WO2007124910A2 - Kaltplasma-handgerät zur plasma-behandlung von oberflächen - Google Patents

Kaltplasma-handgerät zur plasma-behandlung von oberflächen Download PDF

Info

Publication number
WO2007124910A2
WO2007124910A2 PCT/EP2007/003669 EP2007003669W WO2007124910A2 WO 2007124910 A2 WO2007124910 A2 WO 2007124910A2 EP 2007003669 W EP2007003669 W EP 2007003669W WO 2007124910 A2 WO2007124910 A2 WO 2007124910A2
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
coil
capacitor
nozzle
generator
Prior art date
Application number
PCT/EP2007/003669
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2007124910A3 (de
Inventor
Rüdiger FOEST
Klaus-Dieter Weltmann
Manfred Stieber
Eckhard Kindel
Original Assignee
Neoplas Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neoplas Gmbh filed Critical Neoplas Gmbh
Priority to EP07724599.1A priority Critical patent/EP2016809B1/de
Priority to ES07724599.1T priority patent/ES2548096T3/es
Priority to PL07724599T priority patent/PL2016809T3/pl
Publication of WO2007124910A2 publication Critical patent/WO2007124910A2/de
Publication of WO2007124910A3 publication Critical patent/WO2007124910A3/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/20Non-thermal plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/36Sterilisation of objects, liquids, volumes or surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/40Surface treatments

Definitions

  • the invention relates to a plasma tool for the plasma-assisted treatment, modification and coating of inner and outer surfaces of materials in air by means of a cold plasma jet according to the preamble of claim 1.
  • Plasma technology especially at high temperatures and high gas pressures, has long been known and described many times, e.g. in US Pat. No. 3,648,015, US Pat. No. 4,626,648, DE 41 08 499 A1 and DE 10.1 40 298 B4.
  • WO 03/026365 Al a device is described which allows to generate a plasma by means of microwaves, wherein it allows the device described in WO 03/026365, despite any pressure fluctuations in the process gas to produce a stable plasma flame.
  • German Auslegeschrift 1 639 257 Another plasma generator that produces a plasma at high temperatures is described in German Auslegeschrift 1 639 257. It is a high-frequency plasma jet generator with a cylindrical tube, on one end side of which to gas to be ionized and at the other end side of the generated plasma flows out, an induction coil whose one end is connected to ground and the other end is connected to a high-frequency generator. Between the two ends of the coil, a tap is arranged. The high-frequency voltage generated in the induction coil is higher than the excitation voltage.
  • the tube in the area of the plasma outlet is made of metal and placed on the high-voltage end of the induction coil. The tube is concentrically and electrically isolated surrounded by a metallic housing. Due to the special arrangement, the gas discharge between the two adjacent ends of tube and housing takes place due to a capacitive coupling between these two components.
  • this generator is not suitable for the generation of a cold normal pressure plasma at least due to its electrode shape.
  • low-pressure plasmas have been used to date for these processes, in which the radicals, excited atoms, ions, electrons and UV radiation required for these applications can be generated to a defined extent by the selection of suitable process parameters.
  • Low-pressure plasma processes are not suitable for numerous industrial processes in which a corresponding surface modification is required, both for cost reasons and for procedural reasons.
  • Corona discharge which is suitable for the plasma treatment of surfaces.
  • a gas stream is passed through a corona discharge gap between a rod-shaped inner and a tubular outer electrode.
  • a process for the plasma treatment of surfaces is described, which is based on the generation of a plasma jet by arc discharge with non-transferred arc.
  • the subject matter of US Pat. Nos. 6,194,036 and 6,262,523 are arrangements based on the RF excitation of atmospheric pressure plasmas.
  • US 2002/122896 are various Arrangements for producing normal pressure plasmas based on RF excited discharges in tubes of insulating material are described.
  • plasmas of this type are used for argon plasma coagulation (US 4,781,175, US 4,060,088, DE 19513338), for coatings on artificial implants to increase their biocompatibility, for controlling cell adhesion to surfaces, for disinfecting medical instruments (M. Laroussi: IEEE Trans. Plasma. 30: 4 (2002), 1409) and for the treatment of biological cells and tissues (E. Stoffels et al.: Plasma Sources Sei. Technol., 11 (2002), 383).
  • Normal-pressure plasmas based on RF-excited discharges have the advantage that they can be operated at fixed frequencies (13, 56 MHz, 27.12 MHz, 40.68 MHz), which are released for industrial applications, and on the other hand at smaller
  • High-frequency operated plasma reactors require a matching network (matchbox) for maximum power transmission from their RF generator.
  • An often used circuit in the Matchbox is the ⁇ circuit. It consists of two capacitors C1 and C2 and a coil (see Fig. 1). In order to keep losses in the matchbox low, capacitors with air as a dielectric are used, which occupy a large volume. Since the current transport at these frequencies takes place mainly on the surface of an electrical conductor (skin effect), the coil and all other electrical leads consist of a relatively thick metal wire with high electrical conductivity on the surface (silver wire, silver-plated copper wire). As a result, such a matchbox is generally very voluminous. To ignite and maintain a gas discharge in the plasma reactor, high voltages are needed.
  • the matchbox by the fact that the coil and the capacitor C2 form a series resonant circuit, which must be matched to the particular frequency of the RF generator used.
  • the supply line Z2 should consist of an unshielded cable and should be kept as short as possible.
  • the matchbox and the plasma reactor actually form a relatively rigid, unwieldy unit. If you want to realize a handy plasma nozzle as a plasma reactor, which can be performed for example by a robot, such a bulky plasma reactor is useless.
  • the invention is therefore based on the object to realize a handy plasma nozzle, which can also be performed by hand and / or by robots.
  • the coil and optionally the capacitor C2 is integrated into the plasma nozzle.
  • a possibly required capacitor Cl may be located anywhere between the generator and the plasma nozzle, but preferably the capacitor Cl is positioned directly on the generator outside (short lead) or directly inside. This achieves the following improvements:
  • the supply line Zl (coaxial cable) from the generator to the plasma nozzle can be designed much more flexible and longer than would ever have been possible for the lead Z2 according to the prior art.
  • the supply line Z2 is formed by the coil end to the electrode El and can therefore be made extremely short. 4. The formed between the electrodes El and E2
  • Capacity is parallel to C2. Changes in this capacity due to tolerances in the production of the plasma nozzle or upon ignition of the plasma can be compensated for by changing C2, so that the resonance condition is maintained. 5. Due to the very short lead Z2, the total capacity, formed by the capacitance C2 and the capacitance between El and E2, is automatically kept small, so that the inductance L can be maximally selected according to the fixed frequency and thus a high quality of the series resonant circuit (generation a high voltage overshoot) can be achieved.
  • the plasma tool according to the invention for producing a cold plasma jet comprises a
  • Adaptation network for generating the required voltage is characterized in that the matching network at least the coil is integrated into the plasma nozzle.
  • the matching network integrates the coil L and the capacitor C2 into the plasma nozzle.
  • the capacitor Cl of the matching network can be arranged directly on or in the frequency generator and it is advantageously arranged there.
  • the plasma nozzle contains a capillary made of insulating material and the coil is arranged around this capillary.
  • the matching network (matchbox) consists of one coil and two capacitors C1 and C2 with their connections.
  • the coil and the capacitor C2 are integrated in the plasma nozzle and the capacitor Cl is arranged directly on or in the generator.
  • the generator is a frequency-tunable RF generator and the matching network consists of a coil with leads, the coil being integrated into the plasma nozzle.
  • Capacitors C1 and C2 it is clearly stated here that the capacitors C1 and C2 can be made up of several partial capacitors and that capacitors constructed from partial capacitors are likewise referred to as C1 and C2 in the context of this invention.
  • the plasma reactor may be configured such that the matching network consists of a coil and either capacitor C1 or capacitor C2 and the corresponding lines.
  • Invention is a plasma nozzle, in which at least one coil, preferably a coil and a capacitor C2 are integrated. These can, as described above and in the embodiments resp. the figures shown to be installed.
  • the invention is a frequency generator in which either a capacitor suitable as a capacitor Cl of a matching network is integrated or mounted directly at the output of the generator.
  • the embodiment with a capacitor Cl and a capacitor C2 relates in particular to commercially available RF generators having a fixed frequency, as described e.g. in Germany are released by the post office for technical concerns.
  • a simplification, and therefore cheaper, of the combination RF generator - plasma nozzle results in the transition to lower frequencies (e.g., 3 MHz) and using a
  • a plasma nozzle according to the invention generally comprises a body side, ie on the plasma respectively. the nozzle facing away from the plasma nozzle, with a hollow body connected to a process gas supply.
  • This hollow body is preferably made of insulating material.
  • the coil forming part of the matching network is arranged around a part of this hollow body.
  • the dimensions of the hollow body, or these dimensions together with another body, preferably an insulating body, are to be chosen such that the coil with the desired winding diameter can be arranged thereon.
  • This coil must - if the hollow body or other body on which it is arranged, not made of insulating material, be self-insulated.
  • This coil is connected to the nozzle side with an electrode El and optionally a variable capacitor C2.
  • the electrode E1 may optionally be a ring electrode disposed around the insulating hollow body or a rod electrode disposed in the hollow body.
  • the capacitor C2 and the coil are connected in series, so that it can adjust the voltage required at a given frequency. On the side facing away from the coil, the capacitor C2 is connected to the grounded housing.
  • a ring electrode E2 which is connected to the grounded housing.
  • This housing has feeds for the electric current and feed openings for the process gas and a discharge opening for the plasma within the second electrode E2.
  • a further insulating layer which is important in particular with a small clearance between the coil and the housing.
  • the connecting line between the electrode El and the capacitor C2 is usually on the coil side on the housing shielding insulation and in turn is provided with an insulating layer.
  • Suitable insulating materials are plastic, quartz glass, ceramics, etc., which may be used singly or in combination.
  • Conductivity preferred at least on the surface such as silver-plated copper wire or pure silver wire.
  • FIG. 1 shows the general connection of an RF-operated, capacitively coupled plasma tool
  • FIG. 1a representing the plasma reactor in general
  • FIG. 1b the plasma nozzle.
  • FIG. 2 shows an inventive device
  • FIG. 3 shows a further embodiment according to the invention with a variable frequency generator in which the capacitors C 1 and C 2 can be dispensed with.
  • FIG. 4 shows a plasma nozzle according to the invention with an RF ring electrode.
  • FIG. 5 shows a plasma nozzle according to the invention with an RF rod electrode.
  • FIG. 6 shows a plasma broad-jet nozzle with an RF ring electrode according to the invention.
  • Embodiments of the prior art relate in particular to commercially available RF generators having a fixed frequency.
  • the matching network has been separated, the capacitor C1 in the RF generator and the capacitor C2 and the coil being integrated in the plasma nozzle.
  • FIG. 4 shows an exemplary embodiment of a plasma nozzle with a capacitively coupled capillary discharge 1.
  • Ring electrodes 2, 3 are mounted at a suitable distance on a hollow body made of insulating material (dielectric) 4.
  • a coil 6 is wound, which is connected at one end to the RF electrode 3 and at the other end to the RF input 7 of the plasma nozzle.
  • the RF electrode 3 is connected to the grounded case 8 via a rotary air capacitor C2.
  • the process gas 9 preferably noble gas
  • Both electrodes 2 and 3 and the dielectric 4 form a capacitance (a few pF), the parallel to C2.
  • the coil 6 forms a series resonant circuit with these capacitances and can be adjusted via C2 to maximum voltage at the electrode 3.
  • Suitable dimensions and materials for the embodiment described in FIG. 4 are:
  • Width of metallic ring electrodes 5mm
  • Insulating material (capillary): outer diameter 3mm, inner diameter lmm
  • process gases noble gases, such as argon and helium
  • Dielectric constant e.g. quartz glass
  • Capacitor Cl 350 pF In Fig. 5 is another
  • Embodiment of a plasma nozzle with a capillary discharge 1 shown.
  • the RF energy is coupled via a rod electrode 3 into the capillary discharge.
  • the rod electrode should be made of low work function materials to minimize the voltage needed for capillary discharge. She should also be pointed forward, so as to achieve a high field strength. Between the tip and the grounded electrode 2, at sufficiently high voltages, a capillary discharge is formed, the plasma of which is in turn blown outward by the gas flow.
  • Essential dimensions / materials other than in the embodiment described above and in FIG. 4 are:
  • Hollow body made of insulating material (capillary) 4 outer diameter 6mm, inner diameter 2mm.
  • Diameter of the rod electrode lmm
  • FIG. 6 shows a modified variant of the plasma nozzle. The discharge is again generated between the electrodes 2 and 3 and passes through a
  • insulating material such as, for example, plastic, Quartz glass, ceramics, etc.
  • plasma nozzle by means of an RF discharge generated by a nozzle, directed normal pressure blasting plasma with the desired properties (for example, non-thermal, floating, homogeneous and reactive) to which the In order to achieve their desired physicochemical change, the conditions in the jet plasma region may be changed by changing the geometric arrangements and dimensions within the plasma nozzle, by using other process gases, their admixtures and flow rates be controlled by the arrangement and choice of electrodes, by the type of ignition and / or by varying the electrical parameters of the discharge.
  • desired properties for example, non-thermal, floating, homogeneous and reactive

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Treatment Of Fiber Materials (AREA)
PCT/EP2007/003669 2006-04-27 2007-04-26 Kaltplasma-handgerät zur plasma-behandlung von oberflächen WO2007124910A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07724599.1A EP2016809B1 (de) 2006-04-27 2007-04-26 Kaltplasma-handgerät zur plasma-behandlung von oberflächen
ES07724599.1T ES2548096T3 (es) 2006-04-27 2007-04-26 Aparato manual de plasma frío para el tratamiento de superficies con plasma
PL07724599T PL2016809T3 (pl) 2006-04-27 2007-04-26 Przyrząd ręczny z plazmą zimną do plazmowej obróbki powierzchni

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006019664.3A DE102006019664B4 (de) 2006-04-27 2006-04-27 Kaltplasma-Handgerät zur Plasma-Behandlung von Oberflächen
DE102006019664.3 2006-04-27

Publications (2)

Publication Number Publication Date
WO2007124910A2 true WO2007124910A2 (de) 2007-11-08
WO2007124910A3 WO2007124910A3 (de) 2009-03-26

Family

ID=38472082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/003669 WO2007124910A2 (de) 2006-04-27 2007-04-26 Kaltplasma-handgerät zur plasma-behandlung von oberflächen

Country Status (6)

Country Link
EP (1) EP2016809B1 (es)
DE (1) DE102006019664B4 (es)
ES (1) ES2548096T3 (es)
PL (1) PL2016809T3 (es)
PT (1) PT2016809E (es)
WO (1) WO2007124910A2 (es)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307426A (zh) * 2011-06-24 2012-01-04 北京大学 一种等离子体发生装置
RU2473318C2 (ru) * 2010-03-23 2013-01-27 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Устройство плазменной коагуляции тканей
WO2013040454A1 (en) * 2011-09-15 2013-03-21 Cold Plasma Medical Technologies, Inc. Cold plasma treatment devices and associated methods
DE102011087159B3 (de) * 2011-11-25 2013-03-28 Mtu Aero Engines Gmbh Haftgrundvorbereitung für das Kaltgasspritzen und Kaltgasspritzvorrichtung
DE102014213967A1 (de) * 2014-07-17 2016-01-21 NorthCo Ventures GmbH & Co. KG Vorrichtung zur Hydophilierung von Zahnimplantaten
US9295280B2 (en) 2012-12-11 2016-03-29 Plasmology4, Inc. Method and apparatus for cold plasma food contact surface sanitation
US9472382B2 (en) 2007-04-23 2016-10-18 Plasmology4, Inc. Cold plasma annular array methods and apparatus
US9521736B2 (en) 2007-04-23 2016-12-13 Plasmology4, Inc. Cold plasma electroporation of medication and associated methods
US9656095B2 (en) 2007-04-23 2017-05-23 Plasmology4, Inc. Harmonic cold plasma devices and associated methods
US10039927B2 (en) 2007-04-23 2018-08-07 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US10194672B2 (en) 2015-10-23 2019-02-05 NanoGuard Technologies, LLC Reactive gas, reactive gas generation system and product treatment using reactive gas
US10925144B2 (en) 2019-06-14 2021-02-16 NanoGuard Technologies, LLC Electrode assembly, dielectric barrier discharge system and use thereof
WO2021252816A1 (en) * 2020-06-08 2021-12-16 Chiscan Holdings, Llc Apparatus and methods for deactivating microorganisms with non-thermal plasma
US11896731B2 (en) 2020-04-03 2024-02-13 NanoGuard Technologies, LLC Methods of disarming viruses using reactive gas

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008614A1 (de) 2008-02-12 2009-08-13 Leibniz-Institut für Plasmaforschung und Technologie e.V. Plama-Gerät zur selektiven Behandlung elektroporierter Zellen
DE102008025483A1 (de) * 2008-05-28 2009-12-10 Siemens Aktiengesellschaft Plasmaoberflächenbehandlungsanlage
DE102009028190A1 (de) 2009-08-03 2011-02-10 Leibniz-Institut für Plasmaforschung und Technologie e.V. Vorrichtung zur Erzeugung eines nichtthermischen Atmosphärendruck-Plasmas
JP5848705B2 (ja) * 2009-08-03 2016-01-27 ライプニッツ−インスティトゥートフュール プラズマフォルシュング ウント テヒノロギー エー.ファウ. コールドプラズマジェットの発生装置
DE102009047220A1 (de) * 2009-11-27 2011-06-01 Leibniz-Institut für Plasmaforschung und Technologie e.V. Vorrichtung und Verfahren zur Erzeugung eines gepulsten Anisothermen Atmosphärendruck-Plasmas
DE102012025082B3 (de) * 2012-08-31 2014-01-16 NorthCo Ventures GmbH & Co. KG Vorrichtung und Verfahren zur Behandlung von biologischem Gewebe mit einem Niederdruckplasma
DE102015101315B3 (de) 2015-01-29 2016-04-21 Inp Greifswald E.V. Plasmabehandlungsgerät und Verfahren zur Plasmabehandlung
US11490947B2 (en) 2015-05-15 2022-11-08 Clear Intradermal Technologies, Inc. Tattoo removal using a liquid-gas mixture with plasma gas bubbles
WO2016187132A1 (en) 2015-05-15 2016-11-24 ClearIt, LLC Systems and methods for tattoo removal using cold plasma
US11102877B2 (en) 2015-09-30 2021-08-24 Chiscan Holdings, L.L.C. Apparatus and methods for deactivating microorganisms with non-thermal plasma
US10765850B2 (en) 2016-05-12 2020-09-08 Gojo Industries, Inc. Methods and systems for trans-tissue substance delivery using plasmaporation
CN116321654A (zh) * 2016-07-18 2023-06-23 智像控股有限责任公司 非热等离子体发射器和用于控制的设备
US10692704B2 (en) 2016-11-10 2020-06-23 Gojo Industries Inc. Methods and systems for generating plasma activated liquid
CZ2016790A3 (cs) * 2016-12-14 2018-06-27 Masarykova Univezita Způsob vytváření plazmatu v plazmové trysce za atmosférického tlaku a regulace intenzit E a H elektromagnetického pole a přenosu a regulace toku činného výkonu z vysokofrekvenčního zdroje do plazmatu plazmové trysky a zařízení k jeho provádění
DE202017101912U1 (de) 2017-03-31 2017-07-17 Leibniz-Institut für Plasmaforschung und Technologie e.V. Tragbares, werkzeuglos montierbares Plasma-Behandlungssystem
DE202018005328U1 (de) 2018-11-14 2018-12-12 Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. LED-Bestrahlungsgerät zur Prävention von Wundinfektionen und zur Verbesserung der Heilung von Wunden und Wundinfektionen
AU2019402973A1 (en) 2018-12-19 2021-07-01 Clear Intradermal Technologies, Inc. Systems and methods for tattoo removal using an applied electric field
NL2022938B1 (en) 2019-04-12 2020-10-20 Vitalfluid B V Plasma activated fluid processing system
EP3849282A1 (en) * 2020-01-09 2021-07-14 terraplasma emission control GmbH Plasma discharge system and method of using the same
DE102022205543A1 (de) 2022-05-31 2023-11-30 neoplas med GmbH Vorrichtung zur führung plasmastrahlerzeugter spezies
WO2023232669A1 (de) 2022-05-31 2023-12-07 neoplas med GmbH Vorrichtung zur führung plasmastrahlerzeugter spezies
ES2968303A1 (es) * 2022-10-06 2024-05-08 Neira Jorge Oyanedel Maquinaria de electroterapia basada en circuitos resonantes para mejorar la salud

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1222243A (en) * 1967-07-05 1971-02-10 Kearns Tribune Corp Generating plasma
US5837958A (en) * 1995-09-01 1998-11-17 Agrodyn Hochspannungstechnik Gmbh Methods and apparatus for treating the surface of a workpiece by plasma discharge
US6565558B1 (en) * 1998-09-01 2003-05-20 Heinz Lindenmeier High-frequency device for generating a plasma arc for the treatment of biological tissue
US6958063B1 (en) * 1999-04-22 2005-10-25 Soring Gmbh Medizintechnik Plasma generator for radio frequency surgery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648015A (en) * 1970-07-20 1972-03-07 Thomas E Fairbairn Radio frequency generated electron beam torch
US4060088A (en) * 1976-01-16 1977-11-29 Valleylab, Inc. Electrosurgical method and apparatus for establishing an electrical discharge in an inert gas flow
JPS5987042A (ja) * 1982-11-10 1984-05-19 Takeshige Abe 電離気体の発生方法
US4626648A (en) * 1985-07-03 1986-12-02 Browning James A Hybrid non-transferred-arc plasma torch system and method of operating same
US4781175A (en) * 1986-04-08 1988-11-01 C. R. Bard, Inc. Electrosurgical conductive gas stream technique of achieving improved eschar for coagulation
DE3733492A1 (de) * 1987-10-03 1989-04-13 Ahlbrandt System Gmbh Vorrichtung zur behandlung von oberflaechen mittels eines ionisierten gasstromes
DE4108499A1 (de) * 1991-03-15 1992-09-17 Igenwert Gmbh Verfahren und vorrichtung zur erzeugung eines hochdruckplasmas
US5249575A (en) * 1991-10-21 1993-10-05 Adm Tronics Unlimited, Inc. Corona discharge beam thermotherapy system
DE19513338A1 (de) * 1995-04-12 1996-10-17 Erbe Elektromedizin Einrichtung zur Argon-Plasma-Koagulation
US6194036B1 (en) * 1997-10-20 2001-02-27 The Regents Of The University Of California Deposition of coatings using an atmospheric pressure plasma jet
US6262523B1 (en) * 1999-04-21 2001-07-17 The Regents Of The University Of California Large area atmospheric-pressure plasma jet
US20020122896A1 (en) * 2001-03-02 2002-09-05 Skion Corporation Capillary discharge plasma apparatus and method for surface treatment using the same
DE10140298B4 (de) * 2001-08-16 2005-02-24 Mtu Aero Engines Gmbh Verfahren zum Plasmaschweißen
DE50208353D1 (de) * 2001-08-28 2006-11-16 Jeng-Ming Wu Plasmabrenner mit mikrowellenanregung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1222243A (en) * 1967-07-05 1971-02-10 Kearns Tribune Corp Generating plasma
US5837958A (en) * 1995-09-01 1998-11-17 Agrodyn Hochspannungstechnik Gmbh Methods and apparatus for treating the surface of a workpiece by plasma discharge
US6565558B1 (en) * 1998-09-01 2003-05-20 Heinz Lindenmeier High-frequency device for generating a plasma arc for the treatment of biological tissue
US6958063B1 (en) * 1999-04-22 2005-10-25 Soring Gmbh Medizintechnik Plasma generator for radio frequency surgery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472382B2 (en) 2007-04-23 2016-10-18 Plasmology4, Inc. Cold plasma annular array methods and apparatus
US9521736B2 (en) 2007-04-23 2016-12-13 Plasmology4, Inc. Cold plasma electroporation of medication and associated methods
US10039927B2 (en) 2007-04-23 2018-08-07 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US9861829B2 (en) 2007-04-23 2018-01-09 Plasmology4, Inc. Cold plasma electroporation of medication and associated methods
US9006976B2 (en) 2007-04-23 2015-04-14 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US9192776B2 (en) 2007-04-23 2015-11-24 Plasmology4, Inc. Harmonic cold plasma devices and associated methods
US9236227B2 (en) 2007-04-23 2016-01-12 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US9656095B2 (en) 2007-04-23 2017-05-23 Plasmology4, Inc. Harmonic cold plasma devices and associated methods
US9257264B2 (en) 2007-04-23 2016-02-09 Plasmology4, Inc. Harmonic cold plasma devices and associated methods
US9646808B2 (en) 2007-04-23 2017-05-09 Plasmology4, Inc. Cold plasma annular array methods and apparatus
US9384947B2 (en) 2007-04-23 2016-07-05 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US9418820B2 (en) 2007-04-23 2016-08-16 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US9570273B2 (en) 2007-04-23 2017-02-14 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US10064263B2 (en) 2007-04-23 2018-08-28 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US9558918B2 (en) 2007-04-23 2017-01-31 Plasmology4, Inc. Cold plasma treatment devices and associated methods
RU2473318C2 (ru) * 2010-03-23 2013-01-27 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Устройство плазменной коагуляции тканей
CN102307426A (zh) * 2011-06-24 2012-01-04 北京大学 一种等离子体发生装置
WO2013040454A1 (en) * 2011-09-15 2013-03-21 Cold Plasma Medical Technologies, Inc. Cold plasma treatment devices and associated methods
DE102011087159B3 (de) * 2011-11-25 2013-03-28 Mtu Aero Engines Gmbh Haftgrundvorbereitung für das Kaltgasspritzen und Kaltgasspritzvorrichtung
US9295280B2 (en) 2012-12-11 2016-03-29 Plasmology4, Inc. Method and apparatus for cold plasma food contact surface sanitation
DE102014213967A1 (de) * 2014-07-17 2016-01-21 NorthCo Ventures GmbH & Co. KG Vorrichtung zur Hydophilierung von Zahnimplantaten
US10194672B2 (en) 2015-10-23 2019-02-05 NanoGuard Technologies, LLC Reactive gas, reactive gas generation system and product treatment using reactive gas
US11000045B2 (en) 2015-10-23 2021-05-11 NanoGuard Technologies, LLC Reactive gas, reactive gas generation system and product treatment using reactive gas
US11882844B2 (en) 2015-10-23 2024-01-30 NanoGuard Technologies, LLC Reactive gas, reactive gas generation system and product treatment using reactive gas
US10925144B2 (en) 2019-06-14 2021-02-16 NanoGuard Technologies, LLC Electrode assembly, dielectric barrier discharge system and use thereof
US11896731B2 (en) 2020-04-03 2024-02-13 NanoGuard Technologies, LLC Methods of disarming viruses using reactive gas
WO2021252816A1 (en) * 2020-06-08 2021-12-16 Chiscan Holdings, Llc Apparatus and methods for deactivating microorganisms with non-thermal plasma

Also Published As

Publication number Publication date
PT2016809E (pt) 2015-10-14
ES2548096T3 (es) 2015-10-13
EP2016809A2 (de) 2009-01-21
EP2016809B1 (de) 2015-07-01
PL2016809T3 (pl) 2015-12-31
DE102006019664A1 (de) 2007-10-31
WO2007124910A3 (de) 2009-03-26
DE102006019664B4 (de) 2017-01-05

Similar Documents

Publication Publication Date Title
EP2016809B1 (de) Kaltplasma-handgerät zur plasma-behandlung von oberflächen
EP2462785B1 (de) Vorrichtung zur erzeugung eines nichtthermischen atmosphärendruck-plasmas
EP1109503B1 (de) Hochfrequenzeinrichtung zur erzeugung eines plasmabogens für die behandlung biologischen gewebes
DE69926356T2 (de) Das verfahren zur erzeugung einer physikalisch und chemisch aktiven umgebung durch einen plasmastrahl und plasmastrahl dazu
EP1053660B1 (de) Vorrichtung zur erzeugung eines freien kalten nicht-thermischen plasmastrahles
EP1994807B1 (de) Vorrichtung zur erzeugung eines plasma-jets
EP1415321B1 (de) Vorrichtung zum beschichten von gegenständen
EP0740926A2 (de) Elektrochirurgische Vorrichtung zur Erzeugung eines Lichtbogens
DE102009028190A1 (de) Vorrichtung zur Erzeugung eines nichtthermischen Atmosphärendruck-Plasmas
WO2001032949A1 (de) Verfahren und vorrichtung zur plasmabeschichtung von oberflächen
EP2269425A1 (de) Vorrichtung zur erzeugung eines atmosphärendruck-plasmas
EP2130414B1 (de) Vorrichtung und verfahren zur erzeugung eines plasmastrahls
DE602004007126T2 (de) Vorrichtung und verfahren zur bildung eines plasmas
DE102004029081A1 (de) Vorrichtung zur Bearbeitung eines Substrates mittels mindestens eines Plasma-Jets
EP1872637A1 (de) Vorrichtung und verfahren zur plasmabeschichtung
DE102020100872B4 (de) Resonator und Leistungsoszillator zum Aufbau einer integrierten Plasmaquelle sowie deren Verwendung
DE102012004034A1 (de) HF-Plasma-Zündkopf, -Strahlerkopf und -Strahler insbesondere zum Zünden und Betreiben eines Plasmas im MHz- und GHz-Bereich
EP3747241A1 (de) Atmosphärenplasmajet mit geradem kanülenrohr
EP2142679B1 (de) VERFAHREN ZUR PLASMAGESTÜTZTEN OBERFLÄCHENBEHANDLUNG GROßVOLUMIGER BAUTEILE
DE102013106315B4 (de) Verfahren und Vorrichtung zum Erzeugen eines physikalischen Plasmas
DE10320805A1 (de) Vorrichtung zur Bearbeitung von zylindrischen, zumindest eine elektrisch leitende Ader aufweisenden Substraten
EP2127503B1 (de) Vorrichtung und ein verfahren zur plasmagestützten beschichtung und oberflächenbehandlung grossvolumiger bauteile
DE102006033823A1 (de) Vorrichtung und Verfahren zur plasmagestützten Erzeugung von UV-Strahlung zur UV-Bestrahlung und Behandlung großvolumiger komplexer Bauteile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07724599

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007724599

Country of ref document: EP