WO2007132598A1 - タンク形真空遮断器 - Google Patents

タンク形真空遮断器 Download PDF

Info

Publication number
WO2007132598A1
WO2007132598A1 PCT/JP2007/056843 JP2007056843W WO2007132598A1 WO 2007132598 A1 WO2007132598 A1 WO 2007132598A1 JP 2007056843 W JP2007056843 W JP 2007056843W WO 2007132598 A1 WO2007132598 A1 WO 2007132598A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
tank
insulating
contact case
vacuum
Prior art date
Application number
PCT/JP2007/056843
Other languages
English (en)
French (fr)
Inventor
Hiroki Ichikawa
Kiyohito Katsumata
Yukihiro Takeshita
Kazuhiro Nagatake
Original Assignee
Japan Ae Power Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Ae Power Systems Corporation filed Critical Japan Ae Power Systems Corporation
Priority to KR1020087019644A priority Critical patent/KR101253036B1/ko
Priority to AU2007251105A priority patent/AU2007251105B2/en
Priority to US12/280,112 priority patent/US8110770B2/en
Priority to NZ570424A priority patent/NZ570424A/en
Priority to CA2641554A priority patent/CA2641554C/en
Priority to CN2007800078216A priority patent/CN101395686B/zh
Publication of WO2007132598A1 publication Critical patent/WO2007132598A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6

Definitions

  • the present invention relates to a tank-type vacuum circuit breaker used outdoors in a substation for protecting electric power equipment, and more particularly to an internal pressure structure of the tank.
  • FIG. 4 shows a longitudinal front view of a conventional tank-type vacuum circuit breaker.
  • a ground tank 2 is supported on the gantry 1, and an operation box 4 is attached to one end of the ground tank 2 via a support plate 3.
  • an operation mechanism is provided in the operation box 4, an operation mechanism is provided.
  • An insulating support cylinder 5 is supported on the support plate 3 at one end in the horizontal direction in the ground tank 2, and a support insulator 6 is supported at the other horizontal end in the ground tank 2.
  • the insulating support cylinder 5 supports a conductive movable contact case 8 via an insulating support 7, the support insulator 6 supports a fixed contact case 9, and the contact cases 8 and 9 have a blocking portion.
  • the movable end and fixed end of a vacuum interrupter 10 are horizontally supported, and the operation mechanism in the operation box 4 is a lever (not shown) and an insulating operation rod 12 that passes through the insulating support cylinder 5 and the support 7 12 And is connected to the movable lead 11 of the vacuum interrupter 10 via.
  • the movable lead 11 of the vacuum interrupter 10 is inserted into the movable contact case 8 and is electrically connected.
  • the fixed lead 13 of the vacuum interrupter 10 is electrically connected to the fixed contact case 9.
  • the conductors 14 and 15 are connected to the contact cases 8 and 9, respectively, with the lower ends extending upward in an inclined state.
  • the conductors 14 and 15 are surrounded by the pushings 16 and 17.
  • the pushings 16 and 17 are supported by the pushing current transformers 18 and 19 installed on the ground tank 2.
  • Bushing terminals 20 and 21 are provided on the upper ends of the conductors 14 and 15, respectively.
  • this SF gas has excellent insulation performance, the gas pressure can be handled at a low pressure.
  • FIG. 5 is a cross-sectional view of a conventional vacuum interrupter 10, in which a metal fixed side end plate 23 and a movable side end plate 24 are sealed at both ends of an insulating cylinder 22 that also has a ceramic force to form a vacuum container. .
  • One end of the fixed lead 13 is fixed to the center of the fixed side end plate 23, and the movable lead 11 is passed through the through hole 24 a provided in the center of the movable side end plate 24, and one end penetrates the movable side end plate 24.
  • the other end of the bellows 25 attached to the inner surface side of the peripheral portion of the hole 24a is attached to the movable lead 11, and the fixed electrode 26 and the movable electrode 27 are attached to the inner ends of the fixed lead 13 and the movable lead 11 so as to face each other.
  • An intermediate shield 28 is provided on the inner side of the insulating cylinder 22 in the longitudinal direction, and end shields 29 and 30 are provided on the inner side of the end plates 23 and 24.
  • a bellows shield 31 is attached to the movable lead 11 so as to cover a part of the bellows 25.
  • the vacuum inside the vacuum container is maintained by the bellows 25 that can be expanded and contracted even when the movable lead 11 is moved when being turned on and off.
  • Bellows 25 has a structure that can withstand to some extent the differential pressure between the vacuum on the outer peripheral side and the SF gas pressure on the inner peripheral side.
  • the bellows 25 is made of a thin metal such as stainless steel, and if the differential pressure becomes larger than a certain level, a phenomenon called buckling occurs.
  • the pressure of the sealed gas in contact with the circumferential side must be at least about 0.2 MPa or less.
  • SF gas SF gas
  • Patent Document 1 As prior art document information, there is Patent Document 1, which reduces the inner and outer pressure difference of the bellows by making the outer peripheral side of the bellows vacuum and the inner peripheral side by low pressure gas or atmospheric pressure. However, it is intended to prevent damage to the bellows. Further, there is Patent Document 2, which makes the space on the anti-vacuum side an airtight chamber with a low pressure.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-220922
  • Patent Document 2 JP-A-6-208820
  • the bellows part must be separated from other high pressure parts and gas pressure so as to be at low pressure or atmospheric pressure. Normally, when the gas pressure is lowered, the insulation performance is also lowered. Therefore, the insulation support cylinder and the insulation operation rod, which are the low pressure part, correspond to the insulation distance between the high voltage part and the ground part, and ensure a long overall length. There is a need. For this reason, there is a problem that the length of the ground tank is increased accordingly. This will be described with reference to FIG.
  • 32 is a lever for connecting the operating mechanism and the insulating operating rod 12
  • 33 is a ring contact provided between the movable lead 11 of the vacuum interrupter 10 and the movable contact case 8
  • 34 Is a pressure spring that presses the movable electrode 27 against the fixed electrode 26, and directly connects the insulating support cylinder 5 and the movable contact case 8.
  • the ground tank 2 is filled with high-pressure dry air.
  • the inside of the insulating support cylinder 5 and the movable contact case 8 are at atmospheric pressure (low pressure), and the bellows 25 is vacuum on the outer peripheral side and is also atmospheric pressure (low pressure) on the inner peripheral side. .
  • the bellows 25 has a reduced pressure difference between the inside and outside, and damage to the bellows 25 is prevented.
  • the length of the insulating support cylinder 5 and the insulating operation rod 12 is increased, so that the length of the grounding tank 2 is also increased and the overall size is increased. It was.
  • the pressure on the inner peripheral side of the bellows 25 remains high, the bellows 25 must be structured to withstand the pressure difference between the inside and outside, and the material and structure are special and expensive. .
  • Patent Document 2 when the anti-vacuum side is a low-pressure airtight chamber, there is a risk that the high pressure gas in the tank gradually enters the airtight chamber and the pressure gradually increases.
  • the present invention has been made to solve the above-described problems, and is applied to the bellows even if the pressure of the insulating gas stored in the ground tank is increased so that the dielectric strength does not decrease.
  • An object of the present invention is to obtain a tank type vacuum circuit breaker capable of suppressing stress. Means for solving the problem
  • a tank-type vacuum circuit breaker includes a ground tank in which an insulating gas having a pressure higher than atmospheric pressure is sealed, a vacuum vessel, and a movable lead and a fixed lead in the vacuum vessel.
  • a vacuum interrupter composed of a contactable / detachable electrode, a movable lead, and a bellows for holding a vacuum between the vacuum vessels, and both ends of the vacuum interrupter supported by an insulating material in a ground tank.
  • the movable-side contact case and the fixed-side contact case provided on the movable-side contact case and the movable-side contact case and the fixed-side contact case are connected to the movable-side contact case and the fixed-side contact case, respectively.
  • the movable-side conductor is pipe-shaped, communicated with the space on the anti-vacuum side of the bellows in the movable-side contact case, and separated from the space filled with the insulating gas in the ground tank by the sealing means.
  • a space is formed, and the space is communicated with the atmosphere through the space in the movable conductor.
  • a tank-type vacuum circuit breaker includes a ground tank filled with high-pressure dry air, an insulating support cylinder having an insulating operation rod inserted in the ground tank, and an insulating support.
  • a vacuum interrupter having a movable side contact case supported by the supported movable side contact case, a fixed side contact case supported by the fixed side end, and a movable side end provided with a vacuum bellows on the outer peripheral side;
  • the tank is provided with a movable side and a fixed side conductor each having a lower end connected to the movable side and the fixed side contact case, and an upper end connected to the pushing terminal, respectively.
  • the movable conductor is pipe-shaped, inside the movable conductor, inside the support, inside the movable contact case, and inside the bellows of the vacuum interrupter.
  • the upper end of the movable side conductor is open to the atmosphere, and an airtight seal is provided between the support and the insulating operating rod so that the inside of the insulating support cylinder is dry air at high pressure. is there.
  • the tank-type vacuum circuit breaker according to claim 3 is provided with a filter in a vent portion communicating with the atmosphere of the movable pushing terminal.
  • the high-pressure dry air is applied to the portion to which the high electric field is applied, such as the insulating support cylinder and the insulating operation rod, the length of these portions is shortened. Insulation performance can be maintained, and the overall size can be reduced. Further, since the atmospheric pressure is applied to the inner peripheral side of the bellows whose outer peripheral side is vacuum, the pressure difference between the inner and outer bellows is reduced, and damage to the bellows can be prevented.
  • the force S which is also the atmospheric pressure in the portion connected to the inner peripheral side of the bellows, that is, in the movable conductor, in the support and in the movable contact case, these Since a high electric field is not applied to the portion and the potential becomes equal, the insulation performance may be small.
  • dry air with a small warming coefficient is enclosed in the ground tank, which can help prevent global warming.
  • the filter is provided in the vent hole portion communicating with the atmosphere of the movable-side pushing terminal, it is possible to prevent intrusion of rainwater or the like into the pipe-shaped movable-side conductor.
  • FIG. 1 is an enlarged vertical front view of the main part of the tank type vacuum circuit breaker according to the best mode of the present invention
  • Fig. 2 is a vertical front view of the tank type vacuum circuit breaker
  • Fig. 3 is the movable side of the tank type vacuum circuit breaker.
  • FIG. 3 is an enlarged longitudinal sectional view of a conductor portion.
  • the shaded area indicates the atmospheric pressure.
  • dry air is sealed in the ground tank 2 as a high-pressure insulating gas. High pressure dry air is also sealed in the pushings 16 and 17.
  • a support plate 3 is attached to one end of the ground tank 2 in the horizontal direction, and a movable contact case 8 is supported on the inner surface side of the support plate 3 via an insulating support cylinder 5 and an insulating support 7.
  • On the other end in the horizontal direction in the ground tank 2 is a fixed contact case 9 via a support insulator 6. Supported.
  • the movable end of the vacuum interrupter 10 is supported by the cylindrical metal member 8b of the movable contact case 8, the fixed end of the vacuum interrupter 10 is supported by the fixed contact case 9, and the movable lead of the vacuum interrupter 10 11 Is inserted into the movable contact case 8 through the ring contact 33 and connected to the insulating operation rod 12 passing through the insulating support cylinder 5 and the support 7.
  • a bellows 25 whose outer peripheral side is vacuum is provided between the movable end plate 24 and the movable lead 11 of the vacuum interrupter 10.
  • 35 is a movable-side conductor, which is formed in a pipe shape, whose lower end is connected to the movable-side contact case 8, and whose fixed-side conductor 15 is connected to the fixed-side contact case 9 at its lower end.
  • 15 and 35 are grounded tanks 2 Internal force Extends diagonally upward and is surrounded by pushings 16 and 17 provided on the push current transformers 18 and 19, and the push terminals 20 and 21 are connected to the upper ends of the conductors 15 and 35.
  • a finisher 36 is provided in the vent 20a that communicates with the atmosphere of the pushing terminal 20 on the movable side.
  • the portion that communicates with the inner peripheral side of the bellows 25 and does not receive a high electric field is set to atmospheric pressure.
  • the inside of the movable conductor 35, the support 7 and the movable contact case 8 are at atmospheric pressure. Therefore, between the outer periphery of the movable conductor 35 and the cylindrical portion 8a of the movable contact case 8, between the support 7 and the movable contact case 8, and between the movable contact case 8 and its cylindrical metal member 8b ( It is welded to the end plate 24.
  • a high-temperature seal portion (portion that seals at a high temperature) 37 to 39 is provided between the end plate 24 and the inside of the insulating support cylinder 5 with high-pressure dry air. Therefore, linear seal portions 40 and 41 that are hermetic seal portions are provided between the insulating operation rod 12 and the support 7 and between the insulating operation rod 12 and the through hole 3a of the support plate 3.
  • high pressure dry air is applied to the portions to which a high electric field is applied, such as the insulating support cylinder 5 and the insulating operation rod 12, so that even if the length of these portions is shortened, the insulation is performed.
  • the performance can be maintained, and the ground tank 2 is also small, so that it can be made small overall.
  • atmospheric pressure is applied to the inner peripheral side of the bellows 25 whose outer peripheral side is a vacuum, the pressure difference between the inner and outer sides of the bellows 25 is reduced, damage to the bellows 25 can be prevented, and the bellows 25 can be A mass production structure that does not require a structure that can withstand the pressure difference can be used, and the cost can be reduced.
  • the force that makes the inner peripheral side of the bellows 25, the movable side conductor 35, the support 7 and the movable side contact case 8 atmospheric pressure because these parts are equipotential and no high electric field is applied,
  • the insulation performance may be low at low pressure.
  • dry air with a small warming potential S is enclosed in the ground tank 2, it can contribute to the prevention of global warming.
  • the filter 36 is provided in the vent portion 20a that communicates with the atmosphere of the movable-side pushing terminal 20, it is possible to prevent rainwater and the like from entering the pipe-shaped movable-side conductor 35.
  • the force using dry air, SF6 gas, CF3I gas, N2 gas, or the like can be used as the high-pressure insulating gas for enhancing the insulation resistance.
  • the high pressure insulating gases since the atmospheric pressure chamber is formed on the anti-vacuum side of the bellows 25, the pressure difference between the inside and outside of the bellows 25 becomes small, and the stress applied to the bellows 25 can be reduced.
  • SF6 gas has a high dielectric strength
  • the ground tank 2 can be reduced in size by increasing the gas pressure to about 0.17 to 0.4 MPa. Even if leakage occurs in the high temperature seal portions 37 to 39, the pressure in the space in the movable contact case 8 (in the cylindrical metal member 8b) is maintained at atmospheric pressure, and the bellows 25 is not adversely affected.
  • FIG. 1 is an enlarged vertical front view of a main part of a tank-type vacuum circuit breaker according to the best embodiment of the present invention.
  • FIG. 2 is a longitudinal front view of a tank type vacuum circuit breaker according to the best embodiment of the present invention.
  • FIG. 3 is an enlarged longitudinal sectional view of a movable side conductor portion of a tank type vacuum circuit breaker according to the best embodiment of the present invention.
  • FIG. 4 is a longitudinal front view of a conventional tank type vacuum circuit breaker.
  • FIG. 5 is a cross-sectional view of a conventional vacuum interrupter.
  • FIG. 6 Longitudinal profile of tank-type vacuum circuit breaker when high-pressure dry air is sealed in a conventional grounded tank and the inside of the insulating support cylinder, movable contact case, and bellows is at atmospheric pressure
  • Support plate Insulating support tube. Support insulator... Support

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

【課題】ベローズの損傷を防止するとともに、小形化を図り、かつ地球温暖化を防止する。 【解決手段】接地タンク2内に高圧力の乾燥空気を封入し、接地タンク2内の一端には絶縁支持筒5及び絶縁サポート7を介して可動側コンタクトケース8を支持するとともに、接地タンク2内の他端には支持碍子6を介して固定側コンタクトケース9を支持し、コンタクトケース8,9間に真空インタラプタ10を支持する。又、下端がコンタクトケース8,9と接続された導体35,15の上端にブッシング端子20,21を接続するとともに、導体35,15をブッシング16,17により包囲する。可動側導体35をパイプ状とし、外周側が真空のベローズ25の内周側、可動側導体35内、サポート7内及び可動側コンタクトケース8内が大気圧となるとともに、絶縁支持筒5内が高圧力の乾燥空気となるように、気密シール部37~41を設ける。

Description

明 細 書
タンク形真空遮断器
技術分野
[0001] この発明は、電力設備の保護用として変電所内で使用されている屋外用等のタン ク形真空遮断器に関し、特にそのタンクの内部圧力構造に関するものである。
背景技術
[0002] 図 4は従来のタンク形真空遮断器の縦断正面図を示し、架台 1上には接地タンク 2 が支持され、接地タンク 2の一端には支持板 3を介して操作箱 4が取り付けられ、操作 箱 4内には操作機構が設けられる。接地タンク 2内の水平方向一端には絶縁支持筒 5が支持板 3に支持され、接地タンク 2内の水平方向他端には支持碍子 6が支持され る。絶縁支持筒 5には絶縁性のサポート 7を介して導電性の可動側コンタクトケース 8 が支持され、支持碍子 6には固定側コンタクトケース 9が支持され、コンタクトケース 8 , 9には遮断部である真空インタラプタ 10の可動側端部及び固定側端部が水平に支 持され、操作箱 4内の操作機構は図示しないレバーと、絶縁支持筒 5及びサポート 7 内を揷通した絶縁操作ロッド 12とを介して真空インタラプタ 10の可動リード 11と接続 する。真空インタラプタ 10の可動リード 11は可動側コンタクトケース 8に挿通されると ともに、電気的に接続され、真空インタラプタ 10の固定リード 13は固定側コンタクトケ ース 9と電気的に接続される。接地タンク 2内からは下端がコンタクトケース 8, 9とそれ ぞれ電気的に接続された導体 14, 15が傾斜状態で上方に伸びて設けられ、導体 1 4, 15はプッシング 16, 17により包囲され、プッシング 16, 17は接地タンク 2上に設 けられたプッシング変流器 18, 19により支持される。導体 14, 15の上端にはブッシ ング端子 20, 21が設けられる。
[0003] 又、高電圧の導体 14, 15や真空インタラプタ 10等の主回路部とアース電位の接地 タンク 2との絶縁のために、接地タンク 2内には 0. 15MPa程度の SFガスを封入して
6
いる。この SFガスは絶縁性能に優れているため、ガス圧力は低圧力で対応できる。
6
[0004] 図 5は従来の真空インタラプタ 10の断面図を示し、セラミック力もなる絶縁筒 22の 両端に金属製の固定側端板 23及び可動側端板 24を封着し、真空容器を形成する 。固定側端板 23の中心には固定リード 13の一端を固定するとともに、可動側端板 24 の中心に設けた貫通孔 24aには可動リード 11を貫通させ、一端が可動側端板 24の 貫通孔 24aの周辺部の内面側に取り付けられたべローズ 25の他端を可動リード 11 に取り付け、固定リード 13及び可動リード 11の内端には固定電極 26及び可動電極 27を対向して取り付ける。絶縁筒 22の長さ方向中間の内面側には中間シールド 28 を設けるとともに、端板 23, 24の内面側には端部シールド 29, 30を設ける。又、可 動リード 11にはべローズ 25の一部を覆うようにべローズシールド 31を取り付ける。
[0005] 上記構成において、投入動作は、投入指令により操作機構を駆動すると、レバー及 び絶縁操作ロッド 12を介して可動リード 11が移動し、可動電極 27が固定電極 26と 接触し、導体 14, 15間が接続される。又、遮断動作は、引き外し指令が出ると、操作 機構によりレバーを介して絶縁操作ロッド 12が引っ張られ、可動リード 11が移動し、 電極 26, 27間が開離し、導体 14, 15間が遮断される。
[0006] 真空インタラプタ 10においては、上記したように、投入、遮断の際に可動リード 11 が動いても伸縮自在なべローズ 25によって真空容器内の真空は保たれる。ベローズ 25は外周側の真空と内周側の SFガスの圧力との差圧にある程度耐え得る構造とな
6
つているが、ベローズ 25はステンレス等の薄い金属により形成されており、差圧があ る程度以上に大きくなつた場合、座屈(バックリング)という現象が発生するため、ベロ ーズ 25の内周側に接する封入ガスの圧力は少なくとも 0. 2MPa程度以下にしなけ ればならない。又、近年、 SFガス
6 は温暖化係数が高いことから、地球温暖化防止の ためには、極力その使用量を抑制することが必要とされている。
[0007] なお、先行技術文献情報としては、特許文献 1があり、これはべローズの外周側を 真空で内周側を低圧ガス又は大気圧とすることにより、ベローズの内外圧力差を低 減し、ベローズの損傷を防止しょうとするものである。又、特許文献 2があり、これは反 真空側の空間を低い圧力の気密室にするというものである。
特許文献 1:特開 2004— 220922号公報
特許文献 2:特開平 6 - 208820号公報
発明の開示
発明が解決しょうとする課題 [0008] ここで、接地タンク内に封入するガスとしては、 SFガスの代替絶縁ガスとして、温暖
6
ィ匕係数がほぼ零で地球温暖化防止に有効な乾燥空気を適用することが考えられる。 しかし、乾燥空気は従来の SFガスと比較して絶縁性能が劣るため、ガス圧力を 0. 4
6
〜0. 5MPa程度まで上昇させ、絶縁性能を向上させる必要があり、このようなガス圧 力の上昇に伴い、最も弱点となる部分の一つが真空インタラプタのべローズである。 そこで、ベローズの座屈(バックリング)を防ぐため、ベローズの部分は他の高圧力部 分とガス圧力を区分して、低圧力又は大気圧となるようにしなければならない。通常、 ガス圧力が低下すると、絶縁性能も低下するため、低圧力部分となる絶縁支持筒及 び絶縁操作ロッドは高電圧部分とアース部分の絶縁距離に相当することになり、全長 を長く確保する必要がある。このため、これに伴い、接地タンクの長さが長くなつてし まうという問題がある。これを図 6により説明する。
[0009] 図 6において、 32は操作機構と絶縁操作ロッド 12とを接続するレバー、 33は真空ィ ンタラプタ 10の可動リード 11と可動側コンタクトケース 8との間に設けられたリングコン タクト、 34は可動電極 27を固定電極 26に圧接する圧接ばねであり、また絶縁支持筒 5と可動側コンタクトケース 8とを直接接続している。接地タンク 2内には高圧力の乾燥 空気を封入している。この場合、絶縁支持筒 5内及び可動側コンタクトケース 8内は 大気圧 (低圧力)となっており、ベローズ 25は外周側が真空であり、内周側がやはり 大気圧 (低圧力)となっている。このため、特許文献 1と同様にべローズ 25は内外圧 力差が低減され、ベローズ 25の損傷は防止される。し力しながら、絶縁性能の低下 を補うため、絶縁支持筒 5及び絶縁操作ロッド 12の長さが長くなるため、接地タンク 2 の長さも長くなり、全体的に大形になるという課題があった。一方、ベローズ 25の内 周側の圧力を高圧力としたままの場合には、ベローズ 25を内外圧力差に耐え得る構 造としなければならず、その材質、構造が特殊となり、高価になった。又、特許文献 2 に示すように、反真空側を低圧力の気密室にするというものは、タンク内の高圧ガス が気密室に徐々に侵入し、圧力が徐々に上昇する恐れがあった。
[0010] この発明は上記のような課題を解決するために成されたものであり、絶縁耐力が低 下しないように接地タンク内に収納した絶縁ガスの圧力を高くしてもベローズに加わ る応力を小さく抑えることができるタンク形真空遮断器を得ることを目的とする。 課題を解決するための手段
[0011] この発明の請求項 1に係るタンク形真空遮断器は、大気圧よりも高い圧力の絶縁ガ スが封入された接地タンクと、真空容器とこの真空容器内において可動リード及び固 定リードにそれぞれ支持された接離自在な電極と可動リードと真空容器間の真空を 保持するためのベローズとから成る真空インタラプタと、接地タンク内に絶縁材を介し て支持されるとともに、真空インタラプタの両端に設けられた可動側コンタクトケース 及び固定側コンタクトケースと、可動側コンタクトケース及び固定側コンタクトケースと それぞれ接続され、接地タンクに設けられたプッシング内を通って外部に引き出され る可動側導体及び固定側導体と、前記絶縁材を貫通して可動リードと接地タンク外 の操作機構とを連結する絶縁操作ロッドとを備えたものにおいて、前記可動側導体を パイプ状とし、前記可動側コンタクトケース内にベローズの反真空側の空間と連通す るとともに、接地タンク内の絶縁ガスが封入された空間とシール手段により隔離された 空間を形成し、該空間を前記可動側導体内の空間を介して大気と連通させたもので ある。
[0012] 請求項 2に係るタンク形真空遮断器は、高圧力の乾燥空気が封入された接地タン クと、接地タンク内に絶縁操作ロッドが挿通した絶縁支持筒及び絶縁性のサポートを 介して支持された可動側コンタクトケースに可動側端部が支持されるとともに、固定 側コンタクトケースに固定側端部が支持され、かつ可動側端部に外周側が真空のベ ローズが設けられた真空インタラプタと、下端が可動側及び固定側のコンタクトケース とそれぞれ接続されるとともに、上端がそれぞれプッシング端子と接続され、周囲がそ れぞれプッシングにより包囲された可動側及び固定側の導体とを備えたタンク形真 空遮断器において、可動側導体をパイプ状とし、可動側導体内、サポート内、可動側 コンタクトケース内及び真空インタラプタのべローズの内周側を互いに連通し、可動 側導体上端を大気に開口するとともに、絶縁支持筒内が高圧力の乾燥空気となるよ うに前記サポートと前記絶縁操作ロッドとの間に気密シール部を設けたものである。
[0013] 請求項 3に係るタンク形真空遮断器は、可動側のプッシング端子の大気と連通する 通気口部にフィルタを設けたものである。
発明の効果 [0014] 以上のようにこの発明の請求項 1によれば、接地タンク内に高圧力の絶縁ガスを封 入しているので、絶縁操作ロッド等の長さを短くしても絶縁性能を保つことができ、全 体的に小形ィ匕することができる。又、ベローズの反真空側には大気圧が加わるように したので、ベローズの内外圧力差が低減され、ベローズの損傷を防止することができ る。
[0015] 請求項 2によれば、絶縁支持筒や絶縁操作ロッド等の高電界が加わる部分には高 圧力の乾燥空気が加わるようにして 、るので、これらの部分の長さを短くしても絶縁 性能を保つことができ、全体的に小形ィ匕することができる。又、外周側が真空のベロ 一ズの内周側には大気圧が加わるようにしたので、ベローズの内外圧力差が低減さ れ、ベローズの損傷を防止することができる。さらに、ベローズの内周側を大気圧とす るために、ベローズの内周側に連なる部分、即ち可動側導体内、サポート内及び可 動側コンタクトケース内も大気圧としている力 S、これらの部分には高電界が加わらず、 等電位となるため、絶縁性能が小さくても良い。さらに、接地タンク内には温暖化係 数が小さい乾燥空気を封入しているので、地球温暖化の防止にも役立つことができ る。
[0016] 請求項 3によれば、可動側のプッシング端子の大気と連通する通気口部にフィルタ を設けたので、パイプ状の可動側導体内への雨水等の浸入を防止することができる
発明を実施するための最良の形態
[0017] 以下、この発明を実施するための最良の形態を図面とともに説明する。図 1はこの 発明の実施最良形態によるタンク形真空遮断器の要部拡大縦断正面図、図 2は同じ くタンク形真空遮断器の縦断正面図、図 3は同じくタンク形真空遮断器の可動側導 体部分の拡大縦断面図である。なお、図 1及び図 3において、斜線部分は大気圧部 分を示す。図において、接地タンク 2内には高圧力の絶縁ガスとして、乾燥空気が封 入されている。プッシング 16, 17内にも高圧力の乾燥空気が封入されている。接地タ ンク 2内の水平方向の一端には支持板 3が取り付けられ、支持板 3の内面側には絶 縁支持筒 5及び絶縁性のサポート 7を介して可動側コンタクトケース 8が支持され、接 地タンク 2内の水平方向の他端には支持碍子 6を介して固定側コンタクトケース 9が 支持される。真空インタラプタ 10の可動側端部は可動側コンタクトケース 8の円筒状 金属部材 8bに支持され、真空インタラプタ 10の固定側端部は固定側コンタクトケー ス 9に支持され、真空インタラプタ 10の可動リード 11はリングコンタクト 33を介して可 動側コンタクトケース 8を挿通し、絶縁支持筒 5及びサポート 7内を揷通した絶縁操作 ロッド 12と連結される。又、真空インタラプタ 10の可動側端板 24と可動リード 11との 間には外周側が真空のベローズ 25が設けられる。
[0018] 35は可動側導体であり、パイプ状に形成されるとともに、下端が可動側コンタクトケ ース 8に接続され、固定側導体 15は下端が固定側コンタクトケース 9に接続され、導 体 15, 35は接地タンク 2内力 斜め上方に伸び、プッシング変流器 18, 19上に設け られたプッシング 16, 17により囲まれ、導体 15, 35の上端にはプッシング端子 20, 2 1を接続する。可動側のプッシング端子 20の大気と連通する通気口部 20aにはフィ ノレタ 36を設ける。
[0019] 又、真空インタラプタ 10のべローズ 25の内周側を大気圧とするために、ベローズ 2 5の内周側と連通する部分であって、高電界が加わらない部分を大気圧とする。具体 的には、可動側導体 35内、サポート 7内及び可動側コンタクトケース 8内を大気圧と する。そのために、可動側導体 35の外周と可動側コンタクトケース 8の筒状部 8aとの 間、サポート 7と可動側コンタクトケース 8との間及び可動側コンタクトケース 8とその円 筒状金属部材 8b (端板 24に溶接されている。 )との間に気密シール部である高温シ ール部(高温でシールする部分) 37〜39を設け、また絶縁支持筒 5内を高圧力の乾 燥空気とするために、絶縁操作ロッド 12とサポート 7との間及び絶縁操作ロッド 12と 支持板 3の揷通孔 3aとの間に気密シール部である直線シール部 40, 41を設ける。
[0020] 上記した実施最良形態においては、絶縁支持筒 5や絶縁操作ロッド 12等の高電界 が加わる部分には高圧力の乾燥空気が加わるので、これらの部分の長さを短くしても 絶縁性能を保つことができ、接地タンク 2も小形になり、全体的に小形にすることがで きる。又、外周側が真空のベローズ 25の内周側には大気圧が加わるようにしたので、 ベローズ 25の内外圧力差が低減され、ベローズ 25の損傷を防止することができると ともに、ベローズ 25を内外圧力差に耐え得る構造にする必要がなぐ量産構造のも のにすることができ、安価にすることができる。 [0021] 又、ベローズ 25の内周側、可動側導体 35内、サポート 7内及び可動側コンタクトケ ース 8内を大気圧とした力 これらの部分は等電位で高電界が加わらないので、低圧 力で絶縁性能が低くても良い。又、接地タンク 2内には温暖化係数力 S小さい乾燥空 気を封入しているので、地球温暖化の防止に寄与することができる。また、可動側の プッシング端子 20の大気と連通する通気口部 20aにフィルタ 36を設けたので、雨水 等がパイプ状の可動側導体 35内に浸入するのを防止することができる。
[0022] なお、上記した実施最良形態においては、絶縁耐カを高めるための高圧力の絶縁 ガスとして、乾燥空気を用いた力 その他 SF6ガス、 CF3Iガス、 N2ガス等を用いるこ とができる。これらの高圧力の絶縁ガスを用いても、ベローズ 25の反真空側に大気圧 室を形成したので、ベローズ 25の内外の圧力差は小さいなり、ベローズ 25に加わる 応力を小さくすることができる。特に、 SF6ガスは絶縁耐力が大きいので、ガス圧力を 0. 17〜0. 4MPa程度に高圧化すれば、接地タンク 2の小型化が図れる。又、高温 シール部 37〜39に漏れが生じても、可動側コンタクトケース 8内の(円筒状金属部材 8b内の)空間の圧力は大気圧に維持され、ベローズ 25に悪影響を与えない。
図面の簡単な説明
[0023] [図 1]この発明の実施最良形態によるタンク形真空遮断器の要部拡大縦断正面図で ある。
[図 2]この発明の実施最良形態によるタンク形真空遮断器の縦断正面図である。
[図 3]この発明の実施最良形態によるタンク形真空遮断器の可動側導体部分の拡大 縦断面図である。
[図 4]従来のタンク形真空遮断器の縦断正面図である。
[図 5]従来の真空インタラプタの断面図である。
[図 6]従来の接地タンク内に高圧力の乾燥空気を封入し、絶縁支持筒内、可動側コ ンタクトケース内及びべローズ内を大気圧とした場合のタンク形真空遮断器の縦断正 面図である。
符号の説明
[0024] 2…接地タンク
3· ··支持板 …絶縁支持筒 …支持碍子 …サポート
, 9···コンタクトケース0···真空インタラプタ1···可動リード2…絶縁操作ロッド3…固定リード5, 35···導体
, 17· "プッシング , 21···ブッシング端子 a…通気口部
, 24···端板
···ベローズ
···フイノレタ
〜39···高温シーノレ部 , 41···直線シール部

Claims

請求の範囲
[1] 大気圧よりも高い圧力の絶縁ガスが封入された接地タンクと、真空容器とこの真空 容器内において可動リード及び固定リードにそれぞれ支持された接離自在な電極と 可動リードと真空容器間の真空を保持するためのベローズとから成る真空インタラブ タと、接地タンク内に絶縁材を介して支持されるとともに、真空インタラプタの両端に 設けられた可動側コンタクトケース及び固定側コンタクトケースと、可動側コンタクトケ ース及び固定側コンタクトケースとそれぞれ接続され、接地タンクに設けられたブッシ ング内を通って外部に引き出される可動側導体及び固定側導体と、前記絶縁材を貫 通して可動リードと接地タンク外の操作機構とを連結する絶縁操作ロッドとを備えたも のにおいて、前記可動側導体をパイプ状とし、前記可動側コンタクトケース内にベロ 一ズの反真空側の空間と連通するとともに、接地タンク内の絶縁ガスが封入された空 間とシール手段により隔離された空間を形成し、該空間を前記可動側導体内の空間 を介して大気と連通させたことを特徴とするタンク形真空遮断器。
[2] 高圧力の乾燥空気が封入された接地タンクと、接地タンク内に絶縁操作ロッドが挿 通した絶縁支持筒及び絶縁性のサポートを介して支持された可動側コンタクトケース に可動側端部が支持されるとともに、固定側コンタクトケースに固定側端部が支持さ れ、かつ可動側端部に外周側が真空のベローズが設けられた真空インタラプタと、下 端が可動側及び固定側のコンタクトケースとそれぞれ接続されるとともに、上端がそ れぞれプッシング端子と接続され、周囲がそれぞれプッシングにより包囲された可動 側及び固定側の導体とを備えたタンク形真空遮断器にぉ ヽて、可動側導体をパイプ 状とし、可動側導体内、サポート内、可動側コンタクトケース内及び真空インタラプタ のべローズの内周側を互いに連通し、可動側導体上端を大気に開口するとともに、 絶縁支持筒内が高圧力の乾燥空気となるように前記サポートと前記絶縁操作ロッドと の間に気密シール部を設けたことを特徴とするタンク形真空遮断器。
[3] 可動側のプッシング端子の大気と連通する通気口部にフィルタを設けたことを特徴 とする請求項 2記載のタンク形真空遮断器。
PCT/JP2007/056843 2006-05-11 2007-03-29 タンク形真空遮断器 WO2007132598A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087019644A KR101253036B1 (ko) 2006-05-11 2007-03-29 탱크형 진공 회로 차단기
AU2007251105A AU2007251105B2 (en) 2006-05-11 2007-03-29 Vacuum circuit breaker of tank type
US12/280,112 US8110770B2 (en) 2006-05-11 2007-03-29 Vacuum circuit breaker of tank type
NZ570424A NZ570424A (en) 2006-05-11 2007-03-29 Vacuum circuit breaker of tank type
CA2641554A CA2641554C (en) 2006-05-11 2007-03-29 Vacuum circuit breaker of tank type
CN2007800078216A CN101395686B (zh) 2006-05-11 2007-03-29 箱壳式真空断路器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-132142 2006-05-11
JP2006132142A JP4709062B2 (ja) 2006-05-11 2006-05-11 タンク形真空遮断器

Publications (1)

Publication Number Publication Date
WO2007132598A1 true WO2007132598A1 (ja) 2007-11-22

Family

ID=38693700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056843 WO2007132598A1 (ja) 2006-05-11 2007-03-29 タンク形真空遮断器

Country Status (9)

Country Link
US (1) US8110770B2 (ja)
JP (1) JP4709062B2 (ja)
KR (1) KR101253036B1 (ja)
CN (1) CN101395686B (ja)
AU (1) AU2007251105B2 (ja)
CA (1) CA2641554C (ja)
NZ (1) NZ570424A (ja)
TW (1) TWI430529B (ja)
WO (1) WO2007132598A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052010A1 (ja) * 2009-10-29 2011-05-05 三菱電機株式会社 タンク形真空遮断器
RU2498439C1 (ru) * 2012-05-18 2013-11-10 Открытое Акционерное Общество Холдинговая Компания "Электрозавод" (Оао "Электрозавод") Баковый вакуумный выключатель
DE112010005420B4 (de) * 2010-03-25 2016-03-17 Mitsubishi Electric Corporation Vakuum-Leistungsschalter
WO2020054128A1 (ja) * 2018-09-14 2020-03-19 株式会社日立製作所 ガス絶縁開閉装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040441B1 (ko) * 2008-12-31 2011-06-09 주식회사 효성 가스 절연 개폐장치의 절연서포트
US8755752B2 (en) 2009-02-03 2014-06-17 Nec Corporation Radio wave propagation characteristic estimation system, radio wave propagation characteristic estimation method, and radio wave propagation characteristic estimation program
US8592708B2 (en) * 2009-05-18 2013-11-26 Hitachi, Ltd. Gas-insulated vacuum circuit breaker
JP5152148B2 (ja) * 2009-10-28 2013-02-27 三菱電機株式会社 ガス絶縁開閉装置およびその製造方法
JP5330192B2 (ja) * 2009-10-28 2013-10-30 三菱電機株式会社 ガス絶縁電気機器
KR101336357B1 (ko) * 2009-10-29 2013-12-04 미쓰비시덴키 가부시키가이샤 전력개폐장치
JP5297339B2 (ja) 2009-10-29 2013-09-25 三菱電機株式会社 タンク型真空遮断器
AU2010346801B9 (en) * 2010-02-23 2014-02-27 Mitsubishi Electric Corporation Power switching device
JP4749495B1 (ja) * 2010-04-15 2011-08-17 株式会社日本Aeパワーシステムズ タンク形真空遮断器
JP5183831B2 (ja) * 2010-11-12 2013-04-17 三菱電機株式会社 ガス絶縁開閉装置
WO2012164764A1 (ja) * 2011-06-02 2012-12-06 三菱電機株式会社 タンク型真空遮断器
CN103620897B (zh) 2011-06-17 2016-01-20 三菱电机株式会社 箱形真空断路器
JP5444512B2 (ja) * 2011-09-28 2014-03-19 三菱電機株式会社 タンク型真空遮断器
CN102360987B (zh) * 2011-10-25 2014-03-26 沈阳华德海泰电器有限公司 一种罐式高压真空断路器
CN102403668B (zh) * 2011-10-25 2014-09-24 沈阳华德海泰电器有限公司 一种高压组合电器
WO2013187886A2 (en) * 2012-06-12 2013-12-19 Hubbell Incorporated Medium or high voltage switch bushing
US20140374383A1 (en) * 2013-06-25 2014-12-25 Tetsu Shioiri Tank-type vacuum circuit breaker
JP6219105B2 (ja) * 2013-09-20 2017-10-25 株式会社東芝 開閉器
US9806504B2 (en) 2014-01-27 2017-10-31 Mitsubishi Electric Corporation Gas circuit breaker and method for attaching bushing
US20160343529A1 (en) * 2014-02-24 2016-11-24 Mitsubishi Electric Corporation Gas circuit breaker
ES2603433T3 (es) * 2014-06-10 2017-02-27 Abb Schweiz Ag Transformador de corriente
US9728362B2 (en) * 2014-06-12 2017-08-08 Abb Schweiz Ag Dead tank circuit breaker with surge arrester connected across the bushing tops of each pole
EP2975710B1 (fr) 2014-07-18 2017-09-06 General Electric Technology GmbH Disjoncteur comportant un tube creux isolant
JP6075423B1 (ja) 2015-09-03 2017-02-08 株式会社明電舎 真空遮断器
US9978539B1 (en) * 2017-02-08 2018-05-22 General Electric Technology Gmbh Extractor of a bushing conductor from a bushing insulator for a dead tank circuit breaker
DE102017206754A1 (de) * 2017-04-21 2018-10-25 Siemens Aktiengesellschaft Schaltgeräteantriebsanordnung
DE102018201151A1 (de) * 2018-01-25 2019-07-25 Siemens Aktiengesellschaft Elektrische Schalteinrichtung
CN111837304B (zh) * 2018-03-14 2021-12-31 三菱电机株式会社 气体绝缘开关装置
WO2019224975A1 (ja) * 2018-05-24 2019-11-28 三菱電機株式会社 ガス絶縁開閉装置
KR102171601B1 (ko) 2019-01-04 2020-10-29 효성중공업 주식회사 가스절연개폐기용 전극구동장치
USD907594S1 (en) * 2019-06-06 2021-01-12 Ningbo C.F Electronic Tech Co., Ltd Electrolyzer
JP6599074B1 (ja) * 2019-06-07 2019-10-30 三菱電機株式会社 真空遮断器
KR102509664B1 (ko) * 2020-09-18 2023-03-15 현대일렉트릭앤에너지시스템(주) 가스절연 차단기 및 이의 중심맞춤 방법
JP7226650B2 (ja) * 2020-12-23 2023-02-21 三菱電機株式会社 真空遮断器
CN113410087B (zh) * 2021-06-17 2023-06-20 西安西电开关电气有限公司 一种紧凑型的高压罐式快速机械组合开关设备
EP4372780A1 (en) 2021-07-12 2024-05-22 Mitsubishi Electric Corporation Vacuum isolator
JP7090825B1 (ja) 2021-09-28 2022-06-24 三菱電機株式会社 タンク型遮断器
WO2023079740A1 (ja) 2021-11-08 2023-05-11 三菱電機株式会社 消弧室、真空遮断器及び消弧室の組立方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56170846U (ja) * 1980-05-20 1981-12-17
JPS5717528A (en) * 1980-07-08 1982-01-29 Meidensha Electric Mfg Co Ltd Vaccum tank type breaker
JPS60141038U (ja) * 1984-02-29 1985-09-18 株式会社日立製作所 真空開閉装置
JPH06208820A (ja) * 1993-01-12 1994-07-26 Hitachi Ltd ガス絶縁真空遮断器
JP2004220922A (ja) * 2003-01-15 2004-08-05 Nissin Electric Co Ltd ガス絶縁開閉装置
JP2004236455A (ja) * 2003-01-31 2004-08-19 Hitachi Ltd ガス絶縁開閉装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735019A (en) 1971-11-24 1973-05-22 Westinghouse Electric Corp Flexible weather casing for a gas filled bushing
JPS5731308A (en) * 1980-08-01 1982-02-19 Meidensha Electric Mfg Co Ltd Breaker with disconnecting switch
JPS60141038A (ja) * 1983-12-28 1985-07-26 Rohm Co Ltd 赤外線リモ−トコントロ−ル受信回路
US4881320A (en) 1987-10-26 1989-11-21 Cts Corporation Method of making vented seal for electronic components and an environmentally protected component
US6002560A (en) * 1998-09-02 1999-12-14 Eaton Corporation Circuit breaker contact wear indicator
CN2458720Y (zh) * 2000-12-11 2001-11-07 北京北开电气股份有限公司 真空断路器静导电杆联接装置
CN2513218Y (zh) * 2001-11-30 2002-09-25 王广华 一种真空断路器和真空开关
JP2004235122A (ja) 2003-02-03 2004-08-19 Japan Ae Power Systems Corp 真空遮断器
JP2004259449A (ja) 2003-02-24 2004-09-16 Japan Ae Power Systems Corp 真空インタラプタ
JP2005135778A (ja) * 2003-10-31 2005-05-26 Hitachi Ltd 電気接点とその製造法及び真空バルブ用電極とそれを用いた真空バルブ並びに真空遮断器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56170846U (ja) * 1980-05-20 1981-12-17
JPS5717528A (en) * 1980-07-08 1982-01-29 Meidensha Electric Mfg Co Ltd Vaccum tank type breaker
JPS60141038U (ja) * 1984-02-29 1985-09-18 株式会社日立製作所 真空開閉装置
JPH06208820A (ja) * 1993-01-12 1994-07-26 Hitachi Ltd ガス絶縁真空遮断器
JP2004220922A (ja) * 2003-01-15 2004-08-05 Nissin Electric Co Ltd ガス絶縁開閉装置
JP2004236455A (ja) * 2003-01-31 2004-08-19 Hitachi Ltd ガス絶縁開閉装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052010A1 (ja) * 2009-10-29 2011-05-05 三菱電機株式会社 タンク形真空遮断器
JP5183810B2 (ja) * 2009-10-29 2013-04-17 三菱電機株式会社 タンク形真空遮断器
AU2009354701B2 (en) * 2009-10-29 2014-05-15 Mitsubishi Electric Corporation Tank-type vacuum interrupter
US9136674B2 (en) 2009-10-29 2015-09-15 Mitsubishi Electric Corporation Dead tank vacuum circuit breaker
DE112009005337B4 (de) * 2009-10-29 2015-10-29 Mitsubishi Electric Corporation Vakuum-Leistungsschalter mit elektrisch an Masse gelegtem Behälter
DE112010005420B4 (de) * 2010-03-25 2016-03-17 Mitsubishi Electric Corporation Vakuum-Leistungsschalter
RU2498439C1 (ru) * 2012-05-18 2013-11-10 Открытое Акционерное Общество Холдинговая Компания "Электрозавод" (Оао "Электрозавод") Баковый вакуумный выключатель
WO2020054128A1 (ja) * 2018-09-14 2020-03-19 株式会社日立製作所 ガス絶縁開閉装置
JP2020048252A (ja) * 2018-09-14 2020-03-26 株式会社日立製作所 ガス絶縁開閉装置

Also Published As

Publication number Publication date
AU2007251105B2 (en) 2011-02-17
NZ570424A (en) 2010-12-24
KR20090009778A (ko) 2009-01-23
JP2007306701A (ja) 2007-11-22
US8110770B2 (en) 2012-02-07
TWI430529B (zh) 2014-03-11
AU2007251105A1 (en) 2007-11-22
CA2641554C (en) 2014-03-11
KR101253036B1 (ko) 2013-04-10
TW200818643A (en) 2008-04-16
CN101395686A (zh) 2009-03-25
CA2641554A1 (en) 2007-11-22
US20100288733A1 (en) 2010-11-18
CN101395686B (zh) 2012-01-11
JP4709062B2 (ja) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2007132598A1 (ja) タンク形真空遮断器
JP6382069B2 (ja) スイッチギヤ
JP6044645B2 (ja) 真空遮断器
KR20100020425A (ko) 진공 스위치 기어
CN100587883C (zh) 真空开关设备
US20130155640A1 (en) Gas insulated switchgear
KR102517402B1 (ko) 회로 차단 장치
KR101060780B1 (ko) 진공인터럽터의 벨로우즈 압력완화구조를 구비한 진공차단기
JP4212595B2 (ja) ガス絶縁開閉装置
JP4309386B2 (ja) スイッチギア
JP4222848B2 (ja) ガス絶縁開閉装置
JP2004056845A (ja) 絶縁開閉装置
EP1911057B1 (en) Electrical switchgear
JP4119441B2 (ja) ガス絶縁開閉装置
JPH10210615A (ja) 受変電設備装置
WO2011117914A1 (ja) 真空バルブ及び該真空バルブを搭載したスイッチギヤ
JP2003068175A (ja) 電力用開閉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007251105

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2641554

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087019644

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 570424

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 12280112

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780007821.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740281

Country of ref document: EP

Kind code of ref document: A1