WO2007129530A1 - 淡水製造方法 - Google Patents

淡水製造方法 Download PDF

Info

Publication number
WO2007129530A1
WO2007129530A1 PCT/JP2007/058233 JP2007058233W WO2007129530A1 WO 2007129530 A1 WO2007129530 A1 WO 2007129530A1 JP 2007058233 W JP2007058233 W JP 2007058233W WO 2007129530 A1 WO2007129530 A1 WO 2007129530A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane unit
semipermeable membrane
desalting
acid
Prior art date
Application number
PCT/JP2007/058233
Other languages
English (en)
French (fr)
Inventor
Masahide Taniguchi
Yoshitsugu Kojima
Toshiro Miyoshi
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to ES07741669.1T priority Critical patent/ES2447034T3/es
Priority to EP07741669.1A priority patent/EP2017228B1/en
Priority to AU2007246525A priority patent/AU2007246525B2/en
Priority to JP2007519956A priority patent/JP5286785B2/ja
Priority to CN2007800166185A priority patent/CN101437761B/zh
Priority to US12/298,980 priority patent/US20110226695A1/en
Publication of WO2007129530A1 publication Critical patent/WO2007129530A1/ja
Priority to IL194886A priority patent/IL194886A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/029Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a fresh water production method for obtaining fresh water from raw water using a reverse osmosis membrane or a nanofiltration membrane (hereinafter collectively referred to as a semipermeable membrane).
  • the present invention relates to a fresh water production method capable of efficiently obtaining fresh water while preventing performance degradation.
  • separation membranes have been applied as the core of water treatment technology due to their high separation accuracy.
  • reverse osmosis membranes and nanofiltration membranes that can separate and remove ions are used to remove hardness components and harmful components from groundwater and make them suitable for drinking, or produce fresh water from seawater. It has been used for so-called "seawater desalination”.
  • Groundwater has originally been used as a clearer source of water than surface water, but it is difficult to remove ionic components and harmful chemicals with the purification action obtained by infiltrating the ground. Due to environmental pollution, purification using nanofiltration membranes or reverse osmosis membranes has become necessary.
  • Examples of the periodic cleaning method include intermittent cleaning with sodium bisulfite and a special disinfectant (Non-patent Document 1).
  • the method using sodium bisulfite has been applied in the past, but depending on the situation, it may promote the growth of microorganisms (Non-Patent Documents 2 and 3).
  • these sterilization washings are performed on the supply water side and cannot pass through the reverse osmosis membrane in principle, but in the unlikely event that the reverse osmosis membrane is damaged, a bactericidal agent or the like is present on the permeate side. There is a risk of leakage. For this reason, in plants for drinking water use, there is no problem even if it is mixed into the permeate side, and washing is performed using acid (Patent Document Do).
  • Cleaning using an acid has an advantage that cleaning can be performed without changing operating conditions during continuous operation. Concentrated water and permeated water obtained during acid cleaning must be neutralized to the extent that it can be released and PH6 that is compatible with the quality of drinking water, and does not contain harmful substances. By performing the treatment continuously, fresh water can be continuously obtained, which is very efficient.
  • Patent Document 2 an alkali-added two-stage treatment in which an alkali is added to the feed water of the second-stage reverse osmosis membrane. In this case, it is necessary to add alkali to the permeated water of the first-stage reverse osmosis membrane to increase the pH to about 9 to 10, for example.
  • Patent Document 1 Japanese Patent No. 3087750 (Claim 1)
  • Patent Document 2 Japanese Patent No. 3319321 (paragraphs [0006] to [0013])
  • Non-Patent Document 1 Dow Chemical, AQUCAR RO-20 Catalog (2005)
  • Non-Patent Document 2 A. B. Hamida, I. Moch Jr., Desalination & Water Reuse, 6
  • Non-Patent Document 3 L. E. Applegate, C. W. Elken Bresciel, Desalination, 65, 331-359 (1987).
  • An object of the present invention is to provide a practical fresh water production method capable of efficiently and continuously obtaining high quality fresh water in removing impurities in water, particularly boron, using a semipermeable membrane unit. Is to provide.
  • the present invention for solving the above problems is characterized by the following (1) to (8).
  • the first semipermeable membrane obtained by treating the raw water or the pretreated water obtained by pretreating the raw water with the first semipermeable membrane unit as the supply water for the first semipermeable membrane unit A method for producing fresh water having a plurality of parallel desalting steps in which the permeated water of the unit is used as the feed water for the second semipermeable membrane unit and the pH is increased and the second semipermeable membrane unit is treated. Washing is performed in a part of the desalting step A. In this washing, raw water or pretreated water is supplied to the first semipermeable membrane unit A1 with a lowered pH, and the obtained first semipermeable membrane is obtained.
  • the permeated water of unit A1 is supplied to the second semipermeable membrane unit A2 as a pH lower than the supply water of the second semipermeable membrane unit B2 in the other desalting step B, and the second semipermeable membrane unit Mix the permeate obtained from A2 with the permeate obtained from the second semipermeable membrane unit B2 in the other desalting step B above.
  • Fresh water production method that.
  • a portion of the permeated water a of the first semipermeable membrane unit is not treated with the second semipermeable membrane unit, and the remaining permeated water b is treated with the second semipermeable membrane unit.
  • a fresh water production method in which the pH is raised as the supply water of the unit, treated with a second semipermeable membrane unit, and mixed with the part of the permeated water a to obtain fresh water. In the process, a period of time during which the washing is not performed is provided, and the remaining amount of the permeated water b during the washing in the partial desalting process A is used for all the desalting processes.
  • the fresh water production method according to any one of the above (1) to (3), wherein the amount of water is longer than the amount of water during dredging time.
  • the operating time force for lowering the pH of the feed water of the first semipermeable membrane unit A1 is in the range of 0.5 to 2.5 hr.Z days,
  • the fresh water production method according to any one of (1) to (6).
  • the number of the desalting steps (a) and the operation time (b) for lowering the pH of the feed water of the first semipermeable membrane unit A1 in the partial desalting steps are as follows: (1) to (7)! The fresh water manufacturing method as described in any one.
  • raw water or pretreated water obtained by pretreatment of raw water means water upstream from the first semipermeable membrane unit, and “supply” of the first and second semipermeable membrane units.
  • Water means water at the time of actually flowing into the semipermeable membrane unit. It does not matter whether or not it contains an additive such as a scale inhibitor.
  • the mixed water of the reflux water and the raw water is also referred to as raw water.
  • raw water or pretreated water obtained by pretreating raw water is treated with the first semipermeable membrane. Treating with knit, raise at least a part of the permeated water of the obtained first semipermeable membrane unit and treat it with the second semipermeable membrane unit as feed water for the second semipermeable membrane unit.
  • the raw water or pretreated water is lowered to pH and supplied to the first semipermeable membrane unit A1.
  • the permeated water of the first semipermeable membrane unit A1 is supplied to the second semipermeable membrane unit A2 as a pH lower than the supplied water of the second semipermeable membrane unit B2 in the other desalting step B.
  • the permeated water obtained from the second semipermeable membrane unit A2 is mixed with the permeated water obtained from the second semipermeable membrane unit B2 in the other desalting step B. Can be obtained efficiently and continuously, especially for drinking with reduced seawater power. High that was, it is possible to obtain fresh water quality efficiently and continuously.
  • FIG. 1 is a schematic flow diagram showing an embodiment of a fresh water production apparatus to which the present invention can be applied.
  • FIG. 2 is a schematic flow diagram showing another embodiment of the fresh water production apparatus to which the present invention is applicable.
  • FIG. 3 is a schematic flow diagram showing another embodiment of the fresh water producing apparatus to which the present invention is applicable.
  • FIG. 4 is a schematic flow diagram showing another embodiment of the fresh water producing apparatus to which the present invention is applicable.
  • FIG. 5 is a schematic flow diagram showing another embodiment of the fresh water producing apparatus to which the present invention is applicable.
  • FIG. 6 is an example of a semipermeable membrane element applicable in the present invention.
  • FIG. 7 is a flowchart of the semipermeable membrane unit evaluation apparatus used in Examples and Comparative Examples.
  • FIG. 8 is a schematic flow diagram of a first semipermeable membrane unit constituting the semipermeable membrane unit evaluation apparatus used in Examples and Comparative Examples.
  • FIG. 9 is a schematic flow diagram of a second semipermeable membrane unit constituting the semipermeable membrane unit evaluation apparatus used in Examples and Comparative Examples.
  • Concentrated water reflux line of the second semipermeable membrane unit 34 Concentrated water reflux valve of the second semipermeable membrane unit
  • the fresh water production apparatus shown in Fig. 1 basically includes a pretreatment means 2 such as a filter for pretreatment of raw water (seawater) 1, and a pretreatment water tank 5 for storing pretreatment water as necessary. And a desalting step 23 (for example, 23a to 23n) having at least the first semipermeable membrane unit 8 and the second semipermeable membrane unit 15 for treating the pretreated water stored in the pretreated water tank 5. And a pH adjusting means 19 for the permeated water of the second semipermeable membrane unit, a post-processing means 20 and a production water tank 21. There are a plurality of desalting steps 23 as indicated by 23a-23n in the figure. It is set up in parallel with each other!
  • each of the first semipermeable membrane unit 8 and the second semipermeable membrane unit 15 constituting one desalination step 23 the pressure of the supply water of each semipermeable membrane unit A high-pressure pump 7 and a booster pump 14 used to increase the pH are provided, and an acid addition means 6 and a second half-pump are provided upstream of the first semipermeable membrane unit 8 to lower the pH.
  • an alkali addition means 13 for increasing the pH is provided.
  • an energy recovery means 22 for recovering the energy held by the primary concentrated water 10 is provided on the concentrated water (primary concentrated water) 10 side of the first semipermeable membrane unit 8.
  • the seawater 1 is subjected to the first semi-permeable through the high pressure pump 7 as it is or after being pretreated by the pretreatment means 2 according to its turbidity. Supplied to membrane unit 8. At this time, in some cases, in order to increase the boron removal rate of the first semipermeable membrane unit 8, the scale inhibitor and alkali are added by the first scale inhibitor addition means 3 and the first alkali addition means 4. Is done.
  • the permeated water (primary permeated water) 9 of the first semipermeable membrane unit 8 from which the solute has been removed is Sent to the second semipermeable membrane unit 15.
  • the concentrated water (primary concentrated water) 10 of the first semipermeable membrane unit 8 is discharged into the sea after the pressure energy is recovered by the energy recovery means 22.
  • the control of the permeate flow rate of the first semipermeable membrane unit 8 can be performed by adjusting the output of the high-pressure pump 7 and also by the concentrated water flow rate adjustment valve 11.
  • Pressure energy recovery is generally applied only to the first semipermeable membrane unit in terms of cost performance, but an energy recovery means is provided on the concentrated water 17 side for the second semipermeable membrane unit. Of course, energy can be recovered.
  • the primary permeated water 9 is optionally added with a scale inhibitor by the second scale inhibitor addition means 12, and the second semi-permeable membrane having a pH of 1 by the second alkali addition means 13.
  • the pressure is raised by the booster pump 14 and supplied to the second semipermeable membrane unit 15.
  • the solute is further removed from the supply water, and the secondary permeated water 16 having a high water quality can be obtained.
  • the second semipermeable membrane unit 15 is provided using the second scale inhibitor addition means 12.
  • the position where the scale inhibitor is added to the water supply is upstream of the second alkali addition means 13 in order to prevent scale precipitation in the vicinity of the alkali-added carbon of the second alkali addition means 13. I prefer to be there.
  • a stirring tank or an in-line mixer for promoting mixing on the downstream side of the scale inhibitor or alkali addition.
  • FIG. 2 is the same as the embodiment of FIG. 1 except that the primary permeated water no-pass line 37 and the primary permeated water binos valve 24 are provided.
  • the secondary permeated water 16 is singly or mixed with the primary permeated water, the pH is lowered by the pH adjusting means 19, and the components are adjusted by the post-treatment means 20 for adjusting the ingredients such as lime addition. Then, it is stored in the production water tank 21.
  • the concentrated water (secondary concentrated water) 17 of the second semipermeable membrane unit 15 is discharged into the sea or the like.
  • the primary permeated water 9 is Although it is used as the supply water (treated water) of the permeable membrane unit 15 and alkali and scale inhibitors are added to the supply water as needed, turbidity is sufficiently removed and clear.
  • the pH increases due to alkali-added coffee. Therefore, when discharging the secondary concentrated water 17, it is preferable to discharge after adjusting the pH according to the situation.
  • the concentrated water of the series that has been subjected to the acid cleaning is acidic, so that the concentrated water discharged from each desalting step can be mixed and discharged to reduce the pH. It is preferable to reduce the acid addition required for adjustment.
  • FIG. 3 shows the embodiment of FIG. 1 except that at least a part of the concentrated water (secondary concentrated water) 17 of the second semipermeable membrane unit 15 is recirculated as the supply water of the first semipermeable membrane unit 8. Is the same. Further, as shown in FIG.
  • a back pressure valve 36 is provided on the permeate 9 side of the first semipermeable membrane unit 8, and the back pressure valve 36 acts on the first semipermeable membrane unit 8.
  • the pressure to be adjusted may be adjusted. By doing so, it is not necessary to change the output of the high-pressure pump 7, so that the energy held by the concentrated water is increased and more energy can be recovered by the energy recovery means 22.
  • a back pressure nozzle may be provided on the permeate side of the second semipermeable membrane unit 15 to perform the same thing.
  • FIG. 4 is the same as the embodiment of FIG. 1 except that a back pressure valve 36 is provided on the permeate 9 side of the first semipermeable membrane unit 8.
  • the permeated water of the first semipermeable membrane unit 8 is increased and treated by the second semipermeable membrane unit 15, some steps (for example, performing acid cleaning) 23a)
  • the permeated water of the first semipermeable membrane unit 8 is supplied to the second semipermeable membrane unit 15 in other desalting steps (for example, 23b to 23n) that are not subjected to acid cleaning.
  • the permeated water obtained from the second semipermeable membrane unit 15 is supplied to other desalting steps (for example, 23b to It is mixed with the permeated water obtained from the second semipermeable membrane unit 15 in 23n).
  • the acid input for washing in some desalting steps (for example, 23a) is used to neutralize the alkali input for boron removal in other desalting steps (for example, 23b to 23n).
  • FIG. 1 shows that the desalting step 23a is cleaned.
  • the desalting step 23a part desalting step A
  • the acidated calorie means 6 is operated, and the pH of the feed water of the first semipermeable membrane unit 8 (first semipermeable membrane unit A1) is set. By lowering, microbial contamination of the first semipermeable membrane unit 8 is prevented.
  • the remaining desalting steps 23b to 23n other desalting steps B
  • normal operation is performed without operating the acid addition means 6.
  • desalting step 23a after the first semi-permeable membrane unit 8 (first semi-permeable membrane unit A1) time determined because Ji roughness force feed water, in the low P H carried microbial contamination prevention treatment Stops the acid addition means 6 and returns to the same operating conditions as the other desalting steps 23b to 23n (other desalting steps B) that have been carried out in normal operation.
  • the desalting process in which acid cleaning is performed next is selected from other desalting processes that have been operated with the acid addition means 6 stopped (for example, 23b).
  • acid is added to prevent microbial contamination.
  • the pH of the permeated water 9 of the first semipermeable membrane unit 8 (first semipermeable membrane unit A 1) in the desalting step 23a in which acid is added to the raw water is usually
  • the permeated water 9 of the first semipermeable membrane unit 8 (first semipermeable membrane unit A1) whose pH is lower than usual is used as the second semipermeable membrane unit.
  • 15 Do not add alkali when supplying to (second semipermeable membrane unit A2). That is, in the desalting step 23a in which the acid cleaning is performed, the operation of the second alkali-adding means 13 is stopped.
  • the permeated water 16 of the second semipermeable membrane unit (second semipermeable membrane unit A2) in the desalting step 23a is subjected to acid cleaning, Before supplying to the semipermeable membrane unit 15, the alkali-added cocoon is added to the second semipermeable membrane unit (the second semipermeable membrane unit) in the other desalting steps 23b to 23n (other desalting step B).
  • the permeated water 16 of the permeable membrane unit B2) is mixed, and then adjusted to a pH suitable as production water by the pH adjusting means 19 if necessary.
  • the amount of acid or alkali required for the pH adjusting means 19 can be significantly reduced.
  • Desalination step 23a (—desalination step A) of the second semipermeable membrane unit (second semipermeable membrane unit A2) with permeated water 16 and acid cleaning! It is possible to set the target value of the pH of the mixed water with the permeated water 16 of the second semipermeable membrane unit (second semipermeable membrane unit B2) in steps 23b to 23n (other desalination process B). preferable.
  • the mixing water P H is the total number of desalination processes that are preferably Gutatoeba parallel arrangement pressurized to be a correspondingly lower adjusting the acid amount (i.e. feedwater P H regulation of first semipermeable membrane unit 8, adjustment of feed water pH of the second semi-permeable membrane unit 15 in the normal operation (adjustment of alkali added)) is carried out by such I can do it.
  • the water supplied to the second semipermeable membrane unit 15 (second semipermeable membrane unit A2) in the desalting step (partial desalting step A) during the acid cleaning is alkaline. Since boron is not added, the boron removal rate is lower than during normal operation when alkali is added. Therefore, in order to reduce the effect as much as possible, the number of desalting steps (a) and the operation time (b) to lower the pH of the feed water of the first semipermeable membrane unit are:
  • the desalting process during the acid cleaning (partial desalting process A), that is, the process in which the feed water of the second semipermeable membrane unit is not added with alkali is inferior in boron removal performance.
  • the impact on the quality of the produced water is usually not a problem because the number of acid washing steps is small compared to the total number of desalting steps.
  • the boron removal rate is increased by increasing the amount of alkali added in the normal operation process (other desalting process B) where alkali is added.
  • the scale inhibitor is added to the raw water of the first semipermeable membrane unit 8 as necessary.
  • Adding means 3 and first alkali adding means 4 for adding alkali to increase the pH of the raw water of the first semipermeable membrane unit 8 are provided.
  • the supply water of the second semipermeable membrane unit 15 (primary permeate 9) is scaled.
  • a second scale inhibitor addition means 12 for adding a role inhibitor is provided.
  • the first alkali addition means 4 is not essential in the practice of the present invention. However, for example, when alkali is added only to the second semipermeable membrane unit 15 for the purpose of removing fluorine, the scale is particularly precipitated.
  • the pH of the second semipermeable membrane unit 15 will be reduced. This has the effect of being kept relatively low.
  • the alkali added to the first semipermeable membrane unit 8 is disadvantageous in terms of cost because the amount of applied force increases depending on the location and the amount of applied force increases.
  • acid is added to the raw water of some of the first semipermeable membrane units 8 in the acid addition means 6, if an alkali is added before that, the required acid increases accordingly. To do.
  • FIG. 5 is the same as the embodiment of FIG. 1 except that the alkali addition means 4 is provided for each desalting process.
  • a method of adding to the feed water line with a chemical pump is common.
  • a line mixer is provided to promote mixing, or at the addition point, the mixing tank is mixed. It is also possible to mix them.
  • the method for lowering the pH is not particularly limited, strong sulfuric acid is most preferably used because of its acid strength and ease of handling.
  • the pH of the supply water of the first semipermeable membrane unit 8 is preferably 4 or less, which can kill most fungi.
  • the pH of the permeated water 9 in the first semipermeable membrane unit 8 tends to be about 1 higher than the pH of the feed water in the acidic region, and as described later, normal operation is not performed without acid cleaning.
  • the feed water pH of the second semipermeable membrane unit 15 should be 8 or more to improve boron removal performance.
  • the alkali addition series is neutralized with the acid addition series.
  • the pH of the feed water of the first semipermeable membrane unit 8 is preferably 4 or less.
  • the operation for lowering the pH is preferably 1 desalting step, 0.5 hours or more and 2.5 hours or less per day, because the propagation of microorganisms can be efficiently suppressed. 0.
  • the ability to sufficiently suppress the growth of bacteria by setting it to 5 hours or longer On the other hand, if it exceeds 2.5 hours, the effect of suppressing the growth reaches its limit. Therefore, by setting the time to 2.5 hours or less, it is possible to prevent the growth of bacteria while preventing deterioration of the quality of the produced water, and to reduce the chemical cost of acid addition.
  • the supply water pH of the second semipermeable membrane unit 15 in the desalting process is as follows. It is preferable to set it to 8 or more. In order to achieve the full effect, it is preferable to set the pH to 9 or higher. This makes it possible to improve the rejection rate in the reverse permeable membrane by bringing boron that has not been dissociated in seawater into an ionic state.
  • the operation for lowering the pH is a power that makes it easy to keep the quality of the produced water constant over time by constantly changing the desalting process that is sequentially performed.
  • normal operation may be performed in which raw water or pretreated water is supplied to the first semipermeable membrane unit 8 as it is without lowering the pH!
  • the desalting step for increasing the pH of the feed water of the second semipermeable membrane unit 15 may be all or a part of the desalting step performed by acid cleaning.
  • the amount of water supplied to the second semipermeable membrane unit (remaining permeated water b) in any desalting step is adjusted to the normal amount of the second semipermeable membrane unit.
  • the boron concentration can be kept constant by increasing the amount of supply water during operation (that is, reducing the bypass flow rate or not making it BINOS), which is a preferable control method.
  • the desalting step for adjusting the bypass flow rate may be a desalting step during acid washing, a desalting step during normal operation, or both desalting steps. . Furthermore, for example, it may be a part of the desalting step in the desalting step during normal operation or a part of the desalting step in the acid washing.
  • the above pH control is performed. To maintain the water quality by adjusting the flow rate and adjusting the flow rate.
  • the alkali added by the first alkali addition means 4 and the second alkali addition means 13 includes sodium hydroxide, calcium hydroxide, potassium hydroxide, potassium bicarbonate, hydroxide, Examples are not particularly limited. However, it is better not to use calcium or magnesium to prevent an increase in scale components in seawater.
  • the allowable range of alkali addition here is appropriately set according to the alkali resistance of the semipermeable membrane and the allowable range until scale is generated due to alkali-added liquor.
  • an in-line mixer is provided immediately after the first alkali addition means 4 and the second alkali addition means 13, or the alkali addition force is brought into direct contact with the flow of seawater.
  • a scale inhibitor to the seawater before adding the alkali.
  • the amount (concentration) of the scale inhibitor added to the first semipermeable membrane unit 8 and the second semipermeable membrane unit 15 is generally the semipermeable membrane unit where the scale is most likely to precipitate.
  • the condition of the most concentrated water supply, ie, salinity, composition, temperature, pH, etc. in the concentrated water is determined.
  • a metal is formed in a complex with a metal, a metal ion, etc.
  • any organic or inorganic ionic polymer or monomer may be used as long as it dissolves the metal salt.
  • Organic ionic polymers include synthetic polymers such as polyacrylic acid, sulfone polystyrene, polyacrylamide, and polyallylamine, and natural high molecular weight monomers such as carboxymethylcellulose, chitosan, and alginic acid include ethylenediamine tetraacetic acid (EDTA). Can be used.
  • polyphosphates can be used as inorganic scale inhibitors.
  • polyphosphite and ethylenediamine tetraacetic acid are particularly preferably used.
  • a polyphosphate is a polymerized inorganic phosphate substance that has two or more phosphorus atoms in a molecule represented by sodium hexametaphosphate and is bonded to the alkali metal, alkaline earth metal and phosphate atom.
  • Typical polyphosphates include: 4 sodium pyrophosphate, 2 sodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptaphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and these Examples include potassium salts.
  • the quality of water supplied to the first semipermeable membrane unit 8 is clear and the accumulation of dirt on the semipermeable membrane surface is small.
  • the water quality of the intake area is good, but when surface water is contaminated, it is also preferable to use osmotic water such as underground as raw water.
  • the raw water be subjected to pretreatment such as removal of turbid components and sterilization. By these treatments, it is possible to prevent the performance degradation of the first semipermeable membrane unit 8 and the second semipermeable membrane unit 15 and the subsequent process, and the treatment apparatus can be stably operated over a long period of time. Specific treatment may be appropriately selected depending on the properties of raw water such as seawater.
  • Raw hydropower When turbidity needs to be removed, sand filtration, microfiltration membranes, and ultrafiltration membranes are effective. If there are many microorganisms such as bacteria and algae at this time, It is also preferable to add. For sterilization, it is preferable to use chlorine. For example, chlorine gas or sodium hypochlorite as free chlorine should be added to the raw water so that it falls within the range of 1 to 5 mgZl. In this case, depending on the semipermeable membrane, the specific bactericidal agent may not have chemical durability. In this case, it is added as far as possible in the flow direction of the feed water, and further, the first semipermeable membrane is used. It is preferable to disable the disinfectant near the raw water inlet side of the membrane unit 8.
  • the sterilizing effect when sterilizing with free chlorine, the sterilizing effect is expressed by its oxidizing power, but free chlorine contributes to sterilization because it is known to oxidize and decompose the polymer material constituting the semipermeable membrane. It is preferable to neutralize the strong residual free chlorine with a reducing agent (that is, significantly weaken the acid squid). Specifically, the concentration of free chlorine is measured, and the addition amount of chlorine gas and sodium hypochlorite is controlled based on this measured value, or a reducing agent such as sodium bisulfite is added.
  • a reducing agent such as sodium bisulfite
  • a flocculant such as polysalt-aluminum, sulfate band, salt-salt iron (III).
  • the aggregated feed water is then allowed to settle with a slanted plate, etc., and then sand filtered, or filtered with a microfiltration membrane or an ultrafiltration membrane in which multiple hollow fiber membranes are bundled. Therefore, it is possible to obtain a supply water suitable for passing through the latter semipermeable membrane.
  • a flocculant it is preferable to adjust the pH so that it easily aggregates.
  • the pH is 5 or more and less than 8, and preferably 7 or less.
  • the raw water is not particularly limited, such as seawater, brine, river water, groundwater, drainage or treated water.
  • the two-stage method in which alkali is added to the second stage and the pH is increased is highly necessary when removing high concentrations of salinity or removing boron at a high level. Therefore, also in the present invention, it is preferable to use raw water that contains high-concentration salinity, such as seawater or seawater-treated water.
  • Seawater is generally said to have a total salt concentration of 3% by weight or more, but it tends to be mixed with fresh water near the estuary and may have a low concentration. However, it is not particularly limited by the total salt concentration.
  • the high-pressure pump 4 is not particularly limited and can be appropriately selected and used according to the required output. However, in the present invention, it is necessary to apply a pressure higher than the osmotic pressure to the supply water. Therefore, in the case of seawater, one that can apply a pressure of 3 MPa or more is preferable, and one that can apply a pressure of 5 MPa or more is preferable. However, on the other hand, if a pressure significantly higher than the osmotic pressure of the supplied raw water 1 is applied, the permeation flux at the inlet of the first semipermeable membrane becomes too large, and organic substances present in a minute amount in the raw water.
  • the local permeation flux at the inlet of the first semipermeable membrane unit 8 is lm 3 Zm 2 .day or less, preferably 0.5 m 3 Zm 2 .day or less.
  • the local permeation flux can be obtained based on the calculation formula described later.
  • the booster pump 13 is not particularly limited, but is for supplying the permeated water of the first semipermeable membrane unit, and it is not necessary to consider the osmotic pressure. As opposed to 5, low pressure and low flow rate may be used. The specific pressure is preferably one that can apply a maximum pressure of 2 MPa.
  • the first semipermeable membrane unit 8 and the second semipermeable membrane unit 15 are made of a fluid separation element (element) in which a hollow fiber membrane or a flat membrane is housed in a casing for easy handling. Can be used. When this fluid separation element is formed of a flat membrane, for example, as shown in FIG.
  • a semipermeable membrane 30 and a permeated water flow such as a tricot are provided around a cylindrical central pipe 29 having a large number of holes. It is preferable that a membrane unit including a road material 32 and a supply water flow path material 31 such as a plastic net is wound and housed in a cylindrical casing. It is also preferable to connect a plurality of fluid separation elements in series or in parallel to form a separation membrane module. In this fluid separation element, the supply water 25 is supplied into one end force unit, and the permeate 27 that has permeated the semipermeable membrane 30 before reaching the other end is supplied to the central nozzle 30. And is taken out from the central pipe 29 at the other end. On the other hand, the supply water 25 that has not permeated the semipermeable membrane 30 is taken out as concentrated water 26 through the other end.
  • the semipermeable membrane 30 may be made of a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer.
  • the membrane structure also has a dense layer on at least one side of the membrane, and an asymmetric membrane with fine pores gradually increasing in diameter from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane. It can be either a composite membrane with a very thin separation function layer made of another material.
  • a composite membrane having a high pressure resistance, high water permeability, and high solute removal performance and having an excellent potential and using polyamide as a separation functional layer is preferable.
  • the first semipermeable membrane unit needs to apply a pressure higher than the osmotic pressure, and is practically loaded with an operating pressure of at least 5 MPa.
  • a structure in which polyamide is used as a separation functional layer and the porous membrane is supported by a non-woven fabric support is suitable.
  • polyamide semipermeable membrane a composite semipermeable membrane having a separation functional layer of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide as a support is suitable.
  • the separation functional layer is preferably made of a cross-linked polyamide having high chemical stability to acids or alkalis, or made of a cross-linked polyamide as a main component.
  • Crosslinked polyamides are formed by interfacial polycondensation of polyfunctional amines and polyfunctional acid halides. It is preferable that at least one of the amine or the polyfunctional acid halide component contains a trifunctional or higher functional compound.
  • the polyfunctional amine refers to an amine having at least two primary and Z or secondary amino groups in one molecule.
  • two amino groups are ortho-position, meta-position, Phenylendamine, xylylenediamine, 1, 3, 5-triaminobenzene, 1, 2, 4 triaminobenzene, 3,5 diamino shoulder, perfume acid bonded to benzene in any position
  • Aromatic polyfunctional amines such as, aliphatic amines such as ethylenediamine and propylenediamine, 1,2 diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bispiperidylpropane, 4-aminomethyl
  • Aromatic polyfunctional amines such as, aliphatic amines such as ethylenediamine and propylenediamine, 1,2 diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bispiperidy
  • aromatic polyfunctional amines are preferred in view of the selective separation, permeability, and heat resistance of the membrane.
  • polyfunctional aromatic amines include m-phenol-diamine, P-phenol, Rangeamine, 1, 3, 5 triaminobenzene is preferably used.
  • m—PDA m-phenoldiamine
  • polyfunctional amines may be used alone or in combination.
  • the polyfunctional acid halide refers to an acid halide having at least two halogenated carboxylic groups in one molecule.
  • trifunctional acid halides include trimesic acid chloride, 1,3,5 cyclohexanetricarboxylic acid trichloride, 1,2,4 cyclobutanetricarboxylic acid trichloride, and bifunctional acid halides.
  • Biphenyl dicarboxylic acid dichloride Biphenylene dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid chloride, abiboyl chloride, sebacoyl chloride
  • alicyclic difunctional acid halides such as aliphatic difunctional acid halides, cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, tetrahydrofuran dicarboxylic acid dichloride, and the like.
  • polyfunctional acid halides are polyfunctional acid salts, and in view of selective separation of the membrane and heat resistance, polyfunctional aromatics are preferred. An acid salt is preferred. Of these, trimesic acid chloride is more preferable from the viewpoint of easy availability and handling. This These polyfunctional acid halides may be used alone or in combination.
  • the semipermeable membrane used in the first semipermeable membrane unit 8 can highly remove solutes such as ions in seawater.
  • the blocking rate is low compared with other components, and boron has a high blocking performance.
  • simulated seawater with a total salt concentration of 3.5 wt%, pH 7.0, and temperature of 25 ° C was supplied as the semipermeable membrane of the first semipermeable membrane unit 8 at an operating pressure of 5.5 MPa. pure water permeability coefficient L in the 3 X 10 _12 m 3 Zm 2 'Pa' s more, a boron permeability coefficient P force 00 X 10 _9 mZs following
  • the pure water permeability coefficient L and the boron permeability coefficient P take into account the concentration polarization phenomenon that occurs on the membrane surface.
  • J L ( ⁇ ⁇ - ⁇ ⁇ )
  • the osmotic pressure ⁇ is shown in the literature by M. Taniguchi et al. (AIChE Journal, 46th, 2000, pl967-1973 (hereinafter referred to as Reference 2)). It can be known by the so-called “Miyake-style”.
  • the TDS mass transfer coefficient k is a force determined by the evaluation cell.
  • the membrane surface flow rate Q [m 3 Zs] or the membrane surface flow rate u [mZs] is determined by the osmotic pressure method or flow velocity change method shown in Reference 2. It can be obtained as a function.
  • the unknowns L 1, P, P 2, C 3, and C can be calculated from the above formula.
  • Membrane In the case of the element, as shown in Reference Document 2, L and P can be calculated by fitting while integrating in the length direction of the membrane element.
  • a method in which an aliphatic acyl group is present inside or on the surface is used.
  • a separation functional layer having a separation performance of ions or the like is provided on a microporous support membrane having substantially no separation performance, and the inside of the separation function layer and Z or An aliphatic acyl group is present on the surface.
  • Aliphatic acyl groups are present in the separation functional layer or on the surface of the separation functional layer by bonding!
  • the method for causing the aliphatic acyl group to exist in the separation functional layer is not particularly limited.
  • an aliphatic acid halide solution is brought into contact with the surface of the separation functional layer formed by interfacial polycondensation between a polyfunctional amine and a polyfunctional acid halide, or a polyfunctional amine and a polyfunctional aromatic acid halide are contacted.
  • the aliphatic acid halide may be allowed to coexist in the separation functional layer by a covalent bond.
  • a polyfunctional amine aqueous solution in forming a polyamide separation functional layer on a microporous support membrane, a polyfunctional amine aqueous solution, a polyfunctional acid halide organic solvent solution, and a different carbon number within the range of 1 to 4 Of an aliphatic acid halide with an organic solvent solution on a microporous support membrane
  • the aliphatic acid halide is preferably one having 1 to 4 carbon atoms, more preferably 2 to 4 carbon atoms. As the number of carbon atoms increases, steric hindrance reduces the reactivity of aliphatic acids and fluorinated compounds, and it becomes difficult to access the reactive sites of polyfunctional acid halides, preventing smooth film formation. As a result, the performance of the membrane is reduced. Strong aliphatic acid halides include methanesulfuryl chloride, acetyl chloride, propiol chloride, butyryl chloride, oxalyl chloride, malonic acid dichloride, succinic acid dichloride, maleic acid dichloride, fumaric acid.
  • Examples include dichloride, chlorosulfo-rucetyl chloride, and N, N-dimethylaminocarbonyl chloride. These may be used singly or in combination of two or more. However, in order to achieve a balanced structure that does not reduce water permeability so much, the main component is oxalyl chloride. It is preferable.
  • the support including the microporous support membrane is a layer that does not substantially have separation performance, and gives mechanical strength to the separation functional layer of the crosslinked polyamide that has substantially separation performance.
  • a material obtained by forming a microporous support film on a base material such as a fabric or a non-woven fabric is used.
  • the microporous support membrane itself is a layer that does not substantially have separation performance, and is used to give mechanical strength to the separation functional layer that has separation performance substantially.
  • a solution of the above polysulfone in dimethylformamide (DMF) is cast on a densely woven polyester fabric or non-woven fabric to a certain thickness.
  • DMF dimethylformamide
  • a microporous support membrane having a fine pore with a majority of the surface having a diameter of several tens of nm or less can be obtained.
  • polyamide and polyester are preferably used in addition to polysulfone.
  • TDS concentration The total salinity (TDS concentration) of the permeated water and the supply water was determined by measuring the electrical conductivity of each liquid with an electrical conductivity meter (SC82 manufactured by Yokogawa Electric Corporation), It was determined from the relationship with conductivity. The pH was measured using PH82 manufactured by Yokogawa Electric.
  • FIG. 7 A flow evaluation apparatus (hereinafter referred to as apparatus X) shown in FIG. 7 was constructed.
  • apparatus X A flow evaluation apparatus (hereinafter referred to as apparatus X) shown in FIG. 7 was constructed.
  • apparatus X A flow evaluation apparatus shown in FIG. 7 was constructed.
  • the reference numerals mean the same as described above.
  • the apparatus X is composed of a supply water tank 38, a high-pressure pump 7, a first semipermeable membrane unit 8, a booster pump 14, a second semipermeable membrane unit 15, and the like.
  • the output of the high-pressure pump 8 is controlled by an inverter, and the output of the booster pump 14 is an unadjusted force.
  • the pressure applied to the supply water of the second semipermeable membrane unit 15 is substantially controlled by the pressure adjustment valve 45.
  • the flow rate of the permeated water 9 of the first semipermeable membrane unit 8 can be adjusted by the first semipermeable membrane unit concentrated water valve 11, and the flow rate of the permeated water of the second semipermeable membrane unit It can be adjusted by adjusting valve 45, valve 18 and back pressure valve 47.
  • the first semipermeable membrane unit 8 As shown in FIG. 8, as the first semipermeable membrane unit 8, four membrane elements 51 having a diameter of 10 cm and a total length of lm are connected in series by a pipe joint 49, and one end is sealed with a plug 50. As shown in Fig. 9, two pieces of membrane elements 51 having a diameter of 10 cm and a total length of lm are similarly provided as the second semipermeable membrane unit 15. A configuration in which one line connected in series and loaded in a pressure vessel 52 was provided.
  • the second semipermeable membrane unit was used.
  • NaOH was added by the second alkali addition means 13 and the feed water pH of the second semipermeable membrane unit 15 was adjusted to 9.0.
  • a scale inhibitor (SHMP, sodium hexametaphosphate) was added at 3 mg / l by means of the second scale inhibitor additive-added means 12 to prevent the generation of scale due to the alkali additive.
  • SHMP sodium hexametaphosphate
  • the boron concentration was 0.19 mgZl
  • the permeate pH was 9.2.
  • the addition amount of sulfuric acid in the acid addition means 6 was OgZ
  • the NaOH addition amount in the second alkali addition means 13 was 25 gZ.
  • the washing operation sulfuric acid is added by the acid addition means 6 in front of the first semipermeable membrane unit 8, the pH of the water supplied to the first semipermeable membrane unit 8 is set to 3.0, and the second semipermeable membrane unit 8 is washed.
  • the operation was carried out under the same conditions as in Reference Example 1 except that the scale inhibitor addition by the second scale inhibitor addition means 12 before the membrane unit 15 and the alkali addition by the second alkali addition means 13 were not performed.
  • the permeate flow rate was 18m 3 Z day
  • the permeate TDS concentration was 1.5mgZl
  • the boron concentration was 0.25mg / U permeate pH was 4.5.
  • the amount of sulfuric acid added in the acid addition means 6 was 530 gZ
  • the amount of NaOH added in the second alkali addition means was OgZ days.
  • the operation was performed under the same conditions as in Reference Example 1 except that the feed water pH of the second semipermeable membrane unit 15 was set to 9.06.
  • the permeate flow rate was 18m 3 Z days
  • the permeate TDS concentration was 1.lmgZl
  • the boron concentration was 0.184mgZl
  • the permeate PH was 9.26.
  • the addition amount of sulfuric acid in the acid addition means 6 was OgZ
  • the NaOH addition amount in the second alkali addition means 13 was 25.4 gZ.
  • the washing operation sulfuric acid is added by the acid addition means 6 in front of the first semipermeable membrane unit 8, the pH of the water supplied to the first semipermeable membrane unit 8 is set to 3.0, and the second semipermeable membrane unit 8 is washed.
  • the operation was carried out under the same conditions as in Reference Example 5 except that the scale inhibitor addition by the second scale inhibitor addition means 12 before the membrane unit 15 and the alkali addition by the alkali addition means 13 were not carried out.
  • the permeate flow rate was 18m 3 Z days
  • the permeate TDS concentration was 2.9mg / U boron concentration was 0.667mg / U permeate pH was 4.6.
  • the amount of sulfuric acid added in the acid addition means 6 was 520 g / hour
  • the amount of NaOH added in the second alkali addition means was OgZ days.
  • the operation was performed under the same conditions as in Reference Example 5 except that the feed water pH of the second semipermeable membrane unit 15 was set to 9.26.
  • the permeate flow rate was 18m 3 Z day
  • the permeate TDS concentration was 2.7mg / U boron concentration was 0.45mgZl
  • the permeate pH was 9.41.
  • the addition amount of sulfuric acid in the acid addition means 6 was OgZ
  • the NaOH addition amount in the second alkali addition means 13 was 27 gZ.
  • the permeated water of the second semipermeable membrane unit had a TDS concentration of 2.6 mgZl, a fluorine concentration of 0.44 mgZl, and a permeated water pH of 9.41.
  • 2m 3 Z days permeated water TDS concentration 196mgZl, boron concentration 1.
  • each dewatering is performed for 2 hours a day when performing the normal operation state described in Reference Example 1.
  • the raw water flow rate including the 12 desalting steps is calculated to be 960 m 3 Z days
  • the permeate flow rate is calculated to be 216 m 3 Z days.
  • the amount of sulfuric acid added in acid addition means 6 per desalting step is calculated to be 1060 g / day
  • the amount of NaOH addition in the second alkali addition means is calculated to be 550 gZ days. It was.
  • the WHO standard for drinking water has a boron concentration of 0.5 mgZl, and WHO has no standard for the TDS concentration of drinking water.
  • the standard for drinking water quality in Japan has a TDS concentration of 500 mgZl. It is.
  • Example 2 The calculation was performed under the same conditions as in Example 1 except that each desalting step was performed step by step in the washing operation state for lowering the pH described in Reference Example 3. As a result, the raw water flow rate for the 12 desalination processes was calculated to be 960 m 3 Z days, and the permeate flow rate was calculated to be 216 m 3 Z days. As a result of mixing water at a ratio of 11: 1, the TDS concentration was 1. lmgZl and the boron concentration was 0.190 mgZl. The water quality was almost the same as in Example 1.
  • the amount of sulfuric acid added in the acid addition means 3 per desalting step is 1 060 g / day
  • the amount of NaOH addition in the second alkali addition means is 790 g / day. It was calculated to be 1.4 times that of Example 1.
  • the addition amount of sulfuric acid in the acid addition means 6 per desalting step is 1060 g / day, and the amount of NaOH addition in the second alkali addition means is 559 g / day.
  • the consumption was the same as in Example 1.
  • the raw water flow rate including the 12 desalination steps is 960 m 3 Z days.
  • the permeate flow rate was calculated to be 216 m 3 Z days, and the average permeate TDS concentration in the 12 desalting steps was 2.63 mgZl, which was sufficiently low and the average boron concentration was 0.488 mgZl.
  • the result is a WHO drink
  • the water quality standards (boron concentration 0.5 mgZl) were satisfied.
  • the addition amount of sulfuric acid in the acid addition means 6 per desalting step was calculated to be 1040 g / day, and the NaOH addition amount in the second alkali addition means was calculated to be 572 g / day. .
  • Example 3 The calculation was performed under the same conditions as in Example 3 except that the washing operation state for lowering the pH described in Reference Example 7 was used instead of Reference Example 6.
  • the combined raw water flow rate for the 12 desalination steps was calculated to be 960 m days, and the permeate flow rate was calculated to be 216 m 3 Z days.
  • the average permeate TDS concentration for the 12 desalination steps was 2.62 mgZl, and the boron concentration was 0. It became 470mgZl.
  • the amount of sulfuric acid added in the acid addition means 3 per desalting step is 1040 g / day
  • the amount of NaOH addition in the second alkali addition means is calculated as 822 g / day.
  • the amount of consumption was 1.4 times that of Example 3.
  • the number of desalting steps was 12 and the acid washing time was assumed to be 1 hour. In this case, it is assumed that normal operation is performed without washing in all desalting processes for 12 hours of the day, and that operation in which one desalting process is sequentially in acid washing is performed for the remaining 12 hours. And performed the calculation.
  • the operation when everything is in normal operation, operate under the conditions of Reference Example 5 (that is, the feed water pH of the second semipermeable membrane unit 15 is 9.2) and wash in any desalting step.
  • the operation was performed under the same conditions as in Example 4 (that is, the feed water pH of the second semipermeable membrane unit 15 operating normally is increased to 9.26).
  • the permeate flow rate was 18 m days
  • the permeate TDS concentration was 2.6 to 2.72
  • the boron concentration was a constant 0.470 mgZl.
  • the amount of sulfuric acid added in the acid addition means 6 per desalting step was 520 g / day
  • the amount of NaOH added in the second alkali addition condition was 609 gZ.
  • Example V the same conditions as in Example 5 except that washing is performed in one of the desalting steps and the operation is performed under the same conditions as in Comparative Example 2 (that is, the feed water pH of the second semipermeable membrane unit 15 is The calculation was carried out under the assumption of PH9.2) during normal operation and during acid cleaning. As a result, throughout the day, the permeate flow rate was 18 m 3 Z days, the permeate TDS concentration was 2.6 to 2.8, and the boron concentration was a constant 0.470 mgZl.
  • the amount of sulfuric acid added in the acid addition means 6 per desalting step was 520 gZ days, The amount of NaOH-added calories under the alkali addition condition was 723 gZ, 19% higher than Example 5.
  • the number of desalting steps was 12 and the acid washing time was assumed to be 1 hour. In this case, it is assumed that normal operation is performed without washing in all desalting processes for 12 hours of the day, and that operation in which one desalting process is sequentially in acid washing is performed for the remaining 12 hours. And performed the calculation.
  • Reference Example 9 that is, the supply flow rate of the second semipermeable membrane unit 15 is 22m 3 Z days, bypass flow rate 2m 3 Z days
  • 6 of the normal desalting processes are the conditions of Reference Example 9 and 5 are the conditions of Reference Example 8 (no bypass).
  • Example 1 Reference Example 1 (11) & Reference Example 2 (1) 216 1.13 0.195 1060 550 Comparison Example 1 Reference Example 1 (11) & Reference Example 3 (1) 216 1.10 0.190 1060 790 Example 2 Reference Example 4 (11) & Reference Example 2 (1) 216 1.13 0.190 1060 559 Example 3 Reference Example 5 (11) & Reference Example 6 (1) 216 2.63 0.488 1040 572 Comparative Example 2 Reference Example 5 (11) & Reference Example 7 (1) 216 2.62 0.470 1040 822 Example 4 Reference Example 8 (11) & Reference Example 6 (1) 216 2.72 0.470 1040 594 Example 5 Normal (Reference Example 8) During cleaning (Example 4) 216 2.6 / 2.72 0.470 520 609 Comparative Example 3 Normal (Reference Example 8) During cleaning (Comparative Example 2) 216 2.6 / 2.8 0.470 520 723 Example 6 Reference Example 9 (6) + Reference Example 8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 ホウ素を効率的に除去した高水質の淡水を連続的かつ効率的に得ることができる実用的な淡水製造方法を提供することを目的とし、原水もしくは原水を前処理して得た前処理水を第一の半透膜ユニットの供給水として第一の半透膜ユニットで処理し、得られた第一の半透膜ユニットの透過水を第二の半透膜ユニットの供給水としてpHを上げて第二の半透膜ユニットで処理する脱塩工程を、複数並列に有する淡水製造方法であって、一時的に、一部の脱塩工程Aにおいて、原水もしくは前処理水をpHを下げて第一の半透膜ユニットA1へ供給し、得られた該第一の半透膜ユニットA1の透過水を他の脱塩工程Bにおける第二の半透膜ユニットB2の供給水よりも低いpHとして第二の半透膜ユニットA2に供給するとともに、該第二の半透膜ユニットA2から得られた透過水を前記他の脱塩工程Bにおける第二の半透膜ユニットB2から得られた透過水と混合する、淡水製造方法を提供する。

Description

明 細 書
淡水製造方法
技術分野
[0001] 本発明は、逆浸透膜やナノろ過膜 (以後、これらを総称して半透膜という)を用いて 原水から淡水を得る淡水製造方法に関するものであり、詳しくは、逆浸透膜の性能低 下を防止して効率的に淡水を得ることが可能な淡水製造方法に関するものである。 背景技術
[0002] 近年、水環境の悪化に伴!、、これまで以上に水処理技術が重要になってきて 、る。
特に、分離膜はその分離精度の高さから水処理技術の中核として適用されてきてい る。中でも、イオンの分離除去が可能な逆浸透膜やナノろ過膜は、地下水中の硬度 成分や有害成分を除去し、飲用に適した水にするために利用されたり、海水から淡 水を製造する、いわゆる"海水淡水化"に活用されたりしてきている。地下水は、もとも と、表流水よりも清澄な水源として利用されてきたが、地中を浸透することで得られる 浄化作用では、イオン成分や有害化学物質を除去することは困難であり、近年の環 境汚染によって、ナノろ過膜や逆浸透膜による浄ィ匕が必要とされてきている。
[0003] ところで、海水淡水化は、従来、水資源が極端に少なぐかつ、石油による熱資源 が非常に豊富である中東地域で蒸発法を中心に実用化されてきているが、熱源が豊 富でない中東以外の地域ではエネルギー効率の高い逆浸透法が採用され、力リブ 諸島や地中海エリアなどで多数のプラントが建設され実用運転されている。最近では 、逆浸透法の技術進歩による信頼性の向上やコストダウンが進み、中東においても 多くの逆浸透法海水淡水化プラントが建設され始めている。
[0004] 通常、海水を直接、逆浸透膜に通すと、海水中に含有される懸濁物質や生物など の侵入により、膜表面が傷つぐ膜表面への付着によって膜性能 (透水性能、阻止性 能)が低下する、膜への流路が閉塞する、といったトラブルを生じる。そのため、海水 を各種前処理によって清澄ィ匕した上で逆浸透膜へ供給するのが一般的である。この 前処理方法としては、砂ろ過、凝集沈殿、加圧浮上、精密ろ過膜、限外ろ過膜などが あり、これらによって、濁質や微生物はかなり除去することができる。しかし、各種前処 理をもってしても、微生物の餌となりうる有機高分子 (AOC)を除去しきれないため、 長期に運転すると、供給水に含有される AOCをもとに微生物が逆浸透膜の表面で 徐々に繁殖し、前述のトラブルを生じる(これをバイオファゥリングという)。そのため、 定期的な微生物除去 (洗浄)が必要となる。
[0005] この定期的な洗浄方法としては、亜硫酸水素ナトリウム、特殊な殺菌剤 (非特許文 献 1)による間欠洗浄などが挙げられる。亜硫酸水素ナトリウムによる方法は、従来か ら適用されてきたが、状況によっては、微生物の繁殖を促進する場合がある(非特許 文献 2、 3)。また、これらの殺菌洗浄は、供給水側で実施され、逆浸透膜を透過する ことが原則あり得ないものの、万一、逆浸透膜が損傷してしまった場合は殺菌剤など が透過水側に漏れてくる危険性がある。そのため、飲料水用途のプラントでは、万一 透過水側に混入した場合にも問題がな 、酸を用いて洗浄が行われて ヽる(特許文献 D o
[0006] 酸を用いた洗浄は、連続運転中に運転条件を変更することなく洗浄を実施すること ができるという利点がある。また、酸洗浄中に得られる濃縮水や透過水は、放出可能 な程度や飲料水質に適合する PH6程度にまで中和処理する必要がある他は有害物 質を含有せず、アルカリによる中和処理を連続的に実施することで連続的に淡水を 得ることができ非常に効率的である。
[0007] し力しながら、近年海水淡水化においては、厳しい水質基準を満足するために、一 度逆浸透処理した淡水をさらに低圧逆浸透膜で処理する逆浸透 2段処理が普及し つつあり、さらには、ホウ素の水質基準を満足するために 2段目の逆浸透膜の供給水 にアルカリを添加するアルカリ添加 2段処理 (特許文献 2)が採用されることが多い。こ の場合、 1段目の逆浸透膜の透過水にアルカリを添カ卩してたとえば pHを 9〜10程度 にまで高める必要があるが、上述した酸洗浄を行う場合には、 1段目の透過水を中和 し、さらに 2段目供給水の pHを高めることができる量のアルカリを添加する必要があ る。さらに、 2段目の透過水や濃縮水の pHも高くなるためその高 pHを中和するため の酸も必要となる。このため、 1段目および 2段目それぞれの pH調整のために必要な 酸やアルカリの量が増大し、効率的とはいえず造水コストがアップしていた。
特許文献 1:特許第 3087750号公報 (請求項 1) 特許文献 2 :特許第 3319321号公報([0006]〜[0013]段落)
非特許文献 1:ダウケミカル、 AQUCAR RO- 20カタログ(2005)
非特許文献 2 : A. B.ハミダ、 I.モッホ Jr.、デサリネーシヨン &ゥオーターリユース、 6
Z3、 40-45 (1996)
非特許文献 3 : L. E.アップルゲート、 C. W.エルケンブレシエル、デサリネーシヨン、 65、 331 - 359 (1987) .
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、半透膜ユニットを用いて水中の不純物質、とくに、ホウ素を除去 するにあたって、効率的かつ連続的に高い水質の淡水を得ることができる実用的な 淡水製造方法を提供することにある。
課題を解決するための手段
[0009] 前記課題を解決するための本発明は、次の(1)〜(8)を特徴とするものである。
(1)原水もしくは原水を前処理して得た前処理水を第一の半透膜ユニットの供給水と して第一の半透膜ユニットで処理し、得られた第一の半透膜ユニットの透過水を第二 の半透膜ユニットの供給水として pHを上げて第二の半透膜ユニットで処理する脱塩 工程を、複数並列に有する淡水製造方法であって、一時的に、一部の脱塩工程 Aに おいて洗浄を行い、該洗浄では、原水もしくは前処理水を pHを下げて第一の半透 膜ユニット A1へ供給し、得られた該第一の半透膜ユニット A1の透過水を他の脱塩 工程 Bにおける第二の半透膜ユニット B2の供給水よりも低い pHとして第二の半透膜 ユニット A2に供給するとともに、該第二の半透膜ユニット A2から得られた透過水を前 記他の脱塩工程 Bにおける第二の半透膜ユニット B2から得られた透過水と混合する 淡水製造方法。
(2)全ての脱塩工程について前記洗浄を順次行う、前記(1)に記載の淡水製造方法
(3)一時的に、全ての脱塩工程において前記洗浄を行わない時間を設けるとともに、 前記一部の脱塩工程 Aにおいて洗浄を行っている間の、前記他の脱塩工程 Bにお ける第二の半透膜ユニット B2の供給水の pHを、全ての脱塩工程にぉ 、て洗浄を行 わない間の、前記他の脱塩工程 Bにおける第二の半透膜ユニット B2の供給水の pH よりも高くする、前記(1)または(2)に記載の淡水製造方法。
(4)前記第一の半透膜ユニットの透過水のうちの一部の透過水 aを第二の半透膜ュ ニットで処理せず、残りの透過水 bを、第二の半透膜ユニットの供給水として pHを上 げて第二の半透膜ユニットで処理し、前記一部の透過水 aと混合して淡水を得る淡水 製造方法であって、一時的に、全ての脱塩工程において前記洗浄行わない時間を 設けるとともに、前記一部の脱塩工程 Aにおいて洗浄を行っている間の前記残りの透 過水 bの水量を、全ての脱塩工程にぉ ヽて洗浄を行わな ヽ時間の水量よりも多くする ことを特徴とする、前記(1)〜(3)の 、ずれかに記載の淡水製造方法。
(5)前記他の脱塩工程 Bにおいて、第二の半透膜ユニット B2の供給水の pHを 8以 上に上げる、前記(1)〜 (4)の 、ずれかに記載の淡水製造方法。
(6)前記一部の脱塩工程 Aにおいて、第一の半透膜ユニット A1の供給水の pHを 4 以下にする、前記(1)〜(5)の 、ずれかに記載の淡水製造方法。
(7)前記一部の脱塩工程 Aにおいて、第一の半透膜ユニット A1の供給水の pHを下 げる運転時間力 0. 5〜2. 5hr.Z日の範囲内である、前記(1)〜(6)のいずれかに 記載の淡水製造方法。
(8)前記脱塩工程の数 (a)と、前記一部の脱塩工程にお!、て第一の半透膜ユニット A1の供給水の pHを下げる運転時間 (b)とが、次の関係式を満たす、前記(1)〜(7) の!、ずれかに記載の淡水製造方法。
[0010] 20≤a X b≤30, a≥12
ここで、「原水もしくは原水を前処理して得た前処理水」とは、第一の半透膜ユニット よりも上流側における水をいい、第一、第二の半透膜ユニットの「供給水」とは、当該 半透膜ユニットに実際に流入する時点の水のことをいう。なお、スケール防止剤など の添加物を含む力否かは問わないものとする。また、供給水の一部を第一の半透膜 ユニットよりも上流側に還流する場合は、還流水と原水との混合水をも原水ということ とする。
発明の効果
[0011] 本発明によれば、原水もしくは原水を前処理して得た前処理水を第一の半透膜ュ ニットで処理し、得られた第一の半透膜ユニットの透過水の少なくとも一部を pHを上 げて第二の半透膜ユニットの供給水として第二の半透膜ユニットで処理する脱塩ェ 程を、複数並列に有する場合に、一時的に、一部の脱塩工程 Aにおいて、原水もしく は前処理水を pHを下げて第一の半透膜ユニット A1へ供給し、得られた該第一の半 透膜ユニット A1の透過水を他の脱塩工程 Bにおける第二の半透膜ユニット B2の供 給水よりも低い pHとして第二の半透膜ユニット A2に供給するとともに、該第二の半 透膜ユニット A2から得られた透過水を前記他の脱塩工程 Bにおける第二の半透膜 ユニット B2から得られた透過水と混合するので、原水から高!ヽ水質の透過水を効率 的かつ連続的に得ることができ、特に、海水力もホウ素濃度を低減させた飲用に適し た高 、水質の淡水を効率的かつ連続的に得ることができる。
図面の簡単な説明
[0012] [図 1]本発明を適用可能な淡水製造装置の一態様を示す概略フロー図である。
[図 2]本発明を適用可能な淡水製造装置の他の態様を示す概略フロー図である。
[図 3]本発明を適用可能な淡水製造装置の他の態様を示す概略フロー図である。
[図 4]本発明を適用可能な淡水製造装置の他の態様を示す概略フロー図である。
[図 5]本発明を適用可能な淡水製造装置の他の態様を示す概略フロー図である。
[図 6]本発明で適用可能な半透膜エレメントの一例である。
[図 7]実施例、比較例で使用した半透膜ユニット評価装置のフロー図である。
[図 8]実施例、比較例で使用した半透膜ユニット評価装置を構成する第一の半透膜 ユニットの概略フロー図である。
[図 9]実施例、比較例で使用した半透膜ユニット評価装置を構成する第二の半透膜 ユニットの概略フロー図である。
符号の説明
[0013] 1 :原水
2 :前処理手段
3:第一のスケール防止剤添加手段
4 :第一のアルカリ添加手段
5 :前処理水タンク :酸添加手段
:高圧ポンプ
:第一の半透膜ユニット
:第二の半透膜ユニットの供給水 (第一の半透膜ユニットの透過水,一次透過水) :第一の半透膜ユニットの濃縮水 (一次濃縮水)
:第一の半透膜ユニットの濃縮水流量調節バルブ
:第二のスケール防止剤添加手段
:第二のアルカリ添加手段
:昇圧ポンプ
:第二の半透膜ユニット
:第二の半透膜ユニットの透過水(二次透過水)
:第二の半透膜ユニットの濃縮水(二次濃縮水)
:第二の半透膜ユニットの濃縮水バルブ
:pH調整手段
:後処理手段
:生産水タンク
:エネルギー回収手段
:脱塩工程
:一次透過水バイパスバルブ
:供給水
:濃縮水
:透過水
:シール材
:中心パイプ
:半透膜
:供給水流路材
:透過水流路材
:第二の半透膜ユニットの濃縮水の還流ライン 34::第二の半透膜ユニットの濃縮水の還流バルブ
35: :第二の半透膜ユニットの濃縮水の排出バルブ
36: :背圧バルブ
37: :一次透過水バイパスライン
38: :供給水タンク
39: :供給水圧力計
40: :濃縮水圧力計
41: :第一透過水圧力計
42: :第二供給水圧力計
43: :第二透過水圧力計
44: :第二濃縮水圧力計
45: :圧力調整バルブ
46: :ノ イノ スノ レブ
47: :透過水背圧バルブ
48: :oリング
49: :パイプジョイント
50: :栓
51: :膜エレメント
52: :耐圧容器
発明を実施するための最良の形態
[0014] まず、本発明に力かる淡水製造方法の基本的フローを、図 1に示す模式図を参照 しながら説明する。
[0015] 図 1に示す淡水製造装置は、基本的に、原水 (海水) 1に前処理を施すフィルター などの前処理手段 2と、必要に応じて前処理水を貯留する前処理水タンク 5と、前処 理水タンク 5に貯留された前処理水を処理する、少なくとも第一の半透膜ユニット 8お よび第二の半透膜ユニット 15を有する脱塩工程 23 (たとえば 23a〜23n)と、第二の 半透膜ユニットの透過水の pH調整手段 19と、後処理手段 20と、生産水タンク 21な どを備えている。脱塩工程 23は、図中 23a〜23nと示すように複数存在し、それらが 互!、に並列に設けられて!/、る。
[0016] 一つの脱塩工程 23を構成する第一の半透膜ユニット 8および第二の半透膜ュ-ッ ト 15それぞれの上流側には、それぞれの半透膜ユニットの供給水の圧力を高めるた めに用いられる高圧ポンプ 7、昇圧ポンプ 14が設けられ、さらに、第一の半透膜ュ- ット 8の上流側には pHを下げるための酸添加手段 6、第二の半透膜ユニット 15の上 流側には pHを上げるためのアルカリ添加手段 13がそれぞれ設けられている。また、 第一の半透膜ユニット 8の濃縮水 (一次濃縮水) 10側には、一次濃縮水 10が保有す るエネルギーを回収するためのエネルギー回収手段 22が設けられている。
[0017] このような淡水製造装置において、海水 1は、その濁度などに応じて、そのまま、も しくは前処理手段 2により前処理が施された後、高圧ポンプ 7を通して第一の半透膜 ユニット 8に供給される。このとき、場合によっては、第一の半透膜ユニット 8のホウ素 除去率を高めるために、第一のスケール防止剤添加手段 3と第一のアルカリ添加手 段 4によってスケール防止剤およびアルカリが添加される。
[0018] 第一の半透膜ユニット 8では、海水中のほとんどの溶質を除去することができ、溶質 が除去された第一の半透膜ユニット 8の透過水(一次透過水) 9は、第二の半透膜ュ ニット 15に送られる。一方、第一の半透膜ユニット 8の濃縮水(一次濃縮水) 10は、ェ ネルギー回収手段 22によって圧力エネルギーを回収した後に海などに放流される。 ここで、第一の半透膜ユニット 8の透過水流量の制御は、高圧ポンプ 7の出力を調節 するとともに濃縮水流量調節バルブ 11によっても実施することができる。圧力エネル ギー回収に関しては、コストパフォーマンスの面から一般には第一の半透膜ユニット にのみ適用されるが、第二の半透膜ユニットに対しても濃縮水 17側にエネルギー回 収手段を設け、エネルギー回収することももちろん差し支えない。
[0019] 続いて、一次透過水 9は、場合によっては第二のスケール防止剤添加手段 12によ つてスケール防止剤が添加され、第二のアルカリ添加手段 13によって pHが第一の 半透膜ユニット 8への供給水の PHよりも高くされた後に昇圧ポンプ 14で昇圧され、第 二の半透膜ユニット 15へ供給される。第二の半透膜ユニット 15では、供給水からさら に溶質が除去されて、高度に水質が高い二次透過水 16を得ることができる。
[0020] ここで、第二のスケール防止剤添加手段 12を用いて第二の半透膜ユニット 15の供 給水にスケール防止剤を添加する位置としては、第二のアルカリ添加手段 13のアル カリ添カ卩ロ付近でのスケール析出を防止するために、第二のアルカリ添加手段 13よ りも上流側であることが好ま 、。
[0021] なお、必要に応じて、スケール防止剤やアルカリ添加の下流側で、混合促進のため に撹拌槽ゃインラインミキサーを装備することが好まし 、。
[0022] また、一次透過水 9の水質が良好な場合は、図 2に例示するように一次透過水バイ パスライン 37を設け、一次透過水バイパスバルブ 24を開いて、一次透過水 9の一部 だけを第二の半透膜ユニット 15で処理するようにすることも可能である。なお、図 2は 、一次透過水ノ ィパスライン 37および一次透過水バイノスバルブ 24を設けた点以 外は図 1の態様と同じである。
[0023] 二次透過水 16は、単独もしくは一次透過水と混合された上で pH調整手段 19によ つて pHを下げられ、成分調整のための後処理手段 20によりライム添加など成分調 整された後に、生産水タンク 21に貯留される。
[0024] 一方、第二の半透膜ユニット 15の濃縮水(二次濃縮水) 17は、海などに放流される 力 第二の半透膜ユニットでは、一次透過水 9を第二の半透膜ユニット 15の供給水( 被処理水)とし、その供給水には必要に応じてアルカリやスケール防止剤が添加され ているので、濁質などは十分に除去されており清澄であるものの、アルカリ添カ卩により pHが高くなつている場合が多い。そのため、二次濃縮水 17を放流する場合は状況 に応じて pH調整をした上で放流するのが好ましい。このような場合、本発明において は、酸洗浄を実施している系列の濃縮水が酸性になっているので、それぞれの脱塩 工程カゝら排出される濃縮水を混合放流することで、 pH調整に要する酸の添加を低減 することが好ましい。
さらに、本発明においては、図 3に例示するように、第二の半透膜ユニット 15の濃縮 水(二次濃縮水) 17の少なくとも一部を第一の半透膜ユニット 8の供給水として還流さ せることも可能である。還流の可否は特に制限されるものではなぐ第二の半透膜ュ ニット 15の濃縮水(二次濃縮水) 17の水質などによって適宜決定することが出来る。 なお、図 3は、第二の半透膜ユニット 15の濃縮水(二次濃縮水) 17の少なくとも一部 を第一の半透膜ユニット 8の供給水として還流させた以外は図 1の態様と同じである。 [0025] また、図 4に示すように、第一の半透膜ユニット 8の透過水 9側に背圧バルブ 36を設 け、その背圧バルブ 36で第一の半透膜ユニット 8に作用する圧力を調節してもよい。 こうすることで、高圧ポンプ 7の出力を変えずにすむので、濃縮水が保有するェネル ギ一が高くなり、より多くのエネルギーをエネルギー回収手段 22で回収することがで きる。なお、図示していないが、第二の半透膜ユニット 15の透過水側にも背圧ノ レブ を設け、同様のことを行ってもよい。また、図 4は、第一の半透膜ユニット 8の透過水 9 側に背圧バルブ 36を設けた以外は図 1の態様と同じである。
[0026] ここで、本発明では、第一の半透膜ユニット 8の透過水の pHを上げて第二の半透 膜ユニット 15で処理する脱塩工程 23を複数並列に有する淡水製造工程において、 一時的に、一部の脱塩工程 (たとえば 23a)において、原水もしくは前処理水を PHを 下げて第一の半透膜ユニットへ 8供給する。これにより、一部の脱塩工程 (たとえば 23 a)の酸洗浄を行いつつ淡水を連続的に製造することが可能となる。そして、この酸洗 浄の工程を全脱塩工程の中で適宜ずらして順次実施すれば、淡水製造を行!ヽなが ら全脱塩工程の酸洗浄を実施することが可能となる。
[0027] また、本発明では、第一の半透膜ユニット 8の透過水の pHを上げて第二の半透膜 ユニット 15で処理するものの、酸洗浄を行っている一部の工程 (たとえば 23a)におい ては、第一の半透膜ユニット 8の透過水を、酸洗浄を行っていない他の脱塩工程 (た とえば 23b〜23n)における第二の半透膜ユニット 15の供給水よりも低い pHとして第 二の半透膜ユニット 15に供給するとともに、該第二の半透膜ユニット 15から得られた 透過水を、酸洗浄を行っていない他の脱塩工程 (たとえば 23b〜23n)における第二 の半透膜ユニット 15から得られた透過水と混合する。すなわち、一部の脱塩工程 (た とえば 23a)で洗浄のために投入された酸を、他の脱塩工程 (たとえば 23b〜23n)で ホウ素除去のために投入されたアルカリの中和に用いる。したがって、一部の脱塩ェ 程 (たとえば 23a)で洗浄のために投入された酸や、他の脱塩工程 (たとえば 23b〜2 3n)でホウ素除去のために投入されたアルカリを、それぞれ独立して中和させる必要 がなぐ pH調整のための酸やアルカリの絶対量を大幅に低減することができ、効率 的である。
[0028] 以下、洗浄時の具体的な流れにつ!、て、図 1にお ヽて脱塩工程 23aの洗浄を行う 場合を例にして説明する。まず、脱塩工程 23a (—部の脱塩工程 A)において酸添カロ 手段 6を稼働させ、第一の半透膜ユニット 8 (第一の半透膜ユニット A1)の供給水の p Hを下げることによって、第一の半透膜ユニット 8の微生物汚染を防止する。その間、 残りの脱塩工程 23b〜23n (他の脱塩工程 B)においては、酸添加手段 6を作動させ ずに通常の運転を実施する。脱塩工程 23aにおいて、第一の半透膜ユニット 8 (第一 の半透膜ユニット A1)の供給水をあら力じめ定められた時間、低い PHにして微生物 汚染防止処理を実施した後は、酸添加手段 6を停止し、それまで通常の運転を実施 してきた他の脱塩工程 23b〜23n (他の脱塩工程 B)と同じ運転条件に戻る。なお、 全脱塩工程の洗浄を行うには、それまで酸添加手段 6を停止して運転してきた他の 脱塩工程の中から次に酸洗浄を行う脱塩工程を選択し (たとえば 23b)、その脱塩ェ 程において酸添加を実施し、微生物汚染防止を施す。これを順番に繰り返して、第 一の半透膜ユニット 8の低 pH運転を実施していくことにより、すべての脱塩工程の微 生物汚染防止を実施することが出来る。
[0029] ここで、原水に酸添加を実施している脱塩工程 23aにおける第一の半透膜ユニット 8 (第一の半透膜ュ-ット A 1 )の透過水 9の pHは通常より低くなつている力 本発明 においては、この pHが通常より低くなつた第一の半透膜ユニット 8 (第一の半透膜ュ ニット A1)の透過水 9を第二の半透膜ユニット 15 (第二の半透膜ユニット A2)に供給 するにあたってアルカリ添加を行わない。すなわち、酸洗浄を実施している脱塩工程 23aにおいては、第二のアルカリ添カ卩手段 13の稼働を停止する。しかしながら、本発 明にお 、ては、酸洗浄を実施して 、る脱塩工程 23aの第二の半透膜ユニット (第二 の半透膜ユニット A2)の透過水 16と、第二の半透膜ユニット 15に供給する前にアル カリ添カ卩を実施して 、る他の脱塩工程 23b〜23n (他の脱塩工程 B)における第二の 半透膜ユニット (第二の半透膜ユニット B2)の透過水 16とを混合し、その後に、必要 に応じて、 pH調整手段 19によって生産水として適した pHに調整する。これにより、 p H調整手段 19に必要な酸やアルカリの量を著しく低減させることが出来る。
[0030]
なお、 pH調整手段 19による pH調整は出来るだけ実施しないですむようにすること が好ましい。すなわち、後処理での pH変動も考慮した上で、酸洗浄を実施している 脱塩工程 23a (—部の脱塩工程 A)における第二の半透膜ユニット (第二の半透膜ュ ニット A2)の透過水 16と酸洗浄を実施して!/ヽな 、脱塩工程 23b〜23n (他の脱塩ェ 程 B)における第二の半透膜ユニット (第二の半透膜ユニット B2)の透過水 16との混 合水の pHの目標値を設定することが好ましい。具体的には、後処理でミネラルを添 カロして pHが上がる場合は、混合水の PHがその分低めになるようにすることが好まし ぐたとえば並列配置加する脱塩工程の総数の調節、酸添加量 (すなわち第一の半 透膜ユニット 8の供給水 PH調節、通常運転における第二の半透膜ユニット 15の供給 水 pHの調節(アルカリ添加の調節))などによって実施することが出来る。
[0031] また、酸洗浄実施中の脱塩工程 (一部の脱塩工程 A)における第二の半透膜ュ-ッ ト 15 (第二の半透膜ユニット A2)の供給水は、アルカリを添加しないため、ホウ素の除 去率はアルカリを添加する通常運転時に比べて低下する。したがって、その影響を 出来るだけ小さくするために、脱塩工程数 (a)と、第一の半透膜ユニットの供給水の p Hを下げる運転時間(b)とが、
20≤a X b≤30, a≥12
を満足するようにすることが好ま U、。
[0032] なお、酸洗浄実施中の脱塩工程 (一部の脱塩工程 A)、すなわち、第二の半透膜ュ ニットの供給水がアルカリ添加されていない工程のホウ素除去性能が劣ることによる 生産水質への影響は、通常、全脱塩工程数に対して酸洗浄実施工程数が少ないた めにあまり問題とならないことが多い。しかしながら、酸洗浄実施中の生産水質の低 下を補う必要がある場合には、アルカリ添加する通常運転工程 (他の脱塩工程 B)に おけるアルカリ添加量を増やしてホウ素除去率を高め、酸ショック実施中の透過水と 混合することによって酸洗浄を実施していない時と同じホウ素濃度の生産水を得るこ とが出来る。
ところで、上述したように、第一の半透膜ユニット 8の上流側には、必要に応じて、第 一の半透膜ユニット 8の原水にスケール防止剤を添加する第一のスケール防止剤添 加手段 3と、第一の半透膜ユニット 8の原水の pHを高くするためにアルカリを添加す る第一のアルカリ添加手段 4とが設けられており、第二の半透膜ユニット 15の上流側 には、これも必要に応じて、第二の半透膜ユニット 15の供給水(一次透過水 9)にスケ ール防止剤を添加する第二のスケール防止剤添加手段 12が設けられている。かか る第一のアルカリ添加手段 4は、本発明の実施にあたって必須ではないが、例えばホ ゥ素除去を目的として第二の半透膜ユニット 15にのみアルカリを添加すると特にスケ ールが析出しやすくなるため、第一の半透膜ユニット 8の原水にアルカリを添加しつ つ、第二の半透膜ユニット 15の原水にアルカリを添加すると第二の半透膜ユニット 1 5の pHを比較的低めに抑えられるという効果がある。し力しながら、第一の半透膜ュ ニット 8へのアルカリ添カ卩は、場所によっては流量が多いため添力卩量も増大し、コスト 的には不利である。さらに、本発明においては、一部の第一の半透膜ユニット 8の原 水に酸添加手段 6にお 、て酸を添加するため、その前にアルカリを添加するとその分 必要な酸も増加する。そこで、本発明においては、第一の半透膜ユニット 8の供給水 には全くアルカリを添加しないか、もしくは、図 5に例示するように各脱塩工程それぞ れにアルカリ添加手段 4を設け、第一の半透膜ユニットの供給水に酸が添加されてい る脱塩工程ではアルカリ添加手段 4を休止し、その他の通常運転を行う脱塩工程で はアルカリ添加手段 4を稼働する方法を採ることが好ましい。なお、図 5は、各脱塩ェ 程それぞれにアルカリ添加手段 4を設けた以外は、図 1の態様と同じである。
本発明において、第一の半透膜ユニット 8の供給水 pHを下げる方法としては、薬注 ポンプで供給水ラインに添加する方法が一般的である。本発明におけるプロセスで は、高圧ポンプで混合されるため、基本的には混合に問題が生じることはないと考え られる力 添加後にラインミキサーを設けて混合を促進したり、添加ポイントに混合タ ンクを設けて混合したりすることも可能である。 pHを下げる方法としてもとくに制限さ れるものではな 、が、酸の強度ゃ扱 、やすさなど力 硫酸が最も好ましく用いられる 。そして、海水を原水とする場合は、第一の半透膜ユニット 8の供給水の pHを、大半 の菌類を死滅させることが可能な 4以下にすることが好ましい。第一の半透膜ユニット 8における透過水 9の pHが酸性領域にぉ 、て供給水の pHより 1程度高くなりやす ヽ ことや、後述するように、酸洗浄を行わず通常の運転を行っている脱塩工程 (他の脱 塩工程 B)においては、第二の半透膜ユニット 15の供給水 pHをホウ素除去性能向上 のために 8以上にすることが好ましぐより高 、効果を得るためには 9以上にすること が好ましいことを考え合わせると、アルカリ添加系列を酸添加系列で中和するという 本発明の主旨からして、第一の半透膜ユニット 8の供給水の pHを 4以下にすることが 好ましい。
[0034] また、 pHを下げる運転は、 1脱塩工程、 1日あたり 0. 5時間以上 2. 5時間以下にす ると、微生物の繁殖を効率的に抑制できるため好ましい。 0. 5時間以上とすることで 菌の繁殖を十分に抑えることができる力 一方で 2. 5時間を超えると、繁殖抑制効果 が限界に達する。したがって、 2. 5時間以下とすることで、生産水質の低下を防ぎな がら菌の繁殖を防ぎ、酸添加の薬品費も抑えることができる。
[0035] 一方、酸洗浄を行って!/、な 、脱塩工程 (他の脱塩工程 B)における第二の半透膜ュ ニット 15の供給水 pHとしては、ホウ素除去性能を向上させるために 8以上にすること が好ましい。さらに効果を十分に発揮させるためには、 pHを 9以上にすることが好ま しい。これによつて、通常海水中では解離していないホウ素をイオン状態にして逆浸 透膜における阻止率を向上させることができる。
[0036] また、 pHを下げる運転は、順次実施する脱塩工程を変えて常時行うことにより、生 産水の水質を経時的に一定にすることが容易となる力 一時的に全ての全ての脱塩 工程にお!、て原水もしくは前処理水を pHを下げずにそのまま第一の半透膜ユニット 8へ供給する通常運転を行ってもよ!ヽ。
[0037] 一時的に、全ての脱塩工程において原水もしくは前処理水を pHを下げずにそのま ま第一の半透膜ユニット 8へ供給する通常運転を行う場合、一部の脱塩工程 (脱塩ェ 程 A)において酸洗浄を行っている間は、酸洗浄を行っていない脱塩工程 (他の脱 塩工程 B)における第二の半透膜ユニット 15の供給水の pHを、該第二の半透膜ュ- ット 15 (第二の半透膜ユニット B2)の該通常運転時の供給水 pHよりも高くすることが 好ましい。こうすることで、酸洗浄を行っていない脱塩工程 (他の脱塩工程 B)で得ら れる透過水のホウ素濃度を低くする事が出来、酸洗浄中の脱塩工程 (脱塩工程 A) で得られるホウ素濃度の高 、透過水を該ホウ素濃度の低 、透過水と混合させること で、混合後の透過水のホウ素濃度を悪化させずに維持することが可能となる。なお、 このとき第二の半透膜ユニット 15の供給水 pHを高める脱塩工程は、酸洗浄を行って Vヽな ヽ脱塩工程全てであってもよ 、が、一部であってもよ 、。
[0038] また、図 2に例示したように第一の半透膜ユニット 8の透過水 9の一部のみを第二の 半透膜ユニット 15で処理する運転を実施している場合は、もちろん上記 PH調整で水 質維持を図ってもよいが、ノ ィパスライン 37の流量を調節することで対応しても同様 の効果が得られる。すなわち、一時的に、全ての脱塩工程において原水や前処理水 を pHを下げずにそのまま第一の半透膜ユニット 8へ供給する通常運転を行う場合、 一部の脱塩工程 (脱塩工程 A)において酸洗浄を行っている間は、いずれかの脱塩 工程における第二の半透膜ユニットの供給水 (残りの透過水 b)の水量を、該第二半 透膜ユニットの通常運転時の供給水の水量よりも多くする(すなわちバイパス流量を 減少させる、あるいはバイノスさせない)ことでも、ホウ素濃度を一定に維持すること が可能であり、好ましい制御方法である。このとき、バイパス流量を調整する脱塩ェ 程としては、酸洗浄中の脱塩工程であっても通常運転中の脱塩工程であっても、ま た両方の脱塩工程であってもよい。さらに、たとえば通常運転中の脱塩工程のうちの 一部の脱塩工程であっても、酸洗浄中の脱塩工程のうちの一部の脱塩工程であって もよい。なお、図 2に例示したように第一の半透膜ユニット 8の透過水 9の一部のみを 第二の半透膜ユニット 15で処理する運転を実施している場合、もちろん、上記 pH調 整と上記流量調整の両方で水質維持を図ってもょ ヽ。
[0039] 第一のアルカリ添加手段 4および第二のアルカリ添加手段 13にて添加されるアル カリとしては、水酸化ナトリウム,水酸ィ匕カルシウム、水酸ィ匕カリウム、重炭酸ナトリウム 、水酸ィ匕アンモ-ゥムなどを例示でき、特に制限されるものではない。ただし、海水へ のスケール成分の増加を防止するためにはカルシウムやマグネシウムは使用しな ヽ 方がよい。また、ここでいうアルカリ添加の許容範囲は、半透膜の耐アルカリ性、アル カリ添カ卩によるスケールが発生するまでの許容範囲に応じて適宜設定されるものであ る。
[0040] なお、図示しないが、第一のアルカリ添加手段 4、第二のアルカリ添加手段 13の直 後にインラインミキサーを設けたり、アルカリ添力卩ロを海水の流れに直接接触するよう にしたりなどして、添カ卩口へのスケール析出を防止することも好ましい。もちろん、前 述のように、アルカリ添加前に、海水にスケール防止剤を添加しておくことも好ましい 。また、第一の半透膜ユニット 8、および、第二の半透膜ユニット 15に添加するスケー ル防止剤の量 (濃度)は、一般的には、スケールが最も析出しやすい半透膜ユニット の供給水が最も濃縮された状態、すなわち、濃縮水中の塩分濃度、組成、温度、 pH など力 決定される。
[0041] また、第一のスケール防止剤添加手段 3および第二のスケール防止剤添加手段 1 2により添加されるスケール防止剤としては、溶液中の金属、金属イオンなどと錯体を 形成し、金属あるいは金属塩を可溶ィ匕させるものであればよぐ有機や無機のイオン 性ポリマーあるいはモノマーが使用できる。有機系のイオン性ポリマーとしてはポリア クリル酸、スルホンィ匕ポリスチレン、ポリアクリルアミド、ポリアリルァミンなどの合成ポリ マーやカルボキシメチルセルロース、キトサン、アルギン酸などの天然高分子力 モノ マーとしてはエチレンジァミン四酢酸 (EDTA)などが使用できる。また、無機系のス ケール防止剤としてはポリリン酸塩などが使用できる。
[0042] これらのスケール防止剤の中では、入手のしゃすさ、溶解性など操作のしゃすさ、 価格の点力 特にポリリン酸塩、エチレンジァミン四酢酸が好適に用いられる。ポリリ ン酸塩とはへキサメタリン酸ナトリウムを代表とする分子内に 2個以上のリン原子を有 し、アルカリ金属、アルカリ土類金属とリン酸原子などにより結合した重合無機リン酸 系物質をいう。代表的なポリリン酸塩としては、ピロリン酸 4ナトリウム、ピロリン酸 2ナト リウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘプタボリリン酸ナトリウム、 デカポリリン酸ナトリウム、メタリン酸ナトリウム、へキサメタリン酸ナトリウム、およびこれ らのカリウム塩などがあげられる。
[0043] 本発明にお 、ては、第一の半透膜ユニット 8へ供給される供給水質は、清澄で半透 膜面への汚れの堆積が少ないことが好ましい。このためには、まず、取水地の水質が 良好であることが好ましいが、表層水が汚染されている場合は、地下などの浸透水を 原水とすることも好ましい。また、原水の水質によっては、原水に濁質成分の除去や 殺菌などの前処理を施しておくことが好ましい。これらの処理により、第一の半透膜ュ ニット 8および第二の半透膜ユニット 15、さらには後段プロセスの性能低下を防ぐこと ができ、処理装置の長期に渡る安定運転を可能にする。具体的な処理は、海水など 原水の性状により適宜選択すればよい。
[0044] 原水力 濁質を除去する必要がある場合は、砂ろ過や精密ろ過膜、限外ろ過膜の 適用が効果的である。このときバクテリアや藻類などの微生物が多い場合は、殺菌剤 を添加することも好ましい。殺菌には塩素を用いることが好ましぐ例えば塩素ガスや 次亜塩素酸ナトリウムを遊離塩素として l〜5mgZlの範囲内となるように原水に添カロ するとよい。この場合、半透膜によっては特定の殺菌剤に化学的な耐久性がない場 合があるので、その場合は、なるべく供給水の流れる方向に関して上流側で添加し、 さらに、第一の半透膜ユニット 8の原水入口側近傍にて殺菌剤を無効にすることが好 ましい。例えば遊離塩素で殺菌を行う場合は、その酸化力によって殺菌効果を発現 するが、遊離塩素は半透膜を構成する高分子素材をも酸化分解することが知られて いるため、殺菌に寄与しな力つた残留遊離塩素を還元剤によって無効にする (すな わち、酸ィ匕カを著しく弱める)ことが好ましい。具体的には、遊離塩素の濃度を測定し 、この測定値に基づいて塩素ガスや次亜塩素酸ナトリウムの添加量を制御したり、亜 硫酸水素ナトリウムなどの還元剤を添加したりするとよい。
[0045] また、濁質以外にバクテリアやタンパク質、天然有機成分などを含有する場合は、 ポリ塩ィ匕アルミニウム、硫酸バンド、塩ィ匕鉄 (III)などの凝集剤を加えることも効果的で ある。凝集させた供給水は、その後に斜向板などで沈降させた上で砂ろ過を行ったり 、複数本の中空糸膜を束ねた精密ろ過膜や限外ろ過膜によるろ過を行ったりするこ とによって、後段の半透膜を通過させるのに適した供給水とすることができる。特に、 凝集剤の添加にあたっては、凝集しやすいように pHを調整することが好ましぐ一般 的には pH5以上 8未満、好ましくは、 pH7以下である。
[0046] なお、凝集剤添加にお 、て pHを下げた場合、酸洗浄を行わな!/、脱塩工程 (他の 脱塩工程 B)については、第一の半透膜ユニット 8の前で pHを上げないとホウ素除去 率が低下するため、それら第一の半透膜ユニット 8の前でアルカリを添加し、 pHを上 げることが好ましい。この様に、半透膜ユニットにおける除去性能力 ¾H変化によって 変化する溶質としては、炭酸,硝酸,シリカのように、 pHによってその解離度が変化 するものが挙げられる。これら溶質は、 pHを上げることによって、その除去率 [%] ( = 100 X (1一透過水濃度) Z供給水濃度)が上がる。そのため、透過水濃度を水質基 準などの目標濃度以下に維持するために、必要に応じてアルカリを添加することが好 ましい。
[0047] 一方、海水に溶解性の有機物が多く含まれている場合は、塩素ガスや次亜塩素酸 ナトリウムの添カ卩によってもそれら有機物を分解することが可能であり、加圧浮上ゃ活 性炭ろ過を行うことによつても除去が可能である。また、溶解性の無機物が多く含ま れている場合は、有機系高分子電解質やへキサメタ燐酸ソーダなどのキレート剤を 添加したり、イオン交換榭脂などを用いて溶解性イオンと交換したりするとよい。また、 鉄やマンガンが可溶な状態で存在して 1ヽるときは、ばつ気酸化ろ過法や接触酸化ろ 過法などを用いることが好まし 、。
[0048] ところで、本発明において原水としては、海水、かん水、河川水、地下水、排水やそ の処理水など特に制限されるものではない。し力しながら、二段目にアルカリを添カロ し pHを高める二段法は高濃度の塩分を高度に除去する場合やホウ素を高度に除去 する場合にその必要性が高い。したがって、本発明においても、海水や海水の処理 水など高濃度の塩分を含有する水を原水とすることが好ましい。なお、海水とは、一 般的には総塩濃度 3重量%以上と言われることが多いが、河口の近くでは淡水と混 合しやすく低濃度になる場合があり、また、中東や滞留海水などでは 4重量%以上に なるので、総塩濃度によって特に限定されるものではない。
[0049] 高圧ポンプ 4は、特に限定されるものではなぐ必要とする出力に応じて適宜、選定 、使用することができるが、本発明においては、浸透圧以上の圧力を供給水に与える 必要があるので、海水の場合は 3MPa以上の圧力を付与できるものが好ましぐさら には 5MPa以上の圧力を付与できるものが好ましい。しかし、一方で、供給される原 水 1の浸透圧よりも著しく高い圧力を付与すると、第一の半透膜の入口部分での透過 流束が大きくなりすぎ、原水中に微量に存在する有機物などが膜面に堆積、吸着し、 膜性能を低下させることになるため好ましくない。したがって、第一の半透膜ユニット 8 の入口部分の局所透過流束が lm3Zm2.日以下、好ましくは 0. 5m3Zm2.日以下と なるように圧力を付与することが好ましい。なお、局所透過流束とは、後述する計算 式に基づ ヽて得ることができる。
[0050] 昇圧ポンプ 13は、特に限定されるものではないが、第一の半透膜ユニットの透過水 を供給するためのものであり、浸透圧もほとんど考慮する必要がないため、高圧ボン プ 5に対して、低圧かつ低流量のものでよい。具体的圧力としては、最大 2MPaの圧 力をかけることができるものが好ましい。 [0051] 第一の半透膜ユニット 8および第二の半透膜ユニット 15は、取扱いを容易にするた め中空糸膜や平膜を筐体に納めて流体分離素子 (エレメント)としたものを用いること ができる。この流体分離素子は、平膜で形成する場合、例えば図 6に示すように、多 数の孔を穿設した筒状の中心パイプ 29の周りに、半透膜 30と、トリコットなどの透過 水流路材 32と、プラスチックネットなどの供給水流路材 31とを含む膜ユニットを卷回 し、これらを円筒状の筐体に納めた構造とするのが好ましい。複数の流体分離素子 を直列あるいは並列に接続して分離膜モジュールとすることも好ま 、。この流体分 離素子において、供給水 25は、一方の端部力 ユニット内に供給され、他方の端部 に到達するまでの間に半透膜 30を透過した透過水 27が、中心ノィプ 30へと流れ、 他方の端部において中心パイプ 29から取り出される。一方、半透膜 30を透過しなか つた供給水 25は、他方の端部にぉ 、て濃縮水 26として取り出される。
[0052] 半透膜 30の素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミ ド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜 の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて 徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素 材で形成された非常に薄 ヽ分離機能層を有する複合膜のどちらでもよ ヽ。
[0053] しかしながら、中でも高耐圧性と高透水性、高溶質除去性能を兼ね備え、優れたポ テンシャルを有する、ポリアミドを分離機能層とした複合膜が好ましい。特に、海水を 原水とするような場合には、第一の半透膜ユニットでは浸透圧以上の圧力をかける必 要があり、実質的には少なくとも 5MPaの操作圧力が負荷されることが多い。この圧 力に対して、高い透水性と阻止性能を維持するためにはポリアミドを分離機能層とし 、それを多孔質膜ゃ不織布力 なる支持体で保持する構造のものが適している。ま た、ポリアミド半透膜としては、多官能ァミンと多官能酸ハロゲン化物との重縮合反応 により得られる架橋ポリアミドの分離機能層を支持体に有してなる複合半透膜が適し ている。
[0054] 分離機能層は、酸やアルカリに対して化学的安定性が高い架橋ポリアミドからなる もの、もしくは架橋ポリアミドを主成分とするものからなることが好ましい。架橋ポリアミ ドは、多官能ァミンと多官能酸ハロゲン化物との界面重縮合により形成され、多官能 ァミンまたは多官能酸ハロゲンィ匕物成分の少なくとも一方が 3官能以上の化合物を含 んでいることが好ましい。
[0055] ここで、多官能ァミンとは、一分子中に少なくとも 2個の一級および Zまたは二級ァ ミノ基を有するアミンをいい、例えば、 2個のアミノ基がオルト位やメタ位、パラ位のい ずれかの位置関係でベンゼンに結合したフエ-レンジァミン、キシリレンジァミン、 1, 3, 5—トリァミノベンゼン、 1, 2, 4 トリァミノベンゼン、 3, 5 ジァミノ安肩、香酸など の芳香族多官能ァミン、エチレンジァミン、プロピレンジァミンなどの脂肪族ァミン、 1 , 2 ジアミノシクロへキサン、 1, 4ージアミノシクロへキサン、ピぺラジン、 1, 3 ビス ピペリジルプロパン、 4—アミノメチルビペラジンなどの脂環式多官能アミン等を挙げ ることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると芳香族多官 能ァミンであることが好ましぐこのような多官能芳香族ァミンとしては、 m—フエ-レン ジァミン、 P フエ-レンジァミン、 1, 3, 5 トリァミノベンゼンが好適に用いられる。さ らには、入手の容易性や取り扱いのしゃすさから、 m フエ-レンジァミン(以下、 m — PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いた り、混合して用いたりしてもよい。
[0056] 多官能酸ハロゲン化物とは、一分子中に少なくとも 2個のハロゲン化カルボ-ル基 を有する酸ハロゲンィ匕物をいう。例えば、 3官能酸ハロゲンィ匕物では、トリメシン酸クロ リド、 1, 3, 5 シクロへキサントリカルボン酸トリクロリド、 1, 2, 4 シクロブタントリカ ルボン酸トリクロリドなどを挙げることができ、 2官能酸ハロゲン化物では、ビフエニル ジカルボン酸ジクロリド、ビフエ-レンカルボン酸ジクロリド、ァゾベンゼンジカルボン 酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリ ドなどの芳香族 2官能酸ノヽロゲン化物、アジボイルクロリド、セバコイルクロリドなどの 脂肪族 2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロへキサン ジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式 2官能 酸ハロゲンィ匕物を挙げることができる。多官能ァミンとの反応性を考慮すると、多官能 酸ハロゲンィ匕物は多官能酸塩ィ匕物であることが好ましぐまた、膜の選択分離性、耐 熱性を考慮すると、多官能芳香族酸塩ィ匕物であることが好ましい。中でも、入手の容 易性や取り扱いのしゃすさの観点から、トリメシン酸クロリドを用いるとより好ましい。こ れらの多官能酸ハロゲンィ匕物は、単独で用いたり、混合して用いたりしてもよい。
[0057] そして、本発明において、第一の半透膜ユニット 8に用いる半透膜は、海水中のィ オンなどをはじめとする溶質を高度に除去することができることが望ましい。特に、他 の成分に比べて阻止率が低 、ホウ素にっ 、ては、高 、阻止性能を有することが好ま しい。具体的には、第一の半透膜ユニット 8の半透膜として、総塩濃度 3. 5重量%、 p H7. 0、温度 25°Cの模擬海水を操作圧力 5. 5MPaで供給したときの純水透過係数 Lが 3 X 10_12m3Zm2'Pa' s以上で、ホウ素透過係数 P力 00 X 10_9mZs以下と
P
いう性能を発現することができるものを適用することによって、海水からより高い水質 の淡水を得ることができる。
[0058] ここで、全塩濃度 3. 5重量0 /0の模擬海水とは、 =4
Figure imgf000023_0001
. 006g/l, C
Figure imgf000023_0002
aCl =0.
Figure imgf000023_0003
0286gZlの組成で調合したものをいう。
[0059] また、純水透過係数 Lとホウ素透過係数 Pは、膜面で生じる濃度分極現象を考慮
P
した以下の方法で得ることができる。例えば、平膜で測定する場合は、 M.タユグチ( M. Taniguchi)らによる文献(ジャーナル'ォブ'メンブレン'サイエンス,第 183卷, 2000年, p259— 267 (以下、参考文献 1とする。))などに示される平膜セルによつ て模擬海水の透過流 と TDS透過水濃度 Cを測定し、以下の式によって L , Pを
P P
算出する。
[0060] J =L ( Δ Ρ- Δ π )
Ρ
J =P (C
s m c p )
J =P
sb b (c mb c pb )
Δ π = π (C ) - π (C )
Figure imgf000023_0004
Jv:純水透過流束 [m3Zm2 - s]
J: TDS (Total Dissolved Solids=総塩分)透過流束 [kgZm2' s]
J :ホウ素透過流束 [kgZm2' s]
sb
L:純水透過係数 [m3Zm2'Pa' s] π ( ;) :浸透圧 [Pa]
Δ π:浸透圧差 [Pa]
Δ Ρ :操作圧力差 [Pa]
C : TDS原水膜面濃度 [kgZm3]
C: TDS原水バルタ (流路内)濃度 [kg/m3]
f
C: TDS透過水濃度「kgZm3
P
C :ホウ素原水膜面濃度 [kgZm3]
mb
C :ホウ素原水バルタ濃度 [kg/m3]
fb
C :ホウ素透過水濃度「kgZm3]
b
k: TDS物質移動係数 [mZs]
k:ホウ素物質移動係数 [mZs]
b
[0061] ここで、浸透圧 πは、 Μ.タユグチ(M. Taniguchi)らによる文献 (AIChE ジャー ナル,第 46卷, 2000年, pl967— 1973 (以下、参考文献 2とする。))に示される、 いわゆる「三宅の式」によって知ることができる。 TDS物質移動係数 kは、評価セルに よって決められる値である力 参考文献 2に示されている浸透圧法もしくは流速変化 法によって膜面流量 Q [m3Zs]もしくは膜面流速 u[mZs]の関数として得ることがで きる。
[0062] 参考文献 1に示されている平膜セルの場合、
k= l. 63 X 10— 3'Q
である。つづいて、ホウ素の物質移動係数 kであるが、これも同文献に示されるように b k/k = (D/D ) 0 75
b b
D : TDS拡散係数 [m2Zs]
D:ホウ素拡散係数 [m2Zs]
b
力 算出することができる。
[0063] したがって、上記の式から未知数 L , P, P , C , C を算出することができる。膜ェ レメントの場合は、参考文献 2に示されているように、膜エレメントの長さ方向に積分し ながら L , Pをフィッティングによって算出することができる。
P
[0064] また、前述した局所透過流束につ!、て説明する。まず、局所とはこの膜エレメントの 長さ方向の特定の位置を意味し、上記の積分計算の中でフィッティングを行い、厳密 には最終的に求められた膜エレメント長さ方向のプロファイル力も得ることができる。 なお、塩の阻止性能が 99%以上であるような十分な阻止率を有している半透膜が用 いられる場合は、 TDS透過水濃度 Cが TDS原水バルタ濃度 Cに比べても非常に小
P
さぐ透過水浸透圧 π (C )も無視できるため、下記の様に算出することができる。
Ρ
[0065] すなわち、前述した入口における局所透過流 は、
IN
J =L ( Δ Ρ Δ π )
ν, IN ρ IN IN
J ^P (C )
, IN m, IN
Δ π ^ π (C )
m
C /C
m, IN IN =exp(j v, IN Zk)
を用いて、 J とじ の連立方程式を解くことによって求めることができる。
IN m, IN
[0066] 第一の半透膜ユニット 8として適した、このような高 、ホウ素阻止性能を有する複合 半透膜を得るためには、例えば、内部や表面に脂肪族ァシル基を存在させる方法を 挙げることができる。具体的には、例えば実質的に分離性能を有さない微多孔性支 持膜上に、実質的にイオン等の分離性能を有する分離機能層を設け、その分離機 能層の内部および Zまたは表面に脂肪族ァシル基を存在せしめる。脂肪族ァシル 基は結合によって分離機能層中もしくは分離機能層表面に存在して!/ヽればよ!/ヽ。
[0067] 脂肪族ァシル基を分離機能層に存在させる方法は特に限定されるものではな 、。
例えば、多官能ァミンと多官能酸ハロゲンィ匕物との界面重縮合により形成された分離 機能層の表面に脂肪族酸ハロゲン化物溶液を接触させたり、多官能ァミンと多官能 芳香族酸ハロゲンィ匕物との界面重縮合の際に脂肪族酸ハロゲンィ匕物を共存させたり することで、分離機能層中に共有結合によって存在せしめればよい。すなわち、微多 孔性支持膜上にポリアミド分離機能層を形成するにあたり、多官能アミン水溶液と、 多官能酸ハロゲンィ匕物の有機溶媒溶液と、これとは異なる炭素数が 1〜4の範囲内 の脂肪族酸ハロゲン化物の有機溶媒溶液とを微多孔性支持膜上で接触させ界面重 縮合させたり、多官能アミン水溶液と、多官能酸ハロゲンィ匕物およびこれとは異なる 炭素数が 1〜4の範囲内の脂肪族酸ハロゲンィ匕物を含有する有機溶媒溶液とを微多 孔性支持膜上で接触させ界面重縮合させたりすればよい。
[0068] 脂肪族酸ハロゲン化物としては、炭素数 1〜4を有するものが好ましぐさらに好まし くは炭素数 2〜4である。炭素数が多くなるに従って、立体障害によって脂肪族酸ノ、 ロゲン化物の反応性が低下したり、多官能酸ハロゲンィ匕物の反応点への接近が困難 になり円滑な膜形成が妨げられたりするため、膜の性能が低下する。力かる脂肪族 酸ハロゲン化物としては、メタンスルホユルク口リド、ァセチルクロリド、プロピオ-ルク 口リド、ブチリルクロリド、ォキサリルクロリド、マロン酸ジクロリド、コハク酸ジクロリド、マ レイン酸ジクロリド、フマル酸ジクロリド、クロロスルホ -ルァセチルクロリド、 N, N—ジ メチルァミノカルボニルクロリドなどが挙げられる。これらは単独でも 2種以上を同時に 使用しても良いが、膜を緻密構造にし、かつ、透水性をあまり低下させないバランス のとれたものとするためには、ォキサリルクロリドを主成分とすることが好ましい。
[0069] そして、微多孔性支持膜を含む支持体は、実質的には分離性能を有さない層であ り、実質的に分離性能を有する架橋ポリアミドの分離機能層に機械的強度を与える ために設けられるもので、布帛ゃ不織布などの基材上に微多孔性支持膜を形成した ものなどが用いられる。
[0070] 微多孔性支持膜は、それ自体も実質的には分離性能を有さない層で、実質的に分 離性能を有する分離機能層に機械的強度を与えるために用いられるものであり、均 一で微細な孔あるいは片面からもう一方の面まで徐々に大きな微細な孔をもってい て、その微細孔の大きさはその片面の表面が lOOnm以下であるような構造の支持膜 が好ましい。
[0071] 上記の支持体は、ミリポア社製"ミリポアフィルター VSWP" (商品名)や、東洋濾紙 社製"ウルトラフィルター UK10" (商品名)のような各種市販材料力も選択することも できるが、通常は、 "オフィス'ォブ 'セイリーン'ウォータ一'リサーチ'アンド'ディべ口 ップメント'プログレス'レポード, No. 359 (1968)に記載された方法に従って製造で きる。その素材にはポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セ ルロースやポリ塩化ビュル等のホモポリマーあるいはブレンドしたものが通常使用さ れるが、化学的、機械的、熱的に安定性の高い、ポリスルホンを使用するのが好まし い。
[0072] 例えば、上記ポリスルホンのジメチルホルムアミド(DMF)溶液を密に織ったポリエ ステル布あるいは不織布の上に一定の厚さに注型し、それをドデシル硫酸ソーダ 0. 5重量%および DMF2重量%を含む水溶液中で湿式凝固させることによって、表面 の大部分が直径数 10nm以下の微細な孔を有した微多孔性支持膜が得られる。微 多孔性支持膜の素材としては、ポリスルホン以外にポリアミドやポリエステルも好ましく 用いられる。
実施例
[0073] 透過水及び供給水の総塩分濃度 (TDS濃度)は、各液の電気伝導度を電気伝導 度計 (横川電機製 SC82)によって測定し、あらかじめ模擬海水で測定した模擬海水 濃度と電気伝導度との関係式から求めた。また pH測定は横川電機製 PH82を用い て測定した。
[0074] 図 7に示すフローの評価装置(以下、装置 Xという)を構成した。なお、図 7において も、符号は、上述したものと同じものを意味する。
[0075] 装置 Xは、供給水タンク 38、高圧ポンプ 7、第一の半透膜ユニット 8、昇圧ポンプ 14 、第二の半透膜ユニット 15などカゝら構成した。高圧ポンプ 8はインバーターで出力制 御するものとし、昇圧ポンプ 14の出力は無調節だ力 第二の半透膜ユニット 15の供 給水に負荷される圧力を実質的に圧力調整バルブ 45で制御した。また、第一の半 透膜ユニット 8の透過水 9の流量を、第一の半透膜ユニット濃縮水バルブ 11によって 調節することができ、第二の半透膜ユニットの透過水流量を、圧力調整バルブ 45と バルブ 18と背圧バルブ 47とによって調節することができるものとした。第一の半透膜 ユニット 8としては、図 8に示すように、直径 10cm、全長 lmの膜エレメント 51をパイプ ジョイント 49によって 4本直列に接続して片方の端部を栓 50で封止した上で耐圧容 器 52に装填したもの 2並列設けた構成に、そして第二の半透膜ユニット 15としては、 図 9に示すように、直径 10cm、全長 lmの膜エレメント 51を同様に 2本直列に接続し 耐圧容器 52に装填したもの 1列設けたという構成にした。
[0076] <参考例 1 > 通常運転として、装置 Xを用いて、東レ (株)愛媛工場の近傍の海水を砂ろ過で前 処理して濁質分を除去した前処理海水 (TDS濃度 3. 4重量%、水温 22°C、 pH = 7. 5)を、流量 80m3Z日で処理した。第一の半透膜ユニット用の膜エレメントとしては東 レ (株)製 SU— 810、第二の半透膜ユニット用の膜エレメントとしては東レ (株)製 SU — 710を用い、第一の半透膜ユニットの回収率 30%、第二の半透膜ユニットの回収 率 75%で運転した。なお、第一のスケール防止剤添加手段 3によるスケール防止剤 添加、第一のアルカリ添加手段 4によるアルカリ添加、酸添加手段 6による酸添加は 行わな力つたが、第二の半透膜ユニットでのホウ素除去性能を向上させるために、第 二のアルカリ添カ卩手段 13によって NaOHを添カ卩し、第二の半透膜ユニット 15の供給 水 pHを 9. 0にした。また、第二のスケール防止剤添カ卩手段 12によってスケール防止 剤(SHMP,へキサメタ燐酸ナトリウム)を 3mg/lで添加し、アルカリ添カ卩によるスケ ール発生を防止した。この条件で運転した結果、透過水流量 18m3Z日で、透過水 TDS濃度は 1. lmg/1,ホウ素濃度は 0. 19mgZl、透過水 pHは 9. 2であった。ま た、このとき、酸添加手段 6における硫酸の添加量は OgZ時、第二のアルカリ添加手 段 13における NaOH添力卩量は 25gZ時であった。
[0077] <参考例 2>
洗浄運転として、第一の半透膜ユニット 8の前の酸添加手段 6によって硫酸を添カロ し、第一の半透膜ユニット 8への供給水 pHを 3. 0にし、第二の半透膜ユニット 15の 前の第二のスケール防止剤添加手段 12によるスケール防止剤添加および第二のァ ルカリ添加手段 13によるアルカリ添加を実施しない他は、参考例 1と同じ条件で運転 を実施した。その結果、透過水流量 18m3Z日で、透過水 TDS濃度は 1. 5mgZl、 ホウ素濃度は 0. 25mg/U透過水 pHは 4. 5であった。また、このとき、酸添加手段 6における硫酸の添カ卩量は、 530gZ時、第二のアルカリ添カ卩手段における NaOH添 加量は、 OgZ日であった。
[0078] <参考例 3 >
洗浄運転として、第一の半透膜ユニット 8の前の酸添加手段 6によって硫酸を添カロ し、第一の半透膜ユニット 8への供給水 pHを 3. 0にする他は、参考例 1と同じ条件で 運転を実施した。その結果、透過水流量 18m3Z日で、透過水 TDS濃度は 1. lmg Zl、ホウ素濃度は 0. 19mgZl、透過水 pHは 9. 2であった。また、このとき、酸添カロ 手段 6における硫酸の添加量は、 530gZ時、第二のアルカリ添カ卩手段における Na OH添カ卩量は、 120gZ時であった。
[0079] <参考例 4 >
通常運転として、第二の半透膜ユニット 15の供給水 pHを 9. 06にする他は参考例 1と同じ条件で運転を実施した。その結果、透過水流量 18m3Z日で、透過水 TDS 濃度は 1. lmgZl、ホウ素濃度は 0. 184mgZl、透過水 PHは 9. 26であった。また 、このとき、酸添加手段 6における硫酸の添加量は OgZ時、第二のアルカリ添加手段 13における NaOH添力卩量は 25. 4gZ時であった。
[0080] <参考例 5 >
参考例 1の条件で 3ヶ月連続運転した後、高温時の前処理海水 (TDS濃度 3. 4重 量%、水温 27°C、pH = 7. 5)【こつ!ヽて、第二の半透膜ユニット 15の供給水 pHを 9. 2 にした他は、参考例 1と同じ条件で運転した。結果、透過水流量 18m3Z日で、透過 水 TDS濃度は 2. 6mgZl、ホウ素濃度は 0. 47mg/U透過水 pHは 9. 3であった。 また、このとき、酸添加手段 6における硫酸の添加量は OgZ時、第二のアルカリ添カロ 手段 13における NaOH添力卩量は 26gZ時であった。
[0081] <参考例 6 >
洗浄運転として、第一の半透膜ユニット 8の前の酸添加手段 6によって硫酸を添カロ し、第一の半透膜ユニット 8への供給水 pHを 3. 0にし、第二の半透膜ユニット 15の 前の第二のスケール防止剤添加手段 12によるスケール防止剤添加およびアルカリ 添加手段 13によるアルカリ添加を実施しない他は、参考例 5と同じ条件で運転を実 施した。その結果、透過水流量 18m3Z日で、透過水 TDS濃度は 2. 9mg/Uホウ 素濃度は 0. 67mg/U透過水 pHは 4. 6であった。また、このとき、酸添加手段 6に おける硫酸の添カ卩量は、 520g/時、第二のアルカリ添カ卩手段における NaOH添カロ 量は、 OgZ日であった。
[0082] <参考例 7 >
洗浄運転として、第一の半透膜ユニット 8の前の酸添加手段 6によって硫酸を添カロ し、第一の半透膜ユニット 8への供給水 pHを 3. 0にする他は、参考例 5と同じ条件で 運転を実施した。その結果、透過水流量 18m3Z日で、透過水 TDS濃度は 2. 8mg Zl、ホウ素濃度は 0. 47mg/U透過水 pHは 9. 3であった。また、このとき、酸添カロ 手段 6における硫酸の添加量は、 520gZ時、第二のアルカリ添カ卩手段における Na OH添カ卩量は、 125gZ時であった。
[0083] <参考例 8 >
通常運転として、第二の半透膜ユニット 15の供給水 pHを 9. 26にする他は参考例 5と同じ条件で運転を実施した。その結果、透過水流量 18m3Z日で、透過水 TDS 濃度は 2. 7mg/Uホウ素濃度は 0. 45mgZl、透過水 pHは 9. 41であった。また、 このとき、酸添加手段 6における硫酸の添加量は OgZ時、第二のアルカリ添加手段 1 3における NaOH添力卩量は 27gZ時であった。
[0084] <参考例 9 >
通常運転として、第一の半透膜ユニットの透過水流量 24m3Z日のうち、 22m 日 を第二の半透膜ユニット 15の供給水とし、また、第二の半透膜ユニットの透過水流量 が 16m3Z日となるように、回収率を 72. 7%に設定する他は、参考例 8と同じ条件で 運転した。その結果、第二の半透膜ユニットの透過水は、 TDS濃度が 2. 6mgZl、ホ ゥ素濃度が 0. 44mgZl、透過水 pHが 9. 41であった。これに、第一の半透膜ュ-ッ トの透過水 2m3Z日(透過水 TDS濃度 196mgZl、ホウ素濃度 1. Omg/U pH = 6 . 13)を混合した結果、混合水の合計水量は 18m3Z日で、 TDS濃度は 24. Omg/ 1、ホウ素濃度は 0. 50mgZl、 pHは 8. 7であった。また、このとき、酸添加手段 6にお ける硫酸の添力卩量は Og/時、第二のアルカリ添カ卩手段 13における NaOH添力卩量は 24. 8gZ時であった。
[0085] <実施例 1 >
図 7に示す装置を 12機並列に、すなわち、 12の脱塩工程を設けた装置を想定し、 参考例 1で説明した通常の運転状態を行う際に、 1日に 2時間ずつ、各脱塩工程を 一工程ずつ順番に、参考例 2で説明した pHを下げる洗浄運転状態にすると、 12の 脱塩工程を合わせた原水流量は 960m3Z日、透過水流量は 216m3Z日と計算され 、 12の脱塩工程の平均透過水として参考例 1と参考例 2の透過水を 11: 1で混合した 結果、透過水 TDS濃度は 1. 13mgZlと十分に低ぐ平均ホウ素濃度は 0. 195mg Zlであった。また、このとき、 1つの脱塩工程あたりの酸添カ卩手段 6における硫酸の 添カロ量は 1060g/日、第二のアルカリ添カ卩手段における NaOH添カ卩量は、 550gZ 日と計算された。なお、 WHOの飲料水質基準はホウ素濃度が 0. 5mgZlであり、ま た、 WHOには飲料水の TDS濃度に関する基準が存在しないが、たとえば日本にお ける飲料水の水質基準は TDS濃度が 500mgZlである。
[0086] <比較例 1 >
各脱塩工程を一工程ずつ順番に、参考例 3で説明した pHを下げる洗浄運転状態 にする以外は、実施例 1と同条件で計算した。その結果、 12の脱塩工程を合わせた 原水流量は 960m3Z日、透過水流量は 216m3Z日と計算され、 12の脱塩工程の 平均透過水として参考例 1と参考例 3の透過水を 11: 1で混合した結果、 TDS濃度 は 1. lmgZl、ホウ素濃度は 0. 190mgZlとなり、実施例 1とほぼ同じ水質になった 。また、このとき、 1つの脱塩工程あたりの酸添カ卩手段 3における硫酸の添カ卩量は、 1 060g/日、第二のアルカリ添カ卩手段における NaOH添カ卩量は、 790g/日と計算さ れ、実施例 1の 1. 4倍の消費量となった。
[0087] <実施例 2>
混合後の透過水ホウ素濃度を比較例 1と同じとするために、通常の運転状態として 参考例 4とする他は、実施例 1と同じ条件で計算した。その結果、 12の脱塩工程を合 わせた原水流量は 960m3Z日、透過水流量は 216m3Z日と計算され、 12の脱塩ェ 程の平均透過水として参考例 4と参考例 2の透過水を 11: 1で混合した結果、 TDS濃 度は 1. 13mgZl、ホウ素濃度は 0. 190mgZlとなり、実施例 1と同じホウ素濃度であ つた。また、このとき、 1つの脱塩工程あたりの酸添カ卩手段 6における硫酸の添力卩量は 、 1060g/日、第二のアルカリ添カ卩手段における NaOH添カ卩量は、 559g/日と計 算され、実施例 1と同等の消費量となった。
[0088] <実施例 3 >
参考例 1と参考例 2の代わりに参考例 5と参考例 6を適用する他は実施例 1と同じ運 転状態を想定したところ、 12の脱塩工程を合わせた原水流量は 960m3Z日、透過 水流量は 216m3Z日と計算され、 12の脱塩工程の平均透過水 TDS濃度は 2. 63m gZlと十分に低ぐ平均ホウ素濃度は 0. 488mgZlであった。この結果は、 WHO飲 料水質基準 (ホウ素濃度 0. 5mgZl)を満足するものであった。また、このとき、 1つの 脱塩工程あたりの酸添カ卩手段 6における硫酸の添力卩量は 1040g/日、第二のアル カリ添加手段における NaOH添加量は、 572g/日と計算された。
[0089] <比較例 2>
参考例 6の代わりに参考例 7で説明した pHを下げる洗浄運転状態にする以外は、 実施例 3と同条件で計算した。その結果、 12の脱塩工程を合わせた原水流量は 960 m 日、透過水流量は 216m3Z日と計算され、 12の脱塩工程の平均透過水 TDS 濃度は 2. 62mgZl、ホウ素濃度は 0. 470mgZlとなった。また、このとき、 1つの脱 塩工程あたりの酸添カ卩手段 3における硫酸の添カ卩量は、 1040g/日、第二のアル力 リ添加手段における NaOH添加量は、 822g/日と計算され、実施例 3の 1. 4倍の消 費量となった。
[0090] <実施例 4>
混合後の透過水ホウ素濃度を比較例 2と同じとするために、通常の運転状態として 参考例 8とする他は、実施例 3と同じ条件で計算した。その結果、 12の脱塩工程を合 わせた原水流量は 960m3Z日、透過水流量は 216m3Z日と計算され、 12の脱塩ェ 程の平均透過水 TDS濃度は 2. 72mg/Uホウ素濃度は 0. 470mgZlとなった。ま た、このとき、 1つの脱塩工程あたりの酸添カ卩手段 6における硫酸の添カ卩量は、 1040 g/日、第二のアルカリ添加手段における NaOH添加量は、 594g/日と計算された
[0091] <実施例 5 >
脱塩工程数は 12で、酸洗浄時間を 1時間とする場合を想定した。この場合、 1日の うち 12時間は全ての脱塩工程で洗浄を行わず通常運転をし、残りの 12時間は 1つ の脱塩工程が順次酸洗浄中となる運転を実施することを想定し、計算を実施した。こ こで、全てが通常運転の時は、参考例 5の条件 (すなわち、第二の半透膜ユニット 15 の供給水 pHは 9. 2)で運転し、いずれかの脱塩工程で洗浄を行っている間は実施 例 4と同じ条件 (すなわち、通常運転している第二の半透膜ユニット 15の供給水 pH は 9. 26に上げる)で運転すると想定した。その結果、 1日を通して、透過水流量は 1 8m 日、透過水 TDS濃度は 2. 6〜2. 72、ホウ素濃度は一定の 0. 470mgZlとな り、いずれかの脱塩工程で洗浄を行っている間も一定のホウ素濃度の透過水を得る ことが出来た。また、このとき、 1つの脱塩工程当たりの酸添加手段 6における硫酸の 添加量は、 520g/日、第二のアルカリ添加条件における NaOH添カ卩量は、 609gZ 時であった。
[0092] <比較例 3 >
V、ずれかの脱塩工程で洗浄を行って 、る間を比較例 2と同じ条件で運転する他は 実施例 5と同じ条件 (すなわち、第二の半透膜ユニット 15の供給水 pHは、通常運転 時も酸洗浄時も PH9. 2)での運転を想定し、計算を実施した。その結果、 1日を通し て、透過水流量は 18m3Z日、透過水 TDS濃度は 2. 6〜2. 8、ホウ素濃度は一定の 0. 470mgZlとなり、いずれかの脱塩工程で洗浄を行っている間も一定のホウ素濃 度を維持することが出来たが、このとき、 1つの脱塩工程当たりの酸添加手段 6にお ける硫酸の添カ卩量は、 520gZ日、第二のアルカリ添加条件における NaOH添カロ量 は、 723gZ時となり、実施例 5よりも 19%多力つた。
[0093] <実施例 6 >
脱塩工程数は 12で、酸洗浄時間を 1時間とする場合を想定した。この場合、 1日の うち 12時間は全ての脱塩工程で洗浄を行わず通常運転をし、残りの 12時間は 1つ の脱塩工程が順次酸洗浄中となる運転を実施することを想定し、計算を実施した。こ こで、全てが通常運転の時は、参考例 9の条件 (すなわち、第二の半透膜ユニット 15 の供給水流量は 22m3Z日、バイパス流量 2m3Z日)で運転し、 V、ずれかの脱塩ェ 程で洗浄を行っている間は、通常運転している脱塩工程のうち 6系列では参考例 9の 条件で、 5系列は参考例 8の条件 (バイパスなし)、洗浄運転している系列は参考例 6 (バイパスなし)での運転を想定し、計算を実施した。その結果、 1日を通して、合計 透過水は、流量が 18m3Z日、透過水 TDS濃度が 13. 4〜24mgZl、ホウ素濃度が ほぼ一定の 0. 495-0. 50mgZlとなり、いずれかの脱塩工程で洗浄を行っている 間も WHOの水質基準を満たす一定のホウ素濃度を維持することが出来た。このとき 、 1つの脱塩工程当たりの酸添加手段 6における硫酸の添加量は、 520g/日、第二 のアルカリ添加条件における NaOH添カ卩量は、 581gZ時であった。
[0094] なお、参考例 1〜9の条件結果を表 1に、実施例 1〜6および比較例 1〜3の条件、 結果を表 2に示す。
[表 1]
第一の半透膜ユニット 第二の半透膜ュニッ卜
3^¾τέ—ド 供給水 ρΗ 供給水温度 透過水; it 透過水 TDS透過水ホウ素 供給水 pH 透過水 pH 硫 Βι,肖費 NaOH消費
[-] t°C] 「m3/日] [mg/l] [mg/l] [-] [-] /時 1 [S /時] 参考例 1 通常 7.5 22 18 1.1 0.19 9.0 9.2 0 25 参考例 2 酸ショック +アルカリなし 3.0 22 18 1.5 0.25 - 4.5 530 0 参考例 3 酸ショック +アルカリあり 3.0 22 18 1.1 0.19 9.0 9.2 530 120 参考例 4 通常 7.5 22 18 1.1 0.184 9.06 9.26 0 25.4 参考例 5 通常 7.5 27 18 2.6 0.47 9.2 9.3 0 26 参考例 6 酸ショック +アルカリなし 3.0 27 18 2.9 0.69 - 4.6 520 0 参考例 7 酸ショック +アルカリあり 3.0 27 18 2.8 0.47 9.2 9.3 520 125 参考例 8 通常 7.5 27 18 2.7 0.45 9.26 9.41 0 27 参考例 9 通常 7.5 27 18* 24 ' 0.5·》 9.26 8.7* 0 24.8 : 第二の半透膜ユニットの透過水と該ユニットをパイパスした第一の半透膜ユニットの透過水との混合水の値
s009 第二の半透膜ュニツ卜
組み合わせ
透過水流量 透過水 TDS透過水ホウ素 硫酸消費 NaOH消費 ( 水量比 )
[m3/曰] [mg/l] [mS/l] [g/日] [g/日] 実施例 1 参考例 1 (11) &·参考例 2(1) 216 1.13 0.195 1060 550 比較例 1 参考例 1 (11) &参考例 3(1) 216 1.10 0.190 1060 790 実施例 2 参考例 4(11) &参考例 2(1) 216 1.13 0.190 1060 559 実施例 3 参考例 5(11) &参考例 6(1) 216 2.63 0.488 1040 572 比較例 2 参考例 5(11) &参考例 7(1) 216 2.62 0.470 1040 822 実施例 4 参考例 8 (11) &参考例 6(1) 216 2.72 0.470 1040 594 実施例 5 通常 (参考例 8) 洗浄中(実施例 4) 216 2.6/2.72 0.470 520 609 比較例 3 通常 (参考例 8) 洗浄中(比較例 2) 216 2.6/2.8 0.470 520 723 実施例 6参考例 9 (6) +参考例 8 (5) &参考例 6 ( 1〕 216 13.4 0.495 520 581
※ : 第二の半透膜ユニットの透過水と該ユニットをバイパスした第一の半透膜ユニットの透過水との混合水の値

Claims

請求の範囲
[1] 原水もしくは原水を前処理して得た前処理水を第一の半透膜ユニットの供給水とし て第一の半透膜ユニットで処理し、得られた第一の半透膜ユニットの透過水を第二の 半透膜ユニットの供給水として pHを上げて第二の半透膜ユニットで処理する脱塩ェ 程を、複数並列に有する淡水製造方法であって、一時的に、一部の脱塩工程 Aにお いて洗浄を行い、該洗浄では、原水もしくは前処理水を pHを下げて第一の半透膜 ユニット A1へ供給し、得られた該第一の半透膜ユニット A1の透過水を他の脱塩ェ 程 Bにおける第二の半透膜ユニット B2の供給水よりも低い pHとして第二の半透膜ュ ニット A2に供給するとともに、該第二の半透膜ユニット A2から得られた透過水を前記 他の脱塩工程 Bにおける第二の半透膜ユニット B2から得られた透過水と混合する淡 水製造方法。
[2] 全ての脱塩工程について前記洗浄を順次行う、請求項 1に記載の淡水製造方法。
[3] 一時的に、全ての脱塩工程において前記洗浄を行わない時間を設けるとともに、前 記一部の脱塩工程 Aにおいて洗浄を行っている間の、前記他の脱塩工程 Bにおける 第二の半透膜ユニット B2の供給水の pHを、全ての脱塩工程にぉ 、て洗浄を行わな い間の、前記他の脱塩工程 Bにおける第二の半透膜ユニット B2の供給水の pHよりも 高くする、請求項 1または 2に記載の淡水製造方法。
[4] 前記第一の半透膜ユニットの透過水のうちの一部の透過水 aを第二の半透膜ュニ ットで処理せず、残りの透過水 bを、第二の半透膜ユニットの供給水として pHを上げ て第二の半透膜ユニットで処理し、前記一部の透過水 aと混合して淡水を得る淡水製 造方法であって、一時的に、全ての脱塩工程において前記洗浄行わない時間を設 けるとともに、前記一部の脱塩工程 Aにおいて洗浄を行っている間の前記残りの透過 水 bの水量を、全ての脱塩工程にぉ 、て洗浄を行わな ヽ時間の水量よりも多くするこ とを特徴とする、請求項 1〜3のいずれかに記載の淡水製造方法。
[5] 前記他の脱塩工程 Bにおいて、第二の半透膜ユニット B2の供給水の pHを 8以上 に上げる、請求項 1〜4のいずれかに記載の淡水製造方法。
[6] 前記一部の脱塩工程 Aにおいて、第一の半透膜ユニット A1の供給水の pHを 4以 下にする、請求項 1〜5のいずれかに記載の淡水製造方法。
[7] 前記一部の脱塩工程 Aにおいて、第一の半透膜ユニット A1の供給水の pHを下げ る運転時間が、 0. 5〜2. 5hr.Z日の範囲内である、請求項 1〜6のいずれかに記載 の淡水製造方法。
[8] 前記脱塩工程の数 (a)と、前記一部の脱塩工程にお!、て第一の半透膜ユニット A1 の供給水の pHを下げる運転時間(b)とが、次の関係式を満たす、請求項 1〜7のい ずれかに記載の淡水製造方法。
20≤a X b≤30, a≥12
PCT/JP2007/058233 2006-05-09 2007-04-16 淡水製造方法 WO2007129530A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES07741669.1T ES2447034T3 (es) 2006-05-09 2007-04-16 Proceso para producir agua dulce
EP07741669.1A EP2017228B1 (en) 2006-05-09 2007-04-16 Process for producing freshwater
AU2007246525A AU2007246525B2 (en) 2006-05-09 2007-04-16 Process for producing freshwater
JP2007519956A JP5286785B2 (ja) 2006-05-09 2007-04-16 淡水製造方法
CN2007800166185A CN101437761B (zh) 2006-05-09 2007-04-16 淡水制造方法
US12/298,980 US20110226695A1 (en) 2006-05-09 2007-04-16 Method for producing fresh water
IL194886A IL194886A (en) 2006-05-09 2008-10-23 Fresh water production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-129875 2006-05-09
JP2006129875 2006-05-09

Publications (1)

Publication Number Publication Date
WO2007129530A1 true WO2007129530A1 (ja) 2007-11-15

Family

ID=38667639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058233 WO2007129530A1 (ja) 2006-05-09 2007-04-16 淡水製造方法

Country Status (8)

Country Link
US (1) US20110226695A1 (ja)
EP (1) EP2017228B1 (ja)
JP (1) JP5286785B2 (ja)
CN (1) CN101437761B (ja)
AU (1) AU2007246525B2 (ja)
ES (1) ES2447034T3 (ja)
IL (1) IL194886A (ja)
WO (1) WO2007129530A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097444A (ja) * 2012-11-13 2014-05-29 Jfe Engineering Corp 淡水製造装置およびその運転方法
WO2017175333A1 (ja) * 2016-04-06 2017-10-12 三菱重工業株式会社 水処理装置の性能評価方法、及び水処理装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468684A4 (en) * 2009-08-21 2014-05-21 Toray Industries PROCESS FOR PRODUCING FRESH WATER
JP5929195B2 (ja) * 2010-08-17 2016-06-01 東レ株式会社 淡水製造装置およびその運転方法
WO2013130312A1 (en) * 2012-03-02 2013-09-06 Dow Global Technologies Llc Multi-pass hyperfiltration system
EP2657194A1 (en) * 2012-04-27 2013-10-30 Kemira Oyj Method for a membrane bioreactor
US20140202950A1 (en) * 2013-01-23 2014-07-24 Asian Institute Of Technology Anodized aluminum oxide tubular nano-porous membrane module and method of manufacture thereof
KR101594226B1 (ko) * 2013-12-31 2016-02-15 두산중공업 주식회사 담수화장치
CN104496060B (zh) * 2015-01-09 2017-02-22 刘华军 一种海水淡化综合利用工艺及系统
US10570036B2 (en) 2015-11-27 2020-02-25 Kemira Oyj Phosphorus precipitation and membrane flux in membrane bioreactors
EP3509731A4 (en) * 2016-09-12 2020-04-22 Fluid Technology Solutions (FTS), Inc. COVALENT THIN FILMS TIED TO CELLULOSE ESTER MEMBRANES AND METHOD FOR THE PRODUCTION THEREOF
JP6778591B2 (ja) * 2016-11-25 2020-11-04 野村マイクロ・サイエンス株式会社 超純水製造方法及び超純水製造システム
WO2020112719A1 (en) * 2018-11-30 2020-06-04 Massachusetts Institute Of Technology Multi-stage ion separator with recirculation
CN109395587A (zh) * 2018-12-19 2019-03-01 广东万家乐燃气具有限公司 滤膜冲洗方法
CN113880317B (zh) * 2021-11-17 2022-04-01 青岛延晖环保科技有限公司 一种海水淡化过程中生物脱盐方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170325A (ja) * 1997-06-20 1999-03-16 Ngk Insulators Ltd 膜ろ過装置の運転方法
JP3087750B2 (ja) 1998-07-21 2000-09-11 東レ株式会社 膜の殺菌方法
JP2000301148A (ja) * 1999-01-01 2000-10-31 Toray Ind Inc 造水方法
JP2001239134A (ja) * 2000-03-01 2001-09-04 Toray Ind Inc 逆浸透処理装置の運転方法とその制御装置および造水方法
JP3319321B2 (ja) 1996-02-29 2002-08-26 東レ株式会社 造水装置及び水中のほう素の除去方法
WO2003062151A1 (fr) * 2002-01-22 2003-07-31 Toray Industries, Inc. Procede de production d'eau douce et generateur d'eau douce
JP2005224651A (ja) * 2004-02-10 2005-08-25 Toray Ind Inc 淡水製造方法および淡水製造装置
JP2005246281A (ja) * 2004-03-05 2005-09-15 Kobelco Eco-Solutions Co Ltd 海水淡水化方法および海水淡水化装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735883B2 (ja) * 1995-03-08 2006-01-18 栗田工業株式会社 膜分離装置及び膜モジュールの洗浄方法
FR2781168B1 (fr) * 1998-07-17 2000-09-15 Polymem Procede et installation de traitement d'eau
JP4472050B2 (ja) * 1998-10-20 2010-06-02 日東電工株式会社 造水装置および造水方法
JP4449092B2 (ja) * 1998-12-28 2010-04-14 栗田工業株式会社 純水製造装置および方法
US7560029B2 (en) * 2001-02-01 2009-07-14 Yale University Osmotic desalination process
PL1651573T3 (pl) * 2003-07-24 2014-09-30 Veolia Water Solutions & Tech Sposób oczyszczania kwaśnych ścieków
US20050067341A1 (en) * 2003-09-25 2005-03-31 Green Dennis H. Continuous production membrane water treatment plant and method for operating same
WO2005056166A1 (en) * 2003-12-02 2005-06-23 Hydranautics Methods for reducing boron concentration in high salinity liquid using combined reverse osmosis and ion exchange
US20060096920A1 (en) * 2004-11-05 2006-05-11 General Electric Company System and method for conditioning water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319321B2 (ja) 1996-02-29 2002-08-26 東レ株式会社 造水装置及び水中のほう素の除去方法
JPH1170325A (ja) * 1997-06-20 1999-03-16 Ngk Insulators Ltd 膜ろ過装置の運転方法
JP3087750B2 (ja) 1998-07-21 2000-09-11 東レ株式会社 膜の殺菌方法
JP2000301148A (ja) * 1999-01-01 2000-10-31 Toray Ind Inc 造水方法
JP2001239134A (ja) * 2000-03-01 2001-09-04 Toray Ind Inc 逆浸透処理装置の運転方法とその制御装置および造水方法
WO2003062151A1 (fr) * 2002-01-22 2003-07-31 Toray Industries, Inc. Procede de production d'eau douce et generateur d'eau douce
JP2005224651A (ja) * 2004-02-10 2005-08-25 Toray Ind Inc 淡水製造方法および淡水製造装置
JP2005246281A (ja) * 2004-03-05 2005-09-15 Kobelco Eco-Solutions Co Ltd 海水淡水化方法および海水淡水化装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
L.E. APPLEGATE; C.W. ERKENBRECHER, DESALINATION, vol. 65, 1987, pages 331 - 359
M. TANIGUCHI ET AL., AICHE JOURNAL, vol. 46, 2000, pages 1967 - 1973
M. TANIGUCHI ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 183, 2000, pages 259 - 267
OFFICE OF SALINE WATER RESEARCH AND DEVELOPMENT PROGRESS REPORT, no. 359, 1968

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097444A (ja) * 2012-11-13 2014-05-29 Jfe Engineering Corp 淡水製造装置およびその運転方法
WO2017175333A1 (ja) * 2016-04-06 2017-10-12 三菱重工業株式会社 水処理装置の性能評価方法、及び水処理装置

Also Published As

Publication number Publication date
AU2007246525B2 (en) 2011-09-29
EP2017228B1 (en) 2013-12-25
JP5286785B2 (ja) 2013-09-11
CN101437761A (zh) 2009-05-20
IL194886A0 (en) 2009-08-03
EP2017228A4 (en) 2012-04-04
US20110226695A1 (en) 2011-09-22
JPWO2007129530A1 (ja) 2009-09-17
IL194886A (en) 2014-08-31
AU2007246525A1 (en) 2007-11-15
CN101437761B (zh) 2011-08-24
EP2017228A1 (en) 2009-01-21
ES2447034T3 (es) 2014-03-11

Similar Documents

Publication Publication Date Title
JP5286785B2 (ja) 淡水製造方法
Jamaly et al. A short review on reverse osmosis pretreatment technologies
JP2007152265A (ja) 淡水製造装置の運転方法および淡水製造装置
JP5549591B2 (ja) 淡水製造方法及び淡水製造装置
Bodzek et al. Application of membrane processes in drinking water treatment–state of art
JP2006187719A (ja) 淡水製造装置の運転方法および淡水製造装置
JP6657958B2 (ja) 造水方法
JP6881435B2 (ja) 水処理方法および水処理装置
JP2008161797A (ja) 淡水製造装置の運転方法および淡水製造装置
JP5867082B2 (ja) 淡水の製造方法
JP2016128142A (ja) 半透膜の阻止率向上方法
Chen et al. Desalination of seawater by reverse osmosis
JP2005224651A (ja) 淡水製造方法および淡水製造装置
WO2016111372A1 (ja) 半透膜の阻止性能向上方法、半透膜、半透膜造水装置
JP2006075667A (ja) 半透膜装置の運転方法および装置
Cromphout et al. Design and operation of an ultrafiltration plant for the production of drinking water out of the river Scheldt
JP2005034723A (ja) 逆浸透膜の改質方法及び再生分離膜
Shirazi et al. for Water Purification and Desalination
JP2002079246A (ja) 造水方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007519956

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 194886

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2007246525

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007741669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780016618.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007246525

Country of ref document: AU

Date of ref document: 20070416

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6756/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12298980

Country of ref document: US