WO2007134349A1 - Bétons légers et/ou mousses minérales et leur procédé de fabrication - Google Patents

Bétons légers et/ou mousses minérales et leur procédé de fabrication Download PDF

Info

Publication number
WO2007134349A1
WO2007134349A1 PCT/AT2007/000235 AT2007000235W WO2007134349A1 WO 2007134349 A1 WO2007134349 A1 WO 2007134349A1 AT 2007000235 W AT2007000235 W AT 2007000235W WO 2007134349 A1 WO2007134349 A1 WO 2007134349A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
mineral composition
amount
total mass
foam
Prior art date
Application number
PCT/AT2007/000235
Other languages
German (de)
English (en)
Inventor
Manfred Sterrer
Petra Sterrer
Maria Theresia Strobl
Original Assignee
Manfred Sterrer
Petra Sterrer
Maria Theresia Strobl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manfred Sterrer, Petra Sterrer, Maria Theresia Strobl filed Critical Manfred Sterrer
Publication of WO2007134349A1 publication Critical patent/WO2007134349A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to lightweight concrete or mineral foams and to processes for their preparation.
  • Lightweight concrete is generally referred to as concrete types whose dry bulk density (density) is less than 2000 kg / m 3 (DIN 1045). A lower limit is not prescribed, it is at the currently commercially available products at about 350 kg / m 3 . This wide range is the result of different production methods, different lightweight concrete aggregates (now called “light aggregates” according to DIN EN 13055) and the microstructure type of lightweight concrete, which basically distinguishes between three types of lightweight concrete:
  • the mix composition of clay-filled lightweight concrete is the same as that of concrete, but expanded clay or intumescent slate is used as the aggregate.
  • the cavities between the aggregate are filled with cement paste, depending on the aggregate a density between 800 and 2000 kg / m 3 is achieved.
  • the strength can also reach that of normal concrete so that lightweight aggregate concrete is even used in bridges and offshore structures.
  • the aggregate aggregate has less strength in the case of lightweighted concrete, possibly even less than that of the cement paste, depending on the grain size.
  • a lightweight, fiber-filled lightweight concrete can only achieve low strengths, for high strengths, bulk densities in the upper range of the bandwidth must be provided.
  • the blowing additives absorb water, furthermore the consistency of the lightweight concrete must be adjusted plastically, because soft lightweight concrete tends to segregate. Stabilizing concrete admixtures are recommended.
  • the aggregate is selected so that as much void as possible is created between the grains.
  • the aggregate grains are only wrapped and The result is that the expert mentions "concrete with aggregate porosity" or single-grained concrete. "Aggregate aggregates and pumice are particularly suitable as aggregate.”
  • the porous lightweight concrete has a stone density of about 500 kg / m 3.
  • Aerated concrete has a closed-cell structure with pores of 0.5 to 1.5 mm in size and consists of up to 80% of its volume in air and about 20% in solids. It is made unreinforced, eg for bricks, or reinforced, eg for wall panels and ceiling tiles. Its main raw materials are finely ground quartz sand, quicklime and / or cement, water and a porosity agent, such as aluminum powder or paste. The reinforcement consists of corrosion-protected welded mesh. For the production of aerated concrete, the raw material mixture is first poured into molds. By reaction of the porosity agent with lime and water is formed in a correspondingly alkaline medium hydrogen, which causes the formation of pores.
  • the ingot can be cut with steel wires. This is followed by a steam hardening of 6 to 12 hours in autoclaves (hardness boilers) at 190 0 C and a pressure of 12 bar. Afterwards, the components are ready for use. They offer the user a good combination of bulk density (350 to 1000 kg / m 3 ), usually in the range of about 400 - 600 kg / m 3 , compressive strength (DF) (2 to 6 N / mm 2 ) and thermal conductivity (from 0 , 11 W / mK).
  • bulk density 350 to 1000 kg / m 3
  • autoclaves hardness boilers
  • DF compressive strength
  • thermal conductivity from 0 , 11 W / mK
  • pore lightweight concrete this is also known as air-hardening foam concrete.
  • This concrete can be produced on site, producing foam in a foaming device of a foaming agent and water, which is then mixed with a mortar or fine-grained concrete.
  • dense or porous aggregates are used.
  • Foamed concrete is produced in a flowable consistency and is used, among other things, for heat-insulating components, for light leveling layers, for filling cavities of all kinds, up to studs and tanks or for load-bearing structures. and cleanliness layers used.
  • Foamed concrete usually has bulk densities in the range of about 400 to 2000 kg / m 3 , but at bulk densities of 400 kg / m 3 foam concrete is extremely unstable.
  • DE 40 40 180 A1 relates inter alia to a molding composition for producing a solid foam product with an inorganic, stone-forming component, a water-containing second component (eg alkali silicate solution) and a foam-forming component, wherein a surface-active, amphiphilic substance, ie emulsifiers or surfactants, is added or be.
  • the inorganic, rock-forming component used is a solid which sets in an exothermic reaction with an alkali metal silicate solution, e.g. amorphous aluminosilicate, as foaming agents peroxides are disclosed.
  • DE 100 11 757 A1 an inorganic molding composition similar to DE 40 40 180 A1 is known, which can be processed to a foamed molding.
  • an inorganic, stone-forming component thermally activated clay is proposed in DE 100 11 757 A1.
  • DE 197 08 779 A1 discloses a binder-bound tufted brick with preferably 20-60% by weight of binder, such as e.g. Cement.
  • binder such as e.g. Cement.
  • foaming agents anionic surfactants are preferred.
  • the finished brick light foam has an air pore content of 25-80 vol .-%.
  • DE 572 259 C discloses porous-bubble masses having a density of between about 800 kg / m 3 and about 250 kg / m 3 .
  • the lowest density of about 250 kg / m 3 is achieved with gypsum as a binder.
  • Hydrogen peroxide is used at a concentration of 6%.
  • JP 49053620 A discloses a light cement product with a bulk density of 700 kg / m 3 .
  • hydrogen peroxide is used with a concentration of 60%, which is a strong oxidizing agent, is fire-promoting and reacts violently with combustible and reducing substances.
  • Object of the present invention is therefore to provide a feasible under normal environmental conditions method for producing a mineral foam with a bulk density of 50 to 200 kg / m 3 available, in which method the blowing agent foams controlled.
  • This object is achieved according to the invention in that an aqueous slip mineral composition comprising a binder, surfactant (s) and hydrogen peroxide as propellant in a concentration of 15 to 35%, by adding suitable accelerators selected from the group comprising oxidizing agents, such as potassium permanganate, catalysts, is caused as manganese dioxide, iron oxide F ⁇ 3 ⁇ 4 or silver, and enzymes such as catalase, and mixtures of one or more of these ingredients for the controlled foaming, thereby expanding the mineral composition to the mineral foam with the desired density.
  • suitable accelerators selected from the group comprising oxidizing agents, such as potassium permanganate, catalysts, is caused as manganese dioxide, iron oxide F ⁇ 3 ⁇ 4 or silver, and enzymes such as catalase, and mixtures of one or more of these ingredients for the
  • the present invention it is also possible for the first time to provide a mineral foam with, for example, inhomogeneous structure by providing the accelerator locally in higher concentration, so that at these points then a stronger foaming (expanding) of the molding compound than at other locations.
  • the addition of the accelerator can thereby be provided for dry molding material, especially when a (dry) propellant (potassium, monopersulfates) based on a peroxide-forming inorganic compound is used.
  • a (dry) propellant potassium, monopersulfates
  • hydrogen peroxide is then formed on addition of water from the peroxide-forming inorganic compound, which is rapidly decomposed by the accelerator into water and oxygen, whereby the foaming takes place.
  • other commercial accelerators and / or retarders may also be added to the aqueous slurry mineral composition
  • slurry generally means a still spreadable slurry of fine solids in a suspending agent.
  • the mineral composition particularly preferably comprises water in an amount of 15 to 50% by weight, based on the total mass.
  • water / cement ratios (W / C) of about 0.35 are recommended, while in the process according to the invention preferably water / binder ratios of about 0.45 to 0.95 are used. This high water content greatly simplifies and accelerates the mixing of the dry components.
  • water / cement ratios of more than 0.5 are used in conventional concrete mixes, unwanted and uncontrolled pore formation occurs, as a result of which the strength of the concrete suffers.
  • the mineral composition according to the invention comprises the binder in an amount of 20 to 80 wt .-%, based on the total mass, more preferably 40 - 50 wt .-%.
  • the binder in an amount of 20 to 80 wt .-%, based on the total mass, more preferably 40 - 50 wt .-%.
  • the use of a binder in an amount of more than 80 wt .-% is not possible.
  • the mineral composition of the invention comprises a binder selected from the group comprising hydraulic binders such as cement types gem. EN 197, special cements, alumina cements and the like; Non-hydraulic binders such as gypsum, clay and the like; Pozzolans, eg natural pozzolans like trass, puzzles zolaner, kieselguhr, siliceous sediments and the like or artificial pozzolans such as fly ash, granulated slag, glass dust, microsilica, sl substances and the like and / or alkali-activated silicates and combinations of such binders.
  • hydraulic binders such as cement types gem. EN 197, special cements, alumina cements and the like
  • Non-hydraulic binders such as gypsum, clay and the like
  • Pozzolans eg natural pozzolans like trass, puzzles zolaner, kieselguhr, siliceous sediments and the like
  • the accelerator or accelerators are added in an amount of from 0.01 to 5% by weight.
  • the amount of accelerator controls the timing of the onset of decomposition of the blowing agent, the decomposition rate of the blowing agent, and thus the foaming height (expansion) and foaming rate.
  • the resulting from the decomposition of heat development is delayed, resulting in a uniform pore formation. Due to the late time of heat generation, this can then be used entirely for curing and no longer influences pore formation.
  • the propellant is present in the mineral composition in an amount of 0.1 to 20 wt .-%, based on the total mass.
  • the choice of the amount and concentration of the blowing agent and the amount and concentration of the accelerator depends on the desired extent and timing of the foaming, at higher concentrations and amounts of hydrogen peroxide (about 15 to 35% and 10 to 20 wt .-%, based on the total mass) occurs with large amounts of accelerator rapid and vigorous foaming to form large pores, lower concentrations and amounts of hydrogen peroxide (about 2 to 7% and 0.1 to 5 wt .-%, based on the total mass) and small amounts Accelerators result in slow foaming and very fine pores.
  • surface tension control surfactants are selected from the group consisting of anionic surfactants, natural surfactants (saponins), and mixtures thereof. Furthermore, the amount of surfactant addition, preferably between 0.002 and 8 wt .-%, based on the total mass, hydrophobic properties of the mineral foam and its pore size can be adjusted.
  • the mineral composition according to the invention comprises stabilizers selected from the group comprising starch ether derivatives, polysaccharides, dispersion polymers, polymers based on vinyl acetate, acrylic, PVA and theological additives, in particular gelatine, cellulose, water glass and the like. It is beneficial if the stabilizers in an amount from 0.01 to 8 wt .-%, based on the total mass, are present.
  • the mineral composition comprises adjuvants selected from the group consisting of silicates, e.g. Aluminum, magnesium, zirconium and calcium silicate, silica, quartz, slate, silica, as well as synthetic materials, e.g. Oxides or zeolites, and hydroxides, carbonates, carbon, carbon fiber, div. Alkali and sulfate compounds or mixtures thereof.
  • silicates e.g. Aluminum, magnesium, zirconium and calcium silicate
  • silica silica, quartz, slate, silica
  • synthetic materials e.g. Oxides or zeolites, and hydroxides, carbonates, carbon, carbon fiber, div. Alkali and sulfate compounds or mixtures thereof.
  • Oxide colors can also be used as additives (for coloring the mineral foam). These additives can be used individually or in combination, more preferably in an amount of from 0.01 to 50% by weight, based on the total mass or in an amount to compensate for 100% of the total mass.
  • the binder with other dry components (additives) for adjusting chemical and physical properties, as well as with the accelerator (s) is mixed.
  • a (dry) blowing agent based on a peroxide-forming inorganic compound, such as sodium perborate a complete dry mix can be prepared, which foams only after the addition of water.
  • the resulting bulk density which among other things determines the heat conduction value, and the foaming rate, which determines the pore structure and the processing properties of the finished mineral foam in connection with the curing speed, can be varied by varying the type and amount of the blowing agents and the accelerators in a wide range - and material temperatures to be set.
  • the extended temperature independence allows the processing of the mineral composition according to the invention outside of industrial plants.
  • the amount of added surfactants, the amount of blowing agent and accelerator in coordination with the temperatures, as well as the particle size distribution of the solid additives essentially determines the foaming factor and the pore size, which has a significant influence on the heat transfer.
  • pore size and small pore size are desirable for applications in the field of thermal insulation, in particular a pore size of 0.1 to 1 mm, preferably 0.1 to 0.3 mm, with a pore density up to 95%, on the other hand has a supporting elements Pore size of 1 to 3 mm and a pore density of 50-60% proven.
  • the advantages of the mineral foam of the present invention include its superior chemical resistance to more sulphate-containing products (i.e., reduced eluate tendency), as well as its biological resistance and corrosion protection. Due to the possible high cement content as a binder, a high alkaline potential is possible and thus a high biological resistance (for example against fungal attack) is given, furthermore the mineral foam according to the invention allows the use of unprotected steel reinforcements in the foam. Another advantage is the material savings compared to normal concrete. For structural components, a concrete composition is usually used as follows:
  • a mineral foam produced according to the invention achieves a lower compressive strength of about 20 N / mm 2 compared with a concrete compressive strength of at least 70 N / mm 2 , which is composed, for example, as follows:
  • the viscosity of the liquid slurry mineral composition can be adjusted within wide limits.
  • a low viscosity is advantageous, wherein in particular complex shaped cavities can be filled by the expansion of the mineral composition without voids.
  • a high viscosity of the liquid slurry mineral composition is to be preferred.
  • ingredients of the mineral composition according to the invention can also be packaged separately in the form of mixtures and stored for a long time. This allows, among other things, the filling in cartridges for the production of small amounts of foam for a variety of applications.
  • the mineral foam according to the invention has the following advantages over commercially available products:
  • the foaming height is adjustable, the mineral composition according to the invention expands up to 17.5 times the volume,
  • the foaming speed is adjustable via the accelerator addition
  • the hydrophobic properties of the mineral foam according to the invention are adjustable,
  • the mineral foam according to the invention is not flammable
  • the organic range is ⁇ 1% and is biodegradable
  • the mineral foam according to the invention represents normal building rubble, a weighing Recycling is possible, no hazardous waste,
  • the pore size of the mineral foam according to the invention is adjustable and the pore structure can optionally have open (for filters or sound-insulating materials) or closed pores (for insulating materials or molded parts).
  • the inventive method also stable expanded mineral foams with a pore density of up to 95%, based on the total volume, and / or a bulk density of 50 to 200 kg / m 3 are produced for the first time.
  • a liquid slurry mineral composition was mixed together from the following ingredients and then allowed to foam in molds.
  • the respective foam density can be adjusted depending on the amount of peroxide within the specified H 2 O 2 - upper and lower limits.
  • the resulting foam expanded to about 10.5 times its original volume with a pore volume fraction of about 91%.
  • the resulting foam expanded to about 17.5 times its original volume with a pore volume fraction of about 95%. 1.3) gross density about 840 kg / m 3
  • the resulting foam expanded to about 1, 1 times its initial volume with a pore volume fraction of about 7%.
  • the resulting foam expanded to about 2.3 times its original volume with a pore volume fraction of about 56%.
  • the resulting foam expanded to about 10 times its original volume with a pore volume fraction of about 90%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une mousse minérale expansée possédant une masse volumique apparente de 50 à 200 kg/m3, selon lequel une composition minérale aqueuse de barbotine comprenant un liant, un/des agent(s) tensioactif(s) et du peroxyde d'hydrogène comme agent gonflant dans une concentration de 15 à 35 % est amenée à mousser de manière contrôlée par adjonction d'activateurs appropriés choisis dans le groupe comprenant des agents d'oxydation tels que le permanganate de potassium, des catalyseurs tels que le bioxyde de manganèse, l'oxyde de fer Fe3O4 ou de l'argent et des enzymes telles que la catalase, et des mélanges d'un ou de plusieurs de ces composants, moyennant quoi la composition minérale connaît une expansion pour devenir une mousse minérale ayant la masse volumique apparente souhaitée.
PCT/AT2007/000235 2006-05-19 2007-05-16 Bétons légers et/ou mousses minérales et leur procédé de fabrication WO2007134349A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0087106A AT503801B1 (de) 2006-05-19 2006-05-19 Leichtbetone bzw. mineralstoffe sowie verfahren zu ihrer herstellung
ATA871/2006 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007134349A1 true WO2007134349A1 (fr) 2007-11-29

Family

ID=38269113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2007/000235 WO2007134349A1 (fr) 2006-05-19 2007-05-16 Bétons légers et/ou mousses minérales et leur procédé de fabrication

Country Status (2)

Country Link
AT (1) AT503801B1 (fr)
WO (1) WO2007134349A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062762A1 (de) 2010-12-09 2012-06-14 Dr. Lucà & Partner Ingenieurkontor GmbH Verfahren zur Herstellung von Schaumbeton
DE102011109520A1 (de) 2011-08-05 2013-02-07 K-Utec Ag Salt Technologies Verfahren und Vorrichtung zur kontinuierlichen Erzeugung von Mineralschäumen
FR2986790A1 (fr) * 2012-02-15 2013-08-16 Saint Gobain Weber Procede continu de fabrication d'un materiau a base de liant hydraulique allege par expansion
DE202012103968U1 (de) * 2012-10-16 2014-02-05 Promat Gmbh Rohrleitungsanordnung, insbesondere zur Anwendung im Bereich der Lufttechnik
CN104250071A (zh) * 2013-06-25 2014-12-31 辽宁集佳节能墙体装备有限公司 一种化学发泡混凝土及其制备方法
CN104250069A (zh) * 2013-06-25 2014-12-31 辽宁集佳节能墙体装备有限公司 一种常温发泡混凝土激发剂及其应用
FR3030504A1 (fr) * 2014-12-23 2016-06-24 Lafarge Sa Procede de fabrication en continu d'une mousse minerale a faible densite
CN108249811A (zh) * 2018-02-02 2018-07-06 日照弗尔曼新材料科技有限公司 一种混凝土抗裂膨胀剂及其制备方法
CN108290797A (zh) * 2015-09-07 2018-07-17 卡威斯公司 催化活性泡沫形成粉末
CN108439899A (zh) * 2018-04-09 2018-08-24 中交第二航务工程局有限公司 一种高强度超轻质水泥基复合材料及其制备方法
CN109652218A (zh) * 2019-02-03 2019-04-19 南京林业大学 一种具有降解功能的蛋白类泡沫发生剂及其制备方法
WO2020037123A1 (fr) * 2018-08-16 2020-02-20 Saudi Arabian Oil Company Barbotine de ciment sensible à un gaz hydrocarboné
WO2021037989A1 (fr) * 2019-08-30 2021-03-04 Holcim Technology Ltd Procédé de fabrication d'une mousse minérale de remplissage de cavités
CN113336570A (zh) * 2021-07-02 2021-09-03 重庆大学 一种新型复合发泡石膏吸声材料及其制备方法
CN116143544A (zh) * 2021-11-22 2023-05-23 陕西铁路工程职业技术学院 一种尾矿集料泡沫混凝土及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013101840A1 (de) * 2013-02-25 2014-08-28 Knauf Aquapanel Gmbh Körper mit einem Dämmmaterial, Bindmittelmischung zur Erstellung des Dämmmaterials, Verwendung einer Bindemittelmischung zur Erstellung des Dämmmaterials sowie Verfahren zur Herstellung des Körpers
DE202015100064U1 (de) * 2015-01-08 2015-02-02 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Betonmischung zur Herstellung eines Betonerzeugnisses zur Energiedissipation bei Stoßbeanspruchung
DE102016012746A1 (de) * 2016-10-25 2018-04-26 WindplusSonne GmbH Vorprodukte zur Herstellung von porösen, mineralischen Leichtbaumaterialien, Verfahren zur Herstellung von porösen, mineralischen Leichtbaumaterialien und ihre Verwendung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH226877A (de) * 1940-03-23 1943-05-15 Degussa Verfahren zur Herstellung von geformten, porösem Material.
US2371928A (en) * 1940-01-04 1945-03-20 Schneider Josef Process for the production of porous bodies
US4040850A (en) * 1974-09-03 1977-08-09 Bayer Aktiengesellschaft Production of porous gypsum moldings
US4043825A (en) * 1974-09-03 1977-08-23 Bayer Aktiengesellschaft Production of foamed gypsum moldings
JPS55116650A (en) * 1979-02-28 1980-09-08 Nippon Asbestos Co Ltd Refractory coating composition and method of forming refractory coating layer therewith
JPS5899157A (ja) * 1981-12-08 1983-06-13 大日本インキ化学工業株式会社 無機質発泡体の製造方法
DE3617129A1 (de) * 1986-05-22 1987-11-26 Woellner Werke Feste schaeume auf silikatbasis und verfahren zur herstellung derselben

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE572259C (de) * 1929-10-29 1933-03-13 Leichtbaustoff Ges M B H Verfahren zur Herstellung von poroes-blasigen Massen und Gegenstaenden
JPS4953620A (fr) * 1972-09-23 1974-05-24
DE19749350A1 (de) * 1997-11-07 1999-05-20 Maxit Holding Gmbh Verfahren zum Herstellen und Anmachen einer Baustoffmischung sowie Baustoffmischung mit porenbildendem Zusatzstoff

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371928A (en) * 1940-01-04 1945-03-20 Schneider Josef Process for the production of porous bodies
CH226877A (de) * 1940-03-23 1943-05-15 Degussa Verfahren zur Herstellung von geformten, porösem Material.
US4040850A (en) * 1974-09-03 1977-08-09 Bayer Aktiengesellschaft Production of porous gypsum moldings
US4043825A (en) * 1974-09-03 1977-08-23 Bayer Aktiengesellschaft Production of foamed gypsum moldings
JPS55116650A (en) * 1979-02-28 1980-09-08 Nippon Asbestos Co Ltd Refractory coating composition and method of forming refractory coating layer therewith
JPS5899157A (ja) * 1981-12-08 1983-06-13 大日本インキ化学工業株式会社 無機質発泡体の製造方法
DE3617129A1 (de) * 1986-05-22 1987-11-26 Woellner Werke Feste schaeume auf silikatbasis und verfahren zur herstellung derselben

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 94, no. 18, 4 May 1981, Columbus, Ohio, US; abstract no. 144442j, NIPPON ASBESTOS CO. LTD.: "Fire-resistant coating" page 310; XP000060488 *
CHEMICAL ABSTRACTS, vol. 99, no. 20, 14 November 1983, Columbus, Ohio, US; abstract no. 163146k, DAINIPPON INK AND CHEMICALS: "Inorganic foamed products" page 286; XP000064620 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062762A1 (de) 2010-12-09 2012-06-14 Dr. Lucà & Partner Ingenieurkontor GmbH Verfahren zur Herstellung von Schaumbeton
DE102010062762B4 (de) * 2010-12-09 2012-09-27 Dr. Lucà & Partner Ingenieurkontor GmbH Verfahren zur Herstellung von Schaumbeton und Verwendung des Verfahrens
DE102011109520A1 (de) 2011-08-05 2013-02-07 K-Utec Ag Salt Technologies Verfahren und Vorrichtung zur kontinuierlichen Erzeugung von Mineralschäumen
FR2986790A1 (fr) * 2012-02-15 2013-08-16 Saint Gobain Weber Procede continu de fabrication d'un materiau a base de liant hydraulique allege par expansion
WO2013121143A1 (fr) 2012-02-15 2013-08-22 Saint-Gobain Weber Procédé continu de fabrication d'un materiau à base de liant hydraulique allegé par expansion
CN104105676A (zh) * 2012-02-15 2014-10-15 圣戈班韦伯公司 基于水硬性粘合剂并通过膨胀轻量化的材料的连续制造方法
DE202012103968U1 (de) * 2012-10-16 2014-02-05 Promat Gmbh Rohrleitungsanordnung, insbesondere zur Anwendung im Bereich der Lufttechnik
CN104250069A (zh) * 2013-06-25 2014-12-31 辽宁集佳节能墙体装备有限公司 一种常温发泡混凝土激发剂及其应用
CN104250069B (zh) * 2013-06-25 2016-08-10 集佳绿色建筑科技有限公司 一种常温发泡混凝土激发剂及其应用
CN104250071A (zh) * 2013-06-25 2014-12-31 辽宁集佳节能墙体装备有限公司 一种化学发泡混凝土及其制备方法
US10538462B2 (en) 2014-12-23 2020-01-21 Holcim Technology Ltd Method for the continuous production of a low-density mineral foam
FR3030504A1 (fr) * 2014-12-23 2016-06-24 Lafarge Sa Procede de fabrication en continu d'une mousse minerale a faible densite
WO2016102838A1 (fr) * 2014-12-23 2016-06-30 Lafarge Procédé de fabrication en continu d'une mousse minérale à faible densité
CN107207350A (zh) * 2014-12-23 2017-09-26 拉法基公司 用于连续制备低密度矿物泡沫的方法
EP3237353B1 (fr) 2014-12-23 2022-04-20 Holcim Technology Ltd Procédé de fabrication en continu d'une mousse minérale à faible densité
RU2731119C2 (ru) * 2014-12-23 2020-08-31 Хольцим Текнолоджи Лтд Способ непрерывного производства минерального пеноматериала низкой плотности
CN108290797A (zh) * 2015-09-07 2018-07-17 卡威斯公司 催化活性泡沫形成粉末
CN108290797B (zh) * 2015-09-07 2021-08-24 卡威斯公司 催化活性泡沫形成粉末
CN108249811B (zh) * 2018-02-02 2020-09-15 日照弗尔曼新材料科技有限公司 一种混凝土抗裂膨胀剂及其制备方法
CN108249811A (zh) * 2018-02-02 2018-07-06 日照弗尔曼新材料科技有限公司 一种混凝土抗裂膨胀剂及其制备方法
CN108439899A (zh) * 2018-04-09 2018-08-24 中交第二航务工程局有限公司 一种高强度超轻质水泥基复合材料及其制备方法
CN108439899B (zh) * 2018-04-09 2020-11-03 中交第二航务工程局有限公司 一种高强度超轻质水泥基复合材料及其制备方法
WO2020037123A1 (fr) * 2018-08-16 2020-02-20 Saudi Arabian Oil Company Barbotine de ciment sensible à un gaz hydrocarboné
US11008498B2 (en) 2018-08-16 2021-05-18 Saudi Arabian Oil Company Cement slurry responsive to hydrocarbon gas
CN109652218A (zh) * 2019-02-03 2019-04-19 南京林业大学 一种具有降解功能的蛋白类泡沫发生剂及其制备方法
WO2021037989A1 (fr) * 2019-08-30 2021-03-04 Holcim Technology Ltd Procédé de fabrication d'une mousse minérale de remplissage de cavités
CN113336570A (zh) * 2021-07-02 2021-09-03 重庆大学 一种新型复合发泡石膏吸声材料及其制备方法
CN116143544A (zh) * 2021-11-22 2023-05-23 陕西铁路工程职业技术学院 一种尾矿集料泡沫混凝土及其制备方法
CN116143544B (zh) * 2021-11-22 2024-04-26 陕西铁路工程职业技术学院 一种尾矿集料泡沫混凝土及其制备方法

Also Published As

Publication number Publication date
AT503801A4 (de) 2008-01-15
AT503801B1 (de) 2008-01-15

Similar Documents

Publication Publication Date Title
AT503801B1 (de) Leichtbetone bzw. mineralstoffe sowie verfahren zu ihrer herstellung
EP0179775B1 (fr) Materiau en ceramique leger pour construction, procede pour sa fabrication ainsi que son utilisation
EP3063342B1 (fr) Élément de béton comprenant un absorbeur acoustique
US3501323A (en) Method of manufacturing building structural and paving products using a calcium silicate hydrate bonding matrix
EP2045227B1 (fr) Mousses inorganiques à base de ciment rapide en tant que masse pare-feu pour le remplissage de corps creux
DE102010062762B4 (de) Verfahren zur Herstellung von Schaumbeton und Verwendung des Verfahrens
EP2074074B1 (fr) Procédé de mettre en oeuvre un béton cellulaire durcissant à l'air, constitué de mélanges contenant des liants
EP1851181A1 (fr) Matiere moulable constituee de particules recouvertes d'une matiere de revetement et son utilisation pour la production de corps moules
EP3442927B1 (fr) Procédé de fabrication de corps moulés en béton cellulaire
AT9511U1 (de) Leichtbetone bzw. mineralstoffe sowie verfahren zu ihrer herstellung
EP2163534B1 (fr) Matériau en béton poreux et son procédé de fabrication
DE69910547T2 (de) Material auf der basis von gips, verfahren zu seiner herstellung und feuerschutzelement enthaltend dieses material
EP2028170B1 (fr) Procédé de fabrication de béton léger
EP0001992B1 (fr) Mélange moussable à base de ciment magnésien, son utilisation et procédé de préparation de formes poreuses
DE102004030921B4 (de) Verwendung eines angemachten Mörtels aus einer mineralischen Trockenmörtelmischung
WO2018103794A1 (fr) Procédé pour réaliser un élément de construction à partir de béton mousse et analogue
DE3810683A1 (de) Leichtbetonbaukoerper mit einem leichtzuschlag aus schaumzement und verfahren zu seiner herstellung
EP0781733B1 (fr) Mortier léger et procédé pour sa fabrication
EP0585200A2 (fr) Plâtre léger stabilisé
DE2207278A1 (de) Schaume und Hohlteilchen, bestehend aus anorganischen Substanzen, und Verfahren zu ihrer Herstellung
AT378174B (de) Waerme- und/oder schalldaemmendes material und verfahren zu seiner herstellung
FI65416C (fi) Foerskumbar magnesiacementblandning
WO2000009829A1 (fr) Procede permettant de fabriquer des elements de construction, notamment des panneaux muraux et des melanges
NO149955B (no) Poroest magnesiasementprodukt, fremstilling av formlegeme paa basis herav samt dets anvendelse som brannbeskyttelsessjikt og/eller -doer eller -mur eller som varmeisolerende bygningselementer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07718447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07718447

Country of ref document: EP

Kind code of ref document: A1