WO2007138902A1 - 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップの製造方法 - Google Patents

細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップの製造方法 Download PDF

Info

Publication number
WO2007138902A1
WO2007138902A1 PCT/JP2007/060326 JP2007060326W WO2007138902A1 WO 2007138902 A1 WO2007138902 A1 WO 2007138902A1 JP 2007060326 W JP2007060326 W JP 2007060326W WO 2007138902 A1 WO2007138902 A1 WO 2007138902A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hole
electrophysiological sensor
cell electrophysiological
sensor chip
Prior art date
Application number
PCT/JP2007/060326
Other languages
English (en)
French (fr)
Inventor
Soichiro Hiraoka
Masaya Nakatani
Hiroshi Ushio
Akiyoshi Oshima
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2007543632A priority Critical patent/JP4596009B2/ja
Priority to US11/914,283 priority patent/US8071363B2/en
Publication of WO2007138902A1 publication Critical patent/WO2007138902A1/ja
Priority to US12/359,426 priority patent/US8202439B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp

Definitions

  • Cell electrophysiological sensor chip cell electrophysiological sensor using the same, and method for manufacturing cell electrophysiological sensor chip
  • the present invention relates to a chip for use in a cell electrophysiological sensor used for measuring the electrophysiological activity of a cell, a cell electrophysiological sensor using the chip, and a method for manufacturing the cell electrophysiological sensor chip. is there.
  • a substrate type probe using a microfabrication technique has attracted attention as a method for electrophysiologically measuring an ion channel present in a cell membrane. This is suitable for high-throughput automation systems without the need for the skill of inserting micropipettes into individual cells like conventional micropipettes.
  • a conventionally disclosed cell electrophysiological sensor 1 (substrate-type probe) includes a substrate 2 and an electrode tank 3 disposed above the substrate 2. .
  • the substrate 2 has a through hole 5 penetrating from the upper surface to the lower surface of the substrate 2.
  • the first electrode 6 is disposed inside the electrode tank 3, and the second electrode 7 is disposed inside the through hole 5. Further, the second electrode 7 is connected to a signal detection unit (not shown) via a wiring 8.
  • the electrolytic solution 9 and the subject cell 10 are injected into the electrode tank 3, and the subject cell 10 is trapped (captured) in the opening 4 of the through-hole 5 and held.
  • the subject cell 10 is sucked from below the through-hole 5 with a suction pump or the like and is held in close contact with the opening 4. That is, the through hole 5 plays the same role as the tip hole in the micropipette.
  • the functionality or pharmacological reaction of the ion channel of the subject cell 10 is analyzed by measuring the voltage or current before and after the reaction between the first electrode 6 and the second electrode 7 and determining the potential difference inside and outside the cell. (For example, see Patent Document 1).
  • the conventional cell electrophysiological sensor 1 has a problem that the flow rate of the electrolyte 9 entering and exiting the through hole 5 is poor and the capture rate of the subject cell 10 is poor.
  • Patent Document 1 Pamphlet of International Publication No. 02Z055653
  • the present invention facilitates the flow of the electrolyte solution that enters and exits the through-hole and improves the capture rate of the subject cell.
  • the present invention has a through hole penetrating from the upper surface to the lower surface of the substrate, and the inner wall of the through hole and the surface of the substrate are connected by a curved surface.
  • the present invention can facilitate the flow of the electrolyte solution that enters and exits the through hole, and can improve the capture rate of the subject cells.
  • the opening of the through hole is formed by a curved surface that smoothly connects to the substrate surface, the change in the cross-sectional area of the flow path toward the inside of the electrode tank force through hole becomes slow, and the fluid This is because resistance loss is reduced. As a result, the electrolyte solution entering and exiting the through hole can easily flow, and the sample cells can be accurately aspirated and the capture rate can be improved.
  • FIG. 1 is a cross-sectional view of a cell electrophysiological sensor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view (Y portion in FIG. 1) of the substrate in one embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the main part showing the operation of the cell electrophysiological sensor according to one embodiment of the present invention.
  • FIG. 4 is a perspective view of a substrate in one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the substrate in one embodiment of the present invention.
  • FIG. 6A is a cross-sectional view of a principal part of a substrate in one embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of the relevant part.
  • FIG. 6C is a cross-sectional view of the relevant part.
  • FIG. 6D is a cross-sectional view of the relevant part.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of the substrate in one embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing the manufacturing process of the substrate.
  • FIG. 9 is a cross-sectional view showing the manufacturing process of the substrate.
  • FIG. 10 is a perspective view of a substrate in one embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a substrate in one embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a chip in one embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a manufacturing process of the chip in one embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing the manufacturing process of the chip.
  • FIG. 15 is a cross-sectional view showing the manufacturing process of the chip.
  • FIG. 16 is a cross-sectional view of a substrate in one embodiment of the present invention.
  • FIG. 17 is a sectional view of the same.
  • FIG. 18 is a sectional view of the same.
  • FIG. 19 is a cross-sectional view showing a manufacturing step of the substrate in one embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing a manufacturing step of the substrate.
  • FIG. 21 is a cross-sectional view showing a manufacturing step of the substrate.
  • FIG. 22 is a cross-sectional view of a substrate in one embodiment of the present invention.
  • FIG. 23 is a sectional view of the same.
  • FIG. 24 is a sectional view of the same.
  • FIG. 25 is a sectional view of the same.
  • FIG. 26 is a cross-sectional view of a conventional cell electrophysiological sensor.
  • FIG. 1 is a cross-sectional view of a cell electrophysiological sensor according to Embodiment 1
  • FIG. 2 is a cross-sectional view of a substrate used therefor
  • FIG. 3 is an enlarged cross-sectional view of a main part showing the operation of the cell electrophysiological sensor.
  • FIG. 4 is a perspective view of the substrate.
  • the upward direction refers to the direction of arrow X shown in FIG.
  • a cell electrophysiological sensor 11 includes a chip 36 including a substrate 12, a first electrode tank 13 disposed above the substrate 12, and the first electrode.
  • a first electrode 14 disposed on the upper surface of the substrate 12 inside the tank 13, a second electrode tank 15 disposed below the substrate 12, and an interior of the second electrode tank 15,
  • a second electrode 16 is provided on the lower surface, and the substrate 12 has a through hole 17 formed from the upper surface to the lower surface.
  • FIG. 2 is an enlarged view of a portion Y surrounded by a dotted line in FIG. 1.
  • the openings 17 A and 17 B have both the upper surface and lower surface forces of the substrate 12. It is curved by inward force and formed with a smooth curved surface that connects to the inside of the through hole 17.
  • the inner wall of the through hole 17 is formed with a smooth curved surface that curves inwardly of the through hole 17 and protrudes at a substantially central point in the depth direction of the through hole 17.
  • the diameter of the through-hole 17 becomes the minimum inner diameter at the center point or substantially the center point in the depth direction of the through-hole 17 and gradually increases toward the openings 17A and 17B.
  • the outer circumferences of the openings 17A and 17B have raised portions 18A and 18B that swell smoothly on the surface of the substrate 12. As shown in the cross-sectional view of FIG. 3, this raised portion 18A has a distance r 1 from the outermost periphery of the raised portion 18A to the center of the opening portion 17A on the substrate 12. Shorter than the radius.
  • This root mean square roughness Rq is defined as the square root of the value obtained by averaging the squares of the deviations up to the mean value force measurement when the surface roughness distribution is measured.
  • the radius of the subject cell 19 means that the subject cell 19 is impregnated with physiological saline and the osmotic pressure inside and outside the cell is in equilibrium. Measurements were used.
  • the silicon substrate 12 is used as the substrate 12 of the chip 36, and a plurality of through holes 17 are formed in the substrate 12 as shown in FIG.
  • the minimum inside diameter of the through hole 17 was 3 m.
  • the inner diameter of the through-hole 17 can be determined by the size, shape, and properties of the cell to be measured. For example, when the size of the subject cell 19 is about 5 to 50 m, it is desirable that the minimum inner diameter of the through hole 17 be 3 m or less in order to improve the adhesion between the subject cell 19 and the opening 17A. .
  • the depth of the through hole 17 was set to 15 ⁇ m or less.
  • the first electrode tank 13 is filled with a first electrolyte solution 20 (extracellular fluid) containing a subject cell 19, and the second electrode tank 15 is filled with a second electrolyte solution 21 ( Fill with intracellular fluid). Then, the force that pressurizes the upper surface force of the substrate 12 is reduced in pressure, and the subject cell 19 and the first electrolyte solution 20 are drawn into the through-hole 17. Then, the subject cell 19 is held so as to block the through-hole 17.
  • a first electrolyte solution 20 extracellular fluid
  • second electrode tank 15 is filled with a second electrolyte solution 21 ( Fill with intracellular fluid).
  • mammalian muscle cells are used as the subject cell 19, and the K + ion is about 155 mM, the Na + ion is about 12 mM, and the C1- ion is 4.2 in the first electrolytic solution 20.
  • An electrolytic solution to which about mM was added was used, and the second electrolytic solution 21 was an electrolytic solution to which about K + ion force mM, about 145 mM Na + ions, and about 123 mM C1- ions were added.
  • the first electrolytic solution 20 and the second electrolytic solution 21 can have the same composition.
  • a micropore is formed in the subject cell 19 by applying a drug (for example, nystatin) as a force of suction from the lower surface side of the substrate 12 or a force below the substrate 12.
  • a drug for example, nystatin
  • an action that can be a stimulus to the subject cell 19 is also applied to the upper force of the substrate 12.
  • This type of stimulation includes, for example, physical stimuli such as mechanical displacement, light, heat, electricity, and electromagnetic waves in addition to chemical stimuli such as chemicals and poisons.
  • the subject cell 19 When the subject cell 19 actively responds to these stimuli, for example, the subject cell 19 releases or absorbs various ions through channels held by the cell membrane. Thereby, since the potential gradient inside and outside the cell changes, the change can be detected by the first electrode 14 and the second electrode 16 shown in FIG. 1, and the pharmacological reaction of the cell can be examined.
  • a method for manufacturing the cell electrophysiological sensor 11 according to Embodiment 1 of the present invention will be described with reference to the drawings. 5 to 9 are cross-sectional views for explaining a method for manufacturing the substrate 12 of the cell electrophysiological sensor 11, and FIG. 10 is a perspective view thereof.
  • a resist mask 22 is formed on the upper surface of a substrate 12 made of silicon. At this time, a mask hole 23 having substantially the same shape as the cross section of the desired through hole 17 is patterned.
  • the substrate 12 is etched to form through holes (17 in FIG. 2).
  • dry etching capable of high-precision fine processing is desirable.
  • a gas that promotes etching hereinafter referred to as etching gas! / ⁇
  • suppression gas a gas that suppresses etching
  • SF is used as the etching gas and CF is used as the suppression gas.
  • plasma is generated above the substrate 12 in FIG. 6A by the inductive coupling method of an external coil, and when SF is introduced as an etching gas here, F radicals are generated.
  • the dry etching proceeds in the vertical direction (downward) of the substrate 12.
  • the CF + film serves as a protective film to suppress etching.
  • the protective film is formed not only on the wall surface portion of the through-hole 17 but also on the bottom surface, but the protective film formed on the bottom surface is more easily formed by the ion bombardment than the protective film formed on the wall surface. Removed Therefore, the etching proceeds downward. However, since the etching proceeds isotropically not only in the downward direction but also in the lateral direction below the part where the protective film on the bottom surface is removed, the wall surface of the through-hole 17 is uneven as shown in FIG. 6C. Yes.
  • a through hole 17 having irregularities perpendicular to the flow direction of the electrolyte is formed.
  • the boundary between the inner wall of the through hole 17 and the surface of the substrate 12 is a sharp corner.
  • FIG. 7 is a cross-sectional view of the substrate 12 in which the unevenness of the through hole 17 is omitted.
  • CF can be used as the etching gas
  • CHF can be used as the suppression gas.
  • the resist mask 22 is removed, and the substrate 12 is heated (annealed) at 1000 ° C. or higher in a noble gas, hydrogen gas, or nitrogen gas atmosphere.
  • the corners are not only rounded, but as shown in FIG.
  • the raised portions 18A and 18B that rise smoothly on the surface of the substrate 12 are formed.
  • any one of helium, neon, anoregon, krypton, xenon, hydrogen, nitrogen, or a mixture thereof can be used as the gas.
  • the diffusion rate can be greatly varied according to the pressure, and production effects such as the ability to control diffusion with high accuracy are obtained.
  • the top surface and bottom surface force of the substrate 12 are sequentially formed by, for example, chemical vapor deposition (CVD) or the like to form silicon or a material other than silicon. A similar shape is obtained.
  • CVD chemical vapor deposition
  • the cell electrophysiological sensor 11 facilitates the flow of the electrolyte solution (first electrolyte solution 20 and second electrolyte solution 21) entering and exiting the through-hole 17, and increases the capture rate of the subject cell 19. Can be improved. The reason for this will be described below.
  • the openings 17A and 17B of the through hole 17 and the inner wall of the through hole 17 are located inside the through hole 17 from the surface of the substrate 12 toward the inside of the through hole 17 as described above. Bend It consists of a smooth curved surface. As a result, the change in the cross-sectional area of the flow path from the first electrode tank 13 to the inside of the through hole 17 and further to the second electrode tank 15 can also be slowed down, and the fluid flow can be reduced. Resistance loss is reduced.
  • the electrolyte solution (first electrolyte solution 20 and second electrolyte solution 21) entering and exiting the through-hole becomes easier to flow, accurately sucking the subject cell 19 and improving the capture rate to the opening 17A. It can be done.
  • measurement errors of the cell electrophysiological sensor 11 can be suppressed by reducing bubbles inside the through hole 17.
  • the inner wall of the through hole 17 is configured by a curved surface that curves inwardly of the through hole 17 and protrudes at a substantially center point of the through hole 17.
  • the inner diameter of the through hole 17 is the center of the through hole 17.
  • the point force also has a structure that gradually increases in the direction toward the openings 17A and 17B of the through-hole 17.
  • the measurement error can be reduced. This is because the 17th through-hole When the bubble swept away from the substrate adheres to the lower surface of the substrate 12, a measurement error is caused by an increase in the resistance component, but by providing the raised portion 18B, the bubble is moved to the second electrode tank 15 along the slope of the raised portion 18B. It is thought that it can be released.
  • the subject cell is captured along the curved surface of the opening 17A, the adhesion between the subject cell 19 and the opening 17A of the through-hole 17 is improved, and the adhesion state is maintained. As a result, the measurement accuracy of the cell electrophysiological sensor 11 can be improved.
  • the raised area 18A can increase the contact area between the subject cell 19 and the opening 17A. Furthermore, by making the distance rl from the outermost periphery of the raised portion 18A to the center of the opening 17A of the through-hole 17 shorter than the radius of the subject cell 19, the contact area between the opening 17A and the subject cell 19 is reduced. Can be increased.
  • the subject cell 19 can be accurately held in contact with the opening 17A, and the measurement accuracy of the cell electrophysiological sensor 11 can be improved.
  • the raised portion 18A is formed on the upper surface of the substrate 12, and the raised portion 18B is formed on the lower surface.
  • the openings 17A and 17B are formed by the curved surface connected to the surface of the substrate 12, thereby facilitating the flow of the electrolyte, reducing the presence of bubbles, and further penetrating the cells. This has the effect of improving the adhesion between the hole 17 and the opening 17A.
  • FIG. 11 is a cross-sectional view of the base plate of the cell electrophysiological sensor chip in the second embodiment.
  • the configuration of the substrate 12 used in the cell electrophysiological sensor in the present second embodiment is such that both surfaces of the substrate 12 and the inner wall surface of the through hole 17 are covered with an insulating layer 24 as shown in FIG. [0075] With such a configuration, when the subject cell 19 is held in close contact with the opening 17A of the through hole 17, the first electrode tank 13 and the second electrode tank 15 are connected to the subject cell 19 with each other. It is possible to ensure electrical insulation except for the path that passes.
  • the subject cell 19 when a highly hydrophilic material such as silicon oxide or silicon nitride is used as the insulating layer 24, the subject cell 19 also has a hydrophilic surface containing a hydroxyl group. The subject cell 19 can be held in the opening 17A with high adhesion.
  • a highly hydrophilic material such as silicon oxide or silicon nitride
  • the insulating layer 24 which is also made of silicon oxide or silicon nitride, can be easily manufactured by oxidation treatment and nitridation treatment, thereby improving productivity. The effect is also obtained at the same time.
  • the difference between the third embodiment and the first embodiment is that, as shown in the cross-sectional view of the chip 36 in FIG. 12, an oxide silicon layer to be the oxide layer 25 is previously laminated on one surface of the substrate 12. Is the point
  • a resist mask 28 having a hole is formed in a block 27 in which an oxide layer 25 is sandwiched between silicon layers 26, as shown in FIG. Then, through holes 17 are formed by dry etching from the side of the silicon layer 26 that becomes the substrate 12.
  • the upper silicon layer 26 of the two silicon layers 26 becomes the substrate 12 shown in FIG.
  • the oxide layer 25 (silicon oxide) has a lower etching rate than the silicon layer 26. Therefore, when the silicon layer 26 is etched, the etching stops at the oxide layer 25 and penetrates. The depth of the hole 17 and the thickness of the substrate 12 (substrate 12 in FIG. 12) can be managed with high accuracy.
  • holes 30 are formed at positions corresponding to the through holes 17 of the oxide layer 25 by dry etching.
  • a gas suitable for etching the oxide layer 25 includes CF.
  • a resist mask 29 is formed on the silicon layer 26, and the silicon layer 26 is etched.
  • the power to heat the substrate 12 in a rare gas, nitrogen gas, or hydrogen gas atmosphere or the double-sided force of the substrate 12 is also formed by the vapor phase method to form the chip 36 in FIG. Is done.
  • the oxide layer 25 may be disposed on the upper surface of the substrate 12, that is, on the lower surface of the substrate 12, or on the surface on the subject cell capturing side.
  • an oxide layer 25 may be disposed on the upper surface of the substrate 12, and especially if it is easy to flow above the substrate 12, The oxide layer 25 may be disposed on the lower surface.
  • an insulating layer 31 is formed on one surface of the substrate 12 where the oxide layer 25 is not formed and on the inner wall of the through hole 17, Electrical insulation between the upper and lower sides can be improved.
  • a raised portion 18 may be formed.
  • the substrate 12 used in the cell electrophysiological sensor 11 of Embodiment 4 includes a recess 32 formed on the upper surface (first surface) of the substrate 12, and the lower surface of the substrate 12 from the recess 32 ( It has a through hole 17 penetrating up to the second surface).
  • the openings 17A and 17B of the through hole 17 are formed with smooth curved surfaces.
  • the upper surface of the substrate 12 and the inner wall of the recess 32, the inner wall of the recess 32 and the inner wall of the through hole 17, and the through hole The inner wall 17 and the lower surface of the substrate 12 are connected by curved surfaces.
  • the recess 32 extends outwardly around the opening 17A of the through-hole 17 and is formed by a curved surface that is connected to the upper surface of the substrate 12, and the deepest portion of the recess 32 Through hole
  • the shape of the recess 32 is a hemispherical shape or a substantially hemispherical shape.
  • the shape of the recess 32 is a hemispherical shape or a substantially hemispherical shape.
  • a resist mask 33 is formed on the upper surface of the substrate 12 made of silicon. At this time, a mask hole 34 having substantially the same shape as the cross section of the desired through hole 17 is patterned.
  • the substrate 12 is etched to form a recess 32.
  • dry etching capable of high-precision fine processing is desirable.
  • the etching gas used at this time is SF, CF, NF, XeF, or a mixture of these.
  • any of the mixed gases can be used. Since these have the effect of accelerating the etching in the horizontal direction as well as in the depth direction, the substrate 12 can be etched with high accuracy into a hemispherical saddle shape.
  • a carrier gas such as N, Ar, He or H is mixed with a gas that promotes etching.
  • a through-hole 17 is formed that penetrates the bottom surface force of the recess 32 to the bottom surface of the substrate 12 in the vertical direction.
  • the dry etching process using the etching gas and the suppression gas alternately is performed.
  • the slip force of the fourth embodiment is achieved.
  • a substrate 12 (FIG. 18) having a curve can be produced.
  • the same shape can be produced by film formation by a vapor phase method as in the first embodiment.
  • the upper surface of the substrate 12 and the inner wall of the recess 32, the inner wall of the recess 32 and the inner wall of the through hole 17, and the inner wall of the through hole 17 and the substrate 12 What is the underside of Each is connected by a curved surface.
  • rapid changes in the cross-sectional area of the flow path are suppressed, the resistance loss of the fluid is reduced, and the electrolytes 20 and 21 (shown in Fig. 3) entering and exiting the through-hole 17 can easily flow.
  • the cell capture rate is improved and the measurement accuracy of the cell electrophysiological sensor 11 is increased.
  • Rq root mean square roughness
  • the through hole 17 is formed at the deepest part of the recess 32, the subject cell 19 captured in the recess 32 is aligned with the opening 17 A of the through hole 17. . As a result, the capture rate of the subject cell is improved.
  • the recess 32 has a hemispherical force. As shown in FIG.
  • the recess 32 may be conical or substantially conical. If the recess 32 is conical or substantially conical in this way, the inclination of the recess 32 becomes steep, and even if the subject cell is an adherent cell, the through-hole is not adhered in the middle of the recess 32. The probability of reaching 17 can be increased.
  • an insulating layer (not shown) is formed on the surface of the substrate 12 shown in FIG. 18 and the inner walls of the recesses 32 and the through holes 17, the electrical insulation between the upper and lower sides of the substrate 12 can be improved.
  • an oxide layer (not shown) may be laminated on the lower surface (second surface) of the substrate 12 in advance. Thereby, the thickness of the substrate 12 can be managed with high accuracy.
  • an insulating layer (not shown) may be formed on the upper surface of the substrate 12 and the inner walls of the recess 32 and the through hole 17.
  • a protruding portion (not shown) that protrudes outward may be formed on the outer periphery of the opening portions 17A and 17B of the through hole 17. This increases the contact area between the subject cell 19 and the opening 17A. In addition, the bubbles remaining in the opening 17B of the through hole 17 can be reduced.
  • a plurality of cells are trapped in one recess 32 by making the distance between the center points of adjacent through holes 17 shorter than twice the average diameter of the subject cell. Can be prevented.
  • the substrate of the fourth embodiment is turned upside down.
  • the substrate 12 used in the cell electrophysiological sensor 11 of Embodiment 5 has a recess 32 formed on the lower surface of the substrate 12 and a through hole 17 penetrating from the recess 32 to the upper surface of the substrate 12. .
  • the openings 17C and 17D of the through-hole 17 are formed with smooth curved surfaces.
  • the lower surface of the substrate 12 and the inner wall of the recess 32, the inner wall of the recess 32 and the inner wall of the through-hole 17, and the through-hole The inner wall 17 and the upper surface of the substrate 12 are connected by curved surfaces.
  • the recess 32 is formed with a curved surface that extends outwardly around the opening 17D of the through hole 17 and is connected to the lower surface of the substrate 12, and the deepest portion of the recess 32. Through-holes 17 are formed.
  • the cross-sectional area of the flow path gradually changes from the through hole 17 to the recess 32 and from the recess 32 to the second electrode tank (15 in Fig. 1) below the substrate 12, The resistance loss is reduced. Further, the lower surface of the substrate 12 and the inner wall of the recess 32, the inner wall of the recess 32 and the inner wall of the through hole 17, and the inner wall of the through hole 17 and the upper surface of the substrate 12 are connected by a smooth curved surface, respectively. Therefore, the fluid resistance can be further reduced.
  • the concave portion 32 is formed below the substrate 12, the downward force of the substrate 12 can easily attract the second electrolytic solution 21 (second electrolytic solution 21 in Fig. 1).
  • the adhesion between the subject cell 19 and the opening 17C of the through-hole 17 can be improved.
  • a drug such as nystatin
  • an oxide layer 25 may be laminated on the upper surface of the substrate 12 in advance. Thereby, the thickness of the substrate 12 can be managed with high accuracy.
  • an insulating layer (not shown) may be formed on the lower surface of the substrate 12 and the inner walls of the recess 32 and the through hole 17.
  • a protruding portion 18 that protrudes outward may be formed on the outer periphery of the openings 17C and 17D of the through hole 17. If the raised portion 18 is formed above the through-hole 17, the subject cell 19 can be easily captured by the opening portion 17C, and the contact area between the subject cell 19 and the opening portion 17C increases. Further, if the raised portion 18 is formed below the through-hole 17, bubbles remaining in the opening portion 17D can be reduced.
  • the cell electrophysiological sensor according to the present invention accurately sucks and penetrates cells. Since it can be captured and held with high precision at the opening of the hole, it is useful in the medical / bio field where high-precision and high-efficiency measurement is required.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 本発明は、基板を有する細胞電気生理センサ用チップであって、基板は上面から下面に向けて形成された貫通孔を有しており、この貫通孔の開口部は、基板の上面および下面から貫通孔の内側へ湾曲した曲面で形成したものである。これにより、電解液(第一電解液および第二電解液)が流れやすくなり、被検体細胞を的確に吸引することができ、被検体細胞の捕捉率が向上する。

Description

明 細 書
細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび 細胞電気生理センサ用チップの製造方法
技術分野
[0001] 本発明は、細胞の電気生理的活動の測定に用いられる細胞電気生理センサに用 V、るチップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップ の製造方法に関するものである。
背景技術
[0002] 近年、細胞膜に存在するイオンチャネルを電気生理学的に測定する方法として、微 細加工技術を利用した基板型プローブが注目されている。これは、従来のマイクロピ ペットのように、個々の細胞にマイクロピペットを挿入するという熟練作業を必要とせ ず、高スループットの自動化システムに適している。
[0003] 例えば、図 26に示すように、従来の開示された細胞電気生理センサ 1 (基板型プロ ーブ)は、基板 2と、基板 2の上方に配置した電極槽 3とを備えている。そして、基板 2 は、この基板 2の上面から下面まで貫通する貫通孔 5を有して 、る。
[0004] また、電極槽 3の内部には第一電極 6を配置し、貫通孔 5の内部には第二電極 7を 配置している。さらに、この第二電極 7は配線 8を経て信号検出部(図示せず)に連結 されている。
[0005] 前記細胞電気生理センサ 1の動作方法について以下に説明する。
[0006] まず、電極槽 3の内部に電解液 9および被検体細胞 10が注入され、この被検体細 胞 10が貫通孔 5の開口部 4にトラップ (捕捉)され、保持される。
[0007] そして、測定の際には被検体細胞 10は貫通孔 5の下方から吸引ポンプなどで吸引 され、開口部 4に密着した状態で保持される。すなわち、この貫通孔 5がマイクロピぺ ットにおける先端穴と同様の役割を果たしている。そして被検体細胞 10のイオンチヤ ネルの機能性や薬理反応などは、第一電極 6と第二電極 7との間における反応前後 の電圧、あるいは電流を測定し、細胞内外の電位差を求めることによって分析してい る (例えば、特許文献 1参照)。 [0008] し力しながら、従来の細胞電気生理センサ 1においては、貫通孔 5に出入りする電 解液 9の流れが悪ぐ被検体細胞 10の捕捉率が悪いという問題があった。
[0009] それは、貫通孔 5は非常に微細なため、電極槽 3と貫通孔 5との界面で流路の急速 な断面積の変化が生じ、流体の抵抗損失が増大するためであった。そしてその結果 、被検体細胞 10を的確に吸引することが出来ず、捕捉率が低下してしまうものであつ た。
特許文献 1:国際公開第 02Z055653号パンフレット
発明の開示
[0010] 本発明は、貫通孔に出入りする電解液を流れやすくし、被検体細胞の捕捉率を向 上さ ·¾:るちのである。
[0011] そのために本発明は、基板の上面から下面までを貫く貫通孔を有し、この貫通孔の 内壁と基板の表面とは、湾曲面で繋がっているものとした。
[0012] これにより本発明は、貫通孔に出入りする電解液を流れやすくし、被検体細胞の捕 捉率を向上させることができる。
[0013] それは、貫通孔の開口部を基板表面と滑らかに繋がる湾曲面で形成にしたことによ つて、電極槽力 貫通孔の内部にかけての流路の断面積の変化が緩慢となり、流体 の抵抗損失が低減されるためである。そしてその結果、貫通孔に出入りする電解液 が流れやすくなり、被検体細胞を的確に吸引し、捕捉率を向上させることができる。 図面の簡単な説明
[0014] [図 1]図 1は、本発明の一実施の形態における細胞電気生理センサの断面図である。
[図 2]図 2は、本発明の一実施の形態における基板の断面図(図 1の Y部分)である。
[図 3]図 3は、本発明の一実施の形態における細胞電気生理センサの動作を示す要 部拡大断面図である。
[図 4]図 4は、本発明の一実施の形態における基板の斜視図である。
[図 5]図 5は、本発明の一実施の形態における基板の製造工程を示す断面図である
[図 6A]図 6Aは、本発明の一実施の形態における基板の要部断面図である。
[図 6B]図 6Bは、同要部断面図である。 [図 6C]図 6Cは、同要部断面図である。
[図 6D]図 6Dは、同要部断面図である。
[図 7]図 7は、本発明の一実施の形態における基板の製造工程を示す断面図である
[図 8]図 8は、同基板の製造工程を示す断面図である。
[図 9]図 9は、同基板の製造工程を示す断面図である。
[図 10]図 10は、本発明の一実施の形態における基板の斜視図である。
[図 11]図 11は、本発明の一実施の形態における基板の断面図である。
[図 12]図 12は、本発明の一実施の形態におけるチップの断面図である。
[図 13]図 13は、本発明の一実施の形態におけるチップの製造工程を示す断面図で ある。
[図 14]図 14は、同チップの製造工程を示す断面図である。
[図 15]図 15は、同チップの製造工程を示す断面図である。
[図 16]図 16は、本発明の一実施の形態における基板の断面図である。
[図 17]図 17は、同断面図である。
[図 18]図 18は、同断面図である。
[図 19]図 19は、本発明の一実施の形態における基板の製造工程を示す断面図であ る。
[図 20]図 20は、同基板の製造工程を示す断面図である。
[図 21]図 21は、同基板の製造工程を示す断面図である。
[図 22]図 22は、本発明の一実施の形態における基板の断面図である。
[図 23]図 23は、同断面図である。
[図 24]図 24は、同断面図である。
[図 25]図 25は、同断面図である。
[図 26]図 26は、従来の細胞電気生理センサの断面図である。
符号の説明
11 細胞電気生理センサ
12 基板 13 第一電極槽
14 第一電極
15 第二電極槽
16 第二電極
17 貫通孔
17A, 17B, 17C, 17D
18, 18A, 18B 隆起部
19 被検体細胞
20 第一電解液
21 第二電解液
22 レジストマスク
23 マスクホーノレ
24 絶縁層
25 酸化物層
26 シリコン層
27 ブロック
28 レジストマスク
29 レジストマスク
30 ホール
31 絶縁層
32 凹部
32A 開口部
33 レジストマスク
34 マスクホーノレ
35 交差部
36 チップ
発明を実施するための最良の形態
(実施の形態 1) 以下、本発明の実施の形態 1における細胞電気生理センサについて、図面を参照 しながら説明する。図 1は実施の形態 1における細胞電気生理センサの断面図であり 、図 2はそれに用いる基板の断面図であり、図 3は細胞電気生理センサの動作を示 す要部拡大断面図であり、図 4は基板の斜視図である。
[0017] なお、以下に説明する各実施の形態において、上方向とは図 1に記載の矢印 X方 向を言うものとする。
[0018] 図 1に示すように、本実施の形態 1における細胞電気生理センサ 11は、基板 12を 備えたチップ 36と、基板 12の上方に配置した第一電極槽 13と、この第一電極槽 13 の内部であって、基板 12の上面に配置した第一電極 14と、基板 12の下方に配置し た第二電極槽 15と、この第二電極槽 15の内部であって基板 12の下面に配置した第 二電極 16とを備えており、基板 12は上面から下面に向けて形成された貫通孔 17を 有している。
[0019] そして、図 1の点線で囲った部分 Yを拡大した図が図 2であり、この図 2に示すように 、開口部 17A、 17Bは、基板 12の上面および下面力も貫通孔 17の内側に向力つて 湾曲し、貫通孔 17の内部へと繋がる滑らかな曲面で形成されている。
[0020] また貫通孔 17の内壁は、この貫通孔 17の内側へ湾曲し、且つこの貫通孔 17の深 さ方向における略中心点で突出する滑らかな曲面で形成されている。
[0021] すなわち、この貫通孔 17の口径は、貫通孔 17の深さ方向における中心点あるいは 略中心点で最小内径となり、開口部 17A、 17Bに向けて徐々に大きくなつている。
[0022] また、本実施の形態では、開口部 17A、 17Bの外周は、基板 12表面において滑ら かに盛り上がる隆起部 18A、 18Bを有している。そして図 3の断面図に示すように、こ の隆起部 18Aは、前記基板 12の上において、隆起部 18Aの最外周から開口部 17 Aの中心までの距離 r 1が、被検体細胞 19の半径より短 、ものとした。
[0023] なお、本実施の形態では、開口部 17A、 17B、貫通孔 17の内壁、および隆起部 1 8A、 18Bの各表面形状は、二乗平均粗さ Rq= l. Onm以下の滑ら力さである。この 二乗平均粗さ Rqは、表面粗さの分布を測定した際の、平均値力 測定値までの偏 差の二乗を平均した値の平方根で定義される。また、被検体細胞 19の半径とは、被 検体細胞 19を生理食塩水に含浸させ、細胞内外の浸透圧が平衡となった状態での 計測値を用いた。
[0024] なお、チップ 36の基板 12としてシリコン基板 12を用い、図 4に示すように、この基板 12には複数の貫通孔 17を形成している。この貫通孔 17内部の最小内径は 3 mと した。
[0025] なお、貫通孔 17の内径は測定する細胞の大きさ、形状、性質によって決定すること ができる。例えば、被検体細胞 19の大きさが 5〜50 m程度の場合に、被検体細胞 19と開口部 17Aとの密着性を高めるため、貫通孔 17の最小内径を 3 m以下とする ことが望ましい。また貫通孔 17の深さは 15 μ m以下とした。
[0026] 次に、本発明の細胞電気生理センサ 11の動作について説明する。
[0027] まず図 3に示すように、第一電極槽 13に被検体細胞 19を含んだ第一電解液 20 ( 細胞外液)を満たし、第二電極槽 15には第二電解液 21 (細胞内液)を満たしておく。 そして基板 12の上面力も加圧する力 下面を減圧することによって、被検体細胞 19 と第一電解液 20とを貫通孔 17へ引き込む。すると、被検体細胞 19は貫通孔 17を塞 ぐように保持される。
[0028] そして、本実施の形態 1では、被検体細胞 19として哺乳類筋細胞を用い、第一電 解液 20には K+イオンが 155mM程度、 Na+イオンが 12mM程度、 C1—イオンが 4. 2 mM程度添加された電解液を用い、第二電解液 21には、 K+イオン力 mM程度、 N a+イオンが 145mM程度、 C1—イオンが 123mM程度添加された電解液を用いた。な お、第一電解液 20と第二電解液 21とは同組成のものを用いることもできる。
[0029] 次に、基板 12の下面側から吸引する力、もしくは基板 12下方力も薬剤(例えばナイ スタチン)を投入することにより、被検体細胞 19に微細小孔を形成する。
[0030] その後、被検体細胞 19への刺激となりうる行為を基板 12の上方力も施す。この刺 激の種類としては、例えばィ匕学薬品、毒物などの化学的な刺激に加え、機械的変位 、光、熱、電気、電磁波などの物理的な刺激なども含む。
[0031] そして、被検体細胞 19がこれらの刺激に対して活発に反応する場合、例えば被検 体細胞 19は細胞膜が保有するチャネルを通じて各種イオンを放出あるいは吸収す る。これにより、細胞内外の電位勾配が変化するため、図 1に示す第一電極 14と第二 電極 16によってその変化を検出し、細胞の薬理反応などを検討することができる。 [0032] 次に、本発明の実施の形態 1における細胞電気生理センサ 11の製造方法につい て図面を用いて説明する。図 5〜図 9は細胞電気生理センサ 11の基板 12の製造方 法を説明するための断面図、図 10は同斜視図である。
[0033] まず、図 5に示すように、シリコンからなる基板 12の上面にレジストマスク 22を形成 する。このとき、所望する貫通孔 17の断面と略同形状のマスクホール 23をパターニン グしておく。
[0034] 次に、基板 12をエッチングして貫通孔(図 2の 17)を形成していく。このときのエッチ ング方法としては、高精度な微細加工が可能なドライエッチングが望ましい。そしてド ライエッチングを行う場合、アスペクト比の高い貫通孔 17を形成するために、エツチン グを促進するガス(以下エッチングガスと!/ヽぅ)とエッチングを抑制するガス(以下抑制 ガスと 、う)とを交互に用いる。
[0035] 本実施の形態 1では、エッチングガスとして SF、抑制ガスとして C Fを用いた。
6 4 8
[0036] このドライエッチング工程について以下に詳述する。
[0037] まず、図 6Aの基板 12の上方において、外部コイルの誘導結合法によりプラズマを 生成し、ここへエッチングガスとして SFを導入すると Fラジカルを生成し、 Fラジカル
6
が基板 12と反応して基板 12は化学的にエッチングされる。
[0038] この時、基板 12に高周波を印加すると、基板 12にはマイナスのバイアス電圧が発 生する。すると、エッチングガスに含まれるプラスイオン (SF5+)が基板 12に向力つて 垂直に衝突し、このイオン衝撃によって基板 12が物理的にエッチングされる。
[0039] その結果、図 6Bに示すように、ドライエッチングは基板 12の垂直方向(下方)に進 むことになる。
[0040] 一方、抑制ガス C Fを用いる際には、基板 12に高周波を加えないでおく。そうする
4 8
こと〖こよって、基板 12にはバイアス電圧は全く発生しない。
[0041] 従って、抑制ガス C Fに含まれる CF+は、偏向を受けることなぐ基板 12のドライエ
4 8
ツチング穴の壁面に付着し、均一な膜を形成する。
[0042] そして、この CF+の膜は、保護膜となってエッチングを抑制する。ここで、この保護 膜は貫通孔 17の壁面部分だけでなく底面にも形成されるが、底面に形成された保護 膜は、壁面に形成された保護膜に比較して、前記イオン衝撃により容易に除去される ため、エッチングは下方に進むことになる。ただし底面の保護膜が除去された部分の 下方は、エッチングが下方向だけでなく横方向へも等方的に進行するため、図 6Cの ように貫通孔 17の壁面は、凹凸が形成されている。
[0043] そして、前記のようにエッチングガスと抑制ガスとを交互に用いることによって、図 6
Dのように、電解液の流れ方向に垂直な凹凸を有する貫通孔 17が形成される。そし て貫通孔 17の内壁と、基板 12表面との境界は鋭い角部となっている。
[0044] 図 7はこの貫通孔 17の凹凸を省略した基板 12の断面図である。なお、エッチング ガスとしてはその他に CF、抑制ガスとしてはその他に CHFを用いることもできる。
4 3
[0045] その後、図 8に示すようにレジストマスク 22を除去し、この基板 12を減圧した希ガス 、または水素ガスまたは窒素ガス雰囲気下において、 1000°C以上で加熱(ァニール )する。
[0046] すると、図 9に示すように開口部 17A、 17Bと基板 12表面との角部が丸みを帯びて いく。
[0047] また、例えば加熱温度を上げたり加熱条件を延長したりすることによって、角部が丸 くなるだけでなぐ図 2に示したように貫通孔 17の開口部 17A、 17Bの周辺には、基 板 12の表面上において滑らかに盛り上がる隆起部 18A、 18Bが形成される。
[0048] これらの現象は、シリコン原子の表面自己拡散現象により説明することができる。
[0049] すなわち、表面原子の化学ポテンシャルは、物質の表面曲率に比例することが知ら れており、この効果は Gibbs— Thomson効果と呼ばれる。
[0050] 本効果によると、図 8に示した状態では、貫通孔 17の開口部 17A、 17Bと基板 12 の表面との境界には明確な角部を有することから、開口部 17A、 17Bの周辺の各シ リコン原子は化学ポテンシャルが高 ヽ状態で存在して!/ヽる。
[0051] 従って、この状態でシリコン原子が表面拡散するのに十分なエネルギーを与えた場 合、化学ポテンシャルの勾配が低くなる方へ表面自己拡散現象が誘発され、その結 果、図 9に示したように貫通孔 17の開口部 17A、 17Bと基板 12の表面との境界は、 丸みを帯びた滑らかな湾曲面で繋がることになる。
[0052] また、この表面自己拡散反応が進むと、図 2に示したように貫通孔 17の開口部 17A 、 17Bの周辺には基板 12の表面において、滑らかに盛り上がる隆起部 18A、 18Bが 形成される。この原因としては、湾曲面の曲率は小さい方が安定であるためであり、 基板 12の表面から貫通孔 17にかけて、全体ができるだけ緩やかなカーブを描くよう に拡散が進行するためと考えられる。
[0053] このとき、ガスとしてヘリウム、ネオン、ァノレゴン、クリプトン、キセノン、水素、窒素の いずれか一つ、またはこれらの混合物を用いることができる。なお、実験により、特に 水素を用いた際には、その圧力に応じて拡散速度を大きく変動させ得ることが分力つ ており、高精度に拡散を制御できるといった生産面での効果が得られる。なお、不活 性ガス雰囲気の圧力は、 27kPa以下に制御されることが望ましい。このことにより、所 望の形状を高速で実現することが可能となる。
[0054] また、基板 12にシリコンを用いた場合、シリコンの表面自己拡散現象を引き起こす エネルギーを得るために、 1000°C以上でァニールする必要がある。
[0055] なお、このような表面自己拡散現象は、ァニール条件 (不活性ガスの種類ゃァニー ル温度)を変更すれば、 SiOなどのシリコン以外の材料でも見られ、これらの材料を
2
基板 12の材料として用いることもできる。
[0056] また、加熱(ァニール)を用いない方法として、基板 12の上面、下面力 順次、例え ば化学気相析出法 (CVD法)などによって、シリコンまたはシリコン以外の材料を成 膜することで同様の形状が得られる。このような手法を用いた際には、シリコン以外の 様々な材料を選択することが可能であり、細胞と基板 12の相性を考慮した構成とす ることがでさる。
[0057] 本実施の形態 1における細胞電気生理センサの効果を以下に説明する。
[0058] 本実施の形態 1における細胞電気生理センサ 11は、貫通孔 17に出入りする電解 液 (第一電解液 20および第二電解液 21)を流れやすくし、被検体細胞 19の捕捉率 を向上させることができる。この理由を以下に説明する。
[0059] すなわち、流路の断面積が急激に変化すると、渦が発生したり、逆流したりして流 体の抵抗損失が大きくなり、電解液 (第一電解液 20および第二電解液 21)の流れが 阻害される。
[0060] 一方、本発明は、貫通孔 17の開口部 17A、 17Bおよび貫通孔 17の内壁が、上述 のように基板 12の表面から貫通孔 17の内部に向けて、貫通孔 17の内側に湾曲する 滑らかな曲面で構成されている。これによつて、第一電極槽 13から貫通孔 17の内部 へ、さらにこの貫通孔 17の内部力も第二電極槽 15へと、流路の断面積変化を緩慢 にすることができ、流体の抵抗損失が低減されるのである。そしてその結果、貫通孔 に出入りする電解液 (第一電解液 20および第二電解液 21)が流れやすくなり、被検 体細胞 19を的確に吸引し、開口部 17Aへの捕捉率を向上させることができるのであ る。
[0061] また、貫通孔 17の開口部 17A、 17Bおよび貫通孔 17の内壁を二乗平均粗さ Rq = 1. Onm以下の平滑な面としたため、電解液 (第一電解液 20および第二電解液 21) の摩擦抵抗が低減され、さらに流れやすくすることができる。
[0062] また、貫通孔 17の内部の気泡を低減することによって、細胞電気生理センサ 11の 測定誤差を抑制することができる。
[0063] すなわち、従来は微細な貫通孔 17を形成すると、この貫通孔 17の内壁に凹凸がで きるため、貫通孔 17の内部に気泡が発生しやすぐこの気泡によって抵抗値が変動 し、測定誤差を招来していた。またこの気泡が貫通孔 17を完全に塞いでしまうと、第 一電極槽 13と第二電極槽 15とが完全に絶縁されてしまい、測定が実質不可能にな つていた。
[0064] 一方、本実施の形態 1では、ァニール処理によってこの凹凸を取り除き、二乗平均 粗さ Rq= l. Onm以下の平滑な面としたため、気泡の発生を抑制することができる。 また、僅かに発生した気泡も、電解液 (第一電解液 20および第二電解液 21)の円滑 な流れに伴って移動させ、除去することができる。
[0065] さらに、前記貫通孔 17の内壁は、貫通孔 17の内側へ湾曲し、貫通孔 17の略中心 点で突出する曲面で構成されており、貫通孔 17の内径は貫通孔 17の中心点力も貫 通孔 17の開口部 17A、 17Bに向力つて徐々に大きくなる構造をしている。
[0066] よって、貫通孔 17の中心点で流速が最大となり、その水圧で気泡を押し流すことが できる。ここで気泡は貫通孔 17の内部へ行くほど除去し難いことから、この構造は気 泡低減を実現する為に非常に有用である。
[0067] また、基板 12の下面における貫通孔 17の開口部 17Bの周辺に隆起部 18Bを形成 したことによって、測定誤差を低減することができる。この要因としては、貫通孔 17か ら押し流した気泡が基板 12の下面に付着すると、抵抗成分の増大により測定誤差を 招来するが、隆起部 18Bを設けることによって、気泡を隆起部 18Bの斜面に沿って 第二電極槽 15へと放出することができるためと考えられる。
[0068] さらに、開口部 17Aの湾曲面に沿って被検体細胞が捕捉されるため、被検体細胞 19と貫通孔 17の開口部 17Aとの密着性を高めるとともに、その密着状態を維持しや すくなり、細胞電気生理センサ 11の測定精度を向上させることができる。
[0069] それは、貫通孔 17の開口部 17Aが二乗平均粗さ Rq= l. Onm以下の平滑な面で 形成されていることと、基板 12の上面において同じく二乗平均粗さ Rq= l. Onm以 下の滑らかな隆起部 18Aを有することに由来する。
[0070] このような表面形状によって、被検体細胞 19と貫通孔 17の開口部 17Aとの密着性 が増大し、高いシール性を得ることができる。そして前記隆起部 18Aによって被検体 細胞 19と開口部 17Aとの接触面積を増大させることができる。さらに隆起部 18Aの 最外周から前記貫通孔 17の開口部 17Aの中心までの距離 rlを、被検体細胞 19の 半径より短くすることによって、この開口部 17Aと被検体細胞 19との接触面積をより 増大させることができる。
[0071] そしてその結果、的確に被検体細胞 19を開口部 17Aに密着保持することができ、 細胞電気生理センサ 11の測定精度を向上させることができる。
[0072] なお、本実施の形態 1では基板 12の上面に隆起部 18A、下面に隆起部 18Bを形 成したが、図 9の断面図および図 10の斜視図に示すように、隆起部 18Aおよび 18B のいずれをも形成しない場合でも、開口部 17A、 17Bを基板 12表面と繋がる湾曲面 で形成したことにより、電解液が流れやすくなり、また気泡の存在を低減し、さらに細 胞と貫通孔 17の開口部 17Aとの密着性を向上させる効果を有する。
[0073] (実施の形態 2)
以下、本発明の実施の形態 2における細胞電気生理センサについて、図面を参照 しながら説明する。図 11は実施の形態 2における細胞電気生理センサ用チップの基 板の断面図である。
[0074] 本実施の形態 2における細胞電気生理センサに用いる基板 12の構成は、図 11に 示すように基板 12の両面と貫通孔 17の内壁表面を絶縁層 24で被覆したものである [0075] このような構成とすることにより、被検体細胞 19を貫通孔 17の開口部 17Aに密着保 持した際、第一電極槽 13と第二電極槽 15とを、被検体細胞 19を通る経路を除いて 電気的に確実に絶縁することができる。
[0076] また、絶縁層 24として酸ィ匕シリコン、窒化シリコンのような親水性の高い材料を用い た場合、被検体細胞 19も水酸基を含んだ親水性の表面を有していることから、この 被検体細胞 19を開口部 17Aに高い密着性をもって保持することができる。
[0077] さらに、電解液 (第一電解液 20及び第二電解液 21)との接触する部分の親水性が 高まることにより、気泡の発生を効果的に抑制することが可能となる。
[0078] また、基板 12としてシリコン基板 12を用いた際には、前述の酸ィ匕シリコンや窒化シ リコンカもなる絶縁層 24を、酸化処理および窒化処理により容易に作製でき、生産性 向上の効果も同時に得られる。
[0079] (実施の形態 3)
本実施の形態 3と実施の形態 1との違いは、図 12のチップ 36の断面図に示すよう に、予め基板 12の片面に酸ィ匕物層 25となる酸ィ匕シリコン層を積層している点である
[0080] すなわち本実施の形態 3では、図 13に示すように、酸ィ匕物層 25をシリコン層 26で 挟んだブロック 27に、孔のあいたレジストマスク 28を形成し、図 14に示すように、基 板 12となるシリコン層 26側からドライエッチングにより貫通孔 17を形成する。図 13、 図 14において、二層のシリコン層 26のうちの上側のシリコン層 26力 図 12に示す基 板 12となる。
[0081] この時、シリコン層 26より酸ィ匕物層 25 (酸化シリコン)の方がエッチングレートが小さ いため、シリコン層 26をエッチングしていくと、酸化物層 25でエッチングがストップし、 貫通孔 17の深さおよび基板 12 (図 12の基板 12)の厚みを高精度に管理することが できる。
[0082] 次に、ドライエッチングによって、酸ィ匕物層 25の貫通孔 17と対応する位置にホール 30 (図 12のホール 30)を形成する。酸化物層 25のエッチングに適したガスとしては、 CFなどがある。 [0083] そしてその後、図 15に示すように、シリコン層 26にレジストマスク 29を形成し、シリコ ン層 26をエッチングする。
[0084] そして、最後に希ガスや窒素ガス、水素ガス雰囲気下で基板 12を加熱する力、ある いは基板 12の両面力も気相法によって成膜することにより、図 12のチップ 36が形成 される。
[0085] なお、この酸ィ匕物層 25は、基板 12の上面、すなわち、被検体細胞を捕捉する側の 面に配置してもよぐ基板 12の下面に配置してもよい。特に基板 12下方力も流体を 吸引しやすくしたい場合は、基板 12の上面に酸ィ匕物層 25を配置すればよぐ特に基 板 12の上方にお 、て流れやすくした 、場合は基板 12の下面に酸化物層 25を配置 すればよい。
[0086] さらに、図 16に示すように、基板 12の一面であって、酸化物層 25が形成されてい ない側の面および貫通孔 17内壁に、絶縁層 31を形成すれば、基板 12の上方およ び下方間の電気的絶縁性を向上させることができる。
[0087] また図 17に示すように、隆起部 18を形成してもよい。
[0088] その他の実施の形態と同様の構成および効果については説明を省略する。
[0089] (実施の形態 4)
図 18に示すように、本実施の形態 4の細胞電気生理センサ 11に用いる基板 12は、 基板 12の上面 (第一の面)に形成された凹部 32と、凹部 32から基板 12の下面 (第 二の面)までを貫く貫通孔 17を有する。
[0090] この貫通孔 17の開口部 17A、 17Bは、滑らかな曲面で形成されており、基板 12の 上面と凹部 32の内壁、この凹部 32の内壁と貫通孔 17の内壁、およびこの貫通孔 17 の内壁と基板 12の下面とは、それぞれ湾曲面で繋がっている。ここで本実施の形態
4では、貫通孔 17の開口部 17A、 17Bの表面および内壁と、凹部 32の内壁は、二 乗平均粗さ Rq= l. Onm以下とした。
[0091] また、本実施の形態 4では、凹部 32は貫通孔 17の開口部 17Aを中心に外方へ広 がり、基板 12の上面と繋がる湾曲面で形成されており、凹部 32の最深部から貫通孔
17が形成されているものである。
[0092] なお本実施の形態では、凹部 32の形状を、半球形状あるいは略半球形状とした。 このように半球形状あるいは略半球形状とすることで、被検体細胞が真球である場合 に、細胞を歪ませることなく保持しやすくなる。また被検体細胞が 5〜50 /ζ πι程度の 大きさの場合には、凹部 32の開口部 32Αの直径は約 30 μ mが望ましい。
[0093] 次に、本実施の形態における細胞電気生理センサ 11の製造方法について説明す る。
[0094] まず、図 19に示すように、シリコンからなる基板 12の上面にレジストマスク 33を形成 する。このとき、所望する貫通孔 17の断面と略同形状のマスクホール 34をパターニン グしておく。
[0095] 次に、図 20に示すように、基板 12をエッチングすることで凹部 32を形成する。この ときのエッチング方法としては、高精度な微細加工が可能なドライエッチングが望まし い。このとき用いるエッチングガスとして、 SF、 CF、 NF、 XeF、またはこれらの混
6 4 3 2
合ガスのいずれかを用いることができる。これらはシリコンのエッチングを深さ方向だ けでなぐ水平方向へのエッチングも促進する作用があるため、基板 12を半球形状 の碗型に高精度にエッチングすることができる。また、本実施の形態 4においては、ェ ツチングを促進するガスに、 N、 Ar、 Heまたは Hなどのキャリアガスを混合して用い
2 2
た。
[0096] その後、図 21に示すように、前述のレジストマスク 33を配置した状態で、凹部 32の 底面力 基板 12の下面までを垂直方向に貫く貫通孔 17を形成する。
[0097] なお、このときには実施の形態 1と同様に、エッチングガスと抑制ガスを交互に用い たドライエッチング処理を行う。
[0098] 最後にレジストマスク 33を除去し、この基板 12を実施の形態 1と同様に、減圧した 不活性ガス雰囲気下において、 1000°C以上で加熱すると、本実施の形態 4の滑ら 力な曲線を有した基板 12 (図 18)を作製することができる。
[0099] また、加熱 (ァニール)を用いない場合には、実施の形態 1と同様に、気相法による 成膜によっても同様の形状を作製することができる。
[0100] 以下、本実施の形態 4における効果を説明する。
[0101] 本実施の形態 4では、図 18に示すように、基板 12の上面と凹部 32の内壁、この凹 部 32の内壁と貫通孔 17の内壁、およびこの貫通孔 17の内壁と基板 12の下面とは、 それぞれ湾曲面で繋がっている。これにより、流路の急速な断面積変化が抑制され、 流体の抵抗損失が低減し、貫通孔 17に出入りする電解液 20、 21 (図 3に示す)が流 れやすくなり、結果として被検体細胞の捕捉率が向上し、細胞電気生理センサ 11の 測定精度が高まる。
[0102] また本実施の形態 4では、貫通孔 17の開口部 17A、 17Bの表面および内壁と、凹 部 32の内壁とを、二乗平均粗さ Rq= l. Onm以下の非常に滑らかな状態としたこと により、流体の抵抗損失はさらに低減され、また気泡の発生も低減でき、被検体細胞 の捕捉率が向上する。
[0103] また、基板 12の上面に凹部 32を形成することで、被検体細胞 19を捕捉しやすくな り、さらに捕捉した被検体細胞 19を維持しやすくなる。
[0104] また、貫通孔 17の開口部 17Aと被検体細胞 19との接触面積が増えるため、貫通 孔 17の開口部 17Aと被検体細胞 19との密着性が向上する。
[0105] さらに本実施の形態 4では、貫通孔 17が凹部 32の最深部に形成されているため、 凹部 32に捕捉された被検体細胞 19を貫通孔 17の開口部 17Aにァライメントしゃす くなる。そしてその結果、被検体細胞の捕捉率が向上する。
[0106] なお、本実施の形態 4では、凹部 32は半球形状とした力 図 22に示すように、凹部
32は円錐形状あるいは略円錐形状としてもよい。このように凹部 32を円錐形状ある いは略円錐形状とすれば、凹部 32の傾斜が急になり、被検体細胞が粘着性細胞で ある場合でも、凹部 32の途中で粘着することなく貫通孔 17へ到達する確率を高める ことができる。
[0107] さらに、図 18に示す基板 12の表面と、凹部 32および貫通孔 17の内壁とに絶縁層 ( 図示せず)を形成すれば、基板 12上下間の電気的絶縁性を向上させることができる
[0108] また、あらかじめ基板 12の下面 (第二の面)に酸ィ匕物層(図示せず)を積層してもよ い。これにより基板 12の厚みを高精度に管理できる。なお、この場合、基板 12の上 面と、凹部 32および貫通孔 17の内壁とに絶縁層(図示せず)を形成してもよい。
[0109] また、貫通孔 17の開口部 17A、 17Bの外周に、外方にむけて隆起する隆起部(図 示せず)を形成してもよい。これにより被検体細胞 19と開口部 17Aとの接触面積が増 えるとともに、貫通孔 17の開口部 17Bに留まる気泡を低減することができる。
[0110] また、図 23に示すように、基板 12の上面により多数の凹部 32を形成し、隣接する 凹部 32の内壁を互いに交差するものとしてもょ 、。これにより基板 12の上面にぉ ヽ て、凹部 32を形成している領域には平面部が殆どなくなり、交差部 35に被検体細胞 が接触した場合でも、付着することなぐ重力によりいずれかの凹部 32に傾き、その 内壁に沿って凹部 32の中心にァライメントされる。
[0111] また交差部 35もァニール処理等によって、平滑な湾曲面とすることにより、接触した 被検体細胞を傷つけることなく貫通孔 17の開口部 17Aへと導くことが可能となる。
[0112] また、図 23において、隣接する貫通孔 17の中心点間距離を、被検体細胞の平均 直径の 2倍より短くすることによって、一つの凹部 32の中に複数の細胞がトラップされ るのを防ぐことができる。
[0113] また、図 23において、隣接する貫通孔 17の中心点間距離を、被検体細胞の平均 直径より長くすることにより、一つの凹部 32に保持された被検体細胞同士の接触を低 減することができる。そしてその結果、細胞電気生理センサ 11の測定精度を向上さ せることが出来る。
[0114] 本実施の形態 4において、その他の実施の形態と同様の構成および効果について は説明を省略する。
[0115] (実施の形態 5)
本実施の形態 5は、図 24に示すように、実施の形態 4の基板を上下反転させたもの である。
[0116] すなわち、本実施の形態 5の細胞電気生理センサ 11に用いる基板 12は、基板 12 の下面に形成された凹部 32と、凹部 32から基板 12の上面までを貫く貫通孔 17を有 する。
[0117] この貫通孔 17の開口部 17C、 17Dは、滑らかな曲面で形成されており、基板 12の 下面と凹部 32の内壁、この凹部 32の内壁と貫通孔 17の内壁、およびこの貫通孔 17 の内壁と基板 12の上面とは、それぞれ湾曲面で繋がっている。
[0118] ここで本実施の形態 5では、貫通孔 17の開口部 17C、 17Dの表面および内壁と、 凹部 32の内壁は、二乗平均粗さ Rq= l. Onm以下とした。 [0119] また、本実施の形態 5では、凹部 32は貫通孔 17の開口部 17Dを中心に外方へ広 がり、基板 12の下面と繋がる湾曲面で形成されており、凹部 32の最深部から貫通孔 17が形成されているものである。
[0120] 本実施の形態 5では、貫通孔 17から凹部 32、凹部 32から基板 12下方の第二電極 槽 (図 1の 15)へと段階的に流路の断面積が変化するため、流体の抵抗損失が小さ くなる。さらに基板 12の下面と凹部 32の内壁、この凹部 32の内壁と貫通孔 17の内 壁、およびこの貫通孔 17の内壁と基板 12の上面とは、それぞれ平滑な湾曲面で繋 力 ていることから、流体抵抗をより低減できる。
[0121] また本実施の形態 5では、基板 12の下方に凹部 32を形成しているため、基板 12の 下方力 第二電解液 21 (図 1の第二電解液 21)を吸引しやすくなり、被検体細胞 19 と貫通孔 17の開口部 17Cとの密着性を向上させることができる。さらに、基板 12の下 方に凹部 32を形成したことにより、基板 12の下方から注入する薬剤 (ナイスタチンな ど)が貫通孔 17へと回り込みやすくなる。
[0122] さらに、基板 12の表面と、凹部 32および貫通孔 17の内壁とに絶縁層(図示せず) を形成すれば、図 1に示す第一電極槽 13と第二電極槽 15との間の電気的絶縁性を 向上させることができる。
[0123] また、図 25に示すように、あら力じめ基板 12の上面に酸ィ匕物層 25を積層してもよ い。これにより基板 12の厚みを高精度に管理できる。なお、この場合、基板 12の下 面と、凹部 32および貫通孔 17の内壁とに絶縁層(図示せず)を形成してもよい。
[0124] また、貫通孔 17の開口部 17C、 17Dの外周に、外方にむけて隆起する隆起部 18 を形成してもよい。貫通孔 17の上方に隆起部 18を形成すれば、被検体細胞 19が開 口部 17Cに捕捉しやすくなり、また被検体細胞 19と開口部 17Cとの接触面積が増え る。また貫通孔 17の下方に隆起部 18を形成すれば、開口部 17Dに留まる気泡を低 減することができる。
[0125] 本実施の形態 5において、その他の実施の形態と同様の構成および効果について は説明を省略する。
産業上の利用可能性
[0126] 以上のように、本発明に力かる細胞電気生理センサは、細胞を的確に吸引し、貫通 孔の開口部に精度高く捕捉'保持することができるため、高精度かつ高効率な測定 が求められる医療 ·バイオ分野にぉ 、て有用である。

Claims

請求の範囲
[I] 基板を備えた細胞電気生理センサ用チップであって、
前記基板は、その上面から下面までを貫く貫通孔を有し、
この貫通孔の内壁と前記基板の表面とは湾曲面で繋がっている、細胞電気生理セン サ用チップ。
[2] 前記基板上には酸ィ匕物層を有する、請求項 1に記載の細胞電気生理センサ用チッ プ。
[3] 前記貫通孔の内壁は、この貫通孔の内側へ湾曲する曲面で形成され、
前記貫通孔の内径は、この貫通孔の内部から前記貫通孔の開口部に向けて徐々に 大きくなるように形成された、請求項 1に記載の細胞電気生理センサ用チップ。
[4] 前記貫通孔の内径は、この貫通孔の深さ方向における中心点で最小となり、
この中心点力 前記貫通孔の開口部に向けて徐々に大きくなるように形成された、請 求項 1に記載の細胞電気生理センサ用チップ。
[5] 前記貫通孔の開口部の表面および内壁は、二乗平均粗さ Rq = 1. Onm以下とした、 請求項 1に記載の細胞電気生理センサ用チップ。
[6] 前記貫通孔の開口部外周は、外方に向けて滑らかに盛り上がる隆起部を有する、請 求項 1に記載の細胞電気生理センサ用チップ。
[7] 前記貫通孔の開口部外周は、外方に向けて滑らかに盛り上がる隆起部を有し、 前記基板上において、前記隆起部の最外周から前記貫通孔の開口部の中心までの 距離が、検体となる細胞の半径より短い、請求項 1に記載の細胞電気生理センサ用 チップ。
[8] 基板の表面は、絶縁層で被覆されて 、る、請求項 1に記載の細胞電気生理センサ用 チップ。
[9] 基板の表面は、酸ィ匕シリコン、窒化シリコン、またはそれらの混合物力もなる絶縁層で 被覆されて ヽる、請求項 1に記載の細胞電気生理センサ用チップ。
[10] 前記基板はシリコン力もなる、請求項 1に記載の細胞電気生理センサ用チップ。
[II] 請求項 1から 10のいずれか一つに記載の細胞電気生理センサ用チップと、
前記細胞電気生理センサ用チップの基板の上方および下方にそれぞれ配置された 電極槽と、
これらの電極槽に入れられる液体と電気的に接続される電極とを備えた、細胞電気 生理センサ。
[12] 基板を備えた細胞電気生理センサ用チップであって、
前記基板は、この基板の第一の面に形成された凹部と、
この凹部力 前記基板の第一の面と対向する第二の面に向けて形成された貫通孔と を有し、
前記基板の第一の面と前記凹部の内壁、この凹部の内壁と前記貫通孔の内壁、お よびこの貫通孔の内壁と前記基板の第二の面とは、それぞれ湾曲面で繋がっている
、細胞電気生理センサ用チップ。
[13] 前記凹部は、前記貫通孔開口部を中心に外方へ広がり、前記基板の第一の面と繋 がる湾曲面で形成されて!、る、請求項 12に記載の細胞電気生理センサ用チップ。
[14] 前記凹部は半球形状である、請求項 12に記載の細胞電気生理センサ用チップ。
[15] 前記凹部は円錐形状である、請求項 12に記載の細胞電気生理センサ用チップ。
[16] 前記基板の第二の面には酸ィ匕物層を有する、請求項 12に記載の細胞電気生理セ ンサ用チップ。
[17] 前記貫通孔の内壁は、この貫通孔の内側へ湾曲する曲面で形成され、
前記貫通孔の内径は、この貫通孔の内部から前記貫通孔の開口部に向けて徐々に 大きくなるように形成された、請求項 12に記載の細胞電気生理センサ用チップ。
[18] 前記貫通孔の内径は、この貫通孔の深さ方向における中心点で最小となり、
この中心点力 前記貫通孔の開口部に向けて徐々に大きくなるように形成された、請 求項 12に記載の細胞電気生理センサ用チップ。
[19] 前記貫通孔の開口部の表面および内壁と、前記凹部の内壁は、二乗平均粗さ Rq =
1. Onm以下とした、請求項 12に記載の細胞電気生理センサ用チップ。
[20] 前記貫通孔の開口部外周は、外方に向けて滑らかに盛り上がる隆起部を有する、請 求項 12に記載の細胞電気生理センサ用チップ。
[21] 前記貫通孔の開口部外周は、外方に向けて滑らかに盛り上がる隆起部を有し、 前記基板上において、前記隆起部の最外周から前記貫通孔の開口部の中心までの 距離が、検体となる細胞の半径より短い、請求項 12に記載の細胞電気生理センサ用 チップ。
[22] 基板の表面は絶縁層で被覆されている、請求項 12に記載の細胞電気生理センサ用 チップ。
[23] 基板の表面は、酸ィ匕シリコン、窒化シリコン、またはそれらの混合物力もなる絶縁層で 被覆されて 、る、請求項 12に記載の細胞電気生理センサ用チップ。
[24] 前記基板はシリコン力もなる、請求項 12に記載の細胞電気生理センサ用チップ。
[25] 請求項 12から 24のいずれか一つに記載の細胞電気生理センサ用チップと、
前記細胞電気生理センサ用チップの基板の上方および下方にそれぞれ配置された 電極槽と、
これらの電極槽に入れられる液体と電気的に接続される電極とを備えた、細胞電気 生理センサ。
[26] 基板の上面力もドライエッチングによって貫通孔を形成するステップと、
この基板を減圧した希ガスまたは水素ガスまたは窒素ガス雰囲気下で加熱するステ ップと、
前記基板の上面および下面から前記貫通孔の内側へ湾曲した曲面を形成するステ ップを有する、細胞電気生理センサ用チップの製造方法。
[27] 前記基板としてシリコンを用い、
この基板を加熱するステップにお 、て、
前記希ガスまたは水素ガスまたは窒素ガス雰囲気の圧力を 27kPa以下とし、 加熱温度を、 1000°C以上で、シリコンの融点以下とする、請求項 26に記載の細胞 電気生理センサ用チップの製造方法。
[28] 基板の上面力もドライエッチングによって貫通孔を形成するステップと、
前記基板の両面力 気相法による成膜を行うステップと、
前記基板の上面および下面から前記貫通孔の内側へ湾曲した曲面を形成するステ ップを有する、細胞電気生理センサ用チップの製造方法。
[29] ドライエッチングによって基板の第一の面に凹部を形成するステップと、
次にドライエッチングによってこの凹部力 前記基板の第二の面までを貫く貫通孔を 形成するステップと、
その後減圧した希ガスまたは水素ガスまたは窒素ガス雰囲気下で前記基板を加熱 するステップと、
この基板の第一の面力 前記凹部開口部の内壁までと、この凹部の内壁力 前記貫 通孔開口部の内壁までと、この貫通孔の内壁から前記基板の第二の面までとに、湾 曲した曲面を形成するステップを有する、細胞電気生理センサ用チップの製造方法
[30] 前記基板としてシリコンを用い、
この基板を加熱するステップにお 、て、
前記希ガスまたは水素ガスまたは窒素ガス雰囲気の圧力を 27kPa以下とし、 加熱温度を 1000°C以上でシリコンの融点以下とする、請求項 29に記載の細胞電気 生理センサ用チップの製造方法。
[31] ドライエッチングによって基板の第一の面に凹部を形成するステップと、
次にドライエッチングによってこの凹部力 前記基板の第二の面までを貫く貫通孔を 形成するステップと、
その後前記基板の第一の面および第二の面の両側力 気相法による成膜を行うステ ップと、
減圧した希ガスまたは水素ガスまたは窒素ガス雰囲気下で前記基板を加熱するステ ップと、
この基板の第一の面力 前記凹部開口部の内壁までと、この凹部の内壁力 前記貫 通孔開口部の内壁までと、この貫通孔の内壁から前記基板の第二の面までとに、湾 曲した曲面を形成するステップを有する、細胞電気生理センサ用チップの製造方法
PCT/JP2007/060326 2002-06-05 2007-05-21 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップの製造方法 WO2007138902A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007543632A JP4596009B2 (ja) 2006-05-25 2007-05-21 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップの製造方法
US11/914,283 US8071363B2 (en) 2006-05-25 2007-05-21 Chip for cell electrophysiological sensor, cell electrophysiological sensor using the same, and manufacturing method of chip for cell electrophysiological sensor
US12/359,426 US8202439B2 (en) 2002-06-05 2009-01-26 Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006144801 2006-05-25
JP2006-144801 2006-05-25
JP2007020834 2007-01-31
JP2007-020834 2007-01-31

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2007/059743 Continuation-In-Part WO2007132769A1 (ja) 2002-06-05 2007-05-11 細胞電位測定デバイスとそれに用いる基板、細胞電位測定デバイス用基板の製造方法
US11/913,116 Continuation-In-Part US20100019756A1 (en) 2006-05-17 2007-05-11 Device for measuring cellular potential, substrate used for the same and method of manufacturing substrate for device for measuring cellular potential

Related Child Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2006/313359 Continuation-In-Part WO2007001091A1 (en) 2002-06-05 2006-06-28 Cellular potential measurement container
US11/916,947 Continuation-In-Part US20100019782A1 (en) 2005-06-29 2006-06-28 Cellular potential measurement container
US11/914,283 A-371-Of-International US8071363B2 (en) 2006-05-25 2007-05-21 Chip for cell electrophysiological sensor, cell electrophysiological sensor using the same, and manufacturing method of chip for cell electrophysiological sensor

Publications (1)

Publication Number Publication Date
WO2007138902A1 true WO2007138902A1 (ja) 2007-12-06

Family

ID=38778421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060326 WO2007138902A1 (ja) 2002-06-05 2007-05-21 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップの製造方法

Country Status (3)

Country Link
US (1) US8071363B2 (ja)
JP (1) JP4596009B2 (ja)
WO (1) WO2007138902A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016193A1 (ja) * 2008-08-04 2010-02-11 パナソニック株式会社 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサ、および細胞電気生理センサ用チップの製造方法
WO2011121968A1 (ja) * 2010-03-30 2011-10-06 パナソニック株式会社 センサデバイス
WO2012141157A1 (ja) * 2011-04-11 2012-10-18 株式会社日立製作所 細胞採取システム
JP2020099211A (ja) * 2018-12-20 2020-07-02 株式会社Screenホールディングス 細胞培養容器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2565311A4 (en) 2010-04-27 2016-11-30 Panasonic Ip Man Co Ltd SHEET-LIKE FIBROUS STRUCTURE, AND BATTERY, THERMAL INSULATING MATERIAL, WATERPROOF SHEET, AND SCAFFOLDING FOR CELL CULTURE, EACH USING THE SHEET-LIKE FIBROUS STRUCTURE
WO2012037061A2 (en) * 2010-09-13 2012-03-22 California Institute Of Technology Handheld low pressure mechanical cell lysis device with single cell resolution
JP5909654B2 (ja) * 2010-09-24 2016-04-27 パナソニックIpマネジメント株式会社 フィルターデバイス
DE102017130518B4 (de) * 2017-12-19 2024-04-18 ChanPharm GmbH Messgerät, Messverfahren, Hochdurchsatz-Testgerät und Messkit für elektrophysiologische Messungen, insbesondere an Zellaggregaten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511699A (ja) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン 液体環境内にある細胞の測定を行なう方法および装置
JP2005156234A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 細胞外電位測定デバイスおよびこれを用いた細胞外電位の測定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2829005B2 (ja) 1988-11-11 1998-11-25 株式会社日立製作所 マイクロチャンバープレート、これを利用した細胞検出方法、処理方法および装置ならびに細胞
US5183744A (en) * 1988-10-26 1993-02-02 Hitachi, Ltd. Cell handling method for cell fusion processor
JPH06244257A (ja) 1993-02-16 1994-09-02 Ricoh Co Ltd 半導体基板不純物濃度の決定方法
EP0652308B1 (en) 1993-10-14 2002-03-27 Neuralsystems Corporation Method of and apparatus for forming single-crystalline thin film
WO2001025769A2 (en) 1999-10-01 2001-04-12 Sophion Bioscience A/S A substrate and a method for determining and/or monitoring electrophysiological properties of ion channels
US6682649B1 (en) * 1999-10-01 2004-01-27 Sophion Bioscience A/S Substrate and a method for determining and/or monitoring electrophysiological properties of ion channels
WO2002055653A1 (fr) 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Dispositif de mesure du potentiel extracellulaire, procede permettant de mesurer le potentiel extracellulaire a l'aide dudit dispositif et appareil utilise pour cribler rapidement le medicament apporte par ce dernier
US7006929B2 (en) * 2001-06-05 2006-02-28 Matsushita Electric Industrial Co., Ltd. Signal detecting sensor provided with multi-electrode
US20040033483A1 (en) * 2001-08-09 2004-02-19 Hiroaki Oka Cell diagnosing method, and device and apparatus use for it
ATE354635T1 (de) * 2002-04-17 2007-03-15 Sophion Bioscience As Substrat und verfahren zum messen elektrophysiologischer eigenschaften von zellmembranen
JP3925439B2 (ja) 2003-03-07 2007-06-06 松下電器産業株式会社 細胞外電位測定デバイスおよびその製造方法
JP3861831B2 (ja) 2003-03-07 2006-12-27 松下電器産業株式会社 細胞外電位測定デバイスおよびその製造方法
JP3945317B2 (ja) 2002-06-05 2007-07-18 松下電器産業株式会社 細胞外電位測定デバイスおよびその製造方法
US8257962B2 (en) * 2003-03-07 2012-09-04 Panasonic Corporation Extracellular potential measuring device and its manufacturing method
US7501278B2 (en) * 2002-06-05 2009-03-10 Panasonic Corporation Extracellular potential measuring device and method for fabricating the same
JP3945338B2 (ja) 2002-08-01 2007-07-18 松下電器産業株式会社 細胞外電位測定デバイスおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511699A (ja) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン 液体環境内にある細胞の測定を行なう方法および装置
JP2005156234A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 細胞外電位測定デバイスおよびこれを用いた細胞外電位の測定方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016193A1 (ja) * 2008-08-04 2010-02-11 パナソニック株式会社 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサ、および細胞電気生理センサ用チップの製造方法
JP4868067B2 (ja) * 2008-08-04 2012-02-01 パナソニック株式会社 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサ、および細胞電気生理センサ用チップの製造方法
US9184048B2 (en) 2008-08-04 2015-11-10 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing cellular electrophysiology sensor chip
WO2011121968A1 (ja) * 2010-03-30 2011-10-06 パナソニック株式会社 センサデバイス
WO2012141157A1 (ja) * 2011-04-11 2012-10-18 株式会社日立製作所 細胞採取システム
JP2012217397A (ja) * 2011-04-11 2012-11-12 Hitachi Ltd 細胞採取システム
JP2020099211A (ja) * 2018-12-20 2020-07-02 株式会社Screenホールディングス 細胞培養容器
JP7107528B2 (ja) 2018-12-20 2022-07-27 株式会社Screenホールディングス 細胞培養容器

Also Published As

Publication number Publication date
JPWO2007138902A1 (ja) 2009-10-01
US8071363B2 (en) 2011-12-06
US20090152110A1 (en) 2009-06-18
JP4596009B2 (ja) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2007138902A1 (ja) 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップの製造方法
US8816450B2 (en) Fibrous projections structure
JP4784696B2 (ja) 細胞電位測定デバイスとそれに用いる基板、細胞電位測定デバイス用基板の製造方法
WO2011121968A1 (ja) センサデバイス
US20100170790A1 (en) Biosensor
WO2003104788A1 (ja) 細胞外電位測定デバイスおよびその製造方法
JP2005265758A (ja) 細胞外電位測定デバイスおよびその製造方法
JP4868067B2 (ja) 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサ、および細胞電気生理センサ用チップの製造方法
JP4844161B2 (ja) 細胞電気生理センサとそれを用いた測定方法およびその製造方法
JP5375609B2 (ja) バイオセンサ
JP4742973B2 (ja) 細胞電気生理測定デバイスおよびこれの製造方法
JP2010213668A (ja) バイオチップとその製造方法
JP4830545B2 (ja) 細胞電気生理センサの製造方法
JP2009291135A (ja) 細胞電気生理センサ
WO2012120852A1 (ja) センサチップ
JP4747852B2 (ja) 細胞電気生理センサとその製造方法
WO2012077324A1 (ja) バイオチップおよびこれを用いたアレイ基板
JP5011984B2 (ja) 細胞電気生理センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007543632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11914283

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743760

Country of ref document: EP

Kind code of ref document: A1