WO2007122848A1 - レンズ駆動装置、光ピックアップ装置、及び取付調整方法 - Google Patents

レンズ駆動装置、光ピックアップ装置、及び取付調整方法 Download PDF

Info

Publication number
WO2007122848A1
WO2007122848A1 PCT/JP2007/053056 JP2007053056W WO2007122848A1 WO 2007122848 A1 WO2007122848 A1 WO 2007122848A1 JP 2007053056 W JP2007053056 W JP 2007053056W WO 2007122848 A1 WO2007122848 A1 WO 2007122848A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
driving device
lens driving
collimating lens
optical axis
Prior art date
Application number
PCT/JP2007/053056
Other languages
English (en)
French (fr)
Inventor
Toshiya Matozaki
Nobuo Takeshita
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to EP07714559A priority Critical patent/EP2001016B1/en
Priority to CN2007800084880A priority patent/CN101401156B/zh
Priority to JP2008511982A priority patent/JP4329878B2/ja
Priority to US12/224,309 priority patent/US7679846B2/en
Publication of WO2007122848A1 publication Critical patent/WO2007122848A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/082Aligning the head or the light source relative to the record carrier otherwise than during transducing, e.g. adjusting tilt set screw during assembly of head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly

Definitions

  • the present invention relates to a lens driving device used in an optical pickup device for recording or reproducing information with respect to an optical medium such as an optical disk, and the optical pickup device.
  • the present invention also relates to an attachment adjustment method when attaching the lens driving device to the optical pickup device.
  • a transparent transmissive layer is provided on a data recording surface in order to protect the data recording surface.
  • the collimating lens is moved by the lens driving means to correct the convergent divergence angle of the light beam incident on the objective lens. May be used.
  • a method of correcting the convergence and divergence angle of the light beam incident on the objective lens by moving the beam expander lens by the lens driving means may be used.
  • a lens moving part is fitted into two guide shafts positioned in the casing of the optical pickup device, and the stepping is also positioned in the casing of the optical pickup device.
  • a configuration that obtains motor force movement control (Patent Document 1) is widely used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-100481 (FIGS. 1 to 3)
  • the sensitivity of the optical pickup system is affected as an offset amount of the sensor signal.
  • the present invention has been made to solve the above-described problems, and provides a lens driving device and an optical pickup device having a structure that can be miniaturized.
  • a lens driving device includes:
  • a collimating lens that engages with the mounting base and is movable in the optical axis direction;
  • the mounting base has a support part capable of adjusting a pitch angle and a roll angle at the time of mounting with respect to the optical axis with respect to a mounting member to which the apparatus is mounted.
  • the present invention is configured as described above, it is possible to reduce the size of the lens driving device.
  • FIG. 1 is a cross-sectional view showing an optical pickup device according to a first embodiment.
  • FIG. 2 is a bottom view showing the optical pickup device of the first embodiment.
  • FIG. 3 is a perspective view showing the lens driving device of the first embodiment.
  • FIG. 4 is another perspective view showing the lens driving device of the first embodiment.
  • FIG. 5 is a diagram for explaining the influence of straightness of a collimating lens.
  • FIG. 6 is a diagram for explaining the influence of straightness of a collimating lens.
  • FIG. 7 is a diagram for explaining the influence of straightness of a collimating lens.
  • FIG. 8 is a cross-sectional view showing the optical pickup device in the first embodiment.
  • FIG. 9 is a bottom view showing the optical pickup device of the first embodiment.
  • FIG. 10 is a diagram for explaining a method for adjusting the collimating lens of the first embodiment.
  • FIG. 11 is a perspective view showing a lens driving device of Embodiment 2.
  • the lens driving device according to the first embodiment is characterized in that the mounting angle can be adjusted with respect to the optical pickup device.
  • FIG. 1 is a cross-sectional view showing an optical pickup device equipped with a lens driving device according to Embodiment 1 of the present invention. As will be described later, this lens driving device has a function of correcting spherical aberration caused by the difference in the transmission layer. Each component of the optical pickup device will be described with reference to FIG.
  • the base 1 includes a semiconductor laser 2, a diffraction grating 3, a dichroic prism 4, and a polarizing prism.
  • the emitted light from the semiconductor laser 2 remains a divergent light beam.
  • the collimating lens 6 is attached to the movable holder 7 and has a structure that can move along the guide shaft 8 in the optical axis direction.
  • the collimating lens 6, the movable holder 7, and the guide shaft 8 are attached to the mounting base 16 together with the motor that is the driving source, and are fixedly adjusted to the base 1.
  • the transmitted light of the collimating lens 6 becomes a parallel light flux.
  • the collimating lens 6 is moved away from the light emitting point along the guide shaft 8, it becomes a convergent light beam, and when it approaches the light emitting point, it becomes a divergent light beam.
  • the light converted into a parallel light beam by the collimator lens 6 is bent at a right angle by the reflection mirror 9, passes through the polarizing plate 10, enters the objective lens 11, and is collected on the optical disk.
  • the objective lens 11 is mounted on the lens holder 12. Further, the lens holder 12 is provided with a driving coil 13 and is supported by a plurality of wires having a power feeding function to the coil and a suspension function for supporting the lens holder. Then, by controlling the electric current flow through the drive coil 13, focusing control and tracking control of the objective lens 11 with respect to the data recording surface on the optical disk are performed by the acting force with the magnetic field of the magnets 14a and 14b.
  • the actuator base 15 is equipped with a set of electromagnetic driving devices for driving the objective lens 11 in the focusing direction and tracking direction, and the objective lens actuator is configured and attached to the base 1.
  • FIG. 2 is a bottom view of FIG. 1 showing the optical pickup device.
  • the light beam emitted from the semiconductor laser 2 passes through the diffraction grating 3, the dichroic prism 4, and the polarization prism 5, and then is converted into a parallel light beam by the collimator lens 6 and is bent by the reflection mirror 9. It enters the objective lens and is focused on the optical disk.
  • the light reflected and returned by the optical disk passes through the objective lens 11, becomes a parallel light beam again, and returns from the reflecting mirror 9 to the collimating lens 6. Then, the light is again converged by the collimating lens 6, bent by the polarizing prism 5, passes through the cylindrical lens 24, and then enters the photodetector 25. From the light received by the optical detector 25, the control signal and the reproduction signal for focusing and tracking of the objective lens actuator are obtained.
  • FIG. 3 is a perspective view illustrating the configuration of the lens driving device.
  • this lens driving device has a function as a spherical aberration correction device that corrects spherical aberration generated in the transmission layer of the optical disc.
  • a guide shaft 8 is provided in a cantilever manner on a mounting base 16 formed by resin molding.
  • the lens holder 7 is inserted so as to be able to slide in the axial direction along the guide shaft 8 with high accuracy.
  • a collimator lens 6 is mounted on the lens holder 7 and is fitted and inserted into a detent guide 16a and a screw 19 provided in a stepping motor 18 as a drive source.
  • the non-rotating guide 16a is formed integrally with the mounting base 16 and is substantially parallel to the guide shaft 8. Then, when the screw 19 rotates, the driving force is transmitted to the lens holder 7, and the lens holder 7 and the collimating lens 6 can be moved in parallel.
  • this lens driving device is attached to the base 1 of the optical pickup device by a spring 20 and screws 21 and 22. Further, an eccentric pin is inserted into the adjustment groove 16b as will be described later.
  • a plate panel as shown in the figure is used as the spring 20.
  • FIG. 4 is a view showing the opposite side force of the perspective view of FIG.
  • a spherical seat 16c is formed on the opposite side of the mounting base 16 shown in FIG.
  • the spherical seat 16c is aligned with the hole or recess of the base 1 of the optical pickup device, and the lens driving device is attached to the optical pickup device with the spring 20 and the screws 21 and 22.
  • the lens driving device has a structure in which the mounting angle of the pitch angle and the roll angle can be adjusted with respect to the light of the condensing system in the optical pickup device.
  • the load point by the spring 20 and the position of the screw 22 are arranged on both sides opposite to the spherical seat 16c, and the pitch angle is adjusted by adjusting the height of the screw 22.
  • the roll angle is adjusted by inserting an eccentric pin into the adjustment groove 16b and rotating the lens driving device about the spherical seat 16c.
  • the spherical seat 16c serves as a support portion of the lens driving device for the optical pickup device.
  • FIG. 5 shows a case where the principal point of the collimating lens 6 is at the center position of the optical axis and serves as a reference.
  • a divergent light beam 202 is emitted from the light emitting point 201 of the semiconductor laser, and the collimating lens 6 is disposed at the position of XO where the light emitting point 201 is the focal position.
  • the light converted into the parallel light beam 203 by the collimating lens 6 is focused by the objective lens 11 located in the parallel light beam, passes through the transmission layer 100 of the optical disk, and is collected on the data recording surface 204.
  • the light beam reflected by the data recording surface 204 is bent at a right angle by a 45-degree inclined surface 205 which schematically represents an optical path bending mirror, and is condensed on the four-divided light detector 206.
  • the light detection surface of the quadrant photodetector 206 is divided into regions A, B, C, and D as shown in the figure. At the reference position of the collimating lens shown in FIG. ) And (area B + area D) are adjusted and fixed at positions where the amount of incident light is equal.
  • a cylindrical lens is disposed in front of the quadrant photodetector 206. This cylindrical lens has a function of generating astigmatism corresponding to the defocus amount between the objective lens 11 and the data recording surface 204.
  • astigmatism occurs due to the cylindrical lens! / Sounds, the shape of the focused spot deforms in the AC direction or BD direction on the quadrant detector 206. Therefore, the quadrant detector 206 detects the defocus amount between the objective lens 11 and the data recording surface 204 from the light amount difference (A + C) ⁇ (B + D).
  • the optical pickup device is an actuator that drives the objective lens 11 so that the detection signal corresponding to the light amount difference (A + C)-(B + D) output from the quadrant detector 206 becomes zero. By performing feedback, the focusing control of the objective lens 11 is performed.
  • the collimating lens 6 is moved in the direction approaching the optical disc 100 with the reference position XO force also in the position.
  • the distance of the transmission layer of the optical disc 100 in FIG. 6 is shorter than that in FIG. 5 and the data recording surface 204a is close to the collimating lens 6. Therefore, the optical pickup device moves the collimating lens 6 in the direction of the optical disc in order to correct the spherical aberration caused by the difference in the transmission layer distance.
  • the convergent light beam 203a enters the objective lens 11 and is condensed on the data recording surface 204a.
  • the principal point of the lens is the reference line.
  • the reflected light beam from the optical disc 100 enters the reflecting surface 205 at an angle. Accordingly, the position of the focused spot on the quadrant photodetector 206 moves.
  • the focusing control of the objective lens 11 is performed so that the detection signal corresponding to the light amount difference (A + C) ⁇ (B + D) output from the quadrant detector 206 becomes zero.
  • the Lf is controlled to stand on the data recording surface 204a of the optical disc 100. Therefore, the objective lens 11 cannot be controlled to the correct in-focus position due to the focus spot offset generated due to the above-described factors.
  • the collimating lens 6 is moved in the direction opposite to the optical disk.
  • the collimating lens 6 is moved from the reference position XO to the position Xb in the direction of moving away from the optical disc 100.
  • the distance of the transmission layer of the optical disc 100 in FIG. 7 is longer than that in FIG. 5 and the data recording surface 204b is far from the collimating lens 6. Therefore, the optical pickup device moves the collimating lens 6 in the direction opposite to the optical disc in order to correct the spherical aberration generated by the difference in the transmission layer distance.
  • the convergent light beam 203b enters the objective lens 11 and is collected on the data recording surface 204b.
  • the collimating lens 6 when the collimating lens 6 is moved, as shown in FIG. 7, when the principal point of the lens moves out of the reference line, the reflected light beam from the optical disc 100 has an angle on the reflecting surface 205. Incident. Accordingly, the position of the focused spot on the quadrant photodetector 206 moves.
  • the objective lens 11 cannot be controlled to the positive LV and in-focus position by the offset of the focused spot! /.
  • the lens driving device has a structure in which the pitch angle and the roll angle can be adjusted with respect to the optical axis when attached to the optical pickup device.
  • the pitch angle and the roll angle can be adjusted with respect to the optical axis when attached to the optical pickup device.
  • FIG. 8 is a cross-sectional view of the optical pickup device for explaining the optical system of the optical pickup device.
  • the laser beam emitted from the semiconductor laser 2 provided on the base 1 is The scattered light beam 202 is converted into a parallel light beam 203 by the collimating lens 6.
  • the collimating lens 6 is attached to the base 1 with the spherical seat 16c of the mounting base. When the lens driving device is mounted, the position of the collimating lens 6 is adjusted so that the center of the spherical seat 16c coincides with the principal point of the collimating lens 6.
  • the position of the collimating lens 6 is set such that a plane perpendicular to the optical axis passes through the center of the spherical seat 16c and the principal point of the collimating lens 6. Accordingly, the principal point of the collimating lens 6, that is, the optical axis and the surface including the spherical seat 16c are substantially perpendicular to the mounting surface of the optical pick-up device.
  • the lens driving device can adjust the pitch angle corresponding to the direction 303 parallel to FIG. 8 with the principal point of the collimating lens 6 as the center.
  • the pitch angle is adjusted by adjusting the height of the screw 22.
  • the parallel light beam 203 from the collimating lens 6 is emitted from the hole la of the base 1 opened in the light traveling direction, and can be observed.
  • FIG. 9 is a bottom view of FIG. 8 showing the optical pickup device.
  • the lens driving device can adjust the roll angle corresponding to the direction 304 parallel to FIG. 9 with the principal point of the collimating lens 6 as the center.
  • the adjustment of the roll angle 304 is performed by adjusting the rotation of the eccentric pin inserted in the adjustment groove 16b.
  • FIG. 10 is a diagram for explaining a method for adjusting the straightness of the collimating lens.
  • the light converted into the parallel light beam 203 by the collimator lens 6 passes through the hole lb of the base 1 and enters the autocollimator 400.
  • the autocollimator 400 monitors the incident angle of the parallel light beam 203.
  • the parallel light beam 203 incident on the autocollimator 400 is converged by the collimator lens 401, bent by the prism 402, and then guided to a two-dimensional photodetector 403 such as a CCD.
  • the monitor 404 can observe the incident angle of the light beam with respect to the reference position by obtaining the output from the two-dimensional light detector 403.
  • the procedure for adjusting the straightness of the collimating lens is as follows. First, the optical axis connecting the light emitting point of the semiconductor laser 2 and the principal point of the collimating lens 6 and the standard of the autocollimator 400 are matched. As a result, the observation point of light on the monitor 404 is viewed as the initial position 405. Can do. Next, the collimating lens 6 is moved to the front side of the movable stroke. This is the same as operating in the direction approaching the optical disc during actual playback and recording operations.
  • the optical axis defined in the initial stage does not fluctuate, so the parallel bundle 203 from the base 1 does not change and the initial position 405 on the monitor 404 As observed.
  • the autocollimator 400 is used, and the pitch angle of the lens driving device is eliminated so that the incident angle fluctuation of the parallel light beam 203 observed by the monitor 404 is eliminated. And adjust the roll angle!
  • the collimating lens 6 of the lens driving device is set so that the surface perpendicular to the optical axis passes through the center of the spherical seat 16c and the principal point of the collimating lens 6, Using the center as the fulcrum for base 1, adjust the pitch angle and roll angle with respect to the optical axis.
  • the collimating lens 6 is moved in the light traveling direction, and the angle is adjusted in the same manner with the center of the spherical seat 16c as a fulcrum with respect to the base 1. Further, after the collimating lens 6 is moved in the direction opposite to the light traveling direction, the angle is adjusted.
  • the straightness of the lens driving device can be ensured with high accuracy. This eliminates the need for measures such as increasing the bearing length of the holder that holds the collimating lens and increasing the span and length of the guide shaft of the holder, as in conventional lens driving devices. It can be downsized.
  • the lens driving device and the optical pickup device have a structure that is smaller than the conventional one and a highly accurate collimating lens by a simpler method than the conventional one. Straightness can be obtained.
  • the Blu-ray disc method an objective lens having a light wavelength of about 400 nm and an aperture ratio of about 0.85 is generally used.
  • an objective lens having a wavelength of about 650 nm and an aperture ratio of about 0.6 is often used.
  • the Blu-ray Disc system has a transmission layer thickness of about 0.1 mm, which is much thinner than the DVD system, which is about 0.6 to 1.2 mm thick. Therefore, when the lens driving device according to the present embodiment is applied to the Blu-ray Disc system, the effect is very large.
  • the force provided with the hole 1a opened in the casing of the base 1 in the light traveling direction is not limited to this position. Any location that can be observed. That is, the light after passing through the collimating lens may be observed after being reflected by a mirror or the like.
  • FIG. 11 is a perspective view for explaining the lens driving device according to the second embodiment, which corresponds to FIG. 4 of the first embodiment.
  • the lens driving device according to the present embodiment lies in that a cylindrical projection 500 is formed on the mounting base 16.
  • a concave portion formed in a spherical shape is provided in a portion of the base 1 of the optical pickup facing the protrusion 500.
  • the center of this spherical recess coincides with the central optical axis of the collimating lens.
  • the cylindrical protrusion 500 is fitted to the recess formed by the spherical surface of the base 1, and attached with the spring 20 and the screws 21 and 22. Since the specific adjustment procedure after this is the same as that of the first embodiment, it will be omitted.
  • the combination of the indentation formed of the spherical surface whose center coincides with the center optical axis of the collimator lens on the base side of the optical pickup and the cylindrical protrusion of the collimator driving device can also be implemented.
  • the same adjustment as in Form 1 is possible.
  • the structure in which the spherical base and the cylindrical protrusion are provided on the mounting base has been described.
  • the present invention is not limited to this shape.
  • the lens driving device may have a prismatic shape, a conical shape, a triangular pyramid shape, or the like as long as the pitch angle and roll angle can be adjusted with respect to the optical axis.
  • the spherical seat and the cylindrical protrusion are formed integrally with the mounting base has been described, separate parts may be used.
  • the adjustment position of the lens driving device is the three positions of the reference position, the movable stroke front side, and the movable stroke rear side, V may be shifted or two locations.
  • the lens drive device may be attached to the optical pickup device after the lens drive device is attached to another member, or the lens drive device may be attached to the optical pickup device after the separate member is attached.
  • adjustment groove 16b has a groove shape, it may be an oval hole as long as it has two surfaces substantially parallel to the optical axis.
  • the spring 20 may be a string panel having a force elastic function as a plate panel, or may be an elastic body such as rubber.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Lens Barrels (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

課題   本発明は、小型化が可能で、真直度を抑制可能なレンズ駆動装置に関わる。 解決手段 本発明に係るレンズ駆動装置は、取付ベースと、前記取付ベースと係合し、光軸方向に移動可能なコリメートレンズと、前記コリメートレンズを前記光軸方向に移動させる駆動源とを備え、前記取付ベースは、自装置が取り付けられる取付部材に対し、前記光軸に対する取り付け時のピッチ角度、ロール角度が調整可能な支持部を有することとした。

Description

明 細 書
レンズ駆動装置、光ピックアップ装置、及び取付調整方法
技術分野
[0001] この発明は、光ディスク等の光学式媒体に対して情報の記録または再生を行うため の光ピックアップ装置に用いられるレンズ駆動装置、及びこの光ピックアップ装置に 関するものである。また、レンズ駆動装置を光ピックアップ装置に取り付ける際の取付 調整方法に関するものである。
背景技術
[0002] 一般に、光学式媒体では、データ記録面を保護するために、データ記録面上に透 明な透過層が設けられている。この透過層の厚みの差で生じる球面収差を補正する ために、従来の光ピックアップ装置では、レンズ駆動手段によりコリメートレンズを移 動して、対物レンズに入射する光束の収束発散角を補正する方法が用いられる場合 がある。また、レンズ駆動手段によりビームエキスパンダレンズを移動して、対物レン ズに入射する光束の収束発散角を補正する方法が用いられる場合もある。
[0003] ここで、レンズ駆動手段の構成としては、光ピックアップ装置の筐体に位置決めされ た 2本のガイドシャフトにレンズ可動部を揷嵌し、同じく光ピックアップ装置の筐体に 位置決めされたステッピングモータ力 移動制御を得る構成 (特許文献 1)が多く利用 されている。
[0004] 特許文献 1 :特開 2005— 100481号公報 (図 1〜図 3)
発明の開示
発明が解決しょうとする課題
[0005] ところで、上述のような、コリメートレンズを駆動させる方式を集光光学系に採用した 光ピックアップ装置では、コリメートレンズの真直度が大きいと、このコリメートレンズが 移動する際に、センサ光学系の光検知器上でスポットの移動が発生する場合がある 。このような場合、センサ信号のオフセット量として、光ピックアップシステムのプレャ ピリティに影響を及ぼす。
[0006] そこで、従来の光ピックアップ装置では、コリメートレンズの真直度を抑制するため に、コリメートレンズの焦点距離を大きくする、コリメートレンズを保持するホルダの軸 受け長さを大きくする、ホルダのガイド軸のスパンと長さを大きくする等の対策により、 真直度の機械的精度を得ていた。したがって、これらの対策では、コリメートレンズの 保持部や支持部の構造が大きくなる。一方、装置の小型化の要請に応えるベぐ単 純に、ホルダのガイド軸のスパンや長さを縮小したり、コリメートレンズの焦点距離を 短くすると、センサ信号のオフセット量が大きくなる問題が生じる。
[0007] この発明は、上述のような課題を解消するためになされたもので、小型化可能な構 造を有するレンズ駆動装置、及び光ピックアップ装置を提供するものである。
課題を解決するための手段
[0008] この発明に係わるレンズ駆動装置は、
取付ベースと、
前記取付ベースと係合し、光軸方向に移動可能なコリメートレンズと、
前記コリメートレンズを前記光軸方向に移動させる駆動源と
を備え、
前記取付ベースは、自装置が取り付けられる取付部材に対し、前記光軸に対する 取り付け時のピッチ角度、ロール角度が調整可能な支持部を有すること
としたものである。
発明の効果
[0009] 本発明は、上述のような構成としたので、レンズ駆動装置の小型化が可能となる。
図面の簡単な説明
[0010] [図 1]実施の形態 1の光ピックアップ装置を示す断面図である。
[図 2]実施の形態 1の光ピックアップ装置を示す下視図である。
[図 3]実施の形態 1のレンズ駆動装置を示す斜視図である。
[図 4]実施の形態 1のレンズ駆動装置を示す他の斜視図である。
[図 5]コリメートレンズの真直度の影響を説明する図である。
[図 6]コリメートレンズの真直度の影響を説明する図である。
[図 7]コリメートレンズの真直度の影響を説明する図である。
[図 8]実施の形態 1の光ピックアップ装置を示す断面図である。 [図 9]実施の形態 1の光ピックアップ装置を示す下視図である。
[図 10]実施の形態 1のコリメートレンズの調整方法を説明する図である。
[図 11]実施の形態 2のレンズ駆動装置を示す斜視図である。
符号の説明
[0011] 1 ベース、 la ベース穴部、 2 半導体レーザ、 3 回折格子、
4 ダイクロイツクプリズム、 5 偏光プリズム、 6 コリメートレンズ、
7 可動ホルダ、 8 ガイド軸、 9 反射ミラー、 10 偏光板、 11 対物レンズ、 12 レンズホルダ、 13 駆動用コイル、 14a、 14b マグネット、
15 了クチユエータベース、 16 取付ベース、 16a 回り止めガイド、
16b 調整溝、 16c 球面座、 18 ステッピングモータ、 19 スクリュウ、
20 スプリング、 21 ねじ、 22 ねじ、 24 シリンドリカルレンズ、
25 光検知器、 100 光ディスク、 201 発光点、 202 発散光束、
203 平行光束、 204 データ記録面、 205 傾斜面、
206 四分割光検知器、 302 光軸中心線、 303 垂直方向調整角、
304 水平方向調整角、 400 オートコリメータ、 401 コリメートレンズ、
402 プリズム、 403 光検出器、 404 モニタ、 500 突起。
発明を実施するための最良の形態
[0012] 実施の形態 1.
以下、図を用いて本発明の実施の形態 1によるレンズ駆動装置、及び光ピックアツ プ装置を説明する。本実施の形態 1に係るレンズ駆動装置は、光ピックアップ装置に 対して取り付け角度が調整可能な構造となっていることに特徴がある。
[0013] <レンズ駆動装置、及び光ピックアップ装置の構造 >
図 1は、本発明の実施の形態 1によるレンズ駆動装置を搭載した光ピックアップ装 置を示す断面図である。なお、このレンズ駆動装置は、後述するように、透過層の差 により発生する球面収差を補正する機能を有する。図 1を用いて、光ピックアップ装 置の各構成部を説明する。
[0014] ベース 1には、半導体レーザ 2、回折格子 3、ダイクロイツクプリズム 4、偏光プリズム
5が設けられている。半導体レーザ 2の出射光は、発散光束のままコリメートレンズ 6 に至り、平行光束に変換される。コリメートレンズ 6は、可動ホルダ 7に取り付けられ、 ガイド軸 8に沿って光軸方向に移動可能な構造となっている。コリメートレンズ 6、可動 ホルダ 7、およびガイド軸 8は駆動源であるモータとともに取付ベース 16に取り付けら れ、ベース 1に調整固定されている。
[0015] なお、コリメートレンズ 6の焦点と半導体レーザ 2の発光点が一致したとき、コリメート レンズ 6の透過光は平行光束となる。コリメートレンズ 6がガイド軸 8に沿って発光点か ら遠ざ力ると収束光束となり、発光点に近づくと発散光束となる。
[0016] コリメートレンズ 6で平行光束に変換された光は、反射ミラー 9で直角に折り曲げら れ、偏光板 10を透過したのち、対物レンズ 11に入射し光ディスクに集光される。対物 レンズ 11は、レンズホルダ 12に搭載されている。さらに、レンズホルダ 12には駆動用 コイル 13が設けられ、コイルへの給電機能とレンズホルダを支えるサスペンション機 能を有した複数本のワイヤーで支持されている。そして、この駆動コイル 13に流す電 流量を制御することにより、マグネット 14a、 14bの磁界との作用力で、光ディスク上の データ記録面に対する対物レンズ 11のフォーカシング制御およびトラッキング制御を 行う。
[0017] ァクチユエータベース 15には、対物レンズ 11のフォーカシング方向およびトラツキ ング方向に駆動するための電磁駆動装置一式が搭載され、対物レンズァクチユエ一 タが構成され、ベース 1に取り付けられている。
[0018] 図 2は、光ピックアップ装置を示す図 1の下視図である。上述したように、半導体レ 一ザ 2からの出射光束は、回折格子 3、ダイクロイツクプリズム 4、偏光プリズム 5を透 過した後、コリメートレンズ 6で平行光束に変換され、反射ミラー 9で折り曲げられ対物 レンズに入射し光ディスク上に集光する。
[0019] 光ディスクにより反射され戻ってきた光は、対物レンズ 11を透過後、再び平行光束 となり、反射ミラー 9からコリメートレンズ 6に戻る。そして、コリメートレンズ 6で再び収 束光束となり、偏光プリズム 5で折り曲げられ、シリンドリカルレンズ 24を透過したのち 、光検知器 25に入射する。光検知器 25で受光した光から、対物レンズァクチユエ一 タのフォーカシングとトラッキングの制御信号と再生信号が得られる。
[0020] 次に、図 3、及び図 4を用いて、光ピックアップ装置に搭載するレンズ駆動装置の構 成を説明する。図 3は、レンズ駆動装置の構成を説明する斜視図である。なお、この レンズ駆動装置は、上述したように、光ディスクの透過層で発生する球面収差を補正 する球面収差補正装置としての機能を有する。
[0021] このレンズ駆動装置には、榭脂成形による取付ベース 16に、ガイド軸 8が片持ち支 持で設けられている。そして、レンズホルダ 7は、ガイド軸 8に沿って軸方向に精度よく 摺動できるように挿入されて 、る。
[0022] レンズホルダ 7にはコリメートレンズ 6が搭載され、回り止めガイド 16aと、駆動源であ るステッピングモータ 18に設けられたスクリュウ 19とに勘合挿入されている。回り止め ガイド 16aは、取付ベース 16に一体成形で構成されており、ガイド軸 8と略平行であ る。そして、スクリュウ 19が回転することにより、レンズホルダ 7に駆動力が伝わり、レン ズホルダ 7およびコリメートレンズ 6を平行に移動させることができる。
[0023] なお、このレンズ駆動装置は、スプリング 20と、ねじ 21、 22により光ピックアップ装 置のベース 1に取り付けられる。さらに、調整溝 16bには後述するように、偏心ピンが 挿入される。なお、本実施の形態では、スプリング 20として図に示すような板パネを 用いた。
[0024] 図 4は、図 3の斜視図を反対側力も示した図である。図 4に示すように、図 3で示した 取付ベース 16の反対側には、球面座 16cが成形されている。この球面座 16cを、光 ピックアップ装置のベース 1の穴、あるいは凹部に対して位置合せを行い、スプリング 20と、ねじ 21、 22で光ピックアップ装置にレンズ駆動装置を取り付ける。
[0025] 後述するように、レンズ駆動装置は、光ピックアップ装置内の集光系の光に対して、 ピッチ角度とロール角度の取り付け角度が調整可能な構造となって 、る。具体的に は、図に示すように、スプリング 20による加重点とねじ 22の位置を、球面座 16cを挟 んだ双方反対側に配置し、ねじ 22の高さ調整でピッチ角度を調整する。ロール角度 の調整は、調整溝 16bに偏心ピンを挿入し、球面座 16cを軸としてレンズ駆動装置を 回転させること〖こより行われる。
[0026] すなわち、球面座 16cは光ピックアップ装置に対するレンズ駆動装置の支持部とな る。
[0027] <コリメートレンズの真直度の影響 > 次に、コリメートレンズの真直度の影響について図 5から図 7を用いて説明する。図 5は、コリメートレンズ 6の主点が光軸中心位置にあり、基準となる場合を示している。
[0028] 図 5では、半導体レーザの発光点 201から発散光束 202が出射されており、コリメ 一トレンズ 6は、発光点 201が焦点位置となる XOの位置に配置されている。このコリメ 一トレンズ 6により平行光束 203に変換された光は、その平行光束中に位置する対物 レンズ 11で絞られ、光ディスクの透過層 100を透過してデータ記録面 204上に集光 される。さらに、データ記録面 204で反射した光束は、光路折り曲げミラーを模式する 45度の傾斜面 205で直角に曲げられ、四分割光検知器 206上に集光される。
[0029] 四分割光検知器 206の光検出面は、図に示すように領域 A、 B、 C、 Dに分割され ており、図 5に示すコリメートレンズの基準位置において、(領域 A+領域 C)と (領域 B +領域 D)に入射する光量が等しくなる位置に調整固定されている。なお、図に記載 しないが、四分割光検知器 206の前には、シリンドリカルレンズが配置されている。こ のシリンドリカルレンズは、対物レンズ 11とデータ記録面 204とのデフォーカス量に相 当する非点収差を発生させる機能を有する。シリンドリカルレンズによる非点収差が 発生して!/ヽる場合、四分割検知器 206上で AC方向あるいは BD方向に集光スポット 形状が変形する。したがって、四分割検知器 206は、光量差 (A+C) - (B+D)から 、対物レンズ 11とデータ記録面 204とのデフォーカス量を検出する。
[0030] 光ピックアップ装置は、四分割検知器 206から出力される、光量差 (A+C) - (B + D)に対応する検出信号が 0になるように、対物レンズ 11を駆動するァクチユエータに フィードバックすることで、対物レンズ 11のフォーカシング制御を行う。
[0031] 次に、図 6を用いて、コリメートレンズ 6を光ディスク方向に移動させた場合について 説明する。図に示すように、コリメートレンズ 6は、基準位置 XO力も位置 に、光ディ スク 100に近づく方向に移動している。図 6における光ディスク 100の透過層の距離 は図 5の場合よりも短ぐデータ記録面 204aがコリメートレンズ 6に近い位置にある。 したがって、光ピックアップ装置は、透過層距離の差で発生する球面収差を補正する ために、コリメートレンズ 6を光ディスク方向に移動させる。これにより、収束光束 203a を対物レンズ 11に入射して、データ記録面 204a上に集光する。
[0032] ここで、コリメートレンズ 6を移動させる際、図 6に示すように、レンズの主点が基準線 からずれて移動すると、光ディスク 100からの反射光束は、反射面 205に角度をもつ て入射する。したがって、四分割光検知器 206上の集光スポットの位置が移動する。
[0033] 上述したように、対物レンズ 11のフォーカシング制御は、四分割検知器 206から出 力される、光量差 (A+C) - (B+D)に対応する検出信号が 0なるように、光ディスク 100のデータ記録面 204aに対 Lf立置制御されている。したがって、上記のような要 因で発生する集光スポットのオフセットにより、対物レンズ 11を正しい合焦位置に制 御することができない。
[0034] さらに、図 7を用いて、コリメートレンズ 6を光ディスクとは反対の方向に移動させた 場合について説明する。図に示すように、コリメートレンズ 6は、基準位置 XOから位置 Xbに、光ディスク 100から遠ざ力る方向に移動している。図 7における光ディスク 100 の透過層の距離は図 5の場合よりも長ぐデータ記録面 204bがコリメートレンズ 6に遠 い位置にある。したがって、光ピックアップ装置は、透過層距離の差で発生する球面 収差を補正するために、コリメートレンズ 6を光ディスクとは反対の方向に移動させる。 これにより、収束光束 203bを対物レンズ 11に入射して、データ記録面 204b上に集 光する。
[0035] ここで、コリメートレンズ 6を移動させる際、図 7に示すように、レンズの主点が基準線 からずれて移動すると、光ディスク 100からの反射光束は、反射面 205に角度をもつ て入射する。したがって、四分割光検知器 206上の集光スポットの位置が移動する。
[0036] その結果、図 6の場合と同様に、集光スポットのオフセットにより、対物レンズ 11を正 LV、合焦位置に制御することができな!/、。
[0037] そこで、本実施の形態に係るレンズ駆動装置は、光ピックアップ装置への取り付け 時に、光軸に対してピッチ角度、ロール角度の調整が可能な構造とした。これにより、 コリメートレンズ 6が移動しても、図 6、図 7で説明したような、光軸に対してずれを生じ る場合を抑制し、コリメートレンズの真直度を抑制するものである。
ここで図を用いて、レンズ駆動装置の光ピックアップ装置に対する取り付け方法、お よびレンズ駆動装置の真直度の調整方法を説明する。
[0038] 図 8は、光ピックアップ装置の光学系を説明するための光ピックアップ装置の断面 図である。図に示すように、ベース 1に設けられた半導体レーザ 2から出射された発 散光束 202は、コリメートレンズ 6で平行光束 203に変換される。コリメートレンズ 6は、 取付ベースの球面座 16cでベース 1に取り付けられる。このレンズ駆動装置の取り付 け時には、その球面座 16cの中心がコリメートレンズ 6の主点と一致するようにコリメ一 トレンズ 6の位置を調整しておく。すなわち、コリメートレンズ 6の位置を、光軸に対し て垂直な面が球面座 16cの中心とコリメートレンズ 6の主点を通る位置としておく。し たがって、コリメートレンズ 6の主点、即ち光軸と、球面座 16cを含む面は、光ピックァ ップ装置の取付面に対し略垂直となる。
[0039] コリメートレンズ 6を上述の位置とすることにより、レンズ駆動装置は、コリメートレンズ 6の主点を中心として、図 8に平行な方向 303に相当するピッチ角度の調整が可能と なる。ピッチ角度の調整は、ねじ 22の高さ調整により行われる。なお、図に示すように 、コリメートレンズ 6からの平行光束 203は、光の進行方向に開口したベース 1の穴部 laから射出し、観測することが可能となっている。
[0040] 図 9は、光ピックアップ装置を示す図 8の下視図である。コリメートレンズ 6を上述の 位置とすることにより、レンズ駆動装置はコリメートレンズ 6の主点を中心として、図 9に 平行な方向 304に相当するロール角度の調整が可能となる。ロール角度 304の調整 は、調整溝 16bに挿入された偏心ピンの回転調整により行われる。
[0041] 図 10は、コリメートレンズの真直度の調整方法を説明する図である。図において、コ リメータレンズ 6により平行光束 203に変換された光は、ベース 1の穴 lbを通過して、 オートコリメータ 400に入射される。このオートコリメータ 400は、平行光束 203の入射 角度をモニタする。
[0042] オートコリメータ 400の各構成部、及び機能を説明する。オートコリメータ 400に入 射された平行光束 203は、コリメートレンズ 401より収束され、プリズム 402で折り曲げ られた後、 CCD等の 2次元光検出器 403に導かれる。モニタ 404では、 2次元光検 出器 403からの出力を得ることにより、基準位置に対する光束の入射角度を観測す ることがでさる。
[0043] コリメートレンズの真直度の調整方法の手順は、以下の通りである。まず、半導体レ 一ザ 2の発光点とコリメートレンズ 6の主点とを結ぶ光軸と、オートコリメータ 400の基 準を合わせる。これにより、モニタ 404上の光の観測点は初期位置 405として見ること ができる。次に、コリメートレンズ 6を可動ストロークの前方側に移動させる。これは実 際の再生、記録動作時に、光ディスクに近づく方向に動作させること同じである。コリ メートレンズ 6を移動させた場合、レンズ駆動装置の真直度が 0ならば、初期に定めた 光軸が変動しないため、ベース 1からの平行束 203は、変化なくモニタ 404上の初期 位置 405として観測される。
[0044] しかし、真直度に変動がある場合は、平行光束 203の出射角度が変動するため、 オートコリメータ 400のモニタ 404上では、初期位置 405からずれた位置 406な!、し 位置 404など、変動方向に離れて観測される。なお、コリメートレンズ 6を可動ストロー クの後方に移動した場合も同様である。つまり、レンズ駆動装置の真直度が 0であれ ば初期位置 405として観測され、真直度に変動がある場合は、ずれが生じる。
[0045] したがって、レンズ駆動装置の真直度を調整するためには、オートコリメータ 400を 使用し、モニタ 404で観測される平行光束 203の入射角度の変動がなくなるように、 レンズ駆動装置のピッチ角度、及びロール角度の調整を行えばよ!、。
[0046] すなわち、まず第 1に、レンズ駆動装置のコリメートレンズ 6を光軸に対して垂直な面 が球面座 16cの中心とコリメートレンズ 6の主点を通る位置とした後、球面座 16cの中 心をベース 1に対する支点として、光軸に対するピッチ角度とロール角度の調整を行 う。次に、コリメートレンズ 6を光の進行方向に移動し、同じように、球面座 16cの中心 をベース 1に対する支点として、角度の調整を行う。さらに、コリメートレンズ 6を光の 進行方向とは逆の方向に移動した後、角度の調整を行う。
[0047] この調整方法により、レンズ駆動装置の真直度を高精度に確保することができる。し たがって、従来のレンズ駆動装置のような、コリメートレンズを保持するホルダの軸受 け長さを大きくする、ホルダのガイド軸のスパンと長さを大きくする等の対策が不要と なり、装置を小型化することができる。
[0048] 特に、透過層が薄 、光ディスクに対して再生、記録動作を行う場合や、高密度での 記録、再生動作を行う場合、高い精度のレンズ駆動装置の真直度が要求される。ま た、光の波長が短い場合、開口率が高い対物レンズを使用する場合も、同様に真直 度が要求される。本実施の形態に係るレンズ駆動装置、光ピックアップ装置は、従来 よりも小型化された構造で、かつ、従来よりも簡単な方法で、高精度なコリメートレンズ の真直度を得ることができる。
[0049] ブルーレイディスク方式では、光の波長が約 400nmであり、一般的に開口率が約 0 . 85の対物レンズを使用する。これに対し、 DVD方式では、約 650nmの波長の光 であり、開口率が約 0. 6の対物レンズが使用される場合が多い。さらに、ブルーレイ ディスク方式では、透過層の厚みが約 0. 1mm程度であり、 0. 6カゝら 1. 2mm程度の 厚みである DVD方式と比較しても非常に薄い。したがって、ブルーレイディスク方式 に本実施の形態に係るレンズ駆動装置を適用すると、効果が非常に大きい。
[0050] なお、本実施の形態では、光の進行方向にあるベース 1の筐体に開口された穴部 1 aを設けた力 この位置に限定されるものではなぐコリメートレンズ通過後の光を観測 できる位置ならどこでもよい。すなわち、コリメートレンズ通過後の光をミラー等で反射 したあとで観測してもよい。
[0051] 実施の形態 2.
図 11は、本実施の形態 2によるレンズ駆動装置を説明する斜視図で、実施の形態 1の図 4に相当するものである。図から明らかなように、本実施の形態に係るレンズ駆 動装置は、取付ベース 16に円筒状の突起部 500がー体成形されている点にある。
[0052] 光ピックアップのベース 1の、この突起部 500と対向する個所には、球面状で構成さ れた凹部を設ける。この球面状の凹部の中心は、コリメートレンズの中心光軸と一致 している。
[0053] そして、円筒状の突起 500を、ベース 1の球面で構成されたくぼみにあわせ、スプリ ング 20とねじ 21、 22で取り付ける。これ以降の具体的な調整手順は実施の形態 1と 同様であるので省略する。
[0054] 上記のように光ピックアップのベース側にコリメートレンズの中心光軸と中心が一致 する球面で構成されたくぼみと、コリメータ駆動装置の円筒状の突起を組み合わせる ことによつても、実施の形態 1と同様な調整が可能である。
[0055] なお、実施の形態 1、 2では取付ベースに球面座、円筒状の突起部を設ける構造に ついて説明したが、この形状に限られるものではない。レンズ駆動装置を光軸に対し てピッチ角度、ロール角度の調整が可能な構造であればよぐ例えば、角柱状、円錐 状、三角錐状等でもよい。 [0056] また、球面座、円筒状の突起部が取付ベースと一体的に形成される場合について 説明したが、別部品であってもよい。
[0057] また、レンズ駆動装置の調整位置を基準位置、可動ストローク前方側、可動ストロー ク後方側の 3箇所としたが、 V、ずれか 2箇所であってもよ 、。
[0058] さらに、レンズ駆動装置の取り付け部を光ピックアップ装置とした力 光ピックアップ 装置本体とは異なる別部材 (取付部材)であってもよ 、。レンズ駆動装置を別部材に 取り付けた後で光ピックアップ装置に取り付けてもよぐ光ピックアップ装置に別部材 を取り付けた後にレンズ駆動装置を取り付けてもよ 、。
[0059] さらに、調整溝 16bは溝形状としたが、光軸に略平行な二面を有していればよぐ例 えば小判状の穴であってもよ 、。
[0060] さらに、スプリング 20は板パネとした力 弾性機能を有して ヽればよぐ弦卷パネで もよぐまたゴム等の弾性体であってもよい。

Claims

請求の範囲
[1] 取付ベースと、
前記取付ベースと係合し、光軸方向に移動可能なコリメートレンズと、
前記コリメートレンズを前記光軸方向に移動させる駆動源と
を備え、
前記取付ベースは、自装置が取り付けられる取付部材に対し、前記光軸に対する 取り付け時のピッチ角度、ロール角度が調整可能な支持部を有すること
を特徴とするレンズ駆動装置。
[2] 前記支持部は、前記取付ベース上に設けられた突起部であること
を特徴とする請求項 1に記載のレンズ駆動装置。
[3] 前記支持部は、前記取付ベース上に設けられた球面座であること
を特徴とする請求項 1に記載のレンズ駆動装置。
[4] 前記支持部の中心と前記光軸とを含む面は、前記取付部材の取付面に対し略垂 直となること
を特徴とする請求項 1に記載のレンズ駆動装置。
[5] 前記レンズ駆動装置は、
前記取付部材と当接するパネと、前記光軸に関し前記パネと反対側に位置する、 前記取付部材に取り付けるねじが貫通する穴とを有し、
前記ねじの調整により、前記ピッチ角度の調整が可能なこと
を特徴とする請求項 1に記載のレンズ駆動装置。
[6] 前記レンズ駆動装置は、
偏心ピンと係合する係合部を有し、
前記偏心ピンの調整により、前記ロール角度の調整が可能なこと
を特徴とする請求項 1に記載のレンズ駆動装置。
[7] 請求項 1から 6の 、ずれ力 1項に記載のレンズ駆動装置が取り付けられる光ピックァ ップ装置であって、
筐体と、
前記筐体に設けられた、前記コリメートレンズを通過した光源からの光を観測可能 な開口部と
を備えることを特徴とする光ピックアップ装置。
[8] 前記開口部は、前記光軸の延長線上にあること
を特徴とする請求項 7に記載の光ピックアップ装置。
[9] 請求項 1に記載のレンズ駆動装置を、請求項 7に記載の光ピックアップ装置に取り 付ける取付調整方法であって、
(A)前記支持部の中心と、前記コリメートレンズとを含む面が前記光軸に対して垂 直な基準位置、
(B)前記コリメートレンズが光の進行方向に移動した位置、
(C)前記コリメートレンズが光の進行方向とは反対側に移動した位置、 のそれぞれにおいて、前記ピッチ角度、および Zまたは前記ロール角度の調整をお こなうこと
を特徴とする取付調整方法。
[10] 前記ピッチ角度、および Zまたは前記ロール角度の調整は、前記開口部から出射 される光をオートコリメータにより観測し行うこと
を特徴とする請求項 9に記載の取付調整方法。
PCT/JP2007/053056 2006-03-29 2007-02-20 レンズ駆動装置、光ピックアップ装置、及び取付調整方法 WO2007122848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07714559A EP2001016B1 (en) 2006-03-29 2007-02-20 Lens driving device, optical pickup device and adjusting method
CN2007800084880A CN101401156B (zh) 2006-03-29 2007-02-20 透镜驱动装置、光拾取装置及安装调整方法
JP2008511982A JP4329878B2 (ja) 2006-03-29 2007-02-20 レンズ駆動装置、光ピックアップ装置、及び取付調整方法
US12/224,309 US7679846B2 (en) 2006-03-29 2007-02-20 Lens driving device, optical pick up device and adjusting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-090561 2006-03-29
JP2006090561 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007122848A1 true WO2007122848A1 (ja) 2007-11-01

Family

ID=38624765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053056 WO2007122848A1 (ja) 2006-03-29 2007-02-20 レンズ駆動装置、光ピックアップ装置、及び取付調整方法

Country Status (5)

Country Link
US (1) US7679846B2 (ja)
EP (1) EP2001016B1 (ja)
JP (1) JP4329878B2 (ja)
CN (1) CN101401156B (ja)
WO (1) WO2007122848A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126536A1 (ja) * 2007-03-19 2008-10-23 Konica Minolta Opto, Inc. 光ピックアップ装置の製造方法及び光ピックアップ装置
JP2010134995A (ja) * 2008-12-04 2010-06-17 Sharp Corp 光ピックアップ装置のレンズ位置調整機構、光ピックアップ装置、光ディスク装置、及び光ピックアップ装置のレンズ位置調整方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076127A (ko) 2008-12-26 2010-07-06 삼성전자주식회사 광픽업 장치 및 그 제어 방법
CN103135192A (zh) * 2011-11-23 2013-06-05 鸿富锦精密工业(深圳)有限公司 镜头调整结构
US11471117B2 (en) * 2017-03-20 2022-10-18 Dentsply Sirona Inc. Multiposition collimation device and x-ray imaging systems
CN110460762A (zh) * 2019-09-17 2019-11-15 迈兴(厦门)电子有限公司 一种模具监视器可调景深装置及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175638A (ja) * 2000-12-06 2002-06-21 Matsushita Electric Ind Co Ltd 光ピックアップの光学系調整方法
JP2005100481A (ja) 2003-09-22 2005-04-14 Hitachi Ltd 光ディスク装置
JP2005235269A (ja) * 2004-02-18 2005-09-02 Tdk Corp レンズ用のアクチュエータ、光ヘッド、光記録再生装置、光再生装置、多層記録媒体用光記録再生装置及び多層記録媒体用光再生装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223953A (ja) 1983-06-03 1984-12-15 Matsushita Electric Ind Co Ltd 光ピツクアツプ
JPS61150158A (ja) * 1984-12-24 1986-07-08 Ricoh Co Ltd タ−ンテ−ブル面と光ピツクアツプ光軸との垂直度調整方法
JP2634852B2 (ja) * 1988-05-07 1997-07-30 シャープ株式会社 対物レンズ駆動装置の傾き調整機構
JPH02220228A (ja) * 1989-02-21 1990-09-03 Matsushita Graphic Commun Syst Inc 光学ヘッド
US5223970A (en) * 1989-03-16 1993-06-29 Asahi Kogaku Kogyo Kabushiki Kaisha Optical axis adjusting mechanism and method for optical information recording and reproducing device, and jig therefor
KR940010943B1 (ko) * 1990-08-29 1994-11-19 가부시키가이샤 도시바 광디스크장치
US5313334A (en) * 1991-07-29 1994-05-17 Sony Corporation Objective lens moving actuator
JPH07129966A (ja) * 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd マルチビーム光ヘッド
US5638169A (en) * 1994-12-21 1997-06-10 Hughes Electronics Method and apparatus for centering optical lens mount
JPH1070340A (ja) * 1996-08-26 1998-03-10 Sankyo Seiki Mfg Co Ltd 光走査装置
JPH10326421A (ja) * 1997-05-26 1998-12-08 Sony Corp 光学ピックアップ
CN1118798C (zh) * 1998-01-09 2003-08-20 索尼公司 光头,记录和/或复制方法,以及用来检测厚度的方法
JPH11259893A (ja) * 1998-01-09 1999-09-24 Sony Corp 光学ヘッド、記録及び/又は再生装置並びに記録及び/又は再生方法、並びに厚み検出方法
JP2000048374A (ja) * 1998-07-30 2000-02-18 Matsushita Electric Ind Co Ltd ディスク記録再生装置
JP3638465B2 (ja) * 1999-03-15 2005-04-13 株式会社日立国際電気 X線断層撮像装置及びそのステージ位置調整方法
US6932271B2 (en) * 2000-01-27 2005-08-23 Ricoh Company, Ltd. Optical scan module, optical scanner, optical scan method, image generator and image reader
JP3727826B2 (ja) * 2000-05-08 2005-12-21 アルパイン株式会社 光学式ピックアップ
US6968563B2 (en) * 2001-07-27 2005-11-22 Kabushiki Kaisha Toshiba Optical head
JP2003077140A (ja) * 2001-08-31 2003-03-14 Sony Corp 記録媒体駆動装置におけるガイド軸の傾き調整方法
JP2003091847A (ja) 2001-09-17 2003-03-28 Sony Corp 光学ヘッド装置の駆動方法及び装置及び光学式情報処理装置
JP3759046B2 (ja) * 2002-01-29 2006-03-22 ミツミ電機株式会社 光学ピックアップ装置用レンズホルダ
JP2004039144A (ja) * 2002-07-04 2004-02-05 Sony Corp 光学ピックアップ装置及び記録再生装置
JP4353780B2 (ja) * 2003-12-05 2009-10-28 三洋電機株式会社 光ピックアップ装置
US7450308B2 (en) * 2004-04-27 2008-11-11 Panasonic Corporation Beam shaping lens, lens part, mounting plate, optical head, optical information recording and reproducing apparatus, computer, image recording and reproducing apparatus, image reproducing apparatus, server and car navigation system
US20060028935A1 (en) * 2004-08-03 2006-02-09 Matsushita Electric Industrial Co., Ltd. Optical pickup device, optical disk apparatus, and light-receiving unit
JP4902110B2 (ja) 2004-10-25 2012-03-21 パナソニック株式会社 光ピックアップ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175638A (ja) * 2000-12-06 2002-06-21 Matsushita Electric Ind Co Ltd 光ピックアップの光学系調整方法
JP2005100481A (ja) 2003-09-22 2005-04-14 Hitachi Ltd 光ディスク装置
JP2005235269A (ja) * 2004-02-18 2005-09-02 Tdk Corp レンズ用のアクチュエータ、光ヘッド、光記録再生装置、光再生装置、多層記録媒体用光記録再生装置及び多層記録媒体用光再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2001016A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126536A1 (ja) * 2007-03-19 2008-10-23 Konica Minolta Opto, Inc. 光ピックアップ装置の製造方法及び光ピックアップ装置
JP2010134995A (ja) * 2008-12-04 2010-06-17 Sharp Corp 光ピックアップ装置のレンズ位置調整機構、光ピックアップ装置、光ディスク装置、及び光ピックアップ装置のレンズ位置調整方法

Also Published As

Publication number Publication date
US7679846B2 (en) 2010-03-16
CN101401156B (zh) 2011-07-27
JPWO2007122848A1 (ja) 2009-09-03
EP2001016B1 (en) 2012-04-18
CN101401156A (zh) 2009-04-01
EP2001016A9 (en) 2009-03-11
EP2001016A2 (en) 2008-12-10
EP2001016A4 (en) 2009-12-30
US20090135508A1 (en) 2009-05-28
JP4329878B2 (ja) 2009-09-09

Similar Documents

Publication Publication Date Title
JPH07176070A (ja) 浮上式光ヘッド及び光記録再生装置
JP4329878B2 (ja) レンズ駆動装置、光ピックアップ装置、及び取付調整方法
EP1906397A1 (en) Objective lens actuator and optical pickup device having the same
USRE43540E1 (en) Optical pickup, optical disc drive device, and optical information device
US6968563B2 (en) Optical head
US5805556A (en) Optical pickup apparatus having a holographic optical element
JP2005228365A (ja) 光ピックアップ装置
US20080089194A1 (en) Optical pickup, optical disk drive, optical information recording/replaying device, and tilt adjusting method
JP2008047258A (ja) 光ピックアップ装置
US7573787B2 (en) Actuator, optical device, and optical recording/reproducing apparatus
US20080298214A1 (en) Objective lens actuator utilizing piezoelectric elements
JP3819987B2 (ja) 集積型光学ユニット
JP3820016B2 (ja) 光学素子の調整取付構造
EP1975932A1 (en) Optical pickup
JP4947940B2 (ja) 光ピックアップ装置
JP2006012203A (ja) 光ピックアップ用光学素子およびそれを用いた光ピックアップ
US20090103421A1 (en) Object Lens Actuator, Optical Pickup and Optical Disk Drive
JP2006059421A (ja) 光ピックアップ用光学素子およびそれを用いた光ピックアップ
JP2005122778A (ja) 光ピックアップ装置およびそれに備わる球面収差補正部の調整方法
JP4333807B2 (ja) 情報ピックアップ装置及び光ディスク装置
JP2004055071A (ja) 光学ピックアップ装置、光学ピックアップ装置の製造方法及び記録再生装置
JP2006107615A (ja) 光学ヘッド
JP2009116988A (ja) 光ピックアップ装置
JPH0836768A (ja) 対物レンズ駆動装置
JP2008251113A (ja) 光ヘッド装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008511982

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007714559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224309

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780008488.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE