WO2007135944A1 - イオン伝導体 - Google Patents

イオン伝導体 Download PDF

Info

Publication number
WO2007135944A1
WO2007135944A1 PCT/JP2007/060118 JP2007060118W WO2007135944A1 WO 2007135944 A1 WO2007135944 A1 WO 2007135944A1 JP 2007060118 W JP2007060118 W JP 2007060118W WO 2007135944 A1 WO2007135944 A1 WO 2007135944A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
porous membrane
inorganic porous
inorganic
conductor according
Prior art date
Application number
PCT/JP2007/060118
Other languages
English (en)
French (fr)
Inventor
Hiroshi Ogawa
Toshihiro Takekawa
Kiyoshi Kanamura
Original Assignee
Nissan Motor Co., Ltd.
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd., Tokyo Metropolitan University filed Critical Nissan Motor Co., Ltd.
Priority to EP07743553A priority Critical patent/EP2034546B1/en
Priority to US12/301,905 priority patent/US20100233551A1/en
Publication of WO2007135944A1 publication Critical patent/WO2007135944A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an ion conductor. More specifically, the present invention relates to a composite type electrolyte membrane composed of an inorganic porous membrane having an electrolyte material held in pores, and has an ionic conductivity as compared with a case where the electrolyte material strength is an S ionic liquid alone.
  • the present invention relates to an ionic conductor that can be improved in degree.
  • the present invention also relates to an energy device and a fuel cell using such an ion conductor.
  • a cation-conductive or proton-conductive ceramic membrane infiltrated with an ionic liquid has been proposed (see JP-T-2004-515351).
  • This membrane can be obtained by modifying to show ionic conductivity on the basis of a porous and flexible ceramic membrane described in PCTZEP98Z05939 and then treating with an ionic liquid.
  • the present invention has been made to solve the above-described problems in conventional electrolyte membranes that combine a ceramic membrane and an ionic liquid.
  • the object of the present invention is to improve the ionic conductivity compared to the value of the ionic liquid alone, to suppress swelling at the time of water containing high heat resistance, and to manufacture at low cost. It is to provide an ionic conductor. It is a further object of the present invention to provide an energy device using such an ion conductor, for example, a fuel cell.
  • the ion conductor according to the first aspect of the present invention has an inorganic porous membrane having a plurality of pores, and further having a plurality of proton-donating functional groups bonded to the surface of the pores.
  • the electrolyte is retained in the pores of the inorganic porous membrane and contains a cation component and a cation component.
  • a quality material is provided.
  • the method for producing an ionic conductor according to the second aspect of the present invention includes a step of mixing and stirring an inorganic sol and polymer fine particles in a solvent, and a mixed solution of the inorganic sol and polymer fine particles. Filtering to form a film containing the inorganic sol and polymer fine particles, removing excess water contained in the film formed by filtration and drying, and baking the dried film Removing the polymer fine particles to form an inorganic porous membrane, a chemical modification step of introducing a proton donating functional group into the pore surface of the inorganic porous membrane, and the proton donating functional group. And a step of impregnating the electrolyte material into the pores of the inorganic porous membrane into which the group has been introduced and drying.
  • FIG. 1 shows the structure of an ion conductor according to an embodiment of the present invention, (a) shows a schematic cross-sectional view of the ion conductor, and (b) shows an inorganic conductor. An SEM photograph of the porous membrane is shown.
  • FIG. 2 is a schematic diagram showing an example of a manufacturing procedure of the ion conductor according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a reaction mechanism in a chemical modification process of an inorganic porous membrane.
  • FIG. 4 is a graph showing an example of an IR spectrum for confirming whether or not silanol groups have been introduced into the inorganic porous membrane.
  • FIG. 5 is a graph showing an example of an EDS spectrum for confirming whether or not a sulfonic acid group has been introduced into an inorganic porous membrane.
  • FIG. 6 is an SEM image showing a cross section of the ion conductor according to the embodiment of the present invention.
  • FIG. 7 is a graph showing changes in ionic conductivity with respect to temperature in an ionic conductor using BMImTFSI as an ionic liquid, as compared with a comparative example using an unmodified porous membrane.
  • FIG. 8 is a graph showing changes in ionic conductivity with respect to temperature in an ionic conductor using PP13TFSI in comparison with a comparative example using an unmodified porous membrane.
  • Figure 9 shows the ionic conduction with temperature in the ionic conductor using TMPATFSI. It is a graph which shows the change of a degree compared with the comparative example using an unmodified porous membrane.
  • FIG. 10 is a graph showing a change in ionic conductivity with respect to temperature in an ionic conductor using DEMETFSI in comparison with a comparative example using an unmodified porous membrane.
  • Fig. 11 shows ion conduction with respect to temperature in an ion conductor using DEMEBF.
  • FIG. 12 is a graph showing the ionic conductivity of the ionic conductor according to the embodiment of the present invention in comparison with a comparative example using an unmodified porous membrane.
  • FIG. 13 is a schematic cross-sectional view showing a structural example of a fuel cell to which the ion conductor according to the embodiment of the present invention is applied.
  • FIG. 1 is a schematic diagram showing the structure of an ionic conductor according to an embodiment of the present invention.
  • An ionic conductor 10 according to an embodiment of the present invention is held in an inorganic porous membrane 1 and innumerable pores la provided in the inorganic porous membrane 1 as shown in FIG. 1 (a).
  • (b) of FIG. 1 is an electron micrograph showing the structure of the inorganic porous membrane 1.
  • Reference numeral 3 in FIG. 1 ( a ) denotes electrodes disposed on both surfaces of the ion conductor as required.
  • An ionic conductor includes an inorganic porous membrane 1 and an electrolyte material 2 held inside the pore la of the inorganic porous membrane 1, and the inorganic conductor
  • the porous membrane 1 has a proton-donating functional group on the surface lb of the pore la.
  • the electrolyte material 2 contains a cation component and a key component.
  • electrolyte material 21S can be made of a material that is less expensive than conventional fluorine-based electrolytes, making it more suitable for widespread use. A valent ion conductor is obtained.
  • An ionic liquid refers to a room temperature molten salt composed of a molecular (polyatomic) cation component and a molecular ion component.
  • imidazolium derivatives (Imidazolium Derivatives, 1-3 substitutes) represented by the following chemical formulas 1 to 3
  • pyridinium derivatives (Pyridinium Derivatives) represented by the chemical formula 4
  • pyrrolidinium derivatives represented by the chemical formula 5
  • Ammonium Derivatives (Chemical Formula 6), Phosphonium Derivatives (Chemical Formula 7), Guanidinium Derivatives (Chemical Formulas 8-12), Chemical Formulas 13-15
  • R in Chemical Formula 1 has a monovalent organic group, preferably a monovalent hydrocarbon group, more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • a monovalent organic group preferably a monovalent hydrocarbon group, more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • Specific examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, hexadecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, Examples thereof include benzyl group and ⁇ - phenylpropyl group.
  • R and R in Chemical Formula 2 may be the same or different.
  • Monovalent organic group preferably monovalent
  • an alkyl group having 1 to 20 carbon atoms or an arylalkyl group preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • Specific examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, hexadecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, Examples thereof include benzyl group and ⁇ -phenylpropyl group.
  • R, R and R in Chemical Formula 3 may be the same or different.
  • Monovalent organic group preferably 1
  • a valent hydrocarbon group more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • alkyl group having 1 to 20 carbon atoms or an arylalkyl group examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, hexadecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, Examples thereof include a benzyl group and a ⁇ -phenylpropyl group.
  • R and R in Chemical Formula 4 may be the same or different, hydrogen or a monovalent organic group, preferably
  • a monovalent hydrocarbon group more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • Specific examples include hydrogen, methyl group, ethyl group, and propyl group.
  • R and R in Chemical Formula 5 may be the same or different, hydrogen or a monovalent organic group, preferably
  • a monovalent hydrocarbon group more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • Specific examples include hydrogen, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, hexadecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group.
  • R, R, R, and R in Chemical Formula 6 may be the same or different, hydrogen or monovalent organic
  • a group preferably a monovalent hydrocarbon group, more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • Specific examples include hydrogen, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, hexadecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group.
  • Group, benzyl group preferably a monovalent hydrocarbon group, more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • Specific examples include hydrogen, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, hexadecyl group, dodecy
  • 1 2 H and R may be the same or different hydrogen or monovalent organic 3 4
  • a group preferably a monovalent hydrocarbon N HH NI group, more preferably an alkyl group having 1 to 20 carbon atoms or an arylalkyl group.
  • CN and C NII include hydrogen, methyl group, ethyl group, propyl group, butyl group, pentyl group, ⁇ ⁇ NHI xyl group, octyl group, decyl group, hexadecyl group, dodecyl group, Tetradecyl group, hexadecyl group, octadecyl group, benzyl group
  • halogens represented by the following chemical formula 16 (Halogenides), sulfates and sulfonates represented by the chemical formulas 17 and 18, amides and imides represented by the chemical formula 19 ( Amides and imides), methanes represented by chemical formula 20, borates represented by chemical formulas 21-26, phosphates and antimonates represented by chemical formulas 27 and 28, chemical formula 29 Other salts shown in the above.
  • the inorganic porous membrane 1 has, for example, alumina (Al 2 O 3), silica (SiO 2), titer (TiO 2), or zirconium oxide because of its excellent stability and availability at low cost.
  • alumina Al 2 O 3
  • silica SiO 2
  • TiO 2 titer
  • zirconium oxide because of its excellent stability and availability at low cost.
  • the plurality of pores la of the inorganic porous membrane 1 are spherical, and the inner diameters of the spherical pores la are substantially uniform.
  • adjacent pores la communicate with each other.
  • the spherical pores 1a exist three-dimensionally inside the inorganic porous membrane 1, and the adjacent pores la communicate with each other through the communication port 4.
  • the electrolyte material 2 can be filled through the communication port 4 formed between the pores.
  • the proton-donating functional group may be present not only on the surface lb of the pore la of the inorganic porous membrane 1 but also on the surface of the communication port 4.
  • the electrolyte material 2 is regularly held inside the inorganic porous membrane 1, so that both materials are composited and the ionic conductivity can be increased as a whole.
  • the inorganic porous membrane 1 suppresses the swelling of the electrolyte material 2.
  • the swelling capacities in which the porous membrane 1 is homogeneously and dispersed with respect to the swelling of the electrolyte material 2 when it contains water Therefore, local breakage of the ionic conductor can be suppressed.
  • the swelling pressure of the electrolyte material 2 is equally applied to the inorganic porous membrane 1. .
  • the inorganic porous membrane 1 can be prevented from being damaged, and the electrolyte material 2 can be supported without flowing out.
  • the porosity of the inorganic porous membrane 1 is preferably 70 to 90% by volume. As a result, the filling rate of the electrolyte material 2 can be increased, and excellent ion conductivity can be realized.
  • the pore diameter (inner diameter) of the inorganic porous membrane 1 is preferably 20 to: LOOOnm, and more preferably in the range of 50 to 500 nm.
  • the thickness is less than 20 nm, it is difficult to form a porous film using a spherical resin as a template, which will be described later.
  • the thickness is 50 nm or more, the porous film can be easily formed, and a stable porous film can be formed.
  • the pore diameter exceeds lOOOnm, the amount of proton-donating functional groups immobilized per unit weight of the inorganic porous membrane is small, and the effect of this may not be sufficiently obtained.
  • the pore size is 500 nm or less, the amount of proton-donating functional groups to be immobilized tends to increase rapidly, and sufficient effects tend to be exhibited more reliably.
  • the inorganic porous membrane 1 can be preferably formed of a material that forms an inorganic sol. That is, by using an inexpensive inorganic sol such as alumina sol, silica sol, titania sol, and zirconia sol, the sol-gel method, which is a simple porous film forming technique, is applied. And cost merit is expected.
  • an inexpensive inorganic sol such as alumina sol, silica sol, titania sol, and zirconia sol
  • the sol-gel method which is a simple porous film forming technique
  • inorganic sol-forming material it is preferable to use inorganic colloids such as colloidal alumina, colloidal silica, colloidal titer, and colloidal zirconium.
  • inorganic colloid is suitable for forming an inorganic porous film using polymer particles in a bowl shape, and can easily form spherical pores regularly arranged in three dimensions.
  • the inorganic porous membrane 1 can be formed, for example, by a suspension liquid force in which polymer fine particles and an inorganic material are mixed.
  • a template having a three-dimensional regular array is formed by stacking polymer particles. Therefore, the three-dimensional pores la to which the electrolyte material is fixed are regularly arranged, and for example, an inorganic porous membrane 1 having a high porosity of 70% or more can be realized, and high ion conductivity can be realized. Sex can be expected.
  • an inorganic porous film having an arbitrary space can be designed by controlling the particle size and lamination state of the polymer fine particles. Note that the polymer fine particles remaining between the inorganic materials can be removed by heat treatment or the like, and as a result, a space for the electrolyte material 2, that is, the pore la is secured.
  • the surface of the pore la in the inorganic porous membrane 1 is chemically modified with a proton-donating functional group as described above. As a result, a region that promotes proton conduction is formed at the interface between the pore surface lb of the porous membrane 1 and the electrolyte material 2, which is considered to improve the ionic conductivity.
  • a proton donating functional group it is desirable to use a Bronsted acid type functional group represented by a sulfonic acid group, a phosphoric acid group, and a carboxylic acid group.
  • the “Bronsted acid” means an acid having an unshared electron pair and capable of giving a proton (hydrogen ion). Examples of the functional group other than the above include a sulfamic acid group, a hydroxyl group, and an acetic acid group.
  • the concentration of the proton-donating functional group contained in the inorganic porous membrane 1 is 0.01 to 2.8 mmol Zg, more preferably 0.03 to L 2 mmol / unit weight of the inorganic porous membrane. It is desirable to be in the range of g. That is, when the concentration of the proton-donating functional group is less than 0.01 mmolZg, the effect of introducing the functional group may not be substantially obtained. On the other hand, if it contains more than 2.8 mmolZg, the pores of the inorganic porous membrane More difficult than diameter.
  • the EW value of the inorganic porous membrane 1 modified with a proton-donating functional group is preferably 20 O to 90000 g / mol, more preferably in the range of 890 to 33000 g / mol! / ,. In other words, if the EW value is less than 200 gZmol, the effect of introducing a functional group may not be obtained. On the other hand, it is more difficult to contain more than 90000 g / mol than the pore diameter of the inorganic porous membrane.
  • the ion conductor according to the embodiment of the present invention can be manufactured based on, for example, the steps shown in FIG. 2, that is, the following steps.
  • FIG. 2 shows a production process in the case where colloidal silica is used as the inorganic zeolite and polystyrene fine particles are used as the polymer fine particles.
  • the inorganic porous membrane 1 in which the spherical pores la are three-dimensionally ordered using the spherical polymer fine particles having the same particle diameter as a template is obtained.
  • a suspension of polymer fine particles can be obtained by mixing an inorganic sol, for example, an inorganic colloid and spherical polymer fine particles, and stirring them.
  • step S3 the filtration is performed using spherical polymer fine particles as a template. It is suitable as a method of filling an inorganic sol between them (see (a) in Fig. 2). Filtration can be performed at a reduced pressure of about 10 to 60 kPa as appropriate from the pores of the inorganic porous membrane, in other words, the size and pore density of the spherical polymer fine particles.
  • spherical polymer fine particles used at this time for example, spherical polyethylene having a diameter of about 20 nm to 1000 nm can be used.
  • polystyrene resin polystyrene resin
  • bridged acrylic resin methyl metatalylate resin
  • polyamide resin polyamide resin
  • the diameter of the polymer fine particles is smaller than 20 nm, it is difficult to obtain particles having a uniform particle size distribution at low cost.
  • a turbulent force S may be generated in the homogeneity of the support structure constituting the inorganic porous membrane.
  • step S4 the drying time in the next drying step can be shortened by removing the solvent contained in the filtration membrane in advance.
  • the solvent contained in the filtration membrane in advance.
  • step S5 the filtration molded membrane is previously dried at room temperature, whereby the membrane can be easily handled in the firing step and the like.
  • an inorganic material can be formed by heating and baking the filtration molded membrane, and the template resin can be removed, and an inorganic porous membrane can be formed.
  • Temporary firing at this time is, for example, heated to 400 to 500 ° C, more preferably 430 to 470 ° C at a heating rate of 1 to 10 ° CZmin, preferably 2 to 5 ° CZmin, and heat treatment for 30 minutes or more. Can be done.
  • heat treatment can be performed at a temperature of 800 to 900 ° C. or more for about 30 to: LOO minutes. This firing may be repeated a plurality of times. For example, in order to improve the strength, it is desirable to finally perform a relatively short sintering process at a temperature of 900 ° C. or higher.
  • step S7 a proton-donating functional group is modified on the pore surface of the obtained porous membrane.
  • steps S1 to S6 are performed.
  • the resulting inorganic porous membrane is subjected to hydrothermal treatment for about 12 to 36 hours in a temperature range of about 150 to 200 ° C. using an autoclave, whereby hydroxyl groups are formed on the pore surfaces of the inorganic porous membrane. Is added.
  • a silane coupling agent for example, y-Mercaptopropyltrimethoxysiiane is used to introduce a mercapto group into the porous film.
  • a silane coupling agent aqueous solution it is desirable to use about 2 wt% to 3.5 wt% of a silane coupling agent aqueous solution. Then, it is desirable to introduce the mercapto group by immersing the inorganic porous membrane in the aqueous coupling agent solution for 30 min to 24 hr and then vacuum drying at 100 ° C. for about 10 minutes. After that, the mercapto group (SH group) is oxidized using a hydrogen peroxide solution having a concentration of about 10% to form a sulfonic acid group (SOH group), which is one of the proton donating functional groups.
  • SH group mercapto group
  • SOH group sulfonic acid group
  • FIG. there is a method as shown in FIG. Specifically, a 1,3-propanesultone toluene solution prepared by adjusting the inorganic porous membrane added with a hydroxyl group by hydrothermal treatment to a concentration of about 3 to 7%. Immerse it in and reflux at 80-150 ° C for 24 hours.
  • sulfonic acid groups can be introduced into the pore surface of the inorganic porous membrane in a one-step reaction without going through a complicated process.
  • the amount of functional groups contained in the ion conductor can be increased. Furthermore, the amount of functional groups contained in the ion conductor can also be increased by increasing the pore surface area contained per unit membrane weight.
  • Step S8 and Step S9 the porous membrane into which the proton-donating functional group is introduced is impregnated with an electrolyte material, the pores are filled with the electrolyte material, and then dried. An ionic conductor is obtained.
  • the electrolyte may be dropped on the porous film and evacuated for about 20 minutes.
  • An energy device is configured by applying the above-described ion conductor.
  • the system can be appropriately combined with other control means.
  • Typical examples of energy devices include fuel cells (cells or stacks), water electrolysis devices, hydrohalic acid electrolysis devices, salt electrolysis devices, oxygen concentrators, humidity sensors, and gas sensors. Depending on the high ionic conductivity of the ionic conductor, Energy device performance can be improved.
  • the fuel cell (single cell or stack) to which the ion conductor according to the embodiment of the present invention is applied and the system thereof can be operated in the middle temperature range (about 120 ° C). Therefore, the load on the radiator can be reduced compared to the conventional PEM type fuel cell, and the size of the radiator can be reduced. As a result, the system volume can be reduced and the system weight can be reduced.
  • the activation energy can be reduced and the ionic conductivity at low temperature can be improved, so that the performance during low temperature operation can be improved. It becomes. That is, high ionic conductivity is obtained at a low temperature such as when the system is started, and the starting performance can be improved.
  • Colloidal silica having a diameter of 70 to LOONm was prepared as a raw material for the inorganic porous membrane.
  • polystyrene spherical particles having an average diameter of about 500 nm were prepared.
  • a suspension solution was prepared by mixing the colloidal silica and polystyrene spherical particles so that the volume of the solute contained in the suspension solution had a predetermined thickness when the porous membrane was formed.
  • polystyrene spherical particles were weighed to 10%, added to water, and colloidal silica was weighed to 40% and added to this solution. These solutions were stirred ultrasonically to uniformly disperse the particles to obtain a suspension.
  • the membrane filter was set in a filter holder, the pressure was reduced to a pressure of lOkPa with respect to atmospheric pressure using a manual vacuum pump, and the suspension was filtered.
  • porous silica membrane and water were put into an autoclave and heated for 24 hours at 170 ° C. to add hydroxyl groups to the pore surfaces of the porous membrane (hydrothermal treatment).
  • the porous silica membrane is immersed in a 5% toluene solution of 1,3-propane sultone and refluxed at 120 ° C. for 24 hours, whereby sulfonic acid is applied to the pore surface of the porous silica membrane.
  • the group was introduced.
  • the sulfonic acid group concentration per unit mass of the silica porous membrane could be 0.7 mmolZg.
  • the EW value was 14200 gZmol.
  • SiOH groups silanol groups
  • FT-IR Fourier transform infrared spectrophotometer
  • a indicates the IR ⁇ vector on the surface of the porous membrane before the reaction with 1,3-propane sultone
  • b indicates the IR ⁇ vector on the surface of the porous material after the reaction
  • c indicates the value after the reaction. This is the IR ⁇ vector minus the IR ⁇ vector before the reaction.
  • cl in Fig. 4 a decrease in the absorbance of the peak derived from the SiOH group is observed, which means that the SiOH group decreases, and instead the reaction between the SiOH group and the sultone proceeds. .
  • Figure 6 shows a cross-sectional SEM image of a porous silica membrane containing BMImTFSI as a representative example of an ion conductor.
  • the ionic conductivity of the ionic conductor was evaluated based on the impedance measured by applying an AC wave of 10 Hz to LOOkHz, with a sample of gold electrodes of a predetermined area (1 cm 2 ) sandwiched between both sides.
  • the result of the obtained ionic conductor was compared with the case where the same silica porous membrane was impregnated with the ionic liquid without surface modification with a sulfonic acid group (Comparative Example).
  • the results are shown in FIGS.
  • the ionic conductivity was calculated based on the area in contact with the gold electrode without considering the porosity. In the measurement, the ion conductivity was measured by changing the temperature.
  • improvement in ionic conductivity was confirmed as compared with the comparative examples in which the surface modification was not performed.
  • the surface-modified silica porous membrane is BM when the ion conductivity of the comparative example in which BMImTFSI is impregnated into the silica porous membrane without surface modification is set to "1".
  • the ionic conductivity of the Example impregnated with ImTFSI is shown. From Fig. 12, it was found that ionic conductivity was improved about 1.25 times by surface modification with sulfonic acid groups.
  • FIG 13 shows the basic configuration of an energy device (fuel cell) using an ionic conductor.
  • the fuel cell (cell) is configured by sequentially sandwiching an electrolyte membrane (ion conductor) 10 composed of an inorganic porous membrane 1 holding an electrolyte material 2 between a pair of electrodes 3 and a gas diffusion layer 5.
  • an electrolyte membrane (ion conductor) 10 composed of an inorganic porous membrane 1 holding an electrolyte material 2 between a pair of electrodes 3 and a gas diffusion layer 5.
  • a porous silica membrane was used as the inorganic porous membrane 1
  • BMImTFSI was used as the electrolyte material 2
  • platinum-supported carbon was used as the electrode 3
  • carbon paper was used as the gas diffusion layer 5.
  • Each electrode is formed with a gas flow path 6a using a separator 6 so that hydrogen (or a fuel gas containing hydrogen) and oxygen (or oxygen-containing oxygen gas) can be supplied.
  • the fuel gas supply side is an anode
  • each gas is supplied from the gas flow path 6a through the gas diffusion layer 5 to the electrode 3, and the following electrochemical reaction proceeds.
  • Equation (1) shows the reaction on the cathode side of the fuel cell
  • Equation (2) shows the reaction on the anode side of the fuel cell
  • Equation (3) is a reaction performed in the entire fuel cell. These reactions proceed at the electrode 3.
  • a fuel cell using an ion conductor can directly convert chemical energy of the fuel into electric energy, and can be expected to have high energy conversion efficiency.
  • the inorganic porous membrane has proton donating properties on the pore surfaces. It has a functional group, and the electrolyte material contains a cation component and a cation component, so that the ionic conductivity is improved compared to when an ionic liquid is used alone and the heat resistance is high. It is possible to obtain an ion conductor that can suppress swelling of the resin at low cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Description

明 細 書
イオン伝導体
技術分野
[0001] 本発明は、イオン伝導体に関する。さらに詳細には、本発明は、細孔内に電解質材 料を保持した無機多孔質膜から構成されるコンポジット型電解質膜であって、電解質 材料力 Sイオン液体単独であるときに比べてイオン伝導度が向上し得るイオン伝導体 に関する。また、本発明は、このようなイオン伝導体を用いたエネルギーデバイス及 び燃料電池に関する。
背景技術
[0002] 燃料電池用の電解質膜として、イオン液体を浸透したカチオン伝導性又はプロトン 伝導性のセラミック膜が提案されて 、る(特表 2004 -515351号公報参照)。この膜 は、 PCTZEP98Z05939号に記載された多孔質で柔軟なセラミック膜を基礎とし て、イオン伝導性を示すように改質し、その後イオン液体で処理することにより得られ る。
発明の開示
[0003] し力しながら、このようなセラミック膜とイオン液体を組み合わせた従来の電解質膜 においては、イオン伝導度がイオン液体単独での値 (イオン液体自体の値)に較べて 向上しな!、という問題点があった。
[0004] 本発明は、セラミック膜とイオン液体を組み合わせた従来の電解質膜における前記 課題を解決すべくなされたものである。そして、本発明の目的は、イオン伝導度をィ オン液体単独での値に比べて向上させることができると共に、耐熱性が高ぐ含水時 の膨潤を抑制することができ、しかも安価に製造できるイオン伝導体を提供すること にある。さらに本発明の目的は、このようなイオン伝導体を用いたエネルギーデバイス 、例えば燃料電池を提供することにある。
[0005] 本発明の第一の態様に係るイオン伝導体は、複数の細孔を有し、さらに前記細孔 の表面には複数のプロトン供与性官能基が結合されている無機多孔質膜と、前記無 機多孔質膜の細孔内に保持され、ァ-オン成分とカチオン成分とを含んでいる電解 質材料と、を備える。
[0006] 本発明の第二の態様に係るイオン伝導体の製造方法は、溶媒に、無機ゾルとポリ マー微粒子とを混合して攪拌する工程と、前記無機ゾルとポリマー微粒子との混合 溶液を濾過して、前記無機ゾルとポリマー微粒子とを含有する膜を形成する工程と、 濾過により成形された前記膜に含まれる余剰水分を除去して乾燥する工程と、乾燥 された前記膜を焼成して前記ポリマー微粒子を除去することにより、無機多孔質膜を 形成する工程と、前記無機多孔質膜の細孔表面に、プロトン供与性官能基を導入す る化学修飾工程と、前記プロトン供与性官能基が導入された無機多孔質膜の細孔内 に、電解質材料を含浸さて乾燥する工程と、を有する。
図面の簡単な説明
[0007] [図 1]図 1は、本発明の実施の形態に係るイオン伝導体の構造を示し、 (a)は、前記ィ オン伝導体の概略断面図を示し、(b)は、無機多孔質膜の SEM写真を示す。
[図 2]図 2は、本発明の実施の形態に係るイオン伝導体の作製手順の一例を示すェ 程図である。
[図 3]図 3は、無機多孔質膜の化学修飾工程における反応メカニズムを示す図である
[図 4]図 4は、無機多孔質膜へシラノール基が導入されたか否かを確認するための IR スペクトルの一例を示すグラフである。
[図 5]図 5は、無機多孔質膜へスルホン酸基が導入されたか否かを確認するための E DSスペクトルの一例を示すグラフである。
[図 6]図 6は、本発明の実施の形態に係るイオン伝導体の断面を示す SEM像である
[図 7]図 7は、イオン液体として BMImTFSIを用いたイオン伝導体における温度に対 するイオン伝導度の変化を、未修飾多孔質膜を用いた比較例と対比して示すグラフ である。
[図 8]図 8は、 PP13TFSIを用いたイオン伝導体における温度に対するイオン伝導度 の変化を、未修飾多孔質膜を用いた比較例と対比して示すグラフである。
[図 9]図 9は、 TMPATFSIを用いたイオン伝導体における温度に対するイオン伝導 度の変化を、未修飾多孔質膜を用いた比較例と対比して示すグラフである。
[図 10]図 10は、 DEMETFSIを用いたイオン伝導体における温度に対するイオン伝 導度の変化を、未修飾多孔質膜を用いた比較例と対比して示すグラフである。
[図 11]図 11は、 DEMEBFを用いたイオン伝導体における温度に対するイオン伝導
4
度の変化を、未修飾多孔質膜を用いた比較例と対比して示すグラフである。
[図 12]図 12は、本発明の実施の形態に係るイオン伝導体のイオン伝導度を、未修飾 多孔質膜を用いた比較例と対比して示すグラフである。
[図 13]図 13は、本発明の実施の形態に係るイオン伝導体を適用した燃料電池の構 造例を示す概略断面図である。
発明を実施するための最良の形態
[0008] 以下、本発明の実施の形態に係るイオン伝導体について詳細に説明する。なお、 本明細書において、「%」は特記しない限り質量百分率を示す。
[0009] 図 1は、本発明の実施の形態に係るイオン伝導体の構造を示す概略図である。本 発明の実施の形態に係るイオン伝導体 10は、図 1の(a)に示すように、無機多孔質 膜 1と、この無機多孔質膜 1に備えた無数の細孔 la内に保持された電解質材料 2と、 カゝら構成されている。一方、図 1の (b)は、前記無機多孔質膜 1の構造を示す電子顕 微鏡写真である。なお、図 1の(a)における符号 3は、必要に応じて当該イオン伝導 体の両面に配設される電極である。
[0010] 本発明の実施の形態に係るイオン伝導体は、無機多孔質膜 1と、この無機多孔質 膜 1の細孔 laの内部に保持された電解質材料 2と、から構成され、前記無機多孔質 膜 1は、その細孔 laの表面 lbにプロトン供与性官能基を有している。そして、前記電 解質材料 2はカチオン成分とァ-オン成分を含んで 、る。
[0011] このように、前記電解質材料 2を、プロトン供与性官能基でィ匕学修飾した無機多孔 質膜 1に含浸することによって、電解質材料 2と無機多孔質膜 1の界面に相互作用が 働く。この相互作用の副次的効果により、電解質材料が固定化されたイオン伝導体 のイオン伝導度が液体状態の電解質材料よりも高くなる。したがって、電解質材料の 固定化と、イオン伝導度の向上を一挙に達成することができる。また、電解質材料 2 1S 従来のフッ素系電解質よりも安価な材料で構成できるため、より普及に適した安 価なイオン伝導体が得られる。
[0012] 前記電解質材料 2としては、優れた熱安定性 (不揮発性、蒸気圧が極めて低 ヽ、広 い温度域で液体であるであること)、高イオン密度及び大熱容量などの観点から、ィ オン液体を使用することが好適である。
[0013] イオン液体とは分子性 (多原子)のカチオン成分と分子性のァ-オン成分とで構成 される常温溶融塩のことを示す。代表的なイオン液体におけるカチオン成分としては 、以下の化学式 1〜3に示すイミダゾリゥム誘導体(Imidazolium Derivatives, 1〜 3置換体)、化学式 4に示すピリジニゥム誘導体(Pyridinium Derivatives)、化学 式 5に示すピロリジニゥム誘導体(Pyrrolidinium Derivatives)、化学式 6に示すァ ンモニゥム誘導体(Ammonium Derivatives)、化学式 7に示すホスフォニゥム誘 導体(Phosphonium Derivatives)、化学式 8〜 12に示すグァニジニゥム誘導体( Guanidinium Derivatives)、ィ匕学式 13〜15に示すイソゥ口-ゥム誘辱体 (Isouro nium Derivatives)、などが挙げられる。
[0014] [化 1]
Figure imgf000006_0001
[0015] 化学式 1中の Rは、 1価の有機基、好ましくは 1価の炭化水素基、さらに好ましくは炭 素数 1〜20のアルキル基又はァリールアルキル基を有する。そして、具体例としては 、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ォクチル基 、デシル基、へキサデシル基、ドデシル基、テトラデシル基、へキサデシル基、ォクタ デシル基、ベンジル基、 Ί—フエ-ルプロピル基などを挙げることができる。
[0016] [化 2]
Figure imgf000006_0002
[0017] 化学式 2中の R、 Rは同一でも異なっていてもよぐ 1価の有機基、好ましくは 1価
1 2
の炭化水素基、さらに好ましくは炭素数 1〜20のアルキル基又はァリールアルキル 基を有する。そして、具体例としては、メチル基、ェチル基、プロピル基、ブチル基、 ペンチル基、へキシル基、ォクチル基、デシル基、へキサデシル基、ドデシル基、テト ラデシル基、へキサデシル基、ォクタデシル基、ベンジル基、 γ —フエ-ルプロピル 基などを挙げることができる。
[0018] [化 3]
Figure imgf000007_0001
[0019] 化学式 3中の R、 R、 Rは同一でも異なっていてもよぐ 1価の有機基、好ましくは 1
1 2 3
価の炭化水素基、さらに好ましくは炭素数 1〜20のアルキル基又はァリールアルキ ル基を有する。そして、具体例としては、メチル基、ェチル基、プロピル基、ブチル基 、ペンチル基、へキシル基、ォクチル基、デシル基、へキサデシル基、ドデシル基、テ トラデシル基、へキサデシル基、ォクタデシル基、ベンジル基、 γ—フエニルプロピル 基などを挙げることができる。
[0020] [化 4]
Figure imgf000007_0002
化学式 4中の R、 Rは同一でも異なっていてもよぐ水素又は 1価の有機基、好まし
1 2
くは 1価の炭化水素基、さらに好ましくは炭素数 1〜20のアルキル基又はァリールァ ルキル基を有する。そして、具体例としては、水素、メチル基、ェチル基、プロピル基 、ブチル基、ペンチル基、へキシル基、ォクチル基、デシル基、へキサデシル基、ド デシル基、テトラデシル基、へキサデシル基、ォクタデシル基、ベンジル基、 γ フエ -ルプロピル基などを挙げることができる。
[化 5]
Figure imgf000008_0001
[0023] 化学式 5中の R、 Rは同一でも異なっていてもよぐ水素又は 1価の有機基、好まし
1 2
くは 1価の炭化水素基、さらに好ましくは炭素数 1〜20のアルキル基又はァリールァ ルキル基を有する。そして、具体例としては、水素、メチル基、ェチル基、プロピル基 、ブチル基、ペンチル基、へキシル基、ォクチル基、デシル基、へキサデシル基、ド デシル基、テトラデシル基、へキサデシル基、ォクタデシル基、ベンジル基、 γ フエ -ルプロピル基などを挙げることができる。
[0024] [化 6]
R4 R1
\ /
Ν +
R3 R2
[0025] 化学式 6中の R、 R、 R、 Rは同一でも異なっていてもよぐ水素又は 1価の有機
1 2 3 4
基、好ましくは 1価の炭化水素基、さらに好ましくは炭素数 1〜20のアルキル基又は ァリールアルキル基を有する。そして、具体例としては、水素、メチル基、ェチル基、 プロピル基、ブチル基、ペンチル基、へキシル基、ォクチル基、デシル基、へキサデ シル基、ドデシル基、テトラデシル基、へキサデシル基、ォクタデシル基、ベンジル基
、 γ フエ-ルプロピル基などを挙げることができる。
[0026] [化 7] R4 R1
\ /
P+
R3, XR2
[0027] 化学式 7中の R 、 R 、 R
1 2 H、 Rは同一でも異なっていてもよぐ水素又は 1価の有機 3 4
基、好ましくは 1価の炭化水素 N HH NI基、さらに好ましくは炭素数 1〜20のアルキル基又は ァリールアルキル基を有する。そC NしC NIIて、具体例としては、水素、メチル基、ェチル基、 プロピル基、ブチル基、ペンチル基、 Λへ Ν NHIキシル基、ォクチル基、デシル基、へキサデ シル基、ドデシル基、テトラデシル基、へキサデシル基、ォクタデシル基、ベンジル基
、 γ フエ-ルプロピル基などを挙げることができる。
[0028] [化 8]
Η、 Η
[0029] [化 9]
[0030] [化 10]
Figure imgf000010_0001
[0031] [化 11]
Figure imgf000010_0002
[0032] [化 12]
Figure imgf000010_0003
[0033] [化 13]
N N
[0034] [化 14]
[0035] [化 15]
Figure imgf000011_0001
[0036] ァ-オン成分としては、以下の化学式 16に示すハロゲン類(Halogenides)、化学 式 17, 18に示すスルフェート類及びスルホン酸類(Striates and sulfonates)、 化学式 19に示すアミド類及びイミド類 (Amides and imides)、化学式 20に示すメ タン類(Methanes)、化学式 21〜26に示すホウ酸塩類(Borates)、化学式 27, 28 に示すリン酸塩類及びアンチモン類(Phosphates and Antimonates)、化学式 2 9に示すその他の塩類などが挙げられる。
[0037] [化 16]
CI— Br"
[0038] [化 17]
[0039] [化 18]
Figure imgf000012_0001
(CN)2N- [N(CF3)2]- [N(S02CF3
[HC(S02CF3)2]- C(S02CF3)3
BF4- B(CN)4-
Figure imgf000012_0002
[0045] [化 24]
[0046] [化 25]
[0047] [化 26]
Figure imgf000013_0001
[0048] [化 27] (C2FJ 2P(0) 0- PFC (C3F7) 3PF3
(C2F5)3PF3 (C4F9) 3PF3
SbF, (C2F5) 2P04-
[0049] [化 28]
Figure imgf000014_0001
[0050] [化 29]
C10H21COO- CF3COO Co (CO)
[0051] なお、これらのカチオン成分又はァ-オン成分は、 1種又は 2種以上を適宜組合わ せて使用できる。
[0052] 一方、無機多孔質膜 1としては、安定性に優れ、安価に入手可能であることなどか ら、例えば、アルミナ(Al O )、シリカ(SiO )、チタ-ァ (TiO )もしくはジルコユア(Zr
2 3 2 2
O )、又はこれらの任意の組合わせに係る金属酸ィ匕物で形成されたものを用いること
2
が好ましい。
[0053] また、図 1の(a)及び (b)に示したように、前記無機多孔質膜 1の有する複数の細孔 laは球状であること、この球状細孔 laの内径がほぼ均一で、隣接する細孔 la同士 が連通していることが好適である。換言すれば、無機多孔質膜 1の内部に球状細孔 1 aが三次元的に存在し、隣接する細孔 la同士が連通口 4を介して連通していることが 望ましい。なお、電解質材料 2は、前記細孔間に形成された連通口 4を介して充填す ることができる。また、前記プロトン供与性官能基は、無機多孔質膜 1の細孔 laの表 面 lbに有して 、るだけでなく、連通口 4の表面にも有して 、ても良 、。
[0054] このように、無機多孔質膜 1の内部に電解質材料 2が規則的に保持されることで、 両材料がコンポジットィ匕され、全体的にイオン伝導量を多くすることができる。また、湿 潤状態においては、無機多孔質膜 1が電解質材料 2の膨潤を抑制する。特に、多孔 質膜内部に存在する球状細孔 laがほぼ均一な径で構成されることにより、電解質材 料 2の含水時における膨潤に対して、多孔質膜 1が均質且つ分散された膨潤カを受 けることから、イオン伝導体の局所的な破損を抑制することができる。換言すれば、無 機多孔質膜 1の球状細孔 laが三次元上に規則的な配列の構造をとることによって、 電解質材料 2の膨潤圧が無機多孔質膜 1に均等にかかることとなる。そのため、無機 多孔質膜 1の破損を防止でき、電解質材料 2を流出させることなく支持することが出 来る。
[0055] 前記無機多孔質膜 1の気孔率は、 70〜90体積%であることが好ましい。これによつ て電解質材料 2の充填率を高めることができ、優れたイオン伝導性を実現することが できる。
[0056] 無機多孔質膜 1の細孔径(内径)は、 20〜: LOOOnmであることが望ましぐさらには 50〜500nmの範囲とすることが好ましい。 20nm未満では、後述するような球状榭 脂をテンプレートとして利用した多孔質膜の形成が困難となり易い。特に 50nm以上 とすることによって、当該多孔質膜の形成が容易なものとなり、安定した多孔質膜の 形成が可能となる。一方、細孔径が lOOOnmを超えると、無機多孔質膜の単位重量 あたりに固定化されるプロトン供与性官能基の量が少なくなつて、これによる効果が 十分に得られなくなることがある。とりわけ細孔径を 500nm以下とすることによって、 固定化されるプロトン供与性官能基の量が急激に多くなり、十分な効果がより確実に 発揮されるようになる傾向がある。
[0057] 前記無機多孔質膜 1は、好適には、無機ゾルを形成する材料で形成することができ る。すなわち、アルミナゾル、シリカゾル、チタニアゾル、ジルコ二ァゾルなどといった 安価な無機ゾルを利用し、簡便な多孔質膜形成技術であるゾルゲル法を適用するこ とによって、コストメリットが見込まれる。
[0058] また、前記無機ゾル形成材料としては、コロイダルアルミナ、コロイダルシリカ、コロイ ダルチタ-ァ、コロイダルジルコユアなどの無機コロイドを用いることが好ましい。この ような無機コロイドは、ポリマー粒子を铸型に用いた無機多孔質膜の形成に適してお り、三次元上に規則的に配列された状態の球状細孔を容易に形成することができる
[0059] さらに、前記無機多孔質膜 1は、例えば、ポリマー微粒子と無機材料を混合した懸 濁液力 形成することができる。このような懸濁液を適用することにより、ポリマー微粒 子が積み重なることで三次元状の規則的な配列を有するテンプレートが形成される。 そのため、電解質材料が固定される三次元の細孔 laが規則的に配列され、例えば 7 0%以上の高い空孔率を備えた無機多孔質膜 1を実現することができ、高いイオン伝 導性が期待できる。また、ポリマー微粒子の粒径サイズや積層状態を制御することに とよって、任意の空間を有する無機多孔質膜を設計することができる。なお、無機材 料間に残存するポリマー微粒子は熱処理などにより除去することができ、これによつ て電解質材料 2の入るスペース、すなわち細孔 laが確保されることになる。
[0060] 前記無機多孔質膜 1における細孔 laの表面は、前記したようにプロトン供与性官能 基で化学修飾される。これによつて多孔質膜 1の細孔表面 lbと電解質材料 2の界面 にプロトン伝導を促進する領域が形成されることによって、イオン伝導度が向上するも のと考えられる。ここで言うプロトン供与性官能基としては、特にスルホン酸基、リン酸 基、カルボン酸基に代表されるブレンステッド酸型官能基を用いることが望ましい。な お、「ブレンステッド酸」とは、非共有電子対を有し、プロトン (水素イオン)を与えること ができる酸であることを意味する。前記以外の官能基としては、スルフアミド酸基、水 酸基、酢酸基等を挙げることができる。
[0061] また、無機多孔質膜 1に含まれる前記プロトン供与性官能基の濃度は、無機多孔 質膜の単位重量当たり 0. 01〜2. 8mmolZg、より好ましくは 0. 03〜: L 2mmol/ gの範囲とすることが望ましい。すなわち、前記プロトン供与性官能基の濃度が 0. 01 mmolZgに満たな ヽ場合には、当該官能基導入の効果が実質的に得られな ヽこと がある。一方、 2. 8mmolZgを超えて含有させることは、前記無機多孔質膜の細孔 径より困難である。
[0062] このとき、プロトン供与性官能基で修飾された無機多孔質膜 1の EW値としては、 20 O〜90000g/mol、さらには 890〜33000g/molの範囲であること力望まし!/、。す なわち、 EW値が 200gZmolに満たない場合には、官能基導入の効果が得られな いことがある。一方、 90000g/molを超えて含有させることが無機多孔質膜の細孔 径より困難である。なお、「EW値」とは、 Equivalent Weight値の略であって、ィォ ン交換基 lmol当りの乾燥ポリマー重量を意味し、 EW= 1000ZAr(Ar:イオン交換 容量 (mmolZg) )によって算出されるものである。
[0063] ここで、本発明の実施の形態に係るイオン伝導体は、例えば図 2に示すような工程 、すなわち以下のような工程に基づいて製造することができる。なお、図 2は、無機ゾ ルとしてコロイダルシリカを用い、ポリマー微粒子としてポリスチレン微粒子を用いた 場合の製造工程を示して 、る。
1.溶媒を用いて無機ゾルとポリマー微粒子を混合する工程 S1
2.混合溶液を攪拌する工程 S2
3.この混合溶液 (懸濁液)を濾過して製膜する工程 S3
4.この濾過成形膜の余剰水分を除去する工程 S4
5.濾過成形膜を乾燥する工程 S5
6.濾過成形膜を加熱焼成して無機多孔質膜を得る工程 S6
7.この無機多孔質膜の細孔表面にプロトン供与性官能基を導入する化学修飾工程 S7
8.無機多孔質膜の細孔内に電解質材料を含浸させる工程 S8
9.電解質材料を含浸させた無機多孔質膜を乾燥させる工程 S9
[0064] 工程 S1〜S6を経ることにより、粒子径の揃った球状のポリマー微粒子をテンプレー トとして、球状の細孔 laが三次元規則配列された無機多孔質膜 1が得られる。
[0065] 工程 S1及び工程 S2にお ヽては、無機ゾル、例えば無機コロイドと球状の前記ポリ マー微粒子とを混合し、攪拌することによってポリマー微粒子の懸濁液を得ることが できる。
[0066] また、工程 S3において、濾過は、球状ポリマー微粒子をテンプレートとして、その隙 間に無機ゾルを充填する方法として適している(図 2中(a)参照)。濾過は、無機多孔 質膜の細孔、言い換えると球状ポリマー微粒子の大きさ、細孔密度などから、適宜 10 〜60kPa程度減圧して行うことができる。このとき用いる球状のポリマー微粒子として は、例えば 20nm〜1000nm程度の径の球状ポリエチレンを使用することができる。
[0067] ポリマー微粒子材料としては、この他に、ポリオレフイン榭脂、ポリスチレン榭脂、架 橋アクリル榭脂、メチルメタタリレート榭脂、ポリアミド榭脂などを適宜選択することがで きる。このポリマー微粒子の径が 20nmより小さくなると、均一に揃った粒径分布の粒 子を安価に入手することが困難となり易い。また、ポリマー微粒子の径が lOOOnmよ り大きい径のものを使用すると、無機多孔質膜を構成する支持構造の均質性に乱れ 力 S発生することがある。
[0068] また、工程 S4では、濾過成形膜に含まれている溶剤を予め除去することにより、次 の乾燥工程における乾燥時間を短縮することができる。溶媒を除去することにより、 図 2中の(b)に示すように、ポリスチレンビーズが規則的に整列し、更にそのビーズの 隙間に無機ゾルが充填される。
そして、工程 S5において、濾過成形膜を室温にて予め乾燥させることによって、焼 成工程等における膜のハンドリングが容易なものとなる。
[0069] 次 、で、工程 S6では、濾過成形膜を加熱して焼成することによって、無機材料を 形成すると共に、テンプレート榭脂を除去することができ、無機多孔質膜を形成する ことができる(図 2中(c)参照)。このとき、濾過膜中のテンプレート榭脂 (ポリマー微粒 子)を除去するための仮焼成を先に行い、その後に本焼成を行なって無機多孔質膜 を焼結させることが望ましい。このときの仮焼成は、例えば、 l〜10°CZmin、望ましく は 2〜5°CZminの昇温速度で 400〜500°C、より望ましくは 430〜470°Cまで昇温 させ、 30分以上熱処理を行うようにすることができる。本焼成については、例えば 80 0〜900°C以上の温度で、 30〜: LOO分間程度の熱処理を行うことができる。なお、こ の本焼成は複数回繰り返して行っても良ぐ例えば強度を向上させるために、 900°C 以上の温度で比較的短時間の焼結処理を最終的に施すことが望ましい。
[0070] 次に、工程 S7においては、得られた多孔質膜の細孔表面に対して、プロトン供与 性官能基を修飾する。これには、図 3中の(a)に示すように、まず、工程 S1〜S6によ つて得られた無機多孔質膜に対して、オートクレープを用いて 150〜200°C程度の 温度範囲において、 12〜36hr程度の水熱処理を行うことによって、無機多孔質膜の 細孔表面に水酸基を付加する。次に、シランカップリング剤として、例えば、 γ —メル カプトプロピノレトリメトキンンフン ( y— Mercaptopropyltrimethoxysiiane)を用 ヽ て、前記多孔質膜にメルカプト基を導入する。このとき、約 2wt%〜3. 5wt%のシラ ンカップリング剤水溶液を用いることが望ましい。そして、当該カップリング剤水溶液 に前記無機多孔質膜を 30min〜24hr浸漬させ、その後 100°Cで 10分間程度真空 乾燥することによりメルカプト基を導入することが望ましい。 その後、 10%程度の濃 度の過酸ィ匕水素水を用いて、メルカプト基 (SH基)を酸化させ、プロトン供与性官能 基の 1種であるスルホン酸基(SO H基)とする。
3
[0071] 別の方法としては、図 3 (b)に示すような方法がある。具体的には、前記熱水処理 によって水酸基を付加した無機多孔質膜を、 3〜7%程度の濃度となるように調整し た 1, 3—プロパンスルトン(1, 3—propanesultone)のトルエン溶液中に浸漬し、 80 〜150°Cで 24hr還流を行う。この方法により、複雑な過程を経ることなぐ 1段階の反 応で無機多孔質膜の細孔表面にスルホン酸基を導入することができる。
[0072] このように、無機多孔質膜の単位表面積当たりに導入されるプロトン供与性官能 基を増加させることによって、イオン伝導体に含まれる官能基量を増やすことができる 。さらに、単位膜重量あたりに含まれる細孔表面積を高めることによつても、イオン伝 導体に含まれる官能基量を増やすことができる。
[0073] そして、工程 S8及び工程 S9において、プロトン供与性官能基が導入された前記 多孔質膜に電解質材料を含浸させ、細孔内に電解質材料を充填した後、乾燥させる ことによって、目的のイオン伝導体が得られる。なお、電解質材料の含浸に際しては 、例えば、電解質を多孔質膜上に滴下し、真空引きを 20分程度行っても良い。
[0074] 本発明の実施の形態に係るエネルギーデバイスは、上述のイオン伝導体を適用 して構成される。このときは、他の制御手段と組合わせて適宜システム化することもで きる。エネルギーデバイスとして代表的には、燃料電池 (セル又はスタック)、水電解 装置、ハロゲン化水素酸電解装置、食塩電解装置、酸素濃縮器、湿度センサー、ガ スセンサーなどが挙げられる。当該イオン伝導体の高いイオン伝導度によって、各種 エネルギーデバイスの性能向上が可能になる。
[0075] 特に、本発明の実施の形態に係るイオン伝導体を適用した燃料電池 (単セル又 はスタック)及びそのシステムにおいては、中温域(120°C程度)の運転を可能とする 。そのため、ラジェータの負荷を従来の PEM型燃料電池に対して低下させ、ラジェ ータサイズを低減することができる。その結果、システム容積の低減、システム重量の 軽量ィ匕が可能となる。
さらに、本発明の実施の形態に係るイオン伝導体を適用することによって、活性化 エネルギーを低下させることができ、低温でのイオン伝導度が向上することから、低 温運転時の性能向上が可能となる。すなわち、システム始動時等の低温状態で高い イオン伝導度が得られ、始動性能の向上を図ることができる。
[0076] 以下、本発明を実施例及び比較例により更に詳述するが、本発明はこれらの実 施例に限定されるものではない。
[0077] (実施例 1)
1.無機多孔質膜の作製
無機多孔質膜の原料として直径 70〜: LOOnmのコロイダルシリカを用意した。また 、当該無機多孔質膜の細孔径制御を目的に、平均直径が約 500nmのポリスチレン 球状粒子を用意した。
[0078] このコロイダルシリカ及びポリスチレン球状粒子を、懸濁溶液中に含まれる溶質の 体積が、多孔質膜を形成した際に所定の膜厚になるように混合してサスペンション溶 液を調製した。手順としては、まず、ポリスチレン球状粒子を 10%となるように秤量し 、水に添カ卩し、この溶液に、コロイダルシリカを 40%となるように秤量して、添加した。 そして、これらの溶液を超音波攪拌し、粒子を均一に分散させて懸濁液とした。
[0079] 次!、で、メンブレンフィルタをフィルターホルダにセットし、手動式真空ポンプを用 いて大気圧に対して lOkPaの圧力となるように減圧し、前記懸濁液を濾過した。
[0080] 懸濁液がすべて濾過された後、成形された膜に含まれる余剰水分を濾紙などの 吸水材で除去し、さらに室温で十分乾燥させた。この後にメンブレンフィルタ力 剥離 することによって、コロイダルシリカ及びポリスチレン球状粒子の混合物力 成る膜を [0081] 得られた膜に次のような熱処理を行い、シリカから成る多孔質膜を得た。すなわち、 まず、仮焼成として、 l〜10°CZminの昇温速度で 400〜500°Cまで昇温を行い、そ の温度に 30分以上保持して、ポリスチレン球状粒子を除去した。
[0082] 仮焼成後、 890°Cの温度で約 60分間熱処理を行い、コロイダルシリカを焼結した。
その後、さらに機械的強度を向上させるため、 980°Cの温度にて 15分間熱処理を行 い、ゆっくりと室温に戻した。これにより、細孔径 500nm、気孔率 74%のシリカ多孔 質膜を得た。
[0083] 2.シリカ多孔質膜細孔表面の修飾
前記で得られたシリカ多孔質膜と水をオートクレープ内に投入し、 170°Cで 24hrカロ 熱することにより、当該多孔質膜の細孔表面に水酸基を付加した (水熱処理)。
[0084] 次に、 1, 3—プロパンスルトンの 5%トルエン溶液中に前記シリカ多孔質膜を浸漬し 、 120°Cで 24hr還流を行うことによって、シリカ多孔質膜の細孔表面にスルホン酸基 を導入した。これによつて、前記シリカ多孔質膜の単位質量当たりのスルホン酸基濃 度を 0. 7mmolZgとすることができた。また、 EW値は 14200gZmolであった。
[0085] なお、シラノール基 (SiOH基)の導入は、フーリエ変換赤外分光光度計 (FT— IR) を用いて計測することによって確認することができる。すなわち、約 3500〜3700cm _1に見られる SiOH基に由来するピークを検出することにより、 SiOH基の導入を確 認することができる。その測定例を図 4に示す。
[0086] また、シラノール基とスルトンとの反応も FT— IRを用いて計測することによって確認 することができる。図 4中で、 aは 1, 3—プロパンスルトンとの反応前の多孔質膜表面 の IR ^ベクトルを示し、 bは反応後の多孔質体表面の IR ^ベクトルを示し、 cは反応後 の IR ^ベクトルから反応前の IR ^ベクトルを引いたものである。図 4中の clにおいて、 SiOH基に由来するピークの吸光度の減少が観測されていることから、 SiOH基が減 少し、その代わり SiOH基とスルトンとの反応が進んで 、ることがわ力る。
[0087] また、導入されたスルホン酸基(SO H基)については、図 5に示すように、エネルギ
3
一分散型 X線分光法 (EDS法)で得られる Siに対する Sの元素比にて確認することが できる。
[0088] 3.電解質材料 (イオン液体)の含浸 スルホン酸基で細孔表面を修飾した前記シリカ多孔質膜に、イオン液体として BMI mTFSI (Butylmethylimidazolium bis (trifluoromethanesulfonyl) imide)、 P P13TFSI (N― methyl— N— propylpiperidinium bis (trifluoromethanesulfo nyl) imide)、 TMPATFSI (N, N, N― Trimethyl― propylammonium bis (trif luoromethanesulfonyl) imide)、 DEMETFSI (N, N - diethyl - N - methyl - N— ( 2― methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide) 及び DEMEBF (N, N - diethyl - N - methyl - N - ( 2 - methoxyethyl) amm
4
oniumtetrafluoroborate)をそれぞれ含浸させ、本例のイオン伝導体を得た。なお 、これらのイオン液体はァ-オン交換法によって作製しており、例えば BMImTFSI は、 BMImBrと LiN (SO CF )を溶媒 (水)中で反応させることによって得た。得られ
2 3
たイオン伝導体の代表例として、 BMImTFSIを含むシリカ多孔質膜の断面 SEM像 を図 6に示す。
[0089] 4.イオン伝導性評価
得られたイオン伝導体につ!、て、所定面積(1cm2)の金電極を両面カゝら試料を挟 み、 10Hz〜: LOOkHzの交流波をかけて計測したインピーダンスによって当該イオン 伝導体のイオン伝導性を評価した。そして、得られたイオン伝導体の結果を、同様の シリカ多孔質膜に、スルホン酸基による表面修飾を行うことなぐ前記イオン液体を含 浸させた場合 (比較例)と比較した。この結果を図 7〜11にそれぞれ示す。なお、ここ でのイオン導電率は多孔度を考慮せず、金電極と接触する面積に基づいて算出した 。また、計測では、温度を変更してイオン伝導度を測定した。これらの図に示すように 、表面修飾を行った実施例のイオン伝導体においては、表面修飾を行わない比較例 に較べて、イオン伝導度の向上が確認された。
[0090] また、図 12では、表面修飾を行なうことなくシリカ多孔質膜に BMImTFSIを含浸さ せた比較例のイオン伝導度を「1」とした場合の、表面修飾したシリカ多孔質膜に BM ImTFSIを含浸させた実施例のイオン伝導度を示す。図 12より、スルホン酸基で表 面修飾することによって、イオン伝導度が約 1. 25倍向上することが判明した。
[0091] (実施例 2)
イオン伝導体を適用したエネルギーデバイス (燃料電池)の基本的な構成を図 13 に示す。当該燃料電池 (セル)は、電解質材料 2を保持した無機多孔質膜 1から成る 電解質膜 (イオン伝導体) 10を 1対の電極 3とガス拡散層 5によって順次挟持すること によって構成されている。ここで、無機多孔質膜 1としてはシリカ多孔質膜を、電解質 材料 2には BMImTFSI、電極 3には白金担持カーボン、ガス拡散層 5にはカーボン ペーパーをそれぞれ使用した。また、各電極にはセパレータ 6を用いてガス流路 6aを 形成し、水素 (又は水素を含有する燃料ガス)と、酸素 (又は酸素を含有する酸化ガ ス)を供給できるようにしてある。 なお、電極は、燃料ガスを供給する側がアノード、 酸ィ匕ガスを供給する側が力ソードとなる。
[0092] この燃料電池による発電に際しては、それぞれのガスがガス流路 6aからガス拡散 層 5を経て電極 3に供給され、以下に示す電気化学反応が進行する。
H → 2H+ + 2e"
2
2H+ + 2e" + (1/2) 0 → H O - -- (2)
2 2
H + (1/2) 0 → H O - -- (3)
2 2 2
[0093] 式(1)は燃料電池の陰極側における反応を示しており、式(2)は燃料電池の陽極 側における反応を示している。また、式(3)は、燃料電池全体で行なわれる反応とな る。なお、これらの反応は、電極 3で進行する。このように、イオン伝導体を用いた燃 料電池は、燃料が有する化学エネルギーを直接に電気エネルギーに変換することが 可能であり、高いエネルギー変換効率が期待できる。
[0094] 特願 2006— 141503号(出願日: 2006年 5月 222日)及び特願 2007— 108143 号(出願日: 2007年 4月 17日)の全内容は、ここに援用される。
以上、実施の形態及び実施例に沿って本発明の内容を説明したが、本発明はこれ らの記載に限定されるものではなぐ種々の変形及び改良が可能であることは、当業 者には自明である。
産業上の利用の可能性
[0095] 本発明によれば、無機多孔質膜と、その細孔内に保持された電解質材料カゝら構成 されるイオン伝導体において、前記無機多孔質膜がその細孔表面にプロトン供与性 官能基を備え、電解質材料がカチオン成分とァ-オン成分を含んでいるので、イオン 液体単独であるときに比べてイオン伝導度が向上すると共に、耐熱性が高ぐ含水時 の膨潤を抑制できるイオン伝導体を安価に得ることができる。

Claims

請求の範囲
[I] 複数の細孔を有し、さらに前記細孔の表面には複数のプロトン供与性官能基が結 合されて!/、る無機多孔質膜と、
前記無機多孔質膜の細孔内に保持され、ァ-オン成分とカチオン成分とを含んで いる電解質材料と、
を備えるイオン伝導体。
[2] 前記電解質材料がイオン液体である請求項 1に記載のイオン伝導体。
[3] 前記無機多孔質膜がアルミナ、シリカ、チタ-ァ及びジルコユア力 成る群より選ば れた少なくとも 1種の金属酸化物で形成されている請求項 1に記載のイオン伝導体。
[4] 前記無機多孔質膜における複数の細孔は、略均一な内径を備えた球状をなし、さ らに前記無機多孔質膜の内部に三次元的に配置されており、
前記複数の細孔は、隣接する細孔間に形成された連通口を介して互いに連通して V、る請求項 1に記載のイオン伝導体。
[5] 前記球状細孔の内径が 20〜 1 OOOnmである請求項 4に記載のイオン伝導体。
[6] 前記球状細孔の内径が 50〜500nmである請求項 4に記載のイオン伝導体。
[7] 前記無機多孔質膜の気孔率が体積比で 70〜90%である請求項 1に記載のイオン 伝導体。
[8] 前記無機多孔質膜が無機ゾルカゝら形成される請求項 1に記載のイオン伝導体。
[9] 前記無機ゾルを形成する材料が無機コロイドである請求項 8に記載のイオン伝導体
[10] 前記無機多孔質膜がポリマー微粒子と無機材料を混合して成る懸濁液カゝら形成さ れて 、る請求項 1に記載のイオン伝導体。
[II] 前記プロトン供与性官能基がブレンステッド酸型官能基である請求項 1に記載のィ オン伝導体。
[12] 前記ブレンステッド酸型官能基がスルホン酸基、リン酸基又はカルボン酸基であ る請求項 11に記載のイオン伝導体。
[13] 前記無機多孔質膜に含まれる前記プロトン供与性官能基の濃度は、前記無機多 孔質膜の単位重量当たり 0. 01〜2. 8mmolZgである請求項 11に記載のイオン伝 導体。
[14] 前記無機多孔質膜の EW値が 200〜90000gZmolであることを特徴とする請求 項 12に記載のイオン伝導体。
[15] 溶媒に、無機ゾルとポリマー微粒子とを混合して攪拌する工程と、
前記無機ゾルとポリマー微粒子との混合溶液を濾過して、前記無機ゾルとポリマー 微粒子とを含有する膜を形成する工程と、
濾過により成形された前記膜に含まれる余剰水分を除去して乾燥する工程と、 乾燥された前記膜を焼成して前記ポリマー微粒子を除去することにより、無機多孔質 膜を形成する工程と、
前記無機多孔質膜の細孔表面に、プロトン供与性官能基を導入する化学修飾工程 と、
前記プロトン供与性官能基が導入された無機多孔質膜の細孔内に、電解質材料を 含浸さて乾燥する工程と、
を有するイオン伝導体の製造方法。
[16] 前記化学修飾工程は、
前記無機多孔質膜に水熱処理を施して水酸基を付加する工程と、
前記水酸基とメルカプト基を備える化合物とを反応させ、前記無機多孔質膜の細孔 表面にメルカプト基を導入する工程と、
前記メルカプト基を酸化し、スルホン酸基を形成する工程と、
を有する請求項 15に記載のイオン伝導体の製造方法。
[17] 前記化学修飾工程は、
前記無機多孔質膜に水熱処理を施して水酸基を付加する工程と、
水酸基を付加した前記無機多孔質膜を、 1, 3—プロパンスルトンを含むトルエン溶 液に浸漬させて、還流する工程と、
を有する請求項 15に記載のイオン伝導体の製造方法。
[18] 請求項 1に記載のイオン伝導体を適用して成るエネルギーデバイス。
[19] 請求項 1に記載のイオン伝導体を適用して成る燃料電池。
PCT/JP2007/060118 2006-05-22 2007-05-17 イオン伝導体 WO2007135944A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07743553A EP2034546B1 (en) 2006-05-22 2007-05-17 Ion conductor
US12/301,905 US20100233551A1 (en) 2006-05-22 2007-05-17 Ion conductor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006141503 2006-05-22
JP2006-141503 2006-05-22
JP2007108143A JP2008004533A (ja) 2006-05-22 2007-04-17 イオン伝導体
JP2007-108143 2007-04-17

Publications (1)

Publication Number Publication Date
WO2007135944A1 true WO2007135944A1 (ja) 2007-11-29

Family

ID=38723256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060118 WO2007135944A1 (ja) 2006-05-22 2007-05-17 イオン伝導体

Country Status (4)

Country Link
US (1) US20100233551A1 (ja)
EP (1) EP2034546B1 (ja)
JP (1) JP2008004533A (ja)
WO (1) WO2007135944A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035300A (ja) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd イオン伝導体、及びこれを用いたエネルギーデバイス、燃料電池セル

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334382B2 (ja) * 2006-10-27 2013-11-06 国立大学法人横浜国立大学 電気化学セル及びこれを用いた燃料電池
JP5045503B2 (ja) * 2008-03-05 2012-10-10 株式会社豊田中央研究所 プロトン伝導膜
GB0813669D0 (en) * 2008-07-25 2008-09-03 Imp Innovations Ltd Electrolyte
JP5410775B2 (ja) * 2009-02-16 2014-02-05 日本バイリーン株式会社 イオン伝導膜の製造方法
WO2012011223A1 (ja) * 2010-07-20 2012-01-26 キヤノン株式会社 導電性部材、プロセスカートリッジおよび電子写真装置
US10535474B2 (en) 2012-04-23 2020-01-14 Kyoto University Porous coordination polymer-ionic liquid composite
US11699810B2 (en) * 2017-04-24 2023-07-11 Imec Vzw Solid nanocomposite electrolyte materials
JP7014899B2 (ja) * 2018-04-27 2022-02-01 富士フイルム株式会社 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
KR102653783B1 (ko) * 2020-11-05 2024-04-03 원에스원 에너지 인코포레이티드 붕소-함유 다공성 막 및 그의 이용 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102971A1 (fr) * 2002-05-30 2003-12-11 National Institute Of Advanced Industrial Science And Technology Materiau poreux inorganique a surface modifiee et cellule electrochimique comprenant ledit materiau sous forme d'electrolyte
US20040038105A1 (en) * 2000-12-13 2004-02-26 Volker Hennige Cation-conducting or proton-conducting ceramic membrane infiltrated with an ionic liquid, method for the production thereof and use of the same
US20050106440A1 (en) * 2003-11-19 2005-05-19 Honda Motor Co., Ltd. Proton conductor and method for producing the same
JP2005332801A (ja) * 2004-04-23 2005-12-02 Sekisui Chem Co Ltd プロトン伝導性膜、複合化プロトン伝導性膜及び燃料電池
US20060083962A1 (en) * 2004-10-20 2006-04-20 Nissan Motor Co., Ltd. Proton-conductive composite electrolyte membrane and producing method thereof
JP2006141503A (ja) 2004-11-17 2006-06-08 Samii Kk 弾球遊技機の整流装置
JP2007108143A (ja) 2005-10-17 2007-04-26 Mitsubishi Electric Corp 周辺施設検索装置
JP2007115647A (ja) * 2005-02-25 2007-05-10 Nissan Motor Co Ltd プロトン伝導性コンポジット型電解質膜及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741498B4 (de) * 1997-09-20 2008-07-03 Evonik Degussa Gmbh Herstellung eines Keramik-Edelstahlgewebe-Verbundes
JP2004213991A (ja) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd 非水電池用電解質及びその製造方法並びに非水電池用電解液
JP2005174911A (ja) * 2003-11-19 2005-06-30 Honda Motor Co Ltd プロトン伝導体及びその製造方法
JP2005347611A (ja) * 2004-06-04 2005-12-15 Honda Motor Co Ltd 電気二重層キャパシタ
JP4830279B2 (ja) * 2004-09-14 2011-12-07 パナソニック株式会社 非水電解質二次電池
JP4716706B2 (ja) * 2004-10-20 2011-07-06 日産自動車株式会社 プロトン伝導性コンポジット型電解質膜及びその製造方法
JP4529634B2 (ja) * 2004-10-22 2010-08-25 パナソニック株式会社 電気二重層キャパシタ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038105A1 (en) * 2000-12-13 2004-02-26 Volker Hennige Cation-conducting or proton-conducting ceramic membrane infiltrated with an ionic liquid, method for the production thereof and use of the same
JP2004515351A (ja) 2000-12-13 2004-05-27 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング イオン性液体を浸透した、カチオン伝導性/プロトン伝導性のセラミック膜、その製造方法および膜の使用
WO2003102971A1 (fr) * 2002-05-30 2003-12-11 National Institute Of Advanced Industrial Science And Technology Materiau poreux inorganique a surface modifiee et cellule electrochimique comprenant ledit materiau sous forme d'electrolyte
US20050106440A1 (en) * 2003-11-19 2005-05-19 Honda Motor Co., Ltd. Proton conductor and method for producing the same
JP2005332801A (ja) * 2004-04-23 2005-12-02 Sekisui Chem Co Ltd プロトン伝導性膜、複合化プロトン伝導性膜及び燃料電池
US20060083962A1 (en) * 2004-10-20 2006-04-20 Nissan Motor Co., Ltd. Proton-conductive composite electrolyte membrane and producing method thereof
JP2006141503A (ja) 2004-11-17 2006-06-08 Samii Kk 弾球遊技機の整流装置
JP2007115647A (ja) * 2005-02-25 2007-05-10 Nissan Motor Co Ltd プロトン伝導性コンポジット型電解質膜及びその製造方法
JP2007108143A (ja) 2005-10-17 2007-04-26 Mitsubishi Electric Corp 周辺施設検索装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2034546A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035300A (ja) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd イオン伝導体、及びこれを用いたエネルギーデバイス、燃料電池セル

Also Published As

Publication number Publication date
JP2008004533A (ja) 2008-01-10
US20100233551A1 (en) 2010-09-16
EP2034546A4 (en) 2011-07-13
EP2034546A1 (en) 2009-03-11
EP2034546B1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2007135944A1 (ja) イオン伝導体
AU2004207665B2 (en) Organic-inorganic hybrid material containing a mineral mesoporous phase and an organic phase, a membrane and fuel cell
JP3894002B2 (ja) 膜電極接合体並びにこれを備える燃料電池及び電気分解セル
Laberty-Robert et al. Design and properties of functional hybrid organic–inorganic membranes for fuel cells
JP5145602B2 (ja) 導電体、及びこれを用いたエネルギーデバイス、燃料電池セル
JP4855134B2 (ja) イオン伝導性無機膜とその製造方法、イオン伝導性有機無機複合膜とその製造方法、膜電極接合体および燃料電池
Jones et al. Advances in the development of inorganic–organic membranes for fuel cell applications
KR101064986B1 (ko) 세라믹 다공성 지지체, 그를 이용한 강화 복합 전해질 막 및 그를 구비한 막-전극 어셈블리
JP2004515351A (ja) イオン性液体を浸透した、カチオン伝導性/プロトン伝導性のセラミック膜、その製造方法および膜の使用
JP4813254B2 (ja) イオン伝導体の製造方法
AU2004207666B2 (en) Conductive organic-inorganic hybrid material comprising a mesoporous phase, membrane, electrode and fuel cell
JP2008034212A (ja) イオン伝導体、エネルギーデバイス及び燃料電池
JP4925091B2 (ja) プロトン伝導性コンポジット型電解質膜及びその製造方法
JP4974324B2 (ja) イオン伝導体及びこれを用いた燃料電池セル
JP4716706B2 (ja) プロトン伝導性コンポジット型電解質膜及びその製造方法
JP4644759B2 (ja) イオン伝導体、及びこれを用いた燃料電池セル
JP5045503B2 (ja) プロトン伝導膜
JP5229931B2 (ja) プロトン伝導性コンポジット型電解質膜及びその製造方法
JP5183886B2 (ja) プロトン伝導性コンポジット型電解質膜及びその製造方法
Zhang et al. Mesoporous materials for fuel cells
JP2005032454A (ja) イオン伝導性電解質膜及びその製造方法並びに燃料電池
Jurado et al. Protonic conductors for proton exchange membrane fuel cells: An overview

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743553

Country of ref document: EP