WO2007132832A1 - 水性液中の被処理物質の処理方法並びにその方法に使用する装置及び光触媒材 - Google Patents

水性液中の被処理物質の処理方法並びにその方法に使用する装置及び光触媒材 Download PDF

Info

Publication number
WO2007132832A1
WO2007132832A1 PCT/JP2007/059919 JP2007059919W WO2007132832A1 WO 2007132832 A1 WO2007132832 A1 WO 2007132832A1 JP 2007059919 W JP2007059919 W JP 2007059919W WO 2007132832 A1 WO2007132832 A1 WO 2007132832A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
aqueous liquid
light
layer
ultrasonic
Prior art date
Application number
PCT/JP2007/059919
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Itoh
Original Assignee
Yield Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yield Co., Ltd. filed Critical Yield Co., Ltd.
Priority to JP2008515555A priority Critical patent/JP5357540B2/ja
Publication of WO2007132832A1 publication Critical patent/WO2007132832A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present invention relates to a method for treating a substance to be treated in an aqueous liquid using a titanium dioxide photocatalyst, and an apparatus and a photocatalyst material used in the method. More specifically, the present invention relates to a method for decomposing harmful substances in an aqueous liquid by simultaneously irradiating a titanium dioxide photocatalyst in an aqueous liquid with light and ultrasonic waves.
  • Photocatalysts are usually activated by ultraviolet irradiation and exert their effects. For this reason, it is necessary to provide a light source so that the photocatalyst is exposed to light energy.
  • a photocatalyst When attempting to decompose a substance to be treated in an aqueous solution with a photocatalyst, it is difficult for light to reach the photocatalyst in water. There is a problem that the reaction space formed between them becomes narrow and the amount of processing is limited.
  • Patent Document 1 discloses a method for producing a hydroxy radical, characterized in that titanium dioxide catalyst particles and water are brought into contact with each other in a fluid under ultrasonic irradiation. According to this method, since the photocatalyst can be activated without irradiating light, the conventional problem that the processing amount is small can be solved.
  • Patent Document 2 in the method for treating an aqueous liquid containing a halogenated organic compound, (a) the aqueous liquid is contacted with a photocatalyst, and (b) the aqueous liquid is irradiated with light. Furthermore, there is disclosed (c) a method for treating an aqueous liquid, wherein the aqueous liquid is simultaneously exposed to sonic energy. According to this method, the reaction rate and efficiency can be further improved by combining light irradiation and ultrasonic irradiation.
  • a small-sized photocatalyst is preferred, and in fact, titanium oxide photocatalyst particles are used.
  • Patent Documents 1 and 2 disclose the use of granular titanium dioxide photocatalysts, but photocatalytic titanium oxide powders are usually fine powders having a particle size of nano-order and can be used as they are. When used, there is a problem that it is difficult to separate and recover the titanium oxide powder from the liquid after the treatment. In order to remedy this problem, it is conceivable to granulate the above powder into a powder having a particle size of the order of millimeters. However, since it is necessary to bake at a high temperature, anatase-type titanium dioxide is likely to be mutated to a rutile type. There is a problem of t t that photocatalysis is reduced.
  • a photocatalytic titanium oxide powder is mixed with a binder, a dispersant, and a stabilizer, and can be used by coating on a suitable substrate. Ultrasonic irradiation is performed using a coating photocatalyst. When this is done, there is a problem that the coating film cannot withstand the load caused by the ultrasonic wave and peels off to the borobo port before it can exert its photocatalytic function, and cannot be used. In addition, since organic components such as binders are mixed, not all coating surfaces have a photocatalytic function (only interspersed with photocatalytic reactants), and there is a problem that the performance as a photocatalyst deteriorates. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-26406
  • Patent Document 2 Japanese Patent Publication No. 5-503252
  • the present invention can exhibit high photocatalytic action even in an aqueous liquid, has durability against ultrasonic waves, and the photocatalytic activity is enhanced by irradiating both light and ultrasonic waves, and It is an object of the present invention to provide a method and an apparatus for efficiently decomposing a material to be treated in an aqueous liquid using a photocatalyst material that is easy to handle such as separation and recovery. Another object of the present invention is to provide a photocatalyst material suitable for use in an aqueous liquid.
  • the inventor of the present application has made various studies to solve the above problems, and as a result, the titanium dioxide photocatalyst layer is deposited on the surface of the base material by oxidizing the base material that is capable of metallic titanium.
  • the photocatalyst material is not only durable to ultrasonic waves, but also has been found to have enhanced photocatalytic activity by simultaneous irradiation of light and ultrasonic waves.
  • the inventors succeeded in developing a photocatalyst material that exhibits extremely excellent photocatalytic activity even in an aqueous liquid, and solved the above problems.
  • the present invention is a method for decomposing a material to be treated dissolved or dispersed in an aqueous liquid, wherein a photocatalyst material is immersed in the aqueous liquid, and the aqueous liquid is irradiated with light and ultrasonic waves simultaneously.
  • the photocatalyst material is exposed to light energy and ultrasonic energy, and the photocatalyst material comprises a titanium metal substrate and a titanium dioxide photocatalyst layer integrally formed on the surface thereof,
  • a method for treating a substance to be treated characterized in that the thickness of the layer is larger than 1 ⁇ m.
  • the photocatalyst layer does not peel off even when irradiated with ultrasonic waves. Can be held.
  • the photocatalyst layer is deposited on the surface of the substrate, it is easy to handle without the problem that separation and recovery are difficult as in the case where the photocatalyst powder itself having a particle size of nanometers is used.
  • the photocatalytic action is synergistically enhanced as compared with the case where each is applied alone.
  • the thickness of the photocatalyst layer greater than 1 ⁇ m , a sufficient effect can be obtained even when used in water.
  • the thickness of the photocatalyst layer is more preferably 1.5 ⁇ m or more, and particularly preferably 2.0 ⁇ m to 3.0 ⁇ m.
  • the present invention is an apparatus for performing the above-described treatment method, a water treatment tank containing an aqueous liquid, a photocatalyst material disposed in the treatment tank and immersed in the aqueous liquid, and a treatment tank An ultrasonic device that radiates ultrasonic waves to the photocatalyst material disposed inside, and a light irradiation device that radiates light to the photocatalyst material disposed in the treatment tank, wherein the photocatalyst material is a metal
  • the present invention relates to a processing apparatus comprising a titanium base material and a titanium dioxide photocatalyst layer integrally formed on the surface thereof, wherein the thickness of the layer is larger than 1 ⁇ m.
  • the present invention is an apparatus for performing the treatment method, wherein a water treatment tank containing an aqueous liquid in which at least a part of a wall surface is made of a light transmissive material, and disposed in the treatment tank.
  • aqueous A photocatalyst material that is immersed in the liquid, an ultrasonic device that is disposed in the treatment tank and irradiates the photocatalyst material with ultrasonic waves, and is disposed outside the treatment tank so as to face the wall surface that is the light transmitting material force.
  • a photoirradiation device for irradiating light to the photocatalyst material, the photocatalyst material comprising a titanium metal base material and a titanium dioxide photocatalyst layer integrally formed on the surface thereof.
  • the present invention relates to a processing apparatus, wherein the thickness of the layer is greater than 1 m.
  • a photocatalyst plate in which a photocatalyst layer is formed on the entire surface of a plate-like metal titanium base material having a large number of through holes penetrating the plate surface is used as the photocatalyst material. As soon as both light is irradiated, the photocatalyst can be activated efficiently. Further, since the aqueous liquid passes through the through holes, the surface area of the photocatalyst that comes into contact with the aqueous liquid is increased, and the processing efficiency can be increased. It is particularly suitable for continuous treatment while circulating an aqueous liquid. Moreover, since it is plate-shaped, replacement and recovery are easy.
  • both the ultrasonic wave and light can be efficiently irradiated onto the photocatalyst of a large area, which is preferable.
  • the water treatment tank is cylindrical or prismatic, and is provided with an aqueous liquid inlet on one end side in the longitudinal direction and an aqueous liquid outlet on the other end side.
  • a light irradiation device is installed along the longitudinal direction, and an ultrasonic irradiation device is installed along the longitudinal direction on the opposite side surface.
  • a plurality of the photocatalyst plates are arranged in the longitudinal direction between the two irradiation devices. If the processing device is arranged so that the plate surface of each photocatalyst plate is inclined with respect to each irradiation device, both ultrasonic waves and light have a large area.
  • the aqueous liquid that efficiently irradiates the photocatalyst and flows to the discharge port of the input loca passes through the through holes of the plurality of porous plates, it contacts the photocatalyst multiple times and does not cause a processing residue.
  • the aqueous liquid can be processed efficiently.
  • the present invention is a photocatalyst material particularly suitable for use in a liquid, comprising a titanium metal substrate and a titanium dioxide photocatalyst layer integrally formed on the surface thereof, the photocatalyst
  • the present invention relates to a photocatalyst material characterized in that the thickness of the layer is 2 m or more, and holes having a maximum diameter of 0.0 or more are scattered on the surface of the photocatalyst layer.
  • the processing method, the processing apparatus, and the photocatalyst material according to the present invention light is emitted even when ultrasonic waves are irradiated. It is possible to synergistically enhance the photocatalytic function by performing light irradiation and ultrasonic irradiation at the same time without causing the catalyst layer to peel off and impair the photocatalytic function. In addition, since it exhibits a high photocatalytic action even in an aqueous solution, the substance to be treated can be decomposed very efficiently. Furthermore, it is easy to handle photocatalyst separation and recovery.
  • FIG. 1 is an SEM photograph showing a cross section of a photocatalyst material according to the present invention.
  • FIG. 2 is a perspective view of one embodiment of the apparatus according to the present invention.
  • FIG. 3 is a longitudinal sectional view of another embodiment of the apparatus according to the present invention.
  • FIG. 4 is a graph showing the results of a decomposition test of methylene blue colored water when the photocatalyst material according to the present invention is irradiated with ultraviolet rays and ultrasonic waves alone or in combination.
  • FIG. 5 is a graph showing the relationship between the thickness of the photocatalyst layer and the ability to decompose methylene blue.
  • FIG. 6 is an SEM photograph showing the surface state of photocatalyst material B (layer thickness 0.5 to 0.8 m).
  • FIG. 7 is an SEM photograph showing the surface state of photocatalyst material D (layer thickness 2 m). Explanation of symbols
  • the photocatalyst material is composed of a metal titanium base material and a titanium dioxide photocatalyst layer integrally formed on the surface thereof.
  • the titanium dioxide photocatalyst layer integrally formed on the surface of the metal titanium substrate refers to a titanium dioxide photocatalyst layer deposited by oxidizing the surface of the metal titanium substrate. Is not included.
  • the oxidation treatment For example, it is preferable to combine an anodic acid and an atmospheric acid, and more preferably, a pretreatment of immersing the substrate in an aqueous solution containing a peroxide is performed before the anodic oxidation.
  • the photocatalyst layer obtained by subjecting the surface of the metal titanium base material to an acid bath treatment is continuously formed on the metal titanium base material, there is no fear of peeling.
  • a binder, a dispersant, and the like are mixed, the photocatalytic function does not deteriorate.
  • Hydrogen peroxide is preferred as the peroxide used in the pretreatment.
  • a suitable pretreatment liquid is an aqueous solution containing 3 to:% by weight of hydrogen peroxide.
  • the immersion time of the substrate in the pretreatment liquid is preferably 5 to 48 hours.
  • an electrolytic solution containing an organic acid or a salt thereof is used.
  • Suitable organic acids and organic acid salts include sodium salts of tartaric acid, citrate, malic acid, succinic acid, darconic acid and fumaric acid.
  • the concentration of the organic acid or organic acid salt in the electrolytic solution is preferably 0.5 to 5% by weight.
  • the electrolytic solution may further contain a pH adjuster for promoting ionic conduction during anodization.
  • Suitable pH adjusters include sulfuric acid, hydrochloric acid, sodium hydroxide and the like. Such pH adjusting agents are present in the electrolyte solution preferably contains 0.5 to 5 weight 0/0.
  • the electrolytic solution preferably contains 0.1 to 5% by weight of hydrogen peroxide.
  • An anode (substrate) and a cathode are placed in the above electrolyte, a voltage is applied between these electrodes, and the removal of this applied voltage is considered as one anodic oxidation process.
  • the voltage profile in anodization is preferably raised stepwise or continuously at a rate of 0.1 to 0.3 VZ seconds and held for 100 seconds or more at a peak voltage of 50 to 250 V. Thereafter, the applied voltage is removed instantaneously or gradiently. It is preferable that the anodized substrate is thoroughly washed with water and then transferred to the next processing step!
  • the atmospheric acid temperature is preferably 500 to 600 ° C, and the atmospheric acid time is preferably 0.5 to 2 hours.
  • the metal titanium substrate refers to a substrate that also has pure titanium or titanium alloy strength. Particularly preferred is a pure titanium substrate.
  • the metal constituting the titanium alloy include platinum, gold, tin, palladium, ruthenium, nickel, conoret, chromium, molybdenum, aluminum, vanadium, and zirconium.
  • Suitable titanium alloys include titanium 'aluminum' tin alloys (eg Ti-5A1—2.5Sn), titanium-aluminum-vanadium alloys (eg Ti-6A1-4V), and titanium-molybdenum-dialkoxide. Alloy (for example, Ti-15Mo-5Zr).
  • the light irradiated to the photocatalyst material is not particularly limited as long as it is light having a wavelength capable of activating (exciting) the photocatalyst to be used.
  • many photocatalysts are activated by ultraviolet light.
  • ultraviolet light having a wavelength of 400 nm or less, more preferably ultraviolet light having a wavelength of around 360 nm may be irradiated.
  • ozone is generated, so a combination of photocatalysis and ozone can be expected. Therefore, for example, ultraviolet rays having a wavelength of 180 to 260 nm may be irradiated.
  • visible light may be irradiated.
  • Examples of highly practical wavelengths include ultraviolet rays around 185 nm, 254 nm, and 360 nm. Particularly preferred is ultraviolet light of 254 nm.
  • the photocatalyst material is used in an aqueous liquid. Is preferred. More preferably 3 ⁇ 12mWZcm 2, particularly preferably 5 ⁇ 1 OmWZcm 2.
  • the light source may be provided in a container for containing an aqueous liquid or may be provided on the outer side of the container, and the irradiated surface of the container may be made of a light transmissive material.
  • a light-transmitting material is a material that transmits light of a wavelength that can activate the photocatalyst used.
  • the wavelength range of the ultrasonic wave irradiated to the photocatalyst is preferably from 30 to 500 kHz, more preferably from 35 to 70 kHz, preferably from 1 kHz to 1 MHz.
  • the output is preferably 200 W to 1500 W, more preferably 400 W to 1500 W, particularly preferably 1000 W or more if the preferred output is within the preferred range depending on the size of the device.
  • a power of 35 to 45 kHz: 1100 to 1300 W can be cited.
  • it may be about 400 W.
  • it may be a 40kHz: 400W device.
  • photocatalytic layers are exposed to ultrasonic energy.
  • ultrasonic waves are irradiated from both sides of the plate. A little.
  • the thickness of the photocatalyst layer can be confirmed by cross-sectional observation using a light scanning electron microscope (SEM). Since the photocatalyst layer of the present invention is formed continuously with the metal titanium substrate, unlike the coating film, there is no clear boundary between the photocatalyst layer and the substrate. However, by observing the cross-section with an optical scanning electron microscope (SEM), it is possible to distinguish between titanium metal and titanium dioxide photocatalysts, so the approximate layer thickness can be determined (see Fig. 1). The portion between the up and down arrows is the layer thickness [2000 times 1 scale: 1.5 / ⁇ ⁇ ]).
  • the thickness of the photocatalyst layer in the present invention is the average of the layer thickness at the location where the photocatalyst layer is formed. Points to the value.
  • the shape of the photocatalyst material is not particularly limited, and may be any shape such as a plate shape, a rod shape, a net shape, a fiber shape, and a granular shape.
  • the photocatalyst material is preferably fixed, for example, when a granular photocatalyst material is used, the photocatalyst material is packed in a transparent resin column (transmitting light in a wavelength region that activates the photocatalyst). It is preferable to use it. If a porous granular photocatalyst is used, the surface area is large and the efficiency is high. In terms of cost, a thin plate shape is preferred.
  • a perforated plate shape having a large number of holes penetrating the plate surface for example, a lath net-like or punching metal perforated plate
  • light and ultrasonic waves can be transmitted on one side. Even when the irradiation is carried out from only, it is preferable because the photocatalyst layer on the other side can be activated.
  • the plate having a large number of through holes a plate in which through holes are formed over almost the entire plate surface is preferable.
  • the machine above a certain level If it has sufficient strength, fixation in an aqueous liquid is easy.
  • a thickness of about 0.5 mm for example, in the case of a thin plate shape having pure titanium power, it is preferable to have a thickness of about 0.5 mm.
  • the photocatalyst layer is preferably formed on the entire surface of the titanium metal substrate or the entire surface of the metal titanium substrate that is immersed in the aqueous liquid. However, light and ultrasonic irradiation are performed only from one direction. In such a case, it is sufficient that a photocatalyst layer is formed at least on the surface of the irradiated portion.
  • the amount of the photocatalyst in an aqueous solution is photocatalytic surface area 0. 5 m 2 or more preferable.
  • 10 m 2 or less is preferable with respect to the aqueous liquid lm 3 .
  • it is 1.5 m 2 or more, particularly preferably 2 m 2 or more, relative to the aqueous liquid lm 3 .
  • the surface area refers to the total surface area of the photocatalyst at the portion immersed in the aqueous liquid. It is not necessary to completely immerse the photocatalyst material in the aqueous liquid.
  • a lath network-like perforated plate with a photocatalyst layer deposited on the entire surface (“3-6 material" with rhombus-shaped inner diameters of 3 mm and 6 mm) is completely immersed in an aqueous liquid
  • the method and apparatus of the present invention can be used for purification of domestic wastewater and industrial wastewater.
  • the method and device can be applied to hot springs, public baths, pools, rooftop water tanks of condominiums, factory wastewater, etc. Can do.
  • examples of the substance to be treated according to the present invention include organic substances that can be contained in the aqueous liquid, pathogenic bacteria such as viruses and bacteria, and environmentally hazardous substances such as halogenated organic compounds.
  • FIG. 2 shows an embodiment of the processing apparatus of the present invention.
  • 1 is a water treatment tank for storing an aqueous liquid
  • 2 is a photocatalyst material.
  • photocatalyst materials lath photocatalyst layer was deposited on the entire surface (0.5 m X 0.5 m X thickness lmm "3_6 material") is placed 4 sheets
  • 3 is an ultrasonic irradiation device
  • 4 is an ultraviolet irradiation device.
  • the light irradiation device and the ultrasonic device are installed on the side wall inside the treatment tank, and the photocatalyst material is fixed on the bottom surface.
  • the installation location of the ultrasonic irradiation device and the light irradiation device is not particularly limited, and a plurality of them are installed. You may do it.
  • the light irradiation device may be provided outside the processing tank, and the wall of the processing tank facing the light irradiation device may be made of a light transmissive material.
  • an ultrasonic irradiation apparatus and a light irradiation apparatus are installed inside the water treatment tank, and all of the plate-shaped pure titanium base material having a large number of through holes on the plate surface.
  • An apparatus in which a plurality of photocatalyst materials each having a photocatalyst layer formed on the surface thereof are installed such that the plate surface faces the both irradiation apparatuses with an inclination is exemplified.
  • the apparatus has a cylindrical or prismatic water treatment tank, and an aqueous liquid inlet is provided on the side surface near one end in the longitudinal direction, and a discharge port is provided on the side surface near the other end.
  • a light irradiation device is installed along the longitudinal direction on one side of the device, and an ultrasonic irradiation device is installed along the longitudinal direction on the opposite surface. It is possible to list continuous water treatment devices in which perforated plate-shaped photocatalyst materials are arranged side by side in the longitudinal direction and the plate surface of each photocatalyst material is inclined with respect to each irradiation device. .
  • the plate surface of the photocatalyst plate has a size that substantially blocks the cavity in the water treatment tank that serves as a flow path for the aqueous liquid. And having a shape.
  • a photocatalyst plate having a shape and size that occupy 70% or more of the space area on the same plane as the plate surface of the photocatalyst plate in the water treatment tank.
  • a photocatalyst plate occupying 80% or more, more preferably 90% or more of the space area is used.
  • the photocatalyst plate is installed at an inclination so that an acute angle ⁇ (see Fig. 3) formed by the irradiation device and the plate surface is 40 to 75 degrees. It is more preferable that it is installed at an angle of 45 to 70 degrees.
  • the size and shape of the treatment tank of the present invention are not particularly limited, and can be appropriately changed according to the installation location, the amount of treated water, and the like.
  • the titanium diacid titanium photocatalyst layer of the present invention has a layer thickness of 2 m or more and a maximum diameter of 0.
  • pores of 5 ⁇ m or more are preferred. It is preferable that 10 or more holes having a maximum diameter of 0.5 m or more exist per 1000 ⁇ m 2 of the surface area of the layer, more preferably 20 or more, still more preferably 50 or more, and particularly preferably 100. There are more than one.
  • a plate-like substrate made of pure titanium having a thickness of 15 mm x 50 mm and a thickness of 1 mm was prepared. This substrate was previously pickled with 10 wt% aqueous hydrogen fluoride and with 3 wt% aqueous hydrogen fluoride and 10 wt% hydrogen peroxide.
  • the above base material was pretreated by immersing it in a 5 wt% aqueous hydrogen peroxide solution at room temperature for 24 hours. Subsequent to the above pretreatment, the substrate was subjected to an anodic oxidation treatment in an electrolytic solution composed of 1 wt% sodium tartrate, 1 wt% sulfuric acid and 2 wt% hydrogen peroxide.
  • the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and the anodizing process was performed to turn off the switch. Subsequently, the substrate was washed with water, dried, and then subjected to atmospheric oxidation at 500 ° C. for 60 minutes. The substrate was again anodized in an electrolyte solution consisting of 1 wt% sodium tartrate, 1 wt% sulfuric acid and 2 wt% hydrogen peroxide. As anodizing treatment conditions, the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and the anodization was performed such that the voltage was turned off. The substrate was washed with water and dried, and then again subjected to atmospheric oxidation at 500 ° C. for 60 minutes to obtain a sample.
  • FIG. 1 shows a photograph of a cross-sectional view of the photocatalyst material. The photograph is taken with an optical scanning electron microscope (SEM). As shown in Fig. 1, when the cross section is observed with an optical scanning electron microscope (SEM), the titanium dioxide photocatalyst layer is observed as a whitish layer, so it is possible to distinguish between titanium dioxide photocatalyst and pure titanium. It is. As can be seen from FIG. 1, the photocatalyst layer of the photocatalyst material produced in Example 1 is integrally formed on the surface of the pure titanium base material, and the titanium dioxide photocatalyst is continuously formed on the pure titanium. Have.
  • SEM optical scanning electron microscope
  • Example 2 Using the photocatalyst material produced in Example 1, a decomposition test of methylene blue colored water was performed by irradiating only ultrasonic waves.
  • Two sample cases were prepared in which 100 ml of methylene blue aqueous solution adjusted to the lOppm concentration was put in a glass bottle with a cap.
  • the photocatalyst material prepared above was preliminarily irradiated for 30 minutes in order to clean the surface, and then put into a glass bottle.
  • the other glass bottle was empty and blanked.
  • an ultrasonic cleaning machine 300mm x 240mm depth 150mm
  • put 4L of tap water into this ultrasonic cleaning machine tank put 4L of tap water into this ultrasonic cleaning machine tank, and an ultrasonic diaphragm at the center of the bottom of the cleaning machine tank that will be the ultrasonic transmission base.
  • Example 2 Using the photocatalyst material produced in Example 1, a decomposition test of methylene blue colored water was performed by irradiating only ultraviolet rays.
  • Methylene blue colored water decomposition test Two sample cases were prepared in which 100 ml of methylene blue aqueous solution adjusted to the lOppm concentration was put in a glass bottle with a cap. The photocatalyst material prepared above was preliminarily irradiated for 30 minutes in order to clean the surface, and then put into a glass bottle. The other glass bottle was empty and blanked. Next, prepare an ultrasonic cleaning machine (300mm x 240mm depth 150mm), put 4L of tap water into this ultrasonic cleaning machine tank, and an ultrasonic diaphragm at the center of the bottom of the cleaning machine tank that will be the ultrasonic transmission base.
  • an ultrasonic cleaning machine 300mm x 240mm depth 150mm
  • Two sample cases were prepared in which 100 ml of methylene blue aqueous solution adjusted to the lOppm concentration was put in a glass bottle with a cap.
  • the photocatalyst material prepared above was preliminarily irradiated for 30 minutes in order to clean the surface, and then put into a glass bottle.
  • the other glass bottle was empty and blanked.
  • an ultrasonic cleaning machine 300mm x 240mm depth 150mm
  • put 4L of tap water into this ultrasonic cleaning machine tank put 4L of tap water into this ultrasonic cleaning machine tank, and an ultrasonic diaphragm at the center of the bottom of the cleaning machine tank that will be the ultrasonic transmission base.
  • the glass bottles were fixed so that each glass bottle was located in the center.
  • Comparative Examples 1 and 2 and Example 2 are shown in Table 1 and FIG.
  • the numbers in the table are absorbance ratios.
  • Table 1 and Fig. 4 compared to single irradiation of ultrasonic and ultraviolet light (Comparative Example 1 and Comparative Example 2), the methylene blue concentration can be greatly reduced when ultrasonic and ultraviolet light are irradiated simultaneously. confirmed.
  • the blank of Example 2 there was almost no decrease in concentration. From this result, it became clear that the ability to decompose acid and soot of the material to be treated is greatly improved by simultaneously irradiating the photocatalyst with ultraviolet rays and ultrasonic waves.
  • a plate-like substrate made of pure titanium having a thickness of 15 mm x 50 mm and a thickness of 1 mm was prepared. This substrate was previously pickled with 10 wt% aqueous hydrogen fluoride and with 3 wt% aqueous hydrogen fluoride and 10 wt% hydrogen peroxide.
  • the above base material was pretreated by immersing it in a 5 wt% aqueous hydrogen peroxide solution at room temperature for 24 hours. Subsequent to the above pretreatment, the substrate was subjected to an anodic oxidation treatment in an electrolytic solution composed of 1 wt% sodium tartrate, 1 wt% sulfuric acid and 2 wt% hydrogen peroxide.
  • the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and the anodizing process was performed to turn off the switch. Subsequently, the substrate was washed with water, dried, and then subjected to atmospheric oxidation at 500 ° C. for 60 minutes.
  • the above substrate is again added to 1% by weight sodium tartrate, 1% by weight sulfuric acid and 2% by weight peracid.
  • Anodization was performed in an electrolyte solution containing hydrogen.
  • the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and the anodizing process was performed to provide a voltage programming ability to turn off the switch.
  • the above substrate was washed with water and dried, and then again subjected to atmospheric oxidation at 500 ° C for 60 minutes to obtain a photocatalyst material sample.
  • the thickness of the photocatalyst layer of the obtained photocatalyst material was about 0.8 to 1 ⁇ m.
  • Two sample cases were prepared in which 100 ml of methylene blue aqueous solution adjusted to the lOppm concentration was put in a glass bottle with a cap.
  • the photocatalyst material produced above was pre-irradiated for 30 minutes in advance to clean the surface, and then put into a glass bottle.
  • the other glass bottle was covered with an untreated pure titanium plate material to give an untreated sample.
  • an ultrasonic washer 300mm x 240mm depth 150mm
  • put 4L of tap water into this ultrasonic cleaner tank put 4L of tap water into this ultrasonic cleaner tank, and an ultrasonic diaphragm at the center of the bottom of the cleaner tank that will be the basis for ultrasonic transmission.
  • the glass bottles were fixed so that each glass bottle was in the center.
  • Ultrasonic wave with high frequency output set to 39kHz / 200W was irradiated, and at the same time, 20WX 2 black lights were fixed to the glass bottle fixed in the ultrasonic cleaner tank from above, lmW / cm 2
  • the methylene blue aqueous solution was sampled at regular intervals by irradiating with ultraviolet rays so as to obtain the ultraviolet intensity, and the absorbance ratio was measured with a spectrophotometer.
  • titanium base material plate-like pure titanium of 15mm x 50mm x thickness lmm is used, and the above base material is pickled (etching [after primary etching with 10wt% hydrogen fluoride water, then 3wt% hydrogen fluoride And a second pickling step of etching with a 10% by weight aqueous solution of hydrogen peroxide and hydrogen peroxide]), and the following treatment was performed to obtain photocatalyst materials A to C having different photocatalyst layer thicknesses.
  • Photocatalyst material A photocatalyst layer thickness 0.3 to 0.5 m
  • pretreatment Pretreatment of immersion in hydrogen peroxide solution (hereinafter, pretreatment), anodizing treatment (hereinafter, positive), atmospheric oxidation treatment (hereinafter, large).
  • Photocatalyst material B (photocatalyst layer thickness 0.5-0.8 m) ⁇ ⁇ 'Pretreatment, positive, positive, large.
  • Photocatalyst material C photocatalyst layer thickness 0.8 to 1 m
  • Photocatalyst layer thickness 0.8 to 1 m ⁇ ⁇ 'Pretreatment, positive, large, positive, large.
  • the photocatalyst material having a photocatalyst layer thicker than 1 ⁇ m is used. Tried to manufacture.
  • a photocatalyst material with a photocatalyst layer thickness of 2 m or more was produced by the following treatment.
  • Photocatalyst material D Thiickness of photocatalyst layer 2 ⁇ ⁇ ) ⁇ ⁇ 'Pretreatment, positive, positive, large, positive, positive, large.
  • the photocatalyst material B photocatalyst layer thickness 0.5 to 0.8 m
  • the photocatalyst material D photocatalyst layer thickness 2
  • FIGS. 6 and 7 show photographs of the surface of the photocatalyst layer of photocatalyst materials B and D (6000 times 1 scale : 0.5; ⁇ ) ⁇ ).
  • the relationship between the thickness of the photocatalyst layer and the photocatalyst performance in the present invention is caused by an increase in the surface area of the photocatalyst due to the surface state of the porous stack.
  • Such a surface shape is formed when the amorphous film is changed to crystalline titanium oxide by atmospheric oxidation treatment, and in addition to hydrogen peroxide chemical treatment and anodization treatment which are pretreatments. Since the film is forced to grow as much as possible, the surface becomes rough and a porous state is formed.
  • Photocatalytic material D was immersed in an aqueous solution containing Legionella bacteria and an aqueous solution containing Escherichia coli, and the antibacterial effect was examined by simultaneously irradiating ultraviolet rays and ultrasonic waves. As a result, Photocatalyst Material D significantly reduced Legionella and E. coli in a short time. This proves that the present invention is effective against pathogenic bacteria.
  • FIG. 3 shows a longitudinal section of the schematic diagram.
  • a prismatic water treatment tank 1 of 20 cm x 30 cm x 60 cm in height was constructed, and an aqueous liquid inlet 5 was constructed on the bottom side, and an aqueous liquid outlet 6 was constructed on the top side.
  • a light irradiation device 4 that is long in the vertical direction is installed on one side of the treatment tank, and an ultrasonic irradiation device 3 that is long in the vertical direction is installed on the opposite side surface.
  • each of the irradiation devices has 15 lath-like (3-6 materials) photocatalyst plates 2 manufactured in the same manner as the photocatalyst material D, with an inclination angle ⁇ of 70 degrees. And arranged in a row.
  • the photocatalyst plate was fixed by a fixture 7 provided on the side surface of the water treatment tank.
  • the light irradiation device a device that irradiates ultraviolet light of 254 ⁇ m with 5 to: LOmWZcm 2 was used, and as the ultrasonic irradiation device, a device of 38 kHz'400 W was used.
  • the photocatalyst plate was 1 mm in thickness, and a photocatalyst plate having a size and a shape that substantially closed the same inclined surface of the hollow portion in the treatment tank in an inclined state was used.
  • a methylene blue aqueous solution adjusted to an lOppm concentration using the above apparatus was continuously flowed at a flow rate of 100 LZ, and was irradiated with ultrasonic waves and ultraviolet rays simultaneously.
  • the absorbance of the aqueous solution of methylene blue charged and the aqueous solution of methylene blue discharged from the outlet was measured with a spectrophotometer, and when the decomposition rate of methylene blue was examined from the absorbance ratio, the decomposition rate was almost 100%. It has been found that the device has a very high throughput.
  • the photocatalytic activity is significantly improved by simultaneously irradiating the photocatalyst material of the present invention with ultraviolet rays and ultrasonic waves.
  • the photocatalyst layer formed only by surface acid treatment using titanium metal as a base material can withstand a very heavy environment such as ultrasonic irradiation, exhibits high photocatalytic activity, and reduces the thickness of the photocatalyst layer.
  • m By making it larger than m, it was found that the substance to be treated can be decomposed very efficiently even in a situation where it is difficult to exhibit the photocatalytic function in an aqueous liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 水性液中に溶解あるいは分散した被処理物質を分解する方法であって、前記水性液に光触媒材を浸漬させ、該水性液に光線及び超音波を同時に照射して、前記光触媒材を光エネルギー及び超音波エネルギーに曝露させる工程を含み、且つ、前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする被処理物質の処理方法、および当該方法の実施に適した装置並びに光触媒材。

Description

明 細 書
水性液中の被処理物質の処理方法並びにその方法に使用する装置及 び光触媒材
技術分野
[0001] 本発明は、二酸ィ匕チタン光触媒を利用して、水性液中の被処理物質を処理する方 法並びにその方法に使用する装置及び光触媒材に関する。より詳しくは、水性液中 の二酸化チタン光触媒に光及び超音波を同時に照射して、水性液中の有害物質を 分解する方法に関する。
背景技術
[0002] 光触媒が、細菌や窒素酸ィ匕物等の有害物質を分解する能力を有することは広く知 られており、様々な分野にぉ 、て光触媒作用の応用が検討されて 、る。
[0003] 光触媒は通常は紫外線照射によって活性化され、その作用を発揮する。そのため 、光触媒が光エネルギーに曝露されるように光源を設ける必要がある力 水性溶液 中の被処理物質を光触媒によって分解しょうとする場合、水中の光触媒に光が届き にくいため、光源と光触媒表面の間に形成される反応空間が狭くなり、処理量が限ら れるという問題がある。
[0004] これに対し、特許文献 1において、流体中で、超音波の照射下に、二酸化チタン触 媒粒子と水を接触させることを特徴とする、ヒドロキシラジカルの製造方法が開示され ている。この方法によれば、光を照射しなくても光触媒を活性ィ匕することができるため 、処理量が少な!/、と 、う従来の問題を解決することができる。
[0005] また、特許文献 2にお ヽて、ハロゲン化有機化合物を含有する水性液の処理方法 において、(a)該水性液を光触媒と接触させると共に、(b)該水性液に光線を照射し 、さらにまた、(c)同時に該水性液を音波エネルギーに曝露することを特徴とする水 性液の処理方法が開示されている。この方法によれば、光照射と超音波照射を組み 合わせることにより、反応速度および効率をさらに改善することが可能である。特許文 献 2では、小粒状の光触媒が好ましいとされ、実際には、酸化チタン光触媒粒子が使 用されている。 [0006] 特許文献 1及び 2では、粒状の二酸ィ匕チタン光触媒の使用が開示されているが、光 触媒型酸化チタン粉末は、通常、粒径がナノオーダーの微粉末であり、そのまま使 用した場合は、処理後に液中から酸化チタン粉末を分離回収することが困難であると いう問題がある。この問題を改善するため、上記粉末をミリオーダーの粒径を持つ粉 末に造粒することが考えられるが、高温で焼成する必要があるため、アナターゼ型ニ 酸化チタンがルチル型に変異しやすく、光触媒作用が低下する t ヽぅ問題がある。
[0007] 一方、光触媒型の酸化チタン粉末をバインダーや分散剤、安定剤と混鍊し、適当 な基材上にコーティングして用いることが考えられる力 コーティング性の光触媒を用 いて超音波照射を行った場合、コーティング膜が超音波による負荷に耐えられず、 光触媒機能を発揮する以前にボロボ口に剥離してしまい、使用することができないと いう問題がある。また、バインダー等の有機成分がまざるため、コーティング面すべて が光触媒機能を持つわけではなく (光触媒反応子が点在しているにすぎず)、光触 媒としての性能が低下するという問題がある。
[0008] さらにまた、水性液中で光触媒作用を発現させることは非常に難しぐ超音波と光 照射を併用した場合であっても十分な効果は得られにくぐ水性液中での使用に好 適な光触媒がな 、と 、う問題があった。
特許文献 1:特開 2003— 26406号公報
特許文献 2:特表平 5 - 503252号公報
発明の開示
発明が解決しょうとする課題
[0009] 従って、本発明は、水性液中でも高い光触媒作用を発揮できるとともに、超音波に 対して耐久性を有し、光及び超音波の両方を照射することによって光触媒活性が増 強され、且つ分離回収等の取り扱いが容易な光触媒材を用いて、水性液中の被処 理物質を効率よく分解する方法及び装置を提供することを課題とする。また本発明は 、水性液中での使用に好適な光触媒材を提供することを課題とする。
課題を解決するための手段
[0010] 本願発明者は、上記課題を解決すべく種々検討を重ねた結果、金属チタン力 な る基材を酸化処理することによって、基材表面に二酸化チタン光触媒層を析出させ た光触媒材を使用することに着目し、この光触媒材が超音波に対して耐久性を有す るとともに、光及び超音波の同時照射によって光触媒活性が増強されることを見出し 、さらに改良を重ねた結果、水性液中でも非常に優れた光触媒活性を発揮する光触 媒材の開発に成功し、前記課題を解決した。
[0011] すなわち本発明は、水性液中に溶解あるいは分散した被処理物質を分解する方法 であって、前記水性液に光触媒材を浸漬させ、該水性液に光線及び超音波を同時 に照射して、前記光触媒材を光エネルギー及び超音波エネルギーに曝露させるェ 程を含み、前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸 化チタン光触媒層とからなり、前記層の厚みが 1 μ mより大きいことを特徴とする、被 処理物質の処理方法である。
[0012] 金属チタン基材の表面に一体的に形成された二酸ィ匕チタン光触媒層を有する光 触媒材を使用することによって、超音波を照射しても光触媒層が剥離せず、光触媒 機能を保持することができる。また、基材の表面に光触媒層を析出させてなるため、 粒径がナノメートル単位の光触媒粉末自体を用いたときのように、分離回収が困難と いう問題もなぐ扱いやすい。また、光照射と超音波を併用することにより、それぞれ を単独で適用した場合に比べて、光触媒作用が相乗的に増強される。さらに、光触 媒層の厚みを 1 μ mより大きくすることにより、水中で使用しても、十分な効果を得るこ とがでさる。
[0013] 前記光触媒の層の厚みは、より好ましくは 1. 5 μ m以上であり、特に好ましくは 2. 0 μ m〜3. 0 μ mである。
[0014] また本発明は、前記処理方法を行うための装置であって、水性液を収容する水処 理槽と、処理槽内に配置されて水性液に浸漬される光触媒材と、処理槽内に配置さ れて光触媒材に対し超音波を照射する超音波装置と、処理槽内に配置されて光触 媒材に対し光を照射する光照射装置とを備え、前記光触媒材は、金属チタン基材と その表面に一体的に形成された二酸ィ匕チタン光触媒層とからなり、前記層の厚みが 1 μ mより大きいことを特徴とする、処理装置に関する。
[0015] また本発明は、前記処理方法を行うための装置であって、壁面の少なくとも一部が 光透過性素材からなる、水性液を収容する水処理槽と、処理槽内に配置されて水性 液に浸漬される光触媒材と、処理槽内に配置されて光触媒材に対し超音波を照射 する超音波装置と、前記光透過性素材力 なる壁面に対向するように処理槽の外側 に配置されて、光触媒材に対し光を照射する光照射装置とを備え、前記光触媒材は 、金属チタン基材とその表面に一体的に形成された二酸ィ匕チタン光触媒層とからなり
、前記層の厚みが 1 mより大きいことを特徴とする、処理装置に関する。
[0016] 前記光触媒材として、板面を貫通する多数の貫通孔を有する板状の金属チタン基 材の全表面に光触媒層が形成されている光触媒板を用いれば、光触媒に対して超 音波と光の両方を照射しやすぐ光触媒の活性を効率よく行うことができる。また、水 性液が貫通孔を通り抜けるため、水性液と接触する光触媒の表面積が広くなり、処理 効率を高めることができる。特に水性液を流通させながら連続的に処理を行うのに好 適である。また、板状であるため、取り替えや回収等も容易である。
前記光触媒板の一面側に超音波照射装置を、他面側に光照射装置を配置すれば 、超音波と光の両方を広面積の光触媒に効率よく照射することができ、好ましい。
[0017] また、前記水処理槽が円筒あるいは角柱状であって、長手方向の一端側に水性液 の投入口が、他端側に水性液の排出口が設けられ、処理槽内部の一側面には長手 方向に沿って光照射装置が設置され、その反対側の側面には長手方向に沿って超 音波照射装置が設置され、 2つの照射装置の間に複数枚の前記光触媒板が長手方 向に一列に並んで配置され、かつ各光触媒板の板面が各照射装置に対して傾斜す るように配置されて!、る処理装置を用いれば、超音波と光の両方が広面積の光触媒 に効率よく照射されるとともに、投入ロカも排出口へ流れる水性液は、複数枚の多孔 板の貫通孔を通過して流れるため、複数回にわたって光触媒と接触し、処理残しを 生じることなく非常に効率よく水性液を処理することができる。
[0018] また本発明は、液体中での使用に特に適した光触媒材であって、金属チタン基材 とその表面に一体的に形成された二酸ィ匕チタン光触媒層とからなり、前記光触媒層 の厚みが 2 m以上であり、前記光触媒層の表面に最大径 0. 以上の孔が点在 していることを特徴とする、光触媒材に関する。
発明の効果
[0019] 本発明に係る処理方法、処理装置及び光触媒材によれば、超音波を照射しても光 触媒層が剥離して光触媒機能が損なわれることがなぐ光照射と超音波照射を同時 に行って光触媒機能を相乗的に増強させることができる。また、水性溶液中でも高い 光触媒作用を発揮するため、非常に効率よく被処理物質を分解することができる。さ らに、光触媒の分離回収等の取り扱いが容易である。
図面の簡単な説明
[0020] [図 1]図 1は、本発明にかかる光触媒材の断面を示す SEM写真である。
[図 2]図 2は、本発明にかかる装置の一実施例の透視図である。
[図 3]図 3は、本発明にかかる装置の別の実施例の縦断面図である。
[図 4]図 4は、本発明にかかる光触媒材に対し、紫外線と超音波を単独または併用し て照射した場合の、メチレンブルー着色水の分解テストの結果を示すグラフである。
[図 5]図 5は、光触媒層の厚みとメチレンブルーの分解能力との関係を示すグラフで ある。
[図 6]図 6は、光触媒材 B (層の厚み 0. 5〜0. 8 m)の表面状態を示す SEM写真で ある。
[図 7]図 7は、光触媒材 D (層の厚み 2 m)の表面状態を示す SEM写真である。 符号の説明
[0021] 1 水処理槽
2 光触媒材
3 超音波照射装置
4 光照射装置
5 投入 PI
6 排出口
7 光触媒板の固定具
発明を実施するための最良の形態
[0022] 本発明において、光触媒材は、金属チタン基材とその表面に一体的に形成された 二酸ィ匕チタン光触媒層とからなる。金属チタン基材の表面に一体的に形成された二 酸化チタン光触媒層とは、金属チタン基材の表面を酸化処理することによって析出さ せた二酸ィ匕チタン光触媒層を指し、コーティングによる層は含まない。前記酸化処理 としては、陽極酸ィ匕及び大気酸ィ匕を組み合わせることが好ましぐさらに好ましくは、 陽極酸化の前に、過酸化物を含有する水性溶液中に前記基材を浸漬する前処理を 行う。金属チタン基材の表面を酸ィ匕処理して得られた前記光触媒層は、金属チタン 基材に連続して形成されるため、剥離の恐れがない。また、バインダーや分散剤等が 混入されて 、な 、ため、光触媒機能の低下が生じな 、。
[0023] 上記前処理で用いる過酸ィ匕物としては、過酸化水素が好ま 、。好適な前処理液 は、 3〜: LO重量%の過酸化水素を含む水溶液である。なお前処理液への基材の浸 漬時間は、好ましくは 5〜48時間である。
[0024] 上記陽極酸ィ匕の工程では、有機酸またはその塩を含む電解液が使用される。好適 な有機酸および有機酸塩としては、酒石酸、クェン酸、リンゴ酸、琥珀酸、ダルコン酸 およびフマル酸のナトリウム塩が挙げられる。電解液中における有機酸または有機酸 塩の濃度は、 0. 5〜5重量%が好ましい。また、電解液は、上記の有機酸や有機酸 塩に加えて、陽極酸化時におけるイオン伝導を促進するための pH調整剤を更に含 んでいてもよい。好適な pH調整剤としては、硫酸、塩酸および水酸化ナトリウム等が 挙げられる。このような pH調整剤は、電解液中に、 0. 5〜5重量0 /0含まれていること が好ましい。また、前記電解液は過酸化水素を 0. 1〜5重量%含むことが好ましい。 上記の電解液中に陽極 (基板)と陰極とを設置して、これらの電極間に電圧を印加 し、この印加電圧を除去するまでを 1回の陽極酸ィ匕工程と考える。陽極酸化における 電圧プロフィールは、 0. 1〜0. 3VZ秒の速度で電圧は段階的または連続的に上げ られ、 50〜250Vのピーク電圧において、 100秒間以上保持されることが好ましい。 その後、瞬間的または傾斜的に印加電圧を除去する。陽極酸化された基材は、十分 に水洗!/、をして力 次の処理工程に移行されることが好まし!/、。
[0025] 上記大気酸化の工程では、大気酸ィ匕温度は好ましくは 500〜600°Cであり、大気 酸ィ匕時間は好ましくは 0. 5〜2時間である。
[0026] 上記の陽極酸ィ匕工程と大気酸ィ匕工程とを組み合わせて行うことによって、光触媒活 性を有するアナターゼ型の酸化チタン皮膜を基材の表面に確実に形成することが可 能である。なお、上記陽極酸ィ匕工程と大気酸ィ匕工程の何れか又は両方を 2回または 3回以上繰り返してもよい。 [0027] 本発明にお 、て、金属チタン基材とは、純チタンまたはチタン合金力も成る基材を 指す。特に好ましくは純チタン基材である。上記のチタン合金を構成する金属として は、例えば白金、金、錫、パラジウム、ルテニウム、ニッケル、コノ レト、クロム、モリブ デン、アルミニウム、バナジウムおよびジルコニウム等が挙げられる。好適なチタン合 金としては、チタン'アルミニウム '錫合金(例えば Ti— 5A1— 2. 5Sn)、チタン—アル ミニゥム—バナジウム合金(例えば Ti— 6A1— 4V)、およびチタン—モリブデン—ジ ルコ-ゥム合金(例えば Ti— 15Mo - 5Zr)等が挙げられる。
[0028] 本発明において、光触媒材に照射する光は、使用する光触媒を活性化 (励起)でき る波長の光であればよぐ特に限定されない。一般に光触媒は紫外光で活性化する ものが多ぐこの場合は 400nm以下の紫外線、より好ましくは 360nm付近の波長域 の紫外線を照射すればよい。また、 300nm以下の波長域を持つ光を照射した場合 は、オゾンが発生するため、光触媒作用とオゾンの複合化が見込める。従って、例え ば 180〜260nmの波長の紫外線を照射してもよい。また、可視光応答型の光触媒 を用いた場合は、可視光を照射すればよい。実用性の高い波長として、 185nm付近 、 254nm付近、 360nm付近の紫外線を挙げることができる。特に好ましくは 254nm の紫外線である。
また、光触媒の表面積に対して、 0. l〜15mWZcm2で光照射を行うことが好まし V、。光触媒を気体中で用いる場合は 1〜 3mWZcm2で十分な効果が期待できるが、 本発明では光触媒材を水性液中で用いるため、十分な効果を得るためには、さらに 強い光を照射することが好ましい。より好ましくは 3〜12mWZcm2、特に好ましくは 5 〜 1 OmWZcm2である。
[0029] また、より多くの光触媒層が光エネルギーに曝露されることが好ましぐ例えば、両 面に光触媒層を有する金属チタン板を使用する場合、板の両側力 光を照射するこ とが好ましい。光源は、水性液を入れる容器の中に設けてもよぐあるいは容器の外 側に設けて、容器の被照射面を光透過性素材で構成してもよい。当然のことながら、 光透過性素材とは、使用する光触媒を活性ィ匕できる波長の光を通す素材であり、例 えば紫外線応答型の光触媒を用いる場合は、波長域 400nm以下の紫外光を透過 できるガラスまたは透明合成樹脂などを用いることができる。 [0030] 光触媒に照射する超音波の波長域は、 lkHz〜lMHzが好ましぐ 30〜500kHz 力 り好ましぐ 35〜70kHzが特に好ましい。出力は、装置の大きさ等によって適宜 好まし ヽ範囲とすれば、ょ ヽ力 一般に 200W〜1500W力 子ましく、 400W〜1500 Wがより好ましぐ特に好ましくは 1000W以上である。好ましい一実施例として、 35 〜45kHz : 1100〜1300Wの装置を挙げることができる力 用途によっては 400W 程度でもよい。例えば、持ち運び可能な小型の装置であれば、 40kHz :400Wの装 置としてもよい。
[0031] また、より多くの光触媒層が超音波エネルギーに曝露されることが好ましぐ例えば 、両面に光触媒層を有する金属チタン板を使用する場合、板の両側から超音波を照 射してちょい。
[0032] 本発明において、光触媒層の厚みは、光走査型電子顕微鏡 (SEM)による断面観 察によって確認することができる。本発明の光触媒層は、金属チタン基材と連続して 形成されているため、コーティング性の被膜と異なり、光触媒層と基材との間に明確 な境界がない。しかし、光走査型電子顕微鏡 (SEM)によって断面を観察すれば、金 属チタンと二酸ィ匕チタン光触媒の区別が可能となるため、おおよその層の厚みを割り 出すことができる(図 1参照 上下の矢印に挟まれた箇所が層厚である [2000倍 1目 盛り: 1.5 /ζ πι])。チタン基材表面に形成される層の厚みはほぼ一定である力 場所に より厚みが若干異なるため、本発明における光触媒層の厚みとは、光触媒層が形成 されて 、る箇所における層厚の平均値を指す。
[0033] 光触媒材の形状は、とくに限定されず、板状、棒状、網状、繊維状、粒状等どんな ものであってもよい。本発明において、光触媒材は固定されることが好ましいため、例 えば粒状の光触媒材を用いる場合は、透明榭脂製カラム (光触媒を活性化する波長 域の光線を透過する)等に充填して用いることが好ましい。多孔質粒状の光触媒を用 いれば、表面積が大きく効率がよい。コストの点力もは薄板形状が好ましぐまた、板 面を貫通する多数の孔を有する多孔板形状 (例えば、ラス網状やパンチングメタル状 の多孔板)とすれば、光及び超音波を一面側からのみ照射した場合にも、他面の光 触媒層を活性ィ匕することができ、好ましい。多数の貫通孔を有する板としては、板面 のほぼ全面に渡って貫通孔が形成されている板が好ましい。また、一定以上の機械 的強度を有すれば、水性液中での固定が容易である。例えば純チタン力 なる薄板 形状の場合、 0. 5mm程度の厚みを有することが好ましい。
[0034] 光触媒層は、金属チタン基材の全面、あるいは水性液に浸漬する部分の金属チタ ン基材の全面に形成されていることが好ましいが、光及び超音波照射が一方向から のみ行われる場合は、少なくとも照射を受ける部分の表面に光触媒層が形成されて いればよい。
[0035] 水性液に対する光触媒の量は、被処理物質の種類、水質の硬度、光または超音波 の照射条件にもよる力 水性液 lm3に対し、光触媒表面積 0. 5m2以上であることが 好ましい。また、コスト及び処理効率の上限を考えた場合、水性液 lm3に対し 10m2 以下が好ましい。より好ましくは水性液 lm3に対し 1. 5m2以上であり、特に好ましくは 2m2以上である。上記表面積は、水性液中に浸漬している部分の光触媒の総表面 積を指す。光触媒材は水性液中に完全に浸漬して 、る必要はな 、。
例えば光触媒材として、全表面に光触媒層が析出したラス網状の多孔板 (菱形状 の内径が 3mmと 6mmの「3-6材」 )を水性液中に完全に浸漬させて用いる場合、水 性液 lm3に対し、 500mm X 500mm X 1mmサイズの多孔板を 1〜30枚用いること が好ましぐ 3〜20枚用いることがより好ましぐ 5枚以上用いることが特に好ましい。
[0036] 本発明の方法及び装置は、生活排水や産業排水の浄ィ匕に用いることができ、例え ば、温泉、銭湯、プール、マンションの屋上の給水槽、工場の排水等に適用すること ができる。従って、本発明に係る被処理物質としては、上記水性液中に含まれ得る有 機物や、ウィルス、細菌等の病原菌、ハロゲンィ匕有機化合物等の環境有害物質など を挙げることができる。
[0037] 図 2に、本発明の処理装置の一実施例を示す。 1は水性液を収容する水処理槽で あり、 2は光触媒材である。本実施例では、水 lm3を収容できる水処理槽の中に、全 表面に光触媒層が析出したラス網状の光触媒材(0.5m X 0.5m X厚み lmmの「3_6材 」)が 4枚設置されている。 3は超音波照射装置、 4は紫外線照射装置である。本実施 例では光照射装置及び超音波装置は処理槽内部の側壁に設置され、光触媒材は 底面に固定して設置されている。 5は水性液の投入口であり、 6は排出口である。 なお、超音波照射装置及び光照射装置の設置箇所は特に限られず、複数個設置 しても良い。また、光照射装置を処理槽の外側に設け、光照射装置と対向する処理 槽の壁面を光透過性の素材で構成しても良 、。
また、本発明にかかる装置の好ましい実施形態として、水処理槽の内部に超音波 照射装置と光照射装置が設置され、板面に多数の貫通孔を有する板形状の純チタ ン基材の全表面に光触媒層が形成されてなる光触媒材が複数枚、両方の照射装置 に対して板面が傾斜して面するよう設置された装置を挙げることができる。例えば図 3 に示すように、円筒あるいは角柱状の水処理槽を有する装置であって、長手方向の 一端付近の側面に水性液の投入口が、他端付近の側面に排出口が設けられ、装置 内部の一側面には長手方向に沿って光照射装置が設置され、その反対側の面には 長手方向に沿って超音波照射装置が設置され、 2つの照射装置の間には複数枚の 多孔板形状の光触媒材が長手方向に並んで配置され、かつ各光触媒材の板面が 各照射装置に対して傾斜するように設置されている連続式の水処理装置を挙げるこ とがでさる。
このような構成とすることにより、超音波と光の両方が広面積の光触媒に効率よく照 射されるとともに、投入ロカ 排出口へ流れる水性液は、複数枚の多孔板の貫通孔 を通過して流れるため、複数回にわたって光触媒と接触することとなり、処理残しを生 じることなく非常に効率よく水性液を処理することができる。投入された水性液が光触 媒と確実に接触した後に排出されることが好ましいため、前記光触媒板の板面は、水 性液の流路となる水処理槽内の空洞をほぼ塞ぐ大きさ及び形状を有することが好ま しい。具体的には、水処理槽内において、光触媒板の板面と同一平面の空間面積 の 70%以上を占める形状とサイズを有する光触媒板を使用することが好ましい。特 に好ましくは前記空間面積の 80%以上、さらに好ましくは 90%以上を占める光触媒 板を使用する。上記構成とすれば、小型の装置であっても非常に高い処理効率を発 揮することができる。例えば、底面積 500〜700cm2 X高さ 50〜80cm程度の水処 理槽の中に、厚みが 0. 5〜3mmで水性液の流路をほぼ塞ぐ大きさと形状をもち、全 表面に光触媒層が形成されているラス網状の光触媒板を 10〜20枚設置すれば、持 ち運びができるサイズでありながら処理効率の非常に高い水処理装置を構成するこ とがでさる。 [0039] 光触媒の活性を効率よく行う点から、前記光触媒板は、照射装置と板面によって形 成される鋭角 Θ (図 3参照)が、 40〜75度となるよう傾斜して設置されることが好ましく 、 45〜70度となるよう傾斜して設置されることがより好ま 、。
[0040] 本発明の処理槽の大きさや形状は特に限定されず、設置場所や処理水量等に合 わせて適宜変更可能である。
[0041] 本発明の二酸ィヒチタン光触媒層は、層の厚みが 2 m以上あり、表面に最大径 0.
5 μ m以上の孔が点在しているものが好ましい。層の表面積 1000 μ m2あたり、最大 径 0. 5 m以上の孔が 10個以上存在していることが好ましぐより好ましくは 20個以 上、さらに好ましくは 50個以上、特に好ましくは 100個以上存在する。
[0042] 以下、実施例により本発明をより具体的に説明する。
実施例 1
[0043] [光触媒材の製造]
15mm X 50mmで厚さ lmmの純チタンからなる板状の基材を用意した。この基材はぁ らかじめ、 10重量%フッ化水素水でおよび 3重量%フッ化水素水と 10重量%過酸化水素 で酸洗しておいた。上記の基材を、 5重量 %の過酸ィ匕水素水溶液に常温で 24時間浸 漬して、前処理を行った。上記の前処理に引き続いて、上記の基材を、 1重量 %酒石 酸ナトリウム、 1重量 %硫酸および 2重量 %の過酸化水素からなる電解液中において陽 極酸化処理した。陽極酸化処理条件として、 1.5秒毎に 0.24Vづっ電圧を段階的に上 げ、 120Vに達したところで 100秒間保持し、そしてスィッチをオフする電圧プログラム 力もなる陽極酸ィ匕を行った。引き続いて上記の基材を、水洗の後乾燥させて、 500°C に於いて 60分間大気酸化を行った。上記基材を再び、 1重量 %酒石酸ナトリウム、 1重 量 %硫酸および 2重量 %の過酸ィ匕水素カゝらなる電解液中にぉ ヽて陽極酸化処理した。 陽極酸化処理条件として、 1.5秒毎に 0.24Vづっ電圧を段階的に上げ、 120Vに達し たところで 100秒間保持し、そしてスィッチをオフする電圧プログラムカゝらなる陽極酸 化を行った。上記の基材を水洗の後乾燥させた後、再び、 500°Cに於いて 60分間大 気酸化を行 、サンプルとした。
上記方法で得られた光触媒材は、基材となる純チタン全表面に二酸ィ匕チタン光触 媒層が析出していた。 [0044] 図 1に前記光触媒材の断面図の写真を示す。該写真は、光走査型電子顕微鏡 (SE M)によるものである。図 1に示すように、光走査型電子顕微鏡 (SEM)で断面を観察し た場合、二酸ィ匕チタン光触媒層が白っぽい層として観察されるため、二酸化チタン 光触媒と純チタンとの区別が可能である。図 1から分かるように、実施例 1で製造した 光触媒材の光触媒層は、純チタン基材の表面に一体的に形成されており、二酸化チ タン光触媒が純チタンに連続して ヽる構成を有する。
[0045] [比較例 1]
(超音波単独照射)
実施例 1で製造した光触媒材を用いて、超音波のみを照射してメチレンブルー着 色水の分解テストを行った。
[0046] メチレンブルー着色水の分解テスト
lOppm濃度に調整したメチレンブルー水溶液 100mlをキャップ付ガラス瓶に入れた サンプルケースを 2個用意した。上記作製した光触媒材をあらかじめ、 30分間予備照 射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には何もい れずブランクとした。つぎに超音波洗浄機(300mm X 240mm深さ 150mm)を用意し、 水道水 4Lをこの超音波洗浄機槽の中に入れ、超音波発信基となる洗浄機槽底部中 央の超音波振動板にそれぞれのガラス瓶が中央に位置するようガラス瓶を固定した 後、高周波出力を 39kHz/200Wとなるように設定した超音波を照射し、一定時間ごと にメチレンブルー水溶液を採取し、分光光度計にて吸光度比を測定した。
[0047] 光触媒材を入れたガラス瓶中のメチレンブルー濃度は、超音波を照射することで徐 々に薄く分解されている力 ブランクの濃度はほとんど変化していない。これにより、 光触媒材に超音波を照射することで紫外線照射をしなくても分解できることがわかつ た。
[0048] [比較例 2]
(紫外線単独照射)
実施例 1で製造した光触媒材を用いて、紫外線のみを照射してメチレンブルー着 色水の分解テストを行った。
[0049] メチレンブルー着色水の分解テスト lOppm濃度に調整したメチレンブルー水溶液 100mlをキャップ付ガラス瓶に入れた サンプルケースを 2個用意した。上記作製した光触媒材をあらかじめ、 30分間予備照 射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には何もい れずブランクとした。つぎに超音波洗浄機(300mm X 240mm深さ 150mm)を用意し、 水道水 4Lをこの超音波洗浄機槽の中に入れ、超音波発信基となる洗浄機槽底部中 央の超音波振動板にそれぞれのガラス瓶が中央に位置するようガラス瓶を固定した 後、超音波は照射せず、 20W X 2本のブラックライトを超音波洗浄機槽中に固定した ガラス瓶に上方から、 lmW/cm2の紫外線強度になるよう紫外線照射して、一定時間 ごとにメチレンブルー水溶液を採取し、分光光度計にて吸光度比を測定した。
[0050] 光触媒材を入れたガラス瓶のメチレンブルー溶液は、紫外線照射をすることで徐々 に薄く分解されている力 ブランクの濃度はほとんど変化していない。この実験により
、本来の紫外線照射のみで発現する光触媒酸化分解反応が確認できると共に、紫 外線照射単独と超音波照射単独では、ほとんど差がなくメチレンブルー濃度が減少 されることが分力つた。
実施例 2
[0051] [紫外線と超音波の同時照射]
実施例 1で製造した光触媒材を用いて、紫外線及び超音波を同時に照射してメチ レンブルー着色水の分解テストを行った。
[0052] メチレンブルー着色水の分解テスト
lOppm濃度に調整したメチレンブルー水溶液 100mlをキャップ付ガラス瓶に入れた サンプルケースを 2個用意した。上記作製した光触媒材をあらかじめ、 30分間予備照 射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には何もい れずブランクとした。つぎに超音波洗浄機(300mm X 240mm深さ 150mm)を用意し、 水道水 4Lをこの超音波洗浄機槽の中に入れ、超音波発信基となる洗浄機槽底部中 央の超音波振動板にそれぞれのガラス瓶が中央に位置するようガラス瓶を固定した 。高周波出力を 39kHz/200Wとなるように設定した超音波を照射し、また、あわせて同 時に 20WX 2本のブラックライトを超音波洗浄機槽中に固定したガラス瓶に上方から、 lmW/cm2の紫外線強度になるよう紫外線照射して、一定時間ごとにメチレンブルー 水溶液を採取し、分光光度計にて吸光度比を測定した。本実施例では、光触媒サン プルおよびブランクに対して、紫外線および超音波を同時に照射した。
[0053] 比較例 1 · 2及び実施例 2の結果を表 1及び図 4に示す。表中の数値は吸光度比で ある。表 1及び図 4に示す通り、超音波および紫外線の単独照射 (比較例 1及び比較 例 2)と比較して、超音波と紫外線を同時に照射した場合、メチレンブルー濃度が大 幅に減少することが確認された。なお、実施例 2のブランクについてはほとんど濃度 減少がみられな力 た。この結果により紫外線および超音波を光触媒材に同時に照 射することで被処理物質の酸ィ匕分解能力が大きく向上することが明らかとなった。
[0054] [表 1] 表 1 メチレンブルー濃度の経時的変化
Figure imgf000016_0001
実施例 3
[0055] [光触媒層の有無による性能比較]
15mm X 50mmで厚さ lmmの純チタンからなる板状の基材を用意した。この基材はぁ らかじめ、 10重量%フッ化水素水でおよび 3重量%フッ化水素水と 10重量%過酸化水素 で酸洗しておいた。上記の基材を、 5重量 %の過酸ィ匕水素水溶液に常温で 24時間浸 漬して、前処理を行った。上記の前処理に引き続いて、上記の基材を、 1重量 %酒石 酸ナトリウム、 1重量 %硫酸および 2重量 %の過酸化水素からなる電解液中において陽 極酸化処理した。陽極酸化処理条件として、 1.5秒毎に 0.24Vづっ電圧を段階的に上 げ、 120Vに達したところで 100秒間保持し、そしてスィッチをオフする電圧プログラム 力もなる陽極酸ィ匕を行った。引き続いて上記の基材を、水洗の後乾燥させて、 500°C に於!ヽて 60分間大気酸化を行った。
上記の基材を再び、 1重量 %酒石酸ナトリウム、 1重量 %硫酸および 2重量%の過酸ィ匕 水素からなる電解液中において陽極酸化処理した。陽極酸化処理条件として、 1.5秒 毎に 0.24Vづっ電圧を段階的に上げ、 120Vに達したところで 100秒間保持し、そして スィッチをオフする電圧プログラム力もなる陽極酸ィ匕を行った。上記の基材を水洗の 後乾燥させた後、再び、 500°Cに於いて 60分間大気酸ィ匕を行い光触媒材サンプルと した。得られた光触媒材の光触媒層の厚みは約 0.8〜1 μ mであった。
一方、基材の純チタンに酸洗のみを行!、光触媒処理は行わな!/、無処理純チタン 板材を、無処理サンプルとした。
[0056] メチレンブルー着色水の分解テスト
lOppm濃度に調整したメチレンブルー水溶液 100mlをキャップ付ガラス瓶に入れた サンプルケースを 2個用意した。上記作製した光触媒材をあらかじめ、 30分間予備照 射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には無処理 の純チタン板材を ヽれ無処理サンプルとした。つぎに超音波洗浄機 (300mm X 240m m深さ 150mm)を用意し、水道水 4Lをこの超音波洗浄機槽の中に入れ、超音波発信 基となる洗浄機槽底部中央の超音波振動板にそれぞれのガラス瓶が中央に位置す るようガラス瓶を固定した。高周波出力を 39kHz/200Wとなるように設定した超音波を 照射し、また、あわせて同時に 20WX 2本のブラックライトを超音波洗浄機槽中に固 定したガラス瓶に上方から、 lmW/cm2の紫外線強度になるよう紫外線照射して、一定 時間ごとにメチレンブルー水溶液を採取し、分光光度計にて吸光度比を測定した。
[0057] 結果を表 2に示す。実施例 2と同様、処理有り(光触媒層あり)は、紫外線および超 音波照射によりメチレンブルーの濃度を大幅に減少した力 処理無し (光触媒層なし )では、ほとんど濃度減少が認められないことがわ力つた。
超音波照射により発生するキヤビテーシヨンエネルギーによって、無処理純チタン 板材には光触媒機能はないものの障害物となり、一定の濃度減少を及ぼすと推察さ れたが、ほとんど影響がないことが分力つた。このことから、紫外線および超音波照射 による大幅なメチレンブルーの分解は、ほぼ全て光触媒作用に基づくことが明らかと なった。
[0058] [表 2] 表 2 メチレンブルー濃度の経時的変化
Figure imgf000018_0001
実施例 4
[0059] [光触媒層の厚みの検討]
光触媒材の製造
チタン基材として、 15mm X 50mm X厚さ lmmの板状の純チタンを用い、上記基材を 酸洗(エッチング [10重量%フッ化水素水で 1次エッチングの後、 3重量%フッ化水素と 1 0重量 %過酸ィ匕水素混合水溶液で 2次エッチングする酸洗工程を施す])し、下記の処 理を行って光触媒層の厚みの異なる各光触媒材 A〜Cを得た。
光触媒材 A (光触媒層の厚み 0.3〜0.5 m) · · '過酸化水素水溶液浸漬前処理 (以 下、前処理)、陽極酸化処理 (以下、陽)、大気酸化処理 (以下、大)。
光触媒材 B (光触媒層の厚み 0.5〜0.8 m) · · '前処理、陽、陽、大。
光触媒材 C (光触媒層の厚み 0.8〜1 m) · · '前処理、陽、大、陽、大。
[0060] メチレンブルー着色水の分解テスト
実施例 2と同様にして、光触媒材に紫外線と超音波を同時に照射する条件の下、 上記光触媒材 A〜Cの性能比較を行った。結果を表 3に示す。表 3に示すように、光 触媒層の厚みが増大するに伴い、メチレンブルーの分解能力が向上することが確認 できた。
[0061] [表 3] 表 3 メチレンブルー濃度の経時的変化
Figure imgf000019_0001
実施例 5
[0062] [光触媒層の厚みがより大きい光触媒材の製造]
実施例 4の結果に鑑み、光触媒層をより厚くすることによって、水性液中の被処理 物質の分解スピードがより向上するかどうかを確認するため、 1 μ mより厚い光触媒層 を有する光触媒材の製造を試みた。改良を重ねた結果、光触媒層の厚みが 2 m以 上の光触媒材を製造することに成功した。以下の処理により製造した光触媒材 Dを 用いて、実施例 4と同じ手順でメチレンブルー着色水の分解テストを行った。
光触媒材 D (光触媒層の厚み 2 μ τη) · · '前処理、陽、陽、大、陽、陽、大。
[0063] 結果を表 4に示す。また、実施例 4及び実施例 5の結果をまとめたグラフを図 5に示 す。図 5に示すように、光触媒層の厚みが 2 mの光触媒材 Dは、非常に優れた分解 スピードを持つことがわ力 た。
[0064] [表 4] 表 4 メチレンブルー濃度の経時的変化
Figure imgf000019_0002
実施例 6
[0065] [光触媒層の表面状態の観察] コーティング性の光触媒でも、塗りと乾燥を繰り返すことにより、層の厚みを大きくす ることは可能であるが、厚みを大きくしても光触媒の性能は向上しないか、あるいはバ インダーなどの有機物が不純物因子として被膜中に残るため、却って性能が低下す ると考免られる。
本発明において、光触媒層の厚みを大きくすることにより、光触媒の性能が向上し た原因を探るため、光触媒材 B (光触媒層の厚み 0.5〜0.8 m)及び光触媒材 D (光 触媒層の厚み 2 μ m)の表面を SEMで観察した。図 6及び図 7に光触媒材 B及び Dの 光触媒層表面の写真を示す (6000倍 1目盛 : 0.5 ;ζ ΐη)。
[0066] 図に示すように、光触媒材 Bと光触媒材 Dの表面には明らかな差があった。光触媒 材 Bの表面は、表面に無数の小さな凹凸があり、 0.1 μ m程度の径をもつ小さな孔が 存在していたが、光触媒材 Dの表面は、多孔質の層が幾重にも重なったような外観 を呈し、最大径が 0.2 m以上の孔が多数見られ、最大径カ ^.5〜1.0 /ζ πι程度の非円 形の不規則な形状の孔が点在し、 1.0 m以上の最大径を持つ孔も観察された。
[0067] このことから、本発明における光触媒層の厚みと光触媒性能の関係は、多孔質積 層状の表面状態による光触媒表面積の増大が原因と考えられる。なお、このような表 面形状は、大気酸ィ匕処理によってアモルファス皮膜を結晶性のある酸ィ匕チタンに変 える際に形成される他、前処理である過酸化水素化学処理や陽極酸化処理でできる だけ負荷をかけて強制的に皮膜成長を行うため、表面が荒れた状態となり、多孔質 状態が形成されると考えられる。
実施例 7
[0068] [病原性細菌に対する抗菌効果]
レジオネラ菌を含む水性液及び大腸菌を含む水性液に光触媒材 Dを浸漬し、紫外 線及び超音波を同時に照射して抗菌効果を検討した。その結果、光触媒材 Dは、レ ジォネラ菌及び大腸菌を短時間で大幅に減少させた。このことより、本発明が病原性 細菌に対しても有効であることが実証された。
実施例 8
[0069] [本発明の装置]
本発明による連続式の水処理装置を製作した。図 3にその模式図の縦断面図を示 す。具体的には 20cm X 30cm X高さ 60cmの角柱状の水処理槽 1を構成し、底面 側の側面に水性液の投入口 5を、上面側の側面に水性液の排出口 6を構成した。ま た、前記処理槽内の一側面には縦方向に長い光照射装置 4を設置し、その反対側 の側面には縦方向に長い超音波照射装置 3を設置した。そして、 2つの照射装置の 間に、光触媒材 Dと同様の方法で製造したラス網状 (3-6材)の光触媒板 2を 15枚、 傾斜角 Θが 70度となるよう各照射装置に対して傾斜させて一列に配列した。光触媒 板は水処理槽のー側面に設けた固定具 7により固定した。光照射装置としては 254η mの紫外光を 5〜: LOmWZcm2で照射する装置を用い、超音波照射装置としては 38 kHz'400Wの装置を用いた。また、光触媒板は、厚みが lmmであり、傾斜した状態 にて処理槽内中空部の同一傾斜面をほぼ塞ぐ大きさ及び形状の光触媒板を用いた
[0070] 前記装置を用いて lOppm濃度に調製したメチレンブルー水溶液を流速 100LZ分 で連続的に流し、超音波と紫外線を同時に照射した。投入したメチレンブルー水溶 液と排出口から排出されたメチレンブルー水溶液の吸光度を分光光度計で測定し、 吸光度比からメチレンブルーの分解率を調べたところ、その分解率はほぼ 100%とな り、本発明の装置が非常に高い処理能力を有することが明らかになった。
[0071] 実施例の結果から、本発明の光触媒材に紫外線及び超音波を同時に照射すること によって、光触媒活性が大幅に向上することが明らかとなった。また、金属チタンを基 材として表面酸ィ匕処理だけで形成した光触媒層が、超音波照射といった非常に負荷 の大きい環境に耐えて、高い光触媒活性を発揮すること、及び光触媒層の厚みを 1 mより大きくすることにより、水性液中という非常に光触媒機能を発現させにくい状 況においても、被処理物質を非常に効率よく分解できることが分力つた。
従って、従来は、水流'水質 '水圧'物質拡散速度等の条件やコーティング性光触 媒の剥離の問題から、水性液中では光触媒はほとんど効果を発揮できず、水質浄化 への展開は困難であるとされていたが、本発明であれば、水質浄ィ匕用途においても 十分に効果を発揮できることが明らかになった。

Claims

請求の範囲
[1] 水性液中に溶解ある ヽは分散した被処理物質を分解する方法であって、
前記水性液に光触媒材を浸漬させ、
該水性液に光線及び超音波を同時に照射して、前記光触媒材を光エネルギー及び 超音波エネルギーに曝露させる工程を含み、
前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸ィ匕チタン 光触媒層とからなり、前記層の厚みが 1 μ mより大きいことを特徴とする、被処理物質 の処理方法。
[2] 前記層の厚みが、 1. 5 μ m以上である、請求項 1に記載の方法。
[3] 前記層の厚みが、 2 /z πι〜3 /ζ mである、請求項 1に記載の方法。
[4] 被処理物質を溶解あるいは分散状態で含有する水性液を処理するための装置であ つて、
前記水性液を収容する水処理槽と、
前記処理槽内に配置されて前記水性液に浸漬される光触媒材と、
前記処理槽内に配置されて前記光触媒材に対し超音波を照射する超音波照射装 置と、
前記処理槽内に配置されて前記光触媒材に対し光を照射する光照射装置とを備え 前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸ィ匕チタン 光触媒層とからなり、前記層の厚みが 1 μ mより大きいことを特徴とする、処理装置。
[5] 被処理物質を溶解あるいは分散状態で含有する水性液を処理するための装置であ つて、
壁面の少なくとも一部が光透過性素材力もなる、前記水性液を収容する水処理槽と 前記処理槽内に配置されて前記水性液に浸漬される光触媒材と、
前記処理槽内に配置されて前記光触媒材に対し超音波を照射する超音波照射装 置と、
前記光透過性素材力 なる壁面に対向するように前記処理槽の外側に配置されて、 前記光触媒材に対し光を照射する光照射装置とを備え、
前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸ィ匕チタン 光触媒層とからなり、前記層の厚みが 1 μ mより大きいことを特徴とする、処理装置。
[6] 前記光触媒材が、多数の貫通孔を有する板状の金属チタン基材の全表面に光触媒 層が形成されてなる光触媒板であることを特徴とする、請求項 4または 5に記載の処 理装置。
[7] 前記光触媒板の一面側に前記超音波照射装置が、他面側に前記光照射装置が配 置されていることを特徴とする、請求項 6に記載の処理装置。
[8] 前記水処理槽が円筒あるいは角柱状であって、長手方向の一端側に水性液の投入 ロカ 他端側に水性液の排出口が設けられ、前記処理槽内部の一側面には長手方 向に沿って前記光照射装置が設置され、その反対側の側面には長手方向に沿って 前記超音波照射装置が設置され、 2つの照射装置の間に複数枚の前記光触媒板が 長手方向に一列に配置され、かつ各光触媒板の板面が各照射装置に対して傾斜す るように配置されて 、ることを特徴とする、請求項 7に記載の処理装置。
[9] 金属チタン基材とその表面に一体的に形成された二酸ィ匕チタン光触媒層とからなり、 前記光触媒層の厚みが 2 m以上であり、前記光触媒層の表面に最大径 0.
以上の孔が点在していることを特徴とする、光触媒材。
PCT/JP2007/059919 2006-05-15 2007-05-15 水性液中の被処理物質の処理方法並びにその方法に使用する装置及び光触媒材 WO2007132832A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515555A JP5357540B2 (ja) 2006-05-15 2007-05-15 水性液中の被処理物質の処理方法並びにその方法に使用する装置及び光触媒材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-135872 2006-05-15
JP2006135872 2006-05-15

Publications (1)

Publication Number Publication Date
WO2007132832A1 true WO2007132832A1 (ja) 2007-11-22

Family

ID=38693922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059919 WO2007132832A1 (ja) 2006-05-15 2007-05-15 水性液中の被処理物質の処理方法並びにその方法に使用する装置及び光触媒材

Country Status (2)

Country Link
JP (1) JP5357540B2 (ja)
WO (1) WO2007132832A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104928A (ja) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology マイクロリアクター用反応管及びその製造方法
JP2013043135A (ja) * 2011-08-25 2013-03-04 Kitz Corp メッキ処理工程の水処理装置
WO2014168135A1 (ja) * 2013-04-08 2014-10-16 東洋精箔株式会社 光触媒体及びその製造方法
CN107381974A (zh) * 2017-09-14 2017-11-24 中国石油化工股份有限公司 蒸发冷凝水中残留有机物深度处理系统
CN113617344A (zh) * 2021-07-29 2021-11-09 联科华技术有限公司 一种用于污水处理的单原子光催化板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503252A (ja) * 1990-11-01 1993-06-03 エス・アール・アイ・インターナシヨナル 水性液中のハロゲン化有機化合物の分解のために光エネルギーおよび超音波エネルギーを併用して光触媒の存在下に水性液を処理する方法
JPH08246192A (ja) * 1995-03-03 1996-09-24 Kobe Steel Ltd 光触媒活性を有する酸化処理チタン又はチタン基合金材及びその製法
JPH09267043A (ja) * 1996-03-31 1997-10-14 Nippon Muki Co Ltd 光触媒カートリッジ
JPH10192696A (ja) * 1996-12-27 1998-07-28 Nishihara Environ Sanit Res Corp 光触媒反応装置
JPH11100695A (ja) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd 光触媒活性を有するチタン材の製造方法
JPH11319857A (ja) * 1998-05-13 1999-11-24 Fuso Kensetsu Kogyo Kk 光触媒反応装置
JP2000210659A (ja) * 1999-01-25 2000-08-02 Ebara Corp 気泡収縮を利用した液体処理方法および処理装置
JP2003284946A (ja) * 2002-03-28 2003-10-07 Meidensha Corp 光触媒反応装置とそのユニット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086497A (ja) * 1998-09-18 2000-03-28 Tao:Kk 立体光触媒フィルター及びフィルター装置
JP2001218820A (ja) * 2000-02-14 2001-08-14 Hitachi Metals Ltd 脱臭装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503252A (ja) * 1990-11-01 1993-06-03 エス・アール・アイ・インターナシヨナル 水性液中のハロゲン化有機化合物の分解のために光エネルギーおよび超音波エネルギーを併用して光触媒の存在下に水性液を処理する方法
JPH08246192A (ja) * 1995-03-03 1996-09-24 Kobe Steel Ltd 光触媒活性を有する酸化処理チタン又はチタン基合金材及びその製法
JPH09267043A (ja) * 1996-03-31 1997-10-14 Nippon Muki Co Ltd 光触媒カートリッジ
JPH10192696A (ja) * 1996-12-27 1998-07-28 Nishihara Environ Sanit Res Corp 光触媒反応装置
JPH11100695A (ja) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd 光触媒活性を有するチタン材の製造方法
JPH11319857A (ja) * 1998-05-13 1999-11-24 Fuso Kensetsu Kogyo Kk 光触媒反応装置
JP2000210659A (ja) * 1999-01-25 2000-08-02 Ebara Corp 気泡収縮を利用した液体処理方法および処理装置
JP2003284946A (ja) * 2002-03-28 2003-10-07 Meidensha Corp 光触媒反応装置とそのユニット

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104928A (ja) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology マイクロリアクター用反応管及びその製造方法
JP2013043135A (ja) * 2011-08-25 2013-03-04 Kitz Corp メッキ処理工程の水処理装置
WO2014168135A1 (ja) * 2013-04-08 2014-10-16 東洋精箔株式会社 光触媒体及びその製造方法
JP5789058B2 (ja) * 2013-04-08 2015-10-07 日立金属株式会社 光触媒体の製造方法
CN105121014A (zh) * 2013-04-08 2015-12-02 日立金属株式会社 光催化剂及其制造方法
CN105121014B (zh) * 2013-04-08 2017-04-05 日立金属株式会社 光催化剂及其制造方法
CN107381974A (zh) * 2017-09-14 2017-11-24 中国石油化工股份有限公司 蒸发冷凝水中残留有机物深度处理系统
CN113617344A (zh) * 2021-07-29 2021-11-09 联科华技术有限公司 一种用于污水处理的单原子光催化板及其制备方法
CN113617344B (zh) * 2021-07-29 2023-09-26 联科华技术有限公司 一种用于污水处理的单原子光催化板及其制备方法

Also Published As

Publication number Publication date
JPWO2007132832A1 (ja) 2009-09-24
JP5357540B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
Moradi et al. Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater
Butterfield et al. Applied studies on immobilized titanium dioxide films ascatalysts for the photoelectrochemical detoxification of water
Aal et al. Electrophoreted Zn–TiO2–ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol
KR101928905B1 (ko) 오염수의 정화 방법 및 이를 이용한 정화 시설
CN1422176A (zh) 光解和光催化反应增强装置
JP4758399B2 (ja) 紫外線酸化装置及び紫外線酸化方法
JP5357540B2 (ja) 水性液中の被処理物質の処理方法並びにその方法に使用する装置及び光触媒材
JP5557969B1 (ja) 洗浄装置
WO2006104043A1 (ja) 表面処理方法および表面処理された物品
JP5093801B2 (ja) 酸化チタン膜成形部材の製造方法、光触媒、光電極、および水処理装置
EP0766647B1 (en) Photoelectrochemical reactor
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
Ashley et al. Emerging investigator series: photocatalytic membrane reactors: fundamentals and advances in preparation and application in wastewater treatment
Rastgar et al. Photocatalytic/adsorptive removal of methylene blue dye by electrophoretic nanostructured TiO2/montmorillonite composite films
KR100926126B1 (ko) 일체형 나노튜브 광촉매의 제조방법, 이를 이용한 6가크롬환원 장치 및 환원 방법
EP3802433A1 (en) Sqnoelectrochemical-photo catalytic water treatment reactor
WO2021218630A1 (zh) 一种多相催化反应器
Aziz et al. Recent progress on development of TiO2 thin film photocatalysts for pollutant removal
JP2009233634A (ja) 光触媒の再生方法
Junker et al. Emerging investigator series: Photocatalytic Treatment of PFAS in a Single-step Ultrafiltration Membrane Reactor
Trinh Membrane reactor systems for photocatalytic degradation using TiO2 nanoparticles
Suwanchawalit et al. Recyclable rubber sheets impregnated with potassium oxalate doped TiO2 and their uses in decolorization of dye-polluted waters
Pablos et al. Electrochemical Enhancement of Photocatalytic TiO Disinfection 2 Nanotubes
Lincho et al. Effect of reusing electrolytes on TiO2 nanotubes activity and morphology
Zuliandanu et al. Pt-TiO2 nanotube on FTO glass for photocatalytic degradation of liquid waste of nata de coco production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008515555

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743354

Country of ref document: EP

Kind code of ref document: A1