WO2007116908A1 - メタン分離方法、メタン分離装置及びメタン利用システム - Google Patents

メタン分離方法、メタン分離装置及びメタン利用システム Download PDF

Info

Publication number
WO2007116908A1
WO2007116908A1 PCT/JP2007/057564 JP2007057564W WO2007116908A1 WO 2007116908 A1 WO2007116908 A1 WO 2007116908A1 JP 2007057564 W JP2007057564 W JP 2007057564W WO 2007116908 A1 WO2007116908 A1 WO 2007116908A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
liquid
gas
carbon dioxide
membrane
Prior art date
Application number
PCT/JP2007/057564
Other languages
English (en)
French (fr)
Inventor
Takafumi Tomioka
Toshiyuki Abe
Toru Sakai
Hiroshi Mano
Kazuhiro Okabe
Original Assignee
Taiyo Nippon Sanso Corporation
Research Institute Of Innovative Technology For The Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corporation, Research Institute Of Innovative Technology For The Earth filed Critical Taiyo Nippon Sanso Corporation
Priority to EP07741000A priority Critical patent/EP2009080A4/en
Priority to CN2007800118586A priority patent/CN101415803B/zh
Priority to US12/295,780 priority patent/US20090156875A1/en
Publication of WO2007116908A1 publication Critical patent/WO2007116908A1/ja
Priority to US14/031,261 priority patent/US20140088335A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • B01D3/101Recirculation of the fluid used as fluid working medium in a vacuum creating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • Methane separation method methane separation device, and methane utilization system
  • the present invention relates to natural gas produced by anaerobic fermentation of organisms produced from the ground mainly composed of methane, land produced by natural anaerobic fermentation by underground storage of industrial and household waste.
  • a methane separation method for separating methane from a biogas such as an artificial fermentation gas or an artificially generated anaerobic fermentation process generated from an intermediate fermentation gas, a methane separation device for performing the same, and the methane as an energy source
  • This application relates to a methane utilization system that can be supplied to the plant.
  • This application claims priority based on Japanese Patent Application No. 2006-103665 filed in Japan on April 4, 2006, the contents of which are incorporated herein by reference.
  • cryogenic separation method As a technique for increasing the purity of these specific gas components, the cryogenic separation method, chemical absorption method, dry membrane separation method using gas separation membrane, PSA Methods (pressure swing adsorption method), membrane / absorption hybrid method, etc. are known.
  • PSA Methods pressure swing adsorption method
  • membrane / absorption hybrid method etc.
  • the conventional chemical absorption method includes an absorption tower that absorbs the gas to be separated in the absorption liquid and a regeneration tower that dissipates the separated component gas from the absorption liquid, and the absorption liquid circulates between the absorption tower and the regeneration tower.
  • the absorbing liquid and the target gas are efficiently brought into contact with each other. Therefore, there is a problem that the initial cost and the operation cost of gas separation are increased due to the large heating energy for the absorption tower and the diffusion.
  • there is a carbon dioxide absorption method using high-pressure water that uses the action of carbon dioxide and carbon dioxide in water, but there is a problem that a large amount of water is required to purify biogas.
  • the separation process does not involve heat input and output, it can be separated with low energy, can be operated at room temperature, and the configuration is simple and the device can be miniaturized.
  • the separation process since the difference in permeation rate in the membrane is used, it is necessary to increase the number of membrane modules in order to obtain high purity methane.
  • the latter PSA method adsorbs activated carbon, natural or synthetic zeolite, silica gel and activated alumina, MSC (Molecular Sieve Carbon), etc. It is used as an easy adsorbent and utilizes the fact that the amount of adsorption varies depending on pressure and temperature.
  • the operating pressure range in order to obtain high purity methane, the operating pressure range must be set to a wide range of 90 KPaG to 0.7 MPaG, which increases the power cost.
  • a combustion facility or the like is required, which causes a high separation cost. Even if methane can be released safely into the atmosphere, releasing methane with a high global warming potential into the atmosphere is a major obstacle to the growing interest in global environmental problems.
  • Carbon dioxide is dissipated from the absorbing solution that has passed through the membrane by absorbing carbon dioxide and absorbing carbon through the membrane and reducing the pressure of the other.
  • a membrane module includes a gas to be separated including an absorbent and a separation gas such as carbon dioxide and methane. Since it was supplied, a gas-liquid mixed phase of methane and the absorbing solution that did not dissolve in the absorbing solution within the permeable membrane occurred, and there was a problem when the methane separation efficiency decreased.
  • the nanogas contains a high concentration of diacid-carbon, the absorption liquid that the absorption of the diacid-carbon absorbed by the absorption liquid that has passed through the permeable membrane of the membrane module is insufficient is insufficient. There was another problem when the methane separation and purification efficiency declined after returning to the absorbent circulation system in the regenerated state.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-293340
  • Patent Document 2 JP 2003-204853
  • Patent Document 3 JP 2005-270814
  • an object of the present invention is to provide a methane separation method capable of efficiently separating and purifying methane from a biogas whose main component is methane and containing a high concentration of carbon dioxide, a methane separation apparatus for performing the method, and an existing It is to provide a methane utilization system that can supply methane to the energy plant as well as fossil fuels such as oil. Means for solving the problem
  • the present invention has been made to solve the above problems, and in the methane separation method and the methane separation apparatus according to the present invention, methane is obtained from biogas containing methane and carbon dioxide as components. It isolate
  • the first aspect of the present invention is:
  • the CO absorbing liquid is supplied to the inside of the permeable membrane from a supply port of a membrane module in which a plurality of hollow fiber permeable membranes are incorporated in a container to permeate the permeable membrane.
  • the flow rate of excess CO absorption liquid derived from the membrane module's discharge location is zero to the limit.
  • the second aspect of the present invention is:
  • a third embodiment of the present invention is a methane separation method and a methane separation apparatus, wherein a packing density of the permeable membrane in the membrane module is 30% or less. In this embodiment, the packing density is preferably 20% or less.
  • the filling density of the permeable membrane in the membrane module refers to the area occupancy ratio of the permeable membrane, for example, the hollow fiber porous membrane, in the cross section of the membrane module. included.
  • the lower limit of the packing density of the permeable membrane is 5%.
  • the permeable membrane in the membrane module is divided and arranged in a small bundle shape, and each small bundle is arranged in a non-congested space, and the filling density as a whole is increased.
  • a methane separation method and a methane separation apparatus that are 30% or less.
  • the mixer includes an ejector provided in a flow passage communicating with the introduction port of the first gas-liquid separator, and the absorption liquid is contained in the flow passage.
  • a methane separation method and a methane separation device that generate a negative pressure by forming a flow, suck the biogas into the absorption liquid to generate the mixed liquid, and efficiently absorb carbon dioxide in the absorption liquid It is.
  • the ejector can strongly and finely disperse the biogas in the absorption liquid, and can efficiently absorb the carbon dioxide and the carbon dioxide.
  • the mixer further includes a packed bubble column, and the mixed liquid generated in the ejector is supplied to the packed bubble column, so that carbon dioxide is mixed into the mixed liquid.
  • a seventh aspect of the present invention is the methane separation method and the methane separation apparatus, wherein the absorption liquid is an aqueous solution of di'ethanolamine, and the concentration thereof is 0.1 to 6 molZL.
  • the concentration of the diethanolamine aqueous solution is preferably 2 to 4 molZL.
  • a methane separation method in which the permeation flow rate of the CO absorbing liquid that permeates the permeable membrane is 5 to 50 LZm 2 ⁇ min per membrane area in the membrane module.
  • the permeation flow rate of the CO absorbing solution preferably, the permeation flow rate of the CO absorbing solution
  • the permeable membrane has a polyethylene force
  • the tenth aspect of the present invention is a methane separation method and a methane separation method in which the membrane outer surface of the permeable membrane is subjected to a hydrophilic treatment. Device.
  • An eleventh aspect of the present invention is as follows.
  • a methane separation apparatus according to the present invention, a methane storage tank, and a methane supply channel, which are produced by anaerobic fermentation of organisms produced from underground, methane-based natural gas, industrial and household waste
  • An underground fermented gas produced by natural anaerobic fermentation by underground storage of materials, and an artificially fermented gas that is discharged from an artificially generated anaerobic fermentation process At least one selected
  • This is a system for methane IJ that can purify and store methane by removing the biogas power of carbon dioxide, and supply the stored methane as fuel.
  • the twelfth aspect further includes a power generation facility that generates electricity using the stored methane as fuel, and a storage control means for adjusting the amount of purified methane stored according to the season, operating period, or time zone,
  • a methane utilization system that can supply the power generated by the power generation equipment to the outside.
  • the thirteenth embodiment is a methane utilization system further comprising a diacid-carbon supply facility capable of hybrid supply of diacid-carbon that is simultaneously separated during the methane purification.
  • the gas-liquid mixed phase mixed liquid generated in the mixer is introduced into the first gas-liquid separator, and after the separated methane is recovered, the inside of the membrane module In CO
  • the present invention makes it possible to reduce the power load and membrane module cost by the membrane-absorption hybrid method compared to existing devices such as PSA method, dry membrane separation method, chemical absorption method, etc. Gas separation and concentration can be performed. Since most of the methane contained in biogas can be recovered using only the first gas-liquid separator, the configuration of the methane separator can be simplified and the price can be reduced. If the flow rate of excess CO absorption liquid overflowing the membrane module discharge loca is reduced to the minimum necessary,
  • the mixer had the ability to disperse fine bubbles in the absorption liquid of biogas.
  • Various mixers can be used.Specifically, a single mixer such as an ejector, a mixer, an aeration apparatus, a gas-liquid contact tower filled with a filler, a gas-liquid co-current packed bubble column, or the like. Two or more combined mixers can be used.
  • an excessive amount of the CO absorption liquid derived from the discharge locus of the membrane module is introduced into the second gas-liquid separator to re-separate and collect the remaining trace amount of methane.
  • the third and fourth aspects of the present invention contribute to the improvement of methane separation performance.
  • the overcrowding of the membrane module hinders the emission when carbon dioxide or the like is released in the absorption liquid regeneration stage.
  • the density of carbon dioxide in the membrane module is affected by the packing density of the permeable membrane.
  • the filling density of the hollow fiber permeable membrane in the commercially available membrane module is 30 to 70%, and the distance between the adjacent permeable membranes is too close. For this reason, when the liquid flow rate increases, the space between the membranes is covered with a liquid film, and the emission efficiency of carbon dioxide and carbon dioxide by depressurization becomes worse toward the center side. become.
  • the packing density of the permeable membrane is a sparse density of 30% or less (preferably 20% or less), the carbon dioxide emission is improved and the methane is highly efficient. Can be separated.
  • the permeable membranes in the membrane module are divided and arranged in a small bundle, and each small bundle is arranged in a non-congested space, and the packing density as a whole Is 30% or less, the packing density of the permeable membrane can be made dense to increase the dispersibility of carbon dioxide and methane to be separated with high efficiency.
  • the mixer since at least an ejector is used as the mixer, a high-speed flow is generated by rapid squeezing of the absorbing liquid, and a strong negative pressure is generated. Thus, the biogas can be automatically sucked into the absorbent without power. In addition, fine bubbles are instantly formed inside the absorbing liquid, and a gas-liquid mixed phase mixture is efficiently generated. As a result, the gas-liquid contact surface area is increased, and a large amount of carbon dioxide in biogas can be absorbed in the absorbent with a shorter contact time and a smaller amount of absorbent compared to the conventional case.
  • a two-stage configuration in which a gas-liquid co-current packed bubble column, which is a gas-liquid contact column packed with a filler, is connected in series on the downstream side of the ejector. Therefore, the gas-liquid two-phase flow can be efficiently formed by the ejector, and further the gas-liquid two-phase flow can be further promoted by the packed bubble column, so that the carbon dioxide is almost completely absorbed by the absorbing liquid. As a result, gas separation from methane can be ensured, and methane can be separated and recovered almost completely with only the first gas-liquid separator.
  • the absorption liquid is an aqueous solution of di'ethanolamine, and its concentration is 0.1 to 6 molZL (preferably 2 to 4 molZL). It is possible to separate and purify methane with high efficiency even in the presence of a noble gas power that is highly stable and dissipative.
  • the eighth embodiment of the present invention contributes to the improvement of the methane concentration. According to the verification by the present inventors, if the permeation flow rate of the CO absorbing liquid that permeates the permeable membrane is not more than a predetermined value, the amount of carbon dioxide
  • the absorbent is circulated in the methane separation apparatus and supplied to the mixer in an insufficiently regenerated state.
  • carbon dioxide in the noo gas supplied to the mixer cannot be sufficiently absorbed. That is, the methane concentration in the gas recovered in the first gas-liquid separator does not increase.
  • the CO absorption that permeates the permeable membrane in the membrane module, the CO absorption that permeates the permeable membrane.
  • Permeate flow rate of liquid is 5-50LZm 2 'min per membrane area (preferably, permeate flow of CO absorbing liquid
  • the amount is 20 to 40 LZm 2 ⁇ min) per membrane area, the dispersibility of carbon dioxide and carbon dioxide is improved, so that the concentration of purified methane can be improved.
  • the permeable membrane also has polyethylene strength, high-efficiency treatment of methane separation and purification is possible. That is, since a hydrophobic PE (polyethylene) membrane is used as the permeable membrane, separation selectivity, permeation rate and long-term stability are improved as compared to conventional permeable membranes. The resistance to ethanolamine, the substantial permeation amount of the necessary absorbent and the economic efficiency can be greatly improved.
  • the PE membrane since the PE membrane is hydrophobic, it must be stopped when the device is stopped by filling the membrane module with the absorbent. For example, when the device is started up, the absorption liquid on the outer surface of the permeable membrane is poorly wet, which may reduce the separation efficiency.
  • the tenth aspect of the present invention only the outer surface of the hydrophobic permeable membrane is subjected to chemical hydrophilic treatment, or the affinity with the absorbent is increased by physical treatment. By performing the processing, it is possible to eliminate a decrease in separation efficiency at the time of starting the apparatus.
  • methane is purified and stored based on the high-efficiency methane separation method of the present invention, and the stored methane can be supplied as fuel. It is possible to realize a methane utilization system that can supply methane separated in high concentration. Further, according to the twelfth embodiment, it is possible to realize a methane utilization system in which the amount of purified methane stored can be adjusted efficiently so that the power generated by the power generation facility can be stably supplied to the outside. Furthermore, according to the thirteenth embodiment, it is possible to realize a methane utilization system that can supply carbon dioxide produced as a by-product during the separation and purification of methane.
  • FIG. 1 is a schematic configuration diagram of a methane separation apparatus of a first stage gas-liquid separation type according to the present invention.
  • FIG. 2 is a schematic configuration diagram of a mixer 5.
  • FIG. 3 is a schematic configuration diagram of a two-stage gas-liquid separation type methane separation apparatus according to the present invention.
  • FIG. 4 is a schematic configuration diagram of a biogas utilization system according to another embodiment.
  • FIG. 5 is a comparison diagram of concentrated methane concentrations obtained by performing methane separation from an absorbing solution that has absorbed carbon dioxide with three types of methods.
  • FIG. 7 is a graph showing the relationship between the membrane permeate flow rate, the methane separation cost, and the absorption liquid pump power in the methane separation device according to the present embodiment.
  • 5a ejector
  • 5b packed bubble column
  • 6a delivery path
  • FIG. 1 shows a schematic configuration of a methane separation apparatus which is an embodiment of a first-stage gas-liquid separation method using a membrane 'absorption hybrid method.
  • This methane separator is composed of a mixer 5 for mixing a biogas containing methane and carbon dioxide as components and an absorbing liquid that absorbs carbon dioxide and carbon dioxide to produce a gas-liquid mixed phase mixed liquid.
  • 1st gas-liquid separator 7 that gas-liquid separates into methane and CO absorption liquid that the absorption liquid absorbs carbon dioxide
  • It consists of a plurality of hollow fiber permeable membranes 11, and CO absorption liquid is supplied to the inside of the permeable membrane from the supply port 28.
  • carbon dioxide is recovered to the carbon dioxide recovery unit 27 by the exhaust path 21, the open / close valve 22 and the exhaust pump 23. CO absorption that released carbon dioxide
  • the collected liquid becomes an absorbent and is discharged from the membrane module 10, and is collected and stored in the absorbent storage tank 19 through the recovery path 24.
  • Excessive discharge from the membrane module outlet 29 The CO absorption liquid is stored in the absorption liquid storage tank 1 through the discharge path 13, the on-off valve 13a, and the recovery path 18.
  • the membrane module 10 and the absorption liquid storage tank 19 constitute a first separation means for recovering the absorption liquid after separating the carbon dioxide in the present invention.
  • the nano gas is supplied to the mixer 5 through the supply path 3.
  • the absorption liquid collected in the absorption liquid storage tank 19 is circulated and supplied to the mixer 5 through the supply paths 20 and 31 by the introduction pump 30 to constitute an absorption liquid circulation system as a whole.
  • FIG. 2 shows a schematic configuration of the mixer 5.
  • the mixer 5 is configured by connecting the ejector 5a and the packed bubble column 5b in series.
  • a gas-liquid mixed phase mixture in which the biogas supplied from the biogas supply path 3 and the absorption liquid supplied from the supply path 31 are mixed in the ejector 5a and the biogas is mixed with the absorption liquid in countless fine bubbles. Is sent out from the delivery path 6a.
  • gas-liquid mixed phase agitation is further performed, and after this two-stage operation, the carbon dioxide in the gas is dissolved in the absorption liquid, and the carbon dioxide is separated from the gaseous methane.
  • the mixed liquid is sent out from the flow path 6.
  • the absorbing liquid can absorb carbon dioxide in biogas at a higher rate.
  • methane can be separated with higher efficiency.
  • the mixer 5 is composed of only the ejector 5a. It has been clarified in the present invention that carbon dioxide is sufficiently dissolved in the absorbing liquid even in the gas-liquid mixed phase action by the ejector 5a, and the efficiency of methane separation can be achieved. In this case, the mixed solution is sent to the flow path 6 from the delivery path 6a.
  • FIGs. 2C and 2D are cross-sectional views of two types of ejectors 5a.
  • ejectors 5a having other structures may be used. Details of the gas-liquid multiphase action by the ejector 5a will be described below.
  • a rapidly narrowed nozzle 32 is formed inside the ejector 5a.
  • Absorption liquid is supplied from the supply path 31 to the ejector 5a by the introduction pump 30, and the absorption liquid is injected at a high speed from the nozzle 32, and a negative pressure is generated in the biogas supply path 3 by the formation of the high-speed flow.
  • the mixer 5 is not limited to the ejector-type gas mixing and merging portion of FIG. 2, but may be another fluid merging mechanism having equivalent performance.
  • the mixer 5 When the ejetater system shown in FIG. 2 is adopted as the mixer 5, a negative pressure is automatically generated in the biogas supply path 3 hydrodynamically. Since the biogas is sucked into the absorption liquid by the action of this negative pressure, a biogas blower (not shown) usually installed in the biogas supply path is not necessary, and the apparatus power can be further reduced.
  • the mixed liquid generated in the mixer 5 is introduced into the first gas-liquid separator 7 via the flow passage 6.
  • the first gas-liquid separator 7 is methane and CO absorption that the absorption liquid absorbs carbon dioxide.
  • the separated methane is exhausted by an exhaust pump (not shown) through the recovery path 8 and recovered in the methane recovery section 26.
  • the CO absorption liquid stored in the first gas-liquid separator 7 is reduced by the difference in height between the first gas-liquid separator 7 and the membrane module 10.
  • the CO absorption liquid from the first gas-liquid separator 7 is introduced inside the permeable membrane and passes through the permeable membrane 11.
  • the inside of the membrane module 10 is exhausted by the low-pressure exhaust pump 23 through the exhaust passage 21 and the opening / closing valve 22, and the pressure outside the permeable membrane 11 is made lower than the inside of the permeable membrane 11, thereby absorbing CO. Disperse carbon dioxide in the liquid to the outside of the permeable membrane 11
  • the separated carbon dioxide is recovered through the exhaust path 21 to the carbon dioxide recovery unit 27.
  • the CO absorbing solution from which carbon dioxide has been separated becomes an absorbing solution.
  • the carbon dioxide released in 19 is collected in the carbon dioxide recovery unit 27 through the recovery path 25.
  • the on-off valve 13a is provided to keep the permeable membrane 11 in a liquid-sealed state, and a method of reducing the pipe diameter, such as a restriction orifice, may be used.
  • a CO absorbing solution is supplied to the membrane module 10 to separate carbon dioxide and carbon dioxide. Furthermore, the membrane mode
  • DEA diethanolamine
  • a DEA concentration of 0.1 to 6 molZL preferably 2 to 4 molZL
  • methane can be separated and refined with high efficiency, even in the presence of a carbon dioxide absorption and emission capability.
  • the permeation flow rate of the CO absorbing liquid that permeates the permeable membrane is a predetermined value.
  • the permeate flow rate of the collected liquid is 5 to 50 LZm 2 'min per membrane area (preferably, the permeation of the CO absorbing solution
  • the membrane module 10 By using the membrane module 10 with a flow rate of 20 to 40 L / m 2 min per membrane area, the dispersibility of carbon dioxide can be improved and the concentration of purified methane can be improved. [0044] It should be noted that the flow rate of CO absorbing liquid decreases and the liquid film becomes thinner at the upper part of the membrane module, so-called running out of liquid.
  • gas-liquid mixed introduction may lead to a decrease in methane yield due to gas permeation (if it becomes prominent, product gas cannot be supplied).
  • gas-liquid separation only the absorption liquid is introduced into the membrane module
  • the membrane is not used effectively, for example in a system where the absorption liquid side of the membrane is connected to the product gas line, Care must be taken because the methane yield may be reduced by backflow.
  • the packing density of the permeable membrane affects the emission performance of carbon dioxide and carbon dioxide in the membrane module.
  • the packing density of permeable membranes in commercially available membrane modules is 30 to 70%, and the distance between adjacent permeable membranes is too close. Therefore, when the liquid flow rate increases, the space between the membranes is covered with a liquid film, and the carbon dioxide emission efficiency by decompression becomes worse toward the center side. As a result, a large area of the membrane is required, resulting in a high cost.
  • the membrane module 10 having a sparse density with a packing density of the permeable membrane of 30% or less (preferably 20% or less) is used to increase the carbon dioxide emission and increase the efficiency of methane. Separation was realized.
  • the hollow fiber-shaped permeable membrane in the membrane module is divided and arranged in small bundles, and each small bundle is arranged so as to maintain a non-adhering space, and the overall packing density is preferably 30% or less. As a result, carbon dioxide can be more efficiently released and methane can be separated with high efficiency.
  • the material of the permeable membrane 11 is preferably made of polyethylene, particularly the outer surface of the membrane is subjected to a hydrophilic treatment, a highly efficient treatment of methane separation and purification becomes possible.
  • membrane materials such as polysulfone (PS: membrane density adjustment not supported by the manufacturer), polyethersulfone (PES), and polyethylene (PE).
  • PS polysulfone
  • PES polyethersulfone
  • PE polyethylene
  • PES and PE showed good results. However, PES swells over time due to the contact of the absorbing solution with diethanolamine (DEA), and a phenomenon in which the separation of the permeate flow is reduced and the performance of separation of the gas is reduced. It is preferable to select.
  • DEA diethanolamine
  • the outer surface of the permeable membrane is subjected to a chemically hydrophilic surface treatment, or treatment such as fine irregularities that increase the affinity with the absorbing solution by physical treatment, so that separation at the time of starting the apparatus is performed. It is possible to prevent a decrease in efficiency.
  • FIG. 3 shows a schematic configuration of a methane separation apparatus which is an embodiment of a two-stage gas-liquid separation method using a membrane / absorption hybrid method.
  • This methane separator differs from the methane separator shown in FIG. 1 in that a second gas-liquid separator 14 is added.
  • the discharge path 13 is connected to the second gas-liquid separator 14, and methane contained in a trace amount in the excess C02 absorption liquid is separated and recovered in the methane recovery section 26 via the recovery path 15.
  • the excess C02 absorption liquid from which the trace amount of methane has been separated is recovered in the absorption liquid storage tank 19 through the recovery path 18.
  • the components shown in FIG. 1 are denoted by the same reference numerals, and the operations and effects of the components indicated by the same reference numerals are the same as those in FIG. To do.
  • a CO absorbing solution is supplied to the membrane module 10 to separate carbon dioxide. Furthermore, membrane module 10
  • the excess CO absorption liquid derived from the gas is introduced into the second gas-liquid separator 14 to recover the separated methane.
  • the excess CO absorption liquid is recovered in the absorption liquid storage tank 19 to dissipate carbon dioxide and the absorption liquid.
  • FIG. 4 shows a schematic configuration of a methane utilization system 100 incorporating a methane separation apparatus according to the present invention.
  • This methane utilization system 100 is a generator that generates electricity using methane as fuel. 61 and 63, and the power generated by the generator can be supplied to users.
  • Methane is separated and purified from the biogas supplied from the noogas fermenter 51 using a membrane / absorption hybrid device 50 which is a methane separation device similar to the above embodiment.
  • the power generated by the generator 52 is also used to drive each component of the system.
  • the purified methane obtained from the membrane / absorption device 50 is supplied to the generators 61 and 63 through the supply pump 66 through the calorie regulator 67 and the supply path 64.
  • Purified methane is supplied to the liquefier 56 via the supply path 65, and the liquefied methane is stored in the liquefied methane storage tank 57.
  • Liquefied methane can be supplied externally through an external supply channel 59.
  • Liquefied methane can also be supplied to generators 61 and 63.
  • Each supply passage is provided with a flow regulator 54, 55, 58, 60, 62.
  • the membrane / absorption hybrid device 50 is provided with a hot water supply mechanism (not shown) for temperature adjustment, and the hot water supply by the hot water supply mechanism is performed by a hot water storage tank 53 controlled by a generator 52 with heater heating. .
  • the methane separation apparatus uses methane separated and purified with high efficiency as fuel, and power is generated by the generators 52, 61, and 63, and the generated power is relayed 81. 82 and power line 80 to the user.
  • the storage level adjustment of the liquefied methane storage tank 57 is controlled by the flow rate control of the flow regulators 54, 55, 58, 60, 62, and the power selling price (for example, daytime 8:00 -20: 00 9 yen / kW, night 20:00-next 8: 00 4 yen / kW), the operating rate of the generators 52, 61, 63 can be optimized. Furthermore, a specific operation example is shown below.
  • the generator 52 is always in operation, and during the daytime from 8:00 to 20:00, the generators 60 and 62 are operated to reduce the storage speed as much as possible. During the night from 20:00 to the next 8:00, the generators 60 and 62 are stopped and the storage capacity is fully operated.
  • the amount of biogas generated fluctuates with little force due to changes in average temperature. For example, if the amount of summer generation is large and the amount of winter generation is small, control the summer storage amount so that it can be used in winter.
  • methane utilization system in which methane is purified and stored based on the high-efficiency methane separation method of the present invention, and the stored methane can be supplied as fuel.
  • the power supply system using methane fuel has been realized by effectively adjusting the amount of purified methane stored in the season, time of day, etc. so that the power generated by the power generation facility can be stably supplied to the outside. can do.
  • the methane utilization system 100 is additionally provided with a diacid-carbon utilization system 101 that uses diacid-carbon produced as a by-product during the separation and purification of methane.
  • the recovered carbon dioxide obtained from the membrane / absorption hybrid device 50 is supplied to the liquefier 72 via the supply path 70 through the recovery path 83, and carbon dioxide is liquefied.
  • the liquefied carbon dioxide is stored in the liquid carboxylic acid storage tank 73.
  • liquefied carbon dioxide can be supplied from the liquid / carbonic acid / carbon storage tank 73 to the facilities 77 and 79 for user cultivation.
  • Liquid carbonic acid carbon can be supplied externally through the external supply path 75.
  • Each supply path is provided with a flow regulator 71, 74, 76, 78.
  • a flow regulator 71, 74, 76, 78 By adjusting and controlling the flow regulators 71, 74, 76 and 78, while monitoring the remaining amount of the liquid succinic acid and carbon storage tank 73, during the daytime when photosynthesis is active, Carbon dioxide is supplied directly from the liquefied carbon dioxide storage tank 73 and the membrane 'absorption nozzle device 50', and at night, the supply to the house cultivation is stopped and stored in the liquefied carbon dioxide storage tank 73. Stable supply of carbon dioxide is possible.
  • diacid carbon supply system it is possible to effectively use diacid carbon as a by-product. It is also possible to construct a composite gas supply system that can supply industrial gas to different suppliers via the carbon dioxide supply facility.
  • Example 1 using the one-stage separation type methane separation apparatus shown in FIG. 1, a comparative test of concentrated methane concentration by three types of absorption methods in a mixer was conducted.
  • Fig. 5 is a comparison of concentrated methane concentrations obtained by performing methane separation from an absorbing solution that absorbed carbon dioxide and carbon dioxide using three types of absorption systems in a mixer.
  • the vertical axis is the concentrated CH concentration (%) of the separated methane.
  • the horizontal axis is the required membrane area (m 2 Z (NlZmin)).
  • the required membrane area is defined by the surface area of the permeable membrane installed in the membrane module [m 2 ] Z biogas treatment flow rate [N1 Zmin], and the smaller the required membrane area value, It means that carbon dioxide absorption performance is good, that is, methane separation performance is good.
  • the three types of absorption methods mean the absorption method of biogas into the absorption liquid by the mixer, the method using only the packed bubble column ( ⁇ -dashed line, ⁇ dot-dash line), the ejector and the packed bubble column This is a serial system (solid line) and a system using only an ejector (broken line).
  • the series system (solid line) of the ejector and the packed bubble column has the best absorption capacity for carbon dioxide in the absorbent, so that the gas-liquid separation in the downstream flow It can be seen that the methane can be recovered with high purity and high yield. However, this method reduces the merit because the equipment becomes larger and the equipment price increases. In addition, it can be judged that the ejector is superior in terms of the following points in terms of the almost same diacid-carbon absorption performance for the packed bubble column (one-dot chain line) and the ejector (single broken line). .
  • the required methane concentration cannot be obtained unless the amount of absorbent supplied is 1.5 times higher than the single ejector method.
  • Tables 1 to 4 show the details of the execution condition data of Examples 2 to 5.
  • Tables 1 and 2 show that the required membrane area is 0.09 m 2 / (NL / min-biogas) and the membrane material strength SPE
  • the graph shows the changes in the separation methane concentration and the methane yield when the flow rate of the membrane permeate through the hollow fiber membrane is changed.
  • the membrane permeate flow rates were 40.6 [L / m 2 • min] and 28.4 [LZm 2 'min], respectively.
  • the methane yield was almost 100% and the methane concentration was 98%. 4% and 98.2%.
  • Tables 3 and 4 show that the required membrane area is 0.1 lm 2 / (NL / min-biogas) and the membrane material strength is SPES (polyethersulfone). It shows the change in concentration and methane yield.
  • the concentration of methane increased. This suggests that increasing the permeate flow rate per membrane area and increasing the absorption liquid regeneration efficiency by depressurization operation are effective in dissipating the carbon dioxide absorbed by the absorption liquid with high efficiency. ing.
  • the methane recovery rate is 99.7-99.9% under any condition.
  • the methane concentration is in the range of 93.0% to 98.2%. It may not be the case.
  • the methane recovery rate was 99.5 to 99.8% under any condition, and the methane concentration was in the range of 98.2% to 98.4%. It shows that the methane separation apparatus according to the present embodiment has a high-efficiency recovery performance of high-concentration methane.
  • Fig. 6 shows the results obtained under the conditions in Tables 1 to 4, and the membrane permeate flow rate, methane yield, and methane. This is shown in relation to the concentration. From Fig. 6, it can be seen that when the membrane permeate flow rate is 5 [L / m 2 'min] or more, both the methane yield and the methane concentration satisfy the performance.
  • Example 6 the methane separation apparatus according to the present invention was compared with the conventional methane purification system apparatus in terms of gas separation performance, purification cost, and the like.
  • Table 5 is a table comparing the methane separation apparatus according to the present invention with a conventional methane purification system apparatus in terms of gas separation performance and purification cost.
  • the methane purification methods are compared with each other under the conditions of the raw material biogas composition pattern (60 vol%), carbon dioxide (40 vol%), and the raw material gas flow rate of 100 m 3 hr.
  • FIG. 7 is a graph showing the relationship between the membrane permeate flow rate, the methane separation cost (compared to the prior art), and the absorption pump power (kW).
  • the absorption pump power (kW) increases with the increase of the membrane permeate flow rate, but according to the membrane-absorption hybrid methane separation method of the present invention, the membrane permeate flow rate is 15-60 [ L / m 2 ⁇ min], the separation cost is reduced.
  • methane can be separated with high efficiency when the membrane permeate flow rate is 5 [L / m 2 'min] or more from Fig. 6. [L / m 2 'min]. Further, from FIG. 7 to 20 to 40 [! 11 2 '111111], a more remarkable reduction in separation cost is shown.
  • methane purification treatment of biogas containing methane as the main component and high concentration of carbon dioxide can be performed with high efficiency and low separation cost, and high purity.
  • a methane utilization facility and methane utilization system that can supply purified methane as an energy source can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

 本発明のメタン分離方法は、二酸化炭素を吸収する吸収液と前記バイオガスとを混合器により混合して、気液混相状態の混合液を生成する工程と、前記混合液を第1気液分離器に導入して、メタンと、前記吸収液が二酸化炭素を吸収してなるCO2吸収液とに気液分離する工程と、前記第1気液分離器において分離したメタンを回収する工程と、複数の中空糸状透過膜を容器内に組み込んだ膜モジュールの供給口より前記透過膜の内側に前記CO2吸収液を供給して前記透過膜を透過させるとともに、前記透過膜の外側の圧力を前記透過膜の内側より低圧にすることにより、前記CO2吸収液中の二酸化炭素を前記透過膜の外側に放散させて二酸化炭素を分離し、かつ二酸化炭素が分離された前記CO2吸収液を前記吸収液として回収する工程とを少なくとも有する。

Description

メタン分離方法、メタン分離装置及びメタン利用システム
技術分野
[0001] 本発明は、メタンを主成分とする地中から産する生物の嫌気性発酵により生成した 天然ガス、産業用ならびに家庭用廃棄物の地中埋蔵により自然と嫌気性発酵し産出 する地中発酵ガス、又は人工的に発生させた嫌気性発酵プロセスから排出される人 工発酵ガス等のバイオガスからメタンを分離するメタン分離方法、それを行うメタン分 離装置、及びそのメタンをエネルギー巿場に供給できるメタン利用システムに関する 本願は、 2006年 4月 4曰に曰本国に出願された特願 2006— 103665号に基づく 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 地中より産する生物の嫌気性発酵により生成した天然ガス、産業用並びに家庭用 廃棄物の地中埋蔵により自然と嫌気性発酵し産出するガス、又は人工的に発生させ た嫌気性発酵プロセスカゝら排出されるガス、コータス製造時に発生する COGガス等 のような、メタンを主成分として構成されているガスにおいては、熱エネルギー源とな らない多量の二酸ィ匕炭素、水分が含まれる場合がある。これらのガスを良質な熱エネ ルギ一源並びに燃料とするためには、混合ガス中に含まれる燃料となりえな 、二酸 化炭素や水分などを取り除き、メタンの純度を上げる必要がある。
[0003] これらの混合ガス力 特定ガス成分の純度を上げるための手法として、混合ガスを 低温条件下で蒸留分離する深冷分離法、化学吸収法、ガス分離膜による乾式膜分 離法、 PSA法 (圧力スイング吸着法)、膜 ·吸収ハイブリッド法等が知られている。深 冷分離法にぉ 、ては分離プロセスに熱の出入りを伴 、、効率的に純度の高 、メタン を得ようとすると装置が複雑かつ大型化することになり、経済的に好ましくない。
[0004] また、従来の化学吸収法では、吸収液に分離対象ガスを吸収する吸収塔と吸収液 から分離成分ガスを放散する再生塔を備え、吸収液は吸収塔と再生塔の間で循環し て連続的に分離対象ガスを分離するため、吸収液と対象ガスを効率良く接触させる ための吸収塔、放散のための大きな加熱エネルギーによりガス分離の初期コストと運 転コストが高くなる問題があった。また、水に二酸ィ匕炭素が溶ける作用を利用した高 圧水による炭酸吸収法なるものもあるが、バイオガスを精製するためには大量の水を 必要とする問題があった。
[0005] 一方、乾式膜分離法や PSA法では、その分離プロセスに熱の出入りを伴わず、低 エネルギーで分離でき、また常温操作が可能であるほか、構成がシンプルで装置の 小型化が可能である利点がある。前者の乾式膜分離法においては膜中の透過速度 の差を利用するため、純度の高いメタンを得るためには膜モジュールの段数を増や す必要があり、コスト高になる問題があった。後者の PSA法は、特許文献 1及び 2に 示されているように、活性炭、天然ないし合成ゼォライト、シリカゲル及び活性アルミ ナ、 MSC (モレキュラーシービングカーボン)等を、二酸ィ匕炭素を吸着し易い吸着剤と して用いて、吸着量が圧力及び温度により差があることを利用している。
[0006] し力し、 PSA法においては、純度の高いメタンを得るためには、運転圧力範囲を一 90KPaG〜0. 7MPaGと広い範囲に取らなければならず、動力費が高くなる問題点 がある、加えて純度の高いメタンを得るためには回収率を犠牲にする必要があり、そ れに伴ってメタンを含む排気ガスが多く発生し、可燃性であるメタンを安全に処理す るために燃焼設備等が必要となり、分離コストが高くなる要因となる。また、メタンを安 全に大気中に放出できたとしても、地球温暖化係数の高いメタンを大気放出すること は、昨今の地球環境問題における関心の高まりの中で大きな障害となる。
[0007] そこで、最近、膜分離法と化学吸収法が同時に混在した形態で相乗効果を狙った 膜-吸収ハイブリッド法が注目され、研究されて 、る(特許文献 3及び非特許文献 1参 照)。この方法では、膜の一方に二酸化炭素 (CO )を含むガスと吸収液を供給して
2
二酸ィ匕炭素を吸収液に吸収させて膜中を通し、他方を減圧することにより膜通過した 吸収液から二酸化炭素が放散される。
[0008] このため、不要な二酸ィ匕炭素のみを吸収液に選択的に分離するため可燃成分力 分離することが可能となり、燃料成分であるメタンの回収率を向上させることができる 。また、排気ガス中に可燃成分がないことにより、排気ガス処理用に燃焼設備等を設 ける必要が無ぐ極めて低コストで排気ガスを処理できる利点がある。しかも、この方 法によれば、二酸化炭素を吸収する反応が発熱反応であり、二酸化炭素を放散する のが吸熱反応であることにより、膜の内部と外部で熱の移動がうまく起こる。よって、 吸収と放散のプロセスを熱収支のバランスをとりながら極めて効率よく二酸ィ匕炭素を 分離することが可能となる。更に、吸収液を循環させて再利用することによって連続 的なメタンの分離を行える。従って、膜 ·吸収ハイブリッド法をバイオガスに適用するこ とにより、従来の吸収法、乾式膜法、 PSA法よりも低運転コストで純度の高いメタンを ノィォガス力も分離することが可能となる。
[0009] ところが、従来の膜 ·吸収ハイブリッド法をバイオガスに適用する場合においては、 例えば膜モジュールに、吸収液とともに、二酸ィ匕炭素とメタン等の分離ガスとを含む 被分離対象ガスを供給するので、透過膜内にて吸収液に溶解しな ヽメタンと吸収液 の気液混相状態が発生し、メタン分離効率が低下するといつた問題があった。また、 ノィォガスに高濃度の二酸ィ匕炭素が含有されているため、膜モジュールの透過膜を 透過した吸収液に吸収された二酸ィ匕炭素の放散が十分でなぐ吸収液が不十分な 再生状態で吸収液循環系に戻ってしま 、、メタン分離精製効率が低下すると 、つた 問題もあった。
[0010] 特許文献 1 :特開 2001— 293340
特許文献 2:特開 2003 - 204853
特許文献 3:特開 2005 - 270814
特干文献 1 : MasaaKi reramoto, Nobuaki Ohnishi, Nao Takeuchi, Satoru Kitada, Hideto Matsuyama, Norifumi Matsumiya, Hirosni Mano: "Separation and enrichment of carbon dioxide by capillary membrance module with permeation of carrier solutio n ; Separation and Purification Technology 30 (2003) 215-227
発明の開示
発明が解決しょうとする課題
[0011] 従って、本発明の目的は、主成分がメタンで、高濃度の二酸化炭素を含有するバイ ォガスからメタンを高効率に分離精製可能なメタン分離方法、それを行うメタン分離 装置、及び既存の石油等の化石燃料と同様に、メタンをエネルギー巿場に供給可能 なメタン利用システムを提供することである。 課題を解決するための手段
[0012] 本発明は上記課題を解決するためになされたものであり、本発明に係るメタン分離 方法及びメタン分離装置においては、成分としてメタンと二酸ィ匕炭素を含むバイオガ スからメタンを下記の工程により分離することを特徴とする。
即ち、本発明の第 1の形態は、
二酸ィ匕炭素を吸収する吸収液と前記バイオガスとを混合器により混合して、気液混 相状態の混合液を生成する工程と、
前記混合液を第 1気液分離器に導入して、メタンと、前記吸収液が二酸化炭素を吸 収してなる CO吸収液とに気液分離する工程と、
2
前記第 1気液分離器において分離したメタンを回収する工程と、
複数の中空糸状透過膜を容器内に組み込んだ膜モジュールの供給口より前記透 過膜の内側に前記 CO吸収液を供給して前記透過膜を透過させるとともに、前記透
2
過膜の外側の圧力を前記透過膜の内側より低圧にすることにより、前記 CO吸収液
2 中の二酸化炭素を前記透過膜の外側に放散させて二酸化炭素を分離し、かつ二酸 化炭素が分離された前記 CO吸収液を前記吸収液として回収する工程とを少なくと
2
も有するメタン分離方法、及び前記分離方法を行うメタン分離装置である。本形態に おいて、膜モジュールの排出ロカ 導出させる過剰 CO吸収液流量は極限までゼロ
2
に近づけることが好ましい。
[0013] 本発明の第 2の形態は、
前記膜モジュールの排出ロカ 導出された過剰の CO吸収液を第 2気液分離器に
2
導入して、微量のメタンと過剰 CO吸収液に気液分離する工程と、
2
前記第 2気液分離器において分離したメタンを回収する工程と、
前記過剰 CO吸収液を回収する工程とをさらに有するメタン分離方法、及び前記
2
分離方法を行なうメタン分離装置である。第 1形態の第 1気液分離器で殆んどのメタ ンが分離されるが、微量のメタン力CO吸収液に残留する場合には、前記膜モジュ
2
ールの排出ロカ 排出される過剰の CO吸収液を第 2気液分離器に導入し、第 2気
2
液分離器によりメタンを分離 ·回収するとともに、過剰 CO
2吸収液を回収する構成で ある。 [0014] 本発明の第 3の形態は、前記膜モジュールにおける透過膜の充填密度が 30%以 下であるメタン分離方法及びメタン分離装置である。本形態において、好ましくは前 記充填密度が 20%以下である。なお、本発明で膜モジュールにおける透過膜の充 填密度とは、膜モジュールの断面における透過膜、例えば中空糸状多孔膜の面積 占有率のことであり、中空糸状透過膜の中空部分も占有面積に含まれる。
なお、透過膜の充填密度の下限値は 5%である。
[0015] 本発明の第 4の形態は、前記膜モジュール中の透過膜が小束状に分割されて配置 され、各々の小束は密集しない空間を保って配置され、全体としての充填密度が 30 %以下であるメタン分離方法及びメタン分離装置である。
[0016] 本発明の第 5の形態は、前記混合器が、前記第 1気液分離器の導入口に連通する 流通路に設けられたェジェクタ一を備え、前記流通路内に前記吸収液の流れを形成 することにより負圧を発生させ、前記バイオガスを前記吸収液に吸引させて前記混合 液を生成し、前記吸収液に二酸化炭素を効率的に吸収させるメタン分離方法及びメ タン分離装置である。ェジェクタ一により吸収液中にバイオガスを強力に微細分散で き、二酸ィ匕炭素を効率的に吸収液に吸収させることができる。
[0017] 本発明の第 6の形態は、前記混合器が充填気泡塔をさらに備え、前記ェジェクタ一 で生成した前記混合液を当該充填気泡塔に供給して、二酸化炭素の前記混合液へ の吸収をさらに促進させるメタン分離方法及びメタン分離装置である。充填気泡塔を 直列させることにより一層に CO吸収を強化できる。
2
[0018] 本発明の第 7の形態は、前記吸収液がジ'エタノールァミンの水溶液であり、その濃 度は 0. l〜6molZLであるメタン分離方法及びメタン分離装置である。本形態にお いて、好ましくはジ 'エタノールァミンの水溶液濃度が 2〜4molZLである。
[0019] 本発明の第 8の形態は、前記膜モジュールにおける、前記透過膜を透過する前記 CO吸収液の透過流量が膜面積あたり 5〜50LZm2 · minであるメタン分離方法及
2
びメタン分離装置である。本形態において、好ましくは、前記 CO吸収液の透過流量
2
が膜面積あたり 20〜40LZm2 · minである。
[0020] 本発明の第 9の形態は、前記透過膜がポリエチレン力もなり、また本発明の第 10の 形態は、前記透過膜の膜外面に親水性処理を施したメタン分離方法及びメタン分離 装置である。
[0021] 本発明の第 11の形態は、
本発明に係るメタン分離装置と、メタン貯留槽と、メタン供給路とを備え、 地中から産する生物の嫌気性発酵により生成した、メタンを主成分とする天然ガス、 産業用及び家庭用廃棄物の地中埋蔵により自然と嫌気性発酵して産出する地中発 酵ガス、並びに人工的に発生させた嫌気性発酵プロセスカゝら排出される人工発酵ガ スカ なる群力 選ばれる少なくとも 1種の前記バイオガス力 二酸ィ匕炭素を除去す ることにより、メタンを精製して貯留し、その貯留メタンを燃料として供給可能にしたメ タン禾 IJ用システムである。
また、第 12の形態は、前記貯留メタンを燃料として発電する発電設備と、季節、稼 動期間あるいは時間帯に応じて精製メタンの貯留量を調整する貯留制御手段とをさ らに備え、前記発電設備によって発生される電力を外部に供給可能にしたメタン利 用システムである。更に、第 13の形態は、前記メタン精製の際に同時に分離される二 酸ィ匕炭素をハイブリッド供給可能にした二酸ィ匕炭素供給設備をさらに備えたメタン利 用システムである。
発明の効果
[0022] 本発明の第 1の形態によれば、混合器で生成した気液混相状態の混合液を第 1気 液分離器に導入して、分離したメタンを回収した後、膜モジュールの内側に CO吸
2 収液を供給して透過膜の外側の圧力を内側より低圧にする。これにより、二酸化炭素 の分離が促進的に働くので、高濃度の二酸ィ匕炭素を含有するバイオガスからメタン を高効率に分離精製することができる。従って、本発明は、 PSA法、乾式膜分離法、 化学吸収法等の既存装置と比較して、膜 ·吸収ハイブリッド法によって、動力負荷や 膜モジュールコストの低減が可能となり、低分離コストでバイオガス分離'濃縮を行うこ とができる。第 1気液分離器だけでバイオガス中に含まれるメタンを殆んど回収できる から、メタン分離装置の装置構成の簡易化と価格低減が可能になる。また、膜モジュ ール排出ロカ 溢れ出る過剰 CO吸収液流量を必要最小限まで少なくすれば、動
2
力負荷を削減できる。
前記混合器としては、バイオガスを吸収液中に微細気泡分散できる性能を有した 各種の混合器が利用でき、具体的には、ェジェクタ一、ミキサー、曝気装置、充填材 を充填した気液接触塔である気液並流の充填気泡塔などの単体混合器、又はそれ らを二つ以上組合せた組合せ混合器が使用できる。
[0023] 本発明の第 2の形態によれば、前記膜モジュールの排出ロカ 導出された過剰の 前記 CO吸収液を第 2気液分離器に導入して、残留した微量メタンの再分離 ·回収
2
を行うから、更にメタン分離の向上が実現できる。
[0024] 本発明の第 3及び第 4の形態は、メタン分離性能の向上に寄与する。本発明者らの 検証により、吸収液再生段階の二酸化炭素等の放散時に膜モジュールの過密が放 散を妨げることが分力つた。即ち、膜モジュールにおける二酸ィ匕炭素の放散性能は 透過膜の充填密度が影響する。市販の膜モジュールにおける中空糸状透過膜の充 填密度は 30〜70%であり、隣接する透過膜との間隔が密着しすぎている。そのため 、液流量が多くなると膜間が液膜で覆われ、中心側ほど減圧による二酸ィ匕炭素の放 散効率が悪くなり、結果的に多くの膜面積が必要になり、コスト高の要因になる。 一方、本発明の第 3の形態によれば、透過膜の充填密度が 30%以下 (好ましくは 2 0%以下)の疎密度であるため、二酸化炭素の放散性を高め、メタンを高効率に分離 することができる。また、本発明の第 4の形態によれば、膜モジュール中の透過膜が 小束状に分割されて配置され、各々の小束は密集しない空間を保って配置され、全 体としての充填密度が 30%以下であるため、透過膜の充填密度を疎密して、二酸ィ匕 炭素の放散性を高め、メタンを高効率に分離することができる。
[0025] 本発明の第 5の形態によれば、前記混合器として、少なくともェジヱクタ一が使用さ れるから、吸収液の急速絞りにより高速流化して強度の負圧が発生し、この負圧によ りバイオガスを動力無しで自動的に吸収液に吸引することができる。し力も吸収液の 内部で瞬時に微細な気泡が形成され、気液混相状態の混合液が効率的に生成され る。その結果、気液接触表面積が大きくなり、従来と比較して短い接触時間と少ない 吸収液量でバイオガス中の二酸ィ匕炭素を多量に吸収液に吸収することができる。こ のように、最適な気液混相状態の混合液を生成して気液分離させることができるとと もに、バイオガスに含有されている高濃度の二酸ィ匕炭素を必要最小限の吸収液で吸 収することができるので、吸収液を過剰に透過膜に流通させなくてすみ、メタン分離 を高効率で行える。前記混合器をェジェクタ一だけで構成した場合には、装置構成 の簡単化と価格低減'動力コスト低減を実現できる。勿論、ェジェクタ一に他の混合 手段を付加することで、より効率的な混合 ·吸収を実現することができる。
[0026] 本発明の第 6の形態によれば、前記ェジェクタ一の後流側に、充填材を充填した気 液接触塔である気液並流の充填気泡塔を直列に接続した 2段構成にするから、ェジ タターで効率的に気液二相流を形成し、更に充填気泡塔により気液二相化を一層 に促進できるから、二酸ィ匕炭素を吸収液にほぼ完全に吸収してメタンとの気体分離 を確実ィ匕でき、第 1気液分離器だけでメタンをほぼ完全に分離回収することが可能に なる。
[0027] 本発明の第 7の形態によれば、吸収液がジ'エタノールァミンの水溶液であり、その 濃度は 0. l〜6molZL (好ましくは 2〜4molZL)であるので、二酸化炭素の吸収性 及び放散性がよぐノィォガス力も高効率にメタンを分離精製することができる。
[0028] 本発明の第 8の形態はメタン濃度の向上に寄与する。本発明者らの検証によれば、 透過膜を透過する CO吸収液の透過流量が所定値以上でなければ二酸化炭素の
2
放散効率が良くならない。従って、吸収液が不十分な再生状態でメタン分離装置内 を循環して混合器に供給される。結果、当該混合器に供給されるノィォガス中の二 酸ィ匕炭素を十分に吸収することができなくなる。即ち、第 1気液分離器において回収 するガス中のメタン濃度が高くならない。
これに対し、本形態によれば、膜モジュールにおいて、透過膜を透過する CO吸収
2 液の透過流量が膜面積あたり 5〜50LZm2'min (好ましくは、 CO吸収液の透過流
2
量が膜面積あたり 20〜40LZm2 · min)とすることによって二酸ィ匕炭素の放散性が良 くなるので、精製メタン濃度を向上させることができる。
[0029] 本発明の第 9の形態によれば、透過膜がポリエチレン力もなるので、メタン分離精製 の高効率処理が可能となる。即ち、透過膜として疎水性の PE (ポリエチレン)膜を用 いること〖こより、従来の透過膜と比較して、分離選択性、透過速度及び長期安定性が 向上し、例えば吸収液としてのジ*エタノールァミンに対する耐性、必要な吸収液の 実質的な透過量及び経済性を格段に向上させることができる。また、 PE膜は疎水性 であるために、装置停止時にお!ヽて膜モジュールを吸収液で充たして停止しなけれ ば、装置立ち上げ時に透過膜外面の吸収液のぬれが悪ぐ分離効率が落ちるおそ れがある。し力しながら、本発明の第 10の形態によれば、疎水性透過膜の外表面の みに化学的に親水性の処理を施したり、物理的処理によって吸収液との親和力を高 める処理を行うことにより、装置起動時の分離効率の低下を解消することができる。
[0030] 本発明の第 11の形態に係るメタン利用システムによれば、本発明の高効率メタン 分離方法に基づきメタンを精製して貯留し、その貯留メタンを燃料として供給可能に したので、経済的に高濃度に分離されたメタンを供給できるメタン利用システムを実 現することができる。また、第 12の形態によれば、精製メタンの貯留量を効率的に調 整して、発電設備によって発生される電力を外部に安定供給可能にしたメタン利用 システムを実現できる。更に、第 13の形態によれば、メタンの分離精製の際に副生物 として生成される二酸ィ匕炭素を供給できるメタン利用システムを実現することができる 図面の簡単な説明
[0031] [図 1]本発明に係る 1段気液分離方式のメタン分離装置の概略構成図である。
[図 2]混合器 5の概略構成図である。
[図 3]本発明に係る 2段気液分離方式のメタン分離装置の概略構成図である。
[図 4]別の実施形態であるバイオガス利用システムの概略構成図である。
[図 5]3種類の方式により二酸ィ匕炭素を吸収させた吸収液からメタン分離を実施して 得られた濃縮メタン濃度の比較図である。
[図 6]実施例 1〜4における膜透過液流量と、メタン (CH )の収率及び分離濃度との
4
関係を調べた結果を示すグラフである。
[図 7]本実施形態に係るメタン分離装置における膜透過液流量と、メタン分離コストと 、吸収液ポンプ動力との関係を示すグラフである。
符号の説明
[0032] 3, 9, 20, 31, 64, 65 :供給路、 5 :混合器、
5a :ェジ クタ一、 5b :充填気泡塔、 6a :送出路
6 :流通路、 13 :排出路、 7 :第 1気液分離器、
8, 15, 18, 24, 25, 83 :回収路、 10 :膜モジュール、 11:透過膜、 12, 13a, 22:開閉バルブ、 14:第 2気液分離器、
19:吸収液貯留槽、 21:排気路、 23:排気ポンプ、
26:メタン回収部、 27:二酸ィ匕炭素回収部、 28:供給口、
29: 出口、 30:導入ポンプ、 32:ノズル、
50:膜,吸収ハイブリッド装置、 51:バイオガス発酵槽、
52, 61, 63:発電機、 53:貯湯槽、
54, 55, 58, 60, 62, 71, 74, 76, 78:流量調整器、
56, 72:液化器、 57:液化メタン貯留槽、
59, 75:外部供給路、 66, 70:供給ポンプ、
67:カロリー調整器、 68:ガス濃度計、 69:LPGタンク、
73:液ィ匕ニ酸ィ匕炭素貯留槽、 77, 79:ハウス栽培用施設、
80:電力線、 81, 82:中継器
発明を実施するための最良の形態
[0033] 以下に、本発明に係るメタン分離方法及びそれを用いたメタン分離装置の実施形 態を図面に従って詳細に説明する。
[0034] 図 1は、膜'吸収ハイブリッド法を用いた 1段気液分離方式の実施形態であるメタン 分離装置の概略構成を示す。このメタン分離装置は、成分としてメタンと二酸化炭素 を含むバイオガスと、二酸ィ匕炭素を吸収する吸収液とを混合して気液混相状態の混 合液を生成する混合器 5と、混合液を導入して、メタンと、吸収液が二酸化炭素を吸 収してなる CO吸収液とに気液分離する第 1気液分離器 7と、容器内に組み込んだ
2
複数の中空糸状透過膜 11からなり、供給口 28より透過膜の内側に CO吸収液を供
2 給して透過膜 11を透過させるとともに、透過膜 11の外側の圧力を透過膜の内側より 低圧にすることにより、 CO吸収液中の二酸ィ匕炭素を透過膜 11の外側に放散させて
2
二酸ィ匕炭素を分離する膜モジュール 10とを有する。
[0035] このメタン分離装置において、排気路 21、開閉バルブ 22及び排気ポンプ 23により 二酸化炭素が二酸化炭素回収部 27へと回収される。二酸化炭素を放散した CO吸
2 収液は吸収液となって膜モジュール 10から排出され、回収路 24を通じて吸収液貯 留槽 19に回収され貯留される。また、膜モジュール排出口 29より排出される過剰の CO吸収液は、排出路 13、開閉バルブ 13a及び回収路 18を通じて吸収液貯留槽 1
2
9に回収貯留される。膜モジュール 10及び吸収液貯留槽 19により、本発明における 二酸ィ匕炭素を分離した後の吸収液を回収する第 1分離手段が構成されている。
[0036] ノィォガスは供給路 3を通じて混合器 5に供給される。また、吸収液貯留槽 19に回 収された吸収液は導入ポンプ 30により供給路 20、 31を通じて混合器 5に循環的に 供給され、全体として吸収液循環システムが構成されて 、る。
[0037] 図 2は混合器 5の概略構成を示す。(2A)では、ェジェクタ一 5aと充填気泡塔 5bを 直列して混合器 5が構成される。バイオガス供給路 3から供給されるバイオガスと、供 給路 31から供給される吸収液がェジヱクタ一 5aで混合され、バイオガスが吸収液に 無数の微細気泡状態で混合した気液混相混合液が送出路 6aから充填気泡塔 5b〖こ 送出される。充填気泡塔 5bでより一層に気液混相攪拌が行われ、この 2段操作でバ ィォガス中の二酸ィ匕炭素が吸収液中に溶解し、二酸化炭素が気体状態のメタンと分 離した後、混合液は流通路 6から送出される。特に、ェジェクタ一 5aのガス混合合流 部の後流側に、前述した充填気泡塔を配設した装置構成では、バイオガス中の二酸 化炭素をより高い割合で吸収液に吸収させることができ、更に高効率にメタンを分離 できる。(2B)では、ェジェクタ一 5aだけ力も混合器 5が構成される。ェジェクタ一 5a による気液混相作用でも十分に吸収液中への二酸化炭素の溶解が行われ、メタン分 離の効率ィ匕が達成できることが本発明で明らかになった。この場合には、送出路 6a カゝら混合液が流通路 6に送出される。
[0038] 図 2の(2C) · (2D)は、 2種類のェジェクタ一 5aの断面図である。本発明では、他の 構造のェジェクタ一 5aを使用してもよいことは云うまでもない。以下に、ェジェクタ一 5 aによる気液混相作用の詳細を説明する。ェジヱクタ一 5aの内部には急激に絞られ たノズル 32が形成されている。導入ポンプ 30により吸収液が供給路 31からェジエタ ター 5aに供給され、吸収液がノズル 32より高速で噴射され、その高速流の形成によ り負圧をバイオガス供給路 3内に発生させる。前記高速流の流速が大きいほど負圧 作用は増大し、大気圧より少し高い供給圧で供給されるバイオガスが吸収液に吸引 され瞬時に微細な気泡状態となるため、混合液の生成を簡易に行うことができる。無 数の微細気泡化により吸収液との気液接触表面積は激増し、微細気泡中の二酸ィ匕 炭素は吸収液中に急速に溶解し、二酸化炭素がガス状態のメタンから気体分離され 、前記微細気泡はメタンの微細気泡となり、送出路 6aからはメタン微細気泡と二酸化 炭素を溶解した吸収液の気液二相流が送出される。なお、図 2では 1本の吸収液供 給路 31を示して ヽるが、複数の吸収液供給路 31を併設してもよ!/、。
また、混合器 5には、図 2のェジヱクタ一方式のガス混合合流部に限らず、同等の 性能を有する他の流体合流機構を用いてもよい。混合器 5として図 2に示すェジエタ ター方式を採用した場合、流体力学的にバイオガス供給路 3内に自動的に負圧を発 生させる。この負圧の作用によりバイオガスが吸収液に吸引されるため、通常バイオ ガス供給路に設置されるバイオガス送風機(図示せず)は不要となるので、さらに装 置動力低減が可能となる。
[0039] 混合器 5において生成された混合液は、流通路 6を介して第 1気液分離器 7に導入 される。第 1気液分離器 7は、メタンと、吸収液が二酸ィ匕炭素を吸収してなる CO吸収
2 液に気液分離して貯留する。このとき分離されたメタンは回収路 8を通じて排気ボン プ(図示せず)により排気され、メタン回収部 26に回収される。第 1気液分離器 7に貯 留された CO吸収液は、第 1気液分離器 7と膜モジュール 10との高低差による自重
2
作用あるいは供給ポンプ駆動(図示せず)により、供給路 9を通じて膜モジュール 10 に移送される。 CO吸収液の移送量は供給路 9に設けた開閉バルブ 12によって調
2
整可能にされている。
[0040] 第 1気液分離器 7からの CO吸収液は透過膜の内側に導入されて透過膜 11を透
2
過する。膜モジュール 10の内部を、排気路 21及び開閉バルブ 22を通じて、低圧化 用排気ポンプ 23により排気して、透過膜 11の外側の圧力を透過膜 11の内側より低 圧にすることにより、 CO吸収液中の二酸ィ匕炭素を透過膜 11の外側に放散させて二
2
酸ィ匕炭素を分離する。分離された二酸ィ匕炭素は排気路 21を通じて二酸ィ匕炭素回収 部 27に回収される。一方、二酸化炭素が分離された CO吸収液は吸収液となって回
2
収路 24を通じて吸収液貯留槽 19に回収され、吸収液貯留槽 19より再び混合器 5に 供給され、循環使用される。
膜モジュール 10の排出口 29から導出された過剰の CO吸収液は、排出路 13、開
2
閉バルブ 13a及び回収路 18を介して吸収液貯留槽 19に回収される。吸収液貯留槽 19において放散する二酸ィ匕炭素は、回収路 25を通じて二酸ィ匕炭素回収部 27に回 収される。なお、開閉バルブ 13aは、透過膜 11を液封状態に保つようにするために 設けるもので、配管径を絞る方式、たとえば制限オリフィスなどを用いてもよい。
[0041] 上記のようにして、本実施形態では、第 1気液分離器 7において分離したメタンを回 収した後、膜モジュール 10に CO吸収液を供給して二酸ィ匕炭素を分離し、更に膜モ
2
ジュール 10より導出された過剰の CO吸収液を吸収液貯留槽 19に回収して二酸ィ匕
2
炭素を放散させて吸収液として分離するので、吸収液の循環過程で効率的にメタン と二酸化炭素の分離を行 ヽ、高濃度の二酸ィ匕炭素を含有するバイオガスからメタン を高効率に分離精製することができる。従って、動力負荷や膜モジュールコストの低 減が可能となり、低分離コストでバイオガス分離'濃縮を行うことができるメタン分離シ ステムを実現することができる。
[0042] 本実施形態においては、吸収液として、二酸化炭素の吸収性に優れたジ'エタノー ルァミン(DEA)の水溶液を用いることが好ましい。 DEA濃度は 0. l〜6molZL (好 ましくは 2〜4molZL)で使用することができる。この DEA濃度では二酸化炭素の吸 収性及び放散性がよぐノィォガス力も高効率にメタンを分離精製することができる。
[0043] 本発明者らの検証によれば、透過膜を透過する CO吸収液の透過流量が所定値
2
以上でなければ、バイオガス処理流量あたりの二酸ィ匕炭素の放散効率が良くならな い。従って、回収路 24を通じて吸収液貯留槽 19に回収される吸収液の再生が不十 分となる。その結果、混合器 5に供給されるバイオガスと再使用される吸収液が混合 する際に、吸収液の吸収能力が十分に再生された時と比較して、バイオガス中の二 酸化炭素に対する吸収液の吸収能力が低下する。即ち、第 1気液分離器 7において 回収するガス中のメタン濃度が高くならない。また、膜面積あたりの液透過流量が少 ない場合には過剰の膜モジュール (面積)を使用しないと、吸収液の再生が不十分と なり、メタン濃度が高くならないことが分力つた。そこで、透過膜 11を透過する CO吸
2 収液の透過流量が膜面積あたり 5〜50LZm2'min (好ましくは、 CO吸収液の透過
2
流量が膜面積あたり 20〜40L/m2 · min)とすることができる膜モジュール 10を使用 することによって、二酸ィ匕炭素の放散性が良くなり、精製メタン濃度の向上を実現し [0044] なお、 CO吸収液流量が低下し膜モジュール上部で液膜が薄くなる、所謂液切れ
2
状態になると、気液混合導入 (メタンと吸収液を同時導入)の場合はガス透過によるメ タン収率低下 (顕著になると製品ガス供給不能)につながるおそれがあるので十分に 配慮する必要がある。また、気液分離(吸収液のみ膜モジュールに導入)の場合には 、膜を有効に使用しない状態では、例えば膜の吸収液側が製品ガスラインとつなが つているシステム等においては、製品ガス吸入 (逆流)によるメタン収率低下の可能 性があるので、注意が必要である。
[0045] また、本発明者らの検証によれば、吸収液再生における二酸ィ匕炭素等の放散時に 膜モジュールの過密が放散を妨げることが分力つた。即ち、膜モジュールにおける二 酸ィ匕炭素の放散性能には透過膜の充填密度が影響する。市販の膜モジュールにお ける透過膜の充填密度は 30〜70%であり、隣接する透過膜との間隔が密着しすぎ ている。そのため、液流量が多くなると膜間が液膜で覆われ、中心側ほど減圧による 二酸化炭素の放散効率が悪くなり、結果的に多くの膜面積が必要になり、コスト高の 要因になる。
そこで、本実施形態においては、透過膜の充填密度が 30%以下 (好ましくは 20% 以下)の疎密度である膜モジュール 10を使用して、二酸化炭素の放散性を高め、メ タンの高効率分離を実現させた。また膜モジュール中の中空糸状の透過膜が小束 状に分割され配置され、各々の小束は密着しない空間を保って配置され、全体とし ての充填密度が 30%以下であるものが好ましぐこれにより、二酸化炭素の放散性を より高め、メタンを高効率に分離することができる。
[0046] 透過膜 11の素材には、ポリエチレンが好ましぐ特に膜外面に親水性処理を施した から、メタン分離精製の高効率処理が可能となる。膜材質については、ポリスルホン( PS :メーカーにより膜密度調整対応不可)、ポリエーテルスルホン (PES)、ポリエチレ ン (PE)などの膜材質を試した結果、 PESと PEで良い結果が得られた。しかしながら 、 PESは吸収液のジ 'エタノールァミン (DEA)との接触により経時的に膨潤し、透過 液流量の減少を伴い、ノィォガス分離性能が低下する現象が認められるので、実用 上、ポリエチレンを選択するのが好ましい。
即ち、透過膜として疎水性のポリエチレン膜を用いることにより、従来の透過膜と比 較して、分離選択性、透過速度及び長期安定性が向上し、例えば吸収液としてのジ •エタノールァミンに対する耐性、必要な吸収液の実質的な透過量及び経済性を格 段に向上させることができる。しかし、ポリエチレン膜は疎水性であるために、装置停 止時にお 、て膜モジュールを吸収液で充たして停止しなければ、装置立ち上げ時に 透過膜外面の吸収液のぬれが悪ぐ分離効率が落ちるおそれがある。しかしながら、 本発明では透過膜外表面のみに化学的に親水性の表面処理を施したり、物理的処 理によって吸収液との親和力を高める微細凹凸等の処理を行うことにより、装置起動 時の分離効率の低下防止を図ることができる。
[0047] 図 3は、膜'吸収ハイブリッド法を用いた 2段気液分離方式の実施形態であるメタン 分離装置の概略構成を示す。このメタン分離装置は、図 1に示されるメタン分離装置 に、第 2気液分離器 14を追加している点で異なっている。排出路 13は第 2気液分離 器 14に接続され、過剰 C02吸収液に微量含まれるメタンが分離されて回収路 15を 介してメタン回収部 26に回収される。微量メタンが分離された過剰 C02吸収液は、 回収路 18を通して吸収液貯留槽 19に回収される。その他、図 1に示される構成部材 については同一符号で示し、この同一符号で示された構成部材の作用 ·効果は図 1 と全く同様であるから、その詳細説明を省略し、要点のみを説明する。
[0048] 本実施形態では、第 1気液分離器 7にお ヽて分離したメタンを回収した後、膜モジ ユール 10に CO吸収液を供給して二酸ィ匕炭素を分離する。更に膜モジュール 10よ
2
り導出された過剰の CO吸収液を第 2気液分離器 14に導入して、分離メタンを回収
2
し、過剰 CO吸収液を吸収液貯留槽 19に回収して二酸ィ匕炭素を放散させて吸収液
2
と分離する。従って、吸収液の循環過程で効率的にメタンと二酸ィ匕炭素の分離を行 い、高濃度の二酸ィ匕炭素を含有するバイオガスからメタンを高効率に分離精製する ことができる。結果、動力負荷や膜モジュールコストの低減が可能となり、低分離コス トでバイオガス分離'濃縮を行うことができるメタン分離システムを実現することができ る。
[0049] 次に、本発明によるメタン利用システムの実施形態を説明する。
図 4は、本発明に係るメタン分離装置を組み入れたメタン利用システム 100の概略 構成を示す。このメタン利用システム 100は、メタンを燃料にして発電する発電機 52 、 61及び 63を備え、発電機による発生電力はユーザ向けに売電供給可能になって いる。メタンはノィォガス発酵槽 51から供給されるバイオガスから、上記実施形態と 同様のメタン分離装置である膜 ·吸収ハイブリッド装置 50を用いて分離精製される。 発電機 52による発生電力はシステムの各構成要素の駆動にも使用される。膜 ·吸収 ノ、イブリツド装置 50から得られた精製メタンは供給ポンプ 66を通じてカロリー調整器 67と供給路 64を介して発電機 61、 63に供給される。また、精製メタンは供給路 65を 介して液化器 56に供給され、液化メタンが液化メタン貯留槽 57に貯留される。液化メ タンは外部供給路 59を通じて外部供給可能になっている。また、液化メタンは発電 機 61、 63にも供給可能になっている。各供給路には流量調整器 54、 55、 58、 60、 62が設けられている。膜 ·吸収ハイブリッド装置 50には温度調整用の温水供給機構 (図示せず)が設けられており、該温水供給機構による温水供給は、発電機 52により ヒータ加熱制御される貯湯槽 53により行われる。
上記構成のメタン利用システムにおいて、本発明に係るメタン分離装置によって、 高効率に分離精製させたメタンを燃料として、発電機 52、 61及び 63により電力を発 生させて、発生電力を中継器 81、 82と電力線 80を通じてユーザに供給される。
[0050] 上記メタン利用システム 100における運用例として、流量調整器 54、 55、 58、 60、 62の流量制御により液化メタン貯留槽 57の貯留レベル調整を、売電価格 (例えば、 昼 8 : 00〜20 : 00 9円/ kW、夜 20 : 00〜翌 8 : 00 4円/ kW)を勘案して発電機 52、 61、 63の稼働率を最適化することができる。更に以下に具体的稼動例を示す。
[0051] (1)売電価格変動による発電機の稼働率制御例
発電機 52は常時稼動、昼間の8 : 00〜20 : 00は発電機60, 62を稼動して貯留速 度を極力落とす。夜間の 20 : 00〜翌 8 : 00は発電機 60, 62を停止して貯留分を最 大稼動する。
(2)バイオガス発生量の季節変動の吸収制御例
バイオガス発生量は平均気温の変動により少な力もず発生量が変動する。例えば 夏発生量が多ぐ冬発生量は少ないため夏貯留量を多く制御し、冬に夏の貯留分を 利用できるよう制御を行えばょ 、。
(3)バイオガスカロリーの変動吸収制御例 メタン排出側に設けたガス濃度計 68を用いてメタン濃度を計測し、ガスカロリーを演 算する。その演算結果に応じて LPG (液ィ匕石油ガス)タンク 69からの LPGガスをカロ リー調整器 67に供給して精製メタンへ添加し、その添加量制御を行うことにより燃料 品質の安定ィ匕を図ることができる。
[0052] 以上のように、本発明の高効率メタン分離方法に基づきメタンを精製して貯留し、そ の貯留メタンを燃料として供給可能にしたメタン利用システムを構築できる。また、精 製メタンの貯留量を、季節、 日時の時間帯等において効率的に調整して、発電設備 によって発生される電力を外部に安定供給可能にした、メタン燃料による電力供給シ ステムを実現することができる。
[0053] 上記メタン利用システム 100には、メタンの分離精製の際に副生物として生成され る二酸ィ匕炭素を利用する二酸ィ匕炭素利用システム 101が併設されている。図 8にお いて、膜 ·吸収ハイブリッド装置 50から得られた回収二酸ィ匕炭素が回収路 83を介し て、供給ポンプ 70を通じて液化器 72に供給され、二酸化炭素の液化が行われる。液 化二酸ィ匕炭素は液ィ匕ニ酸ィ匕炭素貯留槽 73に貯留される。また、液化二酸化炭素は 液ィ匕ニ酸ィ匕炭素貯留槽 73より、ユーザのノ、ウス栽培用施設 77、 79に供給可能にな つている。また、液ィ匕ニ酸ィ匕炭素は外部供給路 75を通じて外部供給可能になってい る。各供給路には流量調整器 71、 74、 76、 78が設けられている。流量調整器 71、 7 4、 76、 78の調整制御により、液ィ匕ニ酸ィ匕炭素貯留槽 73の残量を監視しながら、光 合成の活発な昼間にはハウス栽培の植物に対して二酸化炭素を、液化二酸化炭素 貯留槽 73及び膜'吸収ノヽイブリツド装置 50から直接供給し、夜間はハウス栽培に対 する供給を停止して液化二酸化炭素貯留槽 73に備蓄する制御を行うことにより、二 酸化炭素の安定供給が可能となる。
[0054] 以上の二酸ィヒ炭素供給システムにより、副産物としての二酸ィヒ炭素の有効利用を 図ることができる。なお、産業用気体として二酸ィ匕炭素供給設備を介して別々の供給 先に供給可能とした複合ガス供給システムの構築も可能となる。
実施例
[0055] 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらの実 施例に限定されるものではない。 [0056] (実施例 1)
実施例 1では、図 1に示された 1段分離方式のメタン分離装置を用いて、混合器に おける 3種類の吸収方式による濃縮メタン濃度の比較試験を行った。
図 5は、混合器における 3種類の吸収方式により二酸ィ匕炭素を吸収させた吸収液 からメタン分離を実施して得られた濃縮メタン濃度の比較図である。縦軸は分離され たメタンの濃縮 CH濃度(%)である。横軸は必要膜面積 (m2Z (NlZmin) )で、処
4
理するバイオガス単位流量当たりの透過膜表面積を表す。更に詳細には、必要膜面 積 =膜モジュールに設置されている透過膜の表面積 [m2]Zバイオガス処理流量 [N1 Zmin]で定義され、必要膜面積の値が小さいほど、吸収液の二酸化炭素吸収性能 がよい、即ちメタン分離性能がよいことを意味する。
3種類の吸収方式とは、混合器によるバイオガスの吸収液への吸収方式を意味し、 充填気泡塔のみによる方式 (參ニ点鎖線、〇一点鎖線)、ェジ クタ一と充填気泡塔 の直列方式 (◊実線)、及びェジェクタ一のみによる方式(口破線)である。実線、破 線、一点鎖線は DEA流量 = 1. 5 (LZmin)で得られた結果であり、二点鎖線は DE A流量 =2. 5 (LZmin)で得られた結果である。混合器で二酸化炭素を吸収させる 方法の違いによって、同じメタン濃度の製品を得るために必要とする膜モジュールの 面積が違うことを表している。
[0057] 図 5から明らかなように、ェジ クタ一と充填気泡塔の直列方式 (◊実線)が、最も吸 収液の二酸ィヒ炭素吸収性能が良いので、その後流の気液分離器でメタンが高純度 、高収率で回収できることがわかる。し力しながら、この方式では装置が大きくなり装 置価格が高くなるのでメリットは少なくなる。また、充填気泡塔単体 (參ニ点鎖線)とェ ジヱクタ一単体(口破線)では、ほとんど同じ二酸ィ匕炭素吸収性能に見える力 次の 点でェジェクタ一の方が優位であると判断できる。
充填気泡塔単体方式は、吸収液の供給量をェジ クタ一単体方式よりも 1. 5倍以 上にしないと必要なメタン濃度が得られないことが分かる。つまり、充填気泡塔単体に よる二点鎖線(參)は DEA流量 = 2. 5 (L/min)で得られた結果であり、他方ェジ クタ一単体による破線(口)は DEA流量 = 1. 5 (LZmin)で得られた結果である。従 つて、ェジ クタ一単体方式が充填気泡塔単体方式よりも、二酸化炭素吸収性能が 良ぐメタン分離が効率よく実施できることが分力つた。ェジヱクタ一単体の気液混相 化は流体力学的効果により自然に実現できるから、動力費を削減できる点でも一層 効果が高レ、と判断できる。従って、ェジェクタ一単体方式は、大掛かりな充填気泡塔 が不要となり、コスト削減できる点でも優れたメタン分離装置を提供できる。
尚、 DEA流量 = 1. 5 (LZmin)の充填気泡塔単体(〇一点鎖線)では、高純度の メタンが得られな力つた。また、このグラフは、メタン分離装置の仕様 (例えば、処理す べきバイオガス流量、含有不純物濃度や回収するメタン流量、濃度など)が確定すれ ば装置の概要 (膜モジュールに必要な透過膜の面積)を算出するのに使用できる。
[0058] (実施例 2〜5)
実施例 2〜5では、図 1に示された 1段分離方式のメタン分離装置を用いて、メタン の分離精製を行った。
表 1〜4は実施例 2〜 5の各実施条件データの詳細である。
[0059] [表 1]
(表 1 )
Figure imgf000021_0001
[0060] [表 2]
(表 2)
Figure imgf000022_0001
4]
(表 4 )
Figure imgf000023_0001
[0063] まず、表 1及び 2は、必要膜面積が 0. 09m2/(NL/min-バイオガス)で膜材質力 SPE
(ポリエチレン)における、中空糸状透過膜の膜透過液流量を変えた場合の、分離メ タン濃度とメタン収率の変化を示している。膜透過液流量は、それぞれ 40. 6 [L/m2 •min]、 28. 4[LZm2'min]で実施した結果であり、メタン収率はほぼ 100%であり 、メタン濃度も、 98. 4%、 98. 2%であった。表 3及び 4は、必要膜面積が 0. lm2/( NL/min-バイオガス)で膜材質力 SPES (ポリエーテルスルホン)における、透過膜の膜 透過液流量を変えた場合の、分離メタン濃度とメタン収率の変化を示している。膜透 過液流量の増加に従い、メタン濃縮濃度が高くなる結果が得られている。吸収液が 吸収した二酸ィ匕炭素を高い効率で放散させるためには、膜面積あたりの透過液流量 を増加させ、減圧操作による吸収液再生効率を上げることが効果的であることを示唆 している。
表 3及び 4の実施例では、メタン回収率がいずれの条件においても 99. 7-99. 9 %である力 メタン濃度は 93. 0%〜98. 2%の範囲にあり、条件により高濃度とはい えない場合がある。一方、表 1及び 2の実施例では、メタン回収率がいずれの条件に おいても 99. 5-99. 8%であり、メタン濃度は 98. 2%〜98. 4%の範囲で推移し、 本実施形態に係るメタン分離装置が高濃度メタンの高効率回収性能を具備すること を示す。
[0064] 図 6は、表 1〜4の各条件で実施した結果を膜透過液流量と、メタン収率及びメタン 濃度との関係で示したものである。図 6より膜透過液流量が 5 [L/m2'min]以上であ れば、メタン収率及びメタン濃度ともに性能を満足することが分かる。
[0065] (実施例 6)
実施例 6では、本発明に係るメタン分離装置を従来のメタン精製方式の装置と、ガ ス分離性、精製コスト等の面で比較した。
表 5は、本発明に係るメタン分離装置をガス分離性、精製コスト等の面で、従来のメ タン精製方式の装置と比較した表である。
[0066] [表 5]
Figure imgf000024_0002
Figure imgf000024_0001
[0067] この表では、原料バイオガスの組成カ タン (60vol%)、二酸化炭素 (40vol%)、 原料ガス流量 100m3 hrの条件下で各メタン精製方式を比較して 1、る。
[0068] 図 7は、膜透過液流量と、メタン分離コスト (従来比)と、吸収液ポンプ動力(kW)と の関係を示すグラフである。膜透過液流量の増加により吸収液ポンプ動力(kW)が 増大するが、本発明の膜 ·吸収ハイブリッドメタン分離方法によれば、従来の分離方 法に比べて膜透過液流量が 15〜60 [L/m2 · min]の場合に分離コストが低減ィ匕さ れている。なお、性能的には図 6より膜透過液流量が 5 [L/m2'min]以上で高効率 にメタンを分離することができるので、実施可能で有効な膜透過液流量は 5〜60 [L/ m2' min]となる。また、図7から20〜40[し !112 ' 111111]では、より顕著な分離コストの 低減化が示されている。
[0069] 表 5及び図 7から、高濃度の二酸ィ匕炭素を含むバイオガスの分離において、本発明 の膜 '吸収ハイブリッドメタン分離方法及びそれを用いたメタン分離装置が低コストで 高効率にメタンをバイオガス力も分離精製できるといえる。
[0070] 本発明は上記実施形態及び実施例に限定されるものではなぐ本発明の技術的思 想を逸脱しない範囲における種々の変形例、設計変更などをその技術的範囲内に 包含するものであることは云うまでもな 、。
産業上の利用可能性
[0071] 本発明によれば、膜 ·吸収ハイブリッド法において、主成分がメタンで高濃度の二酸 化炭素を含むバイオガスのメタン精製処理を高効率でかつ低分離コストで行え、高 純度の精製メタンをエネルギー源として供給できるメタン利用設備及びメタン利用シ ステムを実現することできる。

Claims

請求の範囲
[1] 成分としてメタンと二酸化炭素を含むバイオガスからメタンを分離するメタン分離方 法であって、
二酸ィ匕炭素を吸収する吸収液と前記バイオガスとを混合器により混合して、気液混 相状態の混合液を生成する工程と、
前記混合液を第 1気液分離器に導入して、メタンと、前記吸収液が二酸化炭素を吸 収してなる CO吸収液とに気液分離する工程と、
2
前記第 1気液分離器において分離したメタンを回収する工程と、
複数の中空糸状透過膜を容器内に組み込んだ膜モジュールの供給口より前記透 過膜の内側に前記 CO吸収液を供給して前記透過膜を透過させるとともに、前記透
2
過膜の外側の圧力を前記透過膜の内側より低圧にすることにより、前記 CO
2吸収液 中の二酸化炭素を前記透過膜の外側に放散させて二酸化炭素を分離し、かつ二酸 化炭素が分離された前記 CO吸収液を前記吸収液として回収する工程とを少なくと
2
も有するメタン分離方法。
[2] 前記膜モジュールの排出口から導出された過剰の前記 CO吸収液を第 2気液分
2
離器に導入して、微量のメタンと過剰 CO吸収液に気液分離する工程と、
2
前記第 2気液分離器において分離したメタンを回収する工程と、
前記過剰 CO吸収液を回収する工程とをさらに有する請求項 1に記載のメタン分離
2
方法。
[3] 前記膜モジュールにおける透過膜の充填密度が 30%以下である請求項 1に記載 のメタン分離方法。
[4] 前記膜モジュール中の透過膜が小束状に分割されて配置され、各々の小束は密 集しな 、空間を保って配置され、全体としての充填密度が 30%以下である請求項 3 に記載のメタン分離方法。
[5] 前記混合器は、前記第 1気液分離器の導入口に連通する流通路に設けられたェ ジェクタ一を備え、前記流通路内に前記吸収液の流れを形成することにより負圧を発 生させ、前記バイオガスを前記吸収液に吸引させて前記混合液を生成し、前記吸収 液に二酸ィヒ炭素を効率的に吸収させる請求項 1に記載のメタン分離方法。
[6] 前記混合器は充填気泡塔をさらに備え、前記ェジヱクタ一で生成した前記混合液 を当該充填気泡塔に供給して、二酸化炭素の前記混合液への吸収をさらに促進さ せる請求項 5に記載のメタン分離方法。
[7] 前記吸収液はジ 'エタノールァミンの水溶液であり、その濃度は 0. l〜6molZLで ある請求項 1に記載のメタン分離方法。
[8] 前記膜モジュールにおける、前記透過膜を透過する前記 CO吸収液の透過流量
2
が膜面積あたり 5〜50LZm2 · minである請求項 1に記載のメタン分離方法。
[9] 前記透過膜がポリエチレン力 なる請求項 1に記載のメタン分離方法。
[10] 前記透過膜の膜外面に親水性処理を施した請求項 1に記載のメタン分離方法。
[11] 成分としてメタンと二酸化炭素を含むバイオガスからメタンを分離するメタン分離装 置であって、
二酸ィ匕炭素を吸収する吸収液と前記バイオガスとを混合して気液混相状態の混合 液を生成する混合器と、
前記混合液を導入して、メタンと、吸収液が二酸ィ匕炭素を吸収してなる CO吸収液
2 とに気液分離する第 1気液分離器と、
容器内に組み込んだ複数の中空糸状透過膜からなり、供給口より前記透過膜の内 側に前記 CO吸収液を供給して前記透過膜を透過させるとともに、前記透過膜の外
2
側の圧力を前記透過膜の内側より低圧にすることにより、前記 CO吸収液中の二酸
2
化炭素を前記透過膜の外側に放散させて二酸ィ匕炭素を分離する膜モジュールを備 え、前記膜モジュールにより二酸化炭素が分離された前記 CO吸収液を前記吸収液
2
として回収する第 1分離手段とを少なくとも有するメタン分離装置。
[12] 前記膜モジュールの排出口から導出された過剰の前記 CO吸収液を導入して、微
2
量のメタンと過剰 CO吸収液とに気液分離する第 2気液分離器と、
2
前記過剰 CO吸収液を回収する第 2分離手段とを有し、
2
前記第 1気液分離器及び前記第 2気液分離器により分離したメタンを回収するよう にした請求項 11に記載のメタン分離装置。
[13] 前記膜モジュールにおける透過膜の充填密度が 30%以下である請求項 11に記載 のメタン分離装置。
[14] 前記混合器は、前記第 1気液分離器の導入口に連通する流通路に設けられたェ ジェクタ一と、前記吸収液を導入する手段と、前記バイオガスを導入する手段とを少 なくとも有し、前記流通路内に前記吸収液の流れを形成することにより負圧を発生さ せ、前記バイオガスを前記吸収液に吸引させて前記混合液を生成し、前記吸収液に 二酸ィヒ炭素を効率的に吸収させる請求項 11に記載のメタン分離装置。
[15] 前記吸収液はジ 'エタノールァミンの水溶液であり、その濃度は 0. l〜6molZLで ある請求項 11に記載のメタン分離装置。
[16] 前記膜モジュールにおいては、前記透過膜を透過する前記 CO吸収液の透過流
2
量が膜面積あたり 5〜50LZm2 · minである請求項 11に記載のメタン分離装置。
[17] 前記透過膜がポリエチレン力 なる請求項 11に記載のメタン分離装置。
[18] 請求項 11に記載のメタン分離装置と、メタン貯留槽と、メタン供給路とを備え、 地中から産する生物の嫌気性発酵により生成した、メタンを主成分とする天然ガス、 産業用ならびに家庭用廃棄物の地中埋蔵により自然と嫌気性発酵して産出する地 中発酵ガス、及び人工的に発生させた嫌気性発酵プロセスから排出される人工発酵 ガス力 なる群力 選ばれる少なくとも 1種の前記バイオガスから二酸ィ匕炭素を除去 することにより、メタンを精製して貯留し、その貯留メタンを燃料として供給可能にした メタン禾 IJ用システム。
[19] 前記貯留メタンを燃料として発電する発電設備と、
季節、稼動期間あるいは時間帯に応じて精製メタンの貯留量を調整する貯留制御 手段とをさらに備え、
前記発電設備によって発生される電力を外部に供給可能にした請求項 18に記載 のメタン利用システム。
[20] 前記メタン精製の際に同時に分離される二酸ィ匕炭素をハイブリッド供給可能にした 二酸化炭素供給設備をさらに備えた請求項 18に記載のメタン利用システム。
PCT/JP2007/057564 2006-04-04 2007-04-04 メタン分離方法、メタン分離装置及びメタン利用システム WO2007116908A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07741000A EP2009080A4 (en) 2006-04-04 2007-04-04 PROCESS FOR SEPARATION OF METHANE, METHANE SEPARATOR AND METHANE USE SYSTEM
CN2007800118586A CN101415803B (zh) 2006-04-04 2007-04-04 甲烷分离方法、甲烷分离装置以及甲烷利用系统
US12/295,780 US20090156875A1 (en) 2006-04-04 2007-04-04 Methane separation method, methane separation apparatus, and methane utilization system
US14/031,261 US20140088335A1 (en) 2006-04-04 2013-09-19 Methane separation method, methane separation apparatus, and methane utilization system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006103665 2006-04-04
JP2006-103665 2006-04-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/295,780 A-371-Of-International US20090156875A1 (en) 2006-04-04 2007-04-04 Methane separation method, methane separation apparatus, and methane utilization system
US14/031,261 Continuation US20140088335A1 (en) 2006-04-04 2013-09-19 Methane separation method, methane separation apparatus, and methane utilization system

Publications (1)

Publication Number Publication Date
WO2007116908A1 true WO2007116908A1 (ja) 2007-10-18

Family

ID=38581198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057564 WO2007116908A1 (ja) 2006-04-04 2007-04-04 メタン分離方法、メタン分離装置及びメタン利用システム

Country Status (4)

Country Link
US (2) US20090156875A1 (ja)
EP (1) EP2009080A4 (ja)
CN (1) CN101415803B (ja)
WO (1) WO2007116908A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010014773A1 (en) * 2008-07-31 2010-02-04 Novozymes A/S Modular reactor and process for carbon dioxide extraction
WO2010136493A1 (en) 2009-05-28 2010-12-02 Novartis Ag Substituted aminopropionic derivatives as neprilysin inhibitors
EP2292318A1 (en) * 2008-05-30 2011-03-09 DIC Corporation Process for manufacturing deaerating hollow fiber module
WO2011061271A1 (en) 2009-11-20 2011-05-26 Novartis Ag Substituted carbamoylmethylamino acetic acid derivatives as novel nep inhibitors
WO2012065956A1 (en) 2010-11-16 2012-05-24 Novartis Ag Substituted amino bisphenyl pentanoic acid derivatives as nep inhibitors
WO2012065953A1 (en) 2010-11-16 2012-05-24 Novartis Ag Substituted carbamoylcycloalkyl acetic acid derivatives as nep inhibitors
CN102659196A (zh) * 2012-05-28 2012-09-12 天津壹帆水务有限公司 一种节能蒸发工艺及其系统
WO2013008164A2 (en) 2011-07-08 2013-01-17 Novartis Ag Method of treating atherosclerosis in high triglyceride subjects
WO2013046975A1 (ja) * 2011-09-30 2013-04-04 富士フイルム株式会社 ガス分離膜、その製造方法、それを用いたガス分離膜モジュール
WO2014081702A2 (en) 2012-11-20 2014-05-30 Novartis Ag Synthetic linear apelin mimetics for the treatment of heart failure
WO2014126979A1 (en) 2013-02-14 2014-08-21 Novartis Ag Substituted bisphenyl butanoic phosphonic acid derivatives as nep (neutral endopeptidase) inhibitors
WO2015013169A2 (en) 2013-07-25 2015-01-29 Novartis Ag Bioconjugates of synthetic apelin polypeptides
WO2015013168A1 (en) 2013-07-25 2015-01-29 Novartis Ag Cyclic polypeptides for the treatment of heart failure
EP3048100A1 (en) 2009-05-28 2016-07-27 Novartis AG Substituted aminobutyric derivatives as neprilysin inhibitors
WO2016116842A1 (en) 2015-01-23 2016-07-28 Novartis Ag Synthetic apelin fatty acid conjugates with improved half-life
WO2018073788A1 (en) 2016-10-21 2018-04-26 Novartis Ag Naphthyridinone derivatives and their use in the treatment of arrhythmia
WO2019154416A1 (en) 2018-02-07 2019-08-15 Novartis Ag Substituted bisphenyl butanoic ester derivatives as nep inhibitors
WO2020110009A1 (en) 2018-11-27 2020-06-04 Novartis Ag Cyclic tetramer compounds as proprotein convertase subtilisin/kexin type 9 (pcsk9) inhibitors for the treatment of metabolic disorders
WO2020110008A1 (en) 2018-11-27 2020-06-04 Novartis Ag Cyclic pentamer compounds as proprotein convertase subtilisin/kexin type 9 (pcsk9) inhibitors for the treatment of metabolic disorder
WO2020110011A1 (en) 2018-11-27 2020-06-04 Novartis Ag Cyclic peptides as proprotein convertase subtilisin/kexin type 9 (pcsk9) inhibitors for the treatment of metabolic disorders
WO2023084449A1 (en) 2021-11-12 2023-05-19 Novartis Ag Diaminocyclopentylpyridine derivatives for the treatment of a disease or disorder
WO2023094965A1 (en) 2021-11-23 2023-06-01 Novartis Ag Naphthyridinone derivatives for the treatment of a disease or disorder

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016015A1 (de) * 2009-04-02 2010-10-07 Forschungszentrum Jülich GmbH Vorrichtung und Verfahren zur Entfernung von Kohlendioxid (CO2) aus dem Rauchgas einer Feuerungsanlage nach der Energieumwandlung
SE533578C2 (sv) 2009-04-14 2010-10-26 Bioprocess Control Sweden Ab Anordning för mätning av ett ultralågt gasflöde och system för mätning av biometangasflöde och biogasflöde med anordningen
JP5526055B2 (ja) 2010-02-10 2014-06-18 富士フイルム株式会社 ガス分離膜、ガス分離膜の製造方法、ガス混合物の分離方法、ガス分離膜モジュール及び気体分離装置
US8992668B2 (en) 2010-03-29 2015-03-31 Fujifilm Corporation Gas separation membrane and method for producing the same, and method for separating gas mixture, gas separation membrane module and gas separation apparatus using the same
US8814989B2 (en) * 2010-05-18 2014-08-26 Basf Se Process for removing carbon dioxide (CO2) from a cycle gas system
US9339760B2 (en) 2010-06-11 2016-05-17 Dvo, Inc. Methods and apparatuses for removal of hydrogen sulfide and carbon dioxide from biogas
ITVR20100205A1 (it) * 2010-10-27 2012-04-28 Lasi Srl Sistema di trattamento di gas
JP5693368B2 (ja) * 2011-05-13 2015-04-01 日立造船株式会社 二酸化炭素回収方法における二酸化炭素吸収液の再生方法
DE102011102923A1 (de) * 2011-05-31 2012-12-06 Ingenieurbüro Buse Gmbh Anlage und Verfahren zur Aufbereitung von Biogas
WO2013036859A1 (en) * 2011-09-07 2013-03-14 Carbon Engineering Limited Partnership Target gas capture
EP2570164B1 (de) * 2011-09-16 2013-10-23 MT-Biomethan GmbH Verfahren und Vorrichtung zur absorptiven Entfernung von Kohlendioxid aus Biogas
EP2638951A1 (de) 2012-03-14 2013-09-18 Artan Holding Ag Kombinierte Gasaufbereitung
EP2695946A1 (de) 2012-08-09 2014-02-12 Methapower Biogas GmbH Verfahren und Anlage zur Herstellung von Dimethylether
US8999036B2 (en) * 2012-09-26 2015-04-07 Stearns Conrad Schmidt Consulting Engineers, Inc. Method for production of a compressed natural gas equivalent from landfill gas and other biogases
WO2014150196A1 (en) * 2013-03-15 2014-09-25 Dvo, Inc. Methods and apparatuses for removal of hydrogen sulfide and carbon dioxide from biogas
US9937464B2 (en) * 2013-05-10 2018-04-10 Arstroma Co., Ltd. Device for separating carbon dioxide using silicone separation film and method for manufacturing same
US9687773B2 (en) 2014-04-30 2017-06-27 Honeywell International Inc. Fuel deoxygenation and fuel tank inerting system and method
EP2965800B1 (de) * 2014-07-08 2019-01-30 Airbus Defence and Space GmbH Verfahren und Vorrichtung zu einer Gasaufbereitung
DE102014011529A1 (de) 2014-08-08 2016-02-11 Städtische Werke Aktiengesellschaft Verfahren, Vorrichtung und Verwendung zur selektiven Entgasung aus Waschflüssigkeit
US9656187B2 (en) 2014-11-12 2017-05-23 Honeywell International Inc. Fuel deoxygenation system contactor-separator
US9834315B2 (en) 2014-12-15 2017-12-05 Honeywell International Inc. Aircraft fuel deoxygenation system
US9897054B2 (en) 2015-01-15 2018-02-20 Honeywell International Inc. Centrifugal fuel pump with variable pressure control
EP3344368B1 (en) * 2015-09-02 2021-09-15 ExxonMobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
US10599169B2 (en) * 2016-05-04 2020-03-24 The Agricultural Gas Company System and method for optimizing carbon dioxide delivery to crops during high temperature periods
KR20190020089A (ko) 2016-08-08 2019-02-27 다이요 닛산 가부시키가이샤 기액 분리 장치
CN108070414A (zh) * 2016-11-07 2018-05-25 高资明 沼气纯化系统
US10179310B2 (en) * 2017-03-31 2019-01-15 Mitsubishi Heavy Industries, Ltd. Natural-gas purification apparatus
US10589215B2 (en) * 2017-09-21 2020-03-17 Air Liquide Advanced Technologies U.S. Llc Production of biomethane using multiple types of membrane
US11471825B2 (en) * 2018-03-14 2022-10-18 Gas Technology Institute Membrane absorption process for CO2 capture
WO2020067512A1 (ja) * 2018-09-27 2020-04-02 Dic株式会社 脱気システム、液体の脱気方法、脱気モジュール、脱気システムの製造方法、及び天然資源の産生方法
CN109126323A (zh) * 2018-10-17 2019-01-04 苏州名列膜材料有限公司 一种气液分离元件、气液分离组件以及气液分离器
PT117138A (pt) 2021-03-23 2022-09-23 Univ Do Porto Reator adsortivo cíclico e método para valorização de misturas de co2/ch4
CN113881470B (zh) * 2021-09-30 2024-04-05 深圳市英策科技有限公司 一种从含有甲烷的混合物中获得液态甲烷的设备及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498401U (ja) * 1991-01-18 1992-08-26
JP2001293340A (ja) 2000-04-17 2001-10-23 Tosoh Corp 酸性ガス用透過分離膜
JP2002363581A (ja) * 2001-06-06 2002-12-18 Tsukishima Kikai Co Ltd メタン濃縮装置
JP2003204853A (ja) 2002-01-15 2003-07-22 Bantekku:Kk 祭典軒花ホルダー
WO2005089906A1 (ja) * 2004-03-19 2005-09-29 Tsukishima Kikai Co., Ltd. メタンガス濃縮装置
JP2005270814A (ja) 2004-03-25 2005-10-06 Research Institute Of Innovative Technology For The Earth ガス分離方法及び装置
JP2006103665A (ja) 2004-09-08 2006-04-20 Toyoda Gosei Co Ltd 閉止体および燃料タンクの燃料供給装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995888A (en) * 1988-07-05 1991-02-26 Texaco Inc. Separation of gas from solvent by membrane technology
EP1021234A1 (en) * 1997-09-15 2000-07-26 Den Norske Stats Oljeselskap As Fluid separation system
KR19990040319A (ko) * 1997-11-17 1999-06-05 성재갑 고분자 표면의 이온 입자 조사에 의한 미세 기공 막의 제조
FR2814088B1 (fr) * 2000-09-15 2002-12-13 Centre Nat Rech Scient Membranes pour la separation selective gazeuse
CN1713949A (zh) * 2002-11-21 2005-12-28 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 膜分离方法
NL1026537C2 (nl) * 2004-07-01 2006-01-03 Tno Membraangasscheiding.
DE102004044645B3 (de) * 2004-09-13 2006-06-08 RÜTGERS Carbo Tech Engineering GmbH Umweltschonendes Verfahren zur Gewinnung von Bioerdgas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498401U (ja) * 1991-01-18 1992-08-26
JP2001293340A (ja) 2000-04-17 2001-10-23 Tosoh Corp 酸性ガス用透過分離膜
JP2002363581A (ja) * 2001-06-06 2002-12-18 Tsukishima Kikai Co Ltd メタン濃縮装置
JP2003204853A (ja) 2002-01-15 2003-07-22 Bantekku:Kk 祭典軒花ホルダー
WO2005089906A1 (ja) * 2004-03-19 2005-09-29 Tsukishima Kikai Co., Ltd. メタンガス濃縮装置
JP2005270814A (ja) 2004-03-25 2005-10-06 Research Institute Of Innovative Technology For The Earth ガス分離方法及び装置
JP2006103665A (ja) 2004-09-08 2006-04-20 Toyoda Gosei Co Ltd 閉止体および燃料タンクの燃料供給装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAAKI TERAMOTO ET AL.: "Separation and enrichment of carbon dioxide by capillary membrane module with permeation of carrier solution", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 30, 2003, pages 215 - 227
See also references of EP2009080A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292318A1 (en) * 2008-05-30 2011-03-09 DIC Corporation Process for manufacturing deaerating hollow fiber module
US8449706B2 (en) 2008-05-30 2013-05-28 Dic Corporation Process for manufacturing deaerating hollow fiber module
EP2292318A4 (en) * 2008-05-30 2012-07-04 Dainippon Ink & Chemicals METHOD FOR MANUFACTURING HOLLOW FIBER MODULE FOR DEAERATION
WO2010014773A1 (en) * 2008-07-31 2010-02-04 Novozymes A/S Modular reactor and process for carbon dioxide extraction
EP2594557A1 (en) 2009-05-28 2013-05-22 Novartis AG Substituted aminopropionic derivatives as neprilysin inhibitors
WO2010136493A1 (en) 2009-05-28 2010-12-02 Novartis Ag Substituted aminopropionic derivatives as neprilysin inhibitors
EP3048100A1 (en) 2009-05-28 2016-07-27 Novartis AG Substituted aminobutyric derivatives as neprilysin inhibitors
EP2594556A1 (en) 2009-05-28 2013-05-22 Novartis AG Substituted aminopropionic derivatives as neprilysin inhibitors
WO2011061271A1 (en) 2009-11-20 2011-05-26 Novartis Ag Substituted carbamoylmethylamino acetic acid derivatives as novel nep inhibitors
EP2735561A1 (en) 2009-11-20 2014-05-28 Novartis AG Substituted carbamoylmethylamino acetic acid derivatives as novel NEP inhibitors
WO2012065953A1 (en) 2010-11-16 2012-05-24 Novartis Ag Substituted carbamoylcycloalkyl acetic acid derivatives as nep inhibitors
WO2012065956A1 (en) 2010-11-16 2012-05-24 Novartis Ag Substituted amino bisphenyl pentanoic acid derivatives as nep inhibitors
WO2013008164A2 (en) 2011-07-08 2013-01-17 Novartis Ag Method of treating atherosclerosis in high triglyceride subjects
WO2013046975A1 (ja) * 2011-09-30 2013-04-04 富士フイルム株式会社 ガス分離膜、その製造方法、それを用いたガス分離膜モジュール
CN102659196A (zh) * 2012-05-28 2012-09-12 天津壹帆水务有限公司 一种节能蒸发工艺及其系统
WO2014081702A2 (en) 2012-11-20 2014-05-30 Novartis Ag Synthetic linear apelin mimetics for the treatment of heart failure
WO2014126979A1 (en) 2013-02-14 2014-08-21 Novartis Ag Substituted bisphenyl butanoic phosphonic acid derivatives as nep (neutral endopeptidase) inhibitors
WO2015013169A2 (en) 2013-07-25 2015-01-29 Novartis Ag Bioconjugates of synthetic apelin polypeptides
WO2015013168A1 (en) 2013-07-25 2015-01-29 Novartis Ag Cyclic polypeptides for the treatment of heart failure
WO2016116842A1 (en) 2015-01-23 2016-07-28 Novartis Ag Synthetic apelin fatty acid conjugates with improved half-life
WO2018073788A1 (en) 2016-10-21 2018-04-26 Novartis Ag Naphthyridinone derivatives and their use in the treatment of arrhythmia
EP4141006A1 (en) 2016-10-21 2023-03-01 Novartis AG Naphthyridinone derivatives and their use in the treatment of arrhythmia
EP3778557A1 (en) 2018-02-07 2021-02-17 Novartis AG Combinations comprising a substituted biphenylbutanoic ester derivative as nep inhibitor and valsartan
WO2019154416A1 (en) 2018-02-07 2019-08-15 Novartis Ag Substituted bisphenyl butanoic ester derivatives as nep inhibitors
WO2020110008A1 (en) 2018-11-27 2020-06-04 Novartis Ag Cyclic pentamer compounds as proprotein convertase subtilisin/kexin type 9 (pcsk9) inhibitors for the treatment of metabolic disorder
WO2020110011A1 (en) 2018-11-27 2020-06-04 Novartis Ag Cyclic peptides as proprotein convertase subtilisin/kexin type 9 (pcsk9) inhibitors for the treatment of metabolic disorders
WO2020110009A1 (en) 2018-11-27 2020-06-04 Novartis Ag Cyclic tetramer compounds as proprotein convertase subtilisin/kexin type 9 (pcsk9) inhibitors for the treatment of metabolic disorders
WO2023084449A1 (en) 2021-11-12 2023-05-19 Novartis Ag Diaminocyclopentylpyridine derivatives for the treatment of a disease or disorder
WO2023094965A1 (en) 2021-11-23 2023-06-01 Novartis Ag Naphthyridinone derivatives for the treatment of a disease or disorder

Also Published As

Publication number Publication date
EP2009080A1 (en) 2008-12-31
EP2009080A4 (en) 2010-05-26
CN101415803A (zh) 2009-04-22
CN101415803B (zh) 2012-10-24
US20140088335A1 (en) 2014-03-27
US20090156875A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP5061328B2 (ja) メタン分離方法、メタン分離装置及びメタン利用システム
WO2007116908A1 (ja) メタン分離方法、メタン分離装置及びメタン利用システム
Aghel et al. A review of recent progress in biogas upgrading: With emphasis on carbon capture
CN104837541B (zh) 用于从气体中回收二氧化碳的方法和系统
US20170283292A1 (en) Multistage Membrane Separation and Purification Process and Apparatus for Separating High Purity Methane Gas
US8568512B2 (en) Method and system for methane separation and purification from a biogas
CA2872873C (en) Plant and process for treating methane-containing gas from natural sources
AU2009254260A1 (en) Method and system for purifying biogas for extracting methane
JP2008255209A (ja) メタンガスの濃縮方法および装置
KR20140049702A (ko) 미세 다공성 중공사막을 이용한 바이오 가스로부터의 메탄 가스 고순도 정제 방법 및 장치
Kasikamphaiboon et al. Simultaneous removal of CO 2 and H 2 S using MEA solution in a packed column absorber for biogas upgrading.
AU2017369967B2 (en) Carbon dioxide capture device and method
JP5804860B2 (ja) 水素製造装置
JP4486606B2 (ja) 二酸化炭素ガス分離装置及び二酸化炭素ガス分離方法
Cai et al. Improving gas absorption efficiency using a novel dual membrane contactor
KR20170098385A (ko) 바이오 가스로부터 고순도 메탄 가스 정제 장치 및 이를 이용한 고순도 메탄 정제 방법
KR101571479B1 (ko) 바이오가스 정제용 막 접촉 시스템 및 막 접촉 방법
JP2007253105A (ja) 気体放散構造及び気液分離装置
KR101717480B1 (ko) 병렬식 psa 및 멤브레인 기반의 바이오 가스 정제를 위한 유량 제어방법
JP2014188405A (ja) 二酸化炭素分離装置及び二酸化炭素分離方法
JP2005517622A (ja) 水素リッチの供給ガスから水素を製造するための方法および装置
Yu et al. Hybrid CO2 capture processes consisting of membranes: A technical and techno-economic review
JP2007254229A (ja) 水素製造方法および水素製造装置
CN106345232A (zh) 两段式脱除生物质气中硅氧烷的方法和装置
JP4357882B2 (ja) ガス分離方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780011858.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12295780

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007741000

Country of ref document: EP