JP2000102387A - 発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母 - Google Patents

発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母

Info

Publication number
JP2000102387A
JP2000102387A JP10275659A JP27565998A JP2000102387A JP 2000102387 A JP2000102387 A JP 2000102387A JP 10275659 A JP10275659 A JP 10275659A JP 27565998 A JP27565998 A JP 27565998A JP 2000102387 A JP2000102387 A JP 2000102387A
Authority
JP
Japan
Prior art keywords
yeast
gene
recombinant vector
thr
agglutinin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10275659A
Other languages
English (en)
Inventor
Atsuo Tanaka
渥夫 田中
Atsumi Ueda
充美 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP10275659A priority Critical patent/JP2000102387A/ja
Publication of JP2000102387A publication Critical patent/JP2000102387A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【課題】 発光蛋白質を酵母の細胞表面に発現させるこ
とのできる発光蛋白質発現組換えベクターを得る。 【解決手段】 発光蛋白質発現組換えベクターは、サッ
カロミセス属などの酵母由来のアグルチニン遺伝子断片
領域及び発光蛋白質をコードする遺伝子を含有する。ア
グルチニン遺伝子断片は、サッカロミセス属由来のα−
アグルチニンのC末端から320アミノ酸をコードする
配列と446塩基からなる3′−非翻訳領域とを含むD
NA断片であってもよい。前記発光蛋白質には、オワン
クラゲ由来のグリーンフルオロセント蛋白質などが含ま
れる。前記組換えベクターにより形質転換された酵母で
は、細胞表面に発光蛋白質が発現する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、酵母の細胞表面上
に発光蛋白質を発現可能な組換えベクター、および該ベ
クターにより形質転換された酵母に関する。発光蛋白質
の発現する酵母はバイオセンサーや発酵時の計測等に利
用することができる。
【0002】
【従来の技術】従来、組換えDNA技術を用いて酵母に
異種遺伝子を発現させ、種々の分野で利用することは行
われている。しかし、このような異種遺伝子が導入され
た酵母を物質変換やバイオセンサーなどに利用した場
合、物質の細胞透過が律速となり、十分な感度が得られ
なかったり、反応速度が遅いという問題があった。
【0003】このような問題を解決するため、本発明者
らは 酵母の細胞表面にグルコアミラーゼやセルラーゼ
を組換えDNA技術を用いて発現させることに成功して
いる(Murai, T. et al., Applied and Environmental
Microbiology, 63, 1362-1366(1997)およびMurai, T. e
t al., Appl. Microbiol. Biotechnol, 48, 499-50
3)。
【0004】一方、異種遺伝子として発光蛋白質を酵母
の細胞内で発現させる手法が報告されている(Terry,
B., R. et al., Biochem. Biophys. Res. Commun., 21
7, 21-27(1995))。しかし、この技術をバイオセンサー
などに利用するためには、細胞内から発光蛋白質を抽出
などで取り出し、さらに固定化する等の必要があった。
なお、発光蛋白質の固定化については特開平3−153
699号公報に開示されている。
【0005】
【発明が解決しようとする課題】従って、本発明の目的
は、発光蛋白質を細胞内から取り出すことなく直接利用
可能とすべく、該発光蛋白質を酵母の細胞表面に発現さ
せることのできる発光蛋白質発現組換えベクターを提供
することにある。本発明の他の目的は、細胞表面に発光
蛋白質を発現する酵母を提供することにある。
【0006】
【課題を解決するための手段】本発明者らは、前記目的
を達成するため鋭意検討を重ねた結果、組換えDNA技
術により特定の遺伝子を組み入れた組換えベクターを酵
母に導入すると、細胞表層部に発光蛋白質を発現する形
質転換体が得られることを見出し、本発明を完成した。
【0007】すなわち、本発明は、酵母由来のアグルチ
ニン遺伝子断片領域及び発光蛋白質をコードする遺伝子
を含有する発光蛋白質発現組換えベクターを提供する。
前記アグルチニン遺伝子として、例えば、サッカロミセ
ス属由来のα−アグルチニン遺伝子を使用できる。アグ
ルチニン遺伝子断片は、サッカロミセス属由来のα−ア
グルチニンのC末端から320アミノ酸をコードする配
列と446塩基からなる3′−非翻訳領域とを含むDN
A断片であってもよい。また、前記発光蛋白質には、オ
ワンクラゲ由来のグリーンフルオロセント蛋白質が含ま
れる。本発明は、また、前記の組換えベクターにより形
質転換された酵母を提供する。前記酵母には、サッカロ
ミセス属に属する酵母が含まれる。
【0008】
【発明の実施の形態】本発明の発光蛋白質発現組換えベ
クターは、酵母由来のアグルチニン遺伝子断片領域及び
発光蛋白質をコードする遺伝子を含有している。
【0009】アグルチニン遺伝子を取得するための酵母
としては、例えば、長谷川武治編著「微生物の分類と同
定」(学会出版センター、1975年)に酵母として記載さ
れている微生物群が挙げられる。なかでも、好適な酵母
はサッカロミセス属に属する酵母であり、例として、サ
ッカロミセス セレビシエ(Saccharomyces cerevisia
e)MT8−1などを挙げることができる。酵母の詳細
な性質については、Tajima, M. et al., Yeast 1, 67-7
7(1985)に記載されている。
【0010】前記アグルチニンはa−アグルチニン及び
α−アグルチニンの何れであってもよい。なお、α−ア
グルチニンの分子構造は、N末端から順に、分泌シグナ
ル配列、アグルチニン活性領域、細胞表層内在領域及び
GPIアンカー(グリコシルホスファチジルイノシトー
ル)付着シグナル領域という構成を有する。
【0011】アグルチニン遺伝子領域断片は、酵母の細
胞表層に異種蛋白を発現できる部分(細胞表層内在領域
を含む部分)であればよいが、特に好ましい例として、
サッカロミセス属由来のαーアグルチニンのC末端から
320アミノ酸をコードする遺伝子配列と446塩基か
らなる3′−非翻訳領域とを含むDNA断片を挙げるこ
とができる。このDNA断片にはGPIアンカー付着シ
グナル領域が含まれている。このDNA断片は、Murai,
T. et al. Applied and Environmental Microbiology,
63, 1362-1366(1997)に記載されている該断片を含むプ
ラスミドpGA11を制限酵素により切り出すことで得
ることもできる。
【0012】前記発光蛋白質は発光、蛍光を発する蛋白
質であれば特に限定されず、例えば、ルシフェラーゼ、
エクオリン、グリーンフルオレセント蛋白質(GFP)
などを例示できる。特に、オワンクラゲ由来のグリーン
フルオレセント蛋白質は、基質やコファクターを必要と
せず、生理機能を損なうことなく、生きている細胞や組
織中でも、また固定化された細胞や組織中でも、励起光
だけで蛍光を発することができるため好適である。オワ
ンクラゲ由来のグリーンフルオレセント蛋白質として
は、野生型グリーンフルオレセント蛋白質(wtGF
P)、および励起光、蛍光の各々をシフトさせた変異体
の何れも利用することができる。該変異体の例として、
紫外シフト型グリーンフルオレセント蛋白質(GFPu
v)、レッドシフトグリーンフルオレセント蛋白質(rs
GFP)およびブルーフルオレセント蛋白質(BFP)
を挙げることができる。励起スペクトルと蛍光スペクト
ルがそれぞれ重なり合わない複数の変異体を利用して二
重染色を行うことも可能である。
【0013】アグルチニン遺伝子断片領域および発光蛋
白質をコードする遺伝子を含む発光蛋白質発現ベクター
は、通常酵母で利用する発現ベクターに前記遺伝子を導
入することにより得ることができる。上記発現ベクター
の好適な例として、例えば、pYE22M(Sawani-Hat
anaka, H., T. et al., Biosci. Biotechnol. Bioche
m., 59, 1221-1228(1995))、pRS404(Robert,
S., S. and Philip Hieter, Genetics, 122, 19-27(198
9))等を挙げることができる。
【0014】本発明の発光蛋白質発現組換えベクター
は、通常、プロモーターおよび分泌シグナル領域(例え
ば、カビ由来の分泌シグナル領域)を含んでいる。前記
プロモーターとしては、通常酵母での発現に利用される
プロモーターであれば特に限定されないが、好適な例と
して、サッカロミセス セレビシエ(Saccharomyces ce
revisiae)のグリセロアルデヒド3リン酸デヒドロゲナ
ーゼ(GAPDH)のプロモーター(Sawani-Hatanaka,
H., T. et al., Biosci. Biotechnol. Biochem., 59,
1221-1228(1995))を挙げることができる。また、前記
分泌シグナル領域としては、通常酵母での発現、分泌に
利用されるシグナル領域、例えば、リゾプス オリザエ
(Rhizopus oryzae)由来のグルコアミラーゼ遺伝子の
分泌シグナル領域を使用できる。上記プロモーターおよ
び分泌シグナル領域は、既知の方法により、例えば、プ
ラスミドpYGA2269(Ashikari, T., N. et al.,
Agric. Biol. Chem., 50, 957-964)から得ることがで
きる。
【0015】本発明の発光蛋白質発現組換えベクターの
好ましい態様では、分泌シグナル領域、発光蛋白質(例
えば、グリーンフルオレセント蛋白質)の構造遺伝子、
酵母由来のアグルチニン遺伝子断片領域(例えば、αー
アグルチニンのC末端から320アミノ酸をコードする
遺伝子配列と446塩基からなる3′−非翻訳領域とを
含むDNA断片)をこの順序で有している。
【0016】このような発光蛋白質発現組換えベクター
は、例えば、前記pRS404などのプラスミドベクタ
ーに、前記プロモーター、分泌シグナル領域、マルチク
ローニングサイト及びアグルチニン遺伝子断片領域を、
この順に配列するように導入した後、前記分泌シグナル
領域とマルチクローニングサイトとの間に、発光蛋白質
の構造遺伝子を導入することにより構築できる。ベクタ
ーの構築には慣用の組換えDNA技術を利用できる。
【0017】本発明において、上記発光蛋白質発現組換
えベクターによる形質転換の対象とされる酵母として
は、例えば、長谷川武治編著「微生物の分類と同定」
(学会出版センター、1975年)に酵母として記載されて
いる微生物群が挙げられる。なかでも、サッカロミセス
属に属する酵母が好ましく、その例として、サッカロミ
セス セレビシエ(Saccharomyces cerevisiae)MT8
−1などを挙げることができる。酵母の詳細な性質につ
いては、Tajima, M. et al., Yeast 1, 67-77(1985)に
記載されている。
【0018】酵母の形質転換は慣用の手法により行うこ
とができる。例えば、酵母から染色体DNAを単離し、
PCR(ポリメラーゼ連鎖反応)法により、上記発光蛋
白質発現組換えベクターの遺伝子を導入できる。こうし
て得られた形質転換体は、細胞の表層部において発光蛋
白質を発現する。そのため、例えば、バイオセンサーや
発酵槽の計測に利用できる。
【0019】
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例により何ら限定
されるものではない。
【0020】実施例1(発光蛋白質発現組換えベクター
の作製) (1)ベクターpICSA1の作製 プラスミドpYGA2269(Ashikari, T., N. et a
l., Appl. Microbiol.Biotechnol., 30, 515-520(198
9))を鋳型にして、下記の2つのプライマーSIG及び
SIGRを用いてPCRを行い、サッカロミセス セレ
ビシエ(Saccharomyces cerevisiae)のグリセロ3リン
酸デヒドロゲナーゼ(GAPDH)のプロモーターと、
リゾプス オリザエ(Rhizopus oryzae)のグルコアミ
ラーゼ遺伝子の分泌シグナル配列からなるDNA断片を
増幅した。なお、下記の塩基配列において、SIGの下
線部はSacI切断部位を示し、SIGRの下線部はS
acII切断部位を示す。
【0021】SIG :5′-CCGAGCTCAC CAGTTCTCAC ACGGAA
CA-3′(配列番号:1) SIGR:5′-GCCCGCGGCA GAAACGAGCA AAGAAAA-3′(配列
番号:2) 上記のDNA断片を制限酵素SacIとSacIIとで切
断し、SacI−SacII断片を得た。
【0022】次に、プラスミドにSacIIサイトを導入
するために、以下に示す2つのオリゴヌクレオチドを合
成し、この2つのオリゴヌクレオチドをアニールさせ
て、SacII−XhoIDNA断片を作製した。
【0023】 5′-GGAGATCTCCATGGC-3′(配列番号:3) 5′-TCGAGCCATGGAGATCTCCGC-3′(配列番号:4) さらに、αーアグルチニンのC末端から320アミノ酸
をコードする遺伝子と、446塩基からなる3′−非翻
訳領域を含むDNA断片を得るために、プラスミドpG
A11(Murai, T. et al. Applied and Environmental
Microbiology,63, 1362-1366(1997))から、XhoIとKp
nIの2つの制限酵素でXhoI−KpnI断片を切り
出した。
【0024】上記で得られたSacI−SacII断片と
SacII− XhoI断片とXhoI−KpnI断片と
を、プラスミドpRS404(Robert, S., S. and Phi
lipHieter, Genetics, 122, 19-27(1989))のそれぞれ
のサイトに順次導入し、ベクターpICSA1を得た。
プラスミドpRS404に挿入されたDNA断片の塩基
配列(配列番号:5)を下記に示す。
【0025】なお、この塩基配列において、第1番目の
塩基Tから第676番目の塩基Cまでの配列はプロモー
ター部位を示し、第677番目の塩基Aから第749番
目の塩基Gまでの配列はグルコアミラーゼ遺伝子の分泌
シグナル配列を示し、第750番目の塩基Cから第77
1番目の塩基Gまでの配列は導入したSacIIを含む断
片を示し、第772番目の塩基Aから第2186番目の
塩基Cまでの配列は3′側の半分のα−アグルチニン遺
伝子を示す。また、第671番目の塩基Gから第676
番目の塩基CまではEcoRI切断部位、第750番目
の塩基Cから第755番目の塩基GまではSacII切断
部位、第2181番目の塩基Gから第2186番目の塩
基CまではKpnI切断部位を示す。
【0026】 5′- TCGAGTTTAT CATTATCAAT ACTCGCCATT TCAAAGAATA CGTAAATAAT TAATAGTAGT 60 GATTTTCCTA ACTTTATTTA GTCAAAAAAT TAGCCTTTTA ATTCTGCTGT AACCCGTACA 120 TGCCAAAATA GGGGGCGGGT TACACAGAAT ATATAACACT GATGGTGCTT GGGTGAACAG 180 GTTTATTCCT GGCATCCACT AAATATAATG GAGCCCGCTT TTTAAGCTGG CATCCAGAAA 240 AAAAAAGAAT CCCAGCACCA AAATATTGTT TTCTTCACCA ACCATCAGTT CATAGGTCCA 300 TTCTCTTAGC GCAACTACAG AGAACAGGGC ACAAACAGGC AAAAAACGGG CACAACCTCA 360 ATGGAGTGAT GCAACCTGCC TGGAGTAAAT GATGACACAA GGCAATTGAC CCACGCATGT 420 ATCTATCTCA TTTTCTTACA CCTTCTATTA CCTTCTGCTC TCTCTGATTT GGAAAAAGCT 480 GAAAAAAAAG GTTTAAACCA GTTCCCTGAA ATTATTCCCC TACTTGACTA ATAAGTATAT 540 AAAGACGGTA GGTATTGATT GTAATTCTGT AAATCTATTT CTTAAACTTC TTAAATTCTA 600 CTTTTATAGT TAGTCTTTTT TTTAGTTTTA AAACACCAAG AACTTAGTTT CGAATAAACA 660 CACATAAATA GAATTCATGC AACTGTTCAA TTTGCCATTG AAAGTTTCAT TCTTTCTCGT 720 CCTCTCTTAC TTTTCTTTGC TCGTTTCTGC CGCGGAGATC TCCATGGCTC GAGCGCCAAA 780 AGCTCTTTTA TCTCAACCAC TACTACTGAT TTAACAAGTA TAAACACTAG TGCGTATTCC 840 ACTGGATCCA TTTCCACAGT AGAAACAGGC AATCGAACTA CATCAGAAGT GATCAGTCAT 900 GTGGTGACTA CCAGCACAAA ACTGTCTCCA ACTGCTACTA CCAGCCTGAC AATTGCACAA 960 ACCAGTATCT ATTCTACTGA CTCAAATATC ACAGTAGGAA CAGATATTCA CACCACATCA 1020 GAAGTGATTA GTGATGTGGA AACCATTAGC AGAGAAACAG CTTCGACCGT TGTAGCCGCT 1080 CCAACCTCAA CAACTGGATG GACAGGCGCT ATGAATACTT ACATCCCGCA ATTTACATCC 1140 TCTTCTTTCG CAACAATCAA CAGCACACCA ATAATCTCTT CATCAGCAGT ATTTGAAACC 1200 TCAGATGCTT CAATTGTCAA TGTGCACACT GAAAATATCA CGAATACTGC TGCTGTTCCA 1260 TCTGAAGAGC CCACTTTTGT AAATGCCACG AGAAACTCCT TAAATTCCTT CTGCAGCAGC 1320 AAACAGCCAT CCAGTCCCTC ATCTTATACG TCTTCCCCAC TCGTATCGTC CCTCTCCGTA 1380 AGCAAAACAT TACTAAGCAC CAGTTTTACG CCTTCTGTGC CAACATCTAA TACATATATC 1440 AAAACGGAAA ATACGGGTTA CTTTGAGCAC ACGGCTTTGA CAACATCTTC AGTTGGCCTT 1500 AATTCTTTTA GTGAAACAGC ACTCTCATCT CAGGGAACGA AAATTGACAC CTTTTTAGTG 1560 TCATCCTTGA TCGCATATCC TTCTTCTGCA TCAGGAAGCC AATTGTCCGG TATCCAACAG 1620 AATTTCACAT CAACTTCTCT CATGATTTCA ACCTATGAAG GTAAAGCGTC TATATTTTTC 1680 TCAGCTGAGC TCGGTTCGAT CATTTTTCTG CTTTTGTCGT ACCTGCTATT CTAAAACGGG 1740 TACTGTACAG TTAGTACATT GAGTCGAAAT ATACGAAATT ATTGTTCATA ATTTTCATCC 1800 TGGCTCTTTT TTTCTTCAAC CATAGTTAAA TGGACAGTTC ATATCTTAAA CTCTAATAAT 1860 ACTTTTCTAG TTCTTATCCT TTTCCGTCTC ACCGCAGATT TTATCATAGT ATTAAATTTA 1920 TATTTTGTTC GTAAAAAGAA AAATTTGTGA GCGTTACCGC TCGTTTCATT ACCCGAAGGC 1980 TGTTTCAGTA GACCACTGAT TAAGTAAGTA GATGAAAAAA TTTCATCACC ATGAAAGAGT 2040 TCGATGAGAG CTACTTTTTC AAATGCTTAA CAGCTAACCG CCATTCAATA ATGTTACGTT 2100 CTCTTCATTC TGCGGCTACG TTATCTAACA AGAGGTTTTA CTCTCTCATA TCTCATTCAA 2160 ATAGAAAGAA CATAATCAAA GGTACC-3′ 2186(配列番号:5)。
【0027】(2)発光蛋白質発現組換えベクターpI
CS:GFPの作製 上記で得られたベクターpICSA1に、3つの異なっ
た励起並びに発光波長を持つGFP遺伝子、すなわち、
紫外シフト型グリーンフルオレセント蛋白質(GFPu
v)遺伝子、レッドシフトグリーンフルオレセント蛋白
質(rsGFP)遺伝子及びブルーフルオレセント蛋白質
(BFP)遺伝子を以下のようにして導入し、発光蛋白
質発現組換えベクターpICS:GFPを得た。その構
築図を図1に示す。なお、各GFP変異体の変異部位を
表1に、励起波長及び蛍光波長を表2に示した。表中、
wtGFPは野生型グリーンフルオレセント蛋白質を意味
する。
【0028】
【表1】
【表2】 プラスミドpGFPuv(GFPuv遺伝子を含む;クロー
ンテック社製)、プラスミドpQB163(rsGFP遺
伝子を含む;Takara社製)、プラスミドpQB1
67(BFP遺伝子を含む;Takara社製)の各プ
ラスミドから、それぞれのGFP遺伝子を増幅するため
に、下記の2つのプライマーを合成し、この2つのプラ
イマーを用いてPCRを行った。なお、下記塩基配列の
下線部は、何れもSacII切断部位を示す。
【0029】5′-GTAGCCGCGG GGAGTAAAGG AGAAGACTTT T
CAC-3′(配列番号:6) 5′-GTAGCCGCGG CCTTTGTAGA GCTCATCATG C-3′(配列番
号:7) 得られた断片をSacIIで切断し、得られたSacII−
SacII断片をGFP遺伝子として用いた。
【0030】次に、上記(1)で得られたプラスミドp
ICAS1をSacIIで切断し、アルカリフォスファタ
ーゼ処理した後、DNAリガーゼで各GFP遺伝子と結
合させて、発光蛋白質GFPを細胞表面に発現するプラ
スミドベクターpICS:GFPを完成した。この組換
えベクターは、分泌シグナル配列、GFPの構造遺伝子
配列、αーアグルチニンの一部の配列およびGPIアン
カー付着シグナル配列をこの順で有している。
【0031】GFP遺伝子としてGFPuv遺伝子を導入
したプラスミドpICS:GFPの一部の塩基配列(配
列番号:8)を以下に示す。なお、この塩基配列におい
て、第1番目の塩基Tから第676番目の塩基Cまでの
配列はプロモーター部位を示し、第677番目の塩基A
から第749番目の塩基Gまでの配列はグルコアミラー
ゼ遺伝子の分泌シグナル配列を示し、第758番目の塩
基Aから第1471番目の塩基Aまでの配列はGFPuv
遺伝子を示し、第1496番目の塩基Aから第2910
番目の塩基Cまでの配列は3′側の半分のα−アグルチ
ニン遺伝子を示す。
【0032】 5′- TCGAGTTTAT CATTATCAAT ACTCGCCATT TCAAAGAATA CGTAAATAAT TAATAGTAGT 60 GATTTTCCTA ACTTTATTTA GTCAAAAAAT TAGCCTTTTA ATTCTGCTGT AACCCGTACA 120 TGCCAAAATA GGGGGCGGGT TACACAGAAT ATATAACACT GATGGTGCTT GGGTGAACAG 180 GTTTATTCCT GGCATCCACT AAATATAATG GAGCCCGCTT TTTAAGCTGG CATCCAGAAA 240 AAAAAAGAAT CCCAGCACCA AAATATTGTT TTCTTCACCA ACCATCAGTT CATAGGTCCA 300 TTCTCTTAGC GCAACTACAG AGAACAGGGC ACAAACAGGC AAAAAACGGG CACAACCTCA 360 ATGGAGTGAT GCAACCTGCC TGGAGTAAAT GATGACACAA GGCAATTGAC CCACGCATGT 420 ATCTATCTCA TTTTCTTACA CCTTCTATTA CCTTCTGCTC TCTCTGATTT GGAAAAAGCT 480 GAAAAAAAAG GTTTAAACCA GTTCCCTGAA ATTATTCCCC TACTTGACTA ATAAGTATAT 540 AAAGACGGTA GGTATTGATT GTAATTCTGT AAATCTATTT CTTAAACTTC TTAAATTCTA 600 CTTTTATAGT TAGTCTTTTT TTTAGTTTTA AAACACCAAG AACTTAGTTT CGAATAAACA 660 CACATAAATA GAATTCATGC AACTGTTCAA TTTGCCATTG AAAGTTTCAT TCTTTCTCGT 720 CCTCTCTTAC TTTTCTTTGC TCGTTTCTGC CGCGGGG ATG AGT AAA GGA GAA GAA 775 Met Ser Lys Gly Glu Glu CTT TTC ACT GGA GTT GTC CCA ATT CTT GTT GAA TTA GAT GGT GAT GTT 823 Thr Phe Thr Gly Val Val Pro Ile Thr Val Glu Leu Asp Gly Asp Val AAT GGG CAC AAA TTT TCT GTC AGT GGA GAG GGT GAA GGT GAT GCA ACA 871 Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr TAC GGA AAA CTT ACC CTT AAA TTT ATT TGC ACT ACT GGA AAA CTA CCT 919 Tyr Gly Lys Thr Thr Thr Lys Phe Ile Cys Thr Thr Gly Lys Thr Pro GTT CCA TGG CCA ACA CTT GTC ACT ACT TTC TCT TAT GGT GTT CAA TGC 967 Val Pro Trp Pro Thr Thr Val Thr Thr Phe Ser Tyr Gly Val Gln Cys TTT TCC CGT TAT CCG GAT CAT ATG AAA CGG CAT GAC TTT TTC AAG AGT 1015 Phe Ser Arg Tyr Pro Asp His Met Lys Arg His Asp Phe Phe Lys Ser GCC ATG CCC GAA GGT TAT GTA CAG GAA CGC ACT ATA TCT TTC AAA GAT 1063 Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Met Ser Phe Lys Asp GAC GGG AAC TAC AAG ACG CGT GCT GAA GTC AAG TTT GAA GGT GAT ACC 1111 Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr CTT GTT AAT CGT ATC GAG TTA AAA GGT ATT GAT TTT AAA GAA GAT GGA 1159 Thr Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly AAC ATT CTC GGA CAC AAA CTC GAG TAC AAC TAT AAC TCA CAC AAT GTA 1207 Asn Ile Thr Gly His Lys Thr Glu Tyr Asn Tyr Asn Ser His Asn Val TAC ATC ACG GCA GAC AAA CAA AAG AAT GGA ATC AAA GCT AAC TTC AAA 1255 Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys ATT CGC CAC AAC ATT GAA GAT GGA TCC GTT CAA CTA GCA GAC CAT TAT 1303 Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Thr Ala Asp His Tyr CAA CAA AAT ACT CCA ATT GGC GAT GGC CCT GTC CTT TTA CCA GAC AAC 1351 Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Thr Leu Pro Asp Asn CAT TAC CTG TCG ACA CAA TCT GCC CTT TCG AAA GAT CCC AAC GAA AAG 1399 His Tyr Leu Ser Thr Gln Ser Ala Thr Ser Lys Asp Pro Asn Glu Lys CGT GAC CAC ATG GTC CTT CTT GAG TTT GTA ACT GCT GCT GGG ATT ACA 1447 Arg Asp His Met Val Thr Thr Glu Phe Val Thr Ala Ala Gly Ile Thr CAT GGC ATG GAT GAG CTC TAC AAA GGCCGCGGAG ATCTCCATGG CTCGAGCGCC 1501 His Gly Met Asp Glu Thr Tyr Lys AAAAGCTCTT TTATCTCAAC CACTACTACT GATTTAACAA GTATAAACAC TAGTGCGTAT 1561 TCCACTGGAT CCATTTCCAC AGTAGAAACA GGCAATCGAA CTACATCAGA AGTGATCAGT 1621 CATGTGGTGA CTACCAGCAC AAAACTGTCT CCAACTGCTA CTACCAGCCT GACAATTGCA 1681 CAAACCAGTA TCTATTCTAC TGACTCAAAT ATCACAGTAG GAACAGATAT TCACACCACA 1741 TCAGAAGTGA TTAGTGATGT GGAAACCATT AGCAGAGAAA CAGCTTCGAC CGTTGTAGCC 1801 GCTCCAACCT CAACAACTGG ATGGACAGGC GCTATGAATA CTTACATCCC GCAATTTACA 1861 TCCTCTTCTT TCGCAACAAT CAACAGCACA CCAATAATCT CTTCATCAGC AGTATTTGAA 1921 ACCTCAGATG CTTCAATTGT CAATGTGCAC ACTGAAAATA TCACGAATAC TGCTGCTGTT 1981 CCATCTGAAG AGCCCACTTT TGTAAATGCC ACGAGAAACT CCTTAAATTC CTTCTGCAGC 2041 AGCAAACAGC CATCCAGTCC CTCATCTTAT ACGTCTTCCC CACTCGTATC GTCCCTCTCC 2101 GTAAGCAAAA CATTACTAAG CACCAGTTTT ACGCCTTCTG TGCCAACATC TAATACATAT 2161 ATCAAAACGG AAAATACGGG TTACTTTGAG CACACGGCTT TGACAACATC TTCAGTTGGC 2221 CTTAATTCTT TTAGTGAAAC AGCACTCTCA TCTCAGGGAA CGAAAATTGA CACCTTTTTA 2281 GTGTCATCCT TGATCGCATA TCCTTCTTCT GCATCAGGAA GCCAATTGTC CGGTATCCAA 2341 CAGAATTTCA CATCAACTTC TCTCATGATT TCAACCTATG AAGGTAAAGC GTCTATATTT 2401 TTCTCAGCTG AGCTCGGTTC GATCATTTTT CTGCTTTTGT CGTACCTGCT ATTCTAAAAC 2461 GGGTACTGTA CAGTTAGTAC ATTGAGTCGA AATATACGAA ATTATTGTTC ATAATTTTCA 2521 TCCTGGCTCT TTTTTTCTTC AACCATAGTT AAATGGACAG TTCATATCTT AAACTCTAAT 2581 AATACTTTTC TAGTTCTTAT CCTTTTCCGT CTCACCGCAG ATTTTATCAT AGTATTAAAT 2641 TTATATTTTG TTCGTAAAAA GAAAAATTTG TGAGCGTTAC CGCTCGTTTC ATTACCCGAA 2701 GGCTGTTTCA GTAGACCACT GATTAAGTAA GTAGATGAAA AAATTTCATC ACCATGAAAG 2761 AGTTCGATGA GAGCTACTTT TTCAAATGCT TAACAGCTAA CCGCCATTCA ATAATGTTAC 2821 GTTCTCTTCA TTCTGCGGCT ACGTTATCTA ACAAGAGGTT TTACTCTCTC ATATCTCATT 2881 CAAATAGAAA GAACATAATC AAAGGTACC-3′ 2910(配列番号:8)。
【0033】実施例2(細胞表層にGFPを発現提示す
る酵母の作製) 実施例1で得られた各プラスミドpICS:GFPをX
baIで切断し、直鎖状にしてエレクトロポレーション
法により酵母サッカロミセス セレビシエ(Saccharomy
ses cerevisiae)MT8−1に導入した。これを、ウラ
シル、ヒスチジン、アデニン、ロイシンを含む下記のS
D−W寒天培地で培養し、生育した酵母を選択した。
【0034】 酵母−nitrogen base W/O/amino acid 6.7g/l グルコース 20g/l アガロース 20g/l ウラシル 20mg/l ヒスチジン 20mg/l アデニン 20mg/l ロイシン 30mg/l この酵母はpICS:GFPの遺伝子を有しており、サ
ッカロミセス セレビシエ(Saccharomyses cerevisia
e)MT8−1(pICS:GFP)と名づけた。得ら
れた酵母をYPD液体培地(1%酵母エキス、2%ペプ
トン、2%グルコース)で培養し、遠心分離して培地と
菌体とに分離し、それぞれのGFPの蛍光を測定した。
なお、コントロールとしてサッカロミセス セレビシエ
(Saccharomyses cerevisiae)MT8−1を用いた。
【0035】その結果、コントロールでは、培地及び菌
体にGFPの蛍光が認められなかったのに対し、形質転
換された酵母サッカロミセス セレビシエ(Saccharomy
sescerevisiae)MT8−1(pICS:GFP)で
は、培地中にはGFPは認められず、菌体にGFPの蛍
光が認められた。同様の結果は共焦点レーザー顕微鏡で
も確認され、各GFPが酵母の細胞表層で発現している
ことが確かめられた。
【0036】
【発明の効果】本発明の発光蛋白質発現組換えベクター
によれば、発光蛋白質を酵母の細胞表面に発現させるこ
とができ、発光蛋白質を細胞内から取り出すことなく直
接利用できる。また、本発明の酵母によれば、前記発光
蛋白質発現組換えベクターにより形質転換されているの
で、細胞表面に発光蛋白質が発現する。
【0037】
【配列表】 SEQUENCE LISTING <110> DAICEL CHEMICAL INDUSTRIES, LTD. <120> Luminescence Protein Expression Recombinant Vector and Yeast tran- sformed with Said Recombinant Vector <130> P98DC059 <160> 8 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <221> primer bind <222> (1)...(28) <400> 1 ccgagctcac cagttctcac acggaaca 28 <210> 2 <211> 27 <212> DNA <213> Artificial Sequence <220> <221> primer bind <222> (1)...(27) <400> 2 gcccgcggca gaaacgagca aagaaaa 27 <210> 3 <211> 15 <212> DNA <213> Artificial Sequence <220> <221> misc_recomb <222> (1)...(15) <400> 3 ggagatctcc atggc 15 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_recomb <222> (1)...(21) <400> 4 tcgagccatg gagatctccg c 21 <210> 5 <211> 2186 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (772)...(2186) <400> 5 tcgagtttat cattatcaat actcgccatt tcaaagaata cgtaaataat taatagtagt 60 gattttccta actttattta gtcaaaaaat tagcctttta attctgctgt aacccgtaca 120 tgccaaaata gggggcgggt tacacagaat atataacact gatggtgctt gggtgaacag 180 gtttattcct ggcatccact aaatataatg gagcccgctt tttaagctgg catccagaaa 240 aaaaaagaat cccagcacca aaatattgtt ttcttcacca accatcagtt cataggtcca 300 ttctcttagc gcaactacag agaacagggc acaaacaggc aaaaaacggg cacaacctca 360 atggagtgat gcaacctgcc tggagtaaat gatgacacaa ggcaattgac ccacgcatgt 420 atctatctca ttttcttaca ccttctatta ccttctgctc tctctgattt ggaaaaagct 480 gaaaaaaaag gtttaaacca gttccctgaa attattcccc tacttgacta ataagtatat 540 aaagacggta ggtattgatt gtaattctgt aaatctattt cttaaacttc ttaaattcta 600 cttttatagt tagtcttttt tttagtttta aaacaccaag aacttagttt cgaataaaca 660 cacataaata gaattcatgc aactgttcaa tttgccattg aaagtttcat tctttctcgt 720 cctctcttac ttttctttgc tcgtttctgc cgcggagatc tccatggctc gagcgccaaa 780 agctctttta tctcaaccac tactactgat ttaacaagta taaacactag tgcgtattcc 840 actggatcca tttccacagt agaaacaggc aatcgaacta catcagaagt gatcagtcat 900 gtggtgacta ccagcacaaa actgtctcca actgctacta ccagcctgac aattgcacaa 960 accagtatct attctactga ctcaaatatc acagtaggaa cagatattca caccacatca 1020 gaagtgatta gtgatgtgga aaccattagc agagaaacag cttcgaccgt tgtagccgct 1080 ccaacctcaa caactggatg gacaggcgct atgaatactt acatcccgca atttacatcc 1140 tcttctttcg caacaatcaa cagcacacca ataatctctt catcagcagt atttgaaacc 1200 tcagatgctt caattgtcaa tgtgcacact gaaaatatca cgaatactgc tgctgttcca 1260 tctgaagagc ccacttttgt aaatgccacg agaaactcct taaattcctt ctgcagcagc 1320 aaacagccat ccagtccctc atcttatacg tcttccccac tcgtatcgtc cctctccgta 1380 agcaaaacat tactaagcac cagttttacg ccttctgtgc caacatctaa tacatatatc 1440 aaaacggaaa atacgggtta ctttgagcac acggctttga caacatcttc agttggcctt 1500 aattctttta gtgaaacagc actctcatct cagggaacga aaattgacac ctttttagtg 1560 tcatccttga tcgcatatcc ttcttctgca tcaggaagcc aattgtccgg tatccaacag 1620 aatttcacat caacttctct catgatttca acctatgaag gtaaagcgtc tatatttttc 1680 tcagctgagc tcggttcgat catttttctg cttttgtcgt acctgctatt ctaaaacggg 1740 tactgtacag ttagtacatt gagtcgaaat atacgaaatt attgttcata attttcatcc 1800 tggctctttt tttcttcaac catagttaaa tggacagttc atatcttaaa ctctaataat 1860 acttttctag ttcttatcct tttccgtctc accgcagatt ttatcatagt attaaattta 1920 tattttgttc gtaaaaagaa aaatttgtga gcgttaccgc tcgtttcatt acccgaaggc 1980 tgtttcagta gaccactgat taagtaagta gatgaaaaaa tttcatcacc atgaaagagt 2040 tcgatgagag ctactttttc aaatgcttaa cagctaaccg ccattcaata atgttacgtt 2100 ctcttcattc tgcggctacg ttatctaaca agaggtttta ctctctcata tctcattcaa 2160 atagaaagaa cataatcaaa ggtacc 2186 <210> 6 <211> 34 <212> DNA <213> Artificial Sequence <220> <221> primer bind <222> (1)...(34) <400> 6 gtagccgcgg ggagtaaagg agaagacttt tcac <210> 7 <211> 31 <212> DNA <213> Artificial Sequence <220> <221> primer bind <222> (1)...(31) <400> 7 gtagccgcgg cctttgtaga gctcatcatg c <210> 8 <211> 2910 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (758)...(1471) <400> 8 tcgagtttat cattatcaat actcgccatt tcaaagaata cgtaaataat taatagtagt 60 gattttccta actttattta gtcaaaaaat tagcctttta attctgctgt aacccgtaca 120 tgccaaaata gggggcgggt tacacagaat atataacact gatggtgctt gggtgaacag 180 gtttattcct ggcatccact aaatataatg gagcccgctt tttaagctgg catccagaaa 240 aaaaaagaat cccagcacca aaatattgtt ttcttcacca accatcagtt cataggtcca 300 ttctcttagc gcaactacag agaacagggc acaaacaggc aaaaaacggg cacaacctca 360 atggagtgat gcaacctgcc tggagtaaat gatgacacaa ggcaattgac ccacgcatgt 420 atctatctca ttttcttaca ccttctatta ccttctgctc tctctgattt ggaaaaagct 480 gaaaaaaaag gtttaaacca gttccctgaa attattcccc tacttgacta ataagtatat 540 aaagacggta ggtattgatt gtaattctgt aaatctattt cttaaacttc ttaaattcta 600 cttttatagt tagtcttttt tttagtttta aaacaccaag aacttagttt cgaataaaca 660 cacataaata gaattcatgc aactgttcaa tttgccattg aaagtttcat tctttctcgt 720 cctctcttac ttttctttgc tcgtttctgc cgcgggg atg agt aaa gga gaa gaa 775 Met Ser Lys Gly Glu Glu ctt ttc act gga gtt gtc cca att ctt gtt gaa tta gat ggt gat gtt 823 Thr Phe Thr Gly Val Val Pro Ile Thr Val Glu Leu Asp Gly Asp Val aat ggg cac aaa ttt tct gtc agt gga gag ggt gaa ggt gat gca aca 871 Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr tac gga aaa ctt acc ctt aaa ttt att tgc act act gga aaa cta cct 919 Tyr Gly Lys Thr Thr Thr Lys Phe Ile Cys Thr Thr Gly Lys Thr Pro gtt cca tgg cca aca ctt gtc act act ttc tct tat ggt gtt caa tgc 967 Val Pro Trp Pro Thr Thr Val Thr Thr Phe Ser Tyr Gly Val Gln Cys ttt tcc cgt tat ccg gat cat atg aaa cgg cat gac ttt ttc aag agt 1015 Phe Ser Arg Tyr Pro Asp His Met Lys Arg His Asp Phe Phe Lys Ser gcc atg ccc gaa ggt tat gta cag gaa cgc act ata tct ttc aaa gat 1063 Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Met Ser Phe Lys Asp gac ggg aac tac aag acg cgt gct gaa gtc aag ttt gaa ggt gat acc 1111 Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr ctt gtt aat cgt atc gag tta aaa ggt att gat ttt aaa gaa gat gga 1159 Thr Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly aac att ctc gga cac aaa ctc gag tac aac tat aac tca cac aat gta 1207 Asn Ile Thr Gly His Lys Thr Glu Tyr Asn Tyr Asn Ser His Asn Val tac atc acg gca gac aaa caa aag aat gga atc aaa gct aac ttc aaa 1255 Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys att cgc cac aac att gaa gat gga tcc gtt caa cta gca gac cat tat 1303 Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Thr Ala Asp His Tyr caa caa aat act cca att ggc gat ggc cct gtc ctt tta cca gac aac 1351 Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Thr Leu Pro Asp Asn cat tac ctg tcg aca caa tct gcc ctt tcg aaa gat ccc aac gaa aag 1399 His Tyr Leu Ser Thr Gln Ser Ala Thr Ser Lys Asp Pro Asn Glu Lys cgt gac cac atg gtc ctt ctt gag ttt gta act gct gct ggg att aca 1447 Arg Asp His Met Val Thr Thr Glu Phe Val Thr Ala Ala Gly Ile Thr cat ggc atg gat gag ctc tac aaa ggccgcggag atctccatgg ctcgagcgcc 1501 His Gly Met Asp Glu Thr Tyr Lys aaaagctctt ttatctcaac cactactact gatttaacaa gtataaacac tagtgcgtat 1561 tccactggat ccatttccac agtagaaaca ggcaatcgaa ctacatcaga agtgatcagt 1621 catgtggtga ctaccagcac aaaactgtct ccaactgcta ctaccagcct gacaattgca 1681 caaaccagta tctattctac tgactcaaat atcacagtag gaacagatat tcacaccaca 1741 tcagaagtga ttagtgatgt ggaaaccatt agcagagaaa cagcttcgac cgttgtagcc 1801 gctccaacct caacaactgg atggacaggc gctatgaata cttacatccc gcaatttaca 1861 tcctcttctt tcgcaacaat caacagcaca ccaataatct cttcatcagc agtatttgaa 1921 acctcagatg cttcaattgt caatgtgcac actgaaaata tcacgaatac tgctgctgtt 1981 ccatctgaag agcccacttt tgtaaatgcc acgagaaact ccttaaattc cttctgcagc 2041 agcaaacagc catccagtcc ctcatcttat acgtcttccc cactcgtatc gtccctctcc 2101 gtaagcaaaa cattactaag caccagtttt acgccttctg tgccaacatc taatacatat 2161 atcaaaacgg aaaatacggg ttactttgag cacacggctt tgacaacatc ttcagttggc 2221 cttaattctt ttagtgaaac agcactctca tctcagggaa cgaaaattga caccttttta 2281 gtgtcatcct tgatcgcata tccttcttct gcatcaggaa gccaattgtc cggtatccaa 2341 cagaatttca catcaacttc tctcatgatt tcaacctatg aaggtaaagc gtctatattt 2401 ttctcagctg agctcggttc gatcattttt ctgcttttgt cgtacctgct attctaaaac 2461 gggtactgta cagttagtac attgagtcga aatatacgaa attattgttc ataattttca 2521 tcctggctct ttttttcttc aaccatagtt aaatggacag ttcatatctt aaactctaat 2581 aatacttttc tagttcttat ccttttccgt ctcaccgcag attttatcat agtattaaat 2641 ttatattttg ttcgtaaaaa gaaaaatttg tgagcgttac cgctcgtttc attacccgaa 2701 ggctgtttca gtagaccact gattaagtaa gtagatgaaa aaatttcatc accatgaaag 2761 agttcgatga gagctacttt ttcaaatgct taacagctaa ccgccattca ataatgttac 2821 gttctcttca ttctgcggct acgttatcta acaagaggtt ttactctctc atatctcatt 2881 caaatagaaa gaacataatc aaaggtacc 2910
【図面の簡単な説明】
【図1】発光蛋白質発現組換えベクターpICS:GF
Pの構築図である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:865) Fターム(参考) 4B024 AA11 BA80 CA04 CA07 DA12 EA04 HA11 4B065 AA79X AA79Y AA90Y AB01 AC20 BA02 CA24 CA46

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 酵母由来のアグルチニン遺伝子断片領域
    及び発光蛋白質をコードする遺伝子を含有する発光蛋白
    質発現組換えベクター。
  2. 【請求項2】 アグルチニン遺伝子がサッカロミセス属
    由来のα−アグルチニン遺伝子である請求項1記載の組
    換えベクター。
  3. 【請求項3】 アグルチニン遺伝子断片が、サッカロミ
    セス属由来のα−アグルチニンのC末端から320アミ
    ノ酸をコードする配列と446塩基からなる3′−非翻
    訳領域とを含むDNA断片である請求項1記載の組換え
    ベクター。
  4. 【請求項4】 発光蛋白質がオワンクラゲ由来のグリー
    ンフルオロセント蛋白質である請求項1記載の組換えベ
    クター。
  5. 【請求項5】 請求項1〜4の何れかの項に記載の組換
    えベクターにより形質転換された酵母。
  6. 【請求項6】 サッカロミセス属に属する請求項5記載
    の酵母。
JP10275659A 1998-09-29 1998-09-29 発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母 Pending JP2000102387A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275659A JP2000102387A (ja) 1998-09-29 1998-09-29 発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275659A JP2000102387A (ja) 1998-09-29 1998-09-29 発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母

Publications (1)

Publication Number Publication Date
JP2000102387A true JP2000102387A (ja) 2000-04-11

Family

ID=17558559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275659A Pending JP2000102387A (ja) 1998-09-29 1998-09-29 発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母

Country Status (1)

Country Link
JP (1) JP2000102387A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038517A1 (fr) * 1999-11-19 2001-05-31 Toyota Jidosha Kabushiki Kaisha Gene exprimant une proteine capable de capturer un metal
US6761916B2 (en) * 2002-03-29 2004-07-13 Nisshin Seifun Group Inc. Method for producing breads with a recombinant yeast which expresses a photoprotein
US7459268B2 (en) 2001-10-22 2008-12-02 Daiichi Pharmaceutical Co., Ltd. Method for screening agent acting on cell wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038517A1 (fr) * 1999-11-19 2001-05-31 Toyota Jidosha Kabushiki Kaisha Gene exprimant une proteine capable de capturer un metal
US7459268B2 (en) 2001-10-22 2008-12-02 Daiichi Pharmaceutical Co., Ltd. Method for screening agent acting on cell wall
US6761916B2 (en) * 2002-03-29 2004-07-13 Nisshin Seifun Group Inc. Method for producing breads with a recombinant yeast which expresses a photoprotein

Similar Documents

Publication Publication Date Title
KR102229968B1 (ko) 메틸영양성 효모를 유전적으로 조작하는 발현 구축물 및 방법
Longtine et al. Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae
JP5295206B2 (ja) ルシフェラーゼ発現カセットおよび使用法
US10179932B2 (en) Methods for high-throughput labelling and detection of biological features in situ using microscopy
JP3681385B2 (ja) 融合タンパク質の製造によって酵素を微生物細胞の細胞壁に固定化する方法
CN109321480B (zh) 用于控制重组胶原羟基化的酵母菌株和方法
JP2001515356A (ja) Dnaライブラリーの試験管内作製方法
CN109576244B (zh) 一种新型脂肪酶及其制备与应用
Nolting et al. A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora
JP2003509029A5 (ja)
WO2007144990A1 (ja) 変異型ルシフェラーゼ
JP2000102387A (ja) 発光蛋白質発現組換えベクター、及びこの組換えベクターにより形質転換された酵母
US7285399B2 (en) Compositions and methods using the yeast YMR107W promoter
CN112608876B (zh) 一种生物素化Curli蛋白的活细胞标记方法及其应用
Xiong et al. High efficiency and throughput system in directed evolution in vitro of reporter gene
CN111778270B (zh) 通过整合发光报告基因反映体外无细胞蛋白表达水平的方法
CN115261363A (zh) Apobec3a的rna脱氨酶活性测定方法及rna高活性的apobec3a变体
CN115181168B (zh) 对乙醇不敏感对正丁醇特异性响应的BmoR蛋白突变体
CN115160415B (zh) 对正丁醇特异性响应的BmoR蛋白突变体及其应用
JP2000253875A (ja) 組換えベクター
KR101104817B1 (ko) 융합 파트너로 이용해 리포터로 사용이 가능한 에스테라아제(estl120p)와 이를 인디케이터로 이용한 클로닝 벡터의 제조방법
EP1675946A1 (en) Process for producing penicillin
WO2002036830A2 (en) Method of determining gene copy number
CN115991748A (zh) 一种基于BmoR突变体的高敏感性的生物传感器
CN109750039A (zh) 一种植物碰触响应启动子及其应用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115