JP5804860B2 - 水素製造装置 - Google Patents

水素製造装置 Download PDF

Info

Publication number
JP5804860B2
JP5804860B2 JP2011197502A JP2011197502A JP5804860B2 JP 5804860 B2 JP5804860 B2 JP 5804860B2 JP 2011197502 A JP2011197502 A JP 2011197502A JP 2011197502 A JP2011197502 A JP 2011197502A JP 5804860 B2 JP5804860 B2 JP 5804860B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
heat
hydrogen
reformed gas
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011197502A
Other languages
English (en)
Other versions
JP2012176879A (ja
Inventor
一彦 村田
一彦 村田
平中 幸男
幸男 平中
弘 真野
弘 真野
孝文 富岡
孝文 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Osaka Gas Co Ltd
Taiyo Nippon Sanso Corp
Original Assignee
Research Institute of Innovative Technology for Earth
Osaka Gas Co Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Osaka Gas Co Ltd, Taiyo Nippon Sanso Corp filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2011197502A priority Critical patent/JP5804860B2/ja
Publication of JP2012176879A publication Critical patent/JP2012176879A/ja
Application granted granted Critical
Publication of JP5804860B2 publication Critical patent/JP5804860B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02A50/2342

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、炭化水素を含む原料を水蒸気改質して水素と二酸化炭素とを含む改質ガスにする改質部を備え、
前記改質ガスを二酸化炭素を含む排ガスと水素とに分離して水素を製造する水素分離部を備え、
前記排ガスを二酸化炭素吸収液に接触させて二酸化炭素を吸収する吸収部と、二酸化炭素吸収液に吸収された二酸化炭素を分離回収する分離回収部とを有するとともに、前記吸収部で二酸化炭素を吸収した二酸化炭素吸収液と、前記分離回収部で二酸化炭素を分離回収された二酸化炭素吸収液との間で熱交換を行う熱交換部を有する二酸化炭素回収部とを備えた水素製造装置に関する。
二酸化炭素は温室効果により地球の温暖化をもたらすため、上記構成を有する水素製造装置においても、二酸化炭素を回収することが望まれている。
排ガス中から二酸化炭素を分離して回収する方法として、充填材を充填した吸収塔で排ガスと吸収液を向流接触させて排ガス中の二酸化炭素を吸収液に吸収させ、その吸収液を気液分離部に導き、常圧下で加熱することによって吸収液から二酸化炭素を分離させて回収する方法が提案されている(特許文献1参照)。このような水素製造装置では、二酸化炭素用の吸収液としてはモノエタノールアミン溶液などのアルカノールアミン溶液が使用される。吸収液としてモノエタノールアミン溶液を使用した場合、気液分離部における加熱温度は120〜140℃とすることが必要であるとされている。
すなわち、従来行なわれている二酸化炭素の回収方法は、二酸化炭素を吸収液に吸収させた後、常圧下で加熱して分離する。そのため、気液分離のために高温加熱蒸気などの上質の熱エネルギーを必要とする問題があった。
そこで、特許文献2に示すように、水素分離部からの排ガスを、直接二酸化炭素吸収液に接触させて二酸化炭素を除去する工程を行い、排ガスのもつ熱エネルギーを有効に利用しながら、省エネルギーで二酸化炭素を回収することが考えられている。
特開平8−10565号公報 特開2007−254229号公報
ところが、上述の技術においても、二酸化炭素回収部において二酸化炭素をより効率よく回収するためには二酸化炭素吸収液を加熱する必要があるなど、省エネルギーの観点からさらに改善が求められている。
したがって、本発明は、排ガスから、二酸化炭素をエネルギー効率よく分離することができ、省エネルギーな水素製造装置を提供することを目的とする。
〔構成1〕
上記目的を達成するための本発明の水素製造装置は、
炭化水素を含む原料を水蒸気改質して水素と二酸化炭素とを含む改質ガスに改質する改質部を備え、
前記改質部で得られた前記改質ガスを二酸化炭素を含む排ガスと水素とに分離して水素を製造する水素分離部を備え、
前記改質ガス中に含まれる二酸化炭素を二酸化炭素吸収液に接触させて二酸化炭素を吸収する吸収部と、二酸化炭素吸収液に吸収された二酸化炭素を分離回収する分離回収部とを有するとともに、前記吸収部で二酸化炭素を吸収した二酸化炭素吸収液と、前記分離回収部で二酸化炭素を分離回収された二酸化炭素吸収液との間で熱交換を行う熱交換部を有する二酸化炭素回収部とを備えた水素製造装置であって、
前記改質ガスが前記改質部から排出される第一部位において改質ガスの保有する熱を、
前記熱交換部で熱交換済みの二酸化炭素吸収液に、
前記吸収部から前記分離回収部に移送される移送部位において供給する
第一熱回収手段を備えるとともに、
冷却塔を有するとともに、前記冷却塔から熱媒体を、前記改質ガスが前記第一部位から下流側に移送される第二部位をバイパスして、前記分離回収部から前記吸収部に二酸化炭素吸収液が返送される返送部位に供給して前記冷却塔に循環供給する第一循環路と、前記冷却塔から熱媒体を、前記第二部位に供給し、前記返送部位をバイパスして前記冷却塔に循環供給する第二循環路とを有する第二熱回収手段を備え、
前記第二熱回収手段は、前記第二部位における改質ガスの保有する熱を、前記返送部位における前記熱交換済みの二酸化炭素吸収液に供給可能に、前記第二部位における改質ガス、および、前記返送部位における二酸化炭素吸収液を冷却する点にある。
〔作用効果1〕
上記構成によると、前記改質部にて、炭化水素を含む原料を水蒸気改質して水素と二酸化炭素とを含む改質ガスを生成することができるとともに、前記水素分離部にて、生成した改質ガスから水素を得ることができる。さらに、例えば、その水素をオンサイトで燃料電池等の水素消費装置に供給することができる。このとき、改質ガスには水素と共に二酸化炭素が含まれており、水素分離部に供給された場合、水素分離部からの排ガスにも二酸化炭素が含まれている。
この改質ガスを、前記吸収部において、二酸化炭素吸収液に接触させて二酸化炭素を吸収すると、前記排ガス中の二酸化炭素を選択的に二酸化炭素吸収液に吸収させて取り出すことができる。二酸化炭素を吸収した二酸化炭素吸収液は、分離回収部において、吸収された二酸化炭素を二酸化炭素吸収液外に放散させることにより、純度の高められた二酸化炭素として回収することができる。ここで、前記吸収部においては、改質ガス中の可燃性の原料が濃縮される。濃縮された可燃性の原料は、前記改質器を加熱するために燃焼させて用いるなど、別途消費することができる。
また、前記吸収部で二酸化炭素を吸収して温度上昇した二酸化炭素吸収液と、前記分離回収部において二酸化炭素を分離回収して温度低下した二酸化炭素吸収液とは、前記熱交換部において熱交換し、前記吸収部から前記分離回収部に移送される二酸化炭素吸収液は、加熱されるとともに、前記分離回収部から前記吸収部に返送される二酸化炭素吸収液は冷却され、二酸化炭素の分離回収効率の向上が図られる。
ここで、さらに、前記分離回収部において二酸化炭素の分離回収効率を高めるには、前記吸収部から前記分離回収部に移送される二酸化炭素吸収液を昇温することが二酸化炭素の溶解度を下げるうえで好ましい。このとき、第一熱回収手段により、前記改質ガスが前記改質部から排出される第一部位において改質ガスの保有する熱を、前記熱交換部で熱交換済みの二酸化炭素吸収液に、前記吸収部から前記分離回収部に移送される移送部位において供給すると、従来は前記改質部から前記水素分離部に移送される際に、前記改質ガスから無駄に放熱されていた熱を二酸化炭素吸収液の昇温に有効利用して前記分離回収部における二酸化炭素回収効率を向上させ、さらに省エネルギーな装置とすることができる。
また、冷却塔を有するとともに、前記冷却塔から熱媒体を、前記改質ガスが前記第一部位から下流側に移送される第二部位をバイパスして、前記分離回収部から前記吸収部に二酸化炭素吸収液が返送される返送部位に供給して前記冷却塔に循環供給する第一循環路と、前記冷却塔から熱媒体を、前記第二部位に供給し、前記返送部位をバイパスして前記冷却塔に循環供給する第二循環路とを有する第二熱回収手段を備える構成としてあるから、
前記冷却塔は前記第二部位における余剰熱を放熱により温度調整することができ、前記分離回収部から前記吸熱部に返送される二酸化炭素吸収液に対する熱供給が過剰になった場合であっても、第二循環路に熱媒体を前記返送部位をバイパスして循環させて、前記第二部位の改質ガス温度を、前記水素分離部の温度が、水素分離に適した温度になるように設定することができる。また、このとき、第一循環路に熱媒体を前記第二部位をバイパスして循環させて、前記二酸化炭素吸収液の温度を、前記二酸化炭素回収部における吸収部の温度を、二酸化炭素吸収に適した温度に設定することができる温度に設定することができるようになる。
また、前記第二熱回収手段は、
前記第二部位における改質ガスの保有する熱を、前記返送部位における前記熱交換済みの二酸化炭素吸収液に供給可能に、前記第二部位における改質ガス、および、前記返送部位における二酸化炭素吸収液を冷却するから、
前記改質ガスが前記第一部位から下流側に移送される第二部位における改質ガスの保有する熱を、前記熱交換済みの二酸化炭素吸収液に、前記分離回収部から前記吸収部に返送される返送部位において供給することでさらに有効利用し、前記吸熱部で二酸化炭素吸収液が、前記排ガス中の二酸化炭素を吸収するのに適した温度を設定することができるようになる。
〔構成2〕
上記構成において、前記改質ガス中に含まれる二酸化炭素として、水素分離部を経由した前記排ガスに含まれる二酸化炭素を対象とし、
前記第一部位を、前記改質ガスが前記改質部から水素分離部に移送される部位とすることができる。
〔作用効果2〕
このように構成することにより、改質ガスは、水素分離部を経て二酸化炭素濃度の高められた排ガスとして二酸化炭素回収部に供給され、二酸化炭素を回収することができるので、効率良く二酸化炭素を分離回収することができる。
〔構成3〕
また、上記構成において、前記改質ガス中に含まれる二酸化炭素として、前記改質部から排出され、水素分離部に供給される前の改質ガス中に含まれる二酸化炭素を対象とし、
前記第一部位を、前記改質ガスが前記改質部から吸収部に移送される部位とすることができる。
〔作用効果3〕
このように構成することにより、二酸化炭素回収部に供給された改質ガスは、二酸化炭素の除去された、水素純度の高いものとなって、水素分離部に供給されるから、水素分離部における分離負荷が少なく、水素分離部において得られる水素の純度を向上したり、水素分離部を容量の小さなものとしたりできる。
〔構成4〕
前記改質部が、改質ガス中の一酸化炭素ガスを部分酸化して二酸化炭素に変換する一酸化炭素変成器を備える請求項1〜3のいずれか一項に記載の水素製造装置。
〔作用効果4〕
上記構成において、改質部から得られる改質ガスは、改質により得られた水素、未反応の原料ガス、副生成物の一酸化炭素および二酸化炭素を含有しているが、二酸化炭素成分を除去することにより、改質器で燃料として利用する際の熱量を高める、水素分離部における負荷を低減する、などの効果を発揮する。この効果は、一酸化炭素成分を除去することによっても達成することができ、一酸化炭素成分を除去するためには、改質ガス中の一酸化炭素ガスを部分酸化して二酸化炭素に変換する一酸化炭素変成器を設け、変換されたに酸化炭素を二酸化炭素回収部において回収することができる。
〔構成5〕
また、前記構成1に加えて、前記第一熱回収手段および前記第二熱回収手段は共通冷却塔を備えるとともに、熱媒体を前記冷却塔から前記第一部位と前記熱交換部と前記分離回収部との間の二酸化炭素吸収液の移送部位との間に循環供給する主循環路を備えて前記第一熱回収手段を構成するとともに、前記返送部位に熱媒体を前記第二部位をバイパスして循環供給する第一循環路と、前記冷却塔から前記第二部位に熱媒体を前記返送部位をバイパスして循環供給する第二循環路とを備えて前記第二熱回収手段を構成することもできる。
〔作用効果5〕
このように構成すると、前記共通冷却塔は、前記第一熱回収手段に対しては熱媒体の供給用タンクとして機能するとともに、前記第二熱回収手段に対しては、前記第一、第二循環路を供給することにより、前記改質ガスの保有する余剰熱を、前記二酸化炭素回収部において有効に利用することができるようになった。
また、このような構成を実現するにあたって、二酸化炭素回収部をもたない水素製造装置に二酸化炭素回収部を追加設置するような場合にも、従来は前記第一、第二部位において放熱の目的のみで設置されていた冷却塔を温度調整を行うために有効活用して前記二酸化炭素回収部の二酸化炭素回収効率の向上のために利用することができるようになり、既存の設備を有効利用しつつ、水素製造設備を二酸化炭素を回収可能な付加価値の高いものに改変することができるので好都合である。
したがって、前記二酸化炭素回収部において外部から供給しなければならない熱量を削減でき、省エネルギーで二酸化炭素を回収可能な水素製造装置を提供することができるようになった。
本発明の水素製造装置のフロー図 分離回収部の概略図 本発明の別実施例(1)における水素製造装置のフロー図 本発明の別実施例(2)における水素製造装置のフロー図 本発明の別実施例(2)における異なる水素製造装置のフロー図
以下に、本発明の水素製造装置を説明する。尚、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。
〔水素製造装置〕
水素製造装置は、図1に示すように、都市ガス等の原料炭化水素を改質して水素を含有する改質ガスとする改質部1と、改質部1を経た改質ガスから水素を分離する水素分離部2と、水素分離部2で水素が分離された後の排ガスから二酸化炭素を分離回収する二酸化炭素回収部3とを備える。
〔改質部〕
前記改質部1としては、原料炭化水素に水蒸気を混合し、加熱して改質ガスを得るものであれば公知の反応炉を使用できる。改質部1には、供給される原料炭化水素を脱硫する脱硫器11と、脱硫後の原料炭化水素に水蒸気(純水)を混合し加熱して改質ガスを得る改質器12と、改質器12からの改質ガス中の一酸化炭素を水蒸気と反応させて水素を得るCO変成器13とを備える。ここで、改質器12には改質触媒が充填されており、その改質触媒としては、ニッケル系触媒を主として用いることができる。また、改質器12には、炭化水素ガスと水蒸気との混合ガスを供給する供給路L1および生成した改質ガスを取り出す改質ガス路L2の他に、改質器12に充填される触媒を加熱するための燃料ガスが供給される燃料ガス供給路L3が接続されている。さらに、その燃料ガス供給路L3とは別に、後述の二酸化炭素回収部3からの排ガスを燃料ガスとして供給する排ガス供給路L4と、改質器12で燃焼したガスが燃焼排ガスとして排出されるための排ガス路L5が接続されている。
原料炭化水素としては、都市ガスの他に、ガス状炭化水素から最終沸点240℃までの重質ナフサなどを用いることもできる。この原料炭化水素は、脱硫器11を介して前記改質器12に供給される。前記脱硫器11には、Ni−Mo系、ZnO系等の脱硫触媒が充填されており、原料ガス中の付臭剤等の硫黄成分を除去し、改質器12に充填された改質触媒12aを劣化させにくい性状にして改質器12に供給される。
改質器12では、原料炭化水素の水蒸気改質反応が生起し、発生する改質ガスは、改質器12に接続された改質ガス路L2を通過して、CO変成器13に供給される。
CO変成器13では、改質器12からの改質ガス中の一酸化炭素を水蒸気と反応させて水素を得るものであれば公知のものを使用できる。CO変成器13には一酸化炭素転化触媒が充填され、改質ガス中の一酸化炭素が水蒸気と反応して水素と二酸化炭素に変換される。一酸化炭素変成触媒としては高温用、中温用、低温用があり、運転温度に応じて適当なものを使用できる。運転温度が300〜450℃の高温用触媒としては、例えば、鉄−クロム系触媒が挙げられ、運転温度が180〜450℃の中温用触媒、および、190〜250℃の低温用触媒としては、例えば、銅−亜鉛系触媒が挙げられる。また、これら高温用、中温用および低温用の触媒は、2種以上を組み合わせて用いることができる。CO変成器13での反応により、改質ガスは水素、一酸化炭素、二酸化炭素およびメタンを含む混合ガスとなる。その水素濃度が64〜96体積%となり約300℃でCO変成器13より排出され、水素分離部2に導かれる。以上より、改質部では比較的高温で改質ガスが生成されるプロセスが実行される。
〔水素分離部〕
前記水素分離部2は特に限定されるものではないが、本実施形態においては、PSA型水素分離装置を使用することが好ましい。
水素分離部2としてのPSA型水素分離装置は複数の吸着塔21,21,21を備えており、各吸着塔21,21,21には吸着材22としてゼオライト系吸着材、活性炭、シリカゲルなどを組み合わせたものが充填されている。各吸着塔21,21,21では、吸着、減圧、パージおよび昇圧のプロセスを繰り返し、複数の吸着塔21,21,21で位相を異ならせることによって連続プロセスを行う。PSA型水素分離装置からの生成水素ガスとしては、水素濃度が95〜98体積%の水素ガスが得られる。この水素ガスは、水素分離部2に接続された水素ガス路L6から取り出される。
水素分離部2で水素が分離された後のオフガスは水素、メタン、一酸化炭素および二酸化炭素の混合ガスであり、そのオフガスは水素分離部2に接続されたオフガス路L7に設けられたオフガスタンク23に一時貯留される。オフガスタンク23に貯留されたオフガスは、オフガス供給路L8から、二酸化炭素回収部3に供給される。
〔二酸化炭素回収部〕
二酸化炭素回収部3は、水素分離部2で水素が分離された後のオフガスを二酸化炭素用吸収液と接触させて二酸化炭素をその吸収液に吸収させる吸収部31を備えるとともに、二酸化炭素を吸収した吸収液から二酸化炭素を分離する分離回収部32を備える。また、前記吸収部31で二酸化炭素を吸収した二酸化炭素吸収液と、前記分離回収部32で二酸化炭素を分離回収された二酸化炭素吸収液との間で熱交換を行う熱交換部33を備える。
前記吸収部31は、処理塔31a内に充填剤31bを充填するとともに、その充填剤31bに二酸化炭素吸収液を散布する吸収液散布部31cを備え、前記充填剤31bに上下方向に二酸化炭素吸収液を流通接触可能に構成する。また、前記処理塔31aには前記オフガスを下方から導入するように前記オフガス供給路L8が接続してある。これにより、前記処理塔31aにおいては充填剤表面で前記二酸化炭素吸収液と前記オフガスとが対向流にて効率よく接触し、前記二酸化炭素吸収液に対する二酸化炭素の吸収が図られる。二酸化炭素が吸収された後のオフガスは、処理塔31a上部より排ガス供給路L4に導かれ、前記改質器12の熱源として燃焼供給される。また、二酸化炭素吸収後の二酸化炭素吸収液は、吸収液供給路L9を介して分離回収部32に供給される。
前記分離回収部32は1または2以上の耐圧の中空糸膜モジュールからなり、1つの中空糸膜モジュールは、耐圧槽32a内に1または2以上の中空糸膜32bを有しており、この中空糸膜32bによって二酸化炭素を吸収した二酸化炭素吸収液から二酸化炭素を分離する。中空糸膜32bは、円筒状に束ねられ、その円筒状の外径よりも僅かに大きな内径を有する円筒状の耐圧槽32a内に収容して形成されている。図2では複数の中空糸膜32bのうちの一つを代表として示し、以下この図に基づいて説明する。耐圧槽32a内には液透過性の中空糸膜32bが長さ方向を略垂直にして配設されており、二酸化炭素を吸収した二酸化炭素吸収液は、吸収液供給路L9を通じて中空糸膜32bの内側(中空糸の内径側)に供給される。そして、耐圧槽32aには、中空糸膜32bの外側(中空糸の外径側)を減圧状態にするための真空ポンプ16を備えており、減圧により二酸化炭素を吸収した吸収液を、中空糸膜32bを透過させ、かつ二酸化炭素を吸収液から放散させて気液分離させる。気液分離された二酸化炭素は二酸化炭素回収路L10より回収される。また、中空糸膜32bを透過した吸収液は吸収液回収路L13より液回収槽34に貯留される。さらに、二酸化炭素の回収された二酸化炭素吸収液は、耐圧槽32a下部の余剰吸収液回収路L12より液回収槽34に貯留される。貯留された吸収液は吸収液返送路L11より前記吸収部31の吸収液散布部31cに返送循環される。
中空糸膜32bは、二酸化炭素をジエタノールアミン(DEA)等の吸収液に吸収させた状態で吸収液を透過させるものである。中空糸膜32bの材質は有機材料、無機材料または金属材料のいずれでもよいが、吸収液に濡れるものが好ましい。有機材料としては、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリアクリロニトリル、ポリエチレンなどを用いることができる。これらの液透過膜は孔径が数μm以下の微孔が膜中に存在して膜を厚さ方向に貫通している微多孔質膜で、精密濾過膜、限外濾過膜、ナノ濾過膜の領域の膜が好ましい。本発明においては、中空糸膜32bの内径は0.5mm〜10mmとしている。内径が上記下限値を下回ると送液の圧力損失が大きくなる傾向にある。また内径が上記上限値を上回ると中空糸膜32bの体積が大きくなり過ぎる傾向にある。また、中空糸膜32bの膜厚は0.2mm〜2mmとしている。膜厚が上記下限値を下回ると耐圧性に劣る傾向にある。また膜厚が上記上限値を上回ると液透過性に劣る傾向にある。さらに、中空糸膜32bにおける細孔径は0.01μm〜1μmとしている。細孔径が上記下限値を下回ると液透過性に劣る傾向にある。また細孔径が上記上限値を上回ると液透過量の増大に伴い二酸化炭素の放散量が低下する傾向にある。
前記吸収液供給路L9と吸収液返送路L11との間には、熱交換部33が設けられており、前記吸収部31で二酸化炭素を吸収した二酸化炭素吸収液と、前記分離回収部32で二酸化炭素を分離回収された二酸化炭素吸収液との間で熱交換を行う。
〔熱回収手段〕
前記吸収液供給路L9には、前記改質ガスが前記改質部1から水素分離部2に移送される第一部位P1において改質ガスの保有する熱を、前記吸収部31から前記分離回収部32に移送される二酸化炭素吸収液の移送部位P3で前記熱交換部33で熱交換済みの二酸化炭素吸収液に供給する第一熱回収手段R1を接続して設けてある。すなわち、前記第一熱回収手段R1は、前記第一部位P1と前記移送部位P3との間に熱媒体を循環させる主循環路L20を備えてなり、前記主循環路L20には、熱媒体を貯留するタンク4と熱媒体を循環供給するための循環ポンプ5とを備える。
さらに、本発明においては、冷却塔41を有するとともに、前記冷却塔41から熱媒体を、前記改質ガスが前記第一部位P1から下流側に移送される第二部位P2をバイパスして、前記分離回収部32から前記吸収部31に二酸化炭素吸収液が返送される返送部位P4に供給して前記冷却塔41に循環供給する第一循環路L21と、前記冷却塔41から熱媒体を、前記第二部位P2に供給し、前記返送部位P4をバイパスして前記冷却塔41に循環供給する第二循環路L22とを有する第二熱回収手段R2を備えている。すなわち、前記第二熱回収手段R2は、前記第二部位P2と前記返送部位P4との間に熱媒体を循環させる循環路に、冷却塔41を有するとともに、熱媒体を循環供給するための循環ポンプ51を備え、前記冷却塔41から前記第二部位P2に熱媒体を前記返送部位P4をバイパスさせて循環供給する第二循環路L22と、前記返送部位P4に熱媒体を前記第二部位P2をバイパスさせて循環供給する第一循環路L21とを有する。ここで、前記第一循環路L21および第二循環路L22は、共通の冷却塔41および循環ポンプ51を備える構成としてある。
〔熱収支〕
上述の構成により、CO変成器13から約300℃で排出される改質ガスは、前記第一部位P1で主循環路の熱媒体と熱交換し約60℃に冷却され、前記第二部位P2で、さらに40℃まで冷却される。その後、水素分離部2で水素分離されたオフガスは、前記吸収部31において25℃で二酸化炭素吸収液に吸収される。この二酸化炭素吸収液は、熱交換部33において、33℃に昇温されたのち、前記移送部位P3で40℃に昇温されて前記分離回収部32に至る。分離回収部32では熱媒体は40℃となるが、前記吸収液返送路L11において熱交換器で34℃となり、さらに、返送部位P4で約25℃となって、前記吸収部31の吸収液散布部31cに散布供給される。
これにより、前記改質部1で生成した熱が二酸化炭素の回収に有効に利用されていることがわかる。
〔別実施形態〕
(1) 上記実施形態では、第一熱回収手段R1と第二熱回収手段R2とを別途独立に設けたが、前記第一熱回収手段R1および前記第二熱回収手段R2は共通冷却塔40を備えることもできる。この場合、図3に示すように、熱媒体を前記共通冷却塔40から前記第一部位P1と前記熱交換部33と前記分離回収部32との間の二酸化炭素吸収液の移送部位P3との間に循環供給する主循環路L20を備えて前記第一熱回収手段R1を構成するとともに、前記共通冷却塔40から前記第二部位P2に熱媒体を共通循環ポンプ50により前記返送部位をバイパスして循環供給する第一循環路L21と、前記返送部位P4に熱媒体を第二部位をバイパスして循環供給する第二循環路L22とを前記主循環路L20から分岐して設けて前記第二熱回収手段R2を構成する。ここで、前記主循環路L20および第一、第二循環路L21,L22は共通の前記共通冷却塔40および共通循環ポンプ50を備える構成となっている。
この場合、二酸化炭素回収部3を備えていない既存の水素製造装置に、二酸化炭素回収部3を追加設置するような場合、前記第一部位P1の放熱部として用いられていた冷却塔を共通冷却塔40として有効利用して、少ない設計変更のみで二酸化炭素回収部3を増設した、環境に配慮した水素製造装置にすることができる。
(2) 上記実施の形態では、二酸化炭素回収部は、水素分離部における排ガスから二酸化炭素を回収する形態としたが、改質部から水素分離部に供給される改質ガスから二酸化炭素を回収する形態としてもよい。
具体的には、図4,5に示すように、改質部1から第一部位P1,第二部位P2を経た改質ガスを二酸化炭素回収部3の吸収部31に供給するとともに、吸収部31から排出される二酸化炭素が回収された改質ガスを、水素分離部に供給するように構成する。
このように構成することによって、改質部1で生成した改質ガスは、第一部位P1、第二部位P2で熱交換を受けた後、まず、二酸化炭素回収部3にて二酸化炭素が回収されて、下記表1のように水素ガス純度が高められ、水素分離部2に供給されるから、前記水素分離部2における水素分離は容易になり、容量の小さな吸着塔21を備えた水素分離部2にて純度の高い水素ガスを供給可能にすることができる。
具体的には、図4,5の例では、先の実施の形態における吸着塔21を3塔用いたPSA型水素分離装置の水素分離部2で用いた吸着剤22に比べて、吸着剤の量が10%程度少なくても、上述の実施の形態と同レベルの純度の水素ガスを製造することができるようになった。
この状態ではL9が加圧状態となるため、L10に減圧弁17を真空ポンプの替わりに設置することにより、耐圧槽32aと中空糸膜32bの圧力差をつけることが可能となるため、図1、図3で必要であった真空ポンプ16が不要となる。それにより、二酸化炭素回収部の真空ポンプ動力が不要となり、二酸化炭素回収部の全動力エネルギーを25〜40%削減できる。
〔表1〕
ガス組成(%): 水素: :二酸化炭素 : その他成分
改質部出口: 65〜80%:15〜25%: 5〜10%
水素分離部入口: 85〜90%: 3〜5% : 7〜10%
尚、上述の実施の形態では、二酸化炭素回収部を水素分離部の前後いずれかに設けた例を示したが、二酸化炭素回収部は複数設けられていてもよく、いずれの場合であっても第一部位から移送部位への熱供給が行える構成としてあればよい。
本発明の水素製造装置は、高い熱効率で運転させながら二酸化炭素回収を行わせることができ、より付加価値の高い水素製造装置として利用することができる。
1 :改質部
11 :脱硫器
12 :改質器
12a :改質触媒
13 :CO変成器
16 :真空ポンプ
17 :減圧弁
2 :水素分離部
21 :吸着塔
22 :吸着材
23 :オフガスタンク
3 :二酸化炭素回収部
31 :吸収部
31a :処理塔
31b :充填剤
31c :吸収液散布部
32 :分離回収部
32a :耐圧槽
32b :中空糸膜
33 :熱交換部
34 :液回収槽
4 :タンク
40 :共通冷却塔
41 :冷却塔
5 :循環ポンプ
50 :共通循環ポンプ
51 :循環ポンプ
L1 :供給路
L2 :改質ガス路
L3 :燃料ガス供給路
L4 :排ガス供給路
L5 :排ガス路
L6 :水素ガス路
L7 :オフガス路
L8 :オフガス供給路
L9 :吸収液供給路
L10 :二酸化炭素回収路
L11 :吸収液返送路
L12 :余剰吸収液回収路
L13 :吸収液回収路
L20 :主循環路
L21 :第一循環路
L22 :第二循環路
P1 :第一部位
P2 :第二部位
P3 :移送部位
P4 :返送部位
R1 :第一熱回収手段
R2 :第二熱回収手段

Claims (5)

  1. 炭化水素を含む原料を水蒸気改質して水素と二酸化炭素とを含む改質ガスに改質する改質部を備え、
    前記改質部で得られた前記改質ガスを二酸化炭素を含む排ガスと水素とに分離して水素を製造する水素分離部を備え、
    前記改質ガス中に含まれる二酸化炭素を二酸化炭素吸収液に接触させて二酸化炭素を吸収する吸収部と、二酸化炭素吸収液に吸収された二酸化炭素を分離回収する分離回収部とを有するとともに、前記吸収部で二酸化炭素を吸収した二酸化炭素吸収液と、前記分離回収部で二酸化炭素を分離回収された二酸化炭素吸収液との間で熱交換を行う熱交換部を有する二酸化炭素回収部とを備えた水素製造装置であって、
    前記改質ガスが前記改質部から排出される第一部位において改質ガスの保有する熱を、前記熱交換部で熱交換済みの二酸化炭素吸収液に、前記吸収部から前記分離回収部に移送される移送部位において供給する第一熱回収手段を備えるとともに、
    冷却塔を有するとともに、前記冷却塔から熱媒体を、前記改質ガスが前記第一部位から下流側に移送される第二部位をバイパスして、前記分離回収部から前記吸収部に二酸化炭素吸収液が返送される返送部位に供給して前記冷却塔に循環供給する第一循環路と、前記冷却塔から熱媒体を、前記第二部位に供給し、前記返送部位をバイパスして前記冷却塔に循環供給する第二循環路とを有する第二熱回収手段を備え、
    前記第二熱回収手段は、前記第二部位における改質ガスの保有する熱を、前記返送部位における前記熱交換済みの二酸化炭素吸収液に供給可能に、前記第二部位における改質ガス、および、前記返送部位における二酸化炭素吸収液を冷却する水素製造装置。
  2. 前記改質ガス中に含まれる二酸化炭素として、水素分離部を経由した前記排ガスに含まれる二酸化炭素を対象とし、
    前記第一部位を、前記改質ガスが前記改質部から水素分離部に移送される部位とする請求項1に記載の水素製造装置。
  3. 前記改質ガス中に含まれる二酸化炭素として、前記改質部から排出され、水素分離部に供給される前の改質ガス中に含まれる二酸化炭素を対象とし、
    前記第一部位を、前記改質ガスが前記改質部から吸収部に移送される部位とする請求項1または2に記載の水素製造装置。
  4. 前記改質部が、改質ガス中の一酸化炭素ガスを部分酸化して二酸化炭素に変換する一酸化炭素変成器を備える請求項1〜3のいずれか一項に記載の水素製造装置。
  5. 前記第一熱回収手段および前記第二熱回収手段は共通冷却塔を備えるとともに、熱媒体を前記共通冷却塔から前記第一部位と前記熱交換部と前記分離回収部との間の二酸化炭素吸収液の移送部位との間に循環供給する主循環路を備えて前記第一熱回収手段を構成するとともに、前記返送部位に熱媒体を前記第二部位をバイパスして循環供給する第一循環路と、前記共通冷却塔から前記第二部位に熱媒体を前記返送部位をバイパスして循環供給する第二循環路とを備えて前記第二熱回収手段を構成する請求項1〜4のいずれか一項に記載の水素製造装置。
JP2011197502A 2011-01-31 2011-09-09 水素製造装置 Active JP5804860B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197502A JP5804860B2 (ja) 2011-01-31 2011-09-09 水素製造装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011018457 2011-01-31
JP2011018457 2011-01-31
JP2011197502A JP5804860B2 (ja) 2011-01-31 2011-09-09 水素製造装置

Publications (2)

Publication Number Publication Date
JP2012176879A JP2012176879A (ja) 2012-09-13
JP5804860B2 true JP5804860B2 (ja) 2015-11-04

Family

ID=46979022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197502A Active JP5804860B2 (ja) 2011-01-31 2011-09-09 水素製造装置

Country Status (1)

Country Link
JP (1) JP5804860B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332650B (zh) * 2013-06-04 2014-12-17 东南大学 干法甲烷催化分解制氢同时分离二氧化碳的系统及方法
US10131593B2 (en) 2013-08-06 2018-11-20 Chiyoda Corporation Systems and methods for producing hydrogen from a hydrocarbon and using the produced hydrogen in a hydrogenation reaction
JP6153810B2 (ja) * 2013-08-06 2017-06-28 千代田化工建設株式会社 水素供給システム
JP6473345B2 (ja) * 2015-02-26 2019-02-20 株式会社神戸製鋼所 水素製造装置及び水素製造方法
JP2019137589A (ja) * 2018-02-13 2019-08-22 東京瓦斯株式会社 水素製造装置
WO2023147279A1 (en) * 2022-01-25 2023-08-03 Wormser Energy Solutions, Inc. Hydrogen and power production with sorbent enhanced reactor steam reformer and carbon capture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662298B2 (ja) * 1989-09-13 1997-10-08 株式会社日立製作所 二酸化炭素分離装置を有するパワープラント
JP4744971B2 (ja) * 2005-07-29 2011-08-10 株式会社東芝 低質廃熱回収システム
JP4861729B2 (ja) * 2006-03-24 2012-01-25 石油コンビナート高度統合運営技術研究組合 水素製造方法および水素製造装置

Also Published As

Publication number Publication date
JP2012176879A (ja) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5804860B2 (ja) 水素製造装置
JP6956665B2 (ja) 燃焼排ガス中の二酸化炭素のメタン化方法及びメタン製造設備
JP4463803B2 (ja) Co2固定を伴うディーゼルスチームリフォーミング
JP5693368B2 (ja) 二酸化炭素回収方法における二酸化炭素吸収液の再生方法
EP2663524B1 (en) Method for hydrogen production
JP6405275B2 (ja) 水素の製造方法、および水素製造システム
JP5280343B2 (ja) 二酸化炭素分離回収装置を伴う水素分離型水素製造システム
US9776862B2 (en) Hydrogen production apparatus and hydrogen production method
WO2019073867A1 (ja) メタン製造システム
US7276095B2 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
JP5995746B2 (ja) Co2及びh2sを含むガスの回収システム及び方法
EA019593B1 (ru) Способ и система для синтеза жидких углеводородных соединений
JP2010005509A (ja) 二酸化炭素分離装置及びその方法
WO2015033583A1 (ja) 水素及び合成天然ガスの製造装置及び製造方法
JP4744971B2 (ja) 低質廃熱回収システム
JP4681101B2 (ja) ガソリン、軽油および灯油用合成ガスの製造方法
JP4861729B2 (ja) 水素製造方法および水素製造装置
CN105561739B (zh) 一种密闭空间内co2富集与转化设备及方法
JP2007253105A (ja) 気体放散構造及び気液分離装置
CA3223287A1 (en) Ammonia cracking for green hydrogen with nox removal
JP2008207969A (ja) 水素製造装置、水素製造システムおよび水素製造方法
JP2021160960A (ja) 水素供給システム
WO2023136065A1 (ja) 二酸化炭素回収システム
JP2008069040A (ja) 二酸化炭素回収システムおよび二酸化炭素回収方法
RU2561345C1 (ru) Способ генерации энергии в анаэробной системе

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R150 Certificate of patent or registration of utility model

Ref document number: 5804860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250