WO2007136074A1 - 観察装置 - Google Patents

観察装置 Download PDF

Info

Publication number
WO2007136074A1
WO2007136074A1 PCT/JP2007/060465 JP2007060465W WO2007136074A1 WO 2007136074 A1 WO2007136074 A1 WO 2007136074A1 JP 2007060465 W JP2007060465 W JP 2007060465W WO 2007136074 A1 WO2007136074 A1 WO 2007136074A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
image
observation
culture vessel
cell
Prior art date
Application number
PCT/JP2007/060465
Other languages
English (en)
French (fr)
Inventor
Hiroaki Kii
Yasujiro Kiyota
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP07743899.2A priority Critical patent/EP2022844B1/en
Publication of WO2007136074A1 publication Critical patent/WO2007136074A1/ja
Priority to US12/292,623 priority patent/US8447092B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes

Definitions

  • the present invention relates to an observation apparatus for observing cells.
  • Patent Document 1 The following cell culture apparatus is known from Patent Document 1. According to this cell culture device, the image in the cell culture container taken by the camera is analyzed to detect the cell area and the number of cells in the cell container.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-16194
  • An observation device for observing a sample such as a cell to be cultured includes an illumination device that illuminates the sample, an imaging device that illuminates the sample with the illumination device and acquires an image of the sample, and a culture vessel
  • the statistical processing data is obtained based on the storage unit storing the correlation data indicating the correlation between the occupancy ratio of the sample and the statistical processing data of the luminance information of the sample, and the luminance information of the specific color of the sample captured by the imaging device.
  • a calculation unit that calculates the occupation rate of the sample in the culture vessel using the correlation data of the storage unit.
  • the observation apparatus further includes a moving unit that moves illumination light to the sample by the illumination device, and the calculation unit is installed in the culture vessel based on two or more images acquired while moving the illumination light by the moving unit. It is preferable to calculate the occupancy rate of the sample at.
  • a dark field region is formed on the image acquired by the imaging device.
  • the illuminating device illuminates the culture vessel with a surface light source composed of repetition of a bright part and a dark part.
  • a moving unit that moves the illumination light to the sample by the illumination device is further provided, and the calculation unit is provided in the culture vessel based on two or more images acquired while moving the illumination light by the moving unit. It is preferable to calculate the occupancy rate of the sample at.
  • the imaging device includes a plurality of pixels that output RGB color separation signals, and one pixel data constituting the image data is created based on the plurality of RGB color separation signals.
  • the moving unit moves the illuminating device so as to eliminate the gray area appearing on the boundary of the dark field area formed on the image acquired by the apparatus, and acquires the image of the gray area as the image of the dark field area. Can do.
  • the calculation unit of the observation apparatus of the present invention extracts an image of the dark field region from the image acquired by the imaging device, and based on the luminance information of the specific color of the sample in the extracted dark field region image, The occupancy rate of the sample is calculated.
  • the calculation unit refers to the correlation data of the storage unit using the statistical processing data based on the luminance information of the specific color of the sample in the image of the dark field region, and occupies the sample in the culture container.
  • the rate can be calculated.
  • the statistical processing data is preferably the variance and kurtosis of a histogram created based on the luminance information of the specific color.
  • An observation apparatus for observing a sample such as a cell to be cultured in another aspect of the present invention includes an illumination apparatus that illuminates the sample, an imaging apparatus that illuminates the sample with the illumination apparatus and acquires an image of the sample, and a culture Statistical processing data based on the storage unit storing correlation data indicating the correlation between the occupation ratio of the sample in the container and the statistical processing data of the spatial frequency information of the sample, and the spatial frequency information of the sample captured by the imaging device And a calculation unit for calculating the occupancy rate of the sample in the culture vessel using the correlation data of the storage unit.
  • the observation apparatus further includes a moving unit that moves illumination light to the sample by the illumination device in the rotation direction, and the calculation unit is configured to use the culture container based on two or more images acquired by moving the illumination light by the moving unit. It is possible to calculate the occupancy rate of the sample in the interior.
  • the calculation unit can calculate the luminance information power spatial frequency information of the specific color of the sample in the image acquired by imaging with the imaging apparatus.
  • Space around The statistical processing data of wave number information is the ratio of the spatial frequency information of the image when the sample is occupied in the culture vessel to the spatial frequency information of the image when the sample is occupied in the culture vessel. I prefer to be there.
  • FIG. 1 is a diagram showing a configuration of an embodiment of an observation apparatus, (a) schematically showing a configuration of the observation apparatus, and (b) showing a concept of an optical system portion of the observation apparatus. Show.
  • FIG. 2 is an array diagram of CCD color filters in camera 101.
  • FIG. 3 is a diagram showing a specific example of a stripe image.
  • FIG. 4 is a diagram showing a specific example of a histogram of the number of pixels with respect to a luminance value for an R component.
  • FIG. 5 is a diagram showing the relationship between the cell density and the dispersion and kurtosis of the histogram of the medium image and the cell Z medium image for each color component.
  • FIG. 6 is a flowchart showing processing of the observation apparatus 100 in the first embodiment.
  • FIG. 7 is a diagram showing a specific example of a horizontal stripe image.
  • FIG. 8 is a diagram showing a setting example of a calculation target area in the second embodiment.
  • FIG. 9 is a diagram showing a result of acquiring a line profile of luminance values of each color component.
  • FIG. 10 is a diagram showing a specific example of a graph showing MTF for spatial frequency.
  • FIG. 11 is a diagram showing a comparative example of an MTF that is an integral multiple of the fundamental frequency.
  • FIG. 12 is a diagram showing the correlation between the ratio of MTF when cells are present relative to MTF in the case of only the medium at the fundamental frequency, and the occupancy of the cells relative to the medium.
  • FIG. 13 is a flowchart showing processing of the observation apparatus 100 in the second embodiment.
  • FIG. 1 (a) is a diagram schematically showing a configuration of an embodiment of the observation apparatus in the first embodiment.
  • the observation device 100 includes a camera 101, an illumination device 102, a control device 103, and a recording unit 104.
  • illumination light is irradiated from below on the sample A to be observed by the illumination apparatus 102, and an image of light transmitted through the sample A at that time is captured by the camera 101.
  • Sample A is, for example, a sample such as a cell cultured in a culture vessel.
  • the control device 103 processes the image acquired by the camera 101 and calculates the occupation rate of the cells in the culture vessel. That is, an example of calculating the cell occupancy with respect to the entire area of the medium covering the entire bottom surface of the culture container will be described. Specific processing by the control device 103 will be described later.
  • the camera 101 is, for example, a color CCD camera, and is installed so that the entire inside of the culture vessel can be photographed from the upper part of the sample A.
  • the camera 101 has an imaging optical system, and the light emitted from the sample A is captured by the imaging optical system and forms an image on the imaging surface of the imaging element.
  • Image data obtained by imaging with the camera 101 is shown in an RGB color system.
  • the control device 103 performs interpolation processing on the image data output from the CCD, Conversion is performed so that all the color information of each RGB color component exists in each pixel.
  • the camera 101 outputs image data obtained by capturing an image of V and sample A based on an instruction from the control device 103 to the control device 103, and the control device 103 records the image data in the recording unit 104. .
  • the illumination device 102 is installed so as to irradiate the sample A with a lower force. Thereby, the camera 101 can capture an image of the transmitted light of the sample A illuminated by the illumination device 102.
  • the illuminating device 102 includes a light source (not shown) and a slit plate in which light is transmitted in a striped pattern at regular intervals and light is blocked, and the sample A is sampled with a surface light source that repeats light and dark areas. Illuminate. That is, the illuminating device 102 irradiates striped light (striped light) composed of a range where the sample A is directly irradiated with light and a range where the light is blocked.
  • striped light striped light
  • stripe light may be created by a liquid crystal display, for example.
  • a certain interval in which the light transmitting range and the light blocking range on the slit plate are arranged in a stripe pattern is referred to as a slit interval.
  • the interval between the bright part and the dark part in the sample light emitted from the illumination device 102 is such that the white area corresponding to the area directly irradiated with light on the image acquired by the camera 101, and the light It is designed so that a black area (dark field area) corresponding to the blocked area is formed.
  • the illumination device 102 is also installed so as to be movable in a direction perpendicular to the direction of stripe light irradiation, that is, in the left-right direction in Fig. 1 (a), and shifts the stripe light irradiation position with respect to the sample A. be able to. For example, it is possible to block the direct light by moving the illumination device 102 with respect to the range in which direct light is irradiated on the sample A. Note that the irradiation of the stripe light by the illumination device 102 and the movement of the illumination device 102 are controlled by the control device 103.
  • FIG. 1 (b) is a diagram showing the concept of the optical system of the observation apparatus 100.
  • the description will be made by paying attention to the dark portion 14A on the surface light source and the partial region lb on the sample A directly facing the dark portion 14A.
  • this partial area lb no light is incident from the dark part 14A where the light LB and LC of two bright parts 14B and 14C adjacent to the dark part 14A are incident. Therefore, the partial area lb is obliquely illuminated with the light LB and LC.
  • a part of the incident light LB and LC is transmitted without being diffracted, but a part of the light LB and LC is affected by the difference in refractive index in the partial region lb. Distort (or scatter).
  • the non-diffracted light LB and LC that have passed through the partial area lb as they are do not enter the pupil of the imaging optical system 101b of the camera 101, but some diffracted light (or scattered light) generated in the partial area lb.
  • Lb and Lc enter the pupil of the imaging optical system 101b.
  • an image of the dark portion 14A and an image of the outline of the phase object existing in the partial region lb are superimposed on the region la on the image sensor 101a that is conjugate with the partial region lb. . sand A dark field image of the partial area lb is formed.
  • the angle between the two bright portions 14B and 14C is sufficiently small. Therefore, the illumination angle of the partial region lb by the light LB and LC is also sufficiently small.
  • the observation image of the partial region lb is generated by the high-intensity diffracted lights Lb and Lc emitted at a small angle. As a result, the brightness of the partial area lb is sufficiently high.
  • the image acquired by the image sensor 101a is a striped image composed of a white region, a black region, and a region as described above.
  • the control device 103 includes a CPU, a memory, and other peripheral circuits, and functionally includes a signal processing unit 103a. Then, the control device 103 controls the illumination device 102 to irradiate the entire culture container with the striped light, and at the same time controls the camera 101 to capture an image of the striped light transmitted through the culture container.
  • the signal processing unit 103a performs image processing on the image obtained by the camera 101, and extracts only an image corresponding to the inside of the culture vessel from the image as a stripe image.
  • the signal processing unit 103a performs, for example, a known edge extraction process to extract an edge in the image, and detects an edge constituting a shape that matches the shape of the culture vessel from the extracted edge. To do. Then, the inside is recognized as the inside of the culture vessel, and a stripe image is extracted. Thereby, for example, a stripe image as shown in FIG. 3 is obtained. In the example of FIG. 3, a square edge is extracted as the shape of the culture vessel. However, in the case of a circular culture vessel, a circular stripe image is extracted.
  • the signal processing unit 103a calculates the occupancy rate (cell occupancy rate) of cells in the culture container based on the stripe image obtained by the camera 101 in this way. That is, as described above, when it is assumed that the medium is present so as to fill the bottom surface of the culture container, the occupancy ratio of the cells with respect to the entire medium on the bottom surface of the culture container is calculated.
  • the calculation principle of the cell occupancy rate in the first embodiment will be described.
  • the shapes of the histograms of the medium image and the cell Z medium image differ depending on the difference in the refractive index of the stripe light. Specifically, the histogram peak position 4a in the cell Z medium image is smoother than the histogram peak position 4b in the culture region. Such a difference in shape depends on the presence or absence of cells.
  • similar results can be obtained for the color components other than the force indicating the histogram of the number of pixels with respect to the luminance value for the R component for each of the culture region and the cell Z medium image.
  • the medium in each color component using the cell density in the culture container as a parameter.
  • the graph shown in Fig. 5 shows data obtained when the ratio of cells to the medium (cell density) is about 20%, 5g obtained, data obtained for about 50% 5h, and about 100%.
  • a specific example is shown when the data 5i obtained is calculated and created.
  • R component histogram variance (R component variance) 5a
  • G component variance 5b G component variance 5b
  • B component variance 5c R component histogram kurtosis
  • R component kurtosis R component kurtosis
  • 5d G component kurtosis 5e
  • the cell occupancy is larger than when the cell occupancy is small (20%).
  • Dispersion and kurtosis are reduced.
  • the histogram The kurtosis and dispersion of the mud are reduced.
  • FIG. 5 for example, a case where transparent cells are cultured using a red medium in a culture container is shown. Therefore, as the cell occupancy increases, the R component and the B component are shown. This results in a reduction in the kurtosis and variance of the histogram. However, when the cell type and the color of the medium are different, the color components that decrease the kurtosis and dispersion of the histogram may increase as the cell occupancy increases.
  • the signal processing unit 103a creates a histogram shown in FIG. 4 for the R component, and calculates the kurtosis and variance of this histogram. Then, based on the graph shown in FIG. 5 obtained by the brute force experiment, the signal processing unit 103a calculates the kurtosis of the calculated histogram and the cell occupancy rate in the dispersion.
  • the graph shown in FIG. 5 shows different tendencies depending on the cell type and the color of the culture medium. Therefore, experimental data is obtained in advance for each cell type and the assumed color of the culture medium. In this case, the cell occupancy rate can be calculated according to the conditions.
  • the signal processing unit 103a processes the image data as follows to calculate the cell occupancy with respect to the culture medium.
  • the control device 103 controls the illumination device 102 to irradiate the sample A, that is, the culture vessel with the stripe light.
  • the control device 103 controls the camera 101 to capture an image of light that passes through the culture vessel, and records the obtained image data in the recording unit 104. Thereafter, the control device 103 moves the lighting device 102.
  • the signal processing unit 103a needs to obtain the cell occupancy based on the histogram in the black region 3b on the stripe image, whereas the stripe image has the white region 3a. And gray zone 3c. For this reason, if only the black region 3b is extracted from one striped image and the cell occupancy is calculated, the cell occupancy in the white region 3a and the gray region 3c cannot be calculated. There is a possibility that an accurate calculation result cannot be obtained.
  • the control device 103 moves the illumination device 102 as follows, that is, a plurality of striped lights while moving left and right in FIG. 1 (b). Get the images. The amount of stripe light movement per time is determined as follows.
  • the black area 3b overlaps the gray area 3c in the first striped image, and at least one pixel overlaps the black area 3b in the first striped image and the black area 3b in the new image. . Then, the illumination device 102 is moved by the determined movement amount, the camera 101 is controlled to acquire a stripe image, and the obtained image data is recorded in the recording unit 104.
  • This process is repeated a predetermined number of times until the white area 3a and the gray zone 3c on the striped image obtained on the first sheet disappear. That is, the illumination device 102 is moved to acquire a plurality of image data. Based on the plurality of image data, it is possible to calculate the cell occupancy rate in the entire culture vessel. Note that how many times the illumination device 102 is moved and how many times the camera 101 performs imaging differ depending on the slit interval. Therefore, it is necessary to set the number of times of processing according to the slit interval.
  • the signal processing unit 103a reads the stripe image obtained by imaging in this way from the recording unit 104, extracts the black region 3b from each stripe image, and extracts a predetermined area in each extracted black region 3b.
  • the size calculation target area 3d (see Fig. 3) is set. As a result, it is possible to set the calculation target region 3d including only the black panther region while excluding the gray zone 3c.
  • an area having a predetermined size is set in the black area 3b as the calculation target area 3d will be described. However, the entire black area 3b may be set as the calculation target area.
  • each calculation target region 3d is statistical processing performed on each calculation target region 3d. That is, for each of the set calculation target areas 3d, a histogram of the number of pixels with respect to the luminance value is created for each color component of R, G, and B, and the variance and kurtosis of the created histogram are obtained. Then, the signal processing unit 103a applies these values to a graph representing the relationship between the variance of the histogram and the kurtosis and the cell occupancy shown in FIG. 5, which are calculated based on experimental data. Then, the cell occupancy in each calculation target region 3d is calculated. That is, by comparing the calculated kurtosis and variance of the histogram with the data showing the correlation between the kurtosis and variance of the histogram and the occupancy of the cell, the cell occupancy Calculate To do.
  • the cell occupancy with respect to the medium can be calculated for each calculation target region 3d. Then, by calculating the cell occupancy ratio in each calculation target region 3d for a plurality of stripe images, the cell occupancy ratio relative to the medium can be calculated for the entire culture container.
  • the occupancy rate of the cells in the culture vessel it is necessary to obtain a phase difference image using a microscope having a phase difference optical system and analyze the phase difference image, which is expensive.
  • an expensive device such as a phase-contrast microscope is not required, and the cell occupancy can be calculated with high accuracy using an inexpensive device.
  • control device 103 can observe the occupancy rate of the cells in the culture vessel that changes with time.
  • FIG. 6 is a flowchart showing the processing of the observation apparatus 100 in the first embodiment.
  • the process shown in FIG. 6 is executed by the control device 103 as a process to be started when a switch (not shown) is operated by the user and an instruction to start calculating the cell occupancy is given.
  • step S10 the control device 103 controls the illumination device 102 to illuminate the culture vessel with the striped light, and proceeds to step S20.
  • step S20 the control device 103 controls the camera 101 to capture an image of light through which the striped light passes through the culture vessel, and records the acquired image data in the recording unit 104. Then, it progresses to step S30.
  • step S30 the controller 103 overlaps the gray area 3c in the first stripe image with the black area 3b and the black area 3b in the first stripe image. Then, the illumination device 102 is moved so that at least one pixel overlaps the black region 3b of the newly obtained image, and the stripe light irradiated to the culture vessel is moved. Thereafter, the process proceeds to step S40, where the control device 103 has moved the illumination device 102 a predetermined number of times that has been preliminarily set, that is, the acquisition of the stripe image has been completed as many times as necessary to calculate the cell occupancy rate. Judge whether or not you have done it.
  • step S40 If it is determined in step S40 that the acquisition of the stripe image is complete, the process returns to step S20 and the process is repeated. Stripe image acquisition in step S40 If it is determined that is completed, the process proceeds to step S50.
  • step S50 the signal processing unit 103a reads the stripe image recorded in the recording unit 104, sets the calculation target region 3d in the black region 3b in each stripe image, and proceeds to step S60.
  • step S60 statistical processing is performed on each of the set calculation target areas 3d to create a histogram of the number of pixels with respect to the luminance value for each of the R, G, and B color components, and the distribution of the created histogram Find the kurtosis. Thereafter, the process proceeds to step S70, and the signal processing unit 103a uses these values as a graph representing the relationship between the histogram variance and kurtosis and the cell occupancy shown in FIG. 5 calculated in advance based on experimental data. In this case, the cell occupancy in each calculation target area 3d is calculated. By executing this process for all the calculation target areas 3d set on all the stripe images, the occupation ratio of the cells to the medium is calculated for the entire culture container. Thereafter, the process ends.
  • the occupancy rate of the cells in the culture vessel it is necessary to obtain a phase difference image using a microscope having a phase difference optical system and analyze the phase difference image, which is expensive.
  • the cell occupancy is calculated by paying attention to the relationship between the spatial frequency information of the image data of the culture vessel obtained by irradiating the stripe light and the cell occupancy.
  • the diagram shown in FIG. 1, the arrangement of the CCD color filters shown in FIG. 2, and the specific example of the stripe image shown in FIG. 3 are the same as those in the first embodiment. The explanation is omitted.
  • the control device 103 controls the illumination device 102 and the camera 101 to obtain the stripe image shown in FIG. 3, as in the first embodiment.
  • the illumination device 102 is installed so that the stripe light can be moved in the rotation direction.
  • the control device 103 moves the illumination device 102 so that the stripe light rotates 90 degrees, and acquires a stripe image as shown in FIG. That is, an image in which vertical stripes appear as shown in FIG. 3 (vertical stripe image) and an image in which stripes appear in the horizontal direction (horizontal stripe image) are acquired.
  • the signal processing unit 103a sets a calculation target region in a direction perpendicular to the stripe direction for each acquired stripe image. For example, for a vertical stripe image, as indicated by an arrow in FIG. 8, a linear area having a predetermined width, for example, a width of 3 pixels is set as the calculation target area 8a. Then, a line profile of luminance values of R, G, and B color components of each pixel is acquired in the direction indicated by the arrow for the set calculation target region 8a. As a result, for example, as shown in FIG.
  • the signal processing unit 103a performs Fourier transform on the line profile of the luminance value for each color component shown in FIG. 9 to calculate MTF for the spatial frequency, and based on the calculated MTF, the cell occupancy rate for the medium is calculated. calculate.
  • MTF the cell occupancy rate for the medium
  • Fig. 10 shows a graph 10d showing MTF for spatial frequency in a medium image obtained by imaging only the medium, and a cell obtained by imaging the medium in which the cell exists.
  • Graph 10e showing MTF for spatial frequency in the Z medium image is shown.
  • the cell Z medium image shows that the spatial frequency is an integer multiple of the fundamental frequency, for example, the fundamental frequency 10a, the frequency 10b that is twice the fundamental frequency, and the frequency 10c that is 3 times the fundamental frequency.
  • the MTF is lower than that of the media image.
  • the MTF of the cell Z medium image at the fundamental frequency 10a is 66.4% of the MTF of the medium image.
  • the MTF of the cell Z medium image at a frequency 10b that is twice the fundamental frequency is 48.1% of the MTF of the medium image.
  • the MTF of the cell Z medium image at a frequency 10c, which is three times the fundamental frequency, is 52.6% of the MTF of the medium image.
  • the correlation between the ratio of the MTF of the cell Z medium image to the MTF of the cell image at any one of these frequencies and the occupancy of the cell with respect to the medium is shown in FIG. If the data is converted based on the data, the signal processing unit 109 can calculate the occupation ratio of the cells with respect to the culture medium based on the data.
  • the vertical axis represents the ratio (%) of the MTF of the cell Z medium image to the MTF of the medium image at the fundamental frequency
  • the horizontal axis represents the occupancy ratio of the cell to the medium! /
  • the Graph 12a shows the ratio of MTF and cell occupancy in the R component
  • graph 12b shows the ratio of MTF and cell occupancy in the G component
  • graph 12c shows the ratio of MTF and cell occupancy in the B component. Show your occupancy! /
  • the signal processing unit 103a calculates the occupancy of the cells in the medium as follows. In addition, the force that explains the MTF of the fundamental frequency can be processed in the same way for the MTF that is an integral multiple of the fundamental frequency. [0054] First, the signal processing unit 103a calculates the MTF for the spatial frequency by Fourier transforming the line profile of the luminance value for each color component shown in FIG. Next, the signal processing unit 103a calculates the ratio of the calculated MTF based on the line profile with respect to the MTF of the medium image for each color component, using the MTF of the medium image that has been preliminarily calculated. Then, by applying the ratio of MTF calculated based on the line profile to the graphs 12a to 12c for each color component shown in FIG. 12, the line occupancy ratio for the medium in the target region 8a was obtained. Can be calculated.
  • cell occupancy with respect to the medium is calculated by comparing the calculated ratio of MTF with data indicating the correlation between the ratio of MTF that has been recorded in advance and the occupancy of the cell with respect to the medium. . If there is an error in the occupancy calculated by applying the graphs 12a to 12c for each color component, the occupancy calculated for each color component may be averaged to calculate the representative value, and V, The occupancy rate can be used as a representative value by calculating the color component of only one!
  • the control device 103 can observe the occupancy rate of the cells in the culture vessel that changes with time by repeatedly executing the above-described processing at predetermined time intervals.
  • FIG. 13 is a flowchart showing the processing of the observation apparatus 100 in the second embodiment.
  • the process shown in FIG. 13 is executed by the control device 103 as a process to be started when a switch (not shown) is operated by the user and an instruction to start calculating the cell occupancy is given.
  • step S110 the control device 103 controls the illumination device 102 to illuminate the culture vessel with the striped light, and proceeds to step S120.
  • step S120 the control device 103 controls the camera 101 to capture an image of light through which the striped light passes through the culture vessel, and records the acquired image data in the recording unit 104. Thereafter, the process proceeds to step S130.
  • step S130 the control device 103 moves the illumination device 102 so that the stripe light rotates 90 degrees as described above, and moves the stripe light to be irradiated to the culture vessel.
  • step S140 the control device 103 determines whether or not the necessary amount of images has been acquired, that is, whether or not the acquisition of the vertical stripe image and the horizontal stripe image has been completed. If it is determined that the necessary amount of stripe images has not been acquired, the process returns to step S120 and the process is repeated. On the other hand, if it is determined that the necessary amount of stripe images has been acquired, the process proceeds to step S150.
  • step S150 a calculation target region 8a for acquiring a line profile in the direction perpendicular to the stripe direction is set for each acquired stripe image. Thereafter, the process proceeds to step S160, and the line profile of the luminance values of the R, G, and B color components of each pixel is acquired for the set calculation target region 8a, and the process proceeds to step S170.
  • step S170 the line profile of the luminance value for each color component is Fourier transformed to calculate the MTF using the spatial frequency. Then, it progresses to step S180.
  • step S180 the ratio of MTF calculated based on the line profile with respect to the MTF of the medium image is calculated for each color component using the MTF of the medium image calculated in advance. Then, by applying the calculated MTF ratio to the graphs 12a to 12c for each color component shown in FIG. 12, the occupancy of the cells relative to the medium in the region where the line profile on the stripe image was obtained was calculated. By executing the process on the entire stripe image, the cell occupancy rate is calculated for the entire medium in the culture vessel. Thereafter, the process ends.
  • the observation apparatus of embodiment mentioned above can also be deform
  • the illumination device 102 illuminates the sample A from below, and the camera 101 captures an image of transmitted light that has passed through the sample A from above the sample A. explained.
  • the illumination device 102 illuminates the sample A from the top, and the camera 101 captures an image of the transmitted light that has passed through the sample A from the bottom of the sample A.
  • the calculation target area 8a set in the vertical direction based on the vertical stripe image and the horizontal stripe image obtained by rotating the illumination device 102 by 90 degrees.
  • the cell occupancy rate and the cell occupancy rate in the calculation target region 8a set in the horizontal direction are calculated, so that the cell occupancy rate can be grasped in two dimensions.
  • the calculation target region 3d may be set in the black region 3b in each of the vertical stripe image and the horizontal stripe image.
  • the cell occupancy can be calculated for each of the calculation target region 3d set in the vertical direction and the calculation target region 3d set in the horizontal direction.
  • the cell occupancy rate can also be calculated. Can be grasped in two dimensions.
  • the present invention is not limited to this.
  • the observation apparatus 100 according to the present invention is applied to a culture apparatus for automatically culturing cells, and the occupancy ratio of the cells to the medium is calculated in the culture apparatus to monitor the culture state. May be. Then, as a result of monitoring the culture state, the culture apparatus may notify the user of the culture state or may execute automatic passage according to the culture state.
  • the illumination device 102 is moved to move the striped light has been described. However, the culture is relatively performed by moving the culture vessel. You may move the stripe light irradiated to a container.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 培養される細胞などの試料を観察する観察装置は、試料を照明する照明装置と、照明装置により試料を照明して試料の画像を取得する撮像装置と、培養容器内の試料の占有率と試料の輝度情報の統計処理データとの相関関係を示す相関データを記憶した記憶部と、撮像装置で撮像された試料の特定色の輝度情報に基づいて、統計処理データを求め、記憶部の相関データを用いて、培養容器内における前記試料の占有率を算出する算出部とを備える。

Description

明 細 書
観察装置
技術分野
[0001] 本発明は、細胞を観察するための観察装置に関する。
背景技術
[0002] 次のような細胞培養装置が特許文献 1によって知られている。この細胞培養装置に よれば、カメラで撮影した細胞培養容器内の画像を解析して、細胞容器内の細胞面 積や細胞数を検出する。
特許文献 1 :特開 2004— 16194号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、従来の細胞培養装置にお!、ては、細胞容器内の細胞面積や細胞数 を検出するための手法が開示されていないが、一般的にこれらを検出するためには 細胞の位相差画像を撮影して位相差画像を解析する必要がある。このため、位相差 画像を取得するための位相差顕微鏡等が必要となり、装置が高価になるという問題 が生じていた。
課題を解決するための手段
[0004] 本発明による培養される細胞などの試料を観察する観察装置は、試料を照明する 照明装置と、照明装置により試料を照明して試料の画像を取得する撮像装置と、培 養容器内の試料の占有率と試料の輝度情報の統計処理データとの相関関係を示す 相関データを記憶した記憶部と、撮像装置で撮像された試料の特定色の輝度情報 に基づいて、統計処理データを求め、記憶部の相関データを用いて、培養容器内に おける試料の占有率を算出する算出部とを備える。
この観察装置は、照明装置による前記試料への照明光を移動する移動部をさらに 備え、移動部で前記照明光を移動させながら取得した 2以上の画像に基づいて、算 出部は培養容器内における試料の占有率を算出するのが好ましい。
上記の観察装置にぉ ヽては、撮像装置で取得した画像上に暗視野領域が形成さ れるように、照明装置は、明部と暗部との繰り返しからなる面光源で培養容器を照明 する。この場合においても、照明装置による前記試料への照明光を移動する移動部 をさらに備え、移動部で前記照明光を移動させながら取得した 2以上の画像に基づ いて、算出部は培養容器内における試料の占有率を算出するのが好ましい。
この観察装置では、撮像装置は RGBの色分解信号をそれぞれ出力する複数の画 素を備え、画像データを構成する 1つの画素データは、複数の RGB色分解信号に 基づいて作成されており、撮像装置で取得した画像上に形成される暗視野領域の境 界に現れる灰色領域を排除するように、移動部は照明装置を移動し、灰色領域の画 像を暗視野領域の画像として取得することができる。
本発明の観察装置の算出部は、撮像装置で取得した画像内から暗視野領域の画 像を抽出し、抽出した暗視野領域の画像における試料の特定色の輝度情報に基づ いて、培養容器内における試料の占有率を算出する。
本発明による観察装置では、算出部は、暗視野領域の画像における試料の特定色 の輝度情報に基づく統計処理データを用いて記憶部の相関データを参照して、培 養容器内における試料の占有率を算出することができる。統計処理データは、前記 特定色の輝度情報に基づいて作成したヒストグラムの分散および尖度であることが好 ましい。
本発明の他の態様における培養される細胞などの試料を観察する観察装置は、試 料を照明する照明装置と、照明装置により試料を照明して試料の画像を取得する撮 像装置と、培養容器内の試料の占有率と試料の空間周波数情報の統計処理データ との相関関係を示す相関データを記憶した記憶部と、撮像装置で撮像された試料の 空間周波数情報に基づいて、統計処理データを求め、記憶部の相関データを用い て、培養容器内における試料の占有率を算出する算出部とを備える。
この観察装置は、照明装置による試料への照明光を回転方向に移動する移動部を さらに備え、移動部で照明光を移動させて取得した 2以上の画像に基づいて、算出 部は、培養容器内における試料の占有率を算出することができる。
また、本発明の観察装置では、算出部は、撮像装置で撮像して取得した画像にお ける試料の特定色の輝度情報力 空間周波数情報を算出することができる。空間周 波数情報の統計処理データは、培養容器内に試料が占有して ヽな ヽ場合の画像の 空間周波数情報に対する、培養容器内に試料が占有している場合の画像の空間周 波数情報の割合であることが好まし 、。
発明の効果
[0005] 本発明によれば、位相差顕微鏡などの高価な装置を必要とせず、安価な構成で培 養容器内における細胞の占有率を算出することができる。
図面の簡単な説明
[0006] [図 1]観察装置の一実施の形態の構成を示した図であり、(a)は観察装置の構成を 模式的に示し、 (b)は観察装置の光学系部分の概念を示す。
[図 2]カメラ 101における CCDのカラーフィルタの配列図である。
[図 3]ストライプ画像の具体例を示す図である。
[図 4]R成分についての輝度値に対する画素数のヒストグラムの具体例を示す図であ る。
[図 5]各色成分における培地画像と細胞 Z培地画像とのヒストグラムの分散および尖 度と、細胞の密度との関係を示す図である。
[図 6]第 1の実施の形態における観察装置 100の処理を示すフローチャート図である [図 7]横ストライプ画像の具体例を示す図である。
[図 8]第 2の実施の形態における計算対象領域の設定例を示す図である。
[図 9]各色成分の輝度値のラインプロファイルの取得結果を示す図である。
[図 10]空間周波数についての MTFを示すグラフの具体例を示す図である。
[図 11]基本周波数の整数倍の MTFの比較例を示す図である。
[図 12]基本周波数における培地のみの場合の MTFに対する細胞が存在する場合 の MTFの割合と、培地に対する細胞の占有率との相関関係を示す図である。
[図 13]第 2の実施の形態における観察装置 100の処理を示すフローチャート図であ る。
発明を実施するための最良の形態
[0007] 一第 1の実施の形態一 図 1 (a)は、第 1の実施の形態における観察装置の一実施の形態の構成を模式的 に示した図である。観察装置 100は、カメラ 101、照明装置 102、制御装置 103、お よび記録部 104を備えている。この観察装置 100においては、観察対象となるサンプ ル Aに対して照明装置 102で下部から照明光を照射し、そのときにサンプル Aを透過 する光の像をカメラ 101により撮像する。なお、サンプル Aは、例えば培養容器内で 培養される細胞などの試料である。
[0008] 制御装置 103は、カメラ 101で取得した画像を処理して培養容器内における細胞 の占有率を算出する。すなわち、培養容器底面の全体を覆う培地の全面積に対する 細胞の占有率を算出する例について説明する。制御装置 103による具体的な処理 については後述する。
[0009] カメラ 101は、例えばカラー CCDカメラであり、サンプル Aの上部から培養容器内 全体が撮影可能なように設置されている。また、カメラ 101は、結像光学系を有して おり、サンプル Aから射出した光は、当該結像光学系によって捉えられ、撮像素子の 撮像面上に結像する。
[0010] このカメラ 101で撮像されて得られる画像データは、 RGB表色系で示されている。
そして、この画像データを構成する各々の画素には、 RGBの各色成分の色情報が 全て存在しているものとする。例えば、カメラ 101が備える CCDの受光面全体に図 2 に示す配列のカラーフィルタが設けられている場合には、制御装置 103は、 CCDか ら出力される画像データに対して補間処理を施し、各画素に RGBの各色成分の色 情報が全て存在するように変換する。カメラ 101は、制御装置 103からの指示に基づ V、てサンプル Aの像を撮像して得た画像データを制御装置 103へ出力し、制御装置 103は当該画像データを記録部 104に記録する。
[0011] 照明装置 102は、サンプル Aを下部力も照射するように設置されている。これによつ て、カメラ 101は照明装置 102で照明されたサンプル Aの透過光の像を撮像すること ができる。照明装置 102は、図示しない光源および、一定の間隔で縞状に光を通す 範囲と光を遮る範囲とが並んだスリット板を備え、明部と暗部との繰り返し力 なる面 光源でサンプル Aを照明する。すなわち、照明装置 102は、サンプル Aに直接光が 照射される範囲と光が遮断された範囲とからなるストライプ状の光 (ストライプ光)を照 射する。なお、スリット板を用いるものに代えて、たとえば液晶ディスプレイ等によりスト ライプ光を作り出してもよい。また、上記したスリット板上における光を通す範囲と光を 遮る範囲とが縞状に並ぶ一定の間隔を、本明細書においては、スリット間隔と呼ぶこ ととする。
[0012] このとき、照明装置 102から照射されるサンプル光における明部と暗部の間隔は、 カメラ 101によって取得される画像上で直接光が照射された範囲に相当する白い領 域と、光が遮断された範囲に相当する黒い領域 (暗視野領域)とが形成されるよう〖こ 設計されている。
[0013] 照明装置 102はまた、ストライプ光の照射方向に対して垂直方向、すなわち図 1 (a) における左右方向に移動可能に設置されており、サンプル Aに対してストライプ光の 照射位置をずらすことができる。例えば、サンプル A上で直接光が照射されている範 囲に対して、照明装置 102を移動させて直接光を遮断することができる。なお、照明 装置 102によるストライプ光の照射、および照明装置 102の移動は、制御装置 103に よって制御される。
[0014] ここで、図 1 (b)を用いて、観察装置 100の光学系の作用について説明する。なお、 図 1 (b)は、観察装置 100の光学系の概念を示した図である。まず、面光源上の暗部 14Aと、その暗部 14Aに正対するサンプル A上の部分領域 lbとに着目して説明する 。この部分領域 lbには、暗部 14Aに隣接する 2つの明部 14Bおよび 14C力もの光 L Bおよび LCが入射する力 暗部 14Aからは光が入射しない。よって部分領域 lbは、 光 LBおよび LCで斜光照明される。
[0015] その部分領域 lbでは、入射した光 LBおよび LCの一部が回折せずにそのまま透過 するが、光 LBおよび LCの一部は、部分領域 lb中の屈折率の差の影響を受けて回 折 (あるいは散乱)する。この部分領域 lbをそのまま透過した非回折光 LBおよび LC は、カメラ 101が有する結像光学系 101bへの瞳に入射しないが、部分領域 lbで発 生した一部の回折光 (あるいは散乱光) Lbおよび Lcは、結像光学系 101bの瞳へ入 射する。
[0016] このとき、部分領域 lbと共役関係にある撮像素子 101a上の領域 laには、暗部 14 Aの像と部分領域 lbに存在した位相物体の輪郭の像とが重畳して形成される。すな わち部分領域 lbの暗視野像が形成される。ここで、部分領域 lbからみると、 2つの明 部 14Bおよび 14Cの張る角度は十分に小さい。よって、光 LBおよび LCによる部分 領域 lbの照明角度も十分に小さい。このとき、部分領域 lbの観察像は、小角度で射 出した大強度の回折光 Lbおよび Lcによって生成されることになる。これにより部分領 域 lbの明るさは十分に高いものとなる。
[0017] また、以上のことは、各暗部に正対するサンプル A上の各領域についてそれぞれ 当てはまる。従って、撮像素子 101aによって取得される画像は、上述したように白い 領域と黒 、領域とからなるストライプ状の画像となる。
[0018] 制御装置 103は、 CPU、メモリ、およびその他の周辺回路で構成され、信号処理部 103aを機能的に備えている。そして、制御装置 103は、照明装置 102を制御してス トライプ光を培養容器全体に照射し、同時にカメラ 101を制御して培養容器を透過し たストライプ光の像を撮像する。信号処理部 103aは、カメラ 101で撮像して得た画像 に対して画像処理を実行して、画像内から培養容器の内部に相当する画像のみをス トライプ画像として抽出する。
[0019] 信号処理部 103aは、このために、例えば公知のエッジ抽出処理を行って画像内の エッジを抽出し、抽出したエッジの中から培養容器の形状と一致する形状を構成する エッジを検出する。そして、その内部を培養容器の内部と認識してストライプ画像を抽 出する。これによつて、例えば図 3に示すようなストライプ画像が得られる。なお、図 3 の例においては、培養容器の形状として四角形のエッジが抽出された場合を示して いるが、円形の培養容器の場合には円状のストライプ画像が抽出される。
[0020] このストライプ画像においては、スリット板を通して直接光が当たった範囲は画像上 では白い領域 3aとして撮像され、光が遮られた範囲は画像上で黒 、領域 (暗視野領 域) 3bとして撮像される。このとき、このストライプ画像の画像データにおいては、上述 したように各々の画素には RGBの各色成分の色情報が全て存在していることから、 直接光が当たる範囲と光が遮断された範囲との境界(回折光の領域)が 1画素 X 1ラ イン上に含まれると、その境界に相当する画素はグレーの領域(回折光の領域)とし て撮影されることになる。これによつてストライプ画像上では、白い領域 3aと黒い領域 3bとの境界にグレーの領域(グレーゾーン) 3cが現れる。 [0021] 信号処理部 103aは、このようにカメラ 101で得られたストライプ画像に基づいて、培 養容器内における細胞の占有率 (細胞占有率)を算出する。すなわち、上述したよう に培養容器底面を満たすように培地が存在して ヽると想定した場合には、培養容器 底面の培地全体に対する細胞の占有率を算出する。以下、第 1の実施の形態にお ける細胞占有率の算出原理にっ 、て説明する。
[0022] 細胞が存在しな!ヽ培地のみを撮像して取得した画像 (培地画像)と、細胞が存在す る培地を撮像して取得した画像 (細胞 Z培地画像)とにっ ヽて、それぞれ黒 、領域 3 bにおける R、 G、 B各色成分の輝度値を取得し、たとえば R色成分について輝度値 に対する画素数のヒストグラムを作成すると図 4に示すようになる。
[0023] この図 4に示すように、培地画像と細胞 Z培地画像のヒストグラムの形状は、ストライ プ光の屈折率の違いによって異なる。具体的には、細胞 Z培地画像におけるヒストグ ラムのピーク位置 4aは、培養領域のヒストグラムのピーク位置 4bよりもヒストグラムの形 状が滑らかになる。このような形状の相違は細胞の有無に依存する。なお、図 4では 、培養領域と細胞 Z培地画像とのそれぞれについて、 R成分についての輝度値に対 する画素数のヒストグラムを示している力 他の色成分についても同様の結果が得ら れる。
[0024] 本実施の形態では、このような培地画像におけるヒストグラムの形状と細胞 Z培地 画像におけるヒストグラムの形状の違いに着目して、培養容器内における細胞の密 度をパラメータとして、各色成分における培地画像と細胞 Z培地画像とのヒストグラム の分散および尖度を求めると、図 5に示すようなグラフが得られる。この図 5に示すグ ラフは、培地に対する細胞の割合 (細胞密度)を約 20%にしたときに得られるデータ 5g、約 50%にしたときに得られるデータ 5h、および約 100%にしたときに得られるデ ータ 5iを算出して作成した場合の具体例を示している。
[0025] 図 5に示すように、 R成分のヒストグラムの分散 (R成分の分散) 5a、 G成分の分散 5b 、 B成分の分散 5c、 R成分のヒストグラムの尖度 (R成分の尖度) 5d、 G成分の尖度 5e 、および B成分の尖度 5fの全てにおいて、細胞の占有率が小さいとき(20%)よりも 細胞の占有率が大き 、とき(100%)の方がヒストグラムの分散および尖度が小さくな る。特に、 R成分と B成分においては、細胞の占有率が大きくなるにつれて、ヒストグラ ムの尖度および分散は減少して 、る。
[0026] なお、図 5に示す例では、例えば培養容器内で赤色の培地を用いて透明な細胞を 培養した場合を示しており、このため細胞の占有率が大きくなるにつれて R成分と B 成分のヒストグラムの尖度および分散が減少するような結果が得られて 、る。しかし、 細胞の種類や培地の色が異なる場合には、細胞の占有率が大きくなるにつれてヒス トグラムの尖度および分散が減少する色成分が異なる場合がある。
[0027] 本実施の形態では、細胞の占有率が大きくなるにつれてヒストグラムの尖度および 分散が減少する色成分に着目し、この色成分のヒストグラムの尖度および分散力 培 地に対する細胞の占有率を算出する。すなわち、信号処理部 103aは、例えば培地 の色が赤色である場合には、 R成分について図 4に示すヒストグラムを作成し、このヒ ストグラムの尖度および分散を算出する。そして、あら力じめ実験によって得た図 5に 示すグラフに基づいて、信号処理部 103aは、算出したヒストグラムの尖度および分 散における細胞の占有率を算出する。
[0028] なお、上述したように、図 5に示すグラフは、細胞の種類や培地の色に応じて異なる 傾向を示すので、細胞の種類や想定される培地の色ごとにあらかじめ実験データを 得ておけば、条件に応じた細胞の占有率算出が可能となる。
[0029] 信号処理部 103aは、具体的には次のように画像データを処理して培地に対する 細胞の占有率を算出する。まず、制御装置 103は、上述したように、照明装置 102を 制御してサンプル A、すなわち培養容器に対してストライプ光を照射する。そして、制 御装置 103は、培養容器を透過する光の像をカメラ 101を制御して撮像し、得られた 画像データを記録部 104に記録する。制御装置 103は、その後、照明装置 102を移 動させる。
[0030] すなわち、上述したように、信号処理部 103aは、ストライプ画像上で黒い領域 3bに おけるヒストグラムに基づいて細胞の占有率を求める必要があるのに対して、ストライ プ画像は白い領域 3aとグレーゾーン 3cとを含んでいる。このため、 1枚のストライプ画 像から黒い領域 3bのみを抽出して細胞の占有率を算出した場合には、白い領域 3a とグレーの領域 3cにおける細胞の占有率を算出することができず、正確な算出結果 を得られな 、可能性がある。 [0031] 培養容器内全体から細胞の占有率を算出するために、制御装置 103は、次のよう に照明装置 102を、すなわちストライプ光を、図 1 (b)において左右に移動しながら複 数枚の画像を取得する。 1回当たりのストライプ光の移動量は、次のようにして決定す る。 1枚目に得たストライプ画像におけるグレー領域 3cに黒い領域 3bが重なり、かつ 1枚目に得たストライプ画像における黒い領域 3bと新たに得る画像の黒い領域 3bと が少なくとも 1画素重なるようにする。そして、このように決定した移動量だけ照明装置 102を移動し、カメラ 101を制御してストライプ画像を取得し、得られた画像データを 記録部 104に記録する。
[0032] この処理を、 1枚目に得たストライプ画像上の白い領域 3aおよびグレーゾーン 3cが なくなるまで所定回数繰り返す。すなわち、照明装置 102を移動させて複数の画像 データを取得する。この複数の画像データに基づいて、培養容器全体における細胞 占有率を算出することが可能となる。なお、照明装置 102の移動およびカメラ 101に よる撮像を何回行うかは、スリット間隔によって異なるため、あら力じめスリット間隔に 応じた処理回数を設定しておく必要がある。
[0033] 信号処理部 103aは、このように撮像して得たストライプ画像を記録部 104から読み 込んで、各ストライプ画像内から黒い領域 3bを抽出し、抽出した各黒い領域 3b内に 所定の大きさの計算対象領域 3d (図 3参照)を設定する。これによつてグレーゾーン 3 cを排除して黒 ヽ領域のみからなる計算対象領域 3dを設定することができる。なお、 ここでは計算対象領域 3dとして黒い領域 3b内に所定の大きさの領域を設定する例 につ 、て説明するが、黒 、領域 3b全体を計算対象領域として設定してもよ 、。
[0034] そして、各計算対象領域 3dに対して統計処理を施す。すなわち、設定した計算対 象領域 3dのそれぞれに対して、 R、 G、 Bの各色成分について輝度値に対する画素 数のヒストグラムを作成し、作成したヒストグラムの分散および尖度を求める。そして、 信号処理部 103aは、これらの値を、実験データに基づいてあら力じめ算出された図 5に示すヒストグラムの分散および尖度と細胞の占有率との関係を表すグラフに当て はめて、各計算対象領域 3dにおける細胞の占有率を算出する。すなわち、算出した ヒストグラムの尖度および分散と、あら力じめ記録してぉ 、たヒストグラムの尖度および 分散と細胞の占有率との相関関係を示すデータとを比較して、細胞の占有率を算出 する。
[0035] 以上の処理によって、各計算対象領域 3dごとに、培地に対する細胞の占有率を算 出することができる。そして、複数のストライプ画像について各計算対象領域 3dにお ける細胞の占有率を算出することによって、培養容器内全体について培地に対する 細胞の占有率を算出することができる。これによつて、従来、培養容器内の細胞の占 有率を算出するためには、位相差光学系を有する顕微鏡を用いて位相差画像を得 て位相差画像を解析する必要があり、高価な装置を準備する必要があつたが、本発 明によれば、位相差顕微鏡などの高価な装置を必要とせず、安価な装置で細胞の 占有率を精度高く算出することができる。
[0036] 制御装置 103は、上述した処理を所定時間間隔で繰り返し実行することによって、 時間とともに変化する培養容器内の細胞の占有率を観測することができる。
[0037] 図 6は、第 1の実施の形態における観察装置 100の処理を示すフローチャートであ る。図 6に示す処理は、使用者によって不図示のスィッチが操作され、細胞占有率の 算出の開始が指示された場合に起動する処理として、制御装置 103によって実行さ れる。
[0038] ステップ S10において、制御装置 103は、照明装置 102を制御して培養容器にスト ライプ光を照明して、ステップ S20へ進む。ステップ S20では、制御装置 103は、カメ ラ 101を制御してストライプ光が培養容器を透過する光の像を撮像し、取得した画像 データを記録部 104へ記録する。その後、ステップ S 30へ進む。
[0039] ステップ S30では、制御装置 103は、上述したように、 1枚目に得たストライプ画像 におけるグレー領域 3cに黒い領域 3bが重なり、かつ 1枚目に得たストライプ画像に おける黒い領域 3bと新たに得る画像の黒い領域 3bとが少なくとも 1画素重なるように 照明装置 102を移動させ、培養容器に照射するストライプ光を移動させる。その後、 ステップ S40へ進み、制御装置 103は、あら力じめ設定した所定回数だけ照明装置 102を移動したか、すなわち細胞の占有率を算出するために必要な回数だけストライ プ画像の取得が完了したカゝ否かを判断する。
[0040] ステップ S40にお 、てストライプ画像の取得が完了して 、な 、と判断した場合には 、ステップ S20へ戻って処理を繰り返す。ステップ S40においてストライプ画像の取得 が完了したと判断した場合には、ステップ S50へ進む。ステップ S50では、信号処理 部 103aは、記録部 104に記録されたストライプ画像を読み込んで、各ストライプ画像 内の黒い領域 3b内に計算対象領域 3dを設定してステップ S60へ進む。
[0041] ステップ S60では、設定した計算対象領域 3dのそれぞれに対して統計処理を施し て、 R、 G、 Bの各色成分について輝度値に対する画素数のヒストグラムを作成し、作 成したヒストグラムの分散および尖度を求める。その後、ステップ S70へ進み、信号処 理部 103aは、これらの値を、実験データに基づいてあらかじめ算出された図 5に示 すヒストグラムの分散および尖度と細胞の占有率との関係を表すグラフに当てはめて 、各計算対象領域 3dにおける細胞の占有率を算出する。この処理を全てのストライ プ画像上に設定した全て計算対象領域 3dに対して実行することによって、培養容器 全体について培地に対する細胞の占有率を算出する。その後、処理を終了する。
[0042] 以上説明した第 1の実施の形態によれば、以下のような作用効果を得ることができ る。
(1)培養容器にストライプ光を照射し、そのときにカメラで撮像して得られるストライプ 画像の黒い領域 3b内に設定した計算対象領域 3dに対して輝度値のヒストグラムを作 成し、ヒストグラムの分散および尖度に基づいて、計算対象領域 3d内の細胞の占有 率を算出するようにした。これによつて、従来、培養容器内の細胞の占有率を算出す るためには、位相差光学系を有する顕微鏡を用いて位相差画像を得て位相差画像 を解析する必要があり、高価な装置を準備する必要があつたが、本発明によれば、位 相差顕微鏡などの高価な装置を必要とせず、安価な装置で細胞の占有率を精度高 く算出することができる。
[0043] (2)ストライプ画像の中力も黒い領域 3bのみを抽出し、その中に設定した計算対象 領域 3dについて輝度値のヒストグラムを作成するようにした。これによつて、計算対象 領域 3dにおけるヒストグラムの尖度および分散と、細胞の占有率との間には図 5に示 すような関係があることを加味して、精度高く細胞の占有率を算出することができる。 また、信号処理部 103aの処理範囲を計算対象領域 3dに限定することで、処理の負 荷を低減することができる。
[0044] (3)直接光が当たる範囲と光が遮断された範囲との境界が画像データを構成する 1 画素(図 2のカラー CCDの 4つの画素に対応する)内に含まれる場合には、その境界 に相当する画素がグレーゾーン 3cとして撮影され、上述した問題が発生する。上記 実施の形態の観察装置によれば、照明装置 102を移動させながら複数のストライプ 画像を得るようにしたので、このグレーゾーン 3cが排除されて精度高く細胞の占有率 を算出することができる。
[0045] 一第 2の実施の形態一
上述した第 1の実施の形態では、黒い領域における各色成分の輝度値のヒストグラ ムの尖度および分散と細胞の占有率との間には図 5に示すような関係があることに着 目して細胞の占有率を算出する例について説明した。これに対して第 2の実施の形 態では、ストライプ光を照射して得た培養容器の画像データの空間周波数情報と細 胞の占有率との関係に着目して、細胞の占有率を算出する例について説明する。な お、図 1に示した図、図 2に示した CCDのカラーフィルタの配列図、および図 3に示し たストライプ画像の具体例を示す図については、第 1の実施の形態と同様のため説 明を省略する。
[0046] 第 2の実施の形態では、制御装置 103は、第 1の実施の形態と同様に、照明装置 1 02およびカメラ 101を制御して図 3に示したストライプ画像を得る。なお、第 2の実施 の形態においては、照明装置 102は、ストライプ光を回転方向に移動できるように設 置されている。制御装置 103は、 1枚目のストライプ画像を取得した後、照明装置 10 2をストライプ光が 90度回転するように移動させて図 7に示すようなストライプ画像を 取得する。すなわち、図 3に示す縦方向のストライプが現れた画像 (縦ストライプ画像 )とストライプが横方向のストライプが現れた画像 (横ストライプ画像)とを取得する。
[0047] 信号処理部 103aは、取得した各ストライプ画像に対してストライプの方向と垂直方 向に計算対象領域を設定する。例えば、縦ストライプ画像に対しては図 8に矢印で示 すように、所定の幅、例えば 3画素の幅を有するライン状の領域を計算対象領域 8aと して設定する。そして、設定した計算対象領域 8aを対象として矢印の示す方向に、 各画素の R、 G、 B各色成分の輝度値のラインプロファイルを取得する。これによつて 、例えば図 9に示すように、横軸に画素位置をとり、縦軸に輝度値をとつた場合の R成 分の輝度値のラインプロファイル 9a、 G成分の輝度値のラインプロファイル 9b、およ び B成分の輝度値のラインプロファイル 9cを示すグラフを得ることができる。
[0048] 信号処理部 103aは、図 9に示す各色成分ごとの輝度値のラインプロファイルをフー リエ変換して空間周波数について MTFを算出し、算出した MTFに基づいて培地に 対する細胞の占有率を算出する。以下、第 2の実施の形態における細胞占有率の算 出原理について説明する。
[0049] 図 10は、細胞が存在しな!、培地のみを撮像して取得した培地画像における、空間 周波数についての MTFを示すグラフ 10dと、細胞が存在する培地を撮像して取得し た細胞 Z培地画像における、空間周波数についての MTFを示すグラフ 10eとを示し ている。この図 10に示すように、空間周波数が基本周波数の整数倍となる点、例え ば基本周波数 10a、基本周波数の 2倍の周波数 10b、および 3倍の周波数 10cにお Vヽて細胞 Z培地画像の MTFは培地画像の MTFよりも減少して 、る。
[0050] 具体的には、図 11に示すように、基本周波数 10aにおける細胞 Z培地画像の MT Fは、培地画像の MTFに対して 66. 4%となっている。また、基本周波数の 2倍の周 波数 10bにおける細胞 Z培地画像の MTFは、培地画像の MTFに対して 48. 1%と なっている。また、基本周波数の 3倍の周波数 10cにおける細胞 Z培地画像の MTF は、培地画像の MTFに対して 52. 6%となっている。
[0051] 従って、これらのいずれかの周波数における培地画像の MTFに対する細胞 Z培 地画像の MTFの割合と、培地に対する細胞の占有率との相関関係を図 12に示すよ うにあら力じめ実験に基づいてデータ化しておけば、信号処理部 109はそのデータ に基づいて培地に対する細胞の占有率を算出することができる。
[0052] 図 12に示す例は、縦軸が基本周波数における培地画像の MTFに対する細胞 Z 培地画像の MTFの割合(%)を表し、横軸が培地に対する細胞の占有率を表して!/、 る。そして、グラフ 12aは R成分における MTFの割合と細胞の占有率を示し、グラフ 1 2bは G成分における MTFの割合と細胞の占有率を示し、グラフ 12cは B成分におけ る MTFの割合と細胞の占有率を示して!/、る。
[0053] 信号処理部 103aは、この図 12に示すデータに基づいて、次のようにして培地に対 する細胞の占有率を算出する。なお、ここでは基本周波数の MTFについて説明す る力 その他、基本周波数の整数倍の MTFについても同様に処理できる。 [0054] まず、信号処理部 103aは、図 9に示した各色成分ごとの輝度値のラインプロフアイ ルをフーリエ変換して空間周波数について MTFを算出する。次に、信号処理部 103 aは、あら力じめ算出してある培地画像の MTFを用いて、各色成分ごとに培地画像 の MTFに対するラインプロファイルに基づいて算出した MTFの割合を算出する。そ して、ラインプロファイルに基づいて算出した MTFの割合を図 12に示した各色成分 ごとのグラフ 12a〜 12cに当てはめることによって、ラインプロファイルを取得した計算 対象領域 8a内の培地に対する細胞の占有率を算出することができる。
[0055] すなわち、算出した MTFの割合と、あらかじめ記録してぉ 、た MTFの割合と培地 に対する細胞の占有率との相関関係を示すデータとを比較して培地に対する細胞の 占有率を算出する。なお、色成分ごとにグラフ 12a〜12cに当てはめて算出した占有 率に誤差がある場合には、色成分ごとに算出した占有率を平均して代表値を算出し てもよ 、し、 V、ずれか 1の色成分にっ 、て算出して占有率を代表値としてもよ!、。
[0056] 以上説明した処理をストライプ画像全体に対して実行することによって、培養容器 内の培地全体に対して細胞の占有率を算出することができる。さらに、縦ストライプ画 像と横ストライプ画像のそれぞれに対して処理を実行し、ストライプ画像の縦方向のラ インプロファイルに基づく細胞の占有率と、横方向のラインプロファイルに基づく細胞 の占有率とを算出するため、両方向の細胞の占有率を加味すれば細胞の占有率を 2次元で把握することができる。
[0057] 制御装置 103は、上述した処理を所定時間間隔で繰り返し実行することによって、 時間とともに変化する培養容器内の細胞の占有率を観測することができる。
[0058] 図 13は、第 2の実施の形態における観察装置 100の処理を示すフローチャートで ある。図 13に示す処理は、使用者によって不図示のスィッチが操作され、細胞占有 率の算出の開始が指示された場合に起動する処理として、制御装置 103によって実 行される。
[0059] ステップ S110において、制御装置 103は、照明装置 102を制御して培養容器にス トライプ光を照明して、ステップ S120へ進む。ステップ S120では、制御装置 103は、 カメラ 101を制御してストライプ光が培養容器を透過する光の像を撮像し、取得した 画像データを記録部 104へ記録する。その後、ステップ S 130へ進む。 [0060] ステップ S130では、制御装置 103は、上述したようにストライプ光が 90度回転する ように照明装置 102を移動させ、培養容器に照射するストライプ光を移動させる。そ の後、ステップ S 140へ進み、制御装置 103は、必要量の画像を取得した力、すなわ ち縦ストライプ画像と横ストライプ画像の取得が完了したカゝ否かを判断する。必要量 のストライプ画像の取得が完了していないと判断した場合には、ステップ S120へ戻 つて処理を繰り返す。これに対して必要量のストライプ画像の取得が完了したと判断 した場合には、ステップ S 150へ進む。
[0061] ステップ S150では、取得した各ストライプ画像に対してストライプの方向と垂直方向 にラインプロファイルを取得するための計算対象領域 8aを設定する。その後、ステツ プ S160へ進み、設定した計算対象領域 8aを対象として各画素の R、 G、 B各色成分 の輝度値のラインプロファイルを取得してステップ S 170へ進む。ステップ S 170では 、各色成分ごとの輝度値のラインプロファイルをフーリエ変換して空間周波数にっ ヽ て MTFを算出する。その後、ステップ S 180へ進む。
[0062] ステップ S180では、あらかじめ算出してある培地画像の MTFを用いて、各色成分 ごとに培地画像の MTFに対するラインプロファイルに基づいて算出した MTFの割合 を算出する。そして、算出した MTFの割合を図 12に示した各色成分ごとのグラフ 12 a〜 12cに当てはめることによって、ストライプ画像上のラインプロファイルを取得した 領域内の培地に対する細胞の占有率を算出し、この処理をストライプ画像全体に対 して実行することによって、培養容器内の培地全体に対して細胞の占有率を算出す る。その後、処理を終了する。
[0063] 以上説明した第 2の実施の形態によれば、第 1の実施の形態における作用効果に カロえて、以下のような作用効果を得ることができる。
(1)色成分ごとの輝度値のラインプロファイルをフーリエ変換して空間周波数につい て MTFを算出し、算出結果を各色成分ごとのグラフ 12a〜 12cに当てはめることによ つて、ストライプ画像上のラインプロファイルを取得した領域内の培地に対する細胞の 占有率を算出するようにした。これによつて、細胞 Z培地画像の MTFは、空間周波 数が基本周波数の整数倍となる点にお ヽて培地画像の MTFよりも減少し、その減少 する割合と培地に対する細胞の占有率との相には相関関係があることを加味して、 精度高く培地に対する細胞の占有率を算出することができる。
[0064] (2)縦ストライプ画像と横ストライプ画像のそれぞれに対して処理を実行し、ストライプ 画像の縦方向のラインプロファイルに基づく細胞の占有率と、横方向のラインプロフ アイルに基づく細胞の占有率とを算出するようにした。これによつて、両方向の細胞の 占有率に基づ 、て細胞の占有率を 2次元で把握することができる。
[0065] 一変形例一
なお、上述した実施の形態の観察装置は、以下のように変形することもできる。 (1)上述した第 1および第 2の実施の形態では、照明装置 102はサンプル Aを下部 から照明し、カメラ 101はサンプル Aを透過した透過光の像をサンプル Aの上部から 撮像する例について説明した。し力しながら、照明装置 102はサンプル Aを上部から 照明し、カメラ 101はサンプル Aを透過した透過光の像をサンプル Aの下部から撮像 するようにしてちょい。
[0066] (2)上述した第 2の実施の形態では、照明装置 102を 90度回転して得た縦ストライプ 画像と横ストライプ画像とに基づ ヽて、縦方向に設定した計算対象領域 8a内の細胞 の占有率と、横方向に設定した計算対象領域 8a内の細胞の占有率とを算出して、細 胞の占有率を 2次元で把握できるようにした。これは第 1の実施の形態にも適用可能 であり、縦ストライプ画像と横ストライプ画像とのそれぞれにおいて、黒い領域 3b内に 計算対象領域 3dを設定してもよい。これによつて、縦方向に設定した計算対象領域 3d、および横方向に設定した計算対象領域 3dのそれぞれについて細胞の占有率を 算出することができ、第 1の実施の形態でも細胞の占有率を 2次元で把握することが できる。
[0067] (3)上述した第 1および第 2の実施の形態では、観察装置 100によって培養容器内 の培地に対する細胞の占有率を算出する例について説明した。しかしこれに限定さ れず、本発明における観察装置 100を細胞を自動培養するための培養装置に適用 し、培養装置において培地に対する細胞の占有率を算出して、培養状況の監視を行 うようにしてもよい。そして、培養装置は、培養状況の監視を行った結果、その培養状 況を使用者に通知してもよぐあるいは培養状況に応じて自動継代を実行するように してちよい。 [0068] (4)上述した第 1および第 2の実施の形態では、ストライプ光を移動させるために照明 装置 102を移動させる例について説明したが、培養容器を移動させることによって相 対的に培養容器に照射されるストライプ光を移動させてもよい。
[0069] なお、本発明の特徴的な機能を損なわない限り、本発明は、上述した実施の形態 における構成に何ら限定されない。
[0070] 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願 2006年第 141677号(2006年 5月 22日出願)

Claims

請求の範囲
[1] 培養される細胞などの試料を観察する観察装置にぉ 、て、
前記試料を照明する照明装置と、
前記照明装置により前記試料を照明して前記試料の画像を取得する撮像装置と、 培養容器内の試料の占有率と前記試料の輝度情報の統計処理データとの相関関 係を示す相関データを記憶した記憶部と、
前記撮像装置で撮像された前記試料の特定色の輝度情報に基づ!/ヽて、前記統計 処理データを求め、前記記憶部の相関データを用いて、前記培養容器内における 前記試料の占有率を算出する算出部とを備える観察装置。
[2] 請求項 1に記載の観察装置にお!、て、
前記照明装置による前記試料への照明光を移動する移動部をさらに備え、 前記移動部で前記照明光を移動させながら取得した 2以上の画像に基づいて、前 記算出部は、前記培養容器内における前記試料の占有率を算出する観察装置。
[3] 請求項 1に記載の観察装置にお!、て、
前記撮像装置で取得した画像上に暗視野領域が形成されるように、前記照明装置 は、明部と暗部との繰り返しからなる面光源で前記培養容器を照明する観察装置。
[4] 請求項 3に記載の観察装置において、
前記移動部で前記照明光を移動させながら取得した 2以上の画像に基づいて、前 記算出部は、前記培養容器内における前記試料の占有率を算出する観察装置。
[5] 請求項 4に記載の観察装置において、
前記撮像装置は、 RGBの色分解信号をそれぞれ出力する複数の色情報を有する 複数の画素を備え、
画像データを構成する 1つの画素データは、前記複数の RGB色分解信号に基づ いて作成されており、
前記撮像装置で取得した画像上に形成される暗視野領域の境界に現れる灰色領 域を排除するように、前記移動部は前記照明装置を移動し、前記灰色領域の画像を 前記暗視野領域の画像として取得する観察装置。
[6] 請求項 3乃至 5の 、ずれか一項に記載の観察装置にぉ 、て、 前記算出部は、前記撮像装置で取得した画像内から前記暗視野領域の画像を抽 出し、抽出した暗視野領域の画像における前記試料の特定色の輝度情報に基づ ヽ て、前記培養容器内における前記試料の占有率を算出する観察装置。
[7] 請求項 6に記載の観察装置において、
前記算出部は、前記暗視野領域の画像における前記試料の特定色の輝度情報に 基づく前記統計処理データを用いて前記記憶部の前記相関データを参照して、前 記培養容器内における前記試料の占有率を算出する観察装置。
[8] 請求項 1乃至 7のいずれか一項に記載の観察装置において、
前記統計処理データは、前記特定色の輝度情報に基づ 、て作成したヒストグラム の分散および尖度である観察装置。
[9] 培養される細胞などの試料を観察する観察装置にぉ 、て、
前記試料を照明する照明装置と、
前記照明装置により前記試料を照明して前記試料の画像を取得する撮像装置と、 培養容器内の試料の占有率と前記試料の空間周波数情報の統計処理データとの 相関関係を示す相関データを記憶した記憶部と、
前記撮像装置で撮像された前記試料の空間周波数情報に基づ!、て、前記統計処 理データを求め、前記記憶部の相関データを用いて、前記培養容器内における前 記試料の占有率を算出する算出部とを備える観察装置。
[10] 請求項 9に記載の観察装置において、
前記照明装置による前記試料への照明光を回転方向に移動する移動部をさらに 備え、
前記移動部で前記照明光を移動させて取得した 2以上の画像に基づいて、前記算 出部は、前記培養容器内における前記試料の占有率を算出する観察装置。
[11] 請求項 9に記載の観察装置において、
前記算出部は、前記撮像装置で撮像して取得した画像における前記試料の特定 色の輝度情報から前記空間周波数情報を算出する観察装置。
[12] 請求項 9乃至 11のいずれか一項に記載の観察装置において、
前記空間周波数情報の統計処理データは、前記培養容器内に試料が占有してい な ヽ場合の画像の空間周波数情報に対する、前記培養容器内に試料が占有して ヽ る場合の画像の空間周波数情報の割合である観察装置。
PCT/JP2007/060465 2006-05-22 2007-05-22 観察装置 WO2007136074A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07743899.2A EP2022844B1 (en) 2006-05-22 2007-05-22 Observing device
US12/292,623 US8447092B2 (en) 2006-05-22 2008-11-21 Observation device for observing cells or the like

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006141677A JP5239128B2 (ja) 2006-05-22 2006-05-22 観察装置
JP2006-141677 2006-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/292,623 Continuation US8447092B2 (en) 2006-05-22 2008-11-21 Observation device for observing cells or the like

Publications (1)

Publication Number Publication Date
WO2007136074A1 true WO2007136074A1 (ja) 2007-11-29

Family

ID=38723388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060465 WO2007136074A1 (ja) 2006-05-22 2007-05-22 観察装置

Country Status (4)

Country Link
US (1) US8447092B2 (ja)
EP (1) EP2022844B1 (ja)
JP (1) JP5239128B2 (ja)
WO (1) WO2007136074A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030674A1 (ja) * 2012-08-23 2014-02-27 大日本印刷株式会社 培地情報登録システム、コロニー検出装置、プログラム及び衛生管理システム
WO2015025509A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 観察画像判定装置および方法並びにプログラム
JPWO2014171381A1 (ja) * 2013-04-17 2017-02-23 大日本印刷株式会社 コロニー検出装置、培地情報登録システム、プログラム及び衛生管理システム
WO2021019830A1 (ja) * 2019-07-29 2021-02-04 株式会社日立ハイテク 粒子定量装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937630B2 (ja) * 2006-04-12 2012-05-23 川崎重工業株式会社 細胞剥離判断方法、培養細胞の剥離方法、細胞剥離判断装置及び自動細胞培養装置
JP5239128B2 (ja) * 2006-05-22 2013-07-17 株式会社ニコン 観察装置
WO2015042536A1 (en) 2013-09-20 2015-03-26 Namesforlife Llc Systems and methods for establishing semantic equivalence between concepts
JP6465280B2 (ja) * 2014-10-31 2019-02-06 澁谷工業株式会社 細胞剥離認識装置および細胞剥離認識方法
JP6534294B2 (ja) * 2015-04-30 2019-06-26 富士フイルム株式会社 撮像装置および方法並びに撮像制御プログラム
US10563164B1 (en) 2015-10-08 2020-02-18 Charm Sciences, Inc. Plate reader
US10495563B1 (en) 2016-04-28 2019-12-03 Charm Sciences, Inc. Plate reader observation methods and operation
WO2018061131A1 (ja) * 2016-09-28 2018-04-05 オリンパス株式会社 細胞状態計測装置
WO2019138572A1 (ja) 2018-01-15 2019-07-18 オリンパス株式会社 細胞解析装置及び細胞解析システム
KR102659471B1 (ko) 2019-07-19 2024-04-23 주식회사 히타치하이테크 입자 정량 장치
WO2023169675A1 (en) * 2022-03-09 2023-09-14 Ash Technologies Ltd. A method and apparatus for illuminating colony-forming units

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250607A (ja) * 1985-08-30 1987-03-05 Hitachi Ltd 画像計測装置
JPH06508021A (ja) * 1991-03-21 1994-09-14 ユニバーシティ カレッジ ロンドン 微生物生体における生物現存量と分化の測定に際しての改善またはその関連事項
JPH06303965A (ja) * 1993-04-22 1994-11-01 Hitachi Ltd 微生物認識装置
JP2001340072A (ja) * 2000-03-29 2001-12-11 Matsushita Seiko Co Ltd 微生物計量装置
JP2003135095A (ja) * 2001-08-23 2003-05-13 Morinaga Milk Ind Co Ltd 微生物検査方法及び微生物検査装置
JP2004016194A (ja) 2002-06-20 2004-01-22 Hitachi Medical Corp 細胞培養装置
JP2006141677A (ja) 2004-11-19 2006-06-08 Pentax Corp 電子内視鏡装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197088A (en) * 1977-09-23 1980-04-08 Akro-Medic Engineering, Inc. Method for qualitative and quantitative determination of immunological reactions
US4400353A (en) * 1977-09-23 1983-08-23 Akro-Medic Engineering, Inc. Electro-optical system for use in evaluating immunological reactions
US4806776A (en) * 1980-03-10 1989-02-21 Kley Victor B Electrical illumination and detecting apparatus
JPH0628453A (ja) * 1992-07-07 1994-02-04 Hitachi Ltd 微生物認識装置及び該装置による監視方法
JP3777661B2 (ja) * 1996-07-10 2006-05-24 株式会社明電舎 ろ過障害微生物監視装置
US6381353B1 (en) * 1996-08-30 2002-04-30 Marvin Weiss System for counting colonies of micro-organisms in petri dishes and other culture media
JP4286625B2 (ja) * 2003-09-29 2009-07-01 株式会社日立ハイテクノロジーズ 電子顕微鏡による試料観察方法
DE102004023262B8 (de) * 2004-05-11 2013-01-17 Carl Zeiss Microimaging Gmbh Verfahren zur Bearbeitung einer Masse mittels Laserbestrahlung und Steuersystem
DE102004053730B4 (de) * 2004-11-06 2014-04-03 Carl Zeiss Jena Gmbh Verfahren und Anordnung zur Unterdrückung von Falschlicht
JP4778755B2 (ja) * 2005-09-09 2011-09-21 株式会社日立ハイテクノロジーズ 欠陥検査方法及びこれを用いた装置
JP5239128B2 (ja) * 2006-05-22 2013-07-17 株式会社ニコン 観察装置
US8428331B2 (en) * 2006-08-07 2013-04-23 Northeastern University Phase subtraction cell counting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250607A (ja) * 1985-08-30 1987-03-05 Hitachi Ltd 画像計測装置
JPH06508021A (ja) * 1991-03-21 1994-09-14 ユニバーシティ カレッジ ロンドン 微生物生体における生物現存量と分化の測定に際しての改善またはその関連事項
JPH06303965A (ja) * 1993-04-22 1994-11-01 Hitachi Ltd 微生物認識装置
JP2001340072A (ja) * 2000-03-29 2001-12-11 Matsushita Seiko Co Ltd 微生物計量装置
JP2003135095A (ja) * 2001-08-23 2003-05-13 Morinaga Milk Ind Co Ltd 微生物検査方法及び微生物検査装置
JP2004016194A (ja) 2002-06-20 2004-01-22 Hitachi Medical Corp 細胞培養装置
JP2006141677A (ja) 2004-11-19 2006-06-08 Pentax Corp 電子内視鏡装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030674A1 (ja) * 2012-08-23 2014-02-27 大日本印刷株式会社 培地情報登録システム、コロニー検出装置、プログラム及び衛生管理システム
JP5522333B1 (ja) * 2012-08-23 2014-06-18 大日本印刷株式会社 培地情報登録システム、コロニー検出装置、プログラム及び衛生管理システム
US9378545B2 (en) 2012-08-23 2016-06-28 Dai Nippon Printing Co., Ltd. Culture medium information registration system, colony detection device, program and sanitary management system
JPWO2014171381A1 (ja) * 2013-04-17 2017-02-23 大日本印刷株式会社 コロニー検出装置、培地情報登録システム、プログラム及び衛生管理システム
WO2015025509A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 観察画像判定装置および方法並びにプログラム
JP2015039344A (ja) * 2013-08-22 2015-03-02 富士フイルム株式会社 観察画像判定装置および方法並びにプログラム
US10139335B2 (en) 2013-08-22 2018-11-27 Fujifilm Corporation Observation image determination device, method, and program
WO2021019830A1 (ja) * 2019-07-29 2021-02-04 株式会社日立ハイテク 粒子定量装置

Also Published As

Publication number Publication date
EP2022844A4 (en) 2011-10-19
US8447092B2 (en) 2013-05-21
JP5239128B2 (ja) 2013-07-17
US20090087075A1 (en) 2009-04-02
EP2022844B1 (en) 2018-10-31
EP2022844A1 (en) 2009-02-11
JP2007306889A (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
WO2007136074A1 (ja) 観察装置
EP2300983B1 (en) System and method for producing an optically sectioned image using both structured and uniform illumination
US8064661B2 (en) Cell culture device, image processing device and cell detecting system
US10330907B2 (en) Cell imaging control device, method, and program
US10485425B2 (en) Apparatus and methods for structured light scatteroscopy
JP2007125144A (ja) レーザー血流画像装置
JP2017015856A (ja) 位相差顕微鏡および撮像方法
JP6284832B2 (ja) 細胞評価装置および方法並びにプログラム
US11169079B2 (en) Captured image evaluation apparatus, captured image evaluation method, and captured image evaluation program
JP2010020151A (ja) 観察装置
JP2010276540A (ja) 生体組織表面解析装置、生体組織表面解析プログラム、および生体組織表面解析方法
JPWO2014083743A1 (ja) 画像計測装置および画像計測方法
JP2007147448A (ja) 油膜検知装置及び方法
US11050931B2 (en) Control device and control method
EP3396429A1 (en) Observation device and observation method
WO2022244541A1 (ja) 生体試料測定装置
JP2016208854A (ja) 撮像装置および方法並びに撮像制御プログラム
US20170237885A1 (en) Method and Apparatus for High Contrast Imaging
JP2005214787A (ja) 3次元形状測定装置
JP5528255B2 (ja) 内視鏡画像処理システム
JP6534294B2 (ja) 撮像装置および方法並びに撮像制御プログラム
JP5655608B2 (ja) 観察装置及び画像補正プログラム
JP5686376B2 (ja) 画像処理装置、方法、及びプログラム
WO2022202051A1 (ja) 生体観察システム、生体観察方法、及び照射装置
JP2023048189A (ja) 試料観察方法、試料観察装置、及び顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743899

Country of ref document: EP