WO2007137486A1 - Film à protection électromagnétique et procédé de fabrication - Google Patents
Film à protection électromagnétique et procédé de fabrication Download PDFInfo
- Publication number
- WO2007137486A1 WO2007137486A1 PCT/CN2007/001545 CN2007001545W WO2007137486A1 WO 2007137486 A1 WO2007137486 A1 WO 2007137486A1 CN 2007001545 W CN2007001545 W CN 2007001545W WO 2007137486 A1 WO2007137486 A1 WO 2007137486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- layer
- metal
- film substrate
- electromagnetic wave
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0094—Shielding materials being light-transmitting, e.g. transparent, translucent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/009—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
Definitions
- Electromagnetic wave shielding film and manufacturing method thereof are Electromagnetic wave shielding film and manufacturing method thereof.
- the present invention relates to a shielding technique for electromagnetic radiation, and more particularly to a highly transparent electromagnetic wave shielding film suitable for suppressing electromagnetic wave leakage of a display device and a method of manufacturing the same. Background technique
- various electronic products such as cathode ray tube (CRT) displays, liquid crystal displays, plasma TV sets, etc.
- CTR cathode ray tube
- LCD liquid crystal displays
- plasma TV sets etc.
- This radiation can cause harm to the human body, especially if it is close to the radiation source for a long time, which may lead to various physiological diseases, such as increased cytopathic conditions, malignant diseases such as cancer, swollen gland enlargement, leukemia, and eyes. Dryness and neck push disease.
- a highly transparent film that shields the electromagnetic radiation from the surface of the screen.
- a cured adhesive having a thickness of, for example, about 10 ⁇ m
- an electrolytic copper film having a thickness of more than 6 ⁇ m
- an optical grade transparent poly pair having a high light transmittance (for example, 90% or more).
- PET ethylene terephthalate
- a copper film metal etching is then performed to form a metal lattice layer on the surface of the PET film.
- the thickness is generally 8 micrometers to 12 micrometers or more, which is far beyond the thickness of the metal layer required for electromagnetic wave shielding, wasting resources. And increased costs.
- the curing adhesive used to bond the metal film to the PET film releases organic volatiles that pollute the environment due to the increase in heat during production and later use, thereby adversely affecting human health.
- Another type of electromagnetic wave shielding film uses a mesh material woven from a polymer material, which is coated with a metallized outer layer by "electroless plating" and adhered to the optically transparent PET with a curing adhesive. An electromagnetic wave shielding film is formed on the film.
- An object of the present invention is to provide an electromagnetic wave shielding film which can reduce the amount of shielding metal and the environmental pollution caused by organic volatiles such as curing glue.
- An electromagnetic wave shielding film comprising:
- a metal mesh layer on at least one surface of the film substrate.
- the film substrate is a plastic film having a light transmittance of 87% or more and a thickness of 1 to 500 ⁇ m.
- the metal mesh layer is made of a single metal or alloy, has a thickness of 2.5 to 4 ⁇ m, and is covered with an oxidation resistant layer.
- the above electromagnetic wave shielding film further comprising a release paper coated on the other surface of the film substrate and covering the surface of the adhesive film layer.
- Another object of the present invention is to provide a method of manufacturing an electromagnetic wave shielding film which can reduce the environmental pollution caused by the amount of the shielding metal and the organic volatile matter contained in the curing glue used between the shielding metal and the film substrate.
- a method of manufacturing an electromagnetic wave shielding film comprising the steps of:
- a metal mesh pattern is formed on the film substrate by a photolithography process.
- a method for manufacturing an electromagnetic wave shielding film comprising the steps of: forming a metal layer on a film substrate having a conductive layer deposited on a surface thereof by using an electroplating process;
- a metal mesh pattern is formed on the film substrate by a photolithography process.
- the conductive layer and the metal layer are composed of copper
- the step of forming the metal mesh pattern includes:
- a metal layer and a conductive layer region not covering the photoresist on the film substrate are etched to form the metal mesh pattern.
- the film substrate is a plastic film having a light transmittance of 87% or more and a thickness of 1 to 500 ⁇ m, and the conductive layer and the metal layer are composed of a single metal or alloy, and the total thickness is 2. 5 ⁇ 4 microns.
- the following steps are included between the step of forming the metal layer and the step of forming a metal mesh pattern:
- the film substrate plated with the metal layer is contacted with an antioxidant to form an oxidation resistant layer on the surface of the metal layer;
- the release film is covered on the surface of the adhesive film layer.
- Still another object of the present invention is to provide a display device which can reduce leakage of electromagnetic radiation.
- a display device comprising:
- the electromagnetic wave shielding film covers the surface of the display screen. It is still another object of the present invention to provide an electronic device that reduces leakage of electromagnetic radiation.
- An electronic device comprising a display screen, further comprising the above-mentioned electromagnetic wave shielding film covering the surface of the display screen.
- the present invention can reduce the process cost, and can also reduce the process steps, in addition to the advantages of reducing the metal consumption of the electromagnetic wave shielding and avoiding the use of the curing glue between the metal layer and the PET film. Effectively reduce industrial production costs and increase production efficiency.
- the thickness of the metal layer of the present invention is reduced to 1/2 to 1/3 of the original, which reduces the time required for etching into a mesh pattern structure, thereby facilitating suppression of metal etching due to pickling time. A trapezoidal phenomenon that is too long.
- Figure 1 is a cross-sectional view showing an electromagnetic wave shielding film in accordance with a preferred embodiment of the present invention
- Fig. 2 is a view showing the pattern of the metal layer in the electromagnetic wave shielding film shown in Fig. 1.
- Figs. 3a and 3b are the results of electromagnetic wave shielding performance test of the electromagnetic wave shielding film shown in Fig. 1. detailed description
- the electromagnetic wave shielding film 1 is a composite layer structure mainly comprising a film substrate 11, a metal mesh layer 12 on one surface of the film substrate 11, an oxidation resistant layer 13 covering the surface of the metal mesh layer 12, and coating.
- the adhesive film layer 14 on the other surface of the film substrate 11 and the release paper 15 covering the surface of the adhesive film layer 14 are provided.
- the film substrate 11 functions as a substrate of the electromagnetic wave shielding film, and functions as a supporting metal layer and a backing film layer. Further, when used for a display screen of a display device, the film substrate 11 should have sufficient optical transmittance.
- PET polyethylene terephthalate
- the plastic film has a light transmittance of greater than or equal to 87% and a thickness of between 1 and 500 microns.
- the metal mesh layer 12 is formed on the surface of the film substrate 11, and its formation will be described in detail below.
- Fig. 2 shows a pattern of the metal mesh layer 12 in the electromagnetic wave shielding film shown in Fig. 1.
- the middle of the metal mesh layer 12 is a mesh region 12a composed of metal wires interlaced in different directions, wherein the wire diameter of the metal wires is less than or equal to 30 micrometers, and the spacing between the metal wires is less than or equal to 420. Micron.
- the mesh area is surrounded by a metal frame 12b (indicated by a thick line in the figure).
- the metal mesh layer 12 can be made of a single metal or alloy. Generally, when the thickness of the layer is 2.
- a single metal or alloy includes, but is not limited to, copper, aluminum, gold, nickel, and a Mendel alloy (copper-nickel alloy).
- Mendel alloy copper-nickel alloy
- an anti-oxidation layer 13 is formed on the metal mesh layer 12, for example, by coating a copper anti-oxidant on the metal mesh layer 12.
- a transparent layer of the adhesive film layer 14 is applied on the surface of the film substrate 11 where the metal layer is not formed by the gluing device, and then covered with a release paper 15 (for example, a silicon-containing release paper).
- Adhesive film layer 14 When in use, the release paper 15 is uncovered and the side of the electromagnetic shielding film 1 coated with the adhesive film layer 14 is attached to the surface of the display screen (for example, the inner surface) such that the display screen is opposite to the aforementioned mesh region, the metal Block 12a is grounded.
- the thickness of the metal mesh layer is 3. 5 microns
- the thickness of the metal mesh layer is 3. 5 microns
- the thickness of the metal mesh layer is 3. 5 microns
- the thickness of the metal mesh layer is 3. 5 microns
- the result shown in Fig. 3b corresponds to the thickness of the metal mesh layer.
- the electromagnetic radiation shielding film of the present embodiment has electromagnetic radiation intensity lower than the horizontal line under the two wire diameters, that is, the electromagnetic radiation intensity specified by the national standard GB9254-98 is not exceeded.
- the metal mesh layer is formed only on one side of the PET film, and in order to enhance the electromagnetic wave shielding effect, a metal mesh layer may be formed on both surfaces of the PET film.
- a conductive layer is formed on the surface of the PET film substrate.
- the formation method can be performed by physical vapor deposition (physical vapor deposit ion) technique in a vacuum environment by magnetron sputtering continuous plating on the PET film substrate.
- the surface of the material is attached to a copper or tin indium alloy (IT0) having a thickness less than ⁇ ⁇ ⁇ ⁇ .
- IT0 copper or tin indium alloy
- a metal copper layer is used as the conductive layer.
- two rolls of PET film can be stretched and wound forward at the same time during vacuum plating, and the two sides of the film are subjected to single-layer vacuum magnetron sputtering on both sides of the film, so at the same time Simultaneous production of two rolls of PET roll film with a single-sided conductive layer.
- both sides of the single roll film may be simultaneously subjected to vacuum magnetron sputtering to form a conductive layer.
- the electromagnetic shielding film is used for the display screen, a certain transparency should be ensured.
- a transparent PET roll film having a light transmittance of 87% or more can be used, and the thickness is from 1 ⁇ m to 500 ⁇ m.
- step 2 the thick metal is electroplated on the film substrate of the single-sided conductive metal layer obtained in step 1 by using the existing continuous electrolytic plating process, so that the total thickness of the metal layer is increased to the desired thickness.
- the thickness is 2. 5 microns ⁇ 4 microns.
- step 3 the electroplated film is immersed in an antioxidant solution to form an oxidation resistant layer on the surface of the metal layer.
- a transparent adhesive film layer is continuously coated on one side of the unplated metal layer of the PET film substrate by using a gluing device.
- a layer of silicon-containing release paper is applied over the adhesive film layer.
- step 6 seal the PET with waterproof sticker tape The film substrate covers the surface of the release paper.
- step 7 a photoresist of a thickness of about 1 mm is applied to the surface of the metal layer of the PET film substrate.
- step 8 the negative film having a printing dot number of more than 12,000 ppi is placed on the exposure machine glass sheet by vacuum adsorption, and the film is printed with a mesh pattern, for example, as shown in FIG. Border pattern.
- step 9 using a deep ultraviolet light source with a shorter wavelength to scan the glass sheet of the lithography machine to achieve planar exposure development, and the chemical inhibitors in the photoresist which are not blocked by the film will be changed into a sensitizer by deep ultraviolet rays. These sensitizers are washed by the developer to form an invisible mesh pattern of the same thickness as the negative film used for exposure.
- step 10 the package film processed in step 9 is continuously or cut into a single piece and then placed in an etching apparatus to etch away areas directly exposing the copper metal, thereby forming a desired metal mesh pattern or FIG. The metal mesh layer shown.
- a film substrate having a surface on which a conductive layer is previously formed can also be obtained from the market, and therefore, in another embodiment of the present invention, step 1 can be omitted.
- the substrate on which the conductive layer is preliminarily formed includes, for example, a transparent PET roll film having a thickness of 125 ⁇ m, which is manufactured by Shandong Tiannuo Photoelectric Material Co., Ltd., Jinan, China, and is numbered TN-PET1-125-35-DNC.
- a backing film layer may be coated on one side of the unplated metal layer of the PET film substrate by a common screen printing method, and the film layer has the above Step 10 etches the same pattern of metal mesh patterns formed, the wire diameter is comparable to or even finer than the etched metal lines, and the film thickness is generally less than 10 microns.
- the conductive layer and the metal layer are both made of copper, but the conductive layer may also be made of tin-indium alloy ( ⁇ 0), which is transparent, so in step 9, only the metal layer can be etched away and remain as conductive. A layer of tin indium alloy.
- the present invention does not interfere with the effect of electromagnetic wave shielding regardless of whether it is used in front of or behind the display screen (for example, a screen glass or a flexible film). If a higher shielding value standard is required, the PET film with high optical transmittance (87% or more) can be formed on both sides.
- Metal mesh pattern Specifically, a metal copper layer may be formed on both surfaces of the PET film by using the above steps 1 to 3, and then a metal mesh pattern is formed by using the above steps 7 to 10, and finally one of the metal meshes is used in the above steps 4 and 5. A backing layer and a release paper are formed on the pattern.
- the plating process can be used to avoid bonding any metal layer and the film substrate by using any adhesive curing agent, which is advantageous for reducing the volatilization of organic substances. .
- the transparency of the electromagnetic shielding film is improved without the use of an adhesive curing agent, so that the optical transmittance of the PET film can be lowered.
- the present invention does not have to use a PET film film having a light transmittance of 92% or more, and it is only required to use an optical grade PET film having a light transmittance of 87 - 87% to satisfy the transparency requirement.
- an electromagnetic wave shielding film according to the present invention may be coated on the screen surface of an electric or electronic product.
- an adhesive material may be formed on the surface of the electromagnetic wave shielding film of the present invention (e.g., the entire surface or a region close to the periphery) and covered with a release film. When you want to cover the surface of the screen, just peel off the release film and then attach the surface of the adhesive material to the screen.
- the electromagnetic wave shielding film of the present invention contains a metal mesh layer structure, leakage of electromagnetic radiation can be effectively prevented.
- the conductor such as the electrostatic discharge pen can be touched and connected to any position of the metal mesh layer at any time, thereby accumulating The static electricity on the surface of the screen is quickly released.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Cette invention concerne un type de film de protection contre des ondes électromagnétiques comprenant: un film (11) dont le degré de transparence est égal ou supérieur à 87% et des couches de filet métallique (12) au moins sur une surface du film (11). Cette invention concerne également un procédé permettant de fabriquer un film de protection contre les ondes électromagnétiques, lequel procédé comprend les étapes suivante: dans un premier temps, une couche conductrice est formée sur la surface du film (11) par dépôt physique en phase vapeur; ensuite, une couche métallique est formée sur la couche conductrice par placage; puis, un motif réticulaire métallique est créé sur le film par découpage au laser. Le mode de réalisation décrit dans cette invention permet non seulement de réduire la consommation de métal pour le blindage électromagnétique, d'éviter l'utilisation d'une colle de solidification entre les couches de métal et le film, mais également de réduire le nombre des étapes du processus afin de réduire le coût d'une production industrielle et d'augmenter efficacement la productivité.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610084149.8 | 2006-05-25 | ||
CNA2006100841498A CN1870881A (zh) | 2006-05-25 | 2006-05-25 | 电磁波屏蔽薄膜及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007137486A1 true WO2007137486A1 (fr) | 2007-12-06 |
Family
ID=37444399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/001545 WO2007137486A1 (fr) | 2006-05-25 | 2007-05-14 | Film à protection électromagnétique et procédé de fabrication |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN1870881A (fr) |
WO (1) | WO2007137486A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102903733A (zh) * | 2012-10-18 | 2013-01-30 | 深圳市华星光电技术有限公司 | 一种有机发光显示面板及其显示装置 |
EP3189718A4 (fr) * | 2014-09-03 | 2018-04-25 | Continental Accessory Corp. | Blindage rf pour dispositifs mobiles |
US10908732B1 (en) | 2019-08-26 | 2021-02-02 | Google Llc | Removable electronics device for pre-fabricated sensor assemblies |
US10963106B2 (en) | 2019-08-26 | 2021-03-30 | Google Llc | Pre-fabricated sensor system including removable electronics device |
CN113766821A (zh) * | 2021-09-14 | 2021-12-07 | 惠州市中为柔性光电子智能制造研究院有限公司 | 一种电磁脉冲防护薄膜 |
USD938414S1 (en) | 2019-08-26 | 2021-12-14 | Google Llc | Removable electronics device |
CN113840413A (zh) * | 2020-06-24 | 2021-12-24 | 南京矽力微电子(香港)有限公司 | 具有无线转能功能的电磁波屏蔽膜 |
USD945296S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor system receptacle |
USD945294S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor assembly receptacle |
USD945293S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor assembly |
USD945295S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor system |
US11755157B2 (en) | 2019-05-10 | 2023-09-12 | Google Llc | Pre-fabricated sensor assembly for interactive objects |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101005755B (zh) * | 2006-12-12 | 2011-04-20 | 中国乐凯胶片集团公司 | 一种电磁波屏蔽膜及其制造方法 |
JP5430921B2 (ja) * | 2008-05-16 | 2014-03-05 | 富士フイルム株式会社 | 導電性フイルム及び透明発熱体 |
KR101003317B1 (ko) * | 2009-12-31 | 2010-12-23 | 최철수 | 건-습식 융합 프로세스를 이용한 전자파차폐용 도전성 박막필름 |
CN103779667B (zh) * | 2014-02-11 | 2016-02-03 | 国家纳米科学中心 | 一种结构型吸波材料及其制作方法 |
CN103763897B (zh) | 2014-02-14 | 2015-06-17 | 哈尔滨工业大学 | 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗 |
CN103826428B (zh) | 2014-02-14 | 2015-07-29 | 哈尔滨工业大学 | 基于三角及正交混合分布圆环及子圆环阵列的电磁屏蔽光窗 |
TWI578893B (zh) * | 2014-07-17 | 2017-04-11 | T-Kingdom Co Ltd | Shielding film and manufacturing method thereof |
CN106773197A (zh) * | 2015-11-20 | 2017-05-31 | 北京计算机技术及应用研究所 | 一种使用en-emc玻璃的显示器 |
CN106196388A (zh) * | 2016-07-18 | 2016-12-07 | 合肥美菱净化设备有限公司 | 一种防辐射的超声波加湿器 |
CN106876204B (zh) * | 2017-04-14 | 2020-03-06 | 常州信息职业技术学院 | 一种矿用仪表薄膜按键开关及其屏蔽层的制作方法 |
CN108274838B (zh) * | 2018-02-02 | 2024-04-16 | 福州恒美光电材料有限公司 | 一种免冲切的电磁屏蔽膜及其制备方法、应用 |
CN111607778B (zh) * | 2020-07-09 | 2023-11-03 | 北京载诚科技有限公司 | 一种镀膜用冷却设备、镀膜设备、方法及卷对卷薄膜 |
CN113825376B (zh) * | 2021-08-13 | 2024-04-05 | 深圳市志凌伟业光电有限公司 | 电磁屏蔽构件的制备方法和电磁屏蔽构件 |
CN113795131B (zh) * | 2021-08-13 | 2024-03-01 | 深圳市志凌伟业光电有限公司 | 电磁屏蔽构件和显示器 |
CN113795132B (zh) * | 2021-08-13 | 2024-04-05 | 深圳市志凌伟业光电有限公司 | 电磁屏蔽构件和显示器 |
CN117812815A (zh) * | 2024-01-17 | 2024-04-02 | 南京罗朗微太电子科技有限公司 | 一种高透光率低损耗介质基材与器件结构及其加工方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260271A (ja) * | 1998-03-13 | 1999-09-24 | Dainippon Printing Co Ltd | 電磁波遮蔽板の製造方法および電磁波遮蔽板 |
CN1244714A (zh) * | 1998-08-10 | 2000-02-16 | 住友电木株式会社 | 电磁波屏蔽透明体 |
JP2002246788A (ja) * | 2000-12-12 | 2002-08-30 | Nisshinbo Ind Inc | 透視性電磁波シールド材 |
CN2659097Y (zh) * | 2003-11-07 | 2004-11-24 | 钢铁研究总院 | 一种具有多功能防护的方便贴膜 |
CN1758842A (zh) * | 2005-03-21 | 2006-04-12 | 四川世创达电子科技有限公司 | Pdp保护屏的电磁波屏蔽膜的制作方法 |
-
2006
- 2006-05-25 CN CNA2006100841498A patent/CN1870881A/zh active Pending
-
2007
- 2007-05-14 WO PCT/CN2007/001545 patent/WO2007137486A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260271A (ja) * | 1998-03-13 | 1999-09-24 | Dainippon Printing Co Ltd | 電磁波遮蔽板の製造方法および電磁波遮蔽板 |
CN1244714A (zh) * | 1998-08-10 | 2000-02-16 | 住友电木株式会社 | 电磁波屏蔽透明体 |
JP2002246788A (ja) * | 2000-12-12 | 2002-08-30 | Nisshinbo Ind Inc | 透視性電磁波シールド材 |
CN2659097Y (zh) * | 2003-11-07 | 2004-11-24 | 钢铁研究总院 | 一种具有多功能防护的方便贴膜 |
CN1758842A (zh) * | 2005-03-21 | 2006-04-12 | 四川世创达电子科技有限公司 | Pdp保护屏的电磁波屏蔽膜的制作方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102903733A (zh) * | 2012-10-18 | 2013-01-30 | 深圳市华星光电技术有限公司 | 一种有机发光显示面板及其显示装置 |
EP3189718A4 (fr) * | 2014-09-03 | 2018-04-25 | Continental Accessory Corp. | Blindage rf pour dispositifs mobiles |
US11755157B2 (en) | 2019-05-10 | 2023-09-12 | Google Llc | Pre-fabricated sensor assembly for interactive objects |
USD945293S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor assembly |
USD938414S1 (en) | 2019-08-26 | 2021-12-14 | Google Llc | Removable electronics device |
USD945296S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor system receptacle |
USD945294S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor assembly receptacle |
US10963106B2 (en) | 2019-08-26 | 2021-03-30 | Google Llc | Pre-fabricated sensor system including removable electronics device |
USD945295S1 (en) | 2019-08-26 | 2022-03-08 | Google Llc | Sensor system |
US11392252B2 (en) | 2019-08-26 | 2022-07-19 | Google Llc | Removable electronics device for pre-fabricated sensor assemblies |
US11644930B2 (en) | 2019-08-26 | 2023-05-09 | Google Llc | Removable electronics device for pre-fabricated sensor assemblies |
US10908732B1 (en) | 2019-08-26 | 2021-02-02 | Google Llc | Removable electronics device for pre-fabricated sensor assemblies |
CN113840413A (zh) * | 2020-06-24 | 2021-12-24 | 南京矽力微电子(香港)有限公司 | 具有无线转能功能的电磁波屏蔽膜 |
CN113766821A (zh) * | 2021-09-14 | 2021-12-07 | 惠州市中为柔性光电子智能制造研究院有限公司 | 一种电磁脉冲防护薄膜 |
Also Published As
Publication number | Publication date |
---|---|
CN1870881A (zh) | 2006-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007137486A1 (fr) | Film à protection électromagnétique et procédé de fabrication | |
TWI236023B (en) | Electromagnetic shielding sheet, front plate for display, and method for producing electromagnetic shielding sheet | |
JP2004326108A (ja) | プラズマディスプレイパネル用電磁波遮蔽フィルタと、その製造方法 | |
JP2008147356A (ja) | 金属黒化処理方法、電磁波遮蔽フィルタ及び複合フィルタ、並びにディスプレイ | |
JP6940108B2 (ja) | 透明タッチパッド | |
JPWO2003045125A1 (ja) | 電磁波シールド性光透過窓材及びその製造方法 | |
JP2007096111A (ja) | ディスプレイ用複合フィルタ、及びディスプレイ用複合フィルタの製造方法 | |
JP2007048789A (ja) | ディスプレイ用複合フィルタの製造方法 | |
KR20040040049A (ko) | 플라즈마 디스플레이 패널용 필터 및, 그것의 제조 방법 | |
JP2007242728A (ja) | ディスプレイ用光学フィルター及びその製造方法 | |
KR20180045712A (ko) | 터치 스크린 패널용 센서의 제조 방법 및 터치 스크린 패널용 센서 | |
JP5238370B2 (ja) | ディスプレイ用前面板および前面板用の積層フィルムの製造方法 | |
US10868229B2 (en) | Electrode substrate for transparent light-emitting device display, and manufacturing method therefor | |
JP2009071024A (ja) | ディスプレイ用光学フィルター、及びディスプレイ用光学フィルターの製造方法 | |
JP2004241761A (ja) | 電磁波遮蔽用シート、及びその製造方法 | |
CN105988621A (zh) | 一种触摸屏及其制备方法 | |
JP4249426B2 (ja) | 電磁波シールド用の部材 | |
JPWO2003045127A1 (ja) | 電磁波シールド性光透過窓材及びその製造方法 | |
CN202841679U (zh) | 一种ito导电膜汇流电极 | |
JP2010102260A (ja) | プラズマチューブアレイ表示装置用の光学フィルム | |
JP2007036107A (ja) | 複合フィルタの製造方法 | |
JP5067321B2 (ja) | 電磁波遮蔽シート、及び電磁波遮蔽シートの製造方法 | |
JP2005108911A (ja) | 電磁波シールドシート、及びその製造方法 | |
US11914830B2 (en) | Metal mesh structure, touch display device and mobile terminal | |
JP2003015533A (ja) | 電磁波シールド性接着フィルム及び該フィルムを用いた電磁波遮蔽構成体、ディスプレイ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07721118 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07721118 Country of ref document: EP Kind code of ref document: A1 |