
  • the mutant luciferase described in (b) above in the third mutant luciferase is the mutant luciferase described in (a), and in the mutant luciferase described in (a), one or more (for example, at a position other than the 167th amino acid) 1-10 (preferably 1-5, particularly preferably 1-3) amino acid sequence having a deleted, substituted or added amino acid, and having a luminescence spectrum peak of 458 nm or more. It is what you have.
  • positions other than the 167th amino acid include, for example, the 375th lysine, the 403th glutamine, the 404th arsenolagin, the 405th threonine, the 406th serine, the 407th Of isoleucine.
  • the mutant luciferase described in (c) above in the third mutant luciferase is a mature protein from which the secretory signal peptide of the amino acid sequence ability CLuc of the mutant luciferase described in (a) is excluded.
  • the fourth mutant luciferase according to the present invention is one of the following (a) to (1): (Hereinafter referred to as “fourth mutant luciferase”).
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 404th amino acid, and the light emission is 458 nm or more.
  • a protein having spectral peak luciferase activity
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 404th amino acid, and the light emission is 458 nm or more. Protein with spectral peak luciferase activity.
  • the mutant luciferase described in (a) above in the fourth mutant luciferase is a protein comprising an amino acid sequence in which the 404th asparagine is substituted with another amino acid in the CLuc amino acid sequence.
  • the protein exhibits luciferase activity like CLuc.
  • this amino acid substitution causes the protein to emit light during luciferase oxidation due to luciferase activity, whereas the emission spectrum peak due to CLuc is 454 nm, whereas 458 nm or more, particularly 458 nm to 490 nm (for example, Emission spectrum peak from 458nm to 460nm).
  • the other amino acid may be any amino acid other than asparagine, and examples thereof include glycine, alanine, serine, and threonine, and glycine or serine is particularly desirable.
  • one or more (for example, at a position other than the 404th amino acid) 1-10 (preferably 1-5, particularly preferably 1-3) amino acid sequence having a deleted, substituted or added amino acid, and having a luminescence spectrum peak of 458 nm or more. It is what you have.
  • positions other than the 404th amino acid include the 38th lysine, the 45th serine, the 75th parin, the 79th arginine, the 87th arginine, and the 112th aspartic acid. No.
  • 126 Lysine of eye 167th threonine, 170th glutamic acid, 191st mouth isine, 223th methionine, 235th glutamine, 258th parin, 276th isoleucine 280th tyrosine, 291st methionine, 313th threonine, 372rd arginine, 375th lysine, 403th glutamine, 405th threonine, 406th Serine, 407th isoleucine, and 479th glutamic acid.
  • the mutant luciferase described in (c) above is a mature protein from which the secretory signal peptide of the amino acid sequence ability CLuc of the mutant luciferase described in (a) is excluded.
  • mutant luciferase described in (d) above in the fourth mutant luciferase is a mature protein obtained by removing the CLuc secretion signal peptide from the amino acid sequence of the mutant luciferase described in (b).
  • the fifth mutant luciferase according to the present invention is any one of the following proteins (a) to (hereinafter referred to as “fifth mutant luciferase”).
  • the mutant luciferase described in (a) above in the fifth mutant luciferase is a protein comprising an amino acid sequence in which the 405th threonine is substituted with another amino acid in the CLuc amino acid sequence.
  • the protein has a luciferase activity similar to CLuc. Showing gender. However, due to this amino acid substitution, the protein emits light upon luciferin oxidation by luciferase activity!
  • the emission spectrum peak by CLuc is 454 ⁇ m, whereas 457 nm or more, especially 457 ⁇ ! The emission spectrum peak is ⁇ 490nm (for example, 457 ⁇ ! ⁇ 460nm).
  • the other amino acid may be any amino acid other than threonine, and examples thereof include isoleucine, methionine, and leucine. In particular, isoleucine or methionine is desired.
  • the mutant luciferase described in (b) above in the fifth mutant luciferase is the mutant luciferase described in (a), and in the mutant luciferase described in (a), one or more (for example, at a position other than the 405th amino acid) 1-10 (preferably 1-5, particularly preferably 1-3) amino acid sequence having an amino acid deleted, substituted or added, and having a luminescence spectrum peak of 457 nm or more. It is what you have.
  • positions other than the 405th amino acid include the 38th lysine, the 45th serine, the 75th parin, the 79th arginine, the 87th arginine, and the 112th aspartic acid.
  • 126th lysine, 167th threonine, 170th glutamic acid, 191st mouth isine, 223th methionine, 235th glutamine, 258th parin, 276th No. isoleucine, No. 280 tyrosine, No. 291 methionine, No. 313 threonine, No. 372 arginine, No. 375 lysine, No. 403 glutamine, No. 40 4th Asparagine, No. 2 Examples include 406th serine, 407th isoleucine, and 479th glutamic acid.
  • the mutant luciferase described in (c) above is a mature protein from which the secretory signal peptide of the amino acid sequence CLuc of the mutant luciferase described in (a) is excluded.
  • mutant luciferase described in (d) above in the fifth mutant luciferase is a mature protein obtained by removing the CLuc secretion signal peptide from the amino acid sequence of the mutant luciferase described in (b).
  • the sixth mutant luciferase according to the present invention is any one of the following proteins (a) to (hereinafter referred to as “sixth mutant luciferase”).
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the 406th amino acid, and the light emission is 460 nm or more.
  • a protein having spectral peak luciferase activity
  • the luminescence is composed of an amino acid sequence in which one or several amino acids are deleted, substituted or added at a position other than the 406th amino acid, and the light emission is 460 nm or more. Protein with spectral peak luciferase activity.
  • the mutant luciferase described in (a) above in the sixth mutant luciferase is a protein comprising an amino acid sequence in which the 406th serine is substituted with another amino acid in the CLuc amino acid sequence.
  • the protein exhibits luciferase activity like CLuc.
  • this amino acid substitution causes the protein to emit light during luciferin oxidation due to luciferase activity, whereas the emission spectrum peak due to CLuc is 454 nm, whereas it is 460 nm or more, particularly 460 nm to 490 nm (for example, 460 ⁇ ).
  • the other amino acid may be any amino acid other than serine, and examples thereof include leucine and isoleucine, and leucine is particularly desirable.
  • the mutant luciferase described in (b) above is the mutant luciferase described in (a), and in the mutant luciferase described in (a), one or more (for example, at a position other than the 406th amino acid) (1 to 10, preferably 1 to 5, particularly preferably 1 to 3) amino acid sequence having an amino acid deleted, substituted or added and having a luminescence spectrum peak of 460 nm or more. It is what you have.
  • positions other than the 406th amino acid include the 167th threonine, the 375th lysine, the 403th dartamine, the 404th asparagine, the 405th threonine, and the 407th isoleucine. Is mentioned.
  • mutant luciferase described in (c) above in the sixth mutant luciferase is: a) A mature protein from which the secretory signal peptide of CLuc is excluded.
  • the seventh mutant luciferase according to the present invention is any one of the following proteins (a) to (hereinafter referred to as “seventh mutant luciferase”).
  • the mutant luciferase described in (a) above in the seventh mutant luciferase is a protein comprising an amino acid sequence in which the 407th isoleucine is substituted with another amino acid in the CLuc amino acid sequence.
  • the protein exhibits luciferase activity like CLuc. However, due to this amino acid substitution, the protein emits light during luciferin oxidation due to luciferase activity!
  • the emission spectrum peak by CLuc is 454 ⁇ m, whereas it is 460 nm or more, particularly 460 nm to 490 nm ( For example, the emission spectrum peak is 460 ⁇ ! ⁇ 462nm).
  • the other amino acid may be any amino acid other than isoleucine, and examples thereof include glycine and alanine, and alanine is particularly desirable.
  • the mutant luciferase described in (b) above in the mutant luciferase described in (a), one or more (for example, 1 to 10, preferably 1 to 5, particularly preferably 1 to 3) amino acids at positions other than the 407th amino acid. It consists of an amino acid sequence in which an acid is deleted, substituted, or added, and has a luminescent spectrum peak luciferase activity of 460 nm or more. Examples of positions other than the 407th amino acid include 167th threonine, 375th lysine, 403th dartamine, 404th asparagine, 405th threonine, and 406th serine. Are listed.
  • mutant luciferase described in (c) above in the seventh mutant luciferase is a mature protein excluding the secretory signal peptide of the amino acid sequence ability CLuc of the mutant luciferase described in (a).
  • mutant luciferase described in (d) above in the seventh mutant luciferase is a mature protein obtained by removing the CLuc secretion signal peptide from the amino acid sequence of the mutant luciferase described in (b).
  • Each of the predetermined amino acid substitutions in the first and third to seventh mutant luciferases and amino acid substitutions at other positions in the amino acid sequence represented by SEQ ID NO: 2 are more than 2 (for example, 2 to 10, Preferably 2 to 8, particularly preferably 2 to 6), and has a luciferase activity with an emission spectrum peak of 458 nm or more, especially 458 nm to 490 nm (for example, 458 ⁇ ! To 475 nm) Proteins are also included in the variant luciferase according to the present invention.
  • mutant luciferases containing multiple amino acid substitutions include the following eighth mutant luciferase (hereinafter referred to as ⁇ eighth mutant luciferase '' represented by any one of the following proteins (a) to (: "), U)):
  • amino acid sequence of (a) above it consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added at positions other than the above amino acids, and has an emission spectrum peak of 466 nm or more.
  • a protein having luciferase activity (c) In the amino acid sequence shown in SEQ ID NO: 2, the 1st to 18th amino acids are deleted, and the 191st leucine, the 235th glutamine, the 280th tyrosine, the 372nd A protein consisting of an amino acid sequence in which arginine, 403th glutamine, 404th asparagine and 405th threonine are replaced with other amino acids;
  • amino acid sequence of (c) above consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added at positions other than the above amino acids, and has an emission spectrum peak of 466 nm or more.
  • a protein having luciferase activity is also included in the amino acid sequence of (c) above.
  • the mutant luciferase described in (a) above in the eighth mutant luciferase is the 404th asparagine corresponding to the position of the amino acid substitution of the fourth mutant luciferase and the fifth mutant in the CLuc amino acid sequence.
  • the 191st leucine, the 235th dartamine, the 280th tyrosine, the 372rd arginine and the 403th glutamine are other amino acids. It is a protein that also has an amino acid sequence ability substituted for. The protein exhibits luciferase activity similar to CLuc.
  • the protein emits light at the time of luciferase activity due to luciferase activity, whereas the emission spectrum peak due to CLuc is 454 nm, whereas 466 nm or more, particularly 466 ⁇ ! An emission spectrum peak of ⁇ 490 nm (eg, 466 ⁇ ! To 475 nm) is obtained.
  • amino acid substitution at each amino acid position include the following combinations (A) to (G):
  • the mutant luciferase described in (b) above is further one or several in the mutant luciferase described in (a) at a position other than the predetermined amino acid described above (E.g. 1-10, preferably 1-5, particularly preferably 1-3) It consists of an amino acid sequence in which an acid has been deleted, substituted or added, and has a luminescence spectrum peak luciferase activity of 466 nm or more.
  • the positions other than the above-mentioned predetermined amino acid include the 112th aspartic acid, the 291st methionine, and the 313th threonine.
  • mutant luciferase described in (c) above in the eighth mutant luciferase is a mature protein excluding the secretory signal peptide of the amino acid sequence ability CLuc of the mutant luciferase described in (a).
  • mutant luciferase described in (d) above in the eighth mutant luciferase is a mature protein obtained by removing the CLuc secretion signal peptide from the amino acid sequence of the mutant luciferase described in (b).
  • any two or more of amino acid substitutions in the second mutant luciferase and amino acid substitutions at other positions of the amino acid sequence shown in SEQ ID NO: 2 (for example, 2 to 10, preferably 2 to 8)
  • mutant luciferases containing multiple amino acid substitutions include, for example, the ninth mutant luciferase (hereinafter referred to as ⁇ 9th mutant luciferase '' represented by any one of the following proteins (a) to (: And)):
  • the mutant luciferase described in (a) above together with the 178th methionine corresponding to the amino acid substitution position of the second mutant luciferase in the amino acid sequence of CLuc, the 191st Leucine, 280th tyrosine, 372rd arginine, 403th glutamine, 404th asparagine, and 405th threonine are substituted with other amino acids.
  • the protein exhibits luciferase activity like CLuc.
  • the protein emits light at the time of luciferase activity due to luciferase activity, whereas the emission spectrum peak due to CLuc is 454 nm, compared to 435 nm or less, particularly 420 ⁇ ! It becomes an emission spectrum peak of ⁇ 435 nm (for example, 425 nm to 435 nm).
  • amino acid substitution at each amino acid position include the following combinations (A) to (G):
  • the mutant luciferase described in (b) above is further one or several in the mutant luciferase described in (a) at a position other than the predetermined amino acid described above ( (For example, 1-10, preferably 1-5, particularly preferably 1-3) amino acid sequence having an amino acid deleted, substituted, or added, and having a luminescence spectrum peak of 435 nm or less. It is what has.
  • the positions other than the predetermined amino acid described above include the 291st methionine and the 313th threonine.
  • mutant luciferase described in (c) above in the ninth mutant luciferase is a mature protein from which the secretory signal peptide of the amino acid sequence ability CLuc of the mutant luciferase described in (a) is excluded.
  • mutant luciferase described in (d) above in the ninth mutant luciferase is a mature protein obtained by removing the CLuc secretion signal peptide from the amino acid sequence of the mutant luciferase described in (b).
  • each predetermined amino acid substitution is maintained for the amino acid sequence of the protein described in each of (a) or (c) of the first to ninth mutant luciferases described above, and is 80% or more, preferably 90%.
  • the mutant luciferase according to the present invention also includes a protein having an amino acid sequence ability having amino acid identity of not less than%, particularly preferably not less than 95%, and having a luciferase activity having a predetermined emission spectrum peak.
  • an error may occur in the emission spectrum peak of luciferase due to a measurement method, a spectrum correction method, a smoothing process, or the like. Therefore, as long as the relative emission spectrum peak shift described above with respect to wild-type luciferase (CLuc) is involved, the emission spectrum peak value is within the error range of a numerical value nm (for example, 5 nm, preferably A mutant luciferase having a luciferase activity with an emission spectrum peak of 4 nm, particularly preferably 2 nm, is also included in the mutant luciferase according to the present invention.
  • nm for example, 5 nm, preferably A mutant luciferase having a luciferase activity with an emission spectrum peak of 4 nm, particularly preferably 2 nm
  • mutant luciferase [0123]
  • mutant luciferase the first to ninth mutant luciferases are collectively referred to as "mutant luciferase according to the present invention”.
  • the above-described mutant luciferase according to the present invention can be a fusion protein linked to a foreign protein or peptide.
  • the foreign protein or peptide means a protein or peptide exogenous to the mutant luciferase according to the present invention.
  • proteins or peptides used for protein purification include proteins or peptides used for protein purification (glutathione S-transferase, maltose binding protein, thioredoxin, cellulose binding domain, streptavidin binding peptide, histidine tag, etc.), extracellular secretion or intracellular Signal peptide for translocation to organ Saccharomyces cerevisiae ⁇ - factor secretion signal peptide (amino acid sequence: SEQ ID NO: 3), budding yeast invertase signal peptide (amino acid sequence: SEQ ID NO: 4), budding yeast membrane protein Ste6p signal peptide (amino acid sequence: SEQ ID NO: 5) and the like.
  • proteins or peptides used for protein purification glutase, maltose binding protein, thioredoxin, cellulose binding domain, streptavidin binding peptide, histidine tag, etc.
  • a gene encoding a fusion protein in which a secretory signal peptide suitable for the host to be transformed and the mature protein of the mutant luciferase according to the present invention is linked is transformed into the host.
  • Mutant luciferase can be secreted and expressed extracellularly.
  • the position where the foreign protein or peptide is linked to the mutant luciferase according to the present invention can be appropriately selected so that the mutant luciferase according to the present invention and the foreign protein or peptide have their respective functions or activities. .
  • the secretory signal peptide is shown on the N-terminal side of the mature protein (that is, shown in SEQ ID NO: 2). (N-terminal side of the 19th amino acid in the amino acid sequence).
  • the gene according to the present invention is a gene encoding the mutant luciferase according to the present invention or the above-mentioned fusion protein. By introducing these genes into a host, the mutant luciferase or fusion protein according to the present invention can be expressed.
  • the host is not particularly limited, but includes yeast, Escherichia such as Escherichia coli, Bacillus such as Bacillus subtilis, or Pseudomonas putida. Examples include bacteria belonging to the genus Pseudomonas, animal cells such as COS cells, insect cells such as S19, and plants belonging to the Brassicaceae family.
  • the yeast may be any yeast. For example, Saccharomyces cereviche, Schizosaccharomyces pombe, Pichia pastoris, Candida albicans, Hansenula 'Polymorphs (Hansenula polymorpha) are mentioned, and Saccharomyces cereviche is particularly preferable.
  • a gene encoding a mutant luciferase according to the present invention or a gene encoding a foreign protein or peptide is prepared.
  • These genes can be easily obtained by PCR using primers complementary to the nucleotide sequences at both ends of the region, using, for example, genomic DNA of the organism from which these genes are derived (for example, Cypridina 'noctil force) To gain Can.
  • the mutant luciferase according to the present invention has an amino acid substitution in the amino acid sequence of CLuc, the mutation is further introduced into the PCR product obtained as described above by a site-specific mutagenesis method or the like. By doing so, a gene encoding the mutant luciferase according to the present invention can be obtained.
  • the DNA fragment having the base sequence is hybridized as a probe by chemical synthesis or by PCR using a cloned probe as a cage.
  • a gene encoding the mutant luciferase according to the present invention or a gene encoding a foreign protein or peptide can be obtained.
  • a gene encoding the mutant luciferase according to the present invention or a gene encoding a foreign protein or peptide according to the present invention by site-directed mutagenesis or the like, and having a function equivalent to that before the mutation. Can be synthesized.
  • a known method such as the Kunkel method or the Gapped dup lex method, or a method analogous thereto can be adopted.
  • a mutagenesis kit eg, Mutant-K (TAKARA) or Mutant-G (TAKARA)
  • TAKARA's LA PCR in vitr o Mutation is introduced using the Mutagenesis series kit.
  • the mutant luciferase according to the present invention is linked to the gene encoding the foreign protein or peptide to produce a gene encoding the fusion protein.
  • the mutant luciferase according to the present invention is used.
  • Such DNA may be ligated DNA itself or a vector containing the DNA.
  • a method for linking a gene encoding a foreign protein or peptide to a gene encoding a mutant luciferase according to the present invention includes a purified gene encoding a mutant luciferase according to the present invention and a foreign protein or peptide, respectively.
  • a method is used in which the gene coding for is cleaved with an appropriate restriction enzyme and ligated.
  • PCR or the like can be used by providing a region homologous to each of the gene encoding the mutant luciferase according to the present invention and the gene encoding the foreign protein or peptide. It may be a method of linking both by an in vitro method or an in vivo method using yeast or the like.
  • a recombinant vector containing the gene according to the present invention can be obtained by inserting the gene according to the present invention into an appropriate vector.
  • the vector to be used is not particularly limited as long as it can replicate in the host, and examples thereof include plasmids, shuttle vectors, helper plasmids and the like. If the vector itself does not have replication ability, it may be a DNA fragment that can be replicated by inserting it into the host chromosome.
  • Plasmid DNA includes plasmids derived from E. coli (eg, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.), plasmids derived from Bacillus subtilis (eg, pUBll 0, pTP5, etc.), and plasmids derived from yeast (eg, Phylogens include Phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, gtl0, gtll, ⁇ ZAP, etc.).
  • animal viruses such as retroviruses or silkworm viruses, and insect virus vectors such as baculoviruses may be used.
  • the method of inserting the gene according to the present invention into a vector can be performed according to the above-described method of linking a gene encoding a foreign protein or peptide to the gene encoding the mutant luciferase according to the present invention. .
  • a transformant is prepared by introducing a gene according to the present invention or a recombinant vector containing the gene according to the present invention (hereinafter referred to as "recombinant vector according to the present invention") into a host. .
  • the method for introducing the recombinant vector according to the present invention into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • electroporation electroporation (elect mouth position method), suwe mouth plast method, Examples include the lithium acetate method.
  • it may be a method of transforming yeast into a chromosomal replacement using a DNA sequence homologous to an arbitrary region in a vector such as a Yip system or a chromosome.
  • the method of introducing the recombinant vector according to the present invention into yeast may be based on various methods described in general experimental documents or academic papers.
  • the method of introducing the recombinant vector according to the present invention into bacteria is not particularly limited as long as it is a method of introducing DNA into bacteria.
  • a method using calcium ions, an elect mouth position method and the like can be mentioned.
  • animal cells are used as hosts, monkey cells COS-7, Vero, Chinese hamster oocyte cells (CHO cells), mouse L cells, and the like are used.
  • the method for introducing the recombinant vector according to the present invention into animal cells include the electopore position method, the calcium phosphate method, and the lipofuxion method.
  • insect cells When insect cells are used as hosts, S19 cells and the like are used.
  • the method for introducing the recombinant vector according to the present invention into insect cells include the calcium phosphate method, the lipofussion method, and the electopore position method.
  • Plant cultured cells When a plant is used as a host, the entire plant body, plant organs (eg leaves, petals, stems, roots, seeds, etc.), plant tissues (eg epidermis, phloem, soft tissue, xylem, vascular bundles, etc.) Plant cultured cells are used.
  • plant organs eg leaves, petals, stems, roots, seeds, etc.
  • plant tissues eg epidermis, phloem, soft tissue, xylem, vascular bundles, etc.
  • Plant cultured cells are used.
  • Examples of the method for introducing the recombinant vector according to the present invention into a plant include an electroporation method, an agglomerate method, a particle gun method, and a PEG method.
  • Confirmation of whether or not the recombinant vector according to the present invention has been incorporated into a host can be performed by PCR, Southern hybridization, Northern hybridization, or the like.
  • DNA is prepared from the transformant, PCR is performed by designing DNA-specific primers.
  • the amplified product is transformed by performing agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., staining with bromide zyme, SYBR Green solution, etc., and detecting the amplified product as a band. Make sure.
  • PCR can be performed using primers previously labeled with a fluorescent dye or the like to detect amplification products.
  • a method may be employed in which the amplification product is bound to a solid phase such as a microplate and the amplification product is confirmed by fluorescence, enzyme reaction, or the like.
  • the obtained transformant is cultured under conditions that allow it to grow.
  • the cultured product or culture supernatant of the transformant is directly used for the measurement of enzyme activity, it is cultured under conditions where the mutant luciferase according to the present invention is not inactivated.
  • the temperature is, for example, 4 to 37 ° so that the yeast grows and the mutant luciferase according to the present invention is not inactivated during the culture of the transformed yeast introduced with the recombinant vector or the like according to the present invention.
  • C preferably 20-30 ° C.
  • the pH of the medium may be set to 3.5 to 6.5, preferably 5.5 to 6.0, for example.
  • the culture time is, for example, 1 to 120 hours, preferably the logarithmic growth phase 1 to 24 hours.
  • the mutant luciferase according to the present invention or the fusion protein of the mutant luciferase according to the present invention and a foreign protein or peptide can be obtained from the above-mentioned transformant.
  • the resulting culture or culture supernatant may cause an enzymatic reaction of the mutant luciferase according to the present invention.
  • the substrate luciferin eg, umifire luciferin
  • the luciferin derivative for example, the chemical structure of the C2-position, C6-position or C8-position side chain in the imidazopyrazinone skeleton of luciferin, for example, in an aqueous solution of an aromatic, aliphatic, or carboxylic acid amino group, etc.
  • the structure and position of the functional group are not limited as long as light is emitted by the sea urchin luciferase. Such substitution can be expected to improve the emission intensity and suppress self-decomposition.
  • the condition under which an enzyme reaction occurs means a condition in which a luciferin specifically binds to the active center of the mutant luciferase according to the present invention to form a complex and the enzyme reaction proceeds. Further, the contact means a state in which the mutant luciferase according to the present invention and luciferin in the culture or culture supernatant are close to each other and an enzyme reaction occurs.
  • the culture means a culture solution or medium containing the transformant. Mutant luciferase according to the present invention For example, when it is linked to a secretion signal peptide suitable for the host, it is secreted into the medium, so that the culture solution or medium containing the transformant can be used as it is. . Alternatively, a culture supernatant obtained by separating the transformant by centrifugation or the like may be used. The culture supernatant can be subjected to, for example, dilution, concentration, dialysis, purification and the like.
  • the temperature is set to, for example, 0 to 40 ° C, preferably 15 to 30 ° C.
  • pH 4.0-9.0, for example, Preferably 6.0-8.0.
  • the contact time is, for example, 1 second to 30 minutes, preferably 1 second to 30 seconds.
  • the pH of the culture or culture supernatant is adjusted to a pH at which the enzyme activity of the mutant luciferase according to the present invention is high. Can be shifted.
  • the mutant luciferase according to the present invention is included.
  • Tris-HCl buffer Tris-HC1
  • pH 3.5 9.0 preferably pH 7.0 8.0
  • the concentration of luciferin or a derivative thereof as a substrate relative to the culture or culture supernatant is, for example, the turbidity (for example, absorbance at 600 nm) of the culture or culture supernatant of the transformant having the mutant luciferase according to the present invention.
  • the turbidity for example, absorbance at 600 nm
  • the measuring method is, for example, using a culture of a transformant or a culture supernatant and a mixture of luciferin or a derivative thereof for luminescence measurement using a luminometer, and measuring enzyme activity as relative luminescence intensity (RLU). To do.
  • the turbidity eg, absorbance at 600
  • the relative luminescence intensity is divided by the turbidity.
  • the calculated value (RLU / OD) can be used as the enzyme activity value.
  • the mutant luciferase according to the present invention exhibits luciferase activity with an emission spectrum peak different from that of CLuc.
  • the light emission spectrum can be used to distinguish light emission by utilizing the different properties of the emission spectrum, and CLuc can be expressed and corrected by dividing by the light emission derived from the CLuc.
  • the transformant grows on an agar medium to form a colony. Therefore, for example, after adding luciferin or a derivative thereof to an agar medium containing a transformant, the enzyme activity can be measured by measuring the luminescence intensity of the colony using, for example, a luminescence detector having a CCD camera or the like. it can.
  • the mutant luciferase according to the present invention exhibits a luciferase activity of an emission spectrum peak different from CLuc. Therefore, in addition to the above-mentioned measurement of luciferase activity. For example, using a luminescence detector having a plurality of optical filters having different transmission characteristics and a CCD camera, whether or not the mutant luciferase according to the present invention has a luminescence spectrum peak in the above-mentioned range is measured. .
  • the transcriptional activity of a plurality of promoters can be simultaneously evaluated using CLuc and the mutant luciferase according to the present invention as a reporter protein.
  • the mutant luciferase according to the present invention and the fusion protein of the wild type CLuc or the mutant luciferase according to the present invention and a foreign protein or peptide, 2 Use the above luciferase.
  • the wild type CLuc means the following proteins.
  • the fusion protein of wild-type CLuc and a foreign protein or peptide means a fusion protein in which the foreign protein or peptide and the protein (a) or (b) are linked.
  • each of these two or more luciferase genes is introduced into the host at the 5 'upstream side with a different promoter linked to each of the evaluation targets.
  • the luciferase gene is placed under the control of the promoter.
  • the obtained transformant is cultured to obtain a culture or a culture supernatant.
  • the silkworm, the culture or the culture supernatant is brought into contact with luciferin or its derivative.
  • the transcriptional activity of the plurality of promoters can be simultaneously and quantitatively evaluated by measuring the luminescence intensity due to the difference in the luminescence spectrum peak due to the activities of the introduced luciferases.
  • the transcriptional activity of one of the promoters is used as a reference, and the transcriptional activity of other promoters. Can also be corrected.
  • the emission intensity based on the difference between a plurality of emission spectrum peaks is, for example, a multi-reporter atsey luminometer “AB-2250 Lumi” manufactured by Atoichi Co., Ltd., which is a device applying the principle described in Japanese Patent Application Laid-Open No. 2004-187652. It can be measured by attaching an appropriate filter set to the “Net Sensor MCA”.
  • mutant luciferase according to the present invention or the fusion protein of the mutant luciferase according to the present invention and a foreign protein or peptide is used for BRET (Bioluminance resonance energy transfer) or the like to emit light or release energy. be able to.
  • BRET Bioluminance resonance energy transfer
  • the mutant luciferase according to the present invention is a fusion protein of the mutant luciferase according to the present invention and a foreign protein or peptide, and luciferin or a derivative thereof. Make contact. This contact oxidizes luciferin to excited oxyluciferin. Next, the excited oxyluciferin and the chemical substance are allowed to act.
  • a chemical substance means a substance that can receive excitation energy of a light emitter by energy resonance and emit fluorescence by the energy.
  • Examples of chemical substances include fluorescein, FITC, TRITC, TAMRA, and fluorescent proteins such as GFP (green jellyfish-derived green fluorescent protein) and its variants (CFP, YFP, etc.) and DsRed (red-branched red fluorescent protein). Can be mentioned. Further, the action means that oxyluciferin and a chemical substance are arranged at a position where energy can be transferred in distance and phase.
  • mutant luciferase according to the present invention it is possible to measure the transcriptional activity (multi-reporter assay) of several different promoters by one luminescence measurement with a single substrate. It is.
  • mutant luciferase according to the present invention an emission spectrum that matches the excitation spectrum of a specific chemical substance is provided, a higher BRET efficiency is exhibited, and a strong signal is obtained.
  • the mutant luciferase according to the present invention the structural change of a plurality of proteins using a plurality of BRETs can be achieved. Simultaneous analysis is possible.
  • a plurality of mutant luciferases according to the present invention and the luciferases derived from them were expressed in Saccharomyces cerevisiae, and their emission spectra were compared.
  • the plasmid pCLuRA-TDH3 disclosed in WO 2006/132350 was used as an expression vector for secreting and expressing CLuc.
  • This plasmid pCLuRA-TDH3 is a secretory signal peptide of ⁇ -factor of budding yeast
  • CLuc amino acid sequence shown in SEQ ID NO: 3
  • CLuc mature protein CLuc amino acid sequence shown in SEQ ID NO: 2, excluding the 1-18 amino acid sequence
  • a CLuc gene a gene encoding “a CLuc”
  • the amino acid sequence shown in SEQ ID NO: 6 is an ⁇ CLuc amino sequence.
  • a promoter of Saccharomyces cerevisiae TDH3 (systematic gene name: YGR192C) gene is incorporated upstream (5 'side) of the aCLuc gene.
  • This promoter controls the expression of the ⁇ CLuc gene.
  • the nucleotide sequence shown in SEQ ID NO: 7 is a partial nucleotide sequence of the plasmid pCLuRA-TDH3, which includes the acluc start codon 5 'upstream 700 bp including the TDH3 promoter sequence, a CLuc coding region, and a CYC 1 terminator sequence. CLuc stop codon 3 'downstream sequence up to 300bp.
  • Saccharomyces cerevisiae BY4743 A PRB1 strain was transformed with this plasmid pCLuRA-TDH3.
  • an EZ-transformation kit (BIO lOl) was used.
  • the obtained transformant was added to a synthetic agar medium (0.67% Yeast nitrogen base without amino acids (Becton Tickinson), 40 ⁇ g / ml athenin, 20 ⁇ g / ml L— containing no uracil.
  • a synthetic agar medium 0.67% Yeast nitrogen base without amino acids (Becton Tickinson), 40 ⁇ g / ml athenin, 20 ⁇ g / ml L— containing no uracil.
  • Arginine monohydrochloride 100 ⁇ g / ml L-aspartic acid, 100 ⁇ g / ml sodium L-glutamate monohydrate, 20 ⁇ g / ml L-histidine, 60 ⁇ g / ml L-leucine, 30 ⁇ g / ml L-Lysine Hydrochloride, 20 ⁇ g / ml L-Methionine, 50 ⁇ g / ml L-Feralanin, 375 ⁇ g / ml L-Serine, 200 ⁇ g / ml L-Leon , 40 ⁇ g / ml L- ⁇ lippophane, 30 ⁇ g / ml L-tyrosine, 150 ⁇ g / ml L-parin, 2% glucose and 2.0% agar: “SD-ura agar” And cultured at 30 ° C for 3 days.
  • a transformant carrying the plasmid 100 ⁇ g
  • a transformant having the plasmid pCLuRA-TDH3 obtained as described above was synthesized with a synthetic liquid medium (0.67% Yeast nitrogen base with aqueous amino acids (betatone) having a buffering action and not containing uracil.
  • Random point mutations were introduced into the aCLuc coding region of the plasmid pCLuRA-TDH3 using Error Prone PCR.
  • the target region into which the mutation was introduced was the first half of the a CLuc coding region (the 900th to 1813th nucleotide sequences in the nucleotide sequence shown in SEQ ID NO: 7, hereinafter referred to as "N region").
  • N region the 900th to 1813th nucleotide sequences in the nucleotide sequence shown in SEQ ID NO: 7, hereinafter referred to as "N region”.
  • the reason for limiting the range is that it is difficult to amplify long regions in Error Prone PCR. This is because there are many cases.
  • the reason why the 701st to 899th nucleotide sequences in the nucleotide sequence shown in SEQ ID NO: 7 were not used as the target region was that this region was mostly a region encoding a factor-1 secretory signal peptide. is there.
  • mut- CLuc- F ATACTACTATTGCCAGCATTGCTGCTAAAG (SEQ ID NO: 8)
  • mut- CLuc- NR2 CACGTGTGAGGCTCGCTCGTCTCCACCCAT (SEQ ID NO: 9)
  • the composition of the reaction solution for Error Prone PCR targeting the N region was as follows: Taq DNA polymerase (Ronyu, 1 unit / ⁇ 1) 5 ⁇ 1 ; 10 ⁇ R buffer without magnesium ion 10 ⁇ 1; Deoxynucleotide mixed solution for Error Prone PCR 10 ⁇ 1; 25 mM magnesium chloride 28 ⁇ 1; 5 mM manganese chloride 2.5 ⁇ 1; plasmid pCLuRA-TDH3 solution (150 ng / ⁇ 1) 1 ⁇ 1; m ut- Clue- F (SEQ ID NO: 8) (10 pmol / ⁇ 1) 3 ⁇ 1; mut-CLuc-NR2 (SEQ ID NO: 9) (10 pmol / ⁇ 1) 3 ⁇ 1; sterile water 37.3 ⁇ 1.
  • composition of the above-mentioned mixed solution for error prone PCR was as follows: lOOmM dCTP 100 ⁇ 1; lOOmM dTTP 100 ⁇ 1; lOOmM dGTP 20 ⁇ 1; lOOmM dAT P 20 ⁇ 1; Sterile water 760 ⁇ 1.
  • PCR was further carried out using the above DNA solution as a saddle (hereinafter referred to as "2nd PCR").
  • the composition of the 2nd PCR reaction solution was as follows: KOD plus DNA polymerase (Toyobo) 1 ⁇ 1; 10x KOD plus buffer 5 ⁇ 1; 2 mM each dNTP mixture 5 ⁇ 1; 25 mM magnesium sulfate 2 1; mut-Clue- F (SEQ ID NO: 8) (10 pmol / ⁇ 1) 1.5 ⁇ 1; mut-CLuc-NR2 (SEQ ID NO: 9) (lOpmol / ⁇ 1) 1.5 ⁇ 1; the above DNA solution 1 ⁇ 1; Sterile water 33 ⁇ 1.
  • 2nd PCR reaction is 94 ° C for 2 minutes (inactivation of anti-polymerase antibody) for 1 cycle, and 94 ° C A cycle of 15 seconds at 15 ° C (denaturation), 30 seconds at 50 ° C (annealing) and 1 minute at 68 ° C (elongation) was performed in 30 cycles.
  • N region fragment As a result of electrophoresis of the PCR product obtained by the 2nd PCR reaction with 1% agarose, a DNA fragment of about 900 bp was confirmed. Hereinafter, this DNA fragment is referred to as “N region fragment”.
  • N region fragment solution 201 TE buffer
  • Saccharomyces cerevisiae generally undergoes homologous recombination with high probability in cells. Therefore, among the nucleotide sequence of plasmid pCLuRA-TDH3, a linear DNA fragment lacking the nucleotide sequence from 967 to 1703 in the nucleotide sequence shown in SEQ ID NO: 7 (hereinafter referred to as “complement N region”). If the fragment is introduced into Saccharomyces cerevisiae at the same time as the “N region fragment” into which mutations have been introduced as described above, circular DNA (mutant plasmid pCLuRA with mutations introduced into the N region) in Saccharomyces cerevisiae. -THD3) is reconstituted by homologous recombination, and Saccharomyces cerevisiae can be transformed with this reconstituted plasmid.
  • complement N region a linear DNA fragment lacking the nucleotide sequence from 967 to 1703 in the nucleotide sequence shown in SEQ ID
  • a "complement N region fragment” was prepared by PCR as follows. The following oligo DNA primers were used in PCR.
  • vec-CLuc-R GCTTCAGCCTCTCTTTTCTCGAGAG (SEQ ID NO: 10)
  • SQ-CLuc-NF2 TTCTCGAGCCGTACAAGGACAGCTGCCGCA (SEQ ID NO: 11)
  • the composition of the PCR reaction solution was as follows: KOD plus DNA polymerase (Toyobo) 1 ⁇ 1; 10x KOD plus buffer 5 ⁇ 1; 2 mM each dNTP mixture 5 ⁇ 1; 25 mM magnesium sulfate 2 1; vec- CLuc- R (SEQ ID NO: lOXlOpmol / ⁇ 1) 1.5 ⁇ 1; SQ-CLuc-NF2 (SEQ ID NO: l lXlOpmol / ⁇ 1) 1.5 ⁇ 1; plasmid pCLuRA -TDH3 solution (150 ng / ⁇ 1) 1 ⁇ 1; sterilized water 33
  • the PCR reaction consisted of one cycle of 2 minutes at 94 ° C (inactivation of anti-polymerase antibody) and 15 seconds at 94 ° C (denaturation) and 8 minutes at 68 ° C (annealing and extension). Performed in 30 cycles.
  • the overlapping portion between the N region fragment and the complement N region fragment is the nucleotide sequence of the 900th to 966th nucleotides and the 1704th to 1813th nucleotides of the nucleotide sequence shown in SEQ ID NO: 7. It was an array.
  • N region fragment solution and complement N region fragment solution were mixed in an amount of 5 ⁇ l each, and Saccharomyces cerevisiae BY4743 A PRB1 strain was transformed by the lithium acetate method. Saccharomyces cerevisiae BY4743 A PRB1 strain used for transformation was smeared on SD-ura agar medium and incubated at 30 ° C for 48 hours. The large number of colonies that appeared were regarded as the N region mutant library.
  • a C region mutant library was prepared in which the latter half of the a CLuc coding region was the target region for mutation.
  • the target region into which the mutation is introduced is about 60 bp of the latter half of the a CLuc coding region and the 3 ′ non-coding region of the a CLuc coding region (from the 1554th to the 1st position in the nucleotide sequence shown in SEQ ID NO: 7).
  • the 2663th nucleotide sequence hereinafter referred to as “C region”.
  • the reason for including the 3 'non-coding region of the oc CLuc coding region in the C region is that mutations should be introduced a Intracellular homologous recombination outside the CLuc coding region, and a C-terminal of the CLuc coding region This is so as not to affect the efficiency of variation introduction to the code area.
  • PCR was performed on the C region fragment corresponding to the N region fragment of the above N region mutant library in the same manner as the above Error Prone PCR and 2nd PCR except that the following oligo DNA primers were used. Made.
  • mut-CLuc-CFl TCTCTGGCCTCTGTGGAGATCTTAAAATGA (SEQ ID NO: 12)
  • mut-CLuc-R AACTCCTTCCTTTTCGGTTAGAGCGGATGT (SEQ ID NO: 13)
  • a complement C region fragment corresponding to the complement N region fragment of the N region mutant library described above was prepared.
  • the complement C region fragment was prepared according to the method for preparing the complement N region fragment. The difference is The oligo DNA primers used and the PCR reaction conditions.
  • oligo DNA primers were as follows.
  • vec-CLuc-F TCTAGAGGGCCGCATCATGTAATTA (SEQ ID NO: 14)
  • SQ-CLuc-CRl TGGACAACCGTCAAACTCCTGGTTGATCTT (SEQ ID NO: 15)
  • PCR reaction was 94 ° C for 2 minutes (inactivation of anti-polymerase antibody) for 1 cycle, 94 ° C for 15 seconds (denaturation), 55 ° C for 30 seconds A cycle of seconds (annealing) and 8 minutes (elongation) at 68 ° C was performed in 30 cycles.
  • the overlapping portion between the C region fragment and the complement C region fragment is the nucleotide sequence shown in SEQ ID NO: 7 from the 1554th to 1663th nucleotide sequence and from the 2576th to 2663rd The base sequence.
  • Saccharomyces cerevisiae BY4743 A PRB1 strain was transformed by the lithium acetate method. Saccharomyces cerevisiae BY4743 A PRB1 strain used for transformation was smeared on SD-ura agar medium and incubated at 30 ° C for 48 hours. A large number of colonies that appeared were regarded as the C region mutant library.
  • K375R mutant CLuc represents a mutant CLuc in which lysine corresponding to the 375th position in SEQ ID NO: 2 is substituted with arginine.
  • the alphabetical symbol for amino acids is a one-letter code for amino acids according to the recommendations of the International Union of Applied Chemistry and Applied Biochemistry (IUPAC-IUB).
  • the “K375R mutant” refers to a clone having the K375R mutant CLuc.
  • the plasmid carried by the K375R mutant is designated as “pCLuRA-TDH3 [ K375R] ”.
  • mutant CLuc, mutant (clone) having mutant CLuc, and plasmid carried by the mutant are referred to in the same manner.
  • Each of the following transformed yeasts (a) to () was cultured with shaking in a buffered SD-ura medium, and then the culture supernatant was collected by centrifugation. It was concentrated about 10 times with a molecular weight of 10,000 (Sartorius).
  • composition of the reaction solution was as follows: 1 ⁇ luciferin, lOOmM Tris-HC1, pH 7.5
  • FIG. Figure 1 shows the relative emission intensity versus wavelength for each luciferase.
  • Wild type is wild type CLuc
  • M178K is M178K mutant C
  • K375R is the measurement result of K375R mutant CLuc
  • K375E is the measurement result of K375E mutant CLuc.
  • the emission spectrum peak of wild-type CLuc was 453 nm
  • the emission spectrum peak of K375R mutant CLuc was 461 nm, shifted to the longer wavelength side of 8 nm. It was.
  • the emission spectrum peak of K375E mutant CLuc was 460 nm, shifted to the longer wavelength side by 7 nm.
  • the emission spectrum peak of M178K mutant CLuc was 447 nm, which was shifted to the short wavelength side of 6 nm.
  • FFT Fast Fourier Transform
  • a wavelength distribution in OriginPr 0, the horizontal axis is regarded as a frequency, so internal processing is performed in Hz.
  • LPF low-pass' filter
  • data was filtered.
  • the filtering period wavelength 0.05 was adopted for all data from the viewpoint of consistency between the original data including noise and the processed data. All data were uniformly cut on OriginPro using the LPF process with a period wavelength component of 0.05 or more, subjected to inverse Fourier transform using the function of the program, and then output to a file. This processing makes it possible to convert to a smooth spectrum curve with less noise without changing the outline and peak position of the spectrum.
  • the emission spectrum peaks of wild-type CLuc and other mutant CLuc were also measured from 453 nm to 454 nm (wild-type CLuc), from 461 nm to 463 nm (K375R mutant CLuc), and from 460 nm to 462 nm. It shifted to (K375E mutant CLuc). Since it is considered that the determination of the spectral peak wavelength by visual measurement has a large error, the data processing as described above was applied in a unified manner, and the method of automatically determining the spectral peak wavelength by data processing was used.
  • the emission spectrum peak of the variant CLuc was determined based on the method for determining the spectrum peak wavelength.
  • T167I mutant (a clone having a T167I mutant C Luc in which the threonine at position 167 was replaced with isoleucine in the amino acid sequence shown in SEQ ID NO: 2; the third mutant luciferase) which corresponds to a transformant having The plasmid retained by this clone is referred to as “pCLuRA-TDH3 [T167I]”.
  • the emission spectrum peak due to the mutant CLuc secreted by this T1 671 mutant was 458 nm as a result of measurement by the method described in 2-5 of Example 2, which was shifted to the longer wavelength side by 4 nm compared to the wild type CLuc. It was.
  • T167 saturated mutation library a mutant library in which the 167th amino acid is replaced with any one of the other amino acids
  • T167 saturation mutation library was constructed as follows.
  • the oligo DNA primers used were FAR-F: AACCCT CACTAAAGGGAACAAAAGCTGGCT (SEQ ID NO: 16) and T238- Rev: GTACGGGTTG GCGATGATAGG (SEQ ID NO: 17).
  • the DNA fragment obtained by this PCR is In the base sequence shown in SEQ ID NO: 7, it corresponds to the first to 1411th base sequences.
  • composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 0.4 ⁇ 1; 10 ⁇ KOD plus buffer 2 ⁇ ⁇ ; 2 mM each dNTP mixture 2 ⁇ ⁇ ; 25 mM magnesium sulfate 0.8 ⁇ 1; FAR- F (SEQ ID NO: 16) (10 pmol / ⁇ 1) 0.6 ⁇ 1; ⁇ 238- Rev (SEQ ID NO: 17) (10 ⁇ mol / ⁇ 1) 0.6 ⁇ 1; Plasmid pCLuRA-TDH3 solution (3.8 ng / 1) 1 1; Sterilization Water 12.6 ⁇ 1.
  • PCR reaction was 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody), and 15 seconds at 94 ° C (denaturation), 30 seconds at 50 ° C (annealing) and 2 at 68 ° C. A cycle of 30 minutes (extension) was performed in 30 cycles.
  • the oligo DNA primer used was T238X- Fw: CCTA
  • 3 -UTR GTAATACGACTCACTATAGGGCGAA (SEQ ID NO: 19).
  • N in the sequence means A, T, G, or C.
  • NNN in T238X-Fw (SEQ ID NO: 18) introduces a saturation mutation at the 167th amino acid in SEQ ID NO: 2.
  • the DNA fragment obtained by this PCR was identified by the sequence ⁇ NNN '' derived from force T238X-FW (SEQ ID NO: 18), which is the base sequence from the 1st to the 2875th base sequences in the base sequence shown in SEQ ID NO: 7. Random mutation has been introduced into the 3 bases following the 1412th force (codon corresponding to the 167th amino acid in SEQ ID NO: 2).
  • composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 0.4 ⁇ 1; 10x KOD plus buffer 2 ⁇ 1; 2 mM each dNTP mixture 2 ⁇ ⁇ ; 25 mM magnesium sulfate 0.8 ⁇ 1; T238X— Fw (SEQ ID NO: 18) (10 pmol / ⁇ 1) 0.6 ⁇ 1; 3'-UTR (SEQ ID NO: 19) (10 pmol / ⁇ 1) 0.6 ⁇ 1; Plasmid pCLuRA-TDH3 solution (3.8 ng / 1) 1 1; Sterile water 12.6 ⁇ 1.
  • PCR reaction is 94 ° C for 2 min (inactivation of anti-polymerase antibody) for 1 cycle, and 94 ° C for 15 sec (denaturation), 59 ° C for 30 sec (annealing) and 68 ° C for 2 min A cycle of 30 seconds (extension) was performed in 30 cycles.
  • a DNA fragment that can be amplified by this PCR has a base sequence shown in SEQ ID NO: 7 by the sequence “NNN” present in the DNA molecule in force DNA solution B, which is the 900th to 1813th base sequence.
  • the third power (the codon corresponding to the 167th amino acid in SEQ ID NO: 2) is randomly introduced.
  • composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 1 ⁇ 1; 10 ⁇ KOD plus buffer 5 ⁇ 1; 2 mM each dNTP mixture 5 ⁇ 1; 25 mM magnesium sulfate 2 1; mut—CLuc — F (SEQ ID NO: 8) (lOpmol / ⁇ l) 1.5 ⁇ 1; mut-CLuc-NR2 (SEQ ID NO: 9) (lOpmol / ⁇ ⁇ ) 1.5 ⁇ ⁇ ; DNA solution A 0.5 ⁇ 1; DNA solution B 0.5 ⁇ 1 ; Sterile water 33 ⁇ 1.
  • the PCR reaction consists of 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody) and 15 seconds at 94 ° C (denaturation), 30 seconds at 53 ° C (annealing) and 1 at 68 ° C.
  • the minute (extension) cycle was performed in 30 cycles.
  • T167K mutant T167K in which the 167th threonine was substituted with lysine in the amino acid sequence shown in SEQ ID NO: 2.
  • the plasmid carried by this mutant is hereinafter referred to as “pCLuRA-TDH3 [T167K]”.
  • a mutation was introduced into the ⁇ -factor secreted signal peptide (amino acid sequence: SEQ ID NO: 3) of the aCLuc gene.
  • -TDH3 [aP21L, K375R] "was produced.
  • the 21st proline shown in SEQ ID NO: 3 and SEQ ID NO: 6 is replaced with leucine (hereinafter referred to as “a P21L mutation”).
  • a ⁇ -factor secretion signal peptide having a P21L mutation increases the secretion amount of the protein to be secreted linked to the C-terminal side by 7 times or more (Patent Document 3).
  • CLuc encoded in this plasmid is K375R mutant CLuc.
  • the plasmid pCLuRA—TDH3 [a P21L] refers to the aCLuc gene of pCLuRA—TDH3 in which the 21st proline shown in SEQ ID NO: 3 and SEQ ID NO: 6 is replaced with leucine. This is a plasmid in which the 762nd base cytosine is replaced with thymine in SEQ ID NO: 7.
  • PCR reaction was performed.
  • the composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 0.4 ⁇ 1; 10 ⁇ KOD plus buffer 2 ⁇ ; 2 mM each dNTP mixture 2 ⁇ ; 25 mM magnesium sulfate 0.8 ⁇ 1; mut- CLuc-CFl (SEQ ID NO: 12) (10 pmol/ ⁇ 1) 0.6 ⁇ 1; mut-CLuc- R (SEQ ID NO: 13) (lOpmol / ⁇ 1) 0.6 ⁇ 1; Plasmid pCLuRA-TD H3 [K375R] solution (lng / 1) 1 ⁇ 1; sterilized water 12.6 PCR reaction consists of 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody) and 15 seconds at 94 ° C (denaturation), 30 seconds at 53 ° C (annealing) and 1 at 68 ° C. A cycle of minutes 15 seconds (extension) was performed in 30 cycles
  • composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 0.4 ⁇ 1; 10x KOD plus buffer 2 ⁇ ⁇ ; 2 mM each dNTP mixture 2 ⁇ ⁇ ; 25 mM magnesium sulfate 0.8 ⁇ 1; vec- CLuc -F (SEQ ID NO: 14) (10 pmol / ⁇ 1) 0.6 ⁇ 1; SQ-CLuc-CRl (SEQ ID NO: 15) (lOpmol / ⁇ 1) 0.6 ⁇ 1; Plasmid pCLuRA-T DH3 [a P21L] solution (lng / ⁇ 1) 1 ⁇ 1; sterilized water 12.6 ⁇ 1.
  • the PCR reaction was 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody), and 15 seconds at 94 ° C (denaturation), 30 seconds at 53 ° C (ayling), and 8 at 68 ° C.
  • the minute (extension) cycle was performed in 30 cycles.
  • DNA fragment contained in each of DNA solution D and DNA solution E consists of the base sequence between 1554th and 1663th and the base between 2576th and 2663th in the base sequence shown in SEQ ID NO: 7. Share the sequence! /
  • E. coli DH5a was transformed to form colonies.
  • One of the obtained colonies is cultured, and plasmid DNA is extracted and purified by a conventional method.
  • the nucleotide sequence between the 1st and 2875th nucleotides in the nucleotide sequence shown in SEQ ID NO: 7 is examined, and the desired nucleotide substitution is performed.
  • a new mutant CLuc gene library was prepared by the method described in Example 2.
  • pCLuRA-TDH3 [aP21L] was used in place of plasmid pCLuRA-TDH3 as a PCR variant.
  • the 405th threonine was replaced with isoleucine.
  • a clone having a variant CLuc (corresponding to a transformant having the fifth mutant luciferase) was obtained.
  • T405I mutant CLuc As a result of measuring the emission spectrum by the method described in Example 2, the emission spectrum peak of T405I mutant CLuc was 458 nm, which was shifted to the longer wavelength side by 4 nm compared to wild-type CLuc.
  • the plasmid carried by this T405I mutant is hereinafter referred to as “pCLuRA-TDH3 [a P21L, T405 1]”.
  • a plasmid ⁇ p CLuRA- TDH3 which has a histidine tag at the C-terminus and contains a P21L mutation (X CLuc (SEQ ID NO: 20)) a P21L,-(GS) 3H6] "was constructed.
  • SEQ ID NO: 23 is a partial base sequence of the plasmid pCLuRA-TDH3 [aP21L,-(GS) 3H6].
  • PCR was performed using pCLuRA-TDH3 as a saddle type.
  • the oligo DNA primers used were CLuc (GS) 3H6-F: CACCACCATCACCACCATTAGTCTAGAGGGCCGCAT CATGTAATT (SEQ ID NO: 21) and CLuc (GS) 3H6-R: AGAACCAGAACCAGAACCTTT GCATTCATCTGGTACTTCTAGGGT (SEQ ID NO: 22).
  • composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 1 ⁇ 1; 10 ⁇ KOD plus buffer 5 ⁇ 1; 2 mM each dNTP mixture 5 ⁇ 1; 25 mM magnesium sulfate 2 1; CLuc (GS ) 3H6-F (SEQ ID NO: 21) (10 pmol/ ⁇ 1) 1.5 ⁇ 1; CLuc (GS) 3H6-R (SEQ ID NO: 22) (10 pmol/ ⁇ 1) 1.5 ⁇ 1; Plasmid pCLuRA-TDH3 solution (10ng / ⁇ ⁇ ) 0.1 ⁇ ⁇ ; Sterilized water 34 ⁇ 1.
  • PCR reaction is 94 ° C for 2 minutes (anti-polymerase antibody inactivation) for 1 cycle, and 94 ° C for 15 seconds (denaturation), 48 ° C for 30 seconds (annealing), and 68 ° C for 8 minutes ( (Elongation) cycle was performed in 30 cycles.
  • both 5 'ends of the obtained DNA fragment were phosphorylated with T4 polynucleotide kinase. This was ligated with T4 DNA ligase as a DNA substrate and circularized. Escherichia coli DH5a was transformed with the circularized DNA. Conventional method from transformed E. coli The plasmid was extracted and purified. This plasmid was double digested with EcoRI and Xbal, and the digest was separated by agarose gel electrophoresis. Next, an approximately l.lkbp fragment containing the region encoding the histidine tag was purified by Sigma GeneElute MINUS EtBr SPIN COLUMNS and ethanol precipitation (DNA fragment G).
  • pCLuRA-TDH3 [aP21L] was double-digested with EcoRI and Xbal, and the digests were separated by agarose gel electrophoresis. An approximately 6.5 kbp fragment was similarly purified (DNA fragment H).
  • DNA fragment G and DNA fragment H were ligated with T4 DNA ligase using DNA fragment G as a DNA substrate, and Escherichia coli DH5a was transformed with it.
  • the transformed Escherichia coli force was extracted and purified by a conventional method.
  • the obtained plasmid was examined for the nucleotide sequence (from the first to the 2875th sequence in SEQ ID NO: 23) and confirmed to be the desired nucleotide sequence, and pCLuRA— TDH3 [a P21L, — (GS) 3H6].
  • pCLuRA-TDH3 and pCLuRA-TDH3 [a P21L,-(GS) 3H6] were used to transform Saccharomyces cerevisiae BY4743 A PRB1 strain, CLuc and CLuc to which a histidine tag was added were secreted, and the respective emission spectra were measured according to the method described in Example 2. As a result, no difference in the emission spectra was observed between the two. In other words, it was confirmed that there was no difference in the emission spectrum depending on the presence or absence of the histidine tag.
  • Example 7 A group of mutant CLuc in which lysine corresponding to position 375 in SEQ ID NO: 2 is substituted with another amino acid
  • Example 2 when lysine corresponding to the 375th position in SEQ ID NO: 2 is substituted with arginine or glutamic acid, the emission spectrum peak shifts to the longer wavelength side. Therefore, a group of plasmids for secreting and expressing a group of mutant (and wild type) CLuc, which is one of 20 types of amino acids constituting the normal protein of the 375th amino acid, are as follows: -2 and 7-3.
  • the oligo DNA primers used were K446X-F: TGAAGTAGAGAAAGTACGAATCAGG NNNCAATCGACTGTAGTAGTAGAACTCA (SEQ ID NO: 24) and mut-CLuc-R (SEQ ID NO: 13).
  • composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 0.4 ⁇ 1; 10x KOD plus buffer 2 ⁇ ⁇ ; 2 mM each dNTP mixture 2 ⁇ ⁇ ; 25 mM magnesium sulfate 0.8 ⁇ 1; K446X-F (SEQ ID NO: 24) (10 pmol / ⁇ 1) 0.6 ⁇ 1; mut-CLuc- R (SEQ ID NO: 13) (lOpmol / ⁇ 1) 0.6 ⁇ 1; Plasmid pCLuRA-TDH3 [a P21L,-(GS) 3H6] solution (lng / 1) 1 ⁇ 1; sterilized water 12.6 1.
  • PCR reaction is 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody) and 15 seconds at 94 ° C (denaturation), 30 seconds at 45 ° C (annealing) and 1 minute at 68 ° C 30 A second (extension) cycle was performed in 30 cycles.
  • the oligo DNA primers used were K446-R: CCTGATTCGTACTTTCTCTACTTCA (SEQ ID NO: 25) and mut-CLuc-F (SEQ ID NO: 8).
  • the composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 0.4 ⁇ 1; 10 ⁇ KOD plus buffer 2 ⁇ ⁇ ; 2 ⁇ M each dNTP mixture 2 ⁇ ⁇ ; 25 mM magnesium sulfate 0.8 ⁇ 1; K446— R (SEQ ID NO: 25) (lOpmol / ⁇ 1) 0.6 ⁇ 1; mut-CLuc- F (SEQ ID NO: 8) (lOpmol / ⁇ 1) 0.6 ⁇ 1; Plasmid pCLuR A- TDH3 [a P21L,-(GS) 3H6 ] Solution (lng / 1) 1 1; Sterile water 14.6 ⁇ 1.
  • PCR reaction is 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody) and 15 seconds at 94 ° C (denaturation), 30 seconds at 45 ° C (annealing) and 1 minute at 68 ° C 30 A second (extension) cycle was performed in 30 cycles.
  • the oligo DNA primers used were mut-CLuc-F (SEQ ID NO: 8) and mut-CLuc-R: (SEQ ID NO: 13).
  • the composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 1 ⁇ ⁇ ; 10 ⁇ KOD plus buffer 5 ⁇ 1; 2 mM each dNTP mixture 5 ⁇ 1; 25 mM magnesium sulfate 2 1; mut-CLuc- F (SEQ ID NO: 8) (lOpmol / ⁇ 1) 1.5 ⁇ 1; mut-CLuc-R (SEQ ID NO: 13) (lOpmol / 1) 1.5 1; DNA solution J 1 ⁇ 1; DNA solution ⁇ 1 ⁇ 1; Sterilization Water 33 1.
  • ⁇ CR reaction is 2 minutes at 94 ° C (inactivation of anti-polymerase antibody) for 1 cycle, 15 seconds at 94 ° C (denaturation), 30 seconds at 50 ° C (annealing) and 2 minutes at 68 ° C A cycle of 20 seconds (extension) was performed in 30 cycles.
  • the oligo DNA primers used were vec-CLuc-F (SEQ ID NO: 14) and vec-CLuc-R: (SEQ ID NO: 10).
  • the composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 1 ⁇ ⁇ ; 10x KOD plus buffer 5 ⁇ 1; 2 mM each dNTP mixture 5 ⁇ 1; 25 mM magnesium sulfate 2 1; vec- CLuc- F (SEQ ID NO: 14) (lOpmol / ⁇ 1) 1.5 ⁇ 1; vec- CLuc- R (SEQ ID NO: 10) (lOpmol / ⁇ l) 1.5 ⁇ 1; Plasmid pCLuRA-TDH3 [a P21L,-(GS) 3H6] Solution (lng / 1) 1 ⁇ 1;
  • the PCR reaction consists of 2 cycles at 94 ° C (inactivation of anti-polymerase antibody) for 1 cycle and 15 seconds at 94 ° C (
  • Saccharomyces cerevisiae BY4743 A PRB1 strain was transformed with an equal mixture of DNA solution L and DNA solution M to form colonies. 96 colonies obtained, Each was cultured in a buffered SD_ura liquid medium, and DNA containing the plasmid was extracted and purified from each. Escherichia coli DH5a was transformed with these DNA samples, and plasmid DNA was extracted and purified according to a conventional method such as the transformant strength of the resulting Escherichia coli, and the nucleotide sequence was examined.
  • a plasmid having a codon encoding the amino acid corresponding to the 375th amino acid in SEQ ID NO: 2 was obtained as a codon encoding the following amino acids: alanine, cysteine, aspartic acid, glutamic acid, glycine, Isoleucine, lysine, leucine, methionine, asparagine, glutamine, arginine, serine, threonine, norin, tryptophan and tyrosine.
  • Respective plasmids in order are “pCLuRA-TDH3 [a P21L, K375A,-(GS) 3H 6]”, r p CLuRA-TDH3 [a P21L, K375C,-(GS) 3H6] j, “pCLuRA— TDH3 [ ⁇ P21L, K375 D, — (GS) 3H6] ”, r p CLuRA-TDH3 [a P21L, K375E,-(GS) 3H6] j,“ pCLuRA—TDH3 [a P21L, K375G,-(GS) 3H6] J, "PCLuRA- TDH3 [a P21L, K375I,-(GS) 3H6] j," pCLuRA-TDH3 [a P21L, K375K,-(GS) 3H6] J, "pCLuRA- TDH3 [a P21L, K375L,-(GS) 3H6] j, “pCL
  • Codon power encoding the amino acid corresponding to the 375th amino acid in SEQ ID NO: 2 pCLuRA-TDH3 [a P21L.K37 5F,-(GS) 3H6], which is a codon encoding phenylalanine, is changed as follows. Made.
  • PCR was performed using pCLuRA-TDH3 [a P21L,-(GS) 3H6] as a saddle type.
  • the oligo DNA primers used were K446F: TTTCAATCGACTGTAGTAGAACTCA (SEQ ID NO: 26) and K44 6-R: CCTGATTCGTACTTTCTCTACTTCA (SEQ ID NO: 25).
  • composition of this PCR reaction solution was as follows: KOD plus DNA polymerase 0.4 ⁇ 1; 10x KOD plus buffer 2 ⁇ ⁇ ; 2 mM each dNTP mixture 2 ⁇ ⁇ ; 25 mM magnesium sulfate 0.8 ⁇ 1; K446F ( SEQ ID NO: 26) (lOpmol / ⁇ 1) 0.6 ⁇ 1; ⁇ 446-R (SEQ ID NO: 25) (lOpmol / ⁇ 1) 0.6 ⁇ 1; Rasmid pCLuRA-TDH3 [aP21L,-(GS) 3H6] solution (lng / 1) 1 1; sterilized water 12.6 ⁇ 1.
  • PCR reaction was 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody), and 15 seconds at 94 ° C (denaturation), 30 seconds at 48 ° C (annealing), and 8 at 68 ° C.
  • the minute (extension) cycle was performed in 30 cycles.
  • both 5 'ends of the obtained DNA fragment were phosphorylated with T4 polynucleotide kinase.
  • Escherichia coli DH5a was transformed with the circularized DNA.
  • the plasmid was extracted and purified from the transformed Escherichia coli by a conventional method. This plasmid was double digested with BamHI and Xbal, and the digest was separated by agarose gel electrophoresis.
  • a fragment of about 2.6 kbp including a region coding for a CLuc in which the codon encoding the amino acid corresponding to the 375th amino acid in SEQ ID NO: 2 was changed was purified by Sigma GeneElute MINUS EtBr SPIN COLUMNS and ethanol precipitation ( DNA fragment N).
  • pCLuRA-TDH3 [aP21L,-(GS) 3H6] was double digested with BamHI and Xbal, and the digests were separated by agarose gel electrophoresis. About 5kbp fragment was purified in the same way (DNA fragment P)
  • DNA fragment N and DNA fragment P were ligated with T4 DNA ligase using DNA fragment N as a DNA substrate, and Escherichia coli DH5a was used for transformation.
  • the transformed Escherichia coli force was extracted and purified by a conventional method.
  • the nucleotide sequence of the obtained plasmid (sequence No. 23 in SEQ ID NO: 23 from the 1st to the 2875th) was examined to confirm that the desired nucleotide sequence was obtained, and pCLuRA-TDH3 [a P21L, K375F ,-(GS) 3H6].
  • a plasmid substituted with a codon encoding histidine or proline encoding the amino acid corresponding to the 375th amino acid in SEQ ID NO: 2 ("pCLuRA-TD H3 [a P21L, K375H,-(GS ) 3H6] ”and“ pCLuRA-TDH3 [a P21L, K375P,-(GS) 3H6] j) ”, which were prepared using pCLuRA- except that the oligo DNA primers for PCR were different. The method was the same as that for TDH3 [aP21L, K375F,-(GS) 3H6].
  • the oligo DNA primers used for the preparation of CLuRA- TDH3 [a P21L, K375H,-(GS) 3H6] are K446H: CATCAATCGACTGTAGTAGAACTCA (SEQ ID NO: 27) and K446-R (SEQ ID NO: 25), while pCLuRA-
  • the oligo DNA primers used for the preparation of TDH3 [a P21L, K375P,-(GS) 3H6] were K446P: CCACAATCGACTGTAGTAGAACTCA (SEQ ID NO: 28) and K446-R (SEQ ID NO: 25).
  • Saccharomyces cerevisiae BY4743 ⁇ PRB1 strain was transformed with each of the 20 plasmids obtained in 7-2 and 7-3 above.
  • Saccharomyces transformed by the plasmid pCLuRA-TDH3 [a P21L, K375K,-(GS) 3H6] 'Clep secreted by cerevisiae is a wild-type CLuc; Saccharomyces transformed with 19 other plasmids' CLuc secreted by cereleche is a mutant CLuc.
  • Each was cultured by the method described in Example 2, and the luminescence spectrum was measured using the culture supernatant.
  • Table 1 shows the maximum wavelengths of the emission spectra of wild-type CLuc and mutant CLuc.
  • K375Y 457 As shown in Table 1, surprisingly, the emission spectrum maximum wavelength given by wild-type CLuc was 454 nm, whereas the other mutant CLuc all showed emission spectra of 457 nm or more. It was the maximum wavelength.
  • all of the mutant CLuc listed in Table 1 are the first mutant luciferases (K375A mutant CLuc, K375C mutant CLuc, K375D mutant CLuc, K3 75E mutant CLuc, K375F mutant CLuc, K375G mutation CLuc, K375H mutant CLuc, K3 751 mutant CLuc, K375L mutant CLuc, K375M mutant CLuc, K375N mutant CLuc, K3 75P mutant CLuc, K375Q mutant CLuc, K375R mutant CLuc, K375S mutant CLuc, (K3 75T mutant CLuc, K375V mutant CLuc, K375W mutant CLuc and K375Y mutant CLuc)
  • fragment a (475)
  • the composition of the PCR reaction solution for amplifying fragment a is as follows: KOD plus DNA polymerase (Toyobo) 0.4 l; pCLuRA-TDH3 plasmid solution (3.8 ng / 1) 1 1; 10 X KOD plu s buffer 2 l; 2 mM each dNTP mixture 2 l; 25 mM magnesium sulfate 0.8 1; FAR— F (SEQ ID NO: 16) 0.6 ⁇ KlOpmol / ⁇ 1); ⁇ 475-rev (SEQ ID NO: 29) 0.6 ⁇ KlOpmol / ⁇ 1); sterilized water 13.6 1.
  • PCR reaction 94 ° C for 2 minutes (inactivation of anti-polymerase antibody) 1 cycle, 94 ° C for 15 seconds (denaturation), 49 ° C for 30 seconds (annealing), 68 ° C for 2 minutes 30 seconds
  • the (extension) cycle was performed in 30 cycles.
  • fragment b (475X) the nucleotide sequence from positions 2102 to 2875 was amplified by PCR.
  • this DNA fragment is referred to as “fragment b (475X)”.
  • oligo DNA primers were used in PCR for amplifying fragment b (475X): N47 5X-t: tccgtcccgtacagctctcagnnnacttccatctactggcaagat (3rd column 3 ⁇ 4 ⁇ No. DO) and 3 -UTR (SEQ ID NO: 19).
  • the composition of the PCR reaction solution when amplifying fragment b (475X) is the same as the composition of the reaction solution when amplifying fragment a (475) except for the primer.
  • PCR reaction conditions Only the reaction conditions and annealing temperature when amplifying the piece a (475) were different, and the annealing temperature was 50 ° C.
  • fragment a (475) and fragment b (475X) As a result of electrophoresis of the PCR products of the obtained fragment a (475) and fragment b (475X) with 1% agarose, the fragment a (475) of about 2100 bp and the fragment b (475X) of about 800 bp were confirmed. did it. These were mixed, subjected to purification with Sigma GeneElute MINUS EtBr SPIN COLUMNS, phenol extraction, ethanol precipitation, and then dissolved in 101 1 sterile water (fragment a (475), b (475X) mix solution) .
  • fragment c (475X) the above fragment a (475), b (475X) mix solution was used as a saddle, overlap PCR was performed, and a long fragment (NNN was substituted for the codon at the target mutation position) In SEQ ID NO: 7, the 1554th force and the 2663th nucleotide sequence) were prepared.
  • this DNA fragment is referred to as “fragment c (475X)”.
  • oligo DNA primers were used in PCR for amplifying fragment c (475X): mut-CLuc-CF1 (SEQ ID NO: 12) and mut-CLuc-R (SEQ ID NO: 13).
  • the composition of the PCR reaction solution when amplifying fragment c (475X) is as follows: KOD plus DNA polymerase (Toyobo Co., Ltd.) 1 1; Fragment a (475), b (475X) mix solution 1 1 ; 10 X KOD plus buffer 5 l; 2 mM each dNTP mixture 5 1; 25 mM magnesium sulfate 2 l; mut-CLuc-CF1 (SEQ ID NO: 12) 1.5 ⁇ KlOpmol / ⁇ 1); mut-CLuc-R (SEQ ID NO: 13) 1.5 KlOpmol / ⁇ 1); Sterile water 33 ⁇ 1.
  • PCR reaction is 1 cycle at 94 ° C for 2 minutes (inactivation of anti-polymerase antibody), 15 seconds at 94 ° C (denaturation), 30 seconds at 61 ° C (annealing), 1 minute at 68 ° C ( (Elongation) cycle was performed in 30 cycles.
  • fragment d a linear DNA fragment lacking the 1664th to 2575th positions of SEQ ID NO: 7 in the sequence of pCLuRA-TDH3 was amplified by PCR.
  • this DNA fragment is referred to as “fragment d”.
  • oligo DNA primers were used in PCR for amplifying fragment d: SQ-CLuc-CR1 (SEQ ID NO: 15) and vec-CLuc-F (SEQ ID NO: 14).
  • the composition of the PCR reaction solution when amplifying fragment d differs from the composition of the reaction solution when amplifying fragment c (475X) only in the DNA and oligo DNA primers.
  • the following DNA was used as the cocoon type: pCLuRA-TDH3 plasmid solution (3.8 ng / 1) 1 1 1
  • the PCR reaction conditions differed from the reaction conditions for amplifying fragment c (475X) only in the annealing temperature and extension time.
  • fragment c (475X) As a result of electrophoresis of the obtained PCR products of fragment c (475X) and fragment d with 0.7% agarose, respectively, fragment c (475X) of about llOObp and fragment d of about 7000 bp were confirmed. These were mixed, purified with Sigma GeneElute MINUS EtBr SPIN COLUMNS, extracted with phenol, and precipitated with ethanol, and then dissolved in 101 1 sterile water (fragment c (475X), d mix solution).
  • Saccharomyces cerevisiae ⁇ 4743 ⁇ ⁇ 1 was transformed by the lithium acetate method using fragment c (475X), d mix solution 10 ⁇ 1, and smeared on SD-Ura agar medium at 30 ° C. For about 48 hours. Many colonies that appeared were designated as “N404 saturation mutation library”.
  • clones considered to have an emission spectrum shift were selected by the same method as 2.3 and 2.4 in Example 2, and emission spectra were further measured.
  • the emission spectrum peak of the selected N404G mutant CLuc and N404S mutant CLuc was 458 nm.
  • the pCLuRA-TDH3 plasmid in which the amino acid at position 404 in the amino acid sequence shown in SEQ ID NO: 2 has been mutated to asparagine daricin is defined as “pCLuRA-TDH3 [N404G]”.
  • fragment a (476)
  • oligo DNA primers were used in PCR for amplifying fragment a (476): FAR-F (SEQ ID NO: 16) and T476-rev: gttctgagagctgtacgggac (SEQ ID NO: 31).
  • the PCR reaction solution composition when amplifying fragment a (476) differs from the reaction solution composition when amplifying fragment a (475) in Example 8 only in the primer.
  • the PCR reaction conditions differed only from the reaction conditions when the fragment a (475) was amplified in Example 8 and the annealing temperature, and annealing was performed at 59 ° C.
  • fragment b (476X) the 2105th to 2875th nucleotide sequences were increased by PCR. It was wide. This DNA fragment is hereinafter referred to as “fragment b (476X)”.
  • oligo DNA primers were used in the PCR for amplifying fragment b (476X): T47 oX-t w: gtcccgtacagctctcagaacnnntccatctactggcaagatggt (Self sequence number 32) and -UTR (SEQ ID NO: 19).
  • the composition of the reaction solution when amplifying fragment b (476X) is different from the reaction solution composition when amplifying fragment b (475X) in Example 8 only in the primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment b (475X) was amplified in Example 8.
  • Fragments a (476) and b (476X) mix solutions were prepared in the same manner as in Example 8.
  • fragment c (47 6X) The above fragment a (476), b (476X) mix solution was used as a saddle, overlap PCR was performed, and one long fragment in which the codon at the target mutation position was replaced with NNN (SEQ ID NO: 7 1554 to 2663 base sequences) were prepared.
  • this DNA fragment is referred to as “fragment c (47 6X)”.
  • composition of the PCR reaction solution when amplifying fragment c (476X) differs from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in a cage shape.
  • the following DNA was used as the vertical DNA: fragment a (476), b (476X) mix solution 11.
  • the PCR reaction conditions are the same as the reaction conditions when the fragment c (475X) was amplified in Example 8.
  • the emission spectrum peak of the selected T405M mutant CLuc was 457 nm.
  • fragment a (477).
  • oligo DNA primers were used in PCR to amplify fragment a (477): FAR- F (SEQ ID NO: 16) and S477-rev: agtgttctgagagctgtacgg (SEQ ID NO: 33).
  • the PCR reaction solution composition for amplifying fragment a (47 7) differs from the reaction solution composition for amplification of fragment a (475) in Example 8 only in the primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment a (475) was amplified in Example 8.
  • fragment b (477X) the base sequences from 2108th to 2875th in SEQ ID NO: 7 were amplified by PCR. This fragment is referred to as “fragment b (477X)”.
  • oligo DNA primers were used in PCR to amplify fragment b (477X): S47 7X-t: ccgtacagctctcagaacactnnnatctactggcaagatggtgac (self-column number 34) and -UTR, SEQ ID NO: 19).
  • the PCR reaction solution composition for amplifying fragment b (477X) is V in Example 8, and only the primer differs from the reaction solution composition for amplifying fragment b (475X).
  • the PCT reaction conditions are the same as those in Example 8 when fragment b (475X) was amplified.
  • PCR reaction solution composition when amplifying fragment c (477X) is different from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the cage DNA.
  • the following DNA was used as the vertical DNA: Fragment a (477), b (477X) mix solution 1 ⁇ 1.
  • PCR reaction conditions are the same as in Example 8.
  • the emission spectrum peak of the selected S406L mutant CLuc was 460 nm.
  • the 407th amino acid is the other amino acid A mutant library substituted with either one was prepared.
  • the manufacturing method is the same as in Example 8.
  • fragment a (478).
  • the following oligo DNA primers were used in PCR for amplifying fragment a (478): FAR-F (SEQ ID NO: 16) and I478-rev: ggaagtgttctgagagctgta (SEQ ID NO: 35).
  • the PCR reaction solution composition for amplifying fragment a (478) differs only in the reaction conditions and primers for the amplification of fragment a (475) in Example 8.
  • the PCR reaction conditions were different from the reaction mixture composition and annealing temperature at the time of amplification of fragment a (475) in Example 8, and annealing was performed at 55 ° C.
  • fragment b (478X) the nucleotide sequence from the 2111st position to the 2875th position in SEQ ID NO: 7 was amplified by PCR. This DNA fragment is referred to as “fragment b (478X)”.
  • the following oligo DNA primers were used in PCR to amplify fragment b (478X): I478X-Fw: tacagctctcagaacacttccnnntactggcaagatggtgacata (Toki column number 36) and UTR (Tutami column number 19).
  • the PCR reaction solution composition for amplifying fragment b (478X) is different from the reaction solution composition for amplifying fragment b (475X) in Example 8 only in the primer.
  • the PCR reaction conditions differed from the reaction conditions when the fragment b (475X) was amplified in Example 8 and the annealing temperature, and annealing was performed at 58 ° C.
  • fragment 2 (bp) of about 2100 bp and fragment b (478X) of about 800 bp were confirmed. did it.
  • Promega Wizard registered trademark
  • SV Gel and PCR Clean-Up system phenol extraction, ethanol precipitation, and then dissolved in 10 1 sterile water (fragment & (478), 1) (478) mix solution) 0
  • fragment c (478X) the above fragment a (478), b (478X) mix solution was used as a saddle, overlap PCR was performed, and one long fragment (in which the codon at the target mutation position was replaced with NNN ( In SEQ ID NO: 7, the 1554th force and the 2663th nucleotide sequence) were prepared.
  • this DNA fragment is referred to as “fragment c (478X)”.
  • the PCR reaction solution composition for amplifying fragment c (478X) was the same as that of fragment c (475X) in Example 8. The only difference is the composition of the reaction solution when the DNA is amplified and the DNA in the cage shape. The following DNA was used for the vertical type: Fragment a (478), b (478X) mix solution 1 ⁇ 1.
  • the PCR reaction conditions differed only in the annealing conditions in the reaction conditions when the fragment c (475X) was amplified in Example 8, and annealing was performed at 60 ° C.
  • the emission spectrum peak of the selected I407A mutant CLuc was 460 nm.
  • Double mutant CLuc (first and third mutant luciferases) in which the 167th amino acid is replaced with threonine strength lysine and the 375th amino acid is replaced with lysine strength arginine in the amino acid sequence shown in SEQ ID NO: 2.
  • the DNA coding for was prepared as follows
  • fragment a (238) A DNA fragment containing a mutation at the 167th amino acid and having a base sequence ability up to the 1st force and 1663th position in SEQ ID NO: 7 is hereinafter referred to as "fragment a (238)".
  • the following oligo DNA primers were used for PCR when amplifying this fragment a (238): FA RF (SEQ ID NO: 16) and SQ-CLuc-CRl (SEQ ID NO: 15).
  • the PCR reaction solution composition for amplifying fragment a (238) is the same as the reaction solution composition for amplifying fragment a (475) in Example 8, the amount of sterile water, Different.
  • the amount of sterilized water and the vertical DNA used were as follows: sterilized water 12.6 ⁇ 1, P CLuRA-TDH3 [T167K] 1 ⁇ l (4.5 ng / ⁇ 1).
  • fragment b (446)
  • the following oligo DNA primers were used for PCR when amplifying this fragment b (446): mut-CLuc-CFl (SEQ ID NO: 12) and 3'-UTR (SEQ ID NO: 19).
  • the PCR reaction solution composition used to amplify fragment b (446) differs from the reaction solution composition used to amplify fragment a (238) only in the form of DNA and primers.
  • the following DNA was used as the cocoon type: pCLuRA-TDH 3 [a P21L, K375R] 1 ⁇ 1 (2. Ong / ⁇ 1).
  • the PCR reaction conditions are the same as the reaction conditions when fragment a (238) was amplified.
  • fragment c (238,446) This DNA fragment is referred to as “fragment c (238,446)”.
  • the following oligo DNA primers were used in PCR for amplifying fragment c (238,446): mut-CLuc-F (SEQ ID NO: 8) and mut-CLuc-R (SEQ ID NO: 13).
  • the PCR reaction solution composition when amplifying fragment c (238, 446) is the same as the reaction solution composition obtained when amplifying fragment c (475X) in Example 8, and the DNA in the cage shape. And only the primers are different.
  • the following DNA was used as the cage DNA: Fragments a (238), b (446) mix solution 11.
  • the PCR reaction conditions differed from the reaction conditions when amplifying the fragment c (475X) in Example 8 only in the annealing temperature and the extension time, and the annealing temperature was 60 ° C. and the extension time was 2 minutes.
  • fragment d (238,446)
  • oligo DNA primers were used for PCR when amplifying this fragment d (238,446): vec-CLuc-R (SEQ ID NO: 10) and vec-CLuc-F (SEQ ID NO: 14).
  • the composition of the PCR reaction solution for amplifying fragment d (238,446) is the same as the reaction mixture used when amplifying fragment d in Example 8. Only the primer differs from the primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment d was amplified in Example 8.
  • Saccharomyces cerevisiae BY4743 ⁇ ⁇ ⁇ strain was transformed with ZYMO RESEARCH Frozen-EZ Yeast Transformation II TM using fragments c (238,446), d (238,446) mix solution 10 ⁇ 1 went.
  • the emission spectrum peak of the prepared T167K / K375R double mutant CLuc was 460 nm.
  • the pCLuRA-TDH3 plasmid in which the 167th amino acid was mutated from threonine to lysine and the 375th amino acid was mutated from lysine to arginine in the amino acid sequence shown in SEQ ID NO: 2 was designated as ⁇ pCLuRA
  • a gene encoding 3 mutant luciferase was prepared. Examples of methods for introducing mutations
  • fragment b (474)
  • the composition of the PCR reaction solution when amplifying fragment b (474) differs from the reaction solution composition when amplifying fragment b (446) in Example 12 only in the cage DNA.
  • the following DNA was used as the ⁇ -type DNA: pCLuRA-TDH3 [Q403P] (The amino acid at the 403rd in the amino acid sequence shown in SEQ ID NO: 2 obtained as a result of the screening described in Example 2 was derived from glutamine. PCLuRA-TDH3 plasmid mutated to proline) 1 ⁇ l (2.56 ng / ⁇ 1).
  • the PCR reaction conditions are the same as the reaction conditions when fragment b (446) was amplified in Example 12.
  • fragment c (238,474) The above fragment a (238), b (474) mix solution was used as a saddle type to perform overlap PCR, and a single long !! fragment (SEQ ID NO: 7 was substituted with the amino acid at the target position) The nucleotide sequence from the 900th to the 2663th base sequence) was prepared. Hereinafter, this DNA fragment is referred to as “fragment c (238,474)”.
  • composition of the PCR reaction solution when amplifying fragment c (238,474) differs from the reaction solution composition when amplifying fragment c (238,446) in Example 12 only in the cage DNA.
  • the following DNA was used for the vertical DNA: Fragment a (238), b (474) mix solution 11.
  • PCR reaction conditions are the same as in Example 12.
  • the emission spectrum of the obtained clone was measured.
  • fragment b (475)
  • reaction conditions are the same as those in the amplification of fragment b (446) in Example 12.
  • fragment c (238,475) a mixed solution of fragments a (238) (Example 12) and b (475) was prepared in the same manner as in Example 12.
  • the above fragment a (238), b (475) mix solution was used as a trapezoid to perform overlap PCR, and a single long !, fragment (SEQ ID NO: 7) in which the amino acid at the target position was substituted.
  • the 900th to 2663th nucleotide sequences) were prepared.
  • this DNA fragment is referred to as “fragment c (238,475)”.
  • composition of the PCR reaction solution when amplifying fragment c (238,475) differs from the reaction solution composition when amplifying fragment c (238,446) in Example 12 only in the cage DNA.
  • the following DNA was used as the cocoon type: Fragment a (238), b (475) mix solution 1 1.
  • PCR reaction conditions are the same as in Example 12.
  • the emission spectrum of the obtained clone was measured.
  • the emission spectrum peak of the prepared T167K / N404G double mutant CLuc was 460 nm.
  • fragment b (476)
  • the composition of the PCR reaction solution when amplifying fragment b (476) is different from the reaction solution composition when amplifying fragment b (446) in Example 12 only in the DNA in a cage shape.
  • the following DNAs were used as the cocoon type: pCLuRA-TDH3 [aP21L, T405I] (Example 5) 1 ⁇ l (2.0 ng / ⁇ 1).
  • the PCR reaction conditions are the same as the reaction conditions when fragment b (446) was amplified in Example 12.
  • composition of the PCR reaction solution when amplifying fragment c (238,476) is different from the reaction solution composition when amplifying fragment c (238,446) in Example 12 only in the DNA in a cage shape.
  • the following DNA was used for the cage type: Fragments a (238), b (476) mix solution 1 1.
  • PCR reaction conditions are the same as in Example 12.
  • the emission spectrum of the obtained clone was measured.
  • fragment a (268).
  • oligo DNA primers were used in PCR for amplifying fragment a (268): FAR-F (SEQ ID NO: 16) and L268-rev: gatgtcgatcacgatcagttt (SEQ ID NO: 37). Further, the PCR reaction solution composition when amplifying fragment a (268) differs from the reaction solution composition when amplifying fragment a (475) in Example 8 only in the primer. The PCR reaction conditions are the same as the reaction conditions when fragment a (475) was amplified in Example 8.
  • fragment b (268X)
  • L26 8X-Fw aaactgatcgtgatcgacatcnnnggaggaagatctgtaagaatc (self-sequence number 38) and 3 UTR (SEQ ID NO: 19).
  • the PCR reaction solution composition for amplifying fragment b (268X) differs from the reaction solution composition for the amplification of fragment b (475X) in Example 8 only in the primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment b (475X) was amplified in Example 8.
  • fragment c (268X) The above fragment a (268), b (268X) mix solution was used as a saddle type, overlap PCR was performed, and one long fragment in which the codon at the target mutation position was substituted with NNN (SEQ ID NO: 7 The base sequence from the 900th position up to the 1813th position was prepared.
  • fragment c (268X) This DNA fragment is referred to as “fragment c (268X)”.
  • the following oligo DNA primers were used in PCR for amplifying fragment c (268X): mut-CLuc-F (SEQ ID NO: 8) and mut-CLuc-NR2 (SEQ ID NO: 9).
  • the PCR reaction solution composition for amplifying fragment c (268X) is the same as the reaction solution composition for amplifying fragment c (475X) in Example 8, and only the DNA and primers in the vertical form. Different.
  • the following DNA was used as the vertical DNA: Fragment a (268), b (268X) mix solution 11.
  • the PCR reaction conditions differed only from the reaction conditions when the fragment c (475X) was amplified in Example 8 and the annealing temperature, and annealing was performed at 53 ° C.
  • fragment d (268). a linear DNA lacking the 967th to 1703th positions of SEQ ID NO: 7 in the sequence of pCLuRA-TDH3 was amplified by PCR. This DNA fragment is referred to as “fragment d (268).”
  • the following oligo DNA primers were used in PCR for amplifying fragment d (268): vec-CLuc-R (SEQ ID NO: 10) and SQ-CLuc-NF2 (SEQ ID NO: 11).
  • the PCR reaction solution composition for amplifying fragment d (268) differs from the reaction solution composition for amplifying fragment d in Example 8 only in the primer.
  • the PCR reaction conditions differed only from the reaction conditions when the fragment d was amplified in Example 8 and the annealing temperature, and annealing was performed at 62 ° C.
  • fragment c (268X) and d (268) were electrophoresed with 0.7% agarose, and as a result, approximately 900 bp fragment c (268X) and approximately 7000 bp fragment d (268) were confirmed. did it.
  • fragment c (268X) and d (268) mix solutions were prepared in the same manner as in Example 8.
  • a gene encoding the double mutant CLuc (second mutant luciferase) of M178K and L197P in the amino acid sequence shown in SEQ ID NO: 2 was prepared.
  • the method for introducing the mutation is the same as in Example 12.
  • fragment a A DNA fragment containing the mutation at the position of amino acid number 178 shown in SEQ ID NO: 2 and consisting of the nucleotide sequence of the first force in SEQ ID NO: 7 and the 1492th base sequence was amplified by PCR.
  • this DNA fragment is referred to as “fragment a (249)”.
  • oligo DNA primers were used in PCR for amplifying fragment a (249): FAR-F (SEQ ID NO: 16) and SQ-CLuc-F001-rev: cacgatcagtttgaagaattctatgacggt (SEQ ID NO: 39).
  • the PCR reaction solution composition for amplifying fragment a (249) is different from the reaction solution composition for amplifying fragment a (475) in Example 8 only in the cage DNA and primers.
  • ⁇ -type DNA pCLuRA- TDH3 [M178K] (Example 2) 1 ⁇ l (2.85 ng / ⁇ PCR reaction conditions were the same as those in the amplification of fragment a (475) in Example 8. Only the conditions and annealing temperature were different, and annealing was performed at 58 ° C.
  • fragment b (268) a DNA fragment having the nucleotide sequence from the 1463th position to the 2875th position in SEQ ID NO: 7 containing a mutation at the position of amino acid number 197 shown in SEQ ID NO: 2 was amplified by PCR.
  • this DNA fragment is referred to as “fragment b (268)”.
  • oligo DNA primers were used for PCR when amplifying this fragment b (268): mut-CLuc-CFO: accgtcatagaattcttcaaactgatcgtg (SEQ ID NO: 40) and 3'-UTR (SEQ ID NO: 19).
  • the PCR reaction solution composition used to amplify fragment b (268) differs from the PCR reaction solution composition used to amplify fragment a (249) only in the DNA and primers.
  • the DNA used as a saddle type was as follows: pCLuRA-TDH3 [L197P] (16-1 above) 1 ⁇ l (3.53 ng / ⁇ 1). PCR The reaction conditions are the same as the reaction conditions when fragment a (249) was amplified.
  • fragments a (249) and fragment b (268) were electrophoresed with 1% agarose to confirm that they were about 1500 bp and about 1400 bp DNA fragments, respectively. These were mixed to prepare fragments a (249) and b (268) mix solutions in the same manner as in Example 8.
  • fragment c (249,268)
  • composition of the PCR reaction solution when amplifying fragment c (249,268) differs from the reaction solution composition when amplifying fragment c (268 X) in the above 16-1, only in the DNA in the saddle shape.
  • the following DNA was used for the vertical type: fragments a (249), b (268) mix solution 11.
  • PCR reaction conditions differed from the reaction conditions when fragment c (268X) was amplified in 16_1 above, only in the annealing temperature and extension time, and the annealing temperature was 60 ° C and the extension time was 1 minute 30 seconds.
  • the 21st amino acid in the signal sequence of ex CLuc shown in SEQ ID NO: 6 was substituted with leucine.
  • the method for introducing the mutation involves the DNA fragment containing the mutation corresponding to the 21st position in the amino acid sequence shown in SEQ ID NO: 6, and the 178th and 197th amino acids in the amino acid sequence shown in SEQ ID NO: 2.
  • a DNA fragment containing the two mutations at the position was amplified by PCR and prepared by overlapping PCR using these two DNA fragments. It was.
  • fragment a (21) A DNA fragment containing the mutation at the position of amino acid number 21 shown in SEQ ID NO: 6 and consisting of the base sequence of the first force and 966th in SEQ ID NO: 7 was amplified by PCR.
  • this DNA fragment is referred to as “fragment a (21)”.
  • the composition of the PCR reaction solution when amplifying fragment a (21) differs from the reaction solution composition when amplifying fragment a (238) in Example 12 only in the DNA and primers.
  • the following DNA and oligo DNA primers were used: pCLuRA-TDH3 [a P21L] (Patent Document 3) 1 ⁇ l (4.25 ng / ⁇ 1), FAR-F (SEQ ID NO: 16) and vec -CLuc-R (SEQ ID NO: 10).
  • the PCR reaction conditions differed only from the reaction conditions when the fragment a (238) was amplified in Example 12 and the annealing temperature, and annealing was performed at 53 ° C.
  • fragment b (249,268)
  • the PCR reaction solution composition when amplifying fragment b (249,268) differs from the PCR reaction solution composition when fragment a (21) is amplified only in the DNA and primers.
  • the following DNA and oligo DNA primers were used: pCLuRA- TDH3 [M178K, L197P] (16-2 above) 1 ⁇ l (1.56ng / ⁇ 1), mut-CLuc-F (SEQ ID NO: 8) And 3'-UTR (SEQ ID NO: 19).
  • the PCR reaction conditions are the same as the reaction conditions when fragment a (21) was amplified.
  • fragment c (21,249,268)
  • the following oligo DNA primers were used in PCR to amplify fragment c (21,249,268): SQ-GPD1-FO: ATGTATCTATCTCATTTTCTTACA (SEQ ID NO: 41) and mut-CLuc-NR2 (SEQ ID NO: 9).
  • the PCR reaction solution composition for amplifying fragment c (21,249,268) is In Example 12, the composition of the reaction solution when the fragment c (238,446) was amplified and only the DNA and the primer to be used were different.
  • the following DNA was used for the cage type: Fragment a (21), b (249,268) mix solution 1 1.
  • the PCR reaction conditions differed only from the reaction conditions when the fragment a (238) was amplified in Example 12 and the annealing temperature, and the annealing temperature was 51 ° C.
  • fragment d 21,249,268
  • the following oligo DNA primers were used in PCR to amplify fragment d (21,249,268): SQ-GPD1-R0: CAGCTTTTTCCAAATCAGAGAGAGCAG (SEQ ID NO: 42) and S Q-CLuc-NF2 (SEQ ID NO: 11).
  • the PCR reaction solution composition for amplifying fragment d (21,249,268) is different from the reaction solution composition for the amplification of fragment d (238,446) in Example 12 only in the primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment d (238,446) was amplified in Example 12.
  • a gene encoding 1 mutant luciferase was prepared. Examples of methods for introducing mutations
  • fragment a (446)
  • the following oligo DNA primers were used in PCR to amplify fragment a (446): mut- CLuc-F (SEQ ID NO: 8) and SQ-CLuc-F002-rev: caaccagaatctgttttccatcaa (SEQ ID NO: 43).
  • the PCR reaction solution composition for amplifying fragment a (446) is different from the reaction solution composition for amplifying fragment a (238) in Example 12 only in the DNA and primers.
  • the following DNA was used as a cage type: pCLuRA-TDH3 [a P21L, K375R] (Example 4) 1 ⁇ 1 (2.0 ⁇ // ⁇ 1).
  • the PCR reaction conditions are the same as the reaction conditions when fragment a (238) was amplified in Example 12.
  • fragment (474) a DNA fragment having a nucleotide sequence from 2064th to 2875th in SEQ ID NO: 7 containing a mutation at the 403rd amino acid is hereinafter referred to as "fragment (474)".
  • the following oligo DNA primers were used for PCR when amplifying this fragment (474): SQ-CLuc-F002: ttgatggaaaacagattctggttg (SEQ ID NO: 44) and 3, -UTR (SEQ ID NO: 19).
  • the PCR reaction solution composition for amplifying fragment (474) is different from the reaction solution composition for amplifying fragment b (474) in Example 13 only in the primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment b (446) was amplified in Example 12.
  • fragment c (446,474) a DNA fragment with the amino acid at the target position (SEQ ID NO: 7 In 1980, the 1554th nucleotide and the 2663th nucleotide sequence) were prepared.
  • this DNA fragment is referred to as “fragment c (446,474)”.
  • the PCR reaction solution composition when amplifying fragment c (446,474) differs from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in a cage shape.
  • the following DNA was used as the cocoon type: Fragment a (446), (474) Mix solution 1 1.
  • the PCR reaction conditions are the same as the reaction conditions when fragment c (238,446) was amplified in Example 12.
  • fragment (475) The DNA fragment having the nucleotide sequence from 2064th to 2875th in SEQ ID NO: 7 containing the mutation at the 404th amino acid is hereinafter referred to as "fragment (475)”.
  • composition of the PCR reaction solution for amplifying the fragment (475) was the same as that of the fragment (474) in Example 17.
  • Fragment a (446) of Example 17 and the PCR product of fragment (475) were electrophoresed with 1% agarose to prepare a mixed solution of fragments a (446) and (475) as in Example 12. did.
  • fragment c (446,475
  • the PCR reaction solution composition when amplifying fragment c (446,475) is different from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the cage DNA.
  • the following DNA was used for the vertical type: fragments a (446), (475) mix solution 1 1.
  • the PCR reaction conditions are the same as the reaction conditions when fragment c (475X) was amplified in Example 8.
  • fragment (476) A DNA fragment comprising the 2064th to 2875th nucleotide sequence in SEQ ID NO: 7 containing the mutation at the 405th amino acid is hereinafter referred to as "fragment (476)”.
  • composition of the PCR reaction solution for amplifying fragment (476) was the same as that of fragment (474) in Example 17.
  • Fragment a (446), fragment (476) PCR product of Example 17 was electrophoresed with 1% agarose, and in the same manner as Example 17, fragment a (446), (476) mix solution was made.
  • fragment c (446,476
  • the composition of the PCR reaction solution when amplifying fragment c (446,476) is different from the PCR reaction solution composition of Example 8 only in the DNA in the saddle shape.
  • the following DNA was used as the cocoon type: fragments a (446), (476) mix solution 1 1.
  • the PCR reaction conditions are the same as the reaction conditions when fragment c (238,446) was amplified in Example 12.
  • the emission spectrum peak of the prepared K375R / T405I double mutant CLuc was 463 nm.
  • fragment a the DNA fragment consisting of the nucleotide sequence from the first force to the 2119th nucleotide is hereinafter referred to as “fragment a (474)”.
  • the PCR reaction solution composition for amplifying fragment a differs from the PCR reaction solution composition for the fragment a (475) in Example 8 only in the primer.
  • the PCR reaction conditions differed only from the reaction conditions when the fragment a (475) was amplified in Example 8 and the annealing temperature, and annealing was performed at 55 ° C.
  • fragment b (474,475 ) a DNA fragment having a nucleotide sequence from the 2099th position to the 2875th position in SEQ ID NO: 7 containing a mutation at the 403rd and 404th amino acids was referred to as "fragment b (474,475 ) ".
  • PCR for amplifying this fragment b (474,475) uses the following oligo DNA primers: Q474P / N475- ⁇ w: gtgtccgtcccgtacagctctcccgggacttccatctactggcaagat ( ⁇ c column 3 ⁇ 4 ⁇ No. 46) and 3'-UTR (SEQ ID NO: 19).
  • the PCR reaction solution composition when amplifying fragment b (474,475) differs from the PCR reaction solution composition when amplifying fragment b (475X) in Example 8 only in primers.
  • the PCR reaction conditions differed only from the reaction conditions when the fragment b (475X) was amplified in Example 8 and the annealing temperature, and annealing was performed at 58 ° C.
  • fragment c (474,475)
  • the PCR reaction solution composition when amplifying fragment c (474,475) is different from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in a cage shape.
  • the following DNA was used as the cocoon type: fragments a (474), b (474,475) mix solution 11.
  • the PCR reaction conditions were the same as those in Example 8 when amplifying the fragment c (475X), annealing temperature and extension time. However, the annealing temperature was 60 ° C and the extension time was 1 minute 30 seconds.
  • the emission spectrum peak of the prepared Q403P / N404G double mutant CLuc was 462 nm.
  • a gene encoding 5 mutant luciferase was prepared. Examples of methods for introducing mutations
  • fragment b (474,476)
  • the PCR for amplifying this fragment b (474,476) uses the following oligo DNA primers: Q474P / T476I- J ⁇ W: gtgtccgtcccgtacagctctcccaacatctccatctactggcaagatggt (Tsuki column number 47) and 3'-UTR (SEQ ID NO: 19). Further, the PCR reaction solution composition when amplifying fragment b (474,476) differs from the reaction solution composition when amplifying fragment b (475X) in Example 8 only in the primer. The PCR reaction conditions are the same as the reaction conditions when fragment b (474,475) was amplified in Example 20.
  • fragment c (474,476)
  • composition of the PCR reaction solution when amplifying fragment c (474,476) differs from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in a cage shape.
  • the following DNA was used as the cocoon type: Fragment a (474), b (474,476) mix solution 11.
  • PCR reaction conditions are described in Example 20. In this case, the reaction conditions are the same as when fragment c (474,475) was amplified.
  • a DNA fragment having a nucleotide sequence from position 2102 to position 2875 in SEQ ID NO: 7 containing a mutation at the 404th and 405th amino acids is hereinafter referred to as "fragment b (475,476)”.
  • PCR for amplifying this fragment b (475,476) uses the following oligo DNA primers: 7/5 / l 47oi— rw: tccgtcccgtacagctctcaggggatctccatctactggcaagatggt (3 ⁇ 4c ⁇ lj3 ⁇ 4> ⁇ 48) and 3'-UTR ( SEQ ID NO: 19).
  • the PCR reaction solution composition for amplifying fragment b (475,476) differs from the PCR reaction solution composition for the fragment b (475X) in Example 8 only in primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment b (474,475) was amplified in Example 20.
  • fragment c (475,476)
  • the composition of the PCR reaction solution when amplifying fragment c (475,476) is different from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in a cage shape.
  • the type of DNA The following was used: Fragments a (475), b (475,476) mix solution 1 1.
  • the PCR reaction conditions are the same as the reaction conditions when fragment c (474,475) was amplified in Example 20.
  • a gene encoding the triple mutant C Luc (fourth and fifth mutant luciferases) of Q403P, N404G and T405I in the amino acid sequence shown in SEQ ID NO: 2 was prepared.
  • the method for introducing the mutation is the same as in Example 12.
  • a DNA fragment comprising the nucleotide sequence from 2099 to 2875 in SEQ ID NO: 7 and containing the mutations at the 403rd, 404th and 405th amino acids is referred to as “fragment b" (474,475,4761) ".
  • fragment c (474,475,4761)
  • the PCR reaction solution composition when amplifying fragment c (474,475,476I) differs from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in a cage shape.
  • the following DNA was used as the cocoon type: Fragment a (474), b (474,475,476I) mix solution 11.
  • the PCR reaction conditions are the same as those in the amplification of fragment c (474,475) in Example 20.
  • a gene encoding the triple mutant CLuc (fourth and fifth mutant luciferases) of Q403P, N404G and T405M in the amino acid sequence shown in SEQ ID NO: 2 was prepared.
  • the method for introducing the mutation is the same as in Example 12.
  • a DNA fragment comprising the nucleotide sequence from 2099 to 2875 in SEQ ID NO: 7 and containing the mutations at the 403rd, 404th and 405th amino acids is referred to as "fragment b" (474,475,476M) ".
  • the following oligo DNA primers were used in PCR to amplify this fragment b (474,475,476M): Q474P / N475G / T476M-Fw: gtgtccgtcccgtacagctctcccgggatgtccatctactg gcaagatggt (SEQ ID NO: 50) and 3'-UTR (SEQ ID NO: 19).
  • the PCR reaction solution composition when amplifying fragment b (474,475,476M) is different from the PCR reaction solution composition when amplifying fragment b (475X) in Example 8 only in the primer.
  • the PCR reaction conditions are the same as those in the amplification of fragment b (474,475) in Example 20.
  • fragments a (474) (Example 20) and b (474,475,476M) mix solution were prepared.
  • the above fragment a (474), b (474,475,476M) Mix solution was used as a saddle, overlap PCR was performed, and one long fragment (amino acid number 1554 in SEQ ID NO: 7 was substituted with the amino acid at the target position)
  • the eye sequence was also made up to the 2663th nucleotide sequence).
  • this DNA fragment is referred to as “fragment c (474,475,476M)”.
  • the composition of the PCR reaction solution when amplifying fragment c (474,475,476M) differs from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in a cage shape.
  • the following DNA was used for the saddle type: Fragments a (474), b (474,475,476M) mix solution 11.
  • the PCR reaction conditions are the same as the reaction conditions when fragment c (474,475) was amplified in Example 20.
  • the emission spectrum peak of the prepared Q403P / N404G / T405M triple mutant CLuc was 462 nm.
  • a gene encoding Q403P, N404G, T405M, and S406L quadruple mutant CLuc (fourth to sixth mutant luciferases) in the amino acid sequence shown in SEQ ID NO: 2 was prepared.
  • the method for introducing the mutation is the same as in Example 12.
  • a DNA fragment comprising the nucleotide sequence from the 2099th to the 2875th nucleotide in SEQ ID NO: 7 containing the mutation at the 403rd, 404th, 405th and 406th amino acids, This is hereinafter referred to as “fragment b (474,475,476,477)”.
  • fragment b 474,475,476,477
  • the following oligo DNA primers were used: Q474P / N475G / T476M / S477L-Fw: gtgtccgtcccgtacagctctcccgggatgct catctactggcaagatggtgac (SEQ ID NO: 51) and 3'-UTR ( SEQ ID NO: 19).
  • Fragment b (474, The PCR reaction solution composition when amplifying 475,476,477) differs from the PCR reaction solution composition when the fragment b (475X) was amplified in Example 8 only in primers.
  • the PCR reaction conditions differed only from the reaction conditions when annealing fragment b (475X) in Example 8 and the annealing temperature, and annealing was performed at 55 ° C.
  • fragment c (474), b (474,475,476,477) mix solution as a saddle, overlap PCR was performed, and one long fragment was substituted for the amino acid at the target position (the 1554th force in SEQ ID NO: 7 was 2663 base sequences) were prepared.
  • this DNA fragment is referred to as “fragment c (474
  • composition of the PCR reaction solution when amplifying fragment c (474,475,476,477) differs from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in the saddle shape. ⁇ type
  • Fragments a (474), b (474,475,476,477) mix solution 11.
  • the PCR reaction conditions differed only in the reaction conditions and the annealing temperature when amplifying fragment c (475X) in Example 8, and annealing was performed at 61 ° C.
  • the emission spectrum peak of the fourth to sixth mutant luciferases was 461 nm.
  • a gene encoding A quintet CLuc (4th to 7th mutant luciferase) was prepared.
  • the method for introducing the mutation is the same as in Example 12.
  • SEQ ID NO: 7 including mutations in the 403rd, 404th, 405th, 406th, and 407th amino acids, the nucleotide sequence from 2099th to 2875th D
  • fragment b (474,475,476,477,478)
  • fragment b (474,475,476,477,478)
  • Q474P / N475G / T476M / S477L / I478A- Fw gtgtccgtcccgtacagctct cccgggatgctcgcctactggcaagatggtgacata (
  • the PCR reaction solution composition for amplifying fragment b (474,475,476,477,478) differs from the reaction solution composition for the amplification of fragment b (475X) in Example 8 only in the primer.
  • the PCR reaction conditions are the same as the reaction conditions when fragment b (268) was amplified in 16-2 of Example 16.
  • Fragment a (474), b (474, 475, 476, 477, 478) Using the mixed solution as a saddle, overlapping PC R was performed, and one long fragment substituted with the amino acid at the target position (position 15 54 in SEQ ID NO: 7) The base sequence up to the 2663th position was also prepared.
  • this DNA fragment is referred to as “fragment c (474,475,476,477,478) J”.
  • the composition of the PCR reaction solution when amplifying fragment c (474,475,476,477,478) is different from the reaction solution composition when amplifying fragment c (475X) in Example 8 only in the DNA in the saddle shape. .
  • the following DNA was used as a cage: fragment a (474), b (474,475,476,477,478) mix solution 11
  • the PCR reaction conditions are the same as the reaction conditions when fragment c (249,268) was amplified in Example 16-16-2.
  • the emission spectrum peak of the prepared Q403P / N404G / T405M / S406L / I407A five-fold mutant C Luc (fourth to seventh mutant luciferase) was 460 nm.
  • the 403rd amino acid was mutated to glutamine proline
  • the 404th amino acid was mutated to asparagine glycine
  • the 405th amino acid was mutated from threonine to methionine.
  • pCLuRA-TDH3 The pCLuRA-TDH3 plasmid in which the 406th amino acid is mutated to serine calucine and the 407th amino acid is mutated from isoleucine to alanine is defined as “pCLuRA-TDH3 [Q403P, N404G, T405M, S406L, I407A]”.
  • pCLuRA-TDH3 Q403P, N404G, T405M, S406L, I407A
  • fragment a '(238) A DNA fragment containing a mutation at the 167th amino acid and having a base sequence ability up to the first force and 1813th in SEQ ID NO: 7 is hereinafter referred to as "fragment a '(238)".
  • the composition of the PCR reaction solution when amplifying fragment a '(238) is different from the reaction solution composition when amplifying fragment a (238) in Example 12 only in the primer.
  • the following oligo DNA primers were used: FAR-F (SEQ ID NO: 16) and mut-CLuc-NR2 (SEQ ID NO: 9).
  • the PCR reaction conditions differed only from the reaction conditions when the fragment a (475) was amplified in Example 8 and the annealing temperature, and the annealing temperature was 53 ° C.
  • fragment comprising the nucleotide sequence from the 1704th position to the 2875th position in SEQ ID NO: 7, including mutations of the 403rd, 404th, 405th, 406th, and 407th amino acids
  • fragment 474,475,476,477,478)
  • the composition of the PCR reaction solution when amplifying the fragment (474,475,476,477,478) was the same as that of Example 12 and the reaction solution composition when the fragment b (446) was amplified, and only the DNA and primers in the vertical form. Is different.
  • the following DNA and oligo DNA primers were used: pCLuRA-TD H3 [Q403P, N404G, T405M, S406L, I407A] (Example 25) 1 ⁇ l (1.45 ng / ⁇ 1), SQ—CLuc— NF2 (SEQ ID NO: 11) and 3′-UTR (SEQ ID NO: 19).
  • the PCR reaction conditions are the same as the reaction conditions when the fragment a ′ (238) was amplified.
  • fragments a ′(238) and fragments (474,475,476,477,478) were electrophoresed with 1% agarose to confirm that they were DNA fragments of about 1800 bp and about 1200 bp, respectively. These were mixed to prepare fragments a ′ (238), (474,475,476,477,478) mix solution in the same manner as in Example 8.
  • fragment c (238,474,475,476,477,478)”.
  • the composition of the PCR reaction solution when amplifying fragment c (238,474,475,476,477,478) was the same as that of Example 8 in comparison with the reaction solution composition when amplifying fragment c (475X), The only difference is.
  • the following DNA and oligo DNA primers were used: fragment a, (238), b '(474,475,476,477,478) mix solution 1 ⁇ 1, SQ-GPDl-F0 (SEQ ID NO: 41) and mut-CLuc -R ( SEQ ID NO: 13).
  • the PCR reaction conditions differed from the reaction conditions for the amplification of fragment c (475X) in Example 8 only in the annealing temperature and extension time.
  • the annealing temperature was 51 ° C and the extension time was 2 minutes 30 seconds. It was.
  • fragment d (238,474,475,476,477,478) J”.
  • the PCR reaction solution composition when amplifying fragment d (238, 474, 475, 476, 477, 478) differs from the reaction solution composition when amplifying fragment d in Example 8 only in the primer.
  • the following oligo DNA primers were used in this PCR: SQ-GPD1-R0 (SEQ ID NO: 42) and vec-CLuc-F (SEQ ID NO: 14).
  • the PCR reaction conditions are the same as the reaction conditions when fragment d was amplified in Example 8.
  • PCR products of fragment c (238,474,475,476,477,478) and fragment d (238,474,475,476,477,478) were 0.7. Electrophoresis with / 0- agarose confirmed that the DNA fragments were about 2200 bp and about 7000 bp, respectively. These were mixed to prepare a mixed solution of fragments c (238,474,475,476,477,478) and d (238,474,475,476,477,478) in the same manner as in Example 8.
  • the emission spectrum peak of the prepared T167K / Q403P / N404G / T405M / S406L / I407A six-fold mutant CLuc (third to seventh mutant luciferase) was 461 nm o
  • a DNA fragment comprising the first to 2087th nucleotide sequences in SEQ ID NO: 7 containing the mutation at position 21 in SEQ ID NO: 6 and the mutation at position 375 in SEQ ID NO: 2 by PCR did.
  • this DNA fragment is referred to as “fragment a (21,446)”.
  • the composition of the PCR reaction solution when amplifying fragment a differs from the reaction solution composition when amplifying fragment a (238) in Example 12 only in the DNA and primers.
  • the following DNA and oligo DNA primers were used: pCLuRA-TDH3 [a P21L, K375 R] (Example 4) 1 ⁇ l (2.0 ng / ⁇ 1), FAR-F (SEQ ID NO: 16) and SQ-CLuc-F002-rev (SEQ ID NO: 43).
  • the PCR reaction conditions are the same as the reaction conditions when fragment a (21) was amplified in 16-3 of Example 16.
  • fragment b (474,475,476,477,478).
  • the composition of the PCR reaction solution when amplifying fragment b "(474,475,476,477,478) is the same as that of Example 12 and the reaction solution composition of PCR when amplifying fragment a (238) and The following DNA and oligo DNA primers were used: pCLu RA-TDH3 [Q403P, N404G, T405M, S406L, I407A] (Example 25) 1 ⁇ l (1.45 ng / ⁇ 1), SQ—CLuc-F002 (SEQ ID NO: 44) and 3′-UTR (SEQ ID NO: 19)
  • the PCR reaction conditions were the same as in Example 16-16-3, in which fragment a (21) was amplified. The reaction conditions are the same.
  • fragment c (21,446,474,475,476,477,478)”.
  • composition of the PCR reaction solution when amplifying fragment c (21,446,474,475,476,477,478)
  • the emission spectrum peak of the prepared K375R / Q403P / N404G / T405M / S406L / I407A hexafold CLuc is 460 nm. fc tsuta.
  • a DNA fragment having a nucleotide sequence from the 900th position to the 2087th position in SEQ ID NO: 7 containing a mutation at amino acid numbers 167 and 375 was amplified by PCR.
  • this DNA fragment is referred to as “fragment a ′ (238,446)”.
  • the composition of the PCR reaction solution when amplifying fragment a '(238,446) is the same as that of the reaction solution composition obtained when amplifying fragment a (238) in Example 12, and only the DNA and primers in the saddle shape. Different. ⁇ The following DNA and oligo DNA primers were used: pCLuRA-TDH3 [T167K, K37 5R] (Example 12) 1 ⁇ l (3.42 ng / ⁇ 1), mut-CLuc-F (SEQ ID NO: 8) and SQ-CLuc-F002-rev (SEQ ID NO: 43). The PCR reaction conditions are the same as the reaction conditions when fragment a (21) was amplified in 16-3 of Example 16.
  • Fragment a (21), a '(238,446), b "(474,475,476,477,478) Overlap PCR was performed using the mixed solution as a saddle, and a single long fragment in which the amino acid at the target position was substituted (Consisting of the 461st to 2663th nucleotide sequences in SEQ ID NO: 7) This DNA fragment is hereinafter referred to as “fragment c (21,238,446,474,475,476,477,478)”.
  • the composition of the PCR reaction solution when amplifying fragment c differs from the PCR reaction solution composition when amplifying fragment c (238,474,475,476,477,478) in Example 26 only in the DNA in the saddle shape.
  • the following DNA was used as the DNA of the type: Fragment a (21), a '(23 8,446), b "(474,475,476,477,478) mix solution 1 1.
  • the PCR reaction conditions were the same as in Fragment 16-3 of Example 16. The reaction conditions are the same as when c (21,249,268) was amplified.
  • Example 29 Production of mutant CLuc by random mutagenesis to Q403P / N404G / T405M triple mutant CLuc 29-1.
  • Introduction of His-tag at C-terminal of Q403P / N404G / T405M triple mutant CLuc In the amino acid sequence shown in SEQ ID NO: 2, triple mutant CLuc (fourth and fifth mutant luciferases of Q403P, N404G and T405M) ), A CLuc- (GS) 3H6 gene in which a His-tag gene was linked downstream of the CLuc gene was prepared.
  • the 21st amino acid in the signal sequence of a C Luc shown in SEQ ID NO: 6 was substituted with leucine.
  • the following oligo DNA primers were used for PCR to amplify this fragment c '(474,475,476): mut-CLuc-F (SEQ ID NO: 8) and C-trm-r: ctagggtgtctccatgctttatgta (SEQ ID NO: 53) ).
  • the PCR reaction solution composition when amplifying fragment c ′ (474,475,476) is V in Example 8, and the reaction solution composition when amplifying fragment c (475X) is the same as that of the DNA and primers in the cage shape. Only is different.
  • the following DNAs were used as pegs: pCLuRA-TDH3 [Q403P, N404G, T405 M] (23-2 of Example 23) 1 l (1.82 ng / 1).
  • the PCR reaction conditions differed from the reaction conditions when the fragment c (475X) was amplified in Example 8 only in the annealing temperature and the extension time, and the annealing temperature was 57 ° C and the extension time was 2 minutes.
  • the following primers were used for PCR in amplifying the fragment d (474,475,476): vec-CLuc-R (SEQ ID NO: 10) and SQ-CLuc-F003: aagctgaacgactctgcaatagtc (SEQ ID NO: 54).
  • the PCR reaction solution composition for amplifying fragment d (474,475,476) is different from the reaction solution composition for amplifying fragment d in Example 8 only in the DNA and primers.
  • ⁇ -type DNA pCLuRA- TDH3 [a P21L,-(GS) 3H6] (Example 6) 1 ⁇ 1 (1.0 ⁇ ⁇ / ⁇ ⁇ ) 0 PCR reaction conditions were as in Example 8. The reaction conditions are the same as when fragment d was amplified.
  • the 403rd amino acid was mutated to glutamine proline
  • the 404th amino acid was mutated to asparagine glycine
  • the 405th amino acid was also mutated to methionine
  • the sequence in the amino acid sequence shown in No. 6 the pCLuRA-TDH3 plasmid in which the 21st amino acid was mutated to proleuca and leucine and the His-tag gene was further introduced downstream of the mutant CLuc gene was designated as ⁇ pCLuRA-TDH3 [a P21L. Q4 03P, N404G, T405M,-(GS) 3H6] ”.
  • pCLuRA— TDH3 [a P21L, Q403P, N404G, T405M, — (GS) 3H6] was randomly changed.
  • the description will be made using the base number of SEQ ID NO: 23.
  • Mutation was introduced by dividing CLuc into the N-terminal side from the 900th position to the 1813th position and the C-terminal side from the 1554th position to the 2699th position in SEQ ID NO: 23 and amplifying them by PCR. The concentration of nucleotides was uneven.
  • fragment c (474,475,476) -N”.
  • amino acid sequence shown in SEQ ID NO: 2 is amplified by Error Prone PCR, including the 1554th to 2699th nucleotide sequences, which contain mutations at the 403rd, 404th and 405th amino acid positions. did.
  • fragment c (474,475,476) -C This DNA fragment is referred to as “fragment c (474,475,476) -C”.
  • the composition of Error Prone PCR reaction mixture when amplifying fragment c (474,475,476) -N is as follows: Taq DNA polymerase (Roche) 1 ⁇ 1 (5U / ⁇ 1); pCLuRA— TDH3 [ a P21L,-(G S) 3H6] (Example 6) Plasmid solution (150 ng / 1) 1 1; 10 X PCR buffer w / o Mg 2+ ; for Taq (Roche) 10 1; 10 X dNTP mixture for Error Prone PCR 10 l; 25 mM Magnesium chloride 28 l; 5 mM manganese chloride 2.5 l; mut-CLuc-F (SEQ ID NO: 8) 3 l; mut-CLuc-N R2 (SEQ ID NO: 9) 3 1; sterile water 41.5 ⁇ 1.
  • the 10 X dNTP mixture for Error Prone PCR is as follows: lOOmM dCTP 100 ⁇ 1, lOOmM dTTP 100 ⁇ 1, lOOmM dG TP 100 ⁇ 1, lOOmM dATP 100 ⁇ 1, sterile water 760 ⁇ 1.
  • the PCR reaction was performed at 94 ° C for 1 minute (denaturation), 45 ° C for 1 minute (annealing), and 72 ° C for 1 minute (extension) in 30 cycles.
  • reaction solution composition of Error Prone PCR when amplifying fragment c (474,475,476) -C is the same as the reaction solution composition of Error Prone PCR when fragment c (474,475,476) -N is amplified.
  • the amount of DNA, primer and sterilized water is different.
  • the amount of DNA, oligo DNA primer, and sterilized water to be used as a cage is as follows: pCLuRA- TDH3 [a P21L, Q403P, N404G, T405M,-(GS) 3H6] (29-1 above) Plasmid solution 0.5 ⁇ l (288 ng / ⁇ 1), mut-CLuc-CF1 (SEQ ID NO: 12) and mut-CLuc-R (SEQ ID NO: 13), and sterile water 42 1.
  • the PCR reaction conditions are the same as those for Error Prone PCR when the fragment c (474,475,476) -N is amplified.
  • fragments c (474,475,476) -N and fragment c (474,475,476) -C PCR products with 1% garose an approximately 900 bp fragment c (474,475,476) -N and an approximately 1100 bp fragment were obtained.
  • c (474,4 75,476) -C was confirmed. These were each subjected to purification with Sigma GeneElute MINUS EtBr SPIN C OLUMNS, phenol extraction, ethanol precipitation, and then dissolved in 101 1 sterile water (“fragment c (474,475,476) -N solution”, “fragment c ( 474,475,476) -C solution ").
  • fragment c (474,475,476) -N and fragment c (474,475,476) -C was amplified by PCR.
  • the amplified fragments are defined as “fragment c (474,475,476) -N (2)” and “fragment c (474,475,476) -C (2)”, respectively.
  • the composition of the PCR reaction solution for amplifying the fragment c (474,475,476) -N (2) is the same as that of the PCR reaction solution composition obtained when the fragment c (475X) was amplified in Example 8. Only the type of DNA and primers differ. The following DNA and oligo DNA primers were used: Fragment c (474, 475,476) -N solution 1 ⁇ 1, mut-CLuc-F (SEQ ID NO: 8) and mut-CLuc-NR2 (SEQ ID NO: 9) .
  • the PCR reaction solution composition for amplifying fragment c (474,475,476) -C (2) is the same as the PCR reaction solution composition for amplifying fragment c (474,475,476) -N (2), DNA and primers only Is different.
  • the following DNA and oligo DNA primers were used: Fragment c (474,475, 476) -C solution 1 ⁇ 1, mut-CLuc-CF1 (SEQ ID NO: 12) and mut-CLuc-R (SEQ ID NO: 13) .
  • fragment c (474,475,476) -N (2) and fragment c (474,475,476) -C (2) PCR products with 1% agarose an approximately 900 bp fragment c ( 474,475,476) -N (2) and a fragment c (474,475,476) -C (2) of about 11 OObp were confirmed.
  • fragment c (474,475,476) - ⁇ (2) solution was dissolved in 20 ⁇ l of sterilized water.
  • the PCR reaction solution composition for amplifying fragment d (474,475,476) -N differs from the reaction solution composition for amplification of fragment d in Example 8 only in the DNA and primers.
  • the following DNA and oligo DNA primers were used: pCLuRA-TDH3 [a P21L, Q4 03P, N404G, T405M,-(GS) 3H6] (29-1 above) 1 ⁇ l (288 ng / ⁇ 1) Vec-CLuc-R (SEQ ID NO: 10) and SQ-CLuc-NF2 (SEQ ID NO: 11).
  • the PCR reaction solution composition used to amplify the fragment d (474,475,476) -C includes the reaction solution composition used when the fragment d (474,475, 476) -N was amplified, and the DNA and primers to be in a cage shape. Only different.
  • the following DNA and oligo DNA primers were used: pCLuRA-TDH3 [a P21L,-(GS) 3H6] (Example 6) 1 ⁇ l (150 ng / ⁇ 1), SQ-CLuc-CR1 (sequence) No. 15) and vec-CLu cF (SEQ ID NO: 14).
  • the 280th amino acid is mutated to tyrosine strength aspartic acid
  • the 372nd amino acid is mutated to arginine leucine
  • the 403rd amino acid is mutated to glutamine strength proline.
  • the 404th amino acid was mutated to asparagine glycine, the 405th amino acid was mutated from threonine to methionine, and the 21st in the amino acid sequence shown in SEQ ID NO: 6 was mutated to proline leucine, and the CLuc gene
  • the pCLuRA-TDH3 plasmid in which the His-tag gene is introduced downstream is defined as “pCLuRA—TDH3 [aP21L, Y280D, R372L, Q403P, N404G, T405M,-(GS) 3H6] j”.
  • Example 3O Preparation of mutant CLuc by random mutagenesis to Y280D / R372L / Q403P / N404G / T405M five-fold mutant CLuc pCLuRA—TDH3 [a P21L, Y280D, R372L, Q403P, N404G, T405M, — (GS) 3H6] was randomly mutated.
  • the method for introducing the mutation is the same as 29-2 in Example 29.
  • SEQ ID NO: 23 This example is described using the base number of SEQ ID NO: 23.
  • SEQ ID NO: 23 the nucleotide sequence from the 900th force to the 1717th was amplified by Error Prone PCR. This DNA fragment is referred to as “fragment c (351,443,474,475,476) -N”.
  • the amino acid sequence shown in SEQ ID NO: 2 contains mutations at the 280th, 372nd, 403th, 404th and 405th amino acid positions, from 1554th to 2699th.
  • the nucleotide sequence up to was amplified by Error Prone PCR. This DNA fragment is referred to as “fragment c (351,443,474,475,476) -C”.
  • pCLuRA- TDH3 [a P21L, Y280D, R372L, Q403P, N404G, T405M,-(GS) 3H6] (Example 29-29-2) 0.5 ⁇ l (329ng / ⁇ 1), mut-CLuc-F (SEQ ID NO: 8) and ⁇ 340—rev: gtacggctcgagaagaccttt (
  • the reaction solution composition of Error Prone PCR when amplifying fragment c (351,443,474,475,476) -C is different from Error Prone PCR when amplifying fragment c (351,443,474,475,476) -N only in primers.
  • the oligo DNA primers used were: mut-CLuc-CFl (SEQ ID NO: 12) and mut-CLuc-R (SEQ ID NO: 13).
  • Fragment c (351,443,474,475,476) -N solution and fragment c (351,443,474,475,476) -C solution were prepared in the same manner as Example 29-2.
  • fragment c (351,443,474,475,476) -N and fragment c (351,443,474,475,476) -C was amplified by PCR.
  • the amplified fragments are referred to as “fragment c (351,443,474,475,476) -N (2) j” and “fragment c (351,443,474,475,476) -C (2)”, respectively.
  • the PCR reaction solution composition for amplifying fragment c (351,443,474,475,476) -C (2) was the same as that for fragment c (474,475,476) -C (2) in Example 29-2. The only difference is the composition of the reaction solution and the DNA of the cage type. The following DNA was used for the cage type: Fragment c (351,443,474,475,476) -C solution.
  • fragment d (351,443,474,475,476) -N”.
  • the composition of the PCR reaction solution when amplifying fragment d (351,443,474,475,476) -N is the same as that in Example 8; the PCR reaction solution composition when fragment d was amplified; Only the difference is.
  • the following DNA and oligo DNA primers were used: pCLuRA-TD H3 [a P21L, Y280D, R372L, Q403P, N404G, T405M,-(GS) 3H6], vec-CLuc-R (SEQ ID NO: 10 ) And SQ-CLuc-NF2 (SEQ ID NO: 11).
  • the PCR reaction conditions are the same as the PCR reaction conditions when fragment d was amplified in Example 8.
  • fragment c (351,443,474,475,476) -N (2) solution 10 ⁇ 1 and fragment d (351,443,474,475,476) -N solution 5 ⁇ 1 were mixed, and fragment c (351,443,474,475,476) -N (2), d (351,443,474,475,476) -A mix solution was prepared.
  • fragment c (351,443,474,475,476) -C (2) solution 10 1 and the fragment d (4 74,475,476) -C solution (29-2 of Example 29) 51 are mixed to obtain the fragment c (351,443,474,475,476) -C (2 ), d (474,475,476) -C mix solution was prepared.
  • Example 31 Preparation of mutant CLuc by random mutagenesis to L191Q / Y280D / R372L / Q403P / N404G / T405M hexafold CLuc pCLuRA-TDH3 [a P21L, L191Q, Y280D, R372L, Q403P, N404G, T405M- (GS) 3H6] was randomly mutated. Mutation introduction method is the same as 29-2 in Example 29
  • the amount of DN A and sterilized water to be used was the following: pCLuRA- TDH3 [a P21L, L191Q, Y280D, R372L, Q 403P, N404G, T405M- (GS) 3H6] (Example 30) 0.5 ⁇ l (298 ng / ⁇ 1) and sterile water 42 1.
  • the reaction conditions of Error Prone PCR when amplifying fragment c (262,351,443,474,475,476) -N were the same as those when fragment c (474,475,476) -N and fragment c (474,475,476) -C were amplified in Example 29-29-2. The conditions are the same.
  • fragment c (262,351,443,474,475,476) -N (2)”.
  • the PCR reaction solution composition when amplifying fragment c (262,351,443,474,475,476) -N (2) is the same as the reaction solution composition obtained when amplifying fragment c (475X) in Example 8, and Only the DNA and primers that differ are different.
  • the following DNA and oligo DNA primers were used as fragments: fragment c (262,351,443,474,475,476) -N solution, mut-CLuc-F (SEQ ID NO: 8) and SQ-CLuc-CR1 (SEQ ID NO: 15).
  • the composition of the reaction solution when amplifying the fragment d (262,351,443,474,475,476) -C is the same as the composition of the reaction solution when the fragment d (474,475,476) -C is amplified in 29-2 of Example 29. Only the DNA is different.
  • the following DNAs were used for the DNA: pCLuRA- TDH3 [a P21L, L191Q, Y280 D, R372L, Q403P, N404G, T405M- (GS) 3H6] o Also amplified fragment d (262,351,443,474,475,476) -C
  • the PCR reaction conditions for this are the same as the reaction conditions for the amplification of fragment d in Example 8.
  • fragment c (351,443,474,475,476) -N (2) solution (Example 30) 10 / z 1 and the fragment d (262,351,443,474,475,476) -C solution 5 / z 1 were mixed and the fragment c (351, 443,474,475,476) -N (2), d (262,351,443,474,475,476) mix solution was prepared.
  • the emission spectrum peak of the selected L191Q / Q235R / Y280D / R372L / Q403P / N404G / T405M heptad mutant CLuc was 466 nm.
  • the emission spectrum peak of M178R / L191Q / Y280D / R372L / Q403P / N404G / T405M hepta mutant CLuc (9th mutant luciferase) was 435 nm.
  • the difference between the peak wavelengths of these two variants, CLuc, is 31 and can be sufficiently separated by optical filter and program analysis. Two mutant luciferases with different emission colors were obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 発光スペクトルが変化したルシフェラーゼ活性を有する変異型ルシフェラーゼを提供することを目的とする。  シプリディナ・ノクティルカ(Cypridina noctiluca)由来のルシフェラーゼにおいて、特定のアミノ酸残基を置換することで、野生型ルシフェラーゼとは異なる発光スペクトルのルシフェラーゼ活性を有する変異型ルシフェラーゼをスクリーニングする。

Description

明 細 書
変異型ルシフ ラーゼ
技術分野
[0001] 本発明は、例えば発光スペクトルが変化したルシフェラーゼ活性を有する変異型ル シフェラーゼに関する。
背景技術
[0002] レポーターアツセィとは、転写制御配列の転写活性を定量する手段の一つである。
レポーターアツセィでは、調べたい転写制御配列(プロモーター、ェンハンサ一等) の制御下に、レポータータンパク質をコードする遺伝子(以下、「レポーター遺伝子」 という)を連結し、宿主細胞に導入し、発現させる。このとき、例えばプロモーターの転 写活性と、転写 '翻訳されることで生じるレポータータンパク質量との間に正の相関が ある。そこで、レポータータンパク質量を定量することで、プロモーターの相対的な転 写活性の大小を評価することが可能である。
[0003] レポーターアツセィでは、レポータータンパク質として様々なタンパク質を用いて行 うことができる。例えば、蛍光タンパク質をレポータータンパク質とした場合には、発現 した蛍光タンパク質に励起光を照射し、発生する蛍光の強度を計測することで、レポ 一タータンパク質の相対量を定量することができる (蛍光法と呼ばれる)。
[0004] また、例えば、 j8 -ガラクトシダーゼやアルカリフォスファターゼ等の酵素をレポータ 一タンパク質として使用し、レポーターアツセィを行うことができる。酵素をレポーター タンパク質とした場合には、当該酵素の作用により分解され、呈色物質を生じる基質 を用いることで、レポータータンパク質の相対量を比色により定量できる (比色法と呼 ばれる)。あるいは、呈色物質を生ずる基質の代わりに、発光する物質を生じる基質を 用いる方法もある。この場合には、発光量を測定することで、レポータータンパク質の 相対量を定量することができる (発光法と呼ばれる)。
[0005] 発光法には、以下のような優れた特徴がある。先ず、蛍光法のように励起光を必要 としないので、ノ ックグラウンドが小さぐ高いシグナル/ノイズ比が得られる。また、高 感度であり、広いダイナミックレンジが得られる。さらに、定量性が優れている。 [0006] 発光法で、一般的に用いられる酵素反応系としては、ルシフェラーゼ /ルシフェリン 反応系が挙げられる。
[0007] ルシフ ラーゼには、一次構造上大きく異なる様々な種類のものが知られている。
例えば、ルシフェラーゼには、ホタル及びゥミシィタケを初めとして、様々な生物に由 来するものが存在する。
[0008] 一方、基質であるルシフ リンも、化学構造上、大きく異なる様々な種類のものが存 在する。
[0009] それぞれのルシフェラーゼは、基質として認識するルシフェリンの種類がある程度 限定されている。一般にデュアルレポーターアツセィと呼ばれる技術では、ホタル由 来のルシフェラーゼ (以下、「ホタルルシフェラーゼ」と!、う)とゥミシィタケ由来のルシフ エラーゼ (以下、「ゥミシィタケルシフェラーゼ」という)とが混在するサンプル溶液に、ホ タル由来のルシフェリン (以下、「ホタルルシフェリン」という)とゥミシィタケ由来のルシ フェリン (以下、「ゥミシィタケルシフヱリン」という) (セレンテラジン)を順番に加えること により、ホタルルシフェラーゼとゥミシィタケルシフェラーゼのそれぞれの活性を別々 に測定する。
[0010] ゥミホタルには、ヴァルグラ ·ヒルゲンドルフィー (Vargula hilgendorffi)及びシプリディ ナ 'ノクティル力 (Cypridina noctiluca)等の種が含まれる。これらゥミホタルにおいて、 ルシフェラーゼは、体外 (すなわち、海水中)に放出され、ルシフェラーゼの触媒作用 によりルシフェリンが海水中の酸素と反応し、発光する。
[0011] ヴァルグラ ·ヒルゲンドルフィー由来のルシフェラーゼ (以下、「VLuc」と!、う)及びシプ リディナ'ノクティル力由来のルシフェラーゼ (以下、「CLuc」という)をコードする遺伝子 力 Sクロー-ングされている(非特許文献: L及び 2)。 VLuc及び CLucは、双方とも培養細 胞で発現し、細胞外に分泌させることができる(特許文献 1及び国際公開第 2006/132 350号パンフレット)。すなわち、 VLuc及び CLucは、分泌型ルシフェラーゼである。よ つて、該ルシフェラーゼをコードする遺伝子 (以下、「ルシフェラーゼ遺伝子」という)を レポーター遺伝子として利用すると、細胞を破砕することなくプロモーター等の転写 制御配列の転写活性を測定することが可能である (国際公開第 2006/132350号パン フレット)。 [0012] 分泌型ルシフェラーゼは、培養液をそのまま被検液とすることができるので、多数の サンプルを処理する、いわゆるハイスループットレポーターアツセィ系の構築に適して いる。一方、非分泌型ルシフェラーゼの場合には、遠心分離操作による細胞の回収 と、超音波処理、界面活性剤処理、有機溶媒処理等による細胞の破砕 (あるいは細 胞浸透性の亢進操作)とが必須となる。これらの操作は、数多くのサンプルを処理す るには適していない。また、分泌型ルシフェラーゼは、培養液を一部採取することに よって、細胞を破砕することなく測定用サンプルを得ることができるため、同じ細胞に ついて連続的にサンプリングを行うことが可能である。一方、非分泌型ルシフェラー ゼの場合には、細胞破砕等によって必ず細胞にダメージが加わるため、同じ細胞を 用いて連続的にサンプリングを行うことができず、測定ポイントの数だけ別々の細胞を 用意する必要がある。
[0013] 上述の CLucは、 VLucと比べて、 NIH3T3細胞で発現させた場合では 320倍、 HeLaS 3細胞で発現させた場合では 410倍、培養液中に分泌されることが報告されて ヽる (非 特許文献 2)。従って、 VLucと比較して、 CLucは、培養細胞を宿主とした高感度ハイ スループットレポーターアツセィ系での使用に適して!/、る。
[0014] また、 CLuc遺伝子を導入した出芽酵母サッカロミセス ·セレピシェ (Saccharomyces c erevisiae)での、分泌型ハイスループットレポーターアツセィ系も考案されて!、る (国際 公開第 2006/132350号パンフレット)。
[0015] ルシフェラーゼ /ルシフェリン反応系の発光メカニズムは、一般に次のように考えら れている。先ず、ルシフェリンが、ルシフェラーゼの触媒作用により、励起状態のォキ シルシフェリンへと酸ィ匕される。次いで、励起状態のォキシルシフェリンは、直ちに基 底状態に戻るが、その過程でエネルギーを光として放出 (発光)する。このときの単位 時間あたりの発光量は、系に存在するルシフェラーゼの量に比例すると考えられ、ル シフ ラーゼの相対量を発光で定量できる。
[0016] 上記の発光メカニズムにおいて、ォキシルシフェリンの励起状態と基底状態とのェ ネルギー準位の差に応じた発光が得られる。このエネルギー準位の差が変化するこ とは、発光スペクトルが変化することとなって現れる。すなわち、発光を呈する時の励 起状態のエネルギー準位が何らかの理由で変化すると、通常とは異なった色の発光 が得られることとなる。この効果は、ルシフェラーゼの一次構造の大きな違い又は局 所的な違いによって起こることが知られている (非特許文献 3)。
[0017] ところで、ルシフェラーゼ遺伝子をレポーター遺伝子として、 2種以上のプロモータ 一活性のレポーターアツセィを同時に行う方法 (マルチレポーターアツセィと呼ばれる )としては、少なくとも次の 2つの方法がある。
[0018] 先ず、第 1の方法として、異なる複数の化学種のルシフヱリンと、それぞれのルシフ エリンに対する基質特異性を有するルシフ ラーゼとを使用する方法がある。この方 法では、基質特異性の違いに起因して、対となるルシフェラーゼ /ルシフェリンの組み 合わせ以外では反応は起こらない。また、それぞれのルシフェラーゼ /ルシフェリン反 応系の反応に適した条件 (反応液組成や水素イオン濃度等)も違う。この方法では、 一つの試料に対してそれぞれのルシフェラーゼ /ルシフェリン反応にっ 、て、反応条 件を変えて順次又は並列で行う必要がある。それに伴い、発光測定も一つの試料に 対して、それぞれ条件の違うルシフェラーゼ /ルシフェリン反応に適合させて、複数回 行う必要がある。このように、この方法は、測定操作が煩雑となるといつた問題がある
[0019] 第 2の方法として、同一化学種のルシフェリンを基質とする方法がある。この場合に は、同一化学種のルシフェリンを基質とする複数種のルシフェラーゼをそれぞれレポ 一タータンパク質とする。ただし、これらルシフェラーゼのアミノ酸配列は一部異なつ ており、それぞれのルシフェラーゼカも異なった発光スペクトルを生じることを特徴と する。それぞれのルシフェラーゼに由来する発光の強度はスペクトルの違 、によって 識別定量される必要がある。
[0020] 上記第 2の方法を使用したマルチレポーターアツセィは、一種類のみの基質を用い 、且つ発光反応と測定とをそれぞれ一度で行うことができ、簡便であるという利点があ る。
[0021] 発光色の違うルシフ ラーゼ力 それぞれ同時に発せられる光は、それらのスぺタト ルに重なりがある場合もある。し力しながら、このような状況にあってもそれぞれのル シフェラーゼ由来の発光の強度を見積もる方法が考案されている (特許文献 2)。
[0022] 上記第 2の方法の原理を用いたマルチレポーターアツセィとして、発光甲虫由来の ルシフェラーゼ遺伝子とその変異型遺伝子とを用いたものが存在する (非特許文献 4) 。しかし、該発光甲虫由来ルシフヱラーゼは非分泌型である。従って、先に述べたよ うな理由により、ハイスループットィ匕には適していない。
[0023] このように、上記第 2の方法の原理を用いたハイスループットマルチレポーターアツ セィは、現在のところ知られていない。さらに、ゥミホタルルシフェラーゼについて、発 光色を変化させるような変異型ルシフェラーゼの存在は知られて 、な 、。
[0024] 一方、 BRET(Bioluminescence resonance energy transfer)と呼ばれる現象か、 f列 ば生化学的レベル又は細胞レベルでのタンパク質の構造的変化を検出する方法とし て利用されている (非特許文献 5)。
[0025] BRETでは、発光体と発蛍光体がペアを形成する。発光体としては例えば、ルシフ ラーゼ /ルシフ リンのような生物発光が利用される。一方、発蛍光体としては、例 えば蛍光を発する化学物質や緑色蛍光タンパク質 (GFP)のような蛍光タンパク質が 利用される。発光体と発蛍光体とが、距離的に、且つ位相的にエネルギーを転移で きる配置にあった場合に、発光体が励起し、基底状態に戻るときのエネルギーが発 蛍光体に転移する。次いで発蛍光体が励起して、それが基底状態に戻るときに光を 発する。発蛍光体には、それぞれ特有の励起スペクトルが存在し、励起効率は発光 体の発光スペクトルと発蛍光体の励起スペクトルに依存することが知られて 、る。効 率的な BRETペアを構成するために、発蛍光体を効率的に励起する波長の光を発す る発光体が最も好ましい。
[0026] そこで、ルシフェラーゼ /ルシフェリンを発光体として利用する BRET解析では、使用 するルシフヱラーゼは、ペアとして用いる発蛍光体の励起スペクトルを参考に、発蛍 光体を効率的に励起する波長の光を発するものが好ましい。従って、発する光の波 長が異なる変異型ルシフェラーゼが存在することにより、様々な発蛍光体に対して適 切な BRETペアを形成することが可能となる。
特許文献 1:特開平 3-30678号公報
特許文献 2:特開 2004-333457号公報
非特干文献 1: Thompson, E.M., Nagata S., Tsuji F.I.,「Proceedings of the National Academy of Sciences of the United States of AmericaJ , 1989年,第 86卷, p.6567— 65 非特許文献 2 : Nakajima, Y., Kobayashi, K., Yamagishi, K., Enomoto, T., Ohmiya, Y ., [Bioscience and Biotechnology and BiochemistryJ , 2004年,弟り 8卷, p.565- 570 非特許文献 3 :Viviani, V" Uchida, A" Suenaga, N" Ryuluku, M., Ohmiya, Y"「Bioc hemistry and Biophysics Research CommunicationJ , 2001年、第 280卷, p.1286- 1291 非特許文献 4 :中島芳浩,近江谷克裕,「バイオテクノロジージャーナル」, 2006年,第 6卷,第 2号, p.230-232
非特許文献 5: Otsuji, T" Okuda-Ashitaka, E" Kojima, S" Akiyama, H" Ito, S., Oh miya, Y.,「Analytical BiochemistryJ , 2004年,第 329卷, p.230- 237
発明の開示
発明が解決しょうとする課題
[0027] 本発明は、上述した実情に鑑み、発光スペクトルが変化したルシフェラーゼ活性を 有する変異型ルシフェラーゼを提供することを目的とする。
課題を解決するための手段
[0028] 上記課題を解決するため鋭意研究を行った結果、シプリディナ'ノクティル力 (Cypri dina noctiluca)由来のルシフェラーゼ (CLuc)において、特定のアミノ酸残基を置換す ることで、野生型ルシフェラーゼとは異なる発光スペクトルを付与するルシフェラーゼ 活性を有する変異型ルシフェラーゼを得ることができることを見出し、本発明を完成 するに至った。
[0029] 本発明は以下を包含する。
[0030] (1)以下の (a)〜( のいずれか 1つのタンパク質力も成る変異型ルシフェラーゼ。
[0031] (a)配列番号 2に示されるアミノ酸配列において、第 375番目のリジンが他のアミノ酸 に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 375番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 375番目のリジンが他のアミノ酸に置換されたアミノ酸配列から成るタ ンパク質
(d)上記 (c)のアミノ酸配列において、上記第 375番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(2)上記第 375番目のリジン力 ァラニン、システィン、ァスパラギン酸、グルタミン酸 、フエ二ルァラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチォニン、ァスパ ラギン、プロリン、グルタミン、ァノレギニン、セリン、トレオニン、ノ リン、トリプトファン及 びチロシン力も成る群より選択されるアミノ酸に置換されていることを特徴とする、 (1) 記載の変異型ルシフェラーゼ。
[0032] (3)上記発光スペクトルピークが 457nm〜490nmであることを特徴とする、(1)記載 の変異型ルシフェラーゼ。
[0033] (4)以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
[0034] (a)配列番号 2に示されるアミノ酸配列において、第 178番目のメチォニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 178番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 449nm以 下の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、第 178番目のメチォニンが他のアミノ酸に置換されたアミノ酸配列から成るタ ンパク質
(d)上記 (c)のアミノ酸配列において、上記第 178番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 449nm以 下の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(5)上記第 178番目のメチォニンがリジンに置換されて 、ることを特徴とする、(4)記 載の変異型ルシフェラーゼ。
[0035] (6)上記発光スペクトルピークが 420nm〜449nmであることを特徴とする、(4)記載 の変異型ルシフェラーゼ。
[0036] (7)以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。 [0037] (a)配列番号 2に示されるアミノ酸配列において、第 167番目のトレオニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 167番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 167番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成 るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 167番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(8)上記第 167番目のトレオニンがリジンに置換されて 、ることを特徴とする、(7)記 載の変異型ルシフェラーゼ。
[0038] (9)上記発光スペクトルピークが 458nm〜490nmであることを特徴とする、(7)記載 の変異型ルシフェラーゼ。
[0039] (10)以下の (a)〜( のいずれ力 1つのタンパク質から成る変異型ルシフェラーゼ。
[0040] (a)配列番号 2に示されるアミノ酸配列にお!、て、第 404番目のァスパラギンが他のァ ミノ酸に置換されたアミノ酸配列力も成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 404番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 404番目のァスパラギンが他のアミノ酸に置換されたアミノ酸配列から 成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 404番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(11)上記第 404番目のァスパラギンがグリシン又はセリンに置換されていることを特 徴とする、(10)記載の変異型ルシフェラーゼ。
[0041] (12)上記発光スペクトルピークが 458nm〜490nmであることを特徴とする、(10)記 載の変異型ルシフェラーゼ。
[0042] (13)以下の (a)〜( のいずれ力 1つのタンパク質から成る変異型ルシフェラーゼ。
[0043] (a)配列番号 2に示されるアミノ酸配列において、第 405番目のトレオニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 405番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成 るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 405番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(14)上記第 405番目のトレオニンがイソロイシン又はメチォニンに置換されているこ とを特徴とする、(13)記載の変異型ルシフェラーゼ。
[0044] (15)上記発光スペクトルピークが 457nm〜490nmであることを特徴とする、(13)記 載の変異型ルシフェラーゼ。
[0045] (16)以下の (a)〜( のいずれ力 1つのタンパク質から成る変異型ルシフェラーゼ。
[0046] (a)配列番号 2に示されるアミノ酸配列において、第 406番目のセリンが他のアミノ酸 に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 406番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 406番目のセリンが他のアミノ酸に置換されたアミノ酸配列力 成るタ ンパク質 (d)上記 (c)のアミノ酸配列において、上記第 406番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(17)上記第 406番目のセリンがロイシンに置換されていることを特徴とする、 (16) 記載の変異型ルシフェラーゼ。
[0047] (18)上記発光スペクトルピークが 460nm〜490nmであることを特徴とする、(16)記 載の変異型ルシフェラーゼ。
[0048] (19)以下の (a)〜( のいずれ力 1つのタンパク質から成る変異型ルシフェラーゼ。
[0049] (a)配列番号 2に示されるアミノ酸配列にお!、て、第 407番目のイソロイシンが他のァ ミノ酸に置換されたアミノ酸配列力も成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 407番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 407番目のイソロイシンが他のアミノ酸に置換されたアミノ酸配列から 成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 407番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(20)上記第 407番目のイソロイシンがァラニンに置換されて 、ることを特徴とする、(
19)記載の変異型ルシフェラーゼ。
[0050] (21)上記発光スペクトルピークが 460nm〜490nmであることを特徴とする、(19)記 載の変異型ルシフェラーゼ。
[0051] (22)以下の (a)〜(d)の!、ずれ力 1つのタンパク質から成る変異型ルシフェラーゼ。
[0052] (a)配列番号 2に示されるアミノ酸配列において、第 191番目のロイシン、第 235番目 のグルタミン、第 280番目のチロシン、第 372番目のアルギニン、第 403番目のグルタミ ン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換され たアミノ酸配列から成るタンパク質 (b)上記 (a)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 466nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 191番目のロイシン、第 235番目のグルタミン、第 280番目のチロシン、 第 372番目のアルギニン、第 403番目のグルタミン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 466nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
(23)以下の (A)〜(G)のアミノ酸置換を含むことを特徴とする、 (22)記載の変異型 ノレシフェラーゼ。
[0053] (A)上記第 191番目のロイシンからグルタミンへの置換
(B)上記第 235番目のグルタミンからアルギニンへの置換
(C)上記第 280番目のチロシン力 ァスパラギン酸への置換
(D)上記第 372番目のアルギニンからロイシンへの置換
(E)上記第 403番目のグルタミン力 プロリンへの置換
(F)上記第 404番目のァスパラギンからグリシンへの置換
(G)上記第 405番目のトレオニン力 メチォニンへの置換
(24)上記発光スペクトルピークが 466nm〜490nmであることを特徴とする、 (22)記 載の変異型ルシフェラーゼ。
[0054] (25)以下の (a)〜( の!/、ずれ力 1つのタンパク質から成る変異型ルシフェラーゼ。
[0055] (a)配列番号 2に示されるアミノ酸配列において、第 178番目のメチォニン、第 191番 目のロイシン、第 280番目のチロシン、第 372番目のアルギニン、第 403番目のグルタミ ン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換され たアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 435nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 178番目のメチォニン、第 191番目のロイシン、第 280番目のチロシン 、第 372番目のアルギニン、第 403番目のグルタミン、第 404番目のァスパラギン及び 第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 435nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
(26)以下の (A)〜(G)のアミノ酸置換を含むことを特徴とする、 (25)記載の変異型 ノレシフェラーゼ。
[0056] (A)上記第 178番目のメチォニンからアルギニンへの置換
(B)上記第 191番目のロイシンからグルタミンへの置換
(C)上記第 280番目のチロシン力 ァスパラギン酸への置換
(D)上記第 372番目のアルギニンからロイシンへの置換
(E)上記第 403番目のグルタミン力 プロリンへの置換
(F)上記第 404番目のァスパラギンからグリシンへの置換
(G)上記第 405番目のトレオニン力 メチォニンへの置換
(27)上記発光スペクトルピークが 420nm〜435nmであることを特徴とする、 (25)記 載の変異型ルシフェラーゼ。
[0057] (28)外来タンパク質又はペプチドと(1)〜(27)の 、ずれか 1記載の変異型ルシフ エラーゼとが連結された融合タンパク質。
[0058] (29) (1)〜(27)のいずれか 1記載の変異型ルシフ ラーゼ又は(28)記載の融合 タンパク質をコードする遺伝子。
[0059] (30) (29)記載の遺伝子を含む組換えベクター。
[0060] (31) (30)記載の組換えベクターを有する形質転換体。
[0061] (32) (29)記載の遺伝子、並びに以下の (a)〜(c)のタンパク質力も成るルシフェラー ゼ又は融合タンパク質をコードする遺伝子力も成る群より選択される 2以上の遺伝子 がそれぞれ異なるプロモーターの制御下に配置されていることを特徴とする、(31)記 載の形質転換体。
[0062] (a)配列番号 2に示されるアミノ酸配列から成るタンパク質
(b)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失したアミノ酸配列から成るタンパク質
(c)外来タンパク質又はペプチドと上記 (a)又は (b)のタンパク質とが連結された融合タ ンパク質
(33) (32)記載の形質転換体の培養物又は培養上清をルシフェリン又はその誘導 体と接触させる工程と各ルシフェラーゼ活性に基づく発光スペクトルの発光強度を測 定する工程とを含み、 2以上のプロモーターの転写活性を評価することを特徴とする 、プロモーター転写活性評価方法。
[0063] (34) (1)〜(27)のいずれか 1記載の変異型ルシフ ラーゼ又は(28)記載の融合 タンパク質をルシフェリン又はその誘導体と接触させる工程と励起状態のォキシルシ フ リン又はその誘導体をィ匕学物質に作用させる工程とを含み、前記化学物質の励 起に基づき発光させるか又はエネルギーを放出させることを特徴する、発光又はエネ ルギー放出方法。
発明の効果
[0064] 本発明により、野生型ルシフェラーゼとは異なる発光スペクトルを付与するルシフエ ラーゼ活性を有する変異型ルシフェラーゼが提供される。また、本発明に係る変異型 ルシフェラーゼを用いれば、簡便で、且つ高感度なマルチレポーターアツセィ系を提 供することができる。さらに、 BRET解析をする際において、本発明に係る変異型ルシ フェラーゼは優れたエネルギー供与体となる。
[0065] 本明細書は本願の優先権の基礎である日本国特許出願 2006-162662号の明細書 及び Z又は図面に記載される内容を包含する。
図面の簡単な説明
[0066] [図 1]図 1は、各ルシフェラーゼについての波長に対する相対発光強度を示す。
発明を実施するための最良の形態
[0067] 以下、本発明を詳細に説明する。
[0068] 本発明に係る第 1の変異型ルシフェラーゼは、以下の (a)〜( のいずれか 1つのタン ノ ク質である (以下、「第 1変異型ルシフェラーゼ」という)。
[0069] (a)配列番号 2に示されるアミノ酸配列において、第 375番目のリジンが他のアミノ酸 に置換されたアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記第 375番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 375番目のリジンが他のアミノ酸に置換されたアミノ酸配列から成るタ ンパク質;
(d)上記 (c)のアミノ酸配列において、上記第 375番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質。
[0070] 配列番号 2に示されるアミノ酸配列から成るタンパク質は、シプリディナ'ノクティル力 由来のルシフ ラーゼ (CLuc)である。また、配列番号 1に示される塩基配列は、 CLuc をコードする遺伝子 (cDNA)である。
[0071] 第 1変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 375番目のリジンが他のアミノ酸に置換されたアミノ酸配 列から成るタンパク質である。該タンパク質は、 CLucと同様にルシフェラーゼ活性を 示す。ところが、このアミノ酸置換により、該タンパク質は、ルシフェラーゼ活性による ルシフェリン酸化の際の発光にぉ 、て、 CLucによる発光スペクトルピークが 454nmで あるのに対して、 457nm以上、特に 457ηπ!〜 490nm (例えば、 457ηπ!〜 463nm)の発光 スペクトルピークとなる。ここで、他のアミノ酸としては、リジン以外のいずれのアミノ酸 であってもよい。
[0072] 一方、第 1変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上記第 375番目のアミノ酸以外の位置で、 さらに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するものである。第 375番目のアミノ酸以外の位 置としては、例えば、第 167番目のトレオニン、第 403番目のグルタミン、第 404番目の ァスパラギン、第 405番目のトレオニン、第 406番目のセリン、第 407番目のイソロイシン が挙げられる。
[0073] また、第 1変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、 ( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチド (配 列番号 2に示されるアミノ酸配列の第 1番目〜第 18番目のアミノ酸配列から成る)を除 いた成熟タンパク質である。一般的に、 CLucを含めた分泌タンパク質は、 N末端に分 泌シグナルペプチドを有する前駆体の形態で合成される。この前駆体は、膜貫通の 過程でシグナルぺプチダーゼによって切断され、成熟タンパク質となる。本発明にお いて、成熟タンパク質とは、細胞膜外又は細胞壁外に分泌されたタンパク質のことを 意味する。
[0074] さらに、第 1変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは
、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0075] 一方、本発明に係る第 2の変異型ルシフェラーゼは、以下の (a)〜( の 、ずれか 1 つのタンパク質である (以下、「第 2変異型ルシフェラーゼ」という)。
[0076] (a)配列番号 2に示されるアミノ酸配列において、第 178番目のメチォニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記第 178番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 449nm以 下の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、第 178番目のメチォニンが他のアミノ酸に置換されたアミノ酸配列から成るタ ンパク質;
(d)上記 (c)のアミノ酸配列において、上記第 178番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 449nm以 下の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質。
[0077] 第 2変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 178番目のメチォニンが他のアミノ酸に置換されたァミノ 酸配列から成るタンパク質である。該タンパク質は、 CLucと同様にルシフェラーゼ活 性を示す。ところが、このアミノ酸置換により、該タンパク質は、ルシフェラーゼ活性に よるルシフェリン酸化の際の発光にお!、て、 CLucによる発光スペクトルピークが 454η mであるのに対して、 449nm以下、特に 420nm〜449nm (例えば、 447ηπ!〜 449nm)の発 光スペクトルピークとなる。ここで、他のアミノ酸としては、メチォニン以外のいずれの アミノ酸であってよいが、特にリジンが望ましい。
[0078] 一方、第 2変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上記第 178番目のアミノ酸以外の位置で、 さらに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 449nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するものである。第 178番目のアミノ酸以外の位 置としては、例えば、第 197番目のロイシンが挙げられる。
[0079] また、第 2変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0080] さらに、第 2変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは 、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0081] 一方、本発明に係る第 3の変異型ルシフェラーゼは、以下の (a)〜( の 、ずれか 1 つのタンパク質である (以下、「第 3変異型ルシフェラーゼ」という)。
[0082] (a)配列番号 2に示されるアミノ酸配列において、第 167番目のトレオニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記第 167番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 167番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成 るタンノ ク質;
(d)上記 (c)のアミノ酸配列において、上記第 167番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質。
[0083] 第 3変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 167番目のトレオニンが他のアミノ酸に置換されたァミノ 酸配列から成るタンパク質である。該タンパク質は、 CLucと同様にルシフェラーゼ活 性を示す。ところが、このアミノ酸置換により、該タンパク質は、ルシフェラーゼ活性に よるルシフェリン酸化の際の発光にお!、て、 CLucによる発光スペクトルピークが 454η mであるのに対して、 458nm以上、特に 458nm〜490nm (例えば、 458ηπ!〜 460nm)の発 光スペクトルピークとなる。ここで、他のアミノ酸としては、トレオニン以外のいずれのァ ミノ酸であってよいが、例えば、イソロイシン、ロイシン、リジンが挙げられ、特にイソ口 イシン又はリジンが望まし!/、。
[0084] 一方、第 3変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上記第 167番目のアミノ酸以外の位置で、 さらに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するものである。第 167番目のアミノ酸以外の位 置としては、例えば、第 375番目のリジン、第 403番目のグルタミン、第 404番目のァス ノ ラギン、第 405番目のトレオニン、第 406番目のセリン、第 407番目のイソロイシンが 挙げられる。
[0085] また、第 3変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0086] さらに、第 3変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは
、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0087] 一方、本発明に係る第 4の変異型ルシフェラーゼは、以下の (a)〜( の 、ずれか 1 つのタンパク質である (以下、「第 4変異型ルシフェラーゼ」という)。
[0088] (a)配列番号 2に示されるアミノ酸配列において、第 404番目のァスパラギンが他のァ ミノ酸に置換されたアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記第 404番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 404番目のァスパラギンが他のアミノ酸に置換されたアミノ酸配列から 成るタンパク質;
(d)上記 (c)のアミノ酸配列において、上記第 404番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質。
[0089] 第 4変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 404番目のァスパラギンが他のアミノ酸に置換されたアミ ノ酸配列から成るタンパク質である。該タンパク質は、 CLucと同様にルシフェラーゼ 活性を示す。ところが、このアミノ酸置換により、該タンパク質は、ルシフェラーゼ活性 によるルシフェリン酸化の際の発光にぉ 、て、 CLucによる発光スペクトルピークが 454 nmであるのに対して、 458nm以上、特に 458nm〜490nm (例えば、 458nm〜460nm)の 発光スペクトルピークとなる。ここで、他のアミノ酸としては、ァスパラギン以外のいず れのアミノ酸であってよいが、例えば、グリシン、ァラニン、セリン、トレオニンが挙げら れ、特にグリシン又はセリンが望ましい。
[0090] 一方、第 4変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上記第 404番目のアミノ酸以外の位置で、 さらに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するものである。第 404番目のアミノ酸以外の位 置としては、例えば、第 38番目のリジン、第 45番目のセリン、第 75番目のパリン、第 79 番目のアルギニン、第 87番目のアルギニン、第 112番目のァスパラギン酸、第 126番 目のリジン、第 167番目のトレオ-ン、第 170番目のグルタミン酸、第 191番目の口イシ ン、第 223番目のメチォニン、第 235番目のグルタミン、第 258番目のパリン、第 276番 目のイソロイシン、第 280番目のチロシン、第 291番目のメチォニン、第 313番目のトレ ォニン、第 372番目のアルギニン、第 375番目のリジン、第 403番目のグルタミン、第 40 5番目のトレオ-ン、第 406番目のセリン、第 407番目のイソロイシン、第 479番目のグ ルタミン酸が挙げられる。
[0091] また、第 4変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0092] さらに、第 4変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは 、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0093] 一方、本発明に係る第 5の変異型ルシフェラーゼは、以下の (a)〜( の 、ずれか 1 つのタンパク質である (以下、「第 5変異型ルシフェラーゼ」という)。
[0094] (a)配列番号 2に示されるアミノ酸配列において、第 405番目のトレオニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記第 405番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成 るタンノ ク質;
(d)上記 (c)のアミノ酸配列において、上記第 405番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質。
[0095] 第 5変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 405番目のトレオニンが他のアミノ酸に置換されたァミノ 酸配列から成るタンパク質である。該タンパク質は、 CLucと同様にルシフェラーゼ活 性を示す。ところが、このアミノ酸置換により、該タンパク質は、ルシフェラーゼ活性に よるルシフェリン酸化の際の発光にお!、て、 CLucによる発光スペクトルピークが 454η mであるのに対して、 457nm以上、特に 457ηπ!〜 490nm (例えば、 457ηπ!〜 460nm)の発 光スペクトルピークとなる。ここで、他のアミノ酸としては、トレオニン以外のいずれのァ ミノ酸であってよいが、例えば、イソロイシン、メチォニン、ロイシンが挙げられ、特にィ ソロイシン又はメチォニンが望まし 、。
[0096] 一方、第 5変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上記第 405番目のアミノ酸以外の位置で、 さらに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するものである。第 405番目のアミノ酸以外の位 置としては、例えば、第 38番目のリジン、第 45番目のセリン、第 75番目のパリン、第 79 番目のアルギニン、第 87番目のアルギニン、第 112番目のァスパラギン酸、第 126番 目のリジン、第 167番目のトレオ-ン、第 170番目のグルタミン酸、第 191番目の口イシ ン、第 223番目のメチォニン、第 235番目のグルタミン、第 258番目のパリン、第 276番 目のイソロイシン、第 280番目のチロシン、第 291番目のメチォニン、第 313番目のトレ ォニン、第 372番目のアルギニン、第 375番目のリジン、第 403番目のグルタミン、第 40 4番目のァスパラギン、第 406番目のセリン、第 407番目のイソロイシン、第 479番目の グルタミン酸が挙げられる。
[0097] また、第 5変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0098] さらに、第 5変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは 、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0099] 一方、本発明に係る第 6の変異型ルシフェラーゼは、以下の (a)〜( の 、ずれか 1 つのタンパク質である (以下、「第 6変異型ルシフェラーゼ」という)。
[0100] (a)配列番号 2に示されるアミノ酸配列において、第 406番目のセリンが他のアミノ酸 に置換されたアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記第 406番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 406番目のセリンが他のアミノ酸に置換されたアミノ酸配列力 成るタ ンパク質;
(d)上記 (c)のアミノ酸配列において、上記第 406番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質。
[0101] 第 6変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 406番目のセリンが他のアミノ酸に置換されたアミノ酸配 列から成るタンパク質である。該タンパク質は、 CLucと同様にルシフェラーゼ活性を 示す。ところが、このアミノ酸置換により、該タンパク質は、ルシフェラーゼ活性による ルシフェリン酸化の際の発光にぉ 、て、 CLucによる発光スペクトルピークが 454nmで あるのに対して、 460nm以上、特に 460nm〜490nm (例えば、 460ηπ!〜 462nm)の発光 スペクトルピークとなる。ここで、他のアミノ酸としては、セリン以外のいずれのアミノ酸 であってよいが、例えば、ロイシン、イソロイシンが挙げられ、特にロイシンが望ましい
[0102] 一方、第 6変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上記第 406番目のアミノ酸以外の位置で、 さらに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するものである。第 406番目のアミノ酸以外の位 置としては、例えば、第 167番目のトレオニン、第 375番目のリジン、第 403番目のダル タミン、第 404番目のァスパラギン、第 405番目のトレオニン、第 407番目のイソロイシン が挙げられる。
[0103] また、第 6変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0104] さらに、第 6変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは
、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0105] 一方、本発明に係る第 7の変異型ルシフェラーゼは、以下の (a)〜( の 、ずれか 1 つのタンパク質である (以下、「第 7変異型ルシフェラーゼ」という)。
[0106] (a)配列番号 2に示されるアミノ酸配列において、第 407番目のイソロイシンが他のァ ミノ酸に置換されたアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記第 407番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 407番目のイソロイシンが他のアミノ酸に置換されたアミノ酸配列から 成るタンパク質;
(d)上記 (c)のアミノ酸配列において、上記第 407番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質。
[0107] 第 7変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 407番目のイソロイシンが他のアミノ酸に置換されたァミノ 酸配列から成るタンパク質である。該タンパク質は、 CLucと同様にルシフェラーゼ活 性を示す。ところが、このアミノ酸置換により、該タンパク質は、ルシフェラーゼ活性に よるルシフェリン酸化の際の発光にお!、て、 CLucによる発光スペクトルピークが 454η mであるのに対して、 460nm以上、特に 460nm〜490nm (例えば、 460ηπ!〜 462nm)の発 光スペクトルピークとなる。ここで、他のアミノ酸としては、イソロイシン以外のいずれの アミノ酸であってよいが、例えば、グリシン、ァラニンが挙げられ、特にァラニンが望ま しい。
[0108] 一方、第 7変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上記第 407番目のアミノ酸以外の位置で、 さらに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するものである。第 407番目のアミノ酸以外の位 置としては、例えば、第 167番目のトレオニン、第 375番目のリジン、第 403番目のダル タミン、第 404番目のァスパラギン、第 405番目のトレオニン、第 406番目のセリンが挙 げられる。
[0109] また、第 7変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0110] さらに、第 7変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは 、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0111] 上記第 1及び第 3〜7変異型ルシフェラーゼにおける所定の各アミノ酸置換及び配 列番号 2に示されるアミノ酸配列の他の位置におけるアミノ酸置換のいずれ力 2以上 ( 例えば、 2〜10個、好ましくは 2個〜 8個、特に好ましくは 2〜6個)を組み合わせた多重 アミノ酸置換を含み、且つ 458nm以上、特に 458nm〜490nm (例えば、 458ηπ!〜 475nm )の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質も本発明に係る変 異型ルシフェラーゼに含まれる。このような多重アミノ酸置換を含む変異型ルシフェラ ーゼとしては、例えば、以下の (a)〜( のいずれ力 1つのタンパク質で表される第 8の 変異型ルシフェラーゼ (以下、「第 8変異型ルシフェラーゼ」と 、う)が挙げられる:
(a)配列番号 2に示されるアミノ酸配列において、第 191番目のロイシン、第 235番目 のグルタミン、第 280番目のチロシン、第 372番目のアルギニン、第 403番目のグルタミ ン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換され たアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 466nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質; (c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 191番目のロイシン、第 235番目のグルタミン、第 280番目のチロシン、 第 372番目のアルギニン、第 403番目のグルタミン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成るタンパク質;
(d)上記 (c)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 466nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質。
[0112] 第 8変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 4変異型ルシフヱラーゼのアミノ酸置換の位置に相当す る第 404番目のァスパラギン及び第 5変異型ルシフェラーゼのアミノ酸置換の位置に 相当する第 405番目のトレオニンと共に、第 191番目のロイシン、第 235番目のダルタミ ン、第 280番目のチロシン、第 372番目のアルギニン及び第 403番目のグルタミンが他 のアミノ酸に置換されたアミノ酸配列力も成るタンパク質である。該タンパク質は、 CLu cと同様にルシフェラーゼ活性を示す。ところが、これらアミノ酸置換により、該タンパク 質は、ルシフェラーゼ活性によるルシフェリン酸ィ匕の際の発光において、 CLucによる 発光スペクトルピークが 454nmであるのに対して、 466nm以上、特に 466ηπ!〜 490nm( 例えば、 466ηπ!〜 475nm)の発光スペクトルピークとなる。ここで、各アミノ酸位置にお けるアミノ酸置換の例としては、以下の (A)〜(G)の組合せが挙げられる:
(A)上記第 191番目のロイシンからグルタミンへの置換;
(B)上記第 235番目のグルタミンからアルギニンへの置換;
(C)上記第 280番目のチロシン力 ァスパラギン酸への置換;
(D)上記第 372番目のアルギニンからロイシンへの置換;
(E)上記第 403番目のグルタミン力 プロリンへの置換;
(F)上記第 404番目のァスパラギン力 グリシンへの置換;
(G)上記第 405番目のトレオニン力 メチォニンへの置換。
[0113] 一方、第 8変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上述した所定のアミノ酸以外の位置で、さ らに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 466nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するものである。上述した所定のアミノ酸以外の 位置としては、例えば、第 112番目のァスパラギン酸、第 291番目のメチォニン、第 313 番目のトレオニンが挙げられる。
[0114] また、第 8変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0115] さらに、第 8変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは 、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0116] また、上記第 2変異型ルシフェラーゼにおけるアミノ酸置換及び配列番号 2に示さ れるアミノ酸配列の他の位置におけるアミノ酸置換のいずれか 2以上 (例えば、 2〜10 個、好ましくは 2個〜 8個、特に好ましくは 2〜6個)を組み合わせた多重アミノ酸置換を 含み、且つ 449nm以下、特に 420nm〜449nm (例えば、 425nm〜449nm)の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質も本発明に係る変異型ルシフエ ラーゼに含まれる。このような多重アミノ酸置換を含む変異型ルシフェラーゼとしては 、例えば、以下の (a)〜( のいずれか 1つのタンパク質で表される第 9の変異型ルシフ エラーゼ (以下、「第 9変異型ルシフェラーゼ」と 、う)が挙げられる:
(a)配列番号 2に示されるアミノ酸配列において、第 178番目のメチォニン、第 191番 目のロイシン、第 280番目のチロシン、第 372番目のアルギニン、第 403番目のグルタミ ン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換され たアミノ酸配列から成るタンパク質;
(b)上記 (a)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 435nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質;
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 178番目のメチォニン、第 191番目のロイシン、第 280番目のチロシン 、第 372番目のアルギニン、第 403番目のグルタミン、第 404番目のァスパラギン及び 第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成るタンパク質; (d)上記 (c)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 435nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質。
[0117] 第 9変異型ルシフェラーゼにおける上記 (a)記載の変異型ルシフェラーゼは、 CLuc のアミノ酸配列において、第 2変異型ルシフヱラーゼのアミノ酸置換の位置に相当す る第 178番目のメチォニンと共に、第 191番目のロイシン、第 280番目のチロシン、第 3 72番目のアルギニン、第 403番目のグルタミン、第 404番目のァスパラギン及び第 405 番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成るタンパク質である 。該タンパク質は、 CLucと同様にルシフェラーゼ活性を示す。ところが、これらアミノ酸 置換により、該タンパク質は、ルシフェラーゼ活性によるルシフェリン酸ィ匕の際の発光 において、 CLucによる発光スペクトルピークが 454nmであるのに対して、 435nm以下、 特に 420ηπ!〜 435nm (例えば、 425nm〜435nm)の発光スペクトルピークとなる。ここで、 各アミノ酸位置におけるアミノ酸置換の例としては、以下の (A)〜(G)の組合せが挙げ られる:
(A)上記第 178番目のメチォニンからアルギニンへの置換;
(B)上記第 191番目のロイシンからグルタミンへの置換;
(C)上記第 280番目のチロシン力 ァスパラギン酸への置換;
(D)上記第 372番目のアルギニンからロイシンへの置換;
(E)上記第 403番目のグルタミン力 プロリンへの置換;
(F)上記第 404番目のァスパラギン力 グリシンへの置換;
(G)上記第 405番目のトレオニン力 メチォニンへの置換。
[0118] 一方、第 9変異型ルシフェラーゼにおける上記 (b)記載の変異型ルシフェラーゼは、 (a)記載の変異型ルシフェラーゼにおいて、上述した所定のアミノ酸以外の位置で、さ らに 1又は数個 (例えば 1〜10個、好ましくは 1〜5個、特に好ましくは 1〜3個)のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 435nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するものである。上述した所定のアミノ酸以外の 位置としては、例えば、第 291番目のメチォニン、第 313番目のトレオニンが挙げられ る。
[0119] また、第 9変異型ルシフェラーゼにおける上記 (c)記載の変異型ルシフェラーゼは、( a)記載の変異型ルシフェラーゼのアミノ酸配列力 CLucの分泌シグナルペプチドを 除 ヽた成熟タンパク質である。
[0120] さらに、第 9変異型ルシフェラーゼにおける上記 (d)記載の変異型ルシフェラーゼは 、(b)記載の変異型ルシフェラーゼのアミノ酸配列から CLucの分泌シグナルペプチド を除 、た成熟タンパク質である。
[0121] なお、上述した第 1〜第 9変異型ルシフェラーゼの各 (a)又は (c)記載のタンパク質の アミノ酸配列に対して、各所定のアミノ酸置換を維持し、 80%以上、好ましくは 90%以 上、特に好ましくは 95%以上のアミノ酸同一性を有するアミノ酸配列力 成り、且つ所 定の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質も本発明に係る 変異型ルシフェラーゼに含まれる。
[0122] また、ルシフェラーゼの発光スペクトルピークにっ 、ては、測定方法やスペクトル補 正方法、スムージング処理などにより誤差が生じる場合がある。そこで、野生型ルシフ エラーゼ (CLuc)に対して上述によって示された相対的な発光スペクトルピークの移動 を伴う限り、上述した発光スペクトルピーク値の士数 nmの誤差範囲内 (例えば士 5nm、 好ましくは士 4nm、特に好ましくは士 2nm)の発光スペクトルピークのルシフェラーゼ活 性を有する変異型ルシフェラーゼも、本発明に係る変異型ルシフェラーゼに含まれる
[0123] 以下では、第 1〜第 9変異型ルシフェラーゼを合わせて、「本発明に係る変異型ル シフェラーゼ」という。
[0124] 上述の本発明に係る変異型ルシフェラーゼは、外来タンパク質又はペプチドと連結 された融合タンパク質とすることができる。ここで、外来タンパク質又はペプチドとは、 本発明に係る変異型ルシフェラーゼに対して外因的なタンパク質又はペプチドを意 味する。外来タンパク質又はペプチドとしては、例えば、タンパク質精製に使用される タンパク質又はペプチド (グルタチオン S-トランスフェラーゼ、マルトース結合タンパク 質、チォレドキシン、セルロース結合ドメイン、ストレプトアビジン結合ペプチド、ヒスチ ジンタグなど)、細胞外分泌又は細胞内器官への移行のためのシグナルペプチド (出 芽酵母の αファクターの分泌シグナルペプチド (アミノ酸配列:配列番号 3)、出芽酵 母のインベルターゼのシグナルペプチド (アミノ酸配列:配列番号 4)、出芽酵母の膜タ ンパク質 Ste6pのシグナルペプチド (アミノ酸配列:配列番号 5)等)が挙げられる。例え ば、形質転換対象の宿主に適した分泌シグナルペプチドと本発明に係る変異型ルシ フェラーゼの成熟タンパク質とを連結した融合タンパク質をコードする遺伝子を、宿主 に形質転換することで、本発明に係る変異型ルシフェラーゼを細胞外に分泌発現さ せることができる。本発明に係る変異型ルシフェラーゼに対して外来タンパク質又は ペプチドを連結する位置は、本発明に係る変異型ルシフェラーゼと外来タンパク質又 はペプチドとがそれぞれの機能又は活性を有するように適宜選択することができる。 例えば、分泌シグナルペプチドと本発明に係る変異型ルシフェラーゼの成熟タンパク 質とを連結した融合タンパク質にお 、ては、分泌シグナルペプチドを当該成熟タンパ ク質の N末端側 (すなわち、配列番号 2に示されるアミノ酸配列における第 19番目のァ ミノ酸の N末端側)に連結することができる。
[0125] 本発明に係る遺伝子は、本発明に係る変異型ルシフェラーゼ又は上述の融合タン パク質をコードする遺伝子である。これら遺伝子を宿主に導入することで、本発明に 係る変異型ルシフェラーゼ又は融合タンパク質を発現させることができる。
[0126] 宿主としては、特に限定されるものではないが、酵母、大腸菌 (Escherichia coli)等の エッシェリヒァ属、バチルス'ズブチリス (Bacillus subtilis)等のバチルス属又はシユード モナス 'プチダ (Pseudomonas putida)等のシユードモナス属等に属する細菌、 COS細 胞等の動物細胞、 S19等の昆虫細胞、あるいはアブラナ科等に属する植物が挙げら れる。また酵母としては、いずれの酵母であってもよいが、例えば、サッカロミセス'セ レビシェ、シゾサッカロミセス 'ボンべ (Shizosaccharomyces pombe)、ピチア'パストリス (Pichia pastoris)、カンジダ 'アルビカンス(Candida albicans)、ハンセヌラ 'ポリモルフ ァ(Hansenula polymorpha)が挙げられ、特にサッカロミセス'セレピシェが好ましい。
[0127] 先ず本発明に係る変異型ルシフェラーゼをコードする遺伝子又は外来タンパク質 若しくはペプチドをコードする遺伝子を準備する。これら遺伝子は、例えば、これら遺 伝子が由来する生物 (例えば、シプリディナ'ノクティル力)のゲノム DNA等を铸型とし て、該領域の両端の塩基配列に相補的なプライマーを用いた PCRによって容易に得 ることができる。ただし、本発明に係る変異型ルシフェラーゼは、 CLucのアミノ酸配列 においてアミノ酸置換を有するものであるので、上述のように得られた PCR産物に、部 位特異的突然変異誘発法等によって変異をさらに導入することによって、本発明に 係る変異型ルシフェラーゼをコードする遺伝子を得ることができる。
[0128] ー且、塩基配列が確定されると、その後は化学合成によって、又はクローニングさ れたプローブを铸型とした PCRによって、ある 、は該塩基配列を有する DNA断片をプ ローブとしてハイブリダィズさせることによって、本発明に係る変異型ルシフェラーゼ をコードする遺伝子又は外来タンパク質若しくはペプチドをコードする遺伝子を得る ことができる。さらに、部位特異的突然変異誘発法等によって本発明に係る変異型ル シフェラーゼをコードする遺伝子又は外来タンパク質若しくはペプチドをコードする遺 伝子の変異型であって変異前と同等の機能を有するものを合成することができる。
[0129] なお、本発明に係る変異型ルシフェラーゼをコードする遺伝子又は外来タンパク質 若しくはペプチドをコードする遺伝子に変異を導入するには、 Kunkel法、 Gapped dup lex法等の公知の手法又はこれに準ずる方法を採用することができる。例えば部位特 異的突然変異誘発法を利用した変異導入用キット(例えば Mutant-K(TAKARA社製) や Mutant— G(TAKARA社製))などを用いて、あるいは、 TAKARA社の LA PCR in vitr o Mutagenesisシリーズキットを用いて変異の導入が行われる。
[0130] 本発明に係る変異型ルシフェラーゼをコードする遺伝子と外来タンパク質又はぺプ チドをコードする遺伝子とを連結し、融合タンパク質をコードする遺伝子を作製する 場合には、本発明に係る変異型ルシフェラーゼをコードする遺伝子に外来タンパク 質又はペプチドをコードする遺伝子を連結した DNAを準備する。このような DNAは、 連結した DNA自体であってもよぐ当該 DNAを含むベクターなどであってよ 、。
[0131] 本発明に係る変異型ルシフェラーゼをコードする遺伝子に外来タンパク質又はべ プチドをコードする遺伝子を連結する方法は、それぞれ精製された本発明に係る変 異型ルシフェラーゼをコードする遺伝子及び外来タンパク質又はペプチドをコードす る遺伝子を適当な制限酵素で切断し、連結する方法が採用される。また、本発明に 係る変異型ルシフェラーゼをコードする遺伝子と外来タンパク質又はペプチドをコー ドする遺伝子のそれぞれ一部に相同な領域を持たせることにより、 PCR等を用 、た in vitro法又は酵母等を用いた in vivo法によって両者を連結する方法であってもよ 、。
[0132] 本発明に係る遺伝子を含む組換えベクターは、適当なベクターに本発明に係る遺 伝子を挿入することにより得ることができる。使用するベクターは、宿主中で複製可能 なものであれば特に限定されず、例えばプラスミド、シャトルベクター、ヘルパープラ スミド等が挙げられる。また該ベクター自体に複製能がない場合には、宿主の染色体 に挿入すること等によって複製可能となる DNA断片であってもよい。
[0133] プラスミド DNAとしては、大腸菌由来のプラスミド(例えば pBR322、 pBR325、 pUC118 、 pUC119、 pUC18、 pUC19、 pBluescript等)、枯草菌由来のプラスミド(例えば pUBll 0、 pTP5等)、酵母由来のプラスミド(例えば ΥΕρ13等の ΥΕρ系、 YCp50等の YCp系等) 等が挙げられ、ファージ DNAとしてはえファージ(Charon4A、 Charon21A、 EMBL3、 E MBL4、 gtl0、 gtll、 λ ZAP等)が挙げられる。さらに、レトロウイルス又はヮクシ- ァウィルス等の動物ウィルスやバキュロウィルス等の昆虫ウィルスベクターを用いるこ とちでさる。
[0134] ベクターに本発明に係る遺伝子を挿入する方法は、上述した本発明に係る変異型 ルシフェラーゼをコードする遺伝子に外来タンパク質又はペプチドをコードする遺伝 子を連結する方法に準じて行うことができる。
[0135] さらに、本発明に係る遺伝子又は本発明に係る遺伝子を含む組換えベクター (以下 、「本発明に係る組換えベクター等」という)を宿主中に導入することにより形質転換体 を作製する。
[0136] 酵母への本発明に係る組換えベクター等の導入方法は、酵母に DNAを導入する 方法であれば特に限定されず、例えば電気穿孔法 (エレクト口ポレーシヨン法)、スフエ 口プラスト法、酢酸リチウム法等が挙げられる。また、 Yip系等のベクターあるいは染色 体中の任意の領域と相同な DNA配列を用いた染色体への置換 '挿入型の酵母の形 質転換法であっても良い。さらに酵母への本発明に係る組換えベクター等の導入方 法は、一般的実験書または学術論文などに記載された!ヽかなる方法によってもょ ヽ。
[0137] 細菌への本発明に係る組換えベクター等の導入方法は、細菌に DNAを導入する 方法であれば特に限定されるものではな 、。例えばカルシウムイオンを用いる方法、 エレクト口ポレーシヨン法等が挙げられる。 [0138] 動物細胞を宿主とする場合は、サル細胞 COS-7、 Vero、チャイニーズハムスター卵 巣細胞 (CHO細胞)、マウス L細胞等が用いられる。動物細胞への本発明に係る組換 えベクター等の導入方法としては、例えばエレクト口ポレーシヨン法、リン酸カルシウム 法、リポフエクシヨン法等が挙げられる。
[0139] 昆虫細胞を宿主とする場合は、 S19細胞等が用いられる。昆虫細胞への本発明に係 る組換えベクター等の導入方法としては、例えばリン酸カルシウム法、リポフエクシヨン 法、エレクト口ポレーシヨン法等が挙げられる。
[0140] 植物を宿主とする場合は、植物体全体、植物器官 (例えば葉、花弁、茎、根、種子 等)、植物組織 (例えば表皮、師部、柔組織、木部、維管束等)、植物培養細胞等が用 いられる。植物への本発明に係る組換えベクター等の導入方法としては、例えばエレ タトロポレーシヨン法、ァグロバタテリゥム法、パーティクルガン法、 PEG法等が挙げら れる。
[0141] 本発明に係る組換えベクター等が宿主に組み込まれたカゝ否かの確認は、 PCR法、 サザンハイブリダィゼーシヨン法、ノーザンハイブリダィゼーシヨン法等により行うこと ができる。例えば、形質転換体から DNAを調製し、 DNA特異的プライマーを設計して PCRを行う。その後は、増幅産物についてァガロースゲル電気泳動、ポリアクリルアミ ドゲル電気泳動、キヤピラリー電気泳動等を行い、臭化工チジゥム、 SYBR Green液等 により染色し、そして増幅産物をバンドとして検出することにより、形質転換されたこと を確認する。また、予め蛍光色素等により標識したプライマーを用いて PCRを行い、 増幅産物を検出することもできる。さらに、マイクロプレート等の固相に増幅産物を結 合させ、蛍光、酵素反応等により増幅産物を確認する方法も採用してもよい。
[0142] 次 ヽで、得られた形質転換体を生育可能な条件下で培養する。形質転換体の培 養物や培養上清をそのまま酵素活性の測定に供する場合には、本発明に係る変異 型ルシフェラーゼが失活しない条件下で培養することとなる。例えば、本発明に係る 組換えベクター等を導入した形質転換酵母の培養にぉ 、て、酵母が生育し且つ本 発明に係る変異型ルシフェラーゼが失活しないように、温度は、例えば 4〜37°C、好 ましくは 20〜30°Cに設定する。また培地の pHは、例えば 3.5〜6.5、好ましくは 5.5〜6. 0に設定すればよい。培養時間は、例えば 1〜120時間、好ましくは対数増殖期である 1〜24時間である。
[0143] 以上のようにして、本発明に係る変異型ルシフェラーゼ又は本発明に係る変異型 ルシフェラーゼと外来タンパク質若しくはペプチドとの融合タンパク質を上述の形質 転換体より得ることができる。
[0144] 本発明に係る変異型ルシフェラーゼの活性の測定では、例えば、上述の形質転換 体の培養後、得られる培養物又は培養上清を、本発明に係る変異型ルシフェラーゼ の酵素反応が生じうる条件下で、基質であるルシフェリン (例えば、ゥミホタルルシフエ リン)又はその誘導体と接触させる。ここで、ルシフェリン誘導体としては、例えば、ル シフェリンのイミダゾピラジノン骨格における C2位、 C6位又は C8位側鎖の化学構造を 、例えば芳香族、脂肪族、あるいはカルボン酸ゃァミノ基などの水溶液中で電離する ような官能基等に置換したものが挙げられる。ゥミホタルルシフェラーゼによって発光 する限り、官能基の構造や位置は限定されない。このような置換により、発光強度増 強、自己分解抑制等の改善が期待できる。
[0145] また、酵素反応が生じる条件とは、本発明に係る変異型ルシフェラーゼの活性中心 にルシフェリンが特異的に結合して複合体が生成され、酵素反応が進む条件を意味 する。また、接触とは、培養物又は培養上清中の本発明に係る変異型ルシフェラー ゼとルシフェリンとが近接し、酵素反応が生じる状態を意味する。また、培養物とは、 形質転換体を含む培養液や培地を意味する。本発明に係る変異型ルシフェラーゼ 力 例えば、宿主に適した分泌シグナルペプチドと連結されている場合には、培地中 に分泌されるため、形質転換体を含む培養液や培地をそのまま使用することができる 。あるいは、形質転換体を遠心分離等によって分離した培養上清を使用してもよい。 培養上清は、例えば、希釈、濃縮、透析、精製等に供することもできる。
[0146] 接触させる条件として、温度は、例えば 0〜40°C、好ましくは 15〜30°Cに設定する。
また pHは、例えば 4.0〜9.0、好ましくは 6.0〜8.0に設定すればよい。接触時間 (反応 時間)は、例えば 1秒〜 30分間、好ましくは 1秒〜 30秒間である。特に種々の緩衝液で 希釈したルシフェリン又はその誘導体の溶液を培養物又は培養上清に添加すること で、培養物又は培養上清の pHを本発明に係る変異型ルシフェラーゼの酵素活性が 高い pHにシフトすることができる。例えば、本発明に係る変異型ルシフェラーゼを含 む培養物又は培養上清に対して、 2M以下 (好ましくは 50mM 200mM)で、且つ pH3. 5 9.0(好ましくは pH7.0 8.0)のトリス塩酸緩衝液 (Tris- HC1)等の緩衝液で希釈した ルシフェリン又はその誘導体の溶液を添加することで、上述した接触時の pHを設定 することができる。
[0147] 培養物又は培養上清に対する基質であるルシフェリン又はその誘導体の濃度は、 例えば本発明に係る変異型ルシフェラーゼを有する形質転換体の培養物又は培養 上清の濁度(例えば 600 nmにおける吸光度) 0.05以上に対して、ルシフェリン又はそ の誘導体を 0.1 μ Μ以上、好ましくは 1.25 2.5 μ Μの終濃度となるように添加する。
[0148] 次 、で、本発明に係る変異型ルシフェラーゼの酵素活性を測定する。測定方法は 、例えば、形質転換体の培養物又は培養上清とルシフェリン又はその誘導体との混 合物を、ルミノメーターを用いた発光測定に供し、相対発光強度 (RLU)として酵素活 性を測定する。また、活性測定時に酵素活性を補正して測定値を標準化するために 、培養液又は培養上清の濁度 (例えば 600 における吸光度)を測定し、相対発光 強度を濁度で除することによって補正した値 (RLU/OD)を、酵素活性値とすることが できる。あるいは、相対発光強度を標準化するために、形質転換体に含まれる ΑΤΡ 量を測定し、この値で相対発光強度を除する方法も好ましい。さらに、形質転換体に おいて、同時に別の酵素やタンパク質を発現させて、その酵素又はタンパク質量を 測定し、その値で相対発光強度を除して補正する方法でもよい。本発明に係る変異 型ルシフェラーゼは、 CLucとは異なる発光スペクトルピークのルシフェラーゼ活性を 示す。この発光スペクトルが異なる性質を利用して、発光を見分けることができ、 CLuc を発現させて、その CLuc由来の発光で除して補正する方法でもよい。
[0149] また、例えば、宿主がサッカロミセス 'セレビシェ等の微生物である場合、形質転換 体は寒天培地において生育し、コロニーを形成する。そこで、例えば、形質転換体を 含む寒天培地にルシフェリン又はその誘導体を添加した後、コロニーの発光強度を、 例えば CCDカメラなどを有する発光検出器を用いて測定することによって酵素活性 を測定することができる。
[0150] さらに、本発明に係る変異型ルシフェラーゼは、 CLucとは異なる発光スペクトルピ ークのルシフェラーゼ活性を示す。そこで、上述したルシフェラーゼ活性の測定に加 えて、例えば、透過特性の異なる複数の光学フィルターと CCDカメラとを有する発光 検出器を用いて、本発明に係る変異型ルシフェラーゼが上述した範囲の発光スぺク トルピークを有する力否かを測定する。
[0151] このようなルシフェラーゼ活性及び発光スペクトルピークの測定によって、有意なル シフェラーゼ活性と意図した発光スペクトルピークが示された場合に、本発明に係る 変異型ルシフェラーゼが得られたと判断することができる。
[0152] また、以上に説明した発光スペクトルピークの測定に準じて、 CLuc並びに本発明に 係る変異型ルシフェラーゼをレポータータンパク質として用いて、複数のプロモータ 一の転写活性を同時に評価することができる。
[0153] 本発明に係るプロモーター転写活性評価方法では、野生型 CLuc、本発明に係る 変異型ルシフェラーゼ並びに野生型 CLuc又は本発明に係る変異型ルシフェラーゼ と外来タンパク質若しくはペプチドとの融合タンパク質のうち、 2以上のルシフェラーゼ を使用する。ここで、野生型 CLucとは、以下のタンパク質を意味する。
[0154] (a)配列番号 2に示されるアミノ酸配列力 成る CLuc;
(b)配列番号 2に示されるアミノ酸配列にぉ 、て、分泌シグナルペプチドを欠失した アミノ酸配列から成る成熟タンパク質。
[0155] また、野生型 CLucと外来タンパク質若しくはペプチドとの融合タンパク質とは、外来 タンパク質又はペプチドと上記 (a)又は (b)のタンパク質とが連結された融合タンパク質 を意味する。
[0156] 先ず、これら 2以上のルシフェラーゼ遺伝子のそれぞれ 5'上流側に評価対象のそれ ぞれ異なるプロモーターを連結した DNAを宿主に導入する。ルシフェラーゼ遺伝子 の 5'上流側にプロモーターを連結させることで、当該プロモーターの制御下にルシフ エラーゼ遺伝子が配置されることとなる。次いで、得られた形質転換体を培養し、培 養物又は培養上清を得る。さら〖こ、培養物又は培養上清をルシフェリン又はその誘 導体と接触させる。次いで、導入した複数のルシフェラーゼの活性による発光スぺク トルピークの違 、によるそれぞれの発光強度を測定することで、複数のプロモーター の転写活性を同時に、且つ定量的に評価することができる。この際、複数のプロモー ターのうち 1つのプロモーターの転写活性を基準とし、他のプロモーターの転写活性 を補正することもできる。複数の発光スペクトルピークの違いに基づく発光強度は、例 えば、特開 2004-187652号公報に記載の原理を応用した機器であるアト一株式会社 のマルチレポーターアツセィ対応ルミノメーター「AB- 2250ルミネッセンサー MCA」に 適当なフィルターセットを装着すること等で測定することができる。
[0157] さらに、本発明に係る変異型ルシフェラーゼあるいは本発明に係る変異型ルシフエ ラーゼと外来タンパク質若しくはペプチドとの融合タンパク質を、 BRET(Bioluminescen ce resonance energy transfer)等に用いて発光又はエネルギーを放出させることがで きる。
[0158] 本発明に係る発光又はエネルギー放出方法では、先ず、本発明に係る変異型ル シフェラーゼある 、は本発明に係る変異型ルシフェラーゼと外来タンパク質若しくは ペプチドとの融合タンパク質を、ルシフェリン又はその誘導体と接触させる。この接触 により、ルシフェリンは励起状態のォキシルシフェリンへと酸ィ匕される。次いで、この励 起状態のォキシルシフェリンとィ匕学物質とを作用させる。ここで、化学物質とは、発光 体の励起エネルギーをエネルギー共鳴によって受け取り、そのエネルギーによって 蛍光を発することができる物質を意味する。化学物質としては、例えば、フルォロセィ ン、 FITC、 TRITC、 TAMRA、並びに GFP (ォワンクラゲ由来緑色蛍光タンパク質)及 びその変異体 (CFP、 YFP等)並びに DsRed (カイメン由来赤色蛍光タンパク質)等の蛍 光タンパク質が挙げられる。また、作用とは、ォキシルシフェリンと化学物質とを距離 的に、且つ位相的にエネルギーを転移できる位置に配置することを意味する。
[0159] 次いで、作用させることで、ォキシルシフヱリンが基底状態に戻る際の発光又は発 光に関与するエネルギーが化学物質に移行し、励起し、その励起エネルギーに依存 して発光させるか又はエネルギーを放出させることができる。
[0160] 以上に説明したように、本発明に係る変異型ルシフェラーゼを用いることで、一種類 の基質と一度の発光測定による複数の異なるプロモーターの転写活性の測定 (マル チレポーターアツセィ)が可能である。また、本発明に係る変異型ルシフェラーゼを用 いることで、特定の化学物質の励起スペクトルに合った発光スペクトルが提供され、よ り高い BRET効率を示し、強いシグナルが得られる。さらに、本発明に係る変異型ルシ フェラーゼを用いることで、複数の BRETを利用した複数のタンパク質の構造変化の 同時解析が可能である。
実施例
[0161] 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこ れら実施例に限定されるものではない。
[0162] 本発明に係る複数の変異型ルシフェラーゼとそれらが由来するルシフェラーゼをサ ッカロミセス ·セレピシェで発現させ、それぞれの発光スペクトルを比較した。
[0163] 〔実施例 1〕サッカロミセス'セレピシェにおける CLucの分泌発現
サッカロミセス'セレピシェにおいて、 CLucを分泌発現させる発現ベクターとして、 国際公開第 2006/132350号パンフレットに開示のプラスミド pCLuRA-TDH3を用いた
[0164] このプラスミド pCLuRA-TDH3は、出芽酵母の αファクターの分泌シグナルペプチド
(アミノ酸配列:配列番号 3)と CLucの成熟タンパク質 (配列番号 2に示す CLucのアミ ノ酸配列にぉ 、て、 1-18番目のアミノ酸配列を除 、たアミノ酸配列)との融合タンパク 質 (以下、「a CLuc」という)をコードする遺伝子(以下、「a CLuc遺伝子」という)を含 んでいる。配列番号 6に示すアミノ酸配列は、 α CLucのァミノ配列である。 αファクタ 一由来の分泌シグナルペプチドとの融合タンパク質とすることで、 CLucが菌体外へ 分泌される。
[0165] さらに、このプラスミド pCLuRA-TDH3においては、 a CLuc遺伝子の上流(5'側)に 、サッカロミセス.セレピシェの TDH3 (系統的遺伝子名: YGR192C)遺伝子のプロモ 一ターが組み込まれている。このプロモーターによって、 α CLuc遺伝子の発現が制 御される。配列番号 7に示す塩基配列は、プラスミド pCLuRA-TDH3の部分塩基配列 であり、 TDH3プロモーター配列を含む a CLucの開始コドン 5'上流 700bp、 a CLucの コード領域、及び CYC 1ターミネータ一配列を含む at CLucの終止コドン 3'下流 300bp までを含む配列である。
[0166] このプラスミド pCLuRA- TDH3を用いて、サッカロミセス'セレピシェ BY4743 A PRB1 株を形質転換した。形質転換には、 EZ-transformation kit(BIO lOl)を用いた。
[0167] 得られた形質転換体を、ゥラシルを含まな ヽ合成寒天培地 (0.67% Yeast nitrogen base without amino acids (べクトンティッキンソン)、 40 μ g/mlァテニン、 20 μ g/ml L— アルギニン一塩酸塩、 100 μ g/ml L-ァスパラギン酸、 100 μ g/ml L-グルタミン酸ナト リウム一水和物、 20 μ g/ml L-ヒスチジン、 60 μ g/ml L-ロイシン、 30 μ g/ml L-リジン 塩酸塩、 20 μ g/ml L-メチォニン、 50 μ g/ml L-フエ-ルァラニン、 375 μ g/ml L-セリ ン、 200 μ g/ml L-卜レオ-ン、 40 μ g/ml L-卜リプ卜ファン、 30 μ g/ml L-チロシン、 150 μ g/ml L-パリン、 2%グルコース及び 2.0%寒天:以下では単に「SD-ura寒天培地」と いう)に塗布し、 30°Cで 3日間培養した。その結果、プラスミド pCLuRA- TDH3を保有す る形質転換体を得た。
[0168] 上記のように得られたプラスミド pCLuRA-TDH3を保有する形質転換体を、緩衝作 用を有し、且つゥラシルを含まない合成液体培地(0.67% Yeast nitrogen base witho ut amino acids (ベタトンディッキンソン)、 40 μ g/mlアデ-ン、 20 μ g/ml L-アルギ-ン 一塩酸塩、 100 μ g/ml L-ァスパラギン酸、 100 μ g/ml L-グルタミン酸ナトリウム一水 和物、 20 μ g/ml L-ヒスチジン, 60 μ g/ml L-ロイシン、 30 μ g/ml L-リジン塩酸塩、 20 μ g/ml L-メチォニン、 50 μ g/ml L-フエ-ルァラニン、 375 μ g/ml L-セリン、 200 μ g/ ml L-卜レオ-ン、 40 μ g/ml L-卜リプ卜ファン、 30 μ g/ml L-チロシン、 150 μ g/ml L-ノ リン、 2%グルコース及び 200mMリン酸カリウム, pH6.0 :以下では単に「buffered SD-ur a培地」と 、う)に接種して 30°Cで 24時間振盪培養した。
[0169] 振盪培養後、培養液を遠心分離し、培養上清を単離した。単離した 20 μ 1の培養上 清に対し、 80 μ 1のルシフェリン溶液(1 μ Μルシフェリン、 lOOmM Tris- HC1, pH7.4)を 加え、ベルトールド LB960ルミノメーターで発光を測定した。その結果、 4xl05RLU/秒 の発光が観察された。つまり、サッカロミセス'セレピシェ BY4743 A PRB1株で、 CLuc が分泌発現されて ヽることが確認された。
[0170] 〔実施例 2〕ランダム変異導入による変異型ルシフェラーゼの単離
2-1.変異型 CLuc遺伝子ライブラリー (N領域変異型ライブラリー)の作製
プラスミド pCLuRA-TDH3の a CLucコード領域に Error Prone PCR (誤りがち PCR)を 用いてランダム点突然変異を導入した。
[0171] 変異を導入する対象領域は、 a CLucコード領域の前半部分 (配列番号 7に示す塩 基配列において第 900番目〜第 1813番目の塩基配列、以下「N領域」と称する)とし た。範囲を限定した理由は、 Error Prone PCRにおいて、長い領域の増幅が困難であ る場合が多いためである。また、配列番号 7に示す塩基配列において第 701番目〜 第 899番目の塩基配列を対象領域としな力つた理由は、この部分が大部分 aファクタ 一の分泌シグナルペプチドをコードする領域であったためである。
[0172] N領域の Error Prone PCRでは、以下のオリゴ DNAプライマーを使用した。
[0173] mut- CLuc- F: ATACTACTATTGCCAGCATTGCTGCTAAAG (配列番号 8)
mut- CLuc- NR2: CACGTGTGAGGCTCGCTCGTCTCCACCCAT (配列番号 9) N領域を対象とした Error Prone PCRの反応液の組成は以下の通りであった: Taq D NA polymerase (ロッンュ、 1 unit/ μ 1)5 μ 1; 10χΡし R buffer without magnesium ion 10 μ 1; Error Prone PCR用デォキシヌクレオチド混合溶液 10 μ 1; 25mM塩化マグネシゥ ム 28 μ 1; 5mM塩化マンガン2.5 μ 1;プラスミド pCLuRA-TDH3溶液 (150ng/ μ 1)1 ^ 1; m ut- Clue- F (配列番号 8)(10pmol/ μ 1)3 μ 1; mut- CLuc- NR2(配列番号 9)(10pmol/ μ 1)3 μ 1;滅菌水 37.3 μ 1。
[0174] 上述の Error Prone PCR用デォキシヌクレオチド混合溶液の組成は以下の通りであ つた: lOOmM dCTP 100 μ 1; lOOmM dTTP 100 μ 1; lOOmM dGTP 20 μ 1; lOOmM dAT P 20 ^ 1;滅菌水 760 μ 1。
[0175] Error Prone PCR反応は、 94°Cで 1分 (変性)、 45°Cで 1分 (アニーリング)及び 72°Cで 1 分 (伸長)のサイクルを 30サイクルで行った。
[0176] Error Prone PCR反応によって得られた PCR産物を、 1 %ァガロースで電気泳動した 結果、約 900bpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS EtB r SPIN COLUMNSで精製し、エタノール沈殿を行った後、 20 μ 1の ΤΕ緩衝液 (10mM T ris- HC1、 ImM EDTA,pH8.0)に溶解し、 DNA溶液とした。
[0177] 次いで、サッカロミセス'セレピシェに導入するのに十分な量の DNAを確保するため に、上記 DNA溶液を铸型としてさらに PCRを行った (以下、「2nd PCR」と称する)。
[0178] 2nd PCRの反応液の組成は以下の通りであった: KOD plus DNA polymerase (東洋 紡績) 1 μ 1; 10x KOD plus buffer 5 ^ 1; 2mM each dNTP mixture 5 ^ 1; 25mM硫酸マ グネシゥム 2 1; mut- Clue- F (配列番号 8)(10pmol/ μ 1)1.5 μ 1; mut- CLuc- NR2 (配列 番号 9) (lOpmol/ μ 1)1.5 μ 1;上記 DNA溶液 1 μ 1;滅菌水 33 μ 1。
[0179] 2nd PCR反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°C で 15秒 (変性)、 50°Cで 30秒 (アニーリング)及び 68°Cで 1分 (伸長)のサイクルを 30サイク ルで行った。
[0180] 2nd PCR反応によって得られた PCR産物を、 1%ァガロースで電気泳動した結果、 約 900bpの DNA断片を確認した。以下、この DNA断片を「N領域断片」と称する。
[0181] N領域断片を、ァガロースゲルからシグマ社 GeneElute MINUS EtBr SPIN COLUM NSを用いて精製し、エタノール沈殿を行った後、 20 1の TE緩衝液に溶解した (以下 、「N領域断片溶液」と呼ぶ)。
[0182] サッカロミセス'セレピシェは、一般に細胞内で高い確率で相同組換えを起こす。そ こで、プラスミド pCLuRA-TDH3の塩基配列のうち、配列番号 7に示す塩基配列にお Vヽて 967番目から 1703番目の塩基配列を欠 ヽた直鎖状 DNA断片(以下、「補 N領域 断片」と称する)を、上述のように変異を導入した「N領域断片」と同時にサッカロミセス •セレピシェに導入すれば、サッカロミセス ·セレピシェ内で環状 DNA (N領域に変異 が導入された変異型プラスミド pCLuRA-THD3)が相同組換えにより再構成され、サッ カロミセス ·セレピシェはこの再構成されたプラスミドで形質転換され得る。
[0183] 「補 N領域断片」を、以下のようにして PCRにより作製した。 PCRでは、以下のオリゴ D NAプライマーを用いた。
[0184] vec-CLuc-R: GCTTCAGCCTCTCTTTTCTCGAGAG (配列番号 10)
SQ-CLuc-NF2: TTCTCGAGCCGTACAAGGACAGCTGCCGCA (配列番号 11) PCRの反応液の組成は、以下の通りであった: KOD plus DNA polymerase (東洋紡 績) 1 μ 1; 10x KOD plus buffer 5 ^ 1; 2mM each dNTP mixture 5 ^ 1; 25mM硫酸マグネ シゥム 2 1; vec- CLuc- R (配列番号 lOXlOpmol/ μ 1)1.5 μ 1; SQ- CLuc- NF2 (配列番 号 l lXlOpmol/ μ 1)1.5 μ 1;プラスミド pCLuRA-TDH3溶液 (150ng/ μ 1)1 μ 1;滅菌水 33
[0185] PCR反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15 秒 (変性)及び 68°Cで 8分 (アニーリング及び伸長)のサイクルを 30サイクルで行った。
[0186] 得られた PCR産物を、 1%ァガロースで電気泳動した結果、約 7kbpの DNA断片を確 認した。この DNA断片を、シグマ社 GeneElute MINUS EtBr SPIN COLUMNSで精製 し、エタノール沈殿を行った後、 20 1の TE緩衝液に溶解した (以下、「補 N領域断片 溶液」と呼ぶ)。
[0187] N領域断片と補 N領域断片との間でオーバーラップする部分は、配列番号 7に示す 塩基配列において、第 900番目〜第 966番目の塩基配列及び第 1704番目〜第 1813 番目の塩基配列であった。
[0188] N領域断片溶液と補 N領域断片溶液とを、それぞれ 5 μ 1ずつ混合し、酢酸リチウム 法で、サッカロミセス'セレピシェ BY4743 A PRB1株を形質転換した。形質転換に供し たサッカロミセス'セレピシェ BY4743 A PRB1株を、 SD- ura寒天培地に塗沫し、 30°C で 48時間保温した。出現した多数のコロニーを、 N領域変異型ライブラリ一とした。
[0189] 2-2.変異型 CLuc遺伝子ライブラリー (C領域変異型ライブラリー)の作製
上述の N領域変異型ライブラリーの作製と同様に、 a CLucコード領域の後半部分を 変異を導入する対象領域とした C領域変異型ライブラリーを作製した。
[0190] 変異を導入する対象領域は、 a CLucコード領域の後半部分と a CLucコード領域 の 3'側非コード領域の約 60bp (配列番号 7に示す塩基配列にお 、て第 1554番目〜 第 2663番目の塩基配列、以下「C領域」と称する)とした。 C領域に oc CLucコード領域 の 3'側非コード領域を含めた理由は、変異を導入すべき a CLucコード領域の外で細 胞内相同組換えを起こすようにし、 a CLucコード領域の C末端コード領域に対する変 異導入の効率に影響を与えな 、ようにするためである。
[0191] 上述の N領域変異型ライブラリーの N領域断片に相当する C領域断片を、以下のォ リゴ DNAプライマーを用いた以外は上記 Error Prone PCR及び 2nd PCRと同様の方 法で PCRを行い、作製した。
[0192] mut-CLuc-CFl : TCTCTGGCCTCTGTGGAGATCTTAAAATGA (配列番号 12) mut-CLuc-R: AACTCCTTCCTTTTCGGTTAGAGCGGATGT (配列番号 13) 得られた PCR産物を、 1 %ァガロースで電気泳動した結果、約 l , 100bpの DNA断片 を確認した。次いで、この DNA断片 (C領域断片)を、ァガロースゲル力もシグマ社 Gen eElute MINUS EtBr SPIN COLUMNSを用いて精製し、エタノール沈殿を行った後、 2 0 1の TE緩衝液に溶解し、 C領域断片溶液を得た。
[0193] 上述の N領域変異型ライブラリーの補 N領域断片に相当する補 C領域断片を作製し た。補 C領域断片の作製は、補 N領域断片の作製方法に準じて行った。相違点は、 用いたオリゴ DNAプライマーと、 PCR反応条件であった。
[0194] 用!、たオリゴ DNAプライマーは以下の通りであつた。
[0195] vec-CLuc-F: TCTAGAGGGCCGCATCATGTAATTA (配列番号 14)
SQ-CLuc-CRl: TGGACAACCGTCAAACTCCTGGTTGATCTT (配列番号 15) PCR反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15 秒(変性)、 55°Cで 30秒(アニーリング)及び 68°Cで 8分 (伸長)のサイクルを 30サイクル で行った。
[0196] 得られた PCR産物を、 1%ァガロースで電気泳動した結果、約 6.5kbpの DNA断片を 確認した。この DNA断片 (補 C領域断片)を、シグマ社 GeneElute MINUS EtBr SPIN C OLUMNSで精製し、エタノール沈殿を行った後、 20 1の TE緩衝液に溶解し、補 C領 域断片溶液を得た。
[0197] C領域断片と補 C領域断片との間でオーバーラップする部分は、配列番号 7に示す 塩基配列において、第 1554番目〜第 1663番目の塩基配列及び第 2576番目〜第 266 3番目の塩基配列であった。
[0198] C領域断片溶液と補 C領域断片溶液とを、それぞれ 5 μ 1ずつ混合し、酢酸リチウム 法で、サッカロミセス'セレピシェ BY4743 A PRB1株を形質転換した。形質転換に供し たサッカロミセス'セレピシェ BY4743 A PRB1株を、 SD- ura寒天培地に塗沫し、 30°C で 48時間保温した。出現した多数のコロニーを、 C領域変異型ライブラリ一とした。
[0199] 2-3.変異型ルシフェラーゼのスクリーニング
発光スペクトルがシフトした変異型ルシフェラーゼのスクリーニングは、その発光を、 透過特性が異なる 2種類の光学フィルターを使って、 CCDカメラで順次撮影すること によって行った。使用した光学フィルタ一は、 SCHOTT社の GG495と BG28である。前 者は、 495nm付近を境とするロングパスフィルターである。後者は、 450nm付近を透過 極大とするバンドパスフィルターである。同一試料 (ルシフェラーゼが含まれる培養上 清)を、それぞれのフィルターを順次使用して CCDカメラで撮影し、その記録された信 号強度を比較した。その比率が野生型 CLucと異なっていれば、発光スペクトルのシ フトが起きていることになる。
[0200] 96穴ディープゥエルプレート(2ml/ゥエル)に、 1mlずつ buffered SD- ura培地を分注 し、 N領域変異型ライブラリー又は C領域変異型ライブラリーのコロニーを、コロニーピ ッカーでそれぞれのゥエルに 1コロニーずつ植菌した。なお、対照として、 6ゥエルには 、変異が導入されて ヽな ヽ野生型 CLucを分泌発現するサッカロミセス ·セレピシェ (プ ラスミド pCLuRA-TDH3で形質転換された BY4743 Δ PRB1株)を植菌した。
[0201] 次!、で、植菌したプレートを、 30°Cにお!/、て約 48時間培養した後、 l,800rpmで遠心 分離して、各ゥエル力も培養上清 20 1を黒色 96穴プレートに移した。
[0202] それぞれのゥエルに、ルシフェリン溶液(1 μ Μルシフェリン、 lOOmM Tris-HCl, pH7 .4)を加え、 GG495を装着した ATTO社 Light Captureにプレートをセットし、 30秒〜 2分 間撮影した。次いで、直ちに光学ガラスフィルターを BG28に換装し、再び 30秒〜 2分 間撮影した。撮影画像は、 TIFFファイルとしてコンピューターに保存した。
[0203] それぞれのフィルターで撮影した画像を、画像処理ソフトウェア(例えば、 Adobe Ph otoshop)で処理し、 GG495と BG28とで撮影した画像の信号強度の比を疑似色化し、 野生型 CLucのものと目視比較することによって、発光スペクトルシフトが起きていると 思われるクローンを選び出した。
[0204] このように、 N領域変異型ライブラリー及び C領域変異型ライブラリーのそれぞれ千 数百クローンをスクリーニングすることによって、 N領域変異型ライブラリーからは、短 波長側にシフトしたと思われる M178K変異体 (配列番号 2に示されるアミノ酸配列にお いて、第 178番目のメチォニンがリジンに置換された M178K変異型 CLucを有するクロ ーン;第 2変異型ルシフェラーゼを有する形質転換体に相当する)を、一方、 C領域変 異型ライブラリーからは長波長側にシフトしたと思われる K375R変異体及び K375E変 異体 (配列番号 2に示されるアミノ酸配列において、第 375番目のリジンがそれぞれァ ルギニン及びグルタミン酸に置換された K375R変異型及び K375E変異型 CLucを有 するクローン;第 1変異型ルシフェラーゼを有する形質転換体に相当する)を得た。
[0205] ここで、例えば、「K375R変異型 CLuc」とは、配列番号 2において第 375番目の位置 に相当するリジンがアルギニンに置換された変異型 CLucを表す。アミノ酸のアルファ ベット記号は国際純正 ·応用化学連合-国際生化学連合 (IUPAC-IUB)勧告によるァ ミノ酸を表す一文字記号である。また、「K375R変異体」とは、 K375R変異型 CLucを有 するクローンを表す。さらに、 K375R変異体が保持するプラスミドを「pCLuRA-TDH3[ K375R]」と称する。以下では、変異型 CLuc、変異型 CLucを有する変異体 (クローン)、 及び変異体が保持するプラスミドを同様の様式で称する。
[0206] 2-4.変異型ルシフェラーゼの発光スペクトル測定
以下の (a)〜( の形質転換酵母を、それぞれ buffered SD-ura培地で振盪培養した 後、遠心分離によって、その培養上清を回収した。回収した培養上清を、それぞれ Vi vaSpin (分画分子量 10,000、ザルトリウス社)で 10倍程度に濃縮した。
[0207] (a)野生型 CLucを分泌発現するサッカロミセス ·セレピシェ (プラスミド pCLuRA-TDH 3で形質転換された BY4743 Δ PRB1株)
(b) M178K変異体
(c) K375R変異体
(d) K375E変異体
次いで、得られた各培養上清の濃縮液を、 ΑΤΤΟ¾ΑΒ-1850発光分光光度計に供 し、発光スペクトルを測定した。
[0208] 反応液の組成は以下の通りであった: 1 μ Μルシフェリン、 lOOmM Tris- HC1, pH7.5
、及び上記濃縮液 1〜3 μ 1程度。
[0209] 測定した発光スペクトルを図 1に示す。図 1は、各ルシフェラーゼについての波長に 対する相対発光強度を示す。「野生型」は野生型 CLuc、「M178K」は M178K変異型 C
Luc、「K375R」は K375R変異型 CLuc、「K375E」は K375E変異型 CLucの測定結果で ある。
[0210] 図 1から判るように、目測では、野生型 CLucの発光スペクトルピークは 453nmであつ たのに対して、 K375R変異型 CLucの発光スペクトルピークは 461nmで、 8nm長波長側 にシフトしていた。また、 K375E変異型 CLucの発光スペクトルピークは 460nmで、 7nm 長波長側にシフトしていた。一方、 M178K変異型 CLucの発光スペクトルピークは 447 nmで、 6nm短波長側にシフトしていた。
[0211] このように、 K375R変異型 CLucと M178K変異型 CLucとの発光スペクトルピーク差は 14nm、また K375E変異型 CLucと M178K変異型 CLucとの発光スペクトルピーク差は 13 nmであり、デュアルレポーターアツセィに使用可能であると思われた。
[0212] 2-5.変異型ルシフェラーゼの発光スペクトルからのスペクトルピーク波長の決定 ATTOネ: fcAB-1850発光分光光度計にて測定したスペクトルにつ 、ては、以下のよう に、さらにデータを処理して、スペクトルピークを求めた。
[0213] まず、同機器に付属の制御プログラムを利用して、測定波長及び発光強度から成 るデータをファイルに書き出した。次いで、同機器に付属の補正用マクロファイル (Mi crosoft社 Excelのファイル)にこの書き出したデータを読み込ませ、波長に依存した検 出器感度の補正を行うと共に、ノ ックグラウンド (容器のみで発光スペクトルを測定し たもの)を差し引いたデータを得た。次に、このデータについて、第一列を波長、第二 列を (正規化された)発光強度とする CSV形式 (カンマ区切りのテキスト形式)ファイルと して書き出した。
[0214] さらに、得られたファイルを、デジタルデータ分析ソフト OriginLab社製 OriginPro v7.
5に読み込ませ、発光強度のノイズを取り除く処理を行った。ノイズ処理には、 FFT ( 高速フーリエ変換)解析を用いた。先ず、 FFT解析を行い、波長分布(なお、 OriginPr 0上では、横軸を周波数と見なすため、内部処理は Hzで行っている)を求めた。この 波長分布から、高調波波長成分をノイズとみなし、 LPF (ロー ·パス 'フィルター)処理 を行い、データのフィルタリングを行った。フィルタリング周期波長については、ノイズ を含んだ原データと処理後のデータの一致性の観点から、全てのデータについて 0. 05を採用した。全てのデータは一律に OriginPro上で LPF処理により 0.05以上の周期 波長成分をカットし、同プログラムの機能により逆フーリエ変換を行った後、ファイル に出力した。本処理によってスペクトルのアウトライン及びピーク位置を変えることなく 、ノイズの少なぐなめらかなスペクトル曲線に変換することが可能となった。
[0215] 最後に、このファイルを、 Microsoft社製 Microsoft Excel 2003で読み込み、発光強 度が最大値となる波長を自動判別し、その波長をピーク波長とした。
[0216] 上記 2-4に示す野生型 CLuc及び各変異型 CLucを用いたスペクトル測定につ!、て は基本的に 2回の測定を行い、それぞれ別々に上記のスペクトルピーク波長決定の 処理を行った。複数回の測定を行った場合には、得られたスペクトルピーク波長の平 均を求め、その値を採用した。同じサンプルについて 2回以上測定した場合において 、個々のスペクトルピーク波長の値とその平均値とのずれはおよそ lnm以内であった [0217] このようなスペクトルピーク波長の決定方法によれば、上記 2-4の M178K変異型 CLu cの発光スペクトルピークは、図 1に基づく目測の 447nmから 449nmへとずれた。なお、 野生型 CLuc及び他の変異型 CLucの発光スペクトルピークについてもそれぞれ、 目 測の 453nmから 454nmへ(野生型 CLuc)、 目測の 461nmから 463nmへ(K375R変異型 CLuc)、 目測の 460nmから 462nm (K375E変異型 CLuc)へとずれた。 目測によるスぺク トルピーク波長の決定は誤差が大き 、と考えられるので、以下上記のようなデータ処 理を統一して施し、スペクトルピーク波長をデータ処理により自動的に決定する方法 を用いた。
[0218] 以下の実施例においては、当該スペクトルピーク波長の決定方法に基づいて、変 異型 CLucの発光スペクトルピークを決定した。
[0219] なお、以下の実施例において、特に断らない限り、アミノ酸の位置に関する説明は 、配列番号 2に示されるアミノ酸配列に関するものである。
[0220] 〔実施例 3〕 T167飽和変異ライブラリーの構築と変異型 CLucのスクリーニング
実施例 2に記載のスクリーニングの結果、 T167I変異体 (配列番号 2に示されるァミノ 酸配列において、第 167番目のトレオニンがイソロイシンに置換された T167I変異型 C Lucを有するクローン;第 3変異型ルシフェラーゼを有する形質転換体に相当する)を 得た。このクローンが保持するプラスミドを「pCLuRA- TDH3[T167I]」と称する。この T1 671変異体が分泌する変異型 CLucによる発光スペクトルピークは、実施例 2の 2-5に 記載した方法で測定した結果、 458nmであり、野生型 CLucと比べて 4nm長波長側に シフトしていた。
[0221] そこで、配列番号 2に示されるアミノ酸配列において、第 167番目のアミノ酸が他の アミノ酸のいずれか 1つに置換された変異体ライブラリー(以降、「T167飽和変異ライ ブラリー」という)を以下のように構築し、さらに長波長側にシフトした変異体の取得を ρ み/こ。
[0222] T167飽和変異ライブラリ一は以下のようにして構築した。
[0223] 先ず、以下の PCR反応を行った。用いたオリゴ DNAプライマーは FAR-F: AACCCT CACTAAAGGGAACAAAAGCTGGCT (配列番号 16)と T238- Rev: GTACGGGTTG GCGATGATAGG (配列番号 17)であった。この PCRによって得られる DNA断片は、 配列番号 7に示す塩基配列において第 1番目〜第 1411番目の塩基配列に相当する 。この PCRの反応液の組成は、以下の通りであった: KOD plus DNA polymerase 0.4 μ 1; 10χ KOD plus buffer 2 μ \; 2mM each dNTP mixture 2 μ \; 25mM硫酸マグネシゥ ム 0.8 μ 1; FAR- F (配列番号 16) (10pmol/ μ 1) 0.6 μ 1; Τ238- Rev (配列番号 17) (10ρ mol/ μ 1) 0.6 μ 1;プラスミド pCLuRA-TDH3溶液 (3.8ng/ 1) 1 1;滅菌水 12.6 μ 1。 PC R反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変 性)、 50°Cで 30秒 (アニーリング)及び 68°Cで 2分 30秒 (伸長)のサイクルを 30サイクルで 行った。
[0224] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 1.4kbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS Et Br SPIN COLUMNS及びエタノール沈殿で精製し、 10 μ 1の ΤΕ緩衝液に溶解し、「DN A溶液 A」とした。
[0225] 次に以下の PCR反応を行った。用いたオリゴ DNAプライマーは、 T238X- Fw: CCTA
3 -UTR: GTAATACGACTCACTATAGGGCGAA (配列番号 19)であった。配列中 の「N」とは A,T,G,Cのいずれかであることを意味する。 T238X- Fw (配列番号 18)中の 「NNN」によって、配列番号 2における第 167番目のアミノ酸に飽和変異が導入される 。この PCRによって得られる DNA断片は、配列番号 7に示す塩基配列において第 139 1番目〜第 2875番目の塩基配列である力 T238X-FW (配列番号 18)に由来する配 列「NNN」によって、第 1412番目力 続く 3塩基 (配列番号 2における第 167番目のアミ ノ酸に対応するコドン)にランダム変異が導入されている。この PCRの反応液の組成 は、以下の通りであった: KOD plus DNA polymerase 0.4 ^ 1; 10x KOD plus buffer 2 μ 1; 2mM each dNTP mixture 2 μ \; 25mM硫酸マグネシウム 0.8 μ 1; T238X— Fw (配 列番号 18) (10pmol/ μ 1) 0.6 μ 1; 3'- UTR (配列番号 19) (10pmol/ μ 1) 0.6 μ 1;プラスミ ド pCLuRA- TDH3溶液 (3.8ng/ 1) 1 1;滅菌水 12.6 μ 1。 PCR反応は、 94°Cで 2分 (抗 ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変性)、 59°Cで 30秒 (ァニー リング)及び 68°Cで 2分 30秒 (伸長)のサイクルを 30サイクルで行った。
[0226] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 1.5kbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS Et Br SPIN COLUMNS及びエタノール沈殿で精製し、 10 μ 1の ΤΕ緩衝液に溶解し、「DN A溶液 とした。
[0227] さらに DNA溶液 Aと DNA溶液 Bの等量混合液を铸型として以下の PCR反応を行った 。この PCRによって増幅され得る DNA断片は、配列番号 7に示す塩基配列において 第 900番目〜第 1813番目の塩基配列である力 DNA溶液 B中の DNA分子に存在す る配列「NNN」によって、第 1412番目力 続く 3塩基 (配列番号 2における第 167番目 のアミノ酸に対応するコドン)にランダムに変異が導入されている。この PCRの反応液 の組成は、以下の通りであった: KOD plus DNA polymerase 1 μ 1; 10χ KOD plus buff er 5 ^ 1; 2mM each dNTP mixture 5 ^ 1; 25mM硫酸マグネシウム 2 1; mut— CLuc— F ( 配列番号 8) (lOpmol/ ^ l) 1.5 ^ 1; mut- CLuc- NR2 (配列番号 9) (lOpmol/ μ \) 1.5 μ \; DNA溶液 A 0.5 μ 1; DNA溶液 B 0.5 μ 1;滅菌水 33 μ 1。 PCR反応は、 94°Cで 2分 (抗ポ リメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変性)、 53°Cで 30秒 (ァニーリ ング)及び 68°Cで 1分 (伸長)のサイクルを 30サイクルで行った。
[0228] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 900bpの DNA断片を確認した。残りの PCR反応溶液を、シグマ社 GeneElute PCR Clean-Up Kitとエタノール沈殿で精製し、 25 1の TE緩衝液に溶解し、「DNA溶 液 C」とした。
[0229] 次 、で、 DNA溶液 Cと「補 N領域断片」 DNA溶液の等量混合物を用いて、実施例 2 に記載の方法で、サッカロミセス'セレピシェ BY4743 A PRB1株を形質転換し、このよ うにして T167飽和変異ライブラリーを構築した。
[0230] この T167飽和変異ライブラリーから実施例 2に記載の方法でスクリーニングした結 果、 T167K変異体 (配列番号 2に示されるアミノ酸配列において、第 167番目のトレオ ニンがリジンに置換された T167K変異型 CLucを有するクローン;第 3変異型ルシフエ ラーゼを有する形質転換体に相当する)を得た。この変異体が保持するプラスミドを、 以後「pCLuRA- TDH3[T167K]」と称する。
[0231] 実施例 2に記載の方法で発光スペクトルを測定した結果、 T167K変異型 CLucの発 光スペクトルピークは 459nmであり、野生型 CLucと比較して、 5nm長波長側にシフトし ていた。
[0232] 〔実施例 4〕プラスミド pCLuRA-TDH3[ a P21L,K375R]の作製
プラスミド pCLuRA-TDH3[K375R]をもとにして、その a CLuc遺伝子のうち、 αファタ ターの分泌シグナルペプチド (アミノ酸配列:配列番号 3)をコードする部分に変異を 導入し、新たなプラスミド「pCLuRA-TDH3[ a P21L,K375R]」を作製した。このプラスミ ドでは、 K375R変異にカ卩えて、配列番号 3と配列番号 6に示される第 21番目のプロリ ンがロイシンに置換されて 、る(これを、以後「 a P21L変異」と称する)。 a P21L変異 を有する αファクターの分泌シグナルペプチドは、その C末端側に連結されている分 泌されるべきタンパク質の分泌量を 7倍以上に向上させる(特許文献 3)。 oc P21L変異 導入により、ルシフェラーゼの分泌量が増加し、結果として発光強度が増強される。 当然、このプラスミドにコードされている CLucは、 K375R変異型 CLucである。なお、プ ラスミド pCLuRA— TDH3[ a P21L] (特許文献 3)とは、 pCLuRA— TDH3の a CLuc遺伝 子について、配列番号 3と配列番号 6に示される第 21番目のプロリンがロイシンに置 換されるベぐ配列番号 7において 762番目の塩基シトシンがチミンに塩基置換されて いるプラスミドである。
[0233] pCLuRA-TDH3[ a P21L,K375R]の作製方法は、以下の通りであった。
[0234] 先ず、以下の PCR反応を行った。この PCRの反応液の組成は、以下の通りであった : KOD plus DNA polymerase 0.4 μ 1; 10χ KOD plus buffer 2 μ \; 2mM each dNTP mi xture 2 μ \; 25mM硫酸マグネシウム 0.8 μ 1; mut- CLuc- CFl (配列番号 12) (10pmol/ μ 1) 0.6 μ 1; mut- CLuc- R (配列番号 13) (lOpmol/ μ 1) 0.6 μ 1;プラスミド pCLuRA-TD H3[K375R]溶液 (lng/ 1) 1 μ 1;滅菌水 12.6 1。 PCR反応は、 94°Cで 2分 (抗ポリメラ ーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変性)、 53°Cで 30秒 (アニーリング) 及び 68°Cで 1分 15秒 (伸長)のサイクルを 30サイクルで行った。
[0235] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 lkbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS EtBr SPIN COLUMNSとエタノール沈殿で精製し、 10 1の TE緩衝液に溶解し、「DNA溶液 D」とした。この断片は、配列番号 7に示す塩基配列において第 1554番目〜第 2663番 目の塩基配列(ただし、 K375Rアミノ酸置換に係わる塩基置換を含む)に相当する。 [0236] 続いて、以下の PCR反応を行った。この PCRの反応液の組成は、以下の通りであつ た: KOD plus DNA polymerase 0.4 μ 1; 10x KOD plus buffer 2 μ \; 2mM each dNTP mixture 2 μ \; 25mM硫酸マグネシウム 0.8 μ 1; vec- CLuc- F (配列番号 14) (10pmol/ μ 1) 0.6 μ 1; SQ-CLuc-CRl (配列番号 15) (lOpmol/ μ 1) 0.6 μ 1;プラスミド pCLuRA-T DH3[ a P21L]溶液 (lng/ ^ 1) 1 ^ 1;滅菌水 12.6 μ 1。 PCR反応は、 94°Cで 2分 (抗ポリメ ラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変性)、 53°Cで 30秒 (ァユーリン グ)及び 68°Cで 8分 (伸長)のサイクルを 30サイクルで行った。
[0237] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 6.5kbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS Et Br SPIN COLUMNSとエタノール沈殿で精製し、 10 μ 1の ΤΕ緩衝液に溶解し、「DNA 溶液 E」とした。この断片は、プラスミド pCLuRA-TDH3[ a P21L]の塩基配列のうち配 列番号 7に示す塩基配列において第 1664番目から第 2575番目の塩基の間の領域を 欠!、た塩基配列に相当する。
[0238] 次 、で、 DNA溶液 Dと DNA溶液 Eの等量混合物を用いて、実施例 2に記載の方法 でサッカロミセス.セレピシェ BY4743 A PRB1株を形質転換し、コロニーを形成させた 。 DNA溶液 Dと DNA溶液 E中にそれぞれに含まれる DNA断片は、配列番号 7に示す 塩基配列において第 1554番目〜第 1663番目の間の塩基配列、及び第 2576番目〜 第 2663番目の間の塩基配列を共有して!/、る。
[0239] 得られたコロニーの一つを培養し、菌体力 プラスミドを含む DNAを抽出精製した。
この DNAを用いて大腸菌 DH5 aを形質転換し、コロニーを形成させた。得られたコロ ニーの一つを培養し、常法によりプラスミド DNAを抽出精製し、配列番号 7に示す塩 基配列において第 1番目から第 2875番目の間の塩基配列を調べ、所望の塩基置換 が生じていることを確認し、 pCLuRA-TDH3[ a P21L,K375R]とした。
[0240] 〔実施例 5〕T405I変異型 CLuc
実施例 2に記載の方法で新たな変異型 CLuc遺伝子ライブラリーを作製した。ただし 、 PCRの铸型として、プラスミド pCLuRA- TDH3の代わりに pCLuRA- TDH3[ a P21L]を 用いた。実施例 2に記載の方法でスクリーニングを行った結果、配列番号 2に示され るアミノ酸配列において、第 405番目のトレオニンがイソロイシンに置換された T405I変 異型 CLucを有するクローン (第 5変異型ルシフェラーゼを有する形質転換体に相当 する)を得た。
[0241] 実施例 2に記載の方法で発光スペクトルを測定した結果、 T405I変異型 CLucの発 光スペクトルピークは 458nmであり、野生型 CLucと比較して 4nm長波長側にシフトして いた。この T405I変異体が保持するプラスミドを、以後「pCLuRA-TDH3[ a P21L,T405 1]」と称する。
[0242] 〔実施例 6〕ヒスチジンタグが付与された CLuc
培養上清中に分泌された CLucの精製を容易にするため、 C末端にヒスチジンタグ が付与され、且つ a P21L変異を含む (X CLuc (配列番号 20)を発現するプラスミド「p CLuRA- TDH3[ a P21L,- (GS)3H6]」を構築した。配列番号 23は、プラスミド pCLuRA- TDH3[ a P21L,- (GS)3H6]の部分塩基配列である。
[0243] 構築方法は、以下の通りである。
[0244] 先ず、 pCLuRA-TDH3を铸型として以下の PCRを行った。用いたオリゴ DNAプライマ 一は、 CLuc(GS)3H6— F: CACCACCATCACCACCATTAGTCTAGAGGGCCGCAT CATGTAATT (配列番号 21)と CLuc(GS)3H6- R: AGAACCAGAACCAGAACCTTT GCATTCATCTGGTACTTCTAGGGT (配列番号 22)であった。この PCRの反応液 の組成は、以下の通りであった: KOD plus DNA polymerase 1 μ 1; 10χ KOD plus buff er 5 ^ 1; 2mM each dNTP mixture 5 ^ 1; 25mM硫酸マグネシウム 2 1; CLuc(GS)3H6 - F (配列番号 21) (10pmol/ μ 1) 1.5 μ 1; CLuc(GS)3H6- R (配列番号 22) (10pmol/ μ 1) 1.5 ^ 1;プラスミド pCLuRA-TDH3溶液 (10ng/ μ \) 0.1 μ \;滅菌水 34 μ 1。 PCR反応は 、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変性)、 48 °Cで 30秒 (アニーリング)及び 68°Cで 8分 (伸長)のサイクルを 30サイクルで行った。
[0245] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 7.5kbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS Et Br SPIN COLUMNSとエタノール沈殿で精製した。
[0246] 次いで、得られた DNA断片の両 5'末端を T4ポリヌクレオチドキナーゼによってリン酸 化した。これを DNA基質として T4 DNAリガーゼにより連結し、環状化させた。環状ィ匕 させた DNAを用いて大腸菌 DH5 aを形質転換した。形質転換された大腸菌から常法 によりプラスミドを抽出精製した。このプラスミドを EcoRIと Xbalで二重消化し、消化物 をァガロースゲル電気泳動で分離した。次いで、ヒスチジンタグをコードする領域を含 む約 l. lkbpの断片をシグマ社 GeneElute MINUS EtBr SPIN COLUMNSとエタノール 沈殿で精製した (DNA断片 G)。
[0247] 一方、 pCLuRA-TDH3[ a P21L]を EcoRIと Xbalで二重消化し、消化物をァガロース ゲル電気泳動で分離した。約 6.5kbpの断片を同様に精製した (DNA断片 H)。
[0248] 次!、で、 DNA断片 Gと DNA断片 Hを DNA基質として T4 DNAリガーゼで連結し、それ を用いて大腸菌 DH5 aを形質転換した。形質転換された大腸菌力も常法によりブラ スミドを抽出精製した。得られたプラスミドについて塩基配列 (配列番号 23において、 第 1番目から第 2875番目までの配列)を調べ、所望の塩基配列となって 、ることを確 認し、 pCLuRA— TDH3[ a P21L,— (GS)3H6]とした。
[0249] さらに、実施例 2に記載した方法に従って、 pCLuRA- TDH3及び pCLuRA- TDH3[ a P21L,-(GS)3H6]をそれぞれ用いて、サッカロミセス'セレピシェ BY4743 A PRB1株を 形質転換し、野生型 CLuc及びヒスチジンタグが付与された CLucをそれぞれ分泌させ 、実施例 2に記載した方法に従って、それぞれの発光スペクトルを測定した結果、両 者に発光スペクトルの違いは認められなかった。つまり、ヒスチジンタグの有無によつ て発光スペクトルに相違は生じないことが確認された。
[0250] 〔実施例 7〕配列番号 2における第 375番目に相当するリジンが他のアミノ酸に置換さ れた一群の変異型 CLuc
7-1.第 375番目に相当するリジンが他のアミノ酸に置換された一群の変異型 CLucを 発現させるためのプラスミド
実施例 2に示したとおり、配列番号 2において第 375番目に相当するリジンをアルギ ニン又はグルタミン酸に置換すると、発光スペクトルピークが長波長側にシフトする。 そこで、第 375番目のアミノ酸力 通常のタンパク質を構成する 20種のアミノ酸のうち の 1つとなっている一群の変異型 (及び野生型) CLucを分泌発現させるための一群の プラスミドを、以下の 7-2及び 7-3に記述する方法で作製した。
[0251] 7-2.発現プラスミドの構築 1
以下のように 4種の PCRと細胞内組換えによって、配列番号 2において第 375番目に 相当するアミノ酸の飽和変異ライブラリーを構築した。
[0252] (1) PCR1
用いたオリゴ DNAプライマーは K446X- F: TGAAGTAGAGAAAGTACGAATCAGG NNNCAATCGACTGTAGTAGTAGAACTCA (配列番号 24)と mut- CLuc- R (配列番 号 13)であった。この PCRの反応液の組成は、以下の通りであった: KOD plus DNA polymerase 0.4 μ 1; 10x KOD plus buffer 2 μ \; 2mM each dNTP mixture 2 μ \; 25mM 硫酸マグネシウム 0.8 μ 1; K446X-F (配列番号24) (10pmol/ μ 1) 0.6 μ 1; mut- CLuc- R (配列番号 13) (lOpmol/ μ 1) 0.6 μ 1;プラスミド pCLuRA-TDH3[ a P21L,-(GS)3H6] 溶液 (lng/ 1) 1 μ 1;滅菌水 12.6 1。 PCR反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の 失活)を 1サイクル、並びに 94°Cで 15秒 (変性)、 45°Cで 30秒 (アニーリング)及び 68°Cで 1分 30秒 (伸長)のサイクルを 30サイクルで行った。
[0253] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 700bpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS EtB r SPIN COLUMNSとエタノール沈殿で精製し、 10 μ 1の ΤΕ緩衝液に溶解し、「DNA溶 液 J」とした。
[0254] (2) PCR2
用いたオリゴ DNAプライマーは K446— R: CCTGATTCGTACTTTCTCTACTTCA ( 配列番号 25)と mut- CLuc-F (配列番号 8)であった。この PCRの反応液の組成は以 下の通りであった: KOD plus DNA polymerase 0.4 μ 1; 10χ KOD plus buffer 2 μ \; 2τα M each dNTP mixture 2 μ \; 25mM硫酸マグネシウム 0.8 μ 1; K446— R (配列番号 25) ( lOpmol/ μ 1) 0.6 μ 1; mut- CLuc- F (配列番号 8) (lOpmol/ μ 1) 0.6 μ 1;プラスミド pCLuR A- TDH3[ a P21L,- (GS)3H6]溶液 (lng/ 1) 1 1;滅菌水 14.6 μ 1。 PCR反応は、 94°C で 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変性)、 45°Cで 30 秒 (アニーリング)及び 68°Cで 1分 30秒 (伸長)のサイクルを 30サイクルで行った。
[0255] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 l . lkbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS Et Br SPIN COLUMNSとエタノール沈殿で精製し、 10 μ 1の ΤΕ緩衝液に溶解し、「DNA 溶液 K」とした。 [0256] (3) PCR3
用いたオリゴ DNAプライマーは mut- CLuc- F (配列番号 8)と mut- CLuc- R: (配列番 号 13)であった。この PCRの反応液の組成は以下の通りであった: KOD plus DNA po lymerase 1 μ \; 10χ KOD plus buffer 5 ^ 1; 2mM each dNTP mixture 5 ^ 1; 25mM硫酸 マグネシウム 2 1; mut- CLuc- F (配列番号 8) (lOpmol/ μ 1) 1.5 μ 1; mut- CLuc- R (配 列番号 13) (lOpmol/ 1) 1.5 1; DNA溶液 J 1 μ 1; DNA溶液 Κ 1 μ 1;滅菌水 33 1。 Ρ CR反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒( 変性)、 50°Cで 30秒 (アニーリング)及び 68°Cで 2分 20秒 (伸長)のサイクルを 30サイクル で行った。
[0257] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 1.8kbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS Et Br SPIN COLUMNSとエタノール沈殿で精製し、 50 μ 1の ΤΕ緩衝液に溶解し、「DNA 溶液 L」とした。
[0258] (4) PCR4
用いたオリゴ DNAプライマーは vec- CLuc- F (配列番号 14)と vec- CLuc- R: (配列番 号 10)であった。この PCRの反応液の組成は以下の通りであった: KOD plus DNA po lymerase 1 μ \; 10x KOD plus buffer 5 ^ 1; 2mM each dNTP mixture 5 ^ 1; 25mM硫酸 マグネシウム 2 1; vec- CLuc- F (配列番号 14) (lOpmol/ μ 1) 1.5 μ 1; vec- CLuc- R ( 配列番号 10) (lOpmol/ ^ l) 1.5 ^ 1;プラスミド pCLuRA-TDH3[ a P21L,- (GS)3H6]溶 液 (lng/ 1) 1 μ 1;滅菌水 34 1。 PCR反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活 )を 1サイクル、並びに 94°Cで 15秒 (変性)、 50°Cで 30秒 (アニーリング)及び 68°Cで 7分( 伸長)のサイクルを 30サイクルで行った。
[0259] この PCR反応によって得られた PCR反応溶液全量を 1 %ァガロースで電気泳動した 結果、約 6kbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS EtBr SPIN COLUMNSとエタノール沈殿で精製し、 50 1の TE緩衝液に溶解し、「DNA溶液 M」とした。
[0260] 次!、で、 DNA溶液 Lと DNA溶液 Mの等量混合物を用いて、サッカロミセス ·セレビシ ェ BY4743 A PRB1株を形質転換し、コロニーを形成させた。得られた 96コロニーを、 それぞれ buffered SD_ura液体培地で培養し、それぞれからプラスミドを含む DNAを 抽出精製した。これら DNA試料で大腸菌 DH5 aを形質転換し、得られた大腸菌の形 質転換体力ゝら常法に従ってプラスミド DNAを抽出精製し、その塩基配列を調べた。
[0261] 結果として、配列番号 2において第 375番目に相当するアミノ酸をコードするコドン 力 以下のアミノ酸をコードするコドンになっているプラスミドを得た:ァラニン、システ イン、ァスパラギン酸、グルタミン酸、グリシン、イソロイシン、リジン、ロイシン、メチォ- ン、ァスパラギン、グルタミン、アルギニン、セリン、トレオニン、ノ リン、トリプトファン及 びチロシン。それぞれのプラスミドを順に、「pCLuRA-TDH3[ a P21L,K375A,-(GS)3H 6]」、 rpCLuRA-TDH3[ a P21L,K375C,-(GS)3H6]j ,「pCLuRA— TDH3[ α P21L,K375 D,— (GS)3H6]」、 rpCLuRA-TDH3[ a P21L,K375E,-(GS)3H6]j ,「pCLuRA— TDH3[ a P21L,K375G,-(GS)3H6]J、「pCLuRA- TDH3[ a P21L,K375I,-(GS)3H6]j、「pCLuRA- TDH3[ a P21L,K375K,-(GS)3H6]J、「pCLuRA- TDH3[ a P21L,K375L,-(GS)3H6]j、 「pCLuRA— TDH3[ a P21L,K375M,-(GS)3H6]j、「pCLuRA— TDH3[ a P21L,K375N,-( GS)3H6]J、「pCLuRA— TDH3[ a P21L,K375Q,-(GS)3H6]j、「pCLuRA— TDH3[ a P21L ,K375R,-(GS)3H6]J、「pCLuRA— TDH3[ a P21L,K375S,-(GS)3H6]j、「pCLuRA— TDH 3[ a P21L,K375T,-(GS)3H6]J、「pCLuRA- TDH3[ a P21L,K375V,-(GS)3H6]j、「pCL uRA- TDH3[ a P21L,K375W,- (GS)3H6]」及び「pCLuRA- TDH3[ a P21L,K375Y,- (GS )3H6]」と称する。
[0262] 7-3.発現プラスミドの構築 2
配列番号 2において第 375番目に相当するアミノ酸をコードするコドン力 フエニル ァラニンをコードするコドンになっているプラスミドである pCLuRA-TDH3[ a P21L.K37 5F,- (GS)3H6]を以下のようにして作製した。
[0263] pCLuRA-TDH3[ a P21L,-(GS)3H6]を铸型として PCRを行った。用いたオリゴ DNA プライマーは、 K446F : TTTCAATCGACTGTAGTAGAACTCA (配列番号 26)と K44 6-R: CCTGATTCGTACTTTCTCTACTTCA (配列番号 25)であった。この PCRの反 応液の組成は以下の通りであった: KOD plus DNA polymerase 0.4 ^ 1; 10x KOD plu s buffer 2 μ \; 2mM each dNTP mixture 2 μ \; 25mM硫酸マグネシウム 0.8 μ 1; K446F (配列番号 26) (lOpmol/ μ 1) 0.6 μ 1; Κ446- R (配列番号 25) (lOpmol/ μ 1) 0.6 μ 1;プ ラスミド pCLuRA- TDH3[ a P21L,- (GS)3H6]溶液 (lng/ 1) 1 1;滅菌水 12.6 μ 1。 PC R反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、並びに 94°Cで 15秒 (変 性)、 48°Cで 30秒 (アニーリング)及び 68°Cで 8分 (伸長)のサイクルを 30サイクルで行つ た。
[0264] この PCR反応によって得られた PCR反応溶液全量を 1%ァガロースで電気泳動した 結果、約 7.5kbpの DNA断片を確認した。この断片を、シグマ社 GeneElute MINUS Et Br SPIN COLUMNSとエタノール沈殿で精製した。
[0265] 次いで、得られた DNA断片の両 5'末端を T4ポリヌクレオチドキナーゼによってリン酸 化した。これを DNA基質として T4 DNAリガーゼにより連結し、環状化させた。環状ィ匕 させた DNAを用いて大腸菌 DH5 aを形質転換した。形質転換された大腸菌から常法 によりプラスミドを抽出精製した。このプラスミドを BamHIと Xbalで二重消化し、消化物 をァガロースゲル電気泳動で分離した。さらに、配列番号 2において第 375番目に相 当するアミノ酸をコードするコドンが変更された a CLucをコードする領域を含む約 2.6 kbpの断片をシグマ社 GeneElute MINUS EtBr SPIN COLUMNSとエタノール沈殿で 精製した (DNA断片 N)。
[0266] 一方、 pCLuRA- TDH3[ a P21L,- (GS)3H6]を BamHIと Xbalで二重消化し、消化物を ァガロースゲル電気泳動で分離した。約 5kbpの断片を同様に精製した (DNA断片 P)
[0267] 次!、で、 DNA断片 Nと DNA断片 Pを DNA基質として T4 DNAリガーゼで連結し、それ を用いて大腸菌 DH5 aを形質転換した。形質転換された大腸菌力も常法によりブラ スミドを抽出精製した。得られたプラスミドについて塩基配列 (配列番号 23において、 第 1番目から第 2875番目までの配列)を調べ、所望の塩基配列となって 、ることを確 認し、 pCLuRA- TDH3[ a P21L,K375F,- (GS)3H6]とした。
[0268] また、配列番号 2において第 375番目に相当するアミノ酸をコードするコドン力 ヒス チジン又はプロリンをコードするコドンに置換されたプラスミド (それぞれ「pCLuRA-TD H3[ a P21L,K375H,- (GS)3H6]」及び「pCLuRA- TDH3[ a P21L,K375P,-(GS)3H6]jと 称する)を作製した。これらの作製方法は、 PCRのためのオリゴ DNAプライマーが異な る以外は、 pCLuRA- TDH3[ a P21L,K375F,- (GS)3H6]の作製方法と同じであった。 p CLuRA- TDH3[ a P21L,K375H,- (GS)3H6]の作製ために用いたオリゴ DNAプライマー は K446H: CATCAATCGACTGTAGTAGAACTCA (配列番号 27)と K446- R (配列番 号 25)であり、一方、 pCLuRA- TDH3[ a P21L,K375P,- (GS)3H6]の作製ために用いた オリゴ DNAプライマーは K446P: CCACAATCGACTGTAGTAGAACTCA (配列番号 28)と K446-R (配列番号 25)であった。
[0269] 7-4.配列番号 2における第 375番目に相当するリジンが他のアミノ酸に置換された一 群の変異型 CLucによる発光スペクトル
上記 7-2及び 7-3で得た 20種の各プラスミドで、サッカロミセス'セレピシェ BY4743 Δ PRB1株を形質転換した。プラスミド pCLuRA-TDH3[ a P21L,K375K,- (GS)3H6]で形 質転換されたサッカロミセス'セレピシェが分泌する CLucは野生型 CLucであり、それ 以外の 19種のプラスミドで形質転換されたサッカロミセス'セレピシェが分泌する CLu cは変異型 CLucである。それぞれ、実施例 2に記載の方法で培養し、培養上清を用 Vヽて発光スペクトルを測定した。
[0270] 野生型 CLucとそれぞれの変異型 CLucの発光スペクトル極大波長を表 1に示す。
[表 1] 変異型 CLuc 発光極大波長 (run)
野生型 454
K375A 462
K375C 461
K375D 461
K375E 462
K375F 461
K375G 460
K375H 461
K375I 462
K375L 462
K375M 461
K375N 462
K375P 459
K375Q 461
K375R 463
K375S 462
K375T 462
K375V 463
K375W 462
K375Y 457 表 1に示すように、驚くべきことに、野生型 CLucが与える発光スペクトル極大波長が 454nmであったのに対し、他の変異型 CLucでは、全て 457nm以上の発光スペクトル 極大波長であった。すなわち、表 1に列挙する変異型 CLucは、全て第 1変異型ルシ フェラーゼである (K375A変異型 CLuc、 K375C変異型 CLuc、 K375D変異型 CLuc、 K3 75E変異型 CLuc、 K375F変異型 CLuc、 K375G変異型 CLuc、 K375H変異型 CLuc、 K3 751変異型 CLuc、 K375L変異型 CLuc、 K375M変異型 CLuc、 K375N変異型 CLuc、 K3 75P変異型 CLuc、 K375Q変異型 CLuc、 K375R変異型 CLuc、 K375S変異型 CLuc、 K3 75T変異型 CLuc、 K375V変異型 CLuc、 K375W変異型 CLuc及び K375Y変異型 CLuc)
[0272] 〔実施例 8〕 N404飽和変異ライブラリーの作製と変異型 CLucのスクリーニング
8-1. N404飽和変異ライブラリーの作製
配列番号 2に示されるアミノ酸配列において第 404番目のアミノ酸が他のアミノ酸の いずれか 1つに置換された変異体ライブラリーを作製した。
[0273] 配列番号 7において、第 1番目力 第 2122番目までの塩基配列を PCRにより増幅し た。以後、この DNA断片を「断片 a(475)」と称する。
[0274] 断片 a(475)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した。 FAR- F (配列番号 16)及び N475- rev: ctgagagctgtacgggacgga (配列番号 29)。また、断片 a(4 75)を増幅する際の PCRの反応液の組成は以下の通りである: KOD plus DNA polyme rase (東洋紡績) 0.4 l;pCLuRA- TDH3プラスミド溶液 (3.8ng/ 1) 1 1; 10 X KOD plu s buffer 2 l;2mM each dNTP mixture 2 l ;25mM硫酸マグネシウム 0.8 1;FAR— F (配列番号 16) 0.6 μ KlOpmol/ μ 1) ;Ν475- rev (配列番号 29) 0.6 μ KlOpmol/ μ 1) ;滅 菌水 13.6 1。 PCR反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、 94°C で 15秒 (変性)、 49°Cで 30秒 (アニーリング)、 68°Cで 2分 30秒 (伸長)のサイクルを 30サイ クルで行った。
[0275] 一方、配列番号 7にお 、て第 2102番目から第 2875番目の塩基配列を PCRにより増 幅した。以後、この DNA断片を「断片 b(475X)」と称する。
[0276] 断片 b(475X)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: N47 5X-ト w: tccgtcccgtacagctctcagnnnacttccatctactggcaagat (目 3列 ¾·号 dO)及び 3 - UTR( 配列番号 19)。また、断片 b(475X)を増幅する際の PCRの反応液の組成は、プライマ 一以外は断片 a(475)を増幅した際の反応液組成と同じである。 PCR反応条件は、断 片 a(475)を増幅した際の反応条件とアニーリング温度のみが異なり、アニーリング温 度を 50°Cとした。
[0277] 得られた断片 a(475)、断片 b(475X)の PCR産物を 1%ァガロースで電気泳動した結 果、約 2100bpの断片 a(475)と約 800bpの断片 b(475X)が確認できた。これらを混合し、 シグマ社 GeneElute MINUS EtBr SPIN COLUMNSでの精製、フエノール抽出、ェタノ ール沈殿に供した後、 10 1の滅菌水に溶解した (断片 a(475),b(475X) mix溶液)。
[0278] 次!、で、上記断片 a(475),b(475X) mix溶液を铸型として、オーバーラップ PCRを行 い、 目的の変異位置のコドンを NNNに置換した 1本の長い断片(配列番号 7において 第 1554番目力 第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断 片 c(475X)」と称する。
[0279] 断片 c(475X)を増幅する際の PCRでは以下のオリゴ DNAプライマーを用いた: mut- CLuc- CF1 (配列番号 12)及び mut- CLuc- R (配列番号 13)。また、断片 c(475X)を増幅 する際の PCRの反応液の組成は以下の通りである: KOD plus DNA polymerase (東洋 紡績) 1 1;断片 a(475),b(475X) mix溶液 1 1; 10 X KOD plus buffer 5 l;2mM each dNTP mixture 5 1 ; 25mM硫酸マグネシウム 2 l ;mut- CLuc- CF1 (配列番号 12) 1. 5 μ KlOpmol/ μ 1) ; mut- CLuc- R (配列番号 13) 1.5 KlOpmol/ μ 1) ;滅菌水 33 μ 1。 PC R反応は、 94°Cで 2分 (抗ポリメラーゼ抗体の失活)を 1サイクル、 94°Cで 15秒 (変性)、 61 °Cで 30秒 (アニーリング)、 68°Cで 1分 (伸長)のサイクルを 30サイクルで行った。
[0280] 一方、 pCLuRA-TDH3の配列のうち、配列番号 7の第 1664番目から第 2575番目を 欠いた直鎖状 DNA断片を PCRによって増幅した。以後、この DNA断片を「断片 d」と称 する。
[0281] 断片 dを増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: SQ-CLuc- CR1 (配列番号 15)及び vec-CLuc-F (配列番号 14)。また、断片 dを増幅する際の PCR の反応液の組成は、断片 c(475X)を増幅した際の反応液組成と、铸型とする DNA及 びオリゴ DNAプライマーのみが異なる。铸型とする DNAは、以下を使用した: pCLuRA - TDH3プラスミド溶液 (3.8ng/ 1) 1 1。 PCR反応条件は、断片 c(475X)を増幅した際 の反応条件と、アニーリング温度及び伸長時間のみが異なり、アニーリング温度を 58 °C、伸長時間を 8分とした。 [0282] 得られた断片 c(475X)、断片 dの PCR産物をそれぞれ 0.7%ァガロースで電気泳動し た結果、約 llOObpの断片 c(475X)と約 7000bpの断片 dが確認できた。これらを混合し、 シグマ社 GeneElute MINUS EtBr SPIN COLUMNSでの精製、フエノール抽出、ェタノ ール沈殿に供した後、 10 1の滅菌水に溶解した (断片 c(475X),d mix溶液)。
[0283] 次いで、断片 c(475X),d mix溶液 10 μ 1を用い、酢酸リチウム法でサッカロミセス 'セ ルピシェ ΒΥ4743 Δ ρΑ1株の形質転換を行い、 SD-Ura寒天培地に塗抹し、 30°Cで約 48時間保温した。出現した多数のコロニーを「N404飽和変異ライブラリー」とした。
[0284] 8-2.発光スペクトルがシフトした配列番号 2における第 404番目のアミノ酸が変異した ルシフェラーゼのスクリーニングと発光スペクトル測定
以下、実施例 2の 2.3及び 2.4と同じ方法により発光スペクトルシフトが起こっていると 考えられるクローンを選抜し、さらに発光スペクトルを測定した。
[0285] 以下の表 2に示すように、選抜された N404G変異型 CLuc及び N404S変異型 CLuc ( 第 4変異型ルシフェラーゼ)の発光スペクトルピークはいずれも 458nmであった。配列 番号 2に示されるアミノ酸配列において第 404番目のアミノ酸がァスパラギン力 ダリ シンに変異した pCLuRA-TDH3プラスミドを、「pCLuRA- TDH3[N404G]」と定義する。
[0286] 〔実施例 9〕 T405飽和変異ライブラリーの作製と変異型 CLucのスクリーニング
配列番号 2に示されるアミノ酸配列において第 405番目のアミノ酸が他のアミノ酸の いずれか 1つに置換された変異体ライブラリーを作製した。作製方法は、実施例 8と 同様である。
[0287] 配列番号 7において、第 1番目力 第 2125番目までの塩基配列を PCRにより増幅し た。この DNA断片を、以後「断片 a(476)」と称する。
[0288] 断片 a(476)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: FAR- F (配列番号 16)及び T476- rev: gttctgagagctgtacgggac (配列番号 31)。また、断片 a(47 6)を増幅する際の PCRの反応液組成は実施例 8において断片 a(475)を増幅した際の 反応液組成とプライマーのみが異なる。 PCR反応条件は、実施例 8において断片 a(4 75)を増幅した際の反応条件とアニーリング温度のみが異なり、 59°Cでアニーリングを 行った。
[0289] 一方、配列番号 7にお 、て第 2105番目から第 2875番目の塩基配列を PCRにより増 幅した。この DNA断片を、以後「断片 b(476X)」と称する。
[0290] 断片 b(476X)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: T47 oX-ト w: gtcccgtacagctctcagaacnnntccatctactggcaagatggt (酉己列 号 32)及び - UTR( 配列番号 19)。また、断片 b(476X)を増幅する際の反応液組成は実施例 8において断 片 b(475X)を増幅した際の反応液組成とプライマーのみが異なる。 PCR反応条件は、 実施例 8において断片 b(475X)を増幅した際の反応条件と同じである。
[0291] 以下、実施例 8と同様にして、断片 a(476),b(476X) mix溶液を作製した。
[0292] 上記断片 a(476),b(476X) mix溶液を铸型として、オーバーラップ PCRを行 、、目的 の変異位置のコドンを NNNに置換した 1本の長い断片(配列番号 7において第 1554 番目から第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(47 6X)」と称する。
[0293] 断片 c(476X)を増幅する際の PCRの反応液組成は実施例 8にお ヽて断片 c(475X)を 増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以下を 使用した:断片 a(476),b(476X) mix溶液 1 1。 PCR反応条件は、実施例 8において断 片 c(475X)を増幅した際の反応条件と同じである。
[0294] さら〖こ、実施例 8と同様にして、断片 c(476X),d mix溶液を作製した。
[0295] 次いで、断片 c(476X),d (実施例 8) mix溶液 10 1を用い、実施例 8と同様にして、発 光スペクトルシフトが起こっていると考えられるクローンを選抜した。また、得られたク ローンの発光スペクトルを測定した。
[0296] 表 2に示すように、選抜された T405M変異型 CLuc (第 5変異型ルシフェラーゼ)の発 光スペクトルピークは 457nmであった。
[0297] 〔実施例 10〕 S406飽和変異ライブラリーの作製と変異型 CLucのスクリーニング
配列番号 2に示されるアミノ酸配列において第 406番目のアミノ酸が他のアミノ酸の いずれか 1つに置換された変異体ライブラリーを作製した。作製方法は、実施例 8と 同様である。
[0298] 配列番号 7において、第 1番目力 第 2128番目までの塩基配列を PCRにより増幅し た。この DNA断片を「断片 a(477)」と称する。
[0299] 断片 a(477)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: FAR- F(配列番号16)及びS477-rev: agtgttctgagagctgtacgg(配列番号33)。また、断片 a(47 7)を増幅する際の PCRの反応液組成は実施例 8において断片 a(475)を増幅した際の 反応液組成とプライマーのみが異なる。 PCR反応条件は、実施例 8において断片 a(4 75)を増幅した際の反応条件と同じである。
[0300] 一方、配列番号 7にお!/、て第 2108番目から第 2875番目までの塩基配列を PCRによ り増幅した。この断片を「断片 b(477X)」と称する。
[0301] 断片 b(477X)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: S47 7X-ト w: ccgtacagctctcagaacactnnnatctactggcaagatggtgac (酉己列番号 34)及ひ - UTR、 配列番号 19)。また、断片 b(477X)を増幅する際の PCRの反応液組成は実施例 8にお V、て断片 b(475X)を増幅した際の反応液組成とプライマーのみが異なる。 PCT反応条 件は、実施例 8において、断片 b(475X)を増幅した際の反応条件と同じである。
[0302] 次 、で、実施例 8と同様にして、断片 a(477),b(477X) mix溶液を作製した。
[0303] さら〖こ、上記断片 a(477),b(477X) mix溶液を铸型として、オーバーラップ PCRを行 ヽ 、目的の変異位置のコドンを NNNに置換した 1本の長い断片(配列番号 7において第 1554番目から第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(477X)」と称する。
[0304] 断片 c(477X)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475X) を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以下 を使用した:断片 a(477),b(477X) mix溶液 1 μ 1。 PCR反応条件は実施例 8と同じである
[0305] また、実施例 8と同様にして、断片 c(477X),d (実施例 8) mix溶液を作製した。
[0306] 次いで、断片 c(477X),d mix溶液 10 1を用い、実施例 8と同様にして、発光スぺタト ルシフトが起こっていると考えられるクローンを選抜した。次いで、得られたクローンの 発光スペクトルを測定した。
[0307] 表 2に示されるように、選抜された S406L変異型 CLuc (第 6変異型ルシフェラーゼ) の発光スペクトルピークは 460nmであった。
[0308] 〔実施例 11〕 1407飽和変異ライブラリーの作製と変異型 CLucのスクリーニング
配列番号 2に示されるアミノ酸配列において第 407番目のアミノ酸が他のアミノ酸の いずれか 1つに置換された変異体ライブラリーを作製した。作製方法は、実施例 8と 同様である。
[0309] 配列番号 7において、第 1番目から第 2131番目までの塩基配列を PCRにより増幅し た。この DNA断片を「断片 a(478)」と称する。
[0310] 断片 a(478)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: FAR- F(配列番号16)及びI478-rev: ggaagtgttctgagagctgta(配列番号35)。また、断片 a(478 )を増幅する際の PCRの反応液組成は実施例 8において断片 a(475)を増幅した際の 反応条件とプライマーのみが異なる。 PCR反応条件は、実施例 8において、断片 a(47 5)を増幅した際の反応液組成とアニーリング温度が異なり、 55°Cでアニーリングを行 つた o
[0311] 一方、配列番号 7において第 2111番目力 第 2875番目までの塩基配列を PCRによ り増幅した。この DNA断片を「断片 b(478X)」と称する。
[0312] 断片 b(478X)を増幅する際の PCRでは以下のオリゴ DNAプライマーを用いた: I478X - Fw: tacagctctcagaacacttccnnntactggcaagatggtgacata (酉己列番号 36)及ひ - UTR (酉己 列番号 19)。また、断片 b(478X)を増幅する際の PCRの反応液組成は実施例 8におい て断片 b(475X)を増幅した際の反応液組成とプライマーのみが異なる。 PCR反応条件 は実施例 8において断片 b(475X)を増幅した際の反応条件とアニーリング温度が異な り、 58°Cでアニーリングを行った。
[0313] 得られた断片 a(478)、断片 b(478X)の PCR産物を 1%ァガロースで電気泳動した結 果、約 2100bpの断片 a(478)と約 800bpの断片 b(478X)が確認できた。これらを混合し、 プロメガ社 Wizard (登録商標) SV Gel and PCR Clean- Up systemでの精製、フエノー ル抽出、エタノール沈殿に供した後、 10 1の滅菌水に溶解した(断片&(478),1)(478 ) mix溶液 )0
[0314] 次!、で、上記断片 a(478),b(478X) mix溶液を铸型として、オーバーラップ PCRを行 い、目的の変異位置のコドンを NNNに置換した 1本の長い断片(配列番号 7において 第 1554番目力 第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断 片 c(478X)」と称する。
[0315] 断片 c(478X)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475X) を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以下 を使用した:断片 a(478),b(478X) mix溶液 1 μ 1。 PCR反応条件は実施例 8において断 片 c(475X)を増幅した際の反応条件とアニーリング温度のみが異なり、 60°Cでァニー リングを行った。
[0316] 得られた断片 c(478X)の PCR産物を 0.7%ァガロースで電気泳動した結果、約 1100b Pの断片 c(478X)が確認できた。これと実施例 8の断片 dを混合し、プロメガ社 Wizard( 登録商標) SV Gel and PCR Clean- Up systemでの精製、フエノール抽出、エタノール 沈殿に供した後、 10 1の滅菌水に溶解した (断片 c(478X),d mix溶液)。
[0317] 次いで、断片 c(478X),d mix溶液 10 1を用い、実施例 8と同様にして、発光スぺタト ルシフトが起こっていると考えられるクローンを選抜した。さらに、得られたクローンの 発光スペクトルを測定した。
[0318] 表 2に示されるように、選抜された I407A変異型 CLuc (第 7変異型ルシフェラーゼ)の 発光スペクトルピークは 460nmであった。
[0319] 〔実施例 12〕T167K/K375R二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において第 167番目のアミノ酸がトレオニン力 リ ジンに、さらに第 375番目のアミノ酸がリジン力 アルギニンに置換された二重変異型 CLuc (第 1及び第 3変異型ルシフェラーゼ)をコードする DNAを以下のように作製した
[0320] 第 167番目のアミノ酸の変異を含む、配列番号 7において第 1番目力 第 1663番目 までの塩基配列力も成る DNA断片を、以後「断片 a(238)」と称する。
[0321] この断片 a(238)を増幅する際の PCRは以下のオリゴ DNAプライマーを使用した: FA R-F (配列番号 16)及び SQ-CLuc-CRl (配列番号 15)。また、断片 a(238)を増幅する 際の PCRの反応液組成は実施例 8において断片 a(475)を増幅した際の反応液組成と 、滅菌水の量、铸型とする DNA及びプライマーが異なる。滅菌水の量、铸型とする D NAは以下を使用した:滅菌水 12.6 μ 1、 PCLuRA-TDH3[T167K] 1 μ l(4.5ng/ μ 1)。 PC R反応条件は実施例 8において、断片 a(475)を増幅した際の反応条件と、ァニーリン グ温度及び伸長時間のみが異なり、アニーリング温度は 53°C、伸長時間は 2分で行 つた o [0322] 一方、第 375番目のアミノ酸の変異を含む、配列番号 7にお 、て第 1554番目力 第 2875番目までの塩基配列力も成る DNA断片を、以後「断片 b(446)」と称する。
[0323] この断片 b(446)を増幅する際の PCRは以下のオリゴ DNAプライマーを使用した: mut - CLuc-CFl (配列番号 12)及び 3'-UTR (配列番号 19)。また、断片 b(446)を増幅する 際の PCRの反応液組成は、断片 a(238)を増幅した際の反応液組成と、铸型とする DN A及びプライマーのみが異なる。铸型とする DNAは、以下を使用した: pCLuRA-TDH 3[ a P21L,K375R] 1 μ 1(2. Ong/ μ 1)。 PCR反応条件は断片 a(238)を増幅した際の反応 条件と同じである。
[0324] 得られた断片 a(238)と断片 b(446)の PCR産物を 1 %ァガロースで電気泳動を行!、、 それぞれ約 1700bpと約 1300bpの DNA断片であることを確認した。これらを混合し、実 施例 8と同様にして、断片 a(238),b(446) mix溶液を作製した。
[0325] 次!、で、上記断片 a(238),b(446) mix溶液を铸型としてオーバーラップ PCRを行!、、 目的の位置のアミノ酸を置換した 1本の長 、断片 (配列番号 7にお 、て第 900番目か ら第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(238,446)」 と称する。
[0326] 断片 c(238,446)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: m ut- CLuc- F (配列番号 8)及び mut- CLuc- R (配列番号 13)。また、断片 c(238, 446)を増 幅する際の PCRの反応液組成は、実施例 8にお 、て断片 c(475X)を増幅した際の反 応液組成と、铸型とする DNA及びプライマーのみが異なる。铸型とする DNAは以下を 使用した:断片 a(238),b(446) mix溶液 1 1。 PCR反応条件は、実施例 8において断 片 c(475X)を増幅した際の反応条件と、アニーリング温度及び伸長時間のみが異なり 、アニーリング温度は 60°C、伸長時間は 2分で行った。
[0327] 一方、 pCLuRA-TDH3の配列のうち、配列番号 7の第 967番目から第 2575番目を欠 いた直鎖状 DNA断片を PCRによって増幅した。以後、この DNA断片を断片 d(238,446 )と称する。
[0328] この断片 d(238,446)を増幅する際の PCRは以下のオリゴ DNAプライマーを使用した : vec-CLuc-R (配列番号 10)及び vec- CLuc- F (配列番号 14)。また、断片 d(238,446) を増幅する PCRの反応液組成は、実施例 8にお 、て断片 dを増幅した際の反応液組 成とプライマーのみが異なる。 PCR反応条件は、実施例 8において断片 dを増幅した 際の反応条件と同じである。
[0329] 得られた断片 c(238,446)と断片 d(238,446)の PCR産物を 0.7%ァガロースで電気泳 動を行い、それぞれ約 1700bpと約 7000bpの DNA断片であることを確認した。これらを 混合し、実施例 8と同様にして、断片 c(238,446),d(238,446) mix溶液を作製した。
[0330] 次!、で、断片 c(238,446),d(238,446) mix溶液 10 μ 1を用い、 ZYMO RESEARCH社 Fr ozen-EZ Yeast Transformation II™によりサッカロミセス 'セレビシェ BY4743 Δ ρ Ι株 の形質転換を行った。
[0331] さらに、断片 c(238,446),d(238,446) mix溶液 10 1を用い、実施例 8と同様にして、得 られたクローンにつ 、て発光スペクトルを測定した。
[0332] 表 2に示されるように、作製した T167K/K375R二重変異型 CLuc (第 1及び第 3変異 型ルシフェラーゼ)の発光スペクトルピークは 460nmであった。配列番号 2に示される アミノ酸配列において第 167番目のアミノ酸がトレオニンからリジンに変異し、第 375番 目のアミノ酸がリジンからアルギニンに変異した pCLuRA-TDH3プラスミドを「pCLuRA
- TDH3[T167K,K375R]」と定義する。
[0333] 〔実施例 13〕 T167K/Q403P二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において T167Kと Q403Pの二重変異型 CLuc (第
3変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法は実施例
12と同様である。
[0334] 第 403番目のアミノ酸の変異を含む、配列番号 7における第 1554番目から第 2875番 目までの塩基配列力も成る DNA断片を、以後「断片 b(474)」と称する。
[0335] 断片 b(474)を増幅する際の PCRの反応液組成は実施例 12にお 、て断片 b(446)を 増幅した際の反応液組成と、铸型とする DNAのみが異なる。铸型とする DNAは以下 を使用した: pCLuRA-TDH3[Q403P] (実施例 2に記載のスクリーニングの結果として 得られた、配列番号 2に示されるアミノ酸配列において第 403番目のアミノ酸がグルタ ミンからプロリンに変異した pCLuRA-TDH3プラスミド) 1 μ l(2.56ng/ μ 1)。 PCR反応条 件は、実施例 12において断片 b(446)を増幅した際の反応条件と同じである。
[0336] 次 、で、実施例 12と同様にして、断片 a(238) (実施例 12) ,b(474) mix溶液を作製し た。
[0337] 上記断片 a(238), b(474) mix溶液を铸型としてオーバーラップ PCRを行い、目的の 位置のアミノ酸を置換した 1本の長!、断片 (配列番号 7にお 、て第 900番目から第 266 3番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(238,474)」と称する
[0338] 断片 c(238,474)を増幅する際の PCRの反応液組成は実施例 12において断片 c(238 ,446)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは 以下を使用した:断片 a(238),b(474) mix溶液 1 1。 PCR反応条件は実施例 12と同じ である。
[0339] 得られた断片 c(238,474)と実施例 12の断片 d(238,446)の PCR産物を 0.7%ァガロー スで電気泳動を行い、実施例 12と同様にして、断片 c(238,474),d(238,446) mix溶液 を作製した。
[0340] 次いで、断片 c(238,474),d(238,446) mix溶液 10 μ 1を用い、実施例 12と同様にして
、得られたクローンにつ 、て発光スペクトルを測定した。
[0341] 表 2に示されるように、作製した T167K/Q403P二重変異型 CLuc (第 3変異型ルシフ エラーゼ)の発光スペクトルピークは 458nmであった。
[0342] 〔実施例 14〕T167K/N404G二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において T167Kと N404Gの二重変異型 CLuc (第
3及び第 4変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法 は実施例 12と同様である。
[0343] 第 404番目のアミノ酸の変異を含む、配列番号 7における第 1554番目から第 2875番 目までの塩基配列力も成る DNA断片を、以後「断片 b(475)」と称する。
[0344] 断片 b(475)を増幅する際の PCRの反応液組成は、実施例 12において断片 b(446)を 増幅した際の反応液組成と、铸型とする DNAのみが異なる。铸型とする DNAは以下 を使用した: pCLuRA-TDH3[N404G] (実施例 8) 1 μ l(2.70ng/ μ 1)。 PCR反応条件は
、実施例 12において断片 b(446)を増幅した際の反応条件と同じである。
[0345] 次 、で、実施例 12と同様にして、断片 a(238) (実施例 12) ,b(475) mix溶液を作製し [0346] 上記断片 a(238),b(475) mix溶液を铸型としてオーバーラップ PCRを行い、目的の位 置のアミノ酸を置換した 1本の長!、断片 (配列番号 7にお 、て第 900番目から第 2663 番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(238,475)」と称する
[0347] 断片 c(238,475)を増幅する際の PCRの反応液組成は、実施例 12において断片 c(23 8,446)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNA は以下を使用した:断片 a(238),b(475) mix溶液 1 1。 PCR反応条件は実施例 12と同 じである。
[0348] 得られた断片 c(238,475)と実施例 12の断片 d(238,446)の PCR産物を 0.7%ァガロー スで電気泳動を行い、実施例 12と同様にして、断片 c(238,475),d(238,446) mix溶液 を作製した。
[0349] 次いで、断片 c(238,475),d(238,446) mix溶液 10 μ 1を用い、実施例 12と同様にして
、得られたクローンにつ 、て発光スペクトルを測定した。
[0350] 表 2に示されるように、作製した T167K/N404G二重変異型 CLuc (第 3及び第 4変異 型ルシフェラーゼ)の発光スペクトルピークは 460nmであった。
[0351] 〔実施例 15〕T167K/T405I二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において T167Kと T405Iの二重変異型 CLuc (第
3及び第 5変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法 は実施例 12と同様である。
[0352] 第 405番目のアミノ酸の変異を含む、配列番号 7における第 1554番目から第 2875番 目までの塩基配列力も成る DNA断片を、以後「断片 b(476)」と称する。
[0353] 断片 b(476)を増幅する際の PCRの反応液組成は実施例 12にお 、て断片 b(446)を 増幅した際の反応液組成と、铸型とする DNAのみが異なる。铸型とする DNAは以下 を使用した: pCLuRA- TDH3[ a P21L,T405I] (実施例 5) 1 μ l(2.0ng/ μ 1)。 PCR反応 条件は、実施例 12において断片 b(446)を増幅した際の反応条件と同じである。
[0354] 次 、で、実施例 12と同様にして、断片 a(238) (実施例 12) ,b(476) mix溶液を作製し た。
[0355] 上記断片 a(238),b(476) mix溶液を铸型としてオーバーラップ PCRを行い、目的の位 置のアミノ酸を置換した 1本の長!、断片 (配列番号 7にお 、て第 900番目から第 2663 番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(238,476)」と称する
[0356] 断片 c(238,476)を増幅する際の PCRの反応液組成は、実施例 12において断片 c(23 8,446)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNA は以下を使用した:断片 a(238),b(476) mix溶液 1 1。 PCR反応条件は実施例 12と同 じである。
[0357] 得られた断片 c(238,476)と実施例 12の断片 d(238,446)の PCR産物を 0.7%ァガロー スで電気泳動を行い、実施例 12と同様にして、断片 c(238,476),d(238,446) mix溶液 を作製した。
[0358] 次いで、断片 c(238,476),d(238,446) mix溶液 10 μ 1を用い、実施例 12と同様にして
、得られたクローンにつ 、て発光スペクトルを測定した。
[0359] 表 2に示されるように、作製した T167K/T405I二重変異型 CLuc (第 3及び第 5変異 型ルシフェラーゼ)の発光スペクトルピークは 460nmであった。
[0360] 〔実施例 16〕 L197飽和変異ライブラリーの作製と変異型 CLucのスクリーニング
16-1. L197飽和変異ライブラリーの作製
配列番号 2に示されるアミノ酸配列において第 197番目のアミノ酸が他のアミノ酸の いずれか 1つに置換された変異体ライブラリーを作製した。作製方法は、実施例 8と 同様である。
[0361] 配列番号 7において第 1番目力 第 1501番目までの塩基配列を PCRにより増幅した 。この DNA断片を「断片 a(268)」と称する。
[0362] 断片 a(268)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: FAR- F(配列番号16)及びL268-rev: gatgtcgatcacgatcagttt(配列番号37)。また、断片 a(268 )を増幅する際の PCRの反応液組成は実施例 8において断片 a(475)を増幅した際の 反応液組成とプライマーのみが異なる。 PCR反応条件は、実施例 8において断片 a(4 75)を増幅した際の反応条件と同じである。
[0363] 一方、配列番号 7にお 、て第 1481番目から第 2875番目までの塩基配列を PCRによ り増幅した。この DNA断片を「断片 b(268X)」と称する。 [0364] 断片 b(268X)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: L26 8X- Fw: aaactgatcgtgatcgacatcnnnggaggaagatctgtaagaatc (酉己列番号 38)及び 3し UTR( 配列番号 19)。また、断片 b(268X)を増幅する際の PCRの反応液組成は、実施例 8に ぉ 、て断片 b(475X)を増幅した際の反応液組成とプライマーのみが異なる。 PCR反応 条件は実施例 8において断片 b(475X)を増幅した際の反応条件と同じである。
[0365] 得られた断片 a(268)、断片 b(268X)の PCR産物を 1%ァガロースで電気泳動した結 果、約 1500bpの断片 a(268)と約 1400bpの断片 b(268X)が確認できた。次いで、実施例 8と同様にして、断片 a(268),b(268X) mix溶液を作製した。
[0366] 上記断片 a(268),b(268X) mix溶液を铸型として、オーバーラップ PCRを行 、、目的 の変異位置のコドンを NNNに置換した 1本の長い断片(配列番号 7において第 900番 目力も第 1813番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(268X )」と称する。
[0367] 断片 c(268X)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: mut - CLuc-F (配列番号 8)及び mut- CLuc-NR2(配列番号 9)。また、断片 c(268X)を増幅 する際の PCRの反応液組成は、実施例 8にお 、て断片 c(475X)を増幅した際の反応 液組成と、铸型とする DNA及びプライマーのみが異なる。铸型とする DNAは以下を使 用した:断片 a(268),b(268X)mix溶液 1 1。 PCR反応条件は、実施例 8において断片 c (475X)を増幅した際の反応条件とアニーリング温度のみが異なり、 53°Cでァニーリン グを行った。
[0368] 一方、 pCLuRA-TDH3の配列のうち、配列番号 7の第 967番目から第 1703番目まで を欠いた直鎖状 DNAを PCRにより増幅した。この DNA断片を「断片 d(268)」と称する。
[0369] 断片 d(268)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: vec- CLuc-R (配列番号 10)及び SQ- CLuc-NF2(配列番号 11)。また、断片 d(268)を増幅す る際の PCRの反応液組成は実施例 8において断片 dを増幅した際の反応液組成とプ ライマーのみが異なる。 PCR反応条件は、実施例 8において断片 dを増幅した際の反 応条件とアニーリング温度のみが異なり、 62°Cでアニーリングを行った。
[0370] 得られた断片 c(268X)、断片 d(268)の PCR産物を 0.7%ァガロースで電気泳動した結 果、約 900bpの断片 c(268X)と約 7000bpの断片 d(268)が確認できた。 [0371] 次いで、実施例 8と同様にして、断片 c(268X),d(268) mix溶液を作製した。
[0372] さらに、断片 c(268X),d(268) mix溶液を用い、実施例 8と同様にして、スペクトルピー ク位置が変化した、配列番号 2に示されるアミノ酸配列において第 197番目のアミノ酸 力 イシン力もプロリンに変異したクローンを得た。配列番号 2に示されるアミノ酸配列 において第 197番目のアミノ酸がロイシンからプロリンに変異した pCLuRA-TDH3プラ スミドを、「pCLuRA- TDH3[L197P]」と定義する。
[0373] 16-2. M178K/L197P二重変異型 CLuc遺伝子の作製
配列番号 2に示されるアミノ酸配列において M178Kと L197Pの二重変異型 CLuc (第 2変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法は実施例 12と同様である。
[0374] 配列番号 2に示されるアミノ酸番号 178の位置の変異を含む、配列番号 7における 第 1番目力も第 1492番目の塩基配列から成る DNA断片を PCRにより増幅した。以後、 この DNA断片を「断片 a(249)」と称する。
[0375] 断片 a(249)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: FAR- F (配列番号 16)及び SQ- CLuc- F001- rev: cacgatcagtttgaagaattctatgacggt (配列番号 39)。また、断片 a(249)を増幅する際の PCRの反応液組成は実施例 8において断片 a( 475)を増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸 型とする DNAは以下を使用した: pCLuRA- TDH3[M178K] (実施例 2) 1 μ l(2.85ng/ \ PCR反応条件は、実施例 8において断片 a(475)を増幅した際の反応条件とァニ 一リング温度のみが異なり、 58°Cでアニーリングを行った。
[0376] 一方、配列番号 2に示されるアミノ酸番号 197の位置の変異を含む、配列番号 7に おける第 1463番目から第 2875番目までの塩基配列力 成る DNA断片を PCRにより増 幅した。以後、この DNA断片を「断片 b(268)」と称する。
[0377] この断片 b(268)を増幅する際の PCRは以下のオリゴ DNAプライマーを使用した: mut - CLuc- CFO : accgtcatagaattcttcaaactgatcgtg (配列番号 40)及び 3'- UTR (配列番号 1 9)。また、断片 b(268)を増幅する際の PCRの反応液組成は、断片 a(249)を増幅した際 の PCRの反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸型とする D NAは、以下を使用した: pCLuRA- TDH3[L197P] (上記 16- 1) 1 μ l(3.53ng/ μ 1)。 PCR 反応条件は断片 a(249)を増幅した際の反応条件と同じである。
[0378] 得られた断片 a(249)、断片 b(268)の PCR産物を 1 %ァガロースで電気泳動を行い、 それぞれ約 1500bpと約 1400bpの DNA断片であることを確認した。これらを混合し、実 施例 8と同様にして、断片 a(249),b(268) mix溶液を作製した。
[0379] 次!、で、上記断片 a(249),b(268) mix溶液を铸型として、オーバーラップ PCRを行!ヽ
、目的の位置のアミノ酸を置換した 1本の長 、断片 (配列番号 7にお 、て第 900番目か ら第 1813番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(249,268)」 と称する。
[0380] 断片 c(249,268)を増幅する際の PCRの反応液組成は上記 16-1において断片 c(268 X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した:断片 a(249),b(268) mix溶液 1 1。 PCR反応条件は、上記 16_1におい て断片 c(268X)を増幅した際の反応条件と、アニーリング温度及び伸長時間のみが 異なり、アニーリング温度は 60°C、伸長時間は 1分 30秒で行った。
[0381] 得られた断片 c(249,268)と上記 16-1の断片 d(268)の PCR産物を 0.7%ァガロースで 電気泳動を行い、それぞれ約 800bpと約 7000bpの DNA断片であることを確認した。こ れらを混合し、実施例 8と同様にして、断片 c(249,268),d(268) mix溶液を作製した。
[0382] 次いで、実施例 8と同様にして、配列番号 2に示されるアミノ酸配列において第 178 番目のアミノ酸カ^チォニンからリジンに変異、第 197番目のアミノ酸がロイシンカもプ 口リンに変異したクローンを得た。配列番号 2に示されるアミノ酸配列において第 178 番目のアミノ酸カ^チォニンからリジンに変異、第 197番目のアミノ酸がロイシンカもプ 口リンに変異した pCLuRA- TDH3プラスミドを、「pCLuRA- TDH3[M178K,L197P]」と定 義する。
[0383] 16-3. a CLucのシグナル配列内における第 21番目のアミノ酸の変異導入
配列番号 6に示した ex CLucのシグナル配列内における第 21番目のアミノ酸をロイ シンに置換した。変異の導入方法は、配列番号 6に示されるアミノ酸配列において第 21番目の位置に相当する変異を含む DNA断片と、配列番号 2に示されるアミノ酸配 列において第 178番目及び第 197番目のアミノ酸の位置の 2つの変異を含む DNA断 片を PCRにより増幅し、この 2つの DNA断片を用いたオーバーラップ PCRにより作製し た。
[0384] 配列番号 6に示されるアミノ酸番号 21の位置の変異を含む、配列番号 7における第 1番目力も第 966番目の塩基配列から成る DNA断片を PCRにより増幅した。以後、こ の DNA断片を「断片 a(21)」と称する。
[0385] 断片 a(21)を増幅する際の PCRの反応液組成は、実施例 12において断片 a(238)を 増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸型とす る DNAとオリゴ DNAプライマーは以下を使用した: pCLuRA-TDH3[ a P21L] (特許文 献 3) 1 μ l(4.25ng/ μ 1)、 FAR- F (配列番号 16)及び vec- CLuc- R (配列番号 10)。 PCR 反応条件は、実施例 12において断片 a(238)を増幅した際の反応条件とアニーリング 温度のみが異なり、 53°Cでアニーリングを行った。
[0386] 一方、配列番号 2におけるアミノ酸番号第 178番目及び第 197番目の変異を含む、 配列番号 7における第 900番目から第 2875番目の塩基配列から成る DNA断片を PCR により増幅した。以後、この DNA断片を「断片 b(249,268)」と称する。
[0387] 断片 b(249,268)を増幅する際の PCRの反応液組成は、断片 a(21)を増幅した際の PC Rの反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸型とする DNAと オリゴ DNAプライマーは以下を使用した: pCLuRA- TDH3[M178K,L197P] (上記 16- 2 ) 1 μ l(1.56ng/ μ 1)、 mut- CLuc- F (配列番号 8)及び 3 '-UTR (配列番号 19)。 PCR反応 条件は断片 a(21)を増幅した際の反応条件と同じである。
[0388] 得られた断片 a(21)、断片 b(249,268)の PCR産物を 1 %ァガロースで電気泳動を行い 、それぞれ約 lOOObpと約 1900bpの DNA断片であることを確認した。これらを混合し、 実施例8と同様にして、断片 a(21),b(249,268) mix溶液を作製した。
[0389] 次!、で、断片 a(21),b(249,268) mix溶液を铸型として、オーバーラップ PCRを行!ヽ、 目的の位置のアミノ酸を置換した 1本の長い断片(配列番号 7において第 461番目か ら第 1813番目の塩基配列)を作製した。以後、この DNA断片を「断片 c(21 ,249,268)」 と称する。
[0390] 断片 c(21 ,249,268)を増幅する際の PCRでは以下のオリゴ DNAプライマーを用いた: SQ- GPD1- FO : ATGTATCTATCTCATTTTCTTACA (配列番号 41)及び mut- CLuc- NR2(配列番号 9)。また、断片 c(21 ,249,268)を増幅する際の PCRの反応液組成は実 施例 12にお ヽて断片 c(238,446)を増幅した際の反応液組成と、铸型とする DNA及び プライマーのみが異なる。铸型とする DNAは以下を使用した:断片 a(21),b(249,268) mix溶液 1 1。 PCR反応条件は、実施例 12において断片 a(238)を増幅した際の反応 条件とアニーリング温度のみが異なり、アニーリング温度は 51°Cで行った。
[0391] 一方、 pCLuRA- TDH3の配列のうち、配列番号 7において第 526番目力 第 1703番 目までを欠いた直鎖状 DNA断片を PCRによって増幅した。以後、この DNA断片を「断 片 d(21,249,268)」と称する。
[0392] 断片 d(21,249,268)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用し た: SQ- GPD1- R0: CAGCTTTTTCCAAATCAGAGAGAGCAG (配列番号 42)及び S Q- CLuc-NF2(配列番号 11)。また、断片 d(21,249,268)を増幅する PCRの反応液組成 は、実施例 12において断片 d(238,446)を増幅した際の反応液組成とプライマーのみ が異なる。 PCR反応条件は、実施例 12において断片 d(238,446)を増幅した際の反応 条件と同じである。
[0393] 得られた断片 c(21,249,268)、断片 d(21,249,268)の PCR産物を 0.7%ァガロースで電 気泳動を行い、それぞれ約 1300bpと約 7000bpの DNA断片であることを確認した。こ れらを混合し、実施例 8と同様にして、断片 c(21,249,268),d(21,249,268) mix溶液を作 製した。
[0394] 次いで、断片 c(21,249,268),d(21,249,268) mix溶液を用い、実施例 8と同様にして、 得られたクローンについて発光スペクトルを測定した。
[0395] 表 2に示されるように、作製した M178K/L197P二重変異型 CLuc (第 2変異型ルシフ エラーゼ)の発光スペクトルピークは 447nmであった。
[0396] 〔実施例 17] K375R/Q403P二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において K375Rと Q403Pの二重変異型 CLuc (第
1変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法は実施例
12と同様である。
[0397] 第 375番目のアミノ酸の変異を含む、配列番号 7における第 900番目から第 2087番 目の塩基配列カゝら成る DNA断片を、以後「断片 a(446)」と称する。
[0398] 断片 a(446)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: mut- CLuc- F (配列番号 8)及び SQ- CLuc- F002- rev : caaccagaatctgttttccatcaa (配列番号 4 3)。また、断片 a(446)を増幅する PCRの反応液組成は、実施例 12において断片 a(238 )を増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸型 とする DNAは以下を使用した: pCLuRA-TDH3[ a P21L,K375R] (実施例 4) 1 μ 1(2.0η §/ /ζ 1)。 PCR反応条件は、実施例 12において断片 a(238)を増幅した際の反応条件と 同じである。
[0399] 一方、第 403番目のアミノ酸の変異を含む、配列番号 7における第 2064番目から第 2 875番目の塩基配列力も成る DNA断片を、以後「断片 (474)」と称する。
[0400] この断片 (474)を増幅する際の PCRは以下のオリゴ DNAプライマーを使用した: S Q-CLuc-F002: ttgatggaaaacagattctggttg (配列番号 44)及び 3,-UTR (配列番号 19)。 また、断片 (474)を増幅する際の PCRの反応液組成は、実施例 13において断片 b(4 74)を増幅した際の反応液組成と、プライマーのみが異なる。 PCR反応条件は、実施 例 12において断片 b(446)を増幅した際の反応条件と同じである。
[0401] 得られた断片 a(446)、断片 (474)の PCR産物を 1 %ァガロースで電気泳動を行い、 それぞれ約 l lOObpと約 800bpの DNA断片であることを確認した。これらを混合し、実 施例 8と同様にして、断片 a(446), (474) mix溶液を作製した。
[0402] 次!、で、上記断片 a(446), (474) mix溶液を铸型として、オーバーラップ PCRを行!ヽ 、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 1554番目 力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(446,474 )」と称する。
[0403] 断片 c(446,474)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475 X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した:断片 a(446), (474) mix溶液 1 1。 PCR反応条件は、実施例 12にお いて断片 c(238,446)を増幅した際の反応条件と同じである。
[0404] 得られた断片 c(446,474)の PCR産物を 0.7%ァガロースで電気泳動を行い、実施例 8と同様に断片 c(446,474),d (実施例 8) mix溶液を作製した。
[0405] 次いで、断片 c(446,474),d mix溶液 10 1を用い、実施例 12と同様にして、得られた クローンにつ 、て発光スペクトルを測定した。 [0406] 表 2に示されるように、作製した K375R/Q403P二重変異型 CLuc (第 1変異型ルシフ エラーゼ)の発光スペクトルピークは 460nmであった。
[0407] 〔実施例 18〕 K375R/N404G二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において K375Rと N404Gの二重変異型 CLuc (第
1及び第 4変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法 は実施例 12と同様である。
[0408] 第 404番目のアミノ酸の変異を含む、配列番号 7における第 2064番目から第 2875番 目の塩基配列力も成る DNA断片を、以後「断片 (475)」と称する。
[0409] 断片 (475)を増幅する際の PCRの反応液組成は、実施例 17において断片 (474
)を増幅した際の反応液組成と、铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した: pCLuRA-TDH3[N404G] (実施例 8) 1 μ l(2.70ng/ μ 1)。 PCR反応条件 は実施例 12と同じである。
[0410] 実施例 17の断片 a(446)と断片 (475)の PCR産物を 1%ァガロースで電気泳動を行 い、実施例 12と同様に断片 a(446), (475) mix溶液を作製した。
[0411] 次いで、上記断片 a(446), (475) mix溶液を铸型として、オーバーラップ PCRを行い
、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 1554番目 力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(446,475
)」と称する。
[0412] 断片 c(446,475)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475 X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した:断片 a(446), (475) mix溶液 1 1。 PCR反応条件は、実施例 8におい て断片 c(475X)を増幅した際の反応条件と同じである。
[0413] 得られた断片 c(446,475)の PCR産物を 0.7%ァガロースで電気泳動を行い、実施例 8と同様にして、断片 c(446,475),d (実施例 8) mix溶液を作製した。
[0414] 次いで、断片 c(446,475),d mix溶液 10 1を用い、実施例 12と同様にして、得られた クローンにつ 、て発光スペクトルを測定した。
[0415] 表 2に示されるように、作製した K375R/N404G二重変異型 CLuc (第 1及び第 4変異 型ルシフェラーゼ)の発光スペクトルピークは 461nmであった。 [0416] 〔実施例 19〕K375R/T405I二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において K375Rと T405Iの二重変異型 CLuc (第
1及び第 5変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法 は実施例 12と同様である。
[0417] 第 405番目のアミノ酸の変異を含む、配列番号 7における第 2064番目から第 2875番 目の塩基配列力も成る DNA断片を、以後「断片 (476)」と称する。
[0418] 断片 (476)を増幅する際の PCRの反応液組成は、実施例 17において断片 (474
)を増幅した際の反応液組成と、铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した: pCLuRA- TDH3[ a P21L,T405I] (実施例 5) 1 l(2.0ng / 1)。 PCR反 応条件は、実施例 12において断片 b(446)を増幅した際の反応条件と同じである。
[0419] 実施例 17の断片 a(446)と断片 (476)の PCR産物を 1%ァガロースで電気泳動を行 い、実施例 17と同様にして、断片 a(446), (476) mix溶液を作製した。
[0420] 次!、で、上記断片 a(446), (476) mix溶液を铸型として、オーバーラップ PCRを行!ヽ
、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 1554番目 力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(446,476
)」と称する。
[0421] 断片 c(446,476)を増幅する際の PCRの反応液組成は、実施例 8の PCRの反応液組 成と铸型とする DNAのみが異なる。铸型とする DNAは以下を使用した:断片 a(446), (476) mix溶液 1 1。 PCR反応条件は、実施例 12において断片 c(238,446)を増幅し た際の反応条件と同じである。
[0422] 断片 c(446,476)の PCR産物を 0.7%ァガロースで電気泳動を行い、実施例 8と同様 にして、断片 c(446,476),d (実施例 8) mix溶液を作製した。
[0423] 次いで、断片 c(446,476),d mix溶液 10 1を用い、実施例 8と同様にして、得られたク ローンにつ 、て発光スペクトルを測定した。
[0424] 表 2に示されるように、作製した K375R/T405I二重変異型 CLuc (第 1及び第 5変異 型ルシフェラーゼ)の発光スペクトルピークは 463nmであった。
[0425] 〔実施例 20〕 Q403P/N404G二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において Q403Pと N404Gの二重変異型 CLuc (第 4変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法は実施例 12と同様である。
[0426] 配列番号 7において、第 1番目力 第 2119番目までの塩基配列から成る DNA断片 を、以後「断片 a(474)」と称する。
[0427] この断片 a(474)を増幅する際の PCRでは以下のオリゴ DNAプライマーを使用した: F AR- F (配列番号 16)及び Q474- rev: agagctgtacgggacggacac (配列番号 45)。また、断 片 a(474)を増幅する際の PCRの反応液組成は、実施例 8における断片 a(475)を増幅 した際の PCRの反応液組成とプライマーのみが異なる。 PCR反応条件は、実施例 8に おいて断片 a(475)を増幅した際の反応条件とアニーリング温度のみが異なり、 55°Cで アニーリングを行った。
[0428] 一方、第 403番目及び第 404番目のアミノ酸の変異を含む、配列番号 7にお 、て第 2 099番目から第 2875番目までの塩基配列力 成る DNA断片を、以後「断片 b(474,475) 」と称する。
[0429] この断片 b(474,475)を増幅する際の PCRは、以下のオリゴ DNAプライマーを使用し 7こ: Q474P/N475 - ^w: gtgtccgtcccgtacagctctcccgggacttccatctactggcaagat (酉 c列 ¾· 号 46)及び 3'- UTR (配列番号 19)。また、断片 b(474,475)を増幅する際の PCRの反応 液組成は、実施例 8にお ヽて断片 b(475X)を増幅した際の PCRの反応液組成とプライ マーのみが異なる。 PCR反応条件は、実施例 8において断片 b(475X)を増幅した際の 反応条件とアニーリング温度のみが異なり、 58°Cでアニーリングを行った。
[0430] 次いで、実施例 8と同様にして、断片 a(474),b(474,475) mix溶液を作製した。
[0431] 上記断片 a(474),b(474,475) mix溶液を铸型として、オーバーラップ PCRを行い、目 的の位置のアミノ酸を置換した 1本の長 、断片 (配列番号 7にお 、て第 1554番目から 第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(474,475)」と 称する。
[0432] 断片 c(474,475)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475 X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した:断片 a(474),b(474,475) mix溶液 1 1。 PCR反応条件は、実施例 8にお V、て断片 c(475X)を増幅した際の反応条件と、アニーリング温度及び伸長時間のみ が異なり、アニーリング温度は 60°C、伸長時間は 1分 30秒で行った。
[0433] 得られた断片 c(474,475)の PCR産物を 0.7%ァガロースで電気泳動を行い、実施例
8と同様にして、断片 c(474,475),d (実施例 8) mix溶液を作製した。
[0434] 次いで、断片 c(474,475),d mix溶液 10 1を用い、実施例 8と同様にして、得られたク ローンにつ 、て発光スペクトルを測定した。
[0435] 表 2に示されるように、作製した Q403P/N404G二重変異型 CLuc (第 4変異型ルシフ エラーゼ)の発光スペクトルピークは 462nmであった。
[0436] 〔実施例 21〕 Q403P/T405I二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において Q403Pと T405Iの二重変異型 CLuc (第
5変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法は実施例
12と同様である。
[0437] 第 403番目及び第 405番目のアミノ酸の変異を含む、配列番号 7にお 、て第 2099番 目から第 2875番目までの塩基配列力も成る DNA断片を、以後「断片 b(474,476)」と称 する。
[0438] この断片 b(474,476)を増幅する際の PCRは、以下のオリゴ DNAプライマーを使用し 7こ: Q474P/T476I- J^W: gtgtccgtcccgtacagctctcccaacatctccatctactggcaagatggt (酉己列番 号 47)及び 3'- UTR (配列番号 19)。また、断片 b(474,476)を増幅する際の PCRの反応 液組成は、実施例 8にお ヽて断片 b(475X)を増幅した際の反応液組成とプライマーの みが異なる。 PCR反応条件は、実施例 20において断片 b(474,475)を増幅した際の反 応条件と同じである。
[0439] 次いで、実施例 8と同様にして、断片 a(474),b(474,476) mix溶液を作製した。
[0440] 上記断片 a(474) (実施例 20) ,b(474,476) mix溶液を铸型として、オーバーラップ PC Rを行い、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 15 54番目力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(4 74,476)」と称する。
[0441] 断片 c(474,476)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475 X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した:断片 a(474),b(474,476) mix溶液 1 1。 PCR反応条件は、実施例 20に おいて断片 c(474,475)を増幅した際の反応条件と同じである。
[0442] 断片 c(474,476)の PCR産物を 0.7%ァガロースで電気泳動を行い、実施例 8と同様 にして、断片 c(474,476),d (実施例 8) mix溶液を作製した。
[0443] 次いで、断片 c(474,476),d mix溶液 10 1を用い、実施例 8と同様にして、得られたク ローンにつ 、て発光スペクトルを測定した。
[0444] 表 2に示されるように、作製した Q403P/T405I二重変異型 CLuc (第 5変異型ルシフ エラーゼ)の発光スペクトルピークは 459nmであった。
[0445] 〔実施例 22〕 N404G/T405I二重変異型 CLuc
配列番号 2に示されるアミノ酸配列において N404Gと T405Iの二重変異型 CLuc (第
4及び第 5変異型ルシフェラーゼ)をコードする遺伝子を作製した。変異の導入方法 は実施例 12と同様である。
[0446] 第 404番目及び第 405番目のアミノ酸の変異を含む、配列番号 7において第 2102番 目から第 2875番目までの塩基配列力も成る DNA断片を、以後「断片 b(475,476)」と称 する。
[0447] この断片 b(475,476)を増幅する際の PCRは、以下のオリゴ DNAプライマーを使用し 7こ: 5 /l 47oi— r w: tccgtcccgtacagctctcaggggatctccatctactggcaagatggt(¾c歹 lj¾>号 48)及び 3'- UTR (配列番号 19)。また、断片 b(475,476)を増幅する際の PCRの反応液 組成は、実施例 8における断片 b(475X)を増幅した際の PCRの反応液組成とプライマ 一のみが異なる。 PCR反応条件は、実施例 20において断片 b(474,475)を増幅した際 の反応条件と同じである。
[0448] 次 、で、実施例 8と同様にして、断片 a(475) (実施例 8) ,b(475,476) mix溶液を作製 した。
[0449] 上記断片 a(475),b(475,476) mix溶液を铸型として、オーバーラップ PCRを行い、目 的の位置のアミノ酸を置換した 1本の長 、断片 (配列番号 7にお 、て第 1554番目から 第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(475,476)」と 称する。
[0450] 断片 c(475,476)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475 X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNAは以 下を使用した:断片 a(475),b(475,476) mix溶液 1 1。 PCR反応条件は、実施例 20に おいて断片 c(474,475)を増幅した際の反応条件と同じである。
[0451] 得られた断片 c(475,476)の PCR産物を 0.7%ァガロースで電気泳動を行い、実施例
8と同様に実験を進め、断片 c(475,476),d (実施例 8) mix溶液を作製した。
[0452] 次いで、断片 c(475,476),d mix溶液 10 1を用い、実施例 8と同様にして、得られたク ローンにつ 、て発光スペクトルを測定した。
[0453] 表 2に示されるように、作製した N404G/T405I二重変異型 CLuc (第 4及び第 5変異 型ルシフェラーゼ)の発光スペクトルピークは 461nmであった。
[0454] 〔実施例 23〕Q403P/N404G/T405I三重変異型 CLuc及び Q403P/N404G/T405M三 重変異型 CLuc
23-1.第 403番目、第 404番目及び第 405番目の位置における三重変異型 CLuc遺伝 子の作製 (1)
配列番号 2に示されるアミノ酸配列において Q403Pと N404Gと T405Iの三重変異型 C Luc (第 4及び第 5変異型ルシフヱラーゼ)をコードする遺伝子を作製した。変異の導 入方法は実施例 12と同様である。
[0455] 第 403番目、第 404番目及び第 405番目のアミノ酸の変異を含む、配列番号 7にお V、て第 2099番目から第 2875番目までの塩基配列から成る DNA断片を、以後「断片 b( 474,475,4761)」と称する。
[0456] この断片 b(474,475,476I)を増幅する際の PCRでは、以下のオリゴ DNAプライマーを 使用しに: Q474P/N47oG/T476I-Fw: gtgtccgtcccgtacagctctcccgggatctccatctactggca agatggt (配列番号 49)及び 3'-UTR (配列番号 19)。また、断片 b(474,475,476I)を増幅 する際の PCRの反応液組成は、実施例 8にお 、て断片 b(475X)を増幅した際の PCR の反応液組成とプライマーのみが異なる。 PCR反応条件は、実施例 20において断片 b(474,475)を増幅した際の反応条件と同じである。
[0457] 次 、で、実施例 8と同様にして、断片 a(474) (実施例 20) ,b(474,475,476I) mix溶液 を作製した。
[0458] 上記断片 a(474),b(474,475,476I) mix溶液を铸型として、オーバーラップ PCRを行い 、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 1554番目 力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(474,475 ,4761)」と称する。
[0459] 断片 c(474,475,476I)を増幅する際の PCRの反応液組成は、実施例 8において断片 c(475X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする DNA は以下を使用した:断片 a(474),b(474,475,476I) mix溶液 1 1。 PCR反応条件は、実 施例 20において断片 c(474,475)を増幅した際の反応条件と同じである。
[0460] 得られた断片 c(474,475,476I)の PCR産物を 0.7%ァガロースで電気泳動を行!、、実 施例 8と同様にして、断片 c(474,475,476I),d (実施例 8) mix溶液を作製した。
[0461] 次いで、断片 c(474,475,476I),d mix溶液 10 μ 1を用い、実施例 8と同様にして、得ら れたクローンにつ 、て発光スペクトルを測定した。
[0462] 表 2に示されるように、作製した Q403P/N404G/T405I三重変異型 CLuc (第 4及び第 5変異型ルシフェラーゼ)の発光スペクトルピークは 462nmであった。
[0463] 23-2.第 403番目、第 404番目及び第 405番目の位置における三重変異型 CLuc遺伝 子の作製 (2)
配列番号 2に示されるアミノ酸配列において Q403Pと N404Gと T405Mの三重変異型 CLuc (第 4及び第 5変異型ルシフヱラーゼ)をコードする遺伝子を作製した。変異の 導入方法は実施例 12と同様である。
[0464] 第 403番目、第 404番目及び第 405番目のアミノ酸の変異を含む、配列番号 7にお V、て第 2099番目から第 2875番目までの塩基配列から成る DNA断片を、以後「断片 b( 474,475,476M)」と称する。
[0465] この断片 b(474,475,476M)を増幅する際の PCRでは、以下のオリゴ DNAプライマー を使用した: Q474P/N475G/T476M- Fw: gtgtccgtcccgtacagctctcccgggatgtccatctactg gcaagatggt (配列番号 50)及び 3'- UTR (配列番号 19)。また、断片 b(474,475,476M)を 増幅する際の PCRの反応液組成は、実施例 8にお 、て断片 b(475X)を増幅した際の P CRの反応液組成とプライマーのみが異なる。 PCR反応条件は、実施例 20において 断片 b(474,475)を増幅した際の反応条件と同じである。
[0466] 次!、で、実施例 8と同様にして、断片 a(474) (実施例 20) ,b(474,475,476M) mix溶液 を作製した。 [0467] 上記断片 a(474),b(474,475,476M) mix溶液を铸型として、オーバーラップ PCRを行 い、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 1554番 目力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(474,4 75,476M)」と称する。
[0468] 断片 c(474,475,476M)を増幅する際の PCRの反応液組成は、実施例 8において断 片 c(475X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする D NAは以下を使用した:断片 a(474),b(474,475,476M) mix溶液 1 1。 PCR反応条件は 、実施例 20において断片 c(474,475)を増幅した際の反応条件と同じである。
[0469] 得られた断片 c(474,475,476M)の PCR産物を 0.7%ァガロースで電気泳動を行!、、 実施例 8と同様にして、断片 c(474,475,476M),d (実施例 8) mix溶液を作製した。
[0470] 次いで、断片 c(474,475,476M),d mix溶液 10 μ 1を用い、実施例 8と同様にして、得ら れたクローンにつ 、て発光スペクトルを測定した。
[0471] 表 2に示されるように、作製した Q403P/N404G/T405M三重変異型 CLuc (第 4及び 第 5変異型ルシフェラーゼ)の発光スペクトルピークは 462nmであった。配列番号 2に 示されるアミノ酸配列において第 403番目のアミノ酸がグルタミン力 プロリンに変異、 第 404番目のアミノ酸がァスパラギン力 グリシンに変異、第 405番目のアミノ酸がトレ ォニンからメチォニンに変異した pCLuRA- TDH3プラスミドを、「pCLuRA- TDH3[Q40 3P,N404G,T405M]Jと定義する。
[0472] 〔実施例 24〕 Q403P/N404G/T405M/S406L四重変異型 CLuc
配列番号 2に示されるアミノ酸配列において Q403Pと N404Gと T405Mと S406Lの四 重変異型 CLuc (第 4〜第 6変異型ルシフェラーゼ)をコードする遺伝子を作製した。 変異の導入方法は実施例 12と同様である。
[0473] 第 403番目、第 404番目、第 405番目及び第 406番目のアミノ酸の変異を含む、配列 番号 7にお 、て第 2099番目から第 2875番目までの塩基配列から成る DNA断片を、以 後「断片 b(474,475,476,477)」と称する。
[0474] この断片 b(474,475,476,477)を増幅する際の PCRでは、以下のオリゴ DNAプライマ 一を使用した: Q474P/N475G/T476M/S477L- Fw: gtgtccgtcccgtacagctctcccgggatgct catctactggcaagatggtgac (配列番号 51)及び 3'- UTR (配列番号 19)。また、断片 b(474, 475,476,477)を増幅する際の PCRの反応液組成は、実施例 8において断片 b(475X) を増幅した際の PCRの反応液組成とプライマーのみが異なる。 PCR反応条件は、実 施例 8において断片 b(475X)を増幅した際の反応条件とアニーリング温度のみが異な り、 55°Cでアニーリングを行った。
[0475] 次!、で、実施例 8と同様にして、断片 a(474) (実施例 20) ,b(474,475,476,477) mix溶 液を作製した。
[0476] 上記断片 a(474),b(474,475,476,477) mix溶液を铸型として、オーバーラップ PCRを 行い、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 1554 番目力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(474
,475,476,477)」と称する。
[0477] 断片 c(474,475,476,477)を増幅する際の PCRの反応液組成は、実施例 8において 断片 c(475X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型とする
DNAは以下を使用した:断片 a(474),b(474,475,476,477) mix溶液 1 1。 PCR反応条 件は、実施例 8にお 、て断片 c(475X)を増幅した際の反応条件とアニーリング温度の みが異なり、 61°Cでアニーリングを行った。
[0478] 得られた断片 c(474,475,476,477)の PCR産物を 0.7%ァガロースで電気泳動を行い
、実施例 8と同様にして、断片 c(474,475,476,477),d (実施例 8) mix溶液を作製した。
[0479] 次いで、断片 c(474,475,476,477),d mix溶液 10 μ 1を用い、実施例 8と同様にして、 得られたクローンについて発光スペクトルを測定した。
[0480] 表 2に示されるように、作製した Q403P/N404G/T405M/S406L四重変異型 CLuc (第
4〜第 6変異型ルシフェラーゼ)の発光スペクトルピークは 461nmであった。
[0481] 〔実施例 25〕 Q403P/N404G/T405M/S406L/I407A五重変異型 CLuc遺伝子の作製 配列番号 2に示されるアミノ酸配列において Q403Pと N404Gと T405Mと S406Lと 1407
Aの五重変異型 CLuc (第 4〜第 7変異型ルシフェラーゼ)をコードする遺伝子を作製 した。変異の導入方法は実施例 12と同様である。
[0482] 第 403番目、第 404番目、第 405番目、第 406番目及び第 407番目のアミノ酸の変異 を含む、配列番号 7にお 、て第 2099番目から第 2875番目までの塩基配列力 成る D
NA断片を、以後「断片 b(474,475,476,477,478)」と称する。 [0483] この断片 b(474,475,476,477,478)を増幅する際の PCRでは、以下のオリゴ DNAプラ イマ一を使用した: Q474P/N475G/T476M/S477L/I478A- Fw: gtgtccgtcccgtacagctct cccgggatgctcgcctactggcaagatggtgacata(|S^IJ¾:^52)¾ぴ 3'— UTR (目 ti列番 19)。ま た、断片 b(474,475,476,477,478)を増幅する PCRの反応液組成は、実施例 8において 断片 b(475X)を増幅した際の反応液組成とプライマーのみが異なる。 PCR反応条件は 、実施例 16の 16-2において断片 b(268)を増幅した際の反応条件と同じである。
[0484] 次いで、実施例 8と同様にして、断片 a(474),b(474,475,476,477,478) mix溶液を作 製した。
[0485] 上記断片 a(474),b(474,475,476,477,478) mix溶液を铸型として、オーバーラップ PC Rを行い、 目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7において第 15 54番目力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を「断片 c(4 74,475,476,477,478)Jと称する。
[0486] 断片 c(474,475,476,477,478)を増幅する際の PCRの反応液組成は、実施例 8にお V、て断片 c(475X)を増幅した際の反応液組成と铸型とする DNAのみが異なる。铸型と する DNAは以下を使用した:断片 a(474),b(474,475,476,477,478) mix溶液 1 1。 PCR 反応条件は、実施例 16の 16-2において断片 c(249,268)を増幅した際の反応条件と 同じである。
[0487] 断片 c(474,475,476,477,478)の PCR産物を 0.7%ァガロースで電気泳動を行!、、実 施例 8と同様にして、断片 c(474,475,476,477,478),d (実施例 8) mix溶液を作製した。
[0488] 次いで、断片 c(474,475,476,477,478),d mix溶液 10 μ 1を用い、実施例 8と同様にし て、得られたクローンにつ 、て発光スペクトルを測定した。
[0489] 表 2〖こ示されるよう〖こ、作製した Q403P/N404G/T405M/S406L/I407A五重変異型 C Luc (第 4〜第 7変異型ルシフェラーゼ)の発光スペクトルピークは 460nmであった。配 列番号 2に示されるアミノ酸配列において第 403番目のアミノ酸がグルタミン力 プロリ ンに変異、第 404番目のアミノ酸がァスパラギン力 グリシンに変異、第 405番目のアミ ノ酸がトレォニンからメチォニンに変異、第 406番目のアミノ酸がセリンカ ロイシンに 変異、第 407番目のアミノ酸がイソロイシンからァラニンに変異した pCLuRA-TDH3プ ラスミドを、「pCLuRA- TDH3[Q403P,N404G,T405M,S406L,I407A]」と定義する。 [0490] 〔実施例 26〕T167K/Q403P/N404G/T405M/S406L/I407A六重変異型 CLuc遺伝子 の作製
配列番号 2に示されるアミノ酸配列において T167Kと Q403Pと N404Gと T405Mと S40 6Lと I407Aの六重変異型 CLuc (第 3〜第 7変異型ルシフェラーゼ)をコードする遺伝 子を作製した。変異の導入方法は実施例 12と同様である。
[0491] 第 167番目のアミノ酸の変異を含む、配列番号 7において第 1番目力 第 1813番目 までの塩基配列力も成る DNA断片を、以後「断片 a' (238)」と称する。
[0492] 断片 a' (238)を増幅する際の PCRの反応液組成は、実施例 12において断片 a(238) を増幅した際の反応液組成と、プライマーのみが異なる。オリゴ DNAプライマーは以 下を使用した: FAR-F (配列番号 16)及び mut- CLuc-NR2(配列番号 9)。また、 PCR反 応条件は、実施例 8において断片 a(475)を増幅した際の反応条件とアニーリング温 度のみが異なり、アニーリング温度は 53°Cで行った。
[0493] 一方、第 403番目、第 404番目、第 405番目、第 406番目及び第 407番目のアミノ酸の 変異を含む、配列番号 7において第 1704番目から第 2875番目までの塩基配列から 成る DNA断片を、以後「断片 (474,475,476,477,478)」と称する。
[0494] 断片 (474,475,476,477,478)を増幅する際の PCRの反応液組成は、実施例 12に ぉ ヽて断片 b(446)を増幅した際の反応液組成と、铸型とする DNA及びプライマーの みが異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した: pCLuRA-TD H3[Q403P,N404G,T405M,S406L,I407A] (実施例 25) 1 μ l(1.45ng/ μ 1)、 SQ— CLuc— NF2(配列番号 11)及び 3'-UTR (配列番号 19)。また、 PCR反応条件は、断片 a' (238) を増幅した際の反応条件と同じである。
[0495] 得られた断片 a' (238)、断片 (474,475,476,477,478)の PCR産物を 1%ァガロースで 電気泳動を行 ヽ、それぞれ約 1800bpと約 1200bpの DNA断片であることを確認した。 これらを混合し、実施例 8と同様にして、断片 a' (238), (474,475,476,477,478) mix溶 液を作製した。
[0496] 次いで、上記断片 a' (238), (474,475,476,477,478) mix溶液を铸型としてオーバー ラップ PCRを行い、目的の位置のアミノ酸を置換した 1本の長い断片 (配列番号 7にお いて第 461番目力も第 2663番目までの塩基配列)を作製した。以後、この DNA断片を 「断片 c(238,474,475,476,477,478)」と称する。
[0497] 断片 c(238,474,475,476,477,478)を増幅する際の PCRの反応液組成は、実施例 8に ぉ ヽて断片 c(475X)を増幅した際の反応液組成と、铸型とする DNA及びプライマーの みが異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した:断片 a, (238), b' (474,475,476,477,478) mix溶液 1 μ 1、 SQ- GPDl- F0 (配列番号 41)及び mut- CLuc -R (配列番号 13)。また、 PCR反応条件は、実施例 8において断片 c(475X)を増幅した 際の反応条件と、アニーリング温度及び伸長時間のみが異なり、アニーリング温度は 51°C、伸長時間は 2分 30秒で行った。
[0498] 一方、 pCLuRA-TDH3の配列のうち、配列番号 7の第 526番目から第 2575番目を欠 いた直鎖状 DNA断片を PCRによって増幅した。以後、この DNA断片を「断片 d(238,47 4,475,476,477,478)Jと称する。
[0499] 断片 d(238,474,475,476,477,478)を増幅する際の PCRの反応液組成は、実施例 8に ぉ 、て断片 dを増幅した際の反応液組成とプライマーのみが異なる。この PCRにお ヽ てオリゴ DNAプライマーは以下を使用した: SQ- GPD1-R0 (配列番号 42)及び vec- CL uc-F (配列番号 14)。また、 PCR反応条件は、実施例 8において断片 dを増幅した際の 反応条件と同じである。
[0500] 断片 c(238,474,475,476,477,478)、断片 d(238,474,475,476,477,478)の PCR産物を 0 .7。/0ァガロースで電気泳動を行 、、それぞれ約 2200bpと約 7000bpの DNA断片である ことを確認した。これらを混合し、実施例 8と同様にして、断片 c(238,474,475,476,477, 478),d(238,474,475,476,477,478) mix溶液を作製した。
[0501] 次いで、断片 c(238,474,475,476,477,478),d(238,474,475,476,477,478) mix溶液 10
1を用い、実施例 8と同様にして、得られたクローンについて発光スペクトルを測定し た。
[0502] 表 2に示されるように、作製した T167K/Q403P/N404G/T405M/S406L/I407A六重 変異型 CLuc (第 3〜第 7変異型ルシフェラーゼ)の発光スペクトルピークは 461nmであ つた o
[0503] 〔実施例 27〕 K375R/Q403P/N404G/T405M/S406L/I407A六重変異型 CLuc
配列番号 2に示されるアミノ酸配列において K375Rと Q403Pと N404Gと T405Mと S40 6Lと I407Aの六重変異型 CLuc (第 1及び第 4〜第 7変異型ルシフェラーゼ)をコードす る遺伝子を作製した。また、配列番号 6に示した a CLucのシグナル配列内における 第 21番目のアミノ酸をロイシンに置換した。変異の導入方法は実施例 12と同様であ る。
[0504] 配列番号 6において第 21番目のアミノ酸及び配列番号 2において第 375番目の位 置の変異を含む、配列番号 7における第 1番目から第 2087番目の塩基配列から成る DNA断片を PCRにより増幅した。以後、この DNA断片を「断片 a(21,446)」と称する。
[0505] 断片 a(21,446)を増幅する際の PCRの反応液組成は、実施例 12において断片 a(238 )を増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸型 とする DNAとオリゴ DNAプライマーは以下を使用した: pCLuRA-TDH3[ a P21L,K375 R] (実施例 4) 1 μ l(2.0ng/ μ 1)、 FAR- F (配列番号 16)及び SQ- CLuc- F002- rev (配列 番号 43)。また、 PCR反応条件は、実施例 16の 16-3において断片 a(21)を増幅した際 の反応条件と同じである。
[0506] 一方、第 403番目、第 404番目、第 405番目、第 406番目及び第 407番目のアミノ酸の 変異を含む、配列番号 7における第 2064番目から第 2875番目の塩基配列から成る D NA断片を PCRにより増幅した。以後、この DNA断片を「断片 b"(474,475,476,477,478) 」と称する。
[0507] 断片 b"(474,475,476,477,478)を増幅する際の PCRの反応液組成は、実施例 12に ぉ ヽて断片 a(238)を増幅した際の PCRの反応液組成と、铸型とする DNA及びプライ マーのみが異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した: pCLu RA-TDH3[Q403P,N404G,T405M,S406L,I407A] (実施例 25) 1 μ l(1.45ng/ μ 1)、 SQ— CLuc- F002(配列番号 44)及び 3'- UTR (配列番号 19)。また、 PCR反応条件は、実施 例 16の 16- 3にお 、て断片 a(21)を増幅した際の反応条件と同じである。
[0508] 得られた断片 a(21,446)、断片 b"(474,475,476,477,478)の PCR産物を 1%ァガロース で電気泳動を行 、、それぞれ約 2100bpと約 800bpの DNA断片であることを確認した。 これらを混合し、実施例 8と同様にして、断片 a(21,446),b"(474,475,476,477,478) mix 溶液を作製した。
[0509] 次いで、上記断片 a(21,446),b"(474,475,476,477,478) mix溶液を铸型として、ォー バーラップ PCRを行 、、目的の位置のアミノ酸を置換した 1本の長 、断片(配列番号 7 における第 461番目から第 2663番目の塩基配列から成る)を作製した。以後、この DN
A断片を「断片 c(21,446,474,475,476,477,478)」と称する。
[0510] 断片 c(21,446,474,475,476,477,478)を増幅する際の PCRの反応液組成は、実施例
26にお!/、て、断片 c(238,474,475,476,477,478)を増幅した際の反応液組成と铸型と する DNAのみが異なる。铸型とする DNAは以下を使用した:断片 a(21,446),b"(474,47
5,476,477,478) mix溶液 1 1。また、 PCR反応条件は、実施例 16の 16-3において断 片 c(21,249,268)を増幅した際の反応条件と同じである。
[0511] 得られた断片 c(21,446,474,475,476,477,478)の PCR産物を 0.7%ァガロースで電気 泳動を行い、実施例 26と同様にして、断片 c(21,446,474,475,476,477,478),d(238,47
4,475,476,477,478) (実施例 26) mix溶液を作製した。
[0512] 次いで、 r> c(21,446,474,475,476,477,478),d(238,474,475,476,477,478) mix溶液
10 1を用い、実施例 8と同様にして、得られたクローンについて発光スペクトルを測 し 7こ。
[0513] 表 2に示されるように、作製した K375R/Q403P/N404G/T405M/S406L/I407A六重 変異型 CLuc (第 1及び第 4〜第 7変異型ルシフェラーゼ)の発光スペクトルピークは 4 60nmで fcつた。
[0514] 〔実施例 28〕T167K/K375R/Q403P/N404G/T405M/S406L/I407A七重変異型 CLuc 配列番号 2に示されるアミノ酸配列において T167Kと K375Rと Q403Pと N404Gと T40 5Mと S406Lと I407Aの七重変異型 CLuc (第 1及び第 3〜第 7変異型ルシフェラーゼ)を コードする遺伝子を作製した。また、配列番号 6に示した a CLucのシグナル配列内 における第 21番目のアミノ酸をロイシンに置換した。変異の導入方法は実施例 12と 同様である。
[0515] アミノ酸番号 167及び 375の位置の変異を含む、配列番号 7における第 900番目から 第 2087番目の塩基配列力も成る DNA断片を PCRにより増幅した。以後、この DNA断 片を「断片 a' (238,446)」と称する。
[0516] 断片 a' (238,446)を増幅する際の PCRの反応液組成は、実施例 12において断片 a(2 38)を増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸 型とする DNAとオリゴ DNAプライマーは以下を使用した: pCLuRA-TDH3[T167K,K37 5R] (実施例 12) 1 μ l(3.42ng/ μ 1)、 mut- CLuc- F (配列番号 8)及び SQ- CLuc- F002- r ev (配列番号 43)。また、 PCR反応条件は実施例 16の 16-3において断片 a(21)を増幅 した際の反応条件と同じである。
[0517] 得られた断片 a' (238,446)の PCR産物を 1%ァガロースで電気泳動を行い、約 1100b pの DNA断片であることを確認した。断片 a, (238,446)、断片 a(21) (実施例 16の 16- 1) 及び断片 b"(474,475,476,477,478) (実施例 27)を混合し、実施例 8と同様にして、断 片 a(21),a, (238,446),b"(474,475,476,477,478) mix溶液を作製した。
[0518] 上記断片 a(21),a' (238,446),b"(474,475,476,477,478) mix溶液を铸型として、ォー バーラップ PCRを行 、、目的の位置のアミノ酸を置換した 1本の長 、断片(配列番号 7 における第 461番目から第 2663番目の塩基配列から成る)を作製した。以後、この DN A断片を「断片 c(21,238,446,474,475,476,477,478)」と称する。
[0519] 断片 c(21,238,446,474,475,476,477,478)を増幅する際の PCRの反応液組成は、実 施例 26において断片 c(238,474,475,476,477,478)を増幅した際の PCRの反応液組成 と铸型とする DNAのみが異なる。铸型とする DNAは以下を使用した:断片 a(21),a' (23 8,446),b"(474,475,476,477,478) mix溶液 1 1。また、 PCR反応条件は、実施例 16の 16-3において断片 c(21,249,268)を増幅した際の反応条件と同じである。
[0520] 得られた断片 c(21,238,446,474,475,476,477,478)の PCR産物を 0.7%ァガロースで 電気泳動を行い、実施例 26と同様に実験を進め、断片 c(21,238,446,474,475,476,47 7,478),d(238,446,474,475,476,477,478) (実施例 26) mix溶液を作製した。
[0521] 次いで、断片 c(21,238,446,474,475,476,477,478),d(238,446,474,475,476,477,478) mix溶液 10 1を用い、実施例 8と同様にして、得られたクローンについて発光スぺク トルを測定した。
[0522] 表 2に示されるように、作製した T167K/K375R/Q403P/N404G/T405M/S406L/I40 7A七重変異型 CLuc (第 1及び第 3〜第 7変異型ルシフェラーゼ)の発光スペクトルピ ークは 461nmであった。
[0523] 〔実施例 29〕 Q403P/N404G/T405M三重変異型 CLucに対するランダム変異導入に よる変異型 CLucの作製 29-1. Q403P/N404G/T405M三重変異型 CLucの C末端における His- tagの導入 配列番号 2に示されるアミノ酸配列において Q403Pと N404Gと T405Mの三重変異型 CLuc (第 4及び第 5変異型ルシフェラーゼ)について、 CLuc遺伝子の下流に His-tag 遺伝子を連結した CLuc-(GS)3H6遺伝子を作製した。また、配列番号 6に示した a C Lucのシグナル配列内における第 21番目のアミノ酸をロイシンに置換した。
[0524] 第 403番目、第 404番目、第 405番目のアミノ酸の変異を含む、配列番号 7にお 、て 第 900番目から第 2552番目までの塩基配列力 成る DNA断片を、以後「断片 c' (474, 475,476)」と称する。
[0525] この断片 c' (474,475,476)を増幅する際の PCRは、以下のォリコ DNAプライマーを使 用した: mut- CLuc- F (配列番号 8)及び C- trm- r: ctagggtgtctccatgctttatgta (配列番号 53)。また、断片 c' (474,475,476)を増幅する際の PCRの反応液組成は、実施例 8にお V、て断片 c(475X)を増幅した際の反応液組成と、铸型とする DNA及びプライマーのみ が異なる。铸型とする DNAは以下を使用した: pCLuRA- TDH3[Q403P,N404G,T405 M] (実施例 23の 23- 2) 1 l(1.82ng/ 1)。 PCR反応条件は、実施例 8において断片 c( 475X)を増幅した際の反応条件と、アニーリング温度及び伸長時間のみが異なり、ァ ニーリング温度は 57°C、伸長時間は 2分で行った。
[0526] 一方、 pCLuRA- TDH3[ a P21L,-(GS)3H6] (実施例 6)の配列のうち、配列番号 7の 第 967番目から第 2363番目を欠 、た直鎖状 DNA断片を PCRによって増幅した。以後 、この DNA断片を「断片 d(474,475,476)」と称する。
[0527] 断片 d(474,475,476)を増幅する際の PCRは以下のプライマーを使用した: vec-CLuc - R (配列番号 10)及び SQ- CLuc- F003: aagctgaacgactctgcaatagtc (配列番号 54)。また 、断片 d(474,475,476)を増幅する際の PCRの反応液組成は、実施例 8において断片 d を増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸型と する DNAは以下を使用した: pCLuRA- TDH3[ a P21L,-(GS)3H6] (実施例 6) 1 μ 1(1.0 η§/ μ \)0 PCR反応条件は、実施例 8において断片 dを増幅した際の反応条件と同じ である。
[0528] 得られた断片 c ' (474,475,476)、断片 d(474,475,476)の PCR産物を 0.7%ァガロース で電気泳動を行 、、それぞれ約 1700bpと約 7000bpの DNA断片であることを確認した 。これらを混合し、実施例 8と同様にして、断片 c' (474,475,476),d(474,475,476) mix 溶液を作製した。
[0529] 次いで、断片 c' (474,475,476),d(474,475,476) mix溶液 10 μ 1を用い、実施例 8と同 様にして、配列番号 2に示されるアミノ酸配列において第 403番目のアミノ酸をグルタ ミン力 プロリンに変異、第 404番目のアミノ酸をァスパラギン力 グリシンに変異、第 4 05番目のアミノ酸をトレオニンからメチォニンに変異し、且つ配列番号 6に示されるァ ミノ酸配列において第 21番目のアミノ酸をプロリンからロイシンに変異し、さらに変異 型 CLuc遺伝子の下流に His-tag遺伝子を導入したクローンを得た。配列番号 2に示 されるアミノ酸配列において第 403番目のアミノ酸をグルタミン力 プロリンに変異、第 404番目のアミノ酸をァスパラギン力 グリシンに変異、第 405番目のアミノ酸をトレオ ニン力もメチォニンに変異し、且つ配列番号 6に示されるアミノ酸配列において第 21 番目のアミノ酸をプロリンカもロイシンに変異し、さらに変異型 CLuc遺伝子の下流に His- tag遺伝子を導入した pCLuRA- TDH3プラスミドを、「pCLuRA- TDH3[ a P21L.Q4 03P,N404G,T405M,- (GS)3H6]」と定義する。
[0530] 29-2. pCLuRA- TDH3[ a P21L,Q403P,N404G,T405M,-(GS)3H6]におけるランダム 変異の導入
pCLuRA— TDH3[ a P21L,Q403P,N404G,T405M,— (GS)3H6]について、ランダムに変 異を加えた。なお、ここでは、配列番号 23の塩基番号を用いて説明する。変異の導 入方法としては、 CLucを配列番号 23において第 900番目力 第 1813番目までの N末 端側と第 1554番目から第 2699番目までの C末端側に分け、それぞれ PCRで増幅する 際にヌクレオチドの濃度を不均一にした。
[0531] 配列番号 23において、第 900番目力 第 1813番目までの塩基配列を Error Prone P CRにより増幅した。この DNA断片を「断片 c(474,475,476)-N」と称する。また、配列番 号 2に示されるアミノ酸配列において第 403番目、第 404番目及び第 405番目のァミノ 酸の位置を変異を含む、第 1554番目から第 2699番目までの塩基配列を Error Prone PCRで増幅した。この DNA断片を「断片 c(474,475,476)-C」と称する。
[0532] 断片 c(474,475,476)-Nを増幅する際の Error Prone PCRの反応液組成は、以下の 通りである: Taq DNA polymerase(Roche) 1 μ 1(5U/ μ 1) ;pCLuRA— TDH3[ a P21L,-(G S)3H6] (実施例 6)プラスミド溶液 (150ng/ 1) 1 1; 10 X PCR buffer w/o Mg2+; for Taq (Roche) 10 1 ; 10 X dNTP mixture for Error Prone PCR 10 l ; 25mM塩化マグネシ ゥム 28 l ; 5mM塩化マンガン 2.5 l ; mut- CLuc- F (配列番号 8) 3 l ; mut- CLuc- N R2(配列番号 9) 3 1 ;滅菌水 41.5 μ 1。また、 10 X dNTP mixture for Error Prone PCR の糸且成は以下の通りである: lOOmM dCTP 100 μ 1、 lOOmM dTTP 100 μ 1、 lOOmM dG TP 100 μ 1、 lOOmM dATP 100 μ 1、滅菌水 760 μ 1。 PCR反応は 94°Cで 1分 (変性)、 45 °Cで 1分 (アニーリング)、 72°Cで 1分 (伸長)を 30サイクルで行った。
[0533] 一方、断片 c(474,475,476)-Cを増幅する際の Error Prone PCRの反応液組成は、断 片 c(474,475,476)-Nを増幅した際の Error Prone PCRの反応液組成と、铸型とする D NA、プライマー及び滅菌水の量が異なる。铸型とする DNA、オリゴ DNAプライマー及 び滅菌水の量は以下の通りである: pCLuRA- TDH3[ a P21L,Q403P,N404G,T405M, - (GS)3H6] (上記 29- 1)プラスミド溶液 0.5 μ l(288ng/ μ 1)、 mut- CLuc- CF1 (配列番号 12)及び mut- CLuc-R (配列番号 13)、並びに滅菌水 42 1。 PCR反応条件は、断片 c( 474,475,476)-Nを増幅した際の Error Prone PCRの反応条件と同じである。
[0534] 得られた断片 c(474,475,476)- N、断片 c(474,475,476)- Cの PCR産物を 1 %ァガロー スで電気泳動した結果、約 900bpの断片 c(474,475,476)-Nと約 1100bpの断片 c(474,4 75,476)-Cが確認できた。これらをそれぞれシグマ社 GeneElute MINUS EtBr SPIN C OLUMNSでの精製、フエノール抽出、エタノール沈殿に供した後、 10 1の滅菌水に 溶解した (それぞれ「断片 c(474,475,476)- N溶液」、「断片 c(474,475,476)- C溶液」)。
[0535] 次いで、断片 c(474,475,476)-N、断片 c(474,475,476)-Cのそれぞれについて、 PCR により増幅した。増幅後の断片をそれぞれ「断片 c(474,475,476)- N(2)」、「断片 c(474, 475,476)- C(2)」と定義する。
[0536] 断片 c(474,475,476)- N(2)を増幅する PCRの反応液組成は、実施例 8にお 、て断片 c(475X)を増幅した際に行った PCRの反応液組成と、铸型とする DNA及びプライマー のみが異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した:断片 c(474, 475,476)- N溶液 1 μ 1、 mut- CLuc- F (配列番号 8)及び mut- CLuc- NR2(配列番号 9)。
[0537] 一方、断片 c(474,475,476)-C(2)を増幅する PCRの反応液組成は、断片 c(474,475,4 76)-N(2)を増幅した際の PCRの反応液組成と、铸型とする DNA及びプライマーのみ が異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した:断片 c(474,475, 476)- C溶液 1 μ 1、 mut- CLuc- CF1 (配列番号 12)及び mut- CLuc- R (配列番号 13)。
[0538] また、断片 c(474,475,476)-N(2)及び断片 c(474,475,476)-C(2)を増幅する際の PCR 反応条件は、それぞれ実施例 8において断片 c(475X)を増幅した際の反応条件と、ァ ニーリング温度及び伸長時間のみが異なり、アニーリング温度を 60°C、伸長時間を 1 分 30秒で行った。
[0539] 得られた断片 c(474,475,476)- N(2)、断片 c(474,475,476)- C(2)の PCR産物を 1 %ァガ 口ースで電気泳動した結果、約 900bpの断片 c(474,475 ,476)-N(2)と約 11 OObpの断片 c (474,475,476)-C(2)が確認できた。これらをそれぞれシグマ社 GeneElute MINUS EtB r SPIN COLUMNSでの精製、フエノール抽出、エタノール沈殿に供した後、 20 μ 1の 滅菌水に溶解した (それぞれ「断片 c(474,475,476)- Ν(2)溶液」、「断片 c(474,475,476) - C(2)溶液」)。
[0540] 一方、 pCLuRA- TDH3[ a P21L,-(GS)3H6] (実施例 6)の配列のうち、配列番号 23 の第 967番目から第 1703番目までを欠 、た直鎖状 DNAを PCRによって増幅した。以 後、この DNA断片を「断片 d(474,475,476)-N」と称する。また、配列番号 23の第 1664 番目力 第 2611番目までを欠いた直鎖状 DNAを PCRによって増幅した。この DNA断 片を、「断片 d(474,475,476)- C」と称する。
[0541] 断片 d(474,475,476)-Nを増幅する際の PCRの反応液組成は、実施例 8において断 片 dを増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる。铸 型とする DNAとオリゴ DNAプライマーは以下を使用した: pCLuRA-TDH3[ a P21L,Q4 03P,N404G,T405M,-(GS)3H6] (上記 29- 1) 1 μ l(288ng/ μ 1)、 vec- CLuc- R (配列番号 10)及び SQ- CLuc- NF2(配列番号 11)。
[0542] また、断片 d(474,475,476)-Cを増幅する際の PCRの反応液組成は、断片 d(474,475, 476)-Nを増幅した際の反応液組成と、铸型とする DNA及びプライマーのみが異なる 。铸型とする DNAとオリゴ DNAプライマーは以下を使用した: pCLuRA-TDH3[ a P21L ,-(GS)3H6] (実施例 6) 1 μ l(150ng/ μ 1)、 SQ- CLuc- CR1 (配列番号 15)及び vec- CLu c-F (配列番号 14)。
[0543] 断片 d(474,475,476)-N及び断片 d(474,475,476)-Cを増幅する際の PCRの反応条件 は、実施例 8において断片 dを増幅した際の反応条件と同じである。
[0544] 得られた断片 d(474,475,476)- N、断片 d(474,475,476)- Cの PCR産物を 0.7%ァガロ ースで電気泳動した結果、それぞれ約 7000bpの断片 d(474,475,476)-N及び断片 d(4 74,475,476)-Cが確認できた。これらをそれぞれシグマ社 GeneElute MINUS EtBr SPI N COLUMNSでの精製、フエノール抽出、エタノール沈殿に供した後、 10 1の滅菌 水に溶解した (それぞれ「断片 d(474,475,476)- N溶液」、「断片 d(474,475,476)- C溶液 」)。
[0545] 次!、で、断片 c(474,475,476)- N(2)溶液 10 μ 1と断片 d(474,475,476)- Ν溶液 5 μ 1を混 合し、断片 c(474,475,476)- N(2),d(474,475,476)- N mix溶液を作製した。同様に、断 片 c(474,475,476)- C(2),d(474,475,476)- C mix溶液を作製した。これらを用いて、実 施例 12と同様に形質転換を行い、それぞれ「 a P21L,Q403P,N404G,T405M,-(GS)3 H6変異体の N末側ライブラリー」と「 at P21L,Q403P,N404G,T405M,- (GS)3H6変異体 の C末側ライブラリー」とした。
[0546] 以下、実施例 8と同様にして、発光スペクトルシフトが起こっていると考えられるクロ ーンを選抜し、さらに発光スペクトルを測定した。
[0547] 表 2に示されるように、選抜された Y280D/R372L/Q403P/N404G/T405M五重変異 型 CLuc及び I276N/Q403P/N404G/T405M四重変異型 CLuc (V、ずれも第 4及び第 5 変異型ルシフェラーゼ)の発光スペクトルピークは!、ずれも 462nmであった。
[0548] 上記、配列番号 2に示されるアミノ酸配列において第 280番目のアミノ酸がチロシン 力 ァスパラギン酸に変異、第 372番目のアミノ酸がアルギニン力 ロイシンに変異、 第 403番目のアミノ酸がグルタミン力 プロリンに変異、第 404番目のアミノ酸がァスパ ラギン力 グリシンに変異、第 405番目のアミノ酸がトレオニンからメチォニンに変異し 、且つ配列番号 6に示されるアミノ酸配列において第 21番目がプロリンカ ロイシンに 変異し、さらに CLuc遺伝子の下流に His-tag遺伝子を導入した pCLuRA-TDH3プラス ミドを、「pCLuRA— TDH3[ a P21L,Y280D,R372L,Q403P,N404G,T405M,-(GS)3H6]jと 定義する。
[0549] 〔実施例 3O〕Y280D/R372L/Q403P/N404G/T405M五重変異型 CLucに対するランダ ム変異導入による変異型 CLucの作製 pCLuRA— TDH3[ a P21L,Y280D,R372L,Q403P,N404G,T405M,— (GS)3H6]について 、ランダムに変異を加えた。変異の導入方法は実施例 29の 29-2と同様である。
[0550] 本実施例では、配列番号 23の塩基番号を用いて説明する。配列番号 23にお 、て 、第 900番目力 第 1717番目までの塩基配列を Error Prone PCRにより増幅した。この DNA断片を「断片 c(351,443,474,475,476)-N」と称する。また、配列番号 2に示される アミノ酸配列にぉ 、て第 280番目、第 372番目、第 403番目、第 404番目及び第 405番 目のアミノ酸の位置に変異を含む、第 1554番目から第 2699番目までの塩基配列を Er ror Prone PCRで増幅した。この DNA断片を「断片 c(351,443,474,475,476)- C」と称す る。
[0551] 断片 c(351,443,474,475,476)-Nを増幅する際の Error Prone PCRの反応液組成は、 実施例 29の 29-2において断片 c(474,475,476)-Cを増幅した際の Error Prone PCRと 、铸型とする DNA及びプライマーのみが異なる。铸型とする DNAとオリゴ DNAプライマ 一は以下を使用した: pCLuRA- TDH3[ a P21L,Y280D,R372L,Q403P,N404G,T405M ,-(GS)3H6] (実施例 29の 29- 2) 0.5 μ l(329ng/ μ 1)、 mut- CLuc- F (配列番号 8)及び Κ 340— rev: gtacggctcgagaagaccttt(|S^'J ^"55)0
[0552] また、断片 c(351,443,474,475,476)-Cを増幅する際の Error Prone PCRの反応液組 成は、断片 c(351,443,474,475,476)- Nを増幅した際の Error Prone PCRとプライマー のみが異なる。オリゴ DNAプライマーは以下を使用した: mut- CLuc-CFl (配列番号 1 2)及び mut- CLuc- R (配列番号 13)。
[0553] 断片 c(351,443,474,475,476)- N及び断片 c(351,443,474,475,476)- Cを増幅する際 の Error Prone PCRの反応条件は、実施例 29の 29-2においてそれぞれ断片 c(474,4 75,476)-N、断片 c(474,475,476)-Cを増幅した際の反応条件と同じである。
[0554] 以下、実施例 29の 29-2と同様にして、断片 c(351,443,474,475,476)-N溶液及び断 片 c(351,443,474,475,476)-C溶液を作製した。
[0555] 次いで、断片 c(351,443,474,475,476)- N及び断片 c(351,443,474,475,476)- Cのそ れぞれについて、 PCRにより増幅した。増幅後の断片を、それぞれ「断片 c(351,443,4 74,475,476)-N(2)j、「断片 c(351,443,474,475,476)- C(2)」と称する。
[0556] 断片 c(351,443,474,475,476)-N(2)を増幅する際の PCRの反応液組成は、実施例 8 にお ヽて断片 c(475X)を増幅した際の反応液組成と、铸型とする DNA及びプライマー のみが異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した:断片 c(351, 443,474,475,476)- N溶液、 mut- CLuc- F (配列番号 8)及び K340- rev (配列番号 55)。
[0557] また、断片 c(351,443,474,475,476)-C(2)を増幅する際の PCRの反応液組成は、実 施例 29の 29-2において断片 c(474,475,476)-C(2)を増幅した際の反応液組成と铸型 とする DNAのみが異なる。铸型とする DNAは以下を使用した:断片 c(351,443,474,47 5,476)- C溶液。
[0558] 得られた断片 c(351,443,474,475,476)- N(2)、断片 c(351,443,474,475,476)- C(2)の P CR産物を 1%ァガロースで電気泳動を行い、実施例 29の 29-2と同様にして、断片 c(4 74,475,476)- N(2)溶液、断片 c(474,475,476)- C(2)溶液を作製した。
[0559] 一方、 pCLuRA- TDH3[ a P21L,Y280D,R372L,Q403P,N404G,T405M,- (GS)3H6]の 配列のうち、配列番号 23の第 967番目から第 1703番目までを欠いた直鎖状 DNAを P CRによって増幅した。以後、この DNA断片を「断片 d(351,443,474,475,476)-N」と称 する。
[0560] 断片 d(351,443,474,475,476)-Nを増幅する際の PCRの反応液組成は、実施例 8に ぉ 、て断片 dを増幅した際の PCRの反応液組成と、铸型とする DNA及びプライマーの みが異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した: pCLuRA-TD H3[ a P21L,Y280D,R372L,Q403P,N404G,T405M,-(GS)3H6], vec- CLuc- R (配列番 号 10)及び SQ-CLuc-NF2(配列番号 11)。また、 PCR反応条件は、実施例 8において 断片 dを増幅した際の PCRの反応条件と同じである。
[0561] 以下、実施例 29の 29-2と同様にして、断片 d(351,443,474,475,476)-N溶液を作製 した。
[0562] 次いで、断片 c(351,443,474,475,476)- N(2)溶液 10 μ 1と断片 d(351,443,474,475,476 )- N溶液 5 μ 1を混合し、断片 c(351,443,474,475,476)- N(2),d(351,443,474,475,476)- Ν mix溶液を作製した。同様に、断片 c(351,443,474,475,476)- C(2)溶液 10 1と断片 d(4 74,475,476)- C溶液(実施例 29の 29- 2) 5 1を混合し、断片 c(351,443,474,475,476)- C(2),d(474,475,476)-C mix溶液を作製した。これらを用いて、実施例 12と同様に形 質転換を行い、それぞれ「 a P21L,Y280D,R372L,Q403P,N404G,T405M,- (GS)3H6 変異体の N末側ライブラリー」と「 a P21L,Y280D,R372L,Q403P,N404G,T405M,-(GS)
3H6変異体の C末側ライブラリー」とした。
[0563] 以下、実施例 8と同様にして、発光スペクトルシフトが起こっていると考えられるクロ ーンを選抜し、さらに発光スペクトルを測定した。
[0564] 以下に選抜されたクローンが有する変異型 CLucを示す。
[0565] (1) V258A/Y280D/R372L/Q403P/N404G/T405M/E479V七重変異型 CLuc (当該変 異型 CLucにおいては CLucとヒスチジンタグの間に配置したリンカ一配列(GSGSGS) 内にもアミノ酸置換を含んでいた力 発光スペクトルピークに影響を与えないと考えら れる)
(2) R87S/Y280D/R372L/Q403P/N404G/T405M六重変異型 CLuc
(3) K38R/R79S/Y280D/R372L/Q403P/N404G/T405M七重変異型 CLuc
(4) L191Q/Y280D/R372L/Q403P/N404G/T405M六重変異型 CLuc
(5) V75E/K126E/M223I/Y280D/R372L/Q403P/N404G/T405M八重変異型 CLuc
(6) K38I/Y280D/R372L/Q403P/N404G/T405M六重変異型 CLuc
(7) S45G/E170G/Y280D/R372L/Q403P/N404G/T405M七重変異型 CLuc
これらは、いずれも第 4及び第 5変異型ルシフェラーゼに相当する。それぞれの変 異型 CLucの発光スペクトルピークを、以下の表 2に示す。
[表 2]
変異型 GLuc 発光極大波長 (nm)
N404G 458
N404S 458
T405M 457
S406L 460
I407A 460
T167K/K375R 460
T167K/Q403P 458
T167K/N404G 460
T167K/T405I 460
M178K/L197P 447
K375R/Q403P 460
K375R/N404G 461
K375R/T405I 463
Q403P/N404G 462
Q403P/T405I 459
N404G/T405I 461
Q403P/N404G/T405I 462
Q403P/N404G/T405M 462
Q403P/N404G/T405M/S406L 461
Q403P/N404G/T405M/S406L/I407A 460
T167K/Q403P/N404G/T405M/S406L/I407A 461
K375R/Q403P/N404G/T405M/S406L/I407A 460
T167K/K375R/Q403P/N404G/T405M/S406L/I407A 461
I276N/Q403P/N404G/T405M 462
Y280D/R372L/Q403P/N404G/T405M 462
V258A/Y280D/R372L/Q403P/N404G/T405M/E479V 463
R87S/Y280D/R372L/Q403P/N404G/T405M 464
K38R/R79S/Y280D/R372L/Q403P/N404G/T405M 462
L191 Q/Y280D/R372L/Q403P/N404G/T405M 464
V75E/K126E/M223I/Y280D/R372L/Q403P/N404G/T405M 465
K38I/Y280D/R372L/Q403P/N404G/T405M 463
S45G/E170G/Y280D/R372L/Q403P/N404G/T405 464
[0566] 上記クローンのうち、配列番号 2に示されるアミノ酸配列において第 191番目のァミノ 酸がロイシン力もグルタミンに変異、第 280番目のアミノ酸がチロシン力らァスパラギン 酸に変異、第 372番目のアミノ酸がアルギニンからロイシンに変異、第 403番目のアミ ノ酸がグルタミン力 プロリンに変異、第 404番目のアミノ酸がァスパラギン力 グリシ ンに変異、第 405番目のアミノ酸がトレオ-ンカもメチォニンに変異し、且つ配列番号 6に示されるアミノ酸配列において第 21番目のアミノ酸がプロリンカ ロイシンに変異 し、さらに変異型 CLuc遺伝子の下流に His-Tag遺伝子を導入した pCLuRA-TDH3プ ラスミドを、 pCLuRA-TDH3[ a P21L,L191Q,Y280D,R372L,Q403P,N404G,T405M-( GS)3H6]」と定義する。
[0567] 〔実施例 31〕L191Q/Y280D/R372L/Q403P/N404G/T405M六重変異型 CLucに対す るランダム変異導入による変異 CLucの作製 pCLuRA- TDH3[ a P21L,L191Q,Y280D,R372L,Q403P,N404G,T405M- (GS)3H6]に ついて、ランダムに変異を加えた。変異の導入方法は実施例 29の 29-2と同様である
[0568] 本実施例においては、配列番号 23の塩基番号を用いて説明する。配列番号 2に 示されるアミノ酸配列において第 191番目及び第 280番目の変異を含む、配列番号 2 3において、第 900番目力 第 1813番目までの塩基配列を Error Prone PCRにより増 幅した。この DNA断片を「断片 c(262,351,443,474,475,476)-N」と称する。
[0569] 断片 c(262,351,443,474,475,476)-Nを増幅する際の Error Prone PCRの反応液組 成は、実施例 29の 29-2において断片 c(474,475,476)-Nを増幅した際の Error Prone PCRの反応液組成と、铸型とする DNA及び滅菌水の量のみが異なる。铸型とする DN Aと滅菌水の量は以下を使用した: pCLuRA- TDH3[ a P21L,L191Q,Y280D,R372L,Q 403P,N404G,T405M- (GS)3H6] (実施例 30) 0.5 μ l(298ng/ μ 1)及び滅菌水 42 1。ま た、断片 c(262,351,443,474,475,476)-Nを増幅する際の Error Prone PCRの反応条件 は、実施例 29の 29-2において断片 c(474,475,476)-N、断片 c(474,475,476)-Cを増幅 した際の条件と同じである。
[0570] 以下、実施例 29の 29-2と同様にして、断片 c(262,351,443,474,475,476)-N溶液を 作製した。
[0571] 一方、配列番号 2に示されるアミノ酸配列において第 191番目の変異を含む、配列 番号 23において、第 900番目力 第 1663番目までの塩基配列を PCRにより増幅した 。増幅後の断片を「断片 c(262,351,443,474,475,476)-N(2)」と称する。
[0572] 断片 c(262,351,443,474,475,476)-N(2)を増幅する際の PCRの反応液組成は、実施 例 8にお ヽて断片 c(475X)を増幅した際の反応液組成と、铸型とする DNA及びプライ マーのみが異なる。铸型とする DNAとオリゴ DNAプライマーは以下を使用した:断片 c (262,351,443,474,475,476)- N溶液、 mut- CLuc- F (配列番号 8)及び SQ- CLuc- CR1( 配列番号 15)。
[0573] 得られた断片 c(262,351,443,474,475,476)-N(2)の PCR産物を 1%ァガロースで電気 泳動した結果、約 700bpの断片 c(262,351,443,474,475,476)-N(2)が確認できた。以後 、実施例 29の 29-2と同様にして断片 c(262,351,443,474,475,476)-N(2)溶液を作製し た。
[0574] また、 pCLuRA- TDH3[ a P21L,L191Q,Y280D,R372L,Q403P,N404G,T405M-(GS)3 H6]の配列のうち、配列番号 2に示されるアミノ酸配列において第 191番目の変異を 含む、配列番号 23の第 1664番目力も第 2611番目を欠 、た直鎖状 DNAを PCRによつ て増幅した。この DNA断片を「断片 d(262,351 ,443,474,475,476)-C」と称する。
[0575] 断片 d(262,351 ,443,474,475,476)-Cを増幅する際の反応液組成は、実施例 29の 29 -2において断片 d(474,475,476)-Cを増幅した際の反応液組成と铸型とする DNAのみ が異なる。铸型とする DNAは以下を使用した: pCLuRA- TDH3[ a P21L,L191Q,Y280 D,R372L,Q403P,N404G,T405M-(GS)3H6]oまた、断片 d(262,351 ,443,474,475,476)- Cを増幅する際の PCR反応条件は、実施例 8において断片 dを増幅した際の反応条 件と同じである。
[0576] 以後、実施例 29の 29-2と同様にして断片 d(262,351 ,443,474,475,476)-C溶液を作 製した。
[0577] 次いで、断片 c(262,351 ,443,474,475,476)- N(2)溶液 10 μ 1と断片 d(351 ,443,474,475 ,476)- N溶液 (実施例 30) 5 μ 1を混合し、断片 c(262, 351 ,443,474,475,476)- N(2),d(351 ,443,474,475,476)- N mix溶液を作製した。同様に、断片 c(351 ,443,474,475,476)- N( 2)溶液 (実施例 30) 10 /z 1と断片 d(262,351 ,443,474,475,476)- C溶液 5 /z 1を混合し、断 片 c(351 ,443,474,475,476)- N(2),d(262,351 ,443,474,475,476) mix溶液を作製した。こ れらを実施例 12と同様に形質転換を行い、それぞれ「 a P21L,L262Q,Y351D,R443L ,Q474P,N475G,T476M,- (GS)3H6変異体の N末側ライブラリー」と「 a P21L,L262Q,Y3 51D,R443L,Q474P,N475G,T476M,- (GS)3H6変異体の C末側ライブラリー」とした。
[0578] 以下、実施例 8と同様にして、発光スペクトルシフトが起こっていると考えられるクロ ーンを選抜し、さらに発光スペクトルを測定した。
[0579] 選抜された L191Q/Q235R/Y280D/R372L/Q403P/N404G/T405M七重変異型 CLu c (第 8変異型ルシフェラーゼ)の発光スペクトルピークは 466nmであった。また、 M178R /L191Q/Y280D/R372L/Q403P/N404G/T405M七重変異型 CLuc (第 9変異型ルシフ エラーゼ)の発光スペクトルピークは 435nmであった。これら 2つの変異型 CLucのピー ク波長の差は 31應であり、光学フィルターとプログラム解析によって十分分離可能な 発光色の異なる 2種の変異型ルシフェラーゼを得た。
本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明 細書にとり入れるものとする。

Claims

請求の範囲
[1] 以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 375番目のリジンが他のアミノ酸 に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 375番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 375番目のリジンが他のアミノ酸に置換されたアミノ酸配列から成るタ ンパク質
(d)上記 (c)のアミノ酸配列において、上記第 375番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
[2] 上記第 375番目のリジンが、ァラニン、システィン、ァスパラギン酸、グルタミン酸、フ ェニルァラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチォニン、ァスパラギ ン、プロリン、グルタミン、アルギニン、セリン、トレオニン、ノ リン、トリプトファン及びチ 口シン力 成る群より選択されるアミノ酸に置換されて 、ることを特徴とする、請求項 1 記載の変異型ルシフェラーゼ。
[3] 上記発光スペクトルピーク力 57ηπ!〜 490nmであることを特徴とする、請求項 1記載 の変異型ルシフェラーゼ。
[4] 以下の (a)〜( の 、ずれか 1つのタンパク質力も成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 178番目のメチォニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 178番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 449nm以 下の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、第 178番目のメチォニンが他のアミノ酸に置換されたアミノ酸配列から成るタ ンパク質
(d)上記 (c)のアミノ酸配列において、上記第 178番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 449nm以 下の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
[5] 上記第 178番目のメチォニンがリジンに置換されていることを特徴とする、請求項 4 記載の変異型ルシフェラーゼ。
[6] 上記発光スペクトルピーク力 20ηπ!〜 449nmであることを特徴とする、請求項 4記載 の変異型ルシフェラーゼ。
[7] 以下の (a)〜( の 、ずれか 1つのタンパク質力も成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 167番目のトレオニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 167番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 167番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成 るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 167番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
[8] 上記第 167番目のトレオニンがリジンに置換されて 、ることを特徴とする、請求項 7 記載の変異型ルシフェラーゼ。
[9] 上記発光スペクトルピーク力 58ηπ!〜 490nmであることを特徴とする、請求項 7記載 の変異型ルシフェラーゼ。
[10] 以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 404番目のァスパラギンが他のァ ミノ酸に置換されたアミノ酸配列力も成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 404番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 404番目のァスパラギンが他のアミノ酸に置換されたアミノ酸配列から 成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 404番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 458nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
[11] 上記第 404番目のァスパラギンがグリシン又はセリンに置換されていることを特徴と する、請求項 10記載の変異型ルシフェラーゼ。
[12] 上記発光スペクトルピークが 458nm〜490nmであることを特徴とする、請求項 10記 載の変異型ルシフェラーゼ。
[13] 以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 405番目のトレオニンが他のアミ ノ酸に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 405番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成 るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 405番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 457nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
[14] 上記第 405番目のトレオニンがイソロイシン又はメチォニンに置換されて!、ることを 特徴とする、請求項 13記載の変異型ルシフェラーゼ。
[15] 上記発光スペクトルピークが 457nm〜490nmであることを特徴とする、請求項 13記 載の変異型ルシフェラーゼ。
[16] 以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 406番目のセリンが他のアミノ酸 に置換されたアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 406番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 406番目のセリンが他のアミノ酸に置換されたアミノ酸配列力 成るタ ンパク質
(d)上記 (c)のアミノ酸配列において、上記第 406番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
[17] 上記第 406番目のセリンがロイシンに置換されていることを特徴とする、請求項 16記 載の変異型ルシフェラーゼ。
[18] 上記発光スペクトルピークが 460nm〜490nmであることを特徴とする、請求項 16記 載の変異型ルシフェラーゼ。
[19] 以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 407番目のイソロイシンが他のァ ミノ酸に置換されたアミノ酸配列力も成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記第 407番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 407番目のイソロイシンが他のアミノ酸に置換されたアミノ酸配列から 成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記第 407番目のアミノ酸以外の位置で、 1又 は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 460nm以 上の発光スペクトルピークのルシフェラーゼ活性を有するタンパク質
[20] 上記第 407番目のイソロイシンがァラニンに置換されて 、ることを特徴とする、請求 項 19記載の変異型ルシフェラーゼ。
[21] 上記発光スペクトルピークが 460nm〜490nmであることを特徴とする、請求項 19記 載の変異型ルシフェラーゼ。
[22] 以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 191番目のロイシン、第 235番目 のグルタミン、第 280番目のチロシン、第 372番目のアルギニン、第 403番目のグルタミ ン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換され たアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 466nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 191番目のロイシン、第 235番目のグルタミン、第 280番目のチロシン、 第 372番目のアルギニン、第 403番目のグルタミン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 466nm以上の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
[23] 以下の (A)〜(G)のアミノ酸置換を含むことを特徴とする、請求項 22記載の変異型ル シフェラーゼ。
(A)上記第 191番目のロイシンからグルタミンへの置換
(B)上記第 235番目のグルタミンからアルギニンへの置換
(C)上記第 280番目のチロシン力 ァスパラギン酸への置換
(D)上記第 372番目のアルギニンからロイシンへの置換
(E)上記第 403番目のグルタミン力 プロリンへの置換
(F)上記第 404番目のァスパラギンからグリシンへの置換
(G)上記第 405番目のトレオニン力 メチォニンへの置換
[24] 上記発光スペクトルピークが 466nm〜490nmであることを特徴とする、請求項 22記 載の変異型ルシフェラーゼ。
[25] 以下の (a)〜( の 、ずれか 1つのタンパク質力 成る変異型ルシフェラーゼ。
(a)配列番号 2に示されるアミノ酸配列において、第 178番目のメチォニン、第 191番 目のロイシン、第 280番目のチロシン、第 372番目のアルギニン、第 403番目のグルタミ ン、第 404番目のァスパラギン及び第 405番目のトレオニンが他のアミノ酸に置換され たアミノ酸配列から成るタンパク質
(b)上記 (a)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 435nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失し、且つ第 178番目のメチォニン、第 191番目のロイシン、第 280番目のチロシン 、第 372番目のアルギニン、第 403番目のグルタミン、第 404番目のァスパラギン及び 第 405番目のトレオニンが他のアミノ酸に置換されたアミノ酸配列から成るタンパク質
(d)上記 (c)のアミノ酸配列において、上記アミノ酸以外の位置で、 1又は数個のァミノ 酸が欠失、置換又は付加されたアミノ酸配列から成り、且つ 435nm以下の発光スぺク トルピークのルシフェラーゼ活性を有するタンパク質
[26] 以下の (A)〜(G)のアミノ酸置換を含むことを特徴とする、請求項 25記載の変異型ル シフェラーゼ。
(A)上記第 178番目のメチォニンからアルギニンへの置換
(B)上記第 191番目のロイシンからグルタミンへの置換
(C)上記第 280番目のチロシン力 ァスパラギン酸への置換
(D)上記第 372番目のアルギニンからロイシンへの置換
(E)上記第 403番目のグルタミン力 プロリンへの置換
(F)上記第 404番目のァスパラギンからグリシンへの置換
(G)上記第 405番目のトレオニン力 メチォニンへの置換
[27] 上記発光スペクトルピークが 420nm〜435nmであることを特徴とする、請求項 25記 載の変異型ルシフェラーゼ。
[28] 外来タンパク質又はペプチドと請求項 1〜27のいずれか 1項記載の変異型ルシフ エラーゼとが連結された融合タンパク質。
[29] 請求項 1〜27の 、ずれか 1項記載の変異型ルシフェラーゼ又は請求項 28記載の 融合タンパク質をコードする遺伝子。
[30] 請求項 29記載の遺伝子を含む組換えベクター。
[31] 請求項 30記載の組換えベクターを有する形質転換体。
[32] 請求項 29記載の遺伝子、並びに以下の (a)〜(c)のタンパク質力 成るルシフェラー ゼ又は融合タンパク質をコードする遺伝子力も成る群より選択される 2以上の遺伝子 がそれぞれ異なるプロモーターの制御下に配置されていることを特徴とする、請求項 31記載の形質転換体。
(a)配列番号 2に示されるアミノ酸配列から成るタンパク質
(b)配列番号 2に示されるアミノ酸配列において、第 1番目〜第 18番目のアミノ酸を 欠失したアミノ酸配列から成るタンパク質
(c)外来タンパク質又はペプチドと上記 (a)又は (b)のタンパク質とが連結された融合タ ンパク質
[33] 請求項 32記載の形質転換体の培養物又は培養上清をルシフェリン又はその誘導 体と接触させる工程と、
各ルシフェラーゼ活性に基づく発光スペクトルの発光強度を測定する工程と、 を含み、 2以上のプロモーターの転写活性を評価することを特徴とする、プロモーター 転写活性評価方法。
[34] 請求項 1〜27の 、ずれか 1項記載の変異型ルシフェラーゼ又は請求項 28記載の 融合タンパク質をルシフェリン又はその誘導体と接触させる工程と、
励起状態のォキシルシフ リン又はその誘導体をィ匕学物質に作用させる工程と、 を含み、前記化学物質の励起に基づき発光させるか又はエネルギーを放出させるこ とを特徴する、発光又はエネルギー放出方法。
PCT/JP2007/051279 2006-06-12 2007-01-26 変異型ルシフェラーゼ WO2007144990A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008521100A JP5224457B2 (ja) 2006-06-12 2007-01-26 変異型ルシフェラーゼ
GB0823611A GB2452457B (en) 2006-06-12 2007-01-26 Mutant luciferase
US12/304,631 US8147842B2 (en) 2006-06-12 2007-01-26 Mutant luciferase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-162662 2006-06-12
JP2006162662 2006-06-12

Publications (1)

Publication Number Publication Date
WO2007144990A1 true WO2007144990A1 (ja) 2007-12-21

Family

ID=38831513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051279 WO2007144990A1 (ja) 2006-06-12 2007-01-26 変異型ルシフェラーゼ

Country Status (4)

Country Link
US (1) US8147842B2 (ja)
JP (1) JP5224457B2 (ja)
GB (1) GB2452457B (ja)
WO (1) WO2007144990A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148519A3 (en) * 2007-06-04 2009-05-22 Lonza Biologics Plc Mammalian expression vector with a highly efficient secretory signal sequence
JP2009207447A (ja) * 2008-03-05 2009-09-17 National Institute Of Advanced Industrial & Technology 変異型ルシフェラーゼ
JP2012249619A (ja) * 2011-06-07 2012-12-20 National Institute Of Advanced Industrial Science & Technology 海洋プランクトン由来発光タンパク質
JP2014101300A (ja) * 2012-11-19 2014-06-05 Chiba Univ 脳送達用キャリアおよびその用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385319B2 (en) 2016-09-08 2019-08-20 The Governement of the United States of America, as represented by the Secretary of Homeland Security Modified foot-and-mouth disease virus 3C proteases, compositions and methods thereof
US10435695B2 (en) * 2016-09-08 2019-10-08 The Government of the United States of America, as represented by the Secretary of Homeland Security Fusion protein comprising Gaussia luciferase, translation interrupter sequence, and interferon amino acid sequences

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512071A (ja) * 1999-10-26 2003-04-02 イギリス国 変異型ルシフェラーゼ
WO2004022600A1 (ja) * 2002-09-06 2004-03-18 National Institute Of Advanced Industrial Science And Technology 分泌型又は膜結合型キメラ蛋白質
WO2004052934A1 (ja) * 2002-12-12 2004-06-24 National Institute Of Advanced Industrial Science And Technology 蛋白質のプロセッシングを測定するためのモニター蛋白質
JP2004187652A (ja) * 2002-12-06 2004-07-08 Atoo Kk 高分泌型ウミボタル類縁発光酵素のタンパク質

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670449B1 (en) * 1997-02-13 2003-12-30 Memorial Sloan-Kettering Cancer Center Hybrid molecules and their use for optically detecting changes in cellular microenvironments
US7871803B2 (en) * 2004-12-09 2011-01-18 Nec Soft, Ltd. Gene encoding novel luciferase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512071A (ja) * 1999-10-26 2003-04-02 イギリス国 変異型ルシフェラーゼ
WO2004022600A1 (ja) * 2002-09-06 2004-03-18 National Institute Of Advanced Industrial Science And Technology 分泌型又は膜結合型キメラ蛋白質
JP2004187652A (ja) * 2002-12-06 2004-07-08 Atoo Kk 高分泌型ウミボタル類縁発光酵素のタンパク質
WO2004052934A1 (ja) * 2002-12-12 2004-06-24 National Institute Of Advanced Industrial Science And Technology 蛋白質のプロセッシングを測定するためのモニター蛋白質

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKAJIMA Y. ET AL.: "cDNA cloning and characterization of asecreted luciferase from the luminous Japanese ostracod, Cypridina noctiluca", vol. 68, no. 3, 2004, pages 565 - 570, XP003006446 *
VIVIANI V. ET AL.: "Thr226 Is a Key Residue for Bioluminescence Spectra Determination in Beetle Luciferases", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 280, no. 5, 2004, pages 1286 - 1291, XP002983554 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148519A3 (en) * 2007-06-04 2009-05-22 Lonza Biologics Plc Mammalian expression vector with a highly efficient secretory signal sequence
US8241870B2 (en) 2007-06-04 2012-08-14 Lonza Biologics Plc Mammalian expression vector with a highly efficient secretory signal sequence
JP2009207447A (ja) * 2008-03-05 2009-09-17 National Institute Of Advanced Industrial & Technology 変異型ルシフェラーゼ
JP2012249619A (ja) * 2011-06-07 2012-12-20 National Institute Of Advanced Industrial Science & Technology 海洋プランクトン由来発光タンパク質
JP2014101300A (ja) * 2012-11-19 2014-06-05 Chiba Univ 脳送達用キャリアおよびその用途

Also Published As

Publication number Publication date
US20090263880A1 (en) 2009-10-22
JP5224457B2 (ja) 2013-07-03
GB2452457A (en) 2009-03-04
GB0823611D0 (en) 2009-02-04
US8147842B2 (en) 2012-04-03
JPWO2007144990A1 (ja) 2009-10-29
GB2452457B (en) 2011-05-25

Similar Documents

Publication Publication Date Title
KR102504198B1 (ko) 메틸영양성 효모를 유전적으로 조작하는 발현 구축물 및 방법
WO2007144990A1 (ja) 変異型ルシフェラーゼ
EP2948547B1 (en) Novel glucose oxidases derived from aspergillus niger
US20090081715A1 (en) Engineered Light-Emitting Reporter Genes
EP2569423A1 (en) Mutant protease biosensors with enhanced detection characteristics
CN110628738B (zh) 提高葡萄糖氧化酶活性的方法、突变体及其应用
JP6025566B2 (ja) ホタル由来ルシフェラーゼ
KR102159807B1 (ko) 디히드로게나아제 활성이 향상된 아마도리아제
CN101939422B (zh) 喷雾干燥的微生物及制备和使用的方法
JP6006070B2 (ja) ホタル由来ルシフェラーゼ
JP2011167079A (ja) ホタル由来ルシフェラーゼ
JP5224100B2 (ja) 変異型ルシフェラーゼ
EP2686341B1 (en) Luciferase derived from lucidina accensa
WO2010027531A1 (en) Engineered light-emitting reporter genes and medthods of use
JP6160094B2 (ja) ジアホラーゼ組成物
JP2000102387A (ja) 発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母
KR102194697B1 (ko) 3-히드록시프로피온산 반응 전사인자를 이용한 3-하이드록시프로피온산 선택성 유전자회로 및 이를 이용한 3-히드록시프로피온산 생산 균주의 스크리닝 방법
WO2016051517A1 (ja) オレンジ色の発光を示すルシフェラーゼ
CN108779452B (zh) 发光酶蛋白
WO2016117135A1 (ja) 真核生物細胞の可視化方法、並びに真核生物細胞の可視化用の改変レポーター遺伝子及び発現ベクター
CN115044569A (zh) 一种Taq DNA聚合酶突变体及其应用
EP2686424B1 (en) Star-worm luciferase
JP5860651B2 (ja) ホタル由来ルシフェラーゼ
JP2003210173A (ja) 新規プロモーター
EP2331691A1 (en) Engineered light-emitting reporter genes and medthods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07707511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521100

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12304631

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 0823611

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070126

WWE Wipo information: entry into national phase

Ref document number: 0823611.9

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 07707511

Country of ref document: EP

Kind code of ref document: A1