WO2007116543A1 - 画像処理方法 - Google Patents

画像処理方法 Download PDF

Info

Publication number
WO2007116543A1
WO2007116543A1 PCT/JP2006/319145 JP2006319145W WO2007116543A1 WO 2007116543 A1 WO2007116543 A1 WO 2007116543A1 JP 2006319145 W JP2006319145 W JP 2006319145W WO 2007116543 A1 WO2007116543 A1 WO 2007116543A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
noise
frequency
low
resolution
Prior art date
Application number
PCT/JP2006/319145
Other languages
English (en)
French (fr)
Inventor
Kenichi Ishiga
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006096984A external-priority patent/JP5352942B2/ja
Priority claimed from JP2006096985A external-priority patent/JP5256582B2/ja
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP06810636A priority Critical patent/EP2003612A4/en
Publication of WO2007116543A1 publication Critical patent/WO2007116543A1/ja
Priority to US12/230,165 priority patent/US8244034B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform

Definitions

  • the present invention relates to an image processing method for removing noise included in an image.
  • Non-Patent Documents 1 to 4 and Patent Documents 2 and 3 show technologies that have been developed for application to multi-resolution wavelet transform and Laplacian's pyramid representation.
  • Non-Patent Documents 1 to 3 correspond to a technique called so-called wavelet degeneration, in which a high-pass component of a wavelet transform coefficient is cored by threshold processing or nonlinear threshold processing.
  • Patent Documents 2 and 3 disclose coring technology using nonlinear threshold processing that gently treats the vicinity of the threshold for the high-pass component expressed in the Laplacian 'pyramid (the Laplacian component decomposed into Gaussian and Laplacian). Has been.
  • Non-Patent Document 4 performs nonlinear threshold processing on a high-pass component of a steerable wavelet transform coefficient corresponding to a wider range of directional characteristics and rotation invariance than ordinary orthogonal wavelet transform. Further, Patent Document 4 discloses a method for realizing such coring with an analog circuit while successfully dividing into a plurality of bandpass bands while the response band of the transistor is limited.
  • Patent Document 5 discloses a method of obtaining noise-removed images by spatially filtering coefficients of high-frequency subbands subjected to steerable wavelet transform to remove noise and then inversely transforming them.
  • Patent Document 6 discloses a method of applying an order statics filter to a high-frequency subband expressed in a Laplacian 'pyramid! The
  • Patent Document 7 a noise signal included in a high-frequency subband coefficient represented by a Laplacian pyramid is calculated based on a local statistical value obtained by looking at the situation with surrounding pixels and a global statistical value common to the subbands.
  • a method of removing noise by extracting and attenuating is disclosed.
  • noise signals included in LH, HL, and HH of high-frequency subbands excluding the low-frequency subband LL are extracted from the subbands obtained by performing orthogonal wavelet transform on the LL component sequentially and divided into multiple resolutions.
  • a process for integrating these noise signals by inverse wavelet transform is disclosed!
  • Non-patent document 5 also discloses an attempt to obtain a noise removal effect by multiplying and converting to an image having a frequency characteristic different from that of the original image.
  • the orthogonal wavelet transform described above refers to a transform that can be represented by two-way filtering using a two-dimensional filter as a one-dimensional separation filter, and is used in a sense including a bi-orthogonal wavelet transform. . When used in the following, the meaning is also used.
  • Patent Document 1 US Patent No. 4,523,230
  • Patent Document 2 US Patent No. 5,467,404
  • Patent Document 3 U.S. Pat.No. 5,805,721
  • Patent Document 4 U.S. Patent No. 6,728,381
  • Patent Document 5 US Patent No. 5,526,446
  • Patent Document 6 US Patent No. 5,708,693
  • Patent Document 7 US Pat. No. 5,461,655 specification
  • Patent Document 8 US Pat. No. 6,754,398
  • Patent Document 9 US Patent No. 6,937,772
  • Patent Document 10 Japanese Patent Laid-Open No. 2000-224421
  • Patent Document 11 US Patent No. 5,576,548
  • Patent Document 12 US Patent No. 6,618,503
  • Non-Patent Document 1 JB Weaver, X. Yansun, DM Healy, Jr. and LD Cromwell, "Filter ing Noise from Images with Wavelet Transforms ", MagneticResonance in Medicine, vol. 21, no. 2, pp. 288-295, 1991.
  • Non-Patent Document 2 RA DeVor and BJ Lucier, "Fast wavelet techniques for near-optimal image processing", IEEE Military Communications Conf. Rec. San Diego, Oct. 11 -14, 1992, vol.3, pp.1129- 1135.
  • Non-Special Terms 3 D. L. Donoho, "Denoising by soft-thresholding, IEEE. TransInform. Theory, Vol. 41, pp. 613-627, 1995.
  • Non-Special Reference 6 C. Tomasi et al "" Bilateral Filtering for Gray and Colorlmages, Proceedings of the 1998 IEEE international Conference on ComputerVision, Bombay, Indi a.
  • an image processing method for removing noise contained in an image includes: an image input procedure for inputting an original image composed of a plurality of pixels; Multi-resolution image generation procedure for generating multiple low-frequency images with sequentially low resolution, multiple high-frequency images with sequentially low resolution, and noise removal processing for each of low-frequency images and high-frequency images Based on the results of both the noise-removed low-frequency image and the noise-reduced high-frequency image, and the image acquisition procedure for obtaining an image from which noise has been removed from the original image.
  • an image processing method for removing noise contained in an image includes: an image input procedure for inputting an original image composed of a plurality of pixels; A multi-resolution image generation procedure comprising: one or more low-frequency images having a low resolution; and a multi-resolution image generating procedure for pairing with each of them to sequentially generate one or more high-frequency images having a low resolution.
  • noise removal processing is performed on a high-frequency image to obtain a noise-removed high-frequency image, and a low-frequency image that is paired with the next higher-resolution high-frequency image based on the noise-removed high-frequency image.
  • An image is obtained, and the low-frequency image paired with the next high-resolution high-frequency image is further subjected to noise removal processing to obtain a noise-reduced low-frequency image, and the noise-reduced low-frequency image and noise are removed.
  • High frequency painting An image acquisition procedure is further provided for obtaining an image from which noise has been removed from the original image based on the results of both images.
  • an image processing method for removing noise contained in an image includes: an image input procedure for inputting an original image composed of a plurality of pixels; One or more low-frequency images with low resolution, paired with each of them It has a multi-resolution image generation procedure that sequentially generates one or more high-frequency images with low resolution.
  • the multi-resolution image generation procedure is a low-resolution image that has been denoised by performing noise removal processing on the low-frequency image. Obtain a high-frequency image, and then obtain a high-frequency image that is paired with a low-frequency image with the next lower resolution, and then pair with a lower-frequency image with a lower resolution.
  • noise removal processing is performed on the high-frequency image forming the noise to obtain a high-frequency image from which noise has been removed. Based on the results of both the low-frequency image from which noise has been removed and the high-frequency image from which noise has been removed, In addition, it further has an image acquisition procedure for obtaining an image from which noise has been removed.
  • the image acquisition procedure performs noise removal processing in real space having the same resolution as the original image,
  • the result of noise removal is treated in the same way as the result of noise removal from low-frequency images.
  • an image processing method for generating an image expressed in multi-resolution includes an image input procedure for inputting an original image composed of a plurality of pixels, and an input original image.
  • the multi-resolution image generation procedure obtains a noise-removed high-frequency image by performing noise removal processing on the high-frequency image, and makes a pair with the next higher-resolution high-frequency image based on the noise-removed high-frequency image.
  • a low-frequency image is obtained, and noise removal processing is further performed on the low-frequency image paired with the next high-resolution high-frequency image to obtain a noise-reduced low-frequency image.
  • an image processing method for generating an image expressed in multi-resolution includes an image input procedure for inputting an original image composed of a plurality of pixels, and an input original image.
  • Multi-resolution image generation procedure is: a)
  • Noise removal processing is performed on the image data of the low frequency image to obtain image data of the low frequency image from which noise is removed, and b) the image data of the high frequency image paired with the low frequency image is obtained.
  • the noise removal processing is performed to obtain image data of the noise-removed high-frequency image, and c) based on the results of both the noise-removed low-frequency image data and the noise-removed high-frequency image image data.
  • D) Obtain the image data of the next higher resolution low frequency image, and d) From the lowest resolution to the next higher resolution until the next higher resolution low frequency image has the same or lower resolution as the original image. Repeat steps a) and c) in order.
  • an image processing method for generating an image expressed in multi-resolution includes an image input procedure for inputting an original image composed of a plurality of pixels, and an input original image.
  • the multi-resolution image generation procedure is as follows: a) noise removal processing is performed on the image data of the high-frequency image to obtain image data of the high-frequency image from which noise has been removed; and b) the image data of the high-frequency image from which noise has been removed.
  • the image data of the low frequency image paired with the next high resolution high frequency image is obtained, and c) The noise removal processing is performed on the image data of the low frequency image paired with the next high resolution high frequency image.
  • Low frequency with noise removal Obtain image data of the image, and d) perform the processing of a) force c) in order from the lowest resolution to the highest resolution until the low-frequency image from which noise has been removed becomes the same or lower resolution than the original image. Repeat.
  • an image processing method for removing noise contained in an image includes an image input procedure for inputting an original image composed of a plurality of pixels, and an input original image is decomposed and sequentially A multi-resolution image generation procedure that generates one or more low-frequency images having low resolution and one or more high-frequency images that are sequentially paired with each of them and having low resolution; Extracts noise components contained in each image, generates a low-frequency noise image and a high-frequency noise image corresponding to each, and synthesizes the low-frequency noise image and the high-frequency noise image that makes a pair with it.
  • noise image that has the same resolution as the next high-resolution low-frequency image and combined with the low-frequency noise image corresponding to the next higher-resolution low-frequency image
  • noise integration procedure that integrates two noise images
  • noise removal procedure that removes noise contained in the original image based on the integrated noise images.
  • an image processing method for removing noise contained in an image includes an image input procedure for inputting an original image composed of a plurality of pixels, and an input original image is decomposed and sequentially A multi-resolution image generation procedure that generates one or more low-frequency images having low resolution and one or more high-frequency images that are sequentially paired with each of them and having low resolution; Extracts noise components contained in each image, generates a low-frequency noise image and a high-frequency noise image corresponding to each, and synthesizes the low-frequency noise image and the high-frequency noise image that makes a pair with it.
  • noise integration procedure to be integrated into the new low-frequency noise image, and the new low-frequency noise image generated by the noise integration procedure are substituted as the low-frequency noise image of the noise integration procedure, and finally generated Integration with the noise integration repetition procedure that repeats the integration process of the noise integration procedure sequentially until the low frequency noise image becomes one noise image with the same resolution as the original image, and the noise integration procedure and the noise integration repetition procedure And a noise removal procedure for removing noise contained in the original image based on the noise image.
  • an image processing method for removing noise contained in an image includes: an image input procedure for inputting an original image composed of a plurality of pixels; Multi-resolution image generation procedure to generate multiple low-frequency images with low resolution, multiple high-frequency images with low resolution sequentially, and noise to extract noise components contained in each of low-frequency images and high-frequency images An extraction procedure, and a noise estimation procedure for estimating a noise signal included in each pixel of the original image based on noise components of both the extracted low-frequency image and the extracted high-frequency image.
  • the image processing method further includes a noise removal procedure for removing noise included in the original image based on the noise signal estimated in the noise estimation procedure. Is preferred.
  • the low frequency image and the high frequency image are: 1) a low frequency component and a high frequency component in orthogonal wavelet transform; ) Gaussian component and Laplacian in Laplacian's pyramid representation Component 3) It is preferable to correspond to either the low-frequency component in the direction wavelet transform or the high-frequency component in each direction! /.
  • the low-frequency image is in the LL subband
  • the high-frequency image is in LH
  • an image processing method for removing noise contained in an image inputs an original image composed of a plurality of pixels, performs multi-resolution conversion on the input original image, and reduces the resolution of the image.
  • a high-frequency image and a high-frequency image are generated sequentially, and noise components corresponding to the low-frequency image and the high-frequency image are extracted for each resolution by using the generated low-frequency image and high-frequency image.
  • multi-resolution inverse transform is performed to generate a noise component having the same resolution as the original image, and the same as the generated original image Using the noise component with resolution, an image from which noise has been removed from the original image is generated.
  • an image processing method for removing noise contained in an image inputs an original image composed of a plurality of pixels, and inputs the input original image into a low-frequency image and a high-frequency image having a low resolution.
  • Disassembled and disassembled low! ⁇ ⁇ ⁇ Extraction of noise signals of low-frequency and high-frequency images with resolution, noise removal processing for the decomposed low-frequency images, and low-frequency with low resolution after noise removal processing
  • the image is further decomposed into a low-frequency image and a high-frequency image having a lower resolution, and noise signals of the decomposed low-frequency image and high-frequency image are extracted, and the extracted lower resolution is reduced.
  • the noise signal corresponding to the low-frequency image having the low resolution is synthesized using the noise signal of the low-frequency image and the high-frequency image, and the noise signal corresponding to the low-frequency image having the low resolution is synthesized.
  • a noise signal with the same resolution as the original image is synthesized, and a noise signal with the same resolution as the synthesized original image is obtained.
  • Hazuki obtain an image obtained by removing the original image mosquito ⁇ Luo noise.
  • an image processing method for removing noise contained in an image inputs an original image composed of a plurality of pixels, and inputs the input original image into a low-frequency image and a high-frequency image having a low resolution.
  • Lower frequency image with lower resolution even lower
  • the noise signal of the low-frequency image and the high-frequency image having the lower resolution is extracted by extracting the noise signal of the low-frequency image and the high-frequency image having the lower resolution.
  • the signal is used to synthesize a noise signal corresponding to a low-frequency image with low resolution, and a low-frequency image with a low resolution decomposed with a noise signal corresponding to the synthesized low-frequency image with low resolution is used.
  • the noise signal of the low-frequency image having a low resolution is extracted, the noise signal of the high-frequency image having a decomposed low resolution is extracted, and the noise of the extracted low-frequency image and the high-frequency image having a low resolution is extracted.
  • Signal and synthesized low Using a noise signal corresponding to a low-frequency image having resolution, a noise signal having the same resolution as the original image is synthesized, and the original image card is based on the noise signal having the same resolution as the synthesized original image. An image from which noise is removed is obtained.
  • an image processing method for removing noise contained in an image composed of a luminance component and a color difference component is an original image of a luminance component composed of a plurality of pixels and an original of a color difference component composed of a plurality of pixels.
  • the image input procedure for inputting each image and the original image of the luminance component are decomposed, and one or more luminance component low-frequency images having successively lower resolution and sequentially lower! ⁇ Generate one or more high-frequency images of luminance components with resolution, decompose the original image of chrominance components, and sequentially with one or more low-frequency images of chrominance components with low ⁇ resolution Based on the multi-resolution image generation procedure for generating one or more color difference component high-frequency images with low resolution and the luminance component, at least the result of removing the noise contained in the high-frequency image of the luminance component.
  • An image of a luminance component from which noise has been removed is obtained from the original image of the original image, and regarding the color difference component, based on the result of removing noise contained in at least the low frequency image of the color difference component, the original image of the color difference component is obtained. And a noise removal procedure for obtaining an image of a color difference component from which noise has been removed.
  • the noise removal procedure is further based on the result of removing the noise included in the low-frequency image of the luminance component with respect to the luminance component.
  • an image of a luminance component from which noise has been removed is obtained from the original image of the luminance component, and regarding the color difference component, based on the result of removing the noise contained in the high frequency image of the color difference component, the original of the color difference component is obtained.
  • the noise removal procedure in the case of the luminance component, is configured so that the degree of noise removal of the high-frequency image is stronger than the degree of noise removal of the low-frequency image.
  • the degree of noise removal of the low-frequency image is stronger than or equal to the degree of noise removal of the high-frequency image.
  • the noise removal procedure further performs noise removal processing on the original image of the luminance component to obtain the original luminance component. Handles the result of noise removal processing on the image in the same way as the result of removing noise contained in the low-frequency image of the luminance component! ⁇ ⁇ ⁇ Perform noise removal processing on the original image of the color difference component V, and treat the result of noise removal processing on the original image of the color difference component in the same way as the result of removing noise contained in the low frequency image of the color difference component. Is preferred.
  • an image processing method for removing noise contained in an image made up of a luminance component and a color difference component is an original image of a luminance component made up of a plurality of pixels and an original image of a color difference component made up of a plurality of pixels.
  • the image input procedure for inputting each image and the original image of the luminance component are decomposed, and one or more luminance component low-frequency images having successively lower resolution and sequentially lower! ⁇ Generate one or more high-frequency images of luminance components with resolution, decompose the original image of chrominance components, and sequentially with one or more low-frequency images of chrominance components with low ⁇ resolution
  • a low-frequency noise image and a high-frequency noise image of the component are generated, and the generated low-frequency noise image and the high-frequency noise image of the luminance component are weighted.
  • the chrominance component noise signal conversion procedure for converting into a noise signal with the same resolution as the original image is performed, and different weighting processing is performed between the luminance component and the chrominance component.
  • the luminance component noise signal conversion procedure sets the weight of the high-frequency noise image of the luminance component to be larger than the weight of the low-frequency noise image.
  • the weight of the low frequency noise image of the color difference component it is preferable to set the weight of the high frequency noise image.
  • the luminance component noise signal conversion procedure includes the luminance component original image in addition to the luminance component low-frequency image and high-frequency image.
  • the noise component included in the real space image with the same resolution is also extracted to generate the luminance component real space noise image, and the generated real space noise image is weighted in the same way as the low frequency noise image to obtain the luminance component.
  • a noise signal with the same resolution as the original image is obtained, and the color difference component noise signal conversion procedure includes noise contained in a real space image having the same resolution as the original image of the color difference component in addition to the low frequency image and high frequency image of the color difference component.
  • the components are also extracted to generate a real space noise image of the color difference component, and the generated real space noise image is weighted in the same way as the low frequency noise image to obtain a noise signal having the same resolution as the original image of the color difference component.
  • a real space noise image of the color difference component is also extracted to generate a real space noise image of the color difference component, and the generated real space noise image is weighted in the same way as the low frequency noise image to obtain a noise signal having the same resolution as the original image of the color difference component.
  • an image processing method for removing noise contained in an image made up of a luminance component and a color difference component is an original image of a luminance component made up of a plurality of pixels and an original image of a color difference component made up of a plurality of pixels.
  • the original component image is converted into multiple frequency band images, and the chrominance component noise extraction procedure for extracting the chrominance component noise signal from the converted multiple frequency band images and the luminance component noise signals extracted from the multiple frequency band images are combined.
  • luminance component noise synthesis procedure Extracted with luminance component noise synthesis procedure to convert to one luminance component noise signal expressed in the same frequency band as the luminance component original image and multiple frequency band images Synthesizes the difference component noise signal, and a chrominance component noise synthesis To convert to a single chrominance component noise signal represented by the same frequency band as the original image of the color difference component, luminance formed
  • the difference noise synthesis procedure and the chrominance component noise synthesis procedure differ in the frequency characteristics of the synthesized luminance component noise signal and synthesized chrominance component noise signal by performing different synthesis processes.
  • the plurality of frequency band images are at least: 1) a low-frequency image obtained by limiting the frequency band of the original image to the low-frequency side; 2) It is preferable to include a high-frequency image obtained by limiting the frequency band of the original image to the high-frequency side.
  • the luminance component noise synthesis procedure and the chrominance component noise synthesis procedure each multiply a noise signal in a plurality of frequency bands by a weighting coefficient.
  • the weighting factor of the noise signal extracted from the high-frequency image of the luminance component is set larger than the weighting factor of the noise signal extracted from the low-frequency image power.
  • the noise signal weighting factor extracted from the low frequency image of the color difference component is set to be larger than or equal to the weighting factor of the noise signal extracted from the high frequency image. Is preferred.
  • an image processing method for removing noise contained in an image composed of a luminance component and a color difference component is an original image of a luminance component composed of a plurality of pixels and an original of a color difference component composed of a plurality of pixels.
  • An image input procedure for inputting each of the images and a luminance component original image are filtered to generate a band limited image of at least one luminance component, and a luminance component band limited image generation procedure for filtering the original image of the color difference component is filtered.
  • a color difference component noise signal extraction procedure for extracting a color difference component noise signal using a band-limited image of at least one color difference component, and a luminance component Based on the noise signal, the luminance component noise removal procedure to remove the noise component from the luminance component original image, and the color difference to remove the noise component from the chrominance component original image based on the noise signal of the chrominance component Component noise removal procedure, and the frequency band of the luminance component band limited image and the color difference component band limited image are different from each other, or the luminance component band limited image and Extracting the extracted luminance component noise signal by changing the filter characteristics between the luminance component and the chrominance component so that the band-limited images of the chrominance component have different pass frequency intensity distributions even with the same bandwidth. Different frequency characteristics of noise signal of color difference component.
  • the band limited image of at least one luminance component is a high frequency band image
  • the band limited image of at least one color difference component is a low frequency band image. Is preferred.
  • a high-frequency pass filter is used for a band-limited image of at least one luminance component, and a low-frequency is used for a band-limited image of at least one color difference component. It is preferable to change the filter characteristics of filtering between the luminance component and the color difference component by using a pass filter.
  • the low-frequency image and the high-frequency image are: 1) a low-frequency component and a high-frequency component in orthogonal wavelet transform; It is preferable to correspond to any one of (1) a Gaussian component and a Laplacian component in the Laplacian's pyramid expression, and (3) a low frequency component in the directional wavelet transform and a high frequency component in each direction.
  • an image processing method for removing noise contained in an image composed of a luminance component and a color difference component is an original image of a luminance component composed of a plurality of pixels and an original of a color difference component composed of a plurality of pixels.
  • Each of the images is input, and the input luminance component original image is sequentially generated as a luminance component low-frequency image and luminance component high-frequency image with different resolutions by multiple resolution conversion, and the input color difference component original image is multi-resolution.
  • the color component low-frequency image and color difference component high-frequency image with different resolutions are sequentially generated by conversion, and the generated luminance component low-frequency image and luminance component high-frequency image are used to generate the low-frequency noise component and high-frequency noise of the luminance component.
  • the color difference component low frequency image and the color difference component high frequency image are extracted, and the color difference component low frequency noise component and the color difference component high frequency noise component are extracted using the generated color difference component low frequency image and color difference component high frequency image.
  • the high frequency noise component of the luminance component is mainly used than the low frequency noise component of the luminance component, and when the noise to be removed from the original image of the color difference component is synthesized, The low frequency noise component of the color difference component is mainly used rather than the high frequency noise component of the color difference component.
  • a computer-readable computer product product has an image processing program that causes a computer or an image processing apparatus to execute the image processing method according to any one of the first to thirty-second aspects.
  • the image processing apparatus has a control device that executes the image processing method according to any one of the first to thirty-second aspects.
  • the present invention is configured as described above, it is possible to perform noise extraction in a frequency space that is optimal for noise extraction, eliminating the problem of residual noise that cannot be extracted, and high-definition noise. Allows removal.
  • FIG. 1 is a diagram showing an image processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the flow of color space conversion processing performed by the personal computer 1.
  • FIG. 3 is a diagram showing a process flow of luminance components in the first embodiment.
  • FIG. 4 is a diagram showing a flow chart of color difference component processing in the first embodiment.
  • FIG. 5 is a diagram showing a state of subband division by five-stage wavelet transform.
  • FIG. 6 is a diagram showing the simplest Laplacian filter that is usually used.
  • FIG. 1 A first figure.
  • FIG. 8 is a diagram showing weighting coefficients of the low frequency subband (LL) and the high frequency subband (LH, HL, HH) of the noise component of the color difference component.
  • FIG. 9 is a diagram showing a setting screen for intensity parameters (Intensity) ⁇ th, rth, frequency characteristic changing parameter (grainness) kO, and noise removal intensity parameter (sharpness) ⁇ .
  • FIG. 10 is a diagram showing a process flow of luminance components in the second embodiment.
  • FIG. 11 is a flowchart of color difference component processing in the second embodiment.
  • FIG. 12 is a flowchart of edge enhancement processing using multi-resolution conversion.
  • FIG. 14 is a diagram showing a schematic diagram of a correspondence relationship between a low-frequency subband and a high-frequency subband in various multiresolution representations.
  • FIG. 15 is a schematic diagram of frequency bands covered by a high-frequency subband and a low-frequency subband expressed in multi-resolution.
  • FIG. 16 is a diagram showing a flow chart of the luminance component processing in which the predetermined noise removal processing is omitted for the real space image signal from FIG.
  • FIG. 17 is a diagram showing a flow chart of luminance component processing in which a predetermined noise removal process is omitted for an image signal in real space from FIG.
  • FIG. 18 is a diagram showing a flowchart of edge enhancement processing using multi-resolution conversion in which predetermined edge component extraction processing for an image signal in real space is omitted from FIG.
  • FIG. 19 is a diagram showing a configuration of a personal computer.
  • Multi-resolution representation methods include various representation methods such as orthogonal wavelet transform and Laplacian 'pyramid representation, and steerable' wavelet transform and DCT pyramid representation.
  • representation methods such as orthogonal wavelet transform and Laplacian 'pyramid representation, and steerable' wavelet transform and DCT pyramid representation.
  • orthogonal wavelet transform and Laplacian 'pyramid representation
  • steerable' wavelet transform and DCT pyramid representation steerable' wavelet transform and DCT pyramid representation
  • the first type is a method that covers noise removal for high-frequency subbands (LH, HL, HH) subjected to orthogonal wavelet transform.
  • the second type is a method in which noise removal is sequentially applied to low-frequency subbands (LL) that have been subjected to orthogonal wavelet transform.
  • Noise removal from a color image is usually performed by dividing the luminance surface and the color difference surface separately, and noise removal from the luminance surface suppresses rough noise and removes noise from the color difference surface. Plays a role in suppressing spotted noise.
  • Noise removal for color difference components is more effective when removing noise for low frequency subbands rather than adding noise removal for high frequency subbands.
  • color structure preservation were found to be preferable.
  • noise removal for the high frequency side subband of the color difference component has a flaw that causes color boundary blurring.
  • the noise removal for the other low frequency side subband has the property of not causing color boundary bleeding.
  • the noise removal for the luminance component is clearly superior to the method for adding noise removal to the high frequency subbands than the method of adding noise removal sequentially to the low frequency component. It has been found.
  • the sequential noise removal for the low-frequency subbands of the luminance component has the disadvantage that it loses the tone and produces a binary image that is binarized.
  • the noise removal for the other high-frequency subband has the property of preserving the image structure such as texture without losing the gradation.
  • FIG. 15 is a schematic diagram of frequency bands covered by the high-frequency subband and the low-frequency subband expressed in multiple resolutions. Looking at Fig. 15, let us first consider the above problem with respect to the luminance component. Since the original image can be completely reconstructed simply by representing the lowest resolution low frequency subband and each resolution high frequency subband, the noise component of the entire frequency band can be superficially simply by removing noise from only the high frequency subband. Seems to cover. However, when there is a sequential transition to high-frequency components with different resolutions, there is a risk that portions with low intensity in the frequency bands that overlap between layers with different resolutions may not be fully extracted as noise components. Possible cause.
  • the reverse described here is a factor causing a difference in frequency space suitable for extracting noise of the luminance component and the color difference component.
  • the smoothing and filtering of the low frequency side subband in the real space plane handled by a single channel and the multi-resolution representation handled by multiple channels loses the gradation and the filtering range.
  • the fact that it works in the direction of aligning the gradation to the average value of the above is generally half-l.
  • the color difference component is generally considered to have few color textures in which image components representing global color information that behave gently in a wide area are projected and fluctuate immediately. It is. Therefore, the opposite correspondence relationship to the luminance component that the noise component is easily separated on the low frequency side is established. However, noise component fluctuation information easily flows into the high-frequency subbands. In addition, in order to deal with general facts, color texture, and images, noise components are also separated on the high-frequency subband side. You must also think about that.
  • the noise component is extracted from both the high-frequency subband and the low-frequency subband.
  • Picks up noise-eliminating components from conjugate subbands! Take measures to raise it.
  • This conjugate subband corresponds to the low frequency subband in the case of the luminance component, and corresponds to the high frequency subband in the case of the color difference component.
  • the luminance component is mainly removed from the high frequency side subband and the low frequency side subband is regarded as the supplementary band, and the color difference component is mainly from the low frequency side subband.
  • Noise removal is performed by positioning the high frequency side subband as a supplemental band.
  • the distinction between the roles of the main band and the supplemental band can be handled to the same level as it is not necessary to be strengthened as much as the luminance component. This is the findings. This is probably due to the difference in the overall characteristics combining the difference in image structure between the luminance and color difference planes described above and the inflow characteristics of noise components between bands. This seems to be an indication of the existence of an optimal frequency projection space for noise removal.
  • the characteristic of the residual noise component in the luminance component is in the form of vertical and horizontal stripes or check patterns.
  • the orthogonal wavelet transform is two-dimensionally separated with little processing completeness (overcompleteness).
  • Using it as a mold filter is also indirectly involved.
  • there are other methods such as generating high-frequency bands for many directions in multi-resolution conversion and using steerable wavelets.
  • the introduction of the processing is greatly enhanced from the viewpoint of a dramatic increase in processing in which the noise removal surface to be processed increases by the amount of increased directionality, and the memory to be retained also increases.
  • the sequential noise removal provides a clue to an effective solution that maintains simplicity in a sense, and the sequential method that considers both the low-frequency subband and the high-frequency subband further enhances its effectiveness.
  • the effect shown in the present embodiment is not limited to orthogonal wavelet transform, but is also applicable to noise removal in multi-resolution representation using Labrador's pyramid representation steerable wavelet transform, etc. It is a technology that functions effectively in the sense that it covers the functions of the multi-resolution conversion filter characteristics, each of which is a weak point.
  • Analysis is equivalent to decomposing image data into low-resolution and multi-resolution data
  • Synthesis is the resolution of multi-resolution data from the original high-resolution data. It is equivalent to integrating (synthesizing) data.
  • wavelet transform “Analysis” corresponds to wavelet transform
  • Synthesis corresponds to inverse wavelet transform.
  • FIG. 1 is a diagram showing an image processing apparatus according to an embodiment of the present invention.
  • the image processing apparatus is realized by the personal computer 1.
  • the personal computer 1 is connected to a digital camera 2, a recording medium 3 such as a CD-ROM, another computer 4, etc., and receives various image data.
  • the personal computer 1 performs image processing described below on the provided image data.
  • the computer 4 is connected via the Internet and other telecommunication lines 5.
  • FIG. 19 is a diagram showing a configuration of the personal computer 1.
  • the personal computer 1 includes a CPU 11, a memory 12, and its peripheral circuit 13, and executes a program in which the CPU 11 is installed.
  • Program power S When provided via the Internet or other telecommunication lines The program is transmitted after being converted into a signal on a carrier wave carrying a telecommunication line, that is, a transmission medium.
  • the program is supplied as a computer readable computer program product in various forms such as a recording medium and a carrier wave.
  • FIG. 2 is a diagram showing a flowchart of image processing according to the first embodiment processed by the personal computer 1.
  • step S1 linear RGB image data is input.
  • step S2 the uniform color is converted to a uniform noise space.
  • step S3 noise removal processing is performed.
  • step S4 the color space is inversely transformed.
  • step S5 the processed image data is output.
  • step S1 RGB color image data having a linear gradation with respect to the light intensity is input.
  • step S2 the noise is converted into a uniform noise space that equalizes the gray level to make it easier to remove noise.
  • it is converted to a uniform color / uniform noise space that realizes the developed uniform color characteristics and uniform noise characteristics at the same time, to achieve both the noise removal effect and color reproducibility retention.
  • the linear gradation RGB value is converted into an XYZ value. That is, it converts to the XYZ color space. This is done by a 3x3 matrix transformation determined by the spectral characteristics of the RGB original stimulus.
  • the sR GB input image is converted according to the following standard.
  • ⁇ , ⁇ , and ⁇ are values determined by the illumination light.
  • the nonlinear gradation conversion function t) is defined by the following formula.
  • the uniform noise is realized by the characteristic of this function t).
  • is an offset signal that can be compared to a linear gradation signal, and the value of ⁇ differs depending on the sensor, but it is close to 0 for low sensitivity settings and for high sensitivity settings.
  • the value is about 0.05.
  • FIG. 3 is a flowchart showing the processing of the luminance component (luminance signal)
  • FIG. 4 is a flowchart showing the processing of the color difference component (color difference signal).
  • FIG. 4 as will be described later, portions different from the luminance component processing flowchart of FIG. 3 are extracted and illustrated.
  • Figures 3 and 4 may be increased or decreased according to the size of the original image to be input, corresponding to a multi-resolution converted image using a 5-stage wavelet transform. Normally, if this number of stages is used, the frequency band of the noise component in question can be almost covered.
  • Wavelet transform converts image data into frequency components, and divides the frequency components of the image into high-pass and low-pass components.
  • a 5-stage wavelet transform is performed using a 5/3 filter as described above.
  • the 5/3 filter generates a low-pass component with a filter with 5 taps (1D 5 pixels) and a high-pass component with a filter with 3 taps (1D 3 pixels).
  • n indicates the pixel position
  • x [] indicates the pixel value of the target image to be wavelet transformed. For example, if there are 100 pixels in the horizontal direction, n is 0-49.
  • the high-pass component or low-pass component is extracted using the following formula, the data for the high-pass component and low-pass component for 50 pixels, which is half the current 100 pixels, are extracted.
  • the one-dimensional wavelet transform defined above is subjected to wavelet decomposition by performing two-dimensional separation filter processing independently in the horizontal and vertical directions. Collect the coefficient s on the L plane and the coefficient d on the H plane. The same real space plane as the input image is also the LL0 plane, and the wavelet transform coefficient is low. Similar to the frequency subbands LL1, LL2, LL3, LL4, and LL5, it is treated as the highest resolution surface on the low frequency subband side.
  • wavelet transform is sequentially performed as follows.
  • wavelet transform is performed while sequentially extracting noise signals using LL component data and LH, HL, and HH component data generated at each stage.
  • LL is the low frequency subband, LH,
  • the low frequency subband may be referred to as a low frequency image
  • the high frequency subband may be referred to as a high frequency image.
  • each subband may be referred to as a frequency band limited image.
  • the low-frequency subband is an image in which the frequency band of the original image is band-limited to the low frequency side
  • the high-frequency subband is an image in which the frequency band of the original image is band-limited to the high frequency side.
  • FIG. 5 is a diagram showing a state of subband division by five-stage wavelet transform.
  • high-pass component data and low-pass component data are first extracted horizontally from all rows in real space image data.
  • the data of the high-pass component and the low-pass component with half the number of pixels in the horizontal direction are extracted.
  • a high-pass component is stored on the right side of the memory area where the real space image data was stored, and a low-pass component is stored on the left side.
  • the high-pass component and the low-pass component are respectively obtained in the same manner for all columns in the vertical direction. Extract component data.
  • data of the high-pass component and the low-pass component are further extracted from the high-pass component on the right side of the memory area and the low-pass component on the left side, respectively.
  • the high-pass component and the low-pass component are stored below and in the memory area where each data was stored.
  • the data force extracted as a high-pass component in the horizontal direction is represented as HH
  • the data extracted as a high-pass component in the vertical direction is also represented as a low-pass component in the vertical direction.
  • Data extracted as HL and data force extracted as low-pass component in the horizontal direction Data extracted as high-pass component in the vertical direction is represented as LH and data force extracted as low-pass component in the vertical direction
  • the data extracted as the low-pass component is expressed as LL.
  • the vertical and horizontal directions are independent, it is equivalent if the extraction order is changed.
  • the data force extracted as a single-pass component in the horizontal direction in the first-stage wavelet transform is the same as the data LL extracted as the low-pass component in the vertical direction.
  • the high pass component and the low pass component are extracted. The result of repeating this step five times is shown in FIG.
  • Inverse wavelet transform (multi-resolution inverse transform) is performed using the following equation.
  • x [2n + l] d [n] + (x [2n + 2] + x [2n]) / 2 ... (12)
  • the signal representing the image is input to the X value at the time of wavelet transform, the noise components included in the generated wavelet transform coefficients s and d are extracted, and the extracted noise is extracted.
  • the method is used to generate the noise image X by substituting the components into s and d for the inverse wavelet.
  • the noise removal processing for each subband surface uses an arbitrary noise removal filter.
  • the edge-preserving smoothing filter for example, the document “Jong- 3 ⁇ 4en”
  • V The original signal of the input subband image plane is represented by V (vector r), and the signal of the image plane after noise removal is represented by V '(vector r) or V ⁇ ⁇ ⁇ (vector r).
  • V r the signal of the image plane after noise removal
  • V ' the signal of the image plane after noise removal
  • V ' the signal of the image plane after noise removal
  • V ' the signal of the image plane after noise removal
  • the threshold value rth related to the spatial direction is set to a range of about 0.5 to 3.0 pixels so as to overlap between layers having different multi-resolutions because the range of the noise removal filter is about twice that of the range. Moreover, you may make it change with imaging sensitivity.
  • the threshold value at h regarding the gradation direction is set to be larger as the imaging sensitivity is higher, and the optimum value is changed depending on the subband to be applied.
  • the weighting coefficient w_photo [V'-V] of the photometric term and the spatial distance (r'-r ) Is the product of the weight coefficient w_geometric [r'-r] of the geometric term with only the argument, so the weight coefficient force ⁇ hotometri It can be called a bilateral filter that can be separated into c and geometric terms.
  • the filter uses a non-separable force double type Bila teral Filter that cannot be separated into weighted coefficient force photometric term and geometric term. In other words, it uses a filter with a weighting factor represented by one exponential function, where the value represented by the product of two arguments is one exponent.
  • noise is extracted by the following formula.
  • V '(r) V (r)-W (r) f (W 2 V (r))-(1 4)
  • noise is extracted by the following equation.
  • V '(r) V (r)-W (r) ⁇ / (W (r))... 5)
  • V r) V' (r) + W '(r) ⁇ (W' (r))... (1 6)
  • V 2 is a Laplacian filter (Noise pass filter).
  • Figure 6 shows the simplest Laplacian filter that is commonly used.
  • the threshold value a th regarding the gradation direction may be set based on the same concept as the above-described improved bilateral filter. Of course, even between the luminance and chrominance components, individual values suitable for each are set.
  • the improved bilateral filter and Laplacian filter are functions of signal values included in the local range. That is, in the above, each noise is extracted based on observation of local signal values of the low-frequency subband and the high-frequency subband.
  • noise extraction is performed by “Analysis sequential”.
  • ⁇ - ⁇ is associated with (X-X) in Fig. 3.
  • noise removal is performed on the real space image signal SO (LLO) by the above-described noise removal filter to produce a noise removal image signal SO ′ (LLO).
  • the image signal of the LL0 plane from which noise has been removed in the process (0-3) is wavelet transformed, and the 1/2 resolution image signal S1 (LL1, LH1, HL1, HH1) is converted. Generate.
  • noise removal is performed on each of the image signals S1 (LL1, LH1, HL1, HH1) by the above-described noise removal filter, and the noise-removed image signals S1 ′ (LL1, LH1, HL1 , HH1).
  • the noise signal nl (LLl) is subtracted from the image signal Sl (LLl) with the same strength (or may be multiplied by (1)), and Sl ( LL1) is removed.
  • Sl ( LL1) is removed.
  • the image signal of the LL1 surface from which noise has been removed in the processing (1-3) is wavelet transformed to generate a 1/4 resolution image signal S2 (LL2, LH2 , HL2, HH2).
  • each of the image signals S4 (LL4, LH4, HL4, HH4) is subjected to noise removal by the above-described noise removal filter, and the noise-removed image signal S4 ′ (LL4, LH4, HL4, HH4).
  • wavelet transform is applied to the image signal of LL4 surface, from which noise has been removed in process (4-3), to generate 1/32 resolution image signal S5 (LL 5, LH5, HL5, HH5). .
  • each of the image signals S5 (LL5, LH5, HL5, HH5) is subjected to noise removal by the above-described noise removal filter to obtain a noise-removed image signal S5 ′ (LL5, LH5, HL5). , HH5).
  • the noise components of the high-frequency subbands LH, HL, and HH on the low resolution side generated from the low-frequency subband LL that has been sequentially noise-removed unlike the prior art are also included. It is a point that can be extracted accurately from the noise-removed state on the high resolution side. In other words, the noise removal result of the upper low frequency subband affects not only the lower frequency subband noise extraction but also the high frequency subband noise extraction. In this way, in the multi-resolution representation, both the low frequency subband and the high frequency subband can extract both noise components with low residual noise. [0086] [2-3-2] Change frequency characteristics of noise components
  • the extracted noise component is corrected to a noise component for performing actual noise removal.
  • the noise component for performing actual noise removal is extracted from the extracted noise component.
  • This parameter can be provided as a granularity change parameter for noise removal in a graphic user interface such as software processing.
  • the noise component of the low frequency subband and the noise component of the high frequency subband are multiplied by different weighting factors (in the example below, kO for the LL subband and 1 for the other subbands) and The weight of is modulated.
  • n0, (LL0) k0 (0) * n0 (LL0)... (18)
  • n2 '(LL2) kO (2) * n2 (LL2) .. (20)
  • n3 '(LL3) kO (3) * n3 (LL3) ... (21)
  • n4 '(LL4) kO (4) * n4 (LL4). .. (22)
  • n5 '(LL5) kO (5) * n5 (LL5) ... (23)
  • nl ′ (LLl) and nl (LHl, HLl, HHl) are bundled as they are and expressed as nl ′ (LLl, LHl, HLl, HHl).
  • n2 '(LL2) and n2 (LH2, HL2, HH2) are bundled as they are and expressed as n2' (LL2, LH2, HL2, HH2).
  • n3 ′ (LL3) and n3 (LH3, HL3, HH3) are bundled as they are and expressed as n3 ′ (LL3, LH3, HL3, HH3).
  • n4 ′ (LL4) and n4 (LH4, HL4, HH4) are bundled as they are and expressed as n4 ′ (LL4, LH4, HL4, HH4).
  • n5 ′ (LL5) and n5 (LH5, HL5, HH5) are bundled as they are and are represented as n5 ′ (LL5, LH5, HL5, HH5).
  • the high-frequency sub-band noise signal is normally output at the same magnification.
  • the weight for the high frequency subband is set larger than the weight for the low frequency subband.
  • a weighting factor may be multiplied depending on circumstances.
  • Figure 7 shows the weighting factors for the low-frequency subband (LL) and the high-frequency subband (LH, HL, HH).
  • noise removal for extracting noise components As described above, two types of noise removal concepts, noise removal for extracting noise components and noise removal for actual noise removal that requires non-destructive image structure, are introduced.
  • Noise removal for extraction can be performed freely with the required strength without being constrained by the conditions for maintaining non-destructive image structure.
  • noise removal for extracting noise components can be made stronger than noise removal for actual noise removal. This makes it possible to accurately extract noise for each subband and maintain the non-destructive nature of the image structure.
  • the frequency characteristics of the integrated noise component can be easily changed by only introducing a weighting coefficient for the supplementary subband of the high-frequency subband and the low-frequency subband.
  • a weighting coefficient for the supplementary subband of the high-frequency subband and the low-frequency subband As a result, it is possible to provide an environment in which the appearance of the noise removal effect can be easily changed while maintaining high-definition noise removal.
  • the result of the appearance change can be presented at high speed.
  • the noise components are integrated by performing inverse wavelet transform in order from the lowest resolution side.
  • noise corresponding to the LL4 subband surface is obtained by performing inverse wavelet transform on the single-layer noise signal n5 '(LL5, LH5, HL 5, HH5) weighted between bands.
  • Generate signal N5 (LL4) [0095] [2-3-3-2] Processing at 1/16 resolution
  • n4 "(LL4) and n4 '(LH4, HL4, HH4) are bundled as they are and expressed as n4" (LL4, LH4, HL4, HH4).
  • the noise component of the LL4 surface is integrated with the two layers of noise components as shown in FIG.
  • the noise component of LH4, HL4, and HH4 is a single layer.
  • the noise signal n4 "(LL4, LH4, HL4, HH4) integrated with two layers of noise components is subjected to inverse wavelet transform, so that the noise signal N4 (LL3) corresponding to the LL3 subband plane is obtained. Is generated.
  • nl "(LLl) and nl '(LHl, HLl, HHl) are bundled as they are and expressed as nl" (LLl, LHl, HLl, HHl).
  • the noise signal nll (LLl, LHl, HLl, HHl) in which the noise components of the two layers are integrated, is subjected to inverse wavelet transform to obtain the noise signal Nl (LLO) corresponding to the LL0 subband plane. ) Is generated.
  • the noise component power of the low-frequency sub-band unlike the conventional technology, pay attention to the noise component integrated from both the low-frequency and high-frequency sub-bands on the low resolution side.
  • noise synthesis is performed. This makes it easy to synthesize accurate noise components without residual noise components, and also makes it possible to synthesize noise characteristics that have high non-destructive image structure and can be easily changed in appearance.
  • the frequency characteristics may be changed more freely by changing the intensity of the noise component between layers of different resolutions.
  • the processing is as shown below.
  • the noise is extracted by “Analy S i S Sequential”.
  • the difference from the noise removal of the luminance component is that the target of the subband to which the weighting coefficient is applied when changing the frequency characteristic in the processing of “[2-3-2] Changing the frequency characteristic of the noise component” is different.
  • the weighting process is different and the parameter setting method of the noise removal rate in “[2-3-4] Actual noise removal process” is different. This difference is described below.
  • FIG. 4 is a diagram in which only the processing of “changing the frequency characteristics of noise components” that is different from FIG. 3 is extracted. [0104] [2-4-1] Change frequency characteristics of noise components
  • nl : '(LH1) kl (l) * nl (LHl)., .. (33)
  • nl : '(HL1) kl (l) * nl (HLl)., .. (34)
  • nl : '(HH1) : k2 (l) * nl (HHl) ... ... (35)
  • n2 : '(LH2) kl (2) * n2 (LH2)., .. (36)
  • n3 : '(LH3) kl (3) * n3 (LH3)., .. (39)
  • n3 : '(HL3) kl (3) * n3 (HL3)., .. (40)
  • n4 : '(LH4) kl (4) * n4 (LH4)., .. (42)
  • n5 : '(LH5) kl (5) * n5 (LH5)., .. (45)
  • n5 : '(HL5) kl (5) * n5 (HL5)., .. (46)
  • nl (LLl) and nl ′ (LHl, HLl, HHl) are bundled as they are and expressed as nl ′ (LLl, LHl, HLl, HHl).
  • n2 (LL2) and n2 '(LH2, HL2, HH2) are bundled as they are and expressed as n2' (LL2, LH2, HL2, HH2).
  • n3 (LL3) and n3 ′ (LH3, HL3, HH3) are bundled as they are and expressed as n3 ′ (LL3, LH3, HL3, HH3).
  • n4 (LL4) and n4 ′ (LH4, HL4, HH4) are bundled as they are and expressed as n4 ′ (LL4, LH4, HL4, HH4).
  • n5 (LL5) and n5 ′ (LH5, HL5, HH5) are bundled as they are and expressed as n5 ′ (LL5, LH5, HL5, HH5).
  • FIG. 8 is a diagram showing weighting factors of the low frequency subband (LL) and the high frequency subband (LH, HL, HH).
  • the weighting factor of the low frequency subband (LL) is 1, and the value is used as it is.
  • the weight for the low frequency subband is set larger than the weight for the high frequency subband.
  • the noise removal rate for the color difference component should normally be 1.0.
  • FIG. 9 is a diagram showing a setting screen for setting the intensity parameters (Intensity) ⁇ th and rth, the frequency characteristic changing parameter (grainness) k0, and the parameter (sharpness) relating to the noise removal intensity.
  • Each item is indicated by a slide bar, and each item can be set to an arbitrary value by setting the cursor in the slide bar to an arbitrary position.
  • the setting screen shown in FIG. 9 is displayed on the monitor (not shown) of the personal computer 1, and the user can use the keyboard (not shown) or mouse (not shown) to display the setting screen.
  • the user can easily set the above parameters. For example, by changing the frequency characteristic change parameter (grainness) kO as described above, the appearance of the noise removal effect can be easily changed while maintaining high definition. Also, the operation follows the change in kO length at high speed.
  • step S4 the image data that has undergone the noise removal processing in step S3 is subjected to the inverse transformation of “[1] color space conversion” in step S2 to return to the RGB image.
  • step S5 the image data returned to the RGB image is output.
  • noise extraction and noise removal are separated and processing corresponding to two types of noise removal is performed, and the noise removal result of the lower frequency sub-band in the upper layer is further obtained.
  • noise extraction is performed sequentially from both the high-frequency subband and the low-frequency subband of the multi-resolution conversion image, while also affecting each other.
  • Noise extraction can be performed in the optimal frequency space for noise extraction, eliminating the problem of residual noise that cannot be extracted, but enabling high-resolution noise removal without destroying the image structure.
  • FIG. 16 is a flowchart showing the processing of the luminance component (luminance signal) in which the predetermined noise removal processing is omitted from the real space image signal S0 (LL0) from FIG. The same applies to the processing of the color difference component. This makes it possible to perform high-definition noise removal processing while reducing processing.
  • FIG. 10 is a diagram illustrating a flowchart of luminance component processing
  • FIG. 11 is a diagram illustrating a flowchart of color difference component processing.
  • FIG. 11 shows an extracted part that is different from the luminance component processing flowchart of FIG.
  • the following processing (XX) and processing (xx-x) are associated with each other by describing them as! /, (XX) and (xx-x) in Figure 10.
  • image signal S0 (LL0) in the real space plane is wavelet transformed to generate 1/2 resolution image signal S1 (LL1, LH1, HL1, HH1).
  • the image signal S2 (LL2) of the LL2 plane is wavelet transformed to generate an image signal S3 (LL3, LH3, HL3, HH3) of 1/8 resolution.
  • the image signal S3 (LL3) on the LL3 plane is wavelet transformed to generate an image signal S4 (LL4, LH4, HL4, HH4) having a 1/16 resolution.
  • the image signal S4 (LL4) on the LL4 plane is wavelet transformed to generate 1/32 resolution image signal S5 (LL5, LH5, HL5, HH5).
  • noise removal is performed on each of the image signals S5 (LL5, LH5, HL5, HH5) to generate a noise-removed image signal S5 ′ (LL5, LH5, HL5, HH5).
  • the noise signal n5 (LL4, LL5, LL5, HL5, HH5) is extracted by performing inverse wavelet transform (Synthesis) on the LL4 subband surface. ) Is generated.
  • noise removal is performed on each of the image signals S4 ′ (LL4, LH4, HL4, HH4) to obtain a noise-removed image signal S4 ”(LL4, LH4, HL4, HH4).
  • the force described as S4 "(LL4", LH4 ', HL4', HH4 ') is the above S4 "(LL4, LH4, HL4, HH4).
  • n4 (LL4) S4 '(LL4) -S4 "(LL4)
  • n4 (LH4) S4' (LH4) — S4 "(LH4)
  • n4 (HL4) S4 '(HL4) -S4" (HL4)
  • n4 (HH4) S4' (HH4) — Extract by S4 "(HH4).
  • n4 ′ (LL4) and n4 (LH4, HL4, HH4) are bundled as they are and expressed as n4 ′ (LL4, LH4, HL4, HH4).
  • the noise signal n4 ′ (LL4, LH4, HL4, HH4) is inverse wavelet transformed to generate the noise signal N4 (LL3) corresponding to the LL3 subband surface.
  • noise removal is performed on each of the image signals S1 ′ (LL1, LH1, HL1, HH1) to obtain a noise-removed image signal S1 ”(LL1, LH1, HL1, HH1).
  • Fig. 11 In the processing (11-1), noise removal is performed on each of the image signals S1 ′ (LL1, LH1, HL1, HH1) to obtain a noise-removed image signal S1 ”(LL1, LH1, HL1, HH1).
  • nl ′ (LLl) and nl (LHl, HLl, HHl) are bundled as they are and expressed as nl ′ (LLl, LHl, HLl, HHl).
  • the noise signal nl '(LLl, LHl, HLl, HHl) is inverse wavelet transformed.
  • Nl (LLO) corresponding to the LLO subband surface is generated.
  • the noise signal Nl (LLO) is kept at the same strength (or a (1) times!).
  • noise removal is performed on the image signal SO ′ (LLO) to produce a noise-removed image signal S0 ⁇ (LL0).
  • the noise removal effect on the high frequency subband side effectively eliminates the streak and check pattern residual noise components hidden in the low frequency side subband.
  • the effect of pulling out can be expected.
  • the extracted noise component is corrected to a noise component for performing actual noise removal. That is, the frequency characteristics of the noise component are changed by changing the weight between the low frequency subband (LL) and the high frequency subband (LH, HL, HH).
  • LL low frequency subband
  • LH, HL, HH high frequency subband
  • nl "(LLl) and nl (LHl, HLl, HHl) are bundled as they are and expressed as nl" (LLl, LHl, HLl, HHl).
  • n2 "(LL2) and n2 (LH2, HL2, HH2) are bundled as they are and expressed as n2" (LL2, LH2, HL2, HH2).
  • n3 "(LL3) and n3 (LH3, HL3, HH3) are bundled together and expressed as n3" (LL3, LH3, HL3, HH3).
  • n4 "(LL4) and n4 (LH4, HL4, HH4) are bundled as they are and expressed as n4" (LL4, LH4, HL4, HH4).
  • n5 "(LL5) and n5 (LH5, HL5, HH5) are bundled as they are and expressed as n5" (LL5, LH5, HL5, HH5).
  • the noise components corrected in this way are sequentially subjected to inverse wavelet transform from the lowest resolution side, while integrating the noise components for actual noise removal.
  • the noise signal N5 '(LL4) for actual noise removal corresponding to the LL4 subband surface is generated.
  • n4 '"(LL4) n4" (LL4) + N5' (LL4) ... (56)
  • n4 "'(LL4) and n4" are bundled together and expressed as n4 "' (LL4, LH4, HL4, HH4).
  • the noise component of the LL4 surface can also be seen from FIG. In this way, the noise components of the two layers are integrated, but the noise components of LH4, HL4 and HH4 are a single layer.
  • the signal n4 "'(LL4, LH4, HL4, HH4) is inverse wavelet transformed to generate the noise signal N4' (LL3) corresponding to the LL3 subband surface.
  • the noise signal nl "(LLl), which is obtained by extracting the force of the LL1 surface itself and weighted, and N2 '(LL1) integrated for actual noise removal from the lower layer are added as Combine by processing.
  • nl "'(LLl) and nl" (LHl, HLl, HHl) are bundled as they are and expressed as nr' (LLl, LHl, HLl, HHl).
  • the noise signal n1 ⁇ '(LLl, LHl, HLl, HHl), which integrates the noise components of the two layers, is subjected to inverse wavelet transform, so that the noise signal N1' corresponding to the LL0 subband plane is obtained. (L L0) is generated.
  • the noise signal n0 ⁇ (LL0) extracted from the LL0 surface itself and subjected to weighting and Nl '(LLO) integrated for actual noise removal from the lower layer are expressed by the following equation: They are combined by the addition process.
  • n0 '"(LL0) n0" (LL0) + Nl' (LL0) ... (58)
  • the frequency characteristics are further freely changed by changing the intensity of the noise components between layers having different resolutions. You may make it changeable.
  • the processing is similarly performed by the following equation.
  • n4 '"(LL4) n4" (LL4) + ⁇ (5) * N5' (LL4) ... (59)
  • n3 '"(LL3) n3" (LL3) + ⁇ (4) * N4' (LL3) ... (60)
  • n2 '"(LL2) n2" (LL2) + ⁇ (3) * N3' (LL2) ... (61)
  • nl '"(LLl) nl" (LLl) + ⁇ (2) * N2' (LL1) ... (62)
  • n0 '"(LL0) n0" (LL0) + ⁇ (1) * N1' (LL0) ... (63)
  • the point to be noted is that two types of noise components for noise extraction and actual noise removal are prepared separately by integrating two types of noise integration means. . This makes it easy to optimize the noise component strength characteristics and frequency characteristics changes suitable for each application.
  • the noise component power of the low-frequency subband is integrated from both the low-frequency and high-frequency subbands on the low resolution side, unlike the conventional technology.
  • the low-frequency sub-band of the resolution of interest itself performs noise synthesis using a two-layer structure of the noise component extracted. This makes it easy to change the frequency characteristics of noise, and makes it possible to prepare noise components suitable for each of the two systems.
  • nl (LLl) and nl "(LHl, HLl, HHl) are bundled as they are and expressed as nl" (LLl, LHl, HLl, HHl).
  • n2 (LL2) and n2 "(LH2, HL2, HH2) are bundled together and expressed as n2" (LL2, LH2, HL2, HH2).
  • n3 (LL3) and n3 "(LH3, HL3, HH3) are bundled as they are and expressed as n3" (LL3, LH3, HL3, HH3).
  • n4 (LL4) and n4 "(LH4, HL4, HH4) are bundled as they are and expressed as n4" (LL4, LH4, HL4, HH4).
  • n5 (LL5) and n5 "(LH5, HL5, HH5) are bundled as they are and expressed as n5" (LL5, LH5, HL5, HH5).
  • noise extraction and noise removal are separated and processing corresponding to two types of noise removal is performed, and only the noise removal result of the lower frequency sub-band in the lower layer is processed.
  • the noise removal results of the lower high-frequency subbands also affect the noise extraction of the upper low-frequency subbands.
  • noise extraction is performed sequentially from both the high-frequency subband and the low-frequency subband of the multi-resolution conversion image, while the force also affects each other.
  • the degree of freedom of synthesis is expanded, and noise extraction can be performed in a frequency space that is optimal for noise extraction, while eliminating the problem of residual noise that cannot be extracted, and high-precision noise removal that does not destroy the image structure
  • the difference between the first embodiment and the second embodiment will be briefly described. It has been experimentally confirmed that by changing the parameter settings, the “Analysis sequential” and “Synthesis sequential” methods can obtain approximately the same noise removal effect and noise residual problem countermeasure effect. However, if we dare to describe the difference, the “analysis sequential” method comes later in the lower resolution side, so the length of the lower resolution side that has an influence on other resolutions will be positive. While the noise extraction leakage prevention effect of periodic components is high, the ⁇ Synthesis sequential '' method, on the other hand, has a higher resolution side in the latter stage, so the noise extraction leakage prevention effect on the high resolution side is high and the Nyquist frequency of the check pattern etc. It can be said that it is strong against stiff noise extraction.
  • FIG. 17 is a diagram showing a process flow of the luminance component (luminance signal) from FIG. 10 by omitting a predetermined noise removal process for the real space image signal S0 (LL0). The same applies to the processing of the color difference component. This makes it possible to perform high-definition noise removal processing while reducing processing.
  • FIG. 12 is a flowchart of edge enhancement processing using multi-resolution conversion. The main point of the change is that the sequential processing feedback routine used for noise removal is no longer necessary, and the noise component extraction process is simply replaced with the edge component extraction process. Edge component extraction processing is performed by, for example, unsharp mask processing or bandpass filtering processing of each subband surface.
  • These processes may be performed simultaneously using the multi-resolution image converted to extract the noise component of the first embodiment or the second embodiment, or the first embodiment.
  • the processing may be performed again on the image that has been subjected to the noise removal processing as in the second embodiment or the second embodiment.
  • it may be used alone for the purpose of edge enhancement only. However, this is basically done only for the luminance plane.
  • the noise is not included in the output component. It is better to extract and integrate the subband surface force edge components that have been virtually noise-removed until the image becomes free, and perform addition processing on the image after the actual noise removal. Therefore, for example, taking the case of adding to the second embodiment as an example, the reconstruction process on the right side of FIG. 10 is: 1) integration of noise components for virtual noise removal, 2) actual noise Three systems of noise component integration for removal and 3) edge component integration for actual edge enhancement will run.
  • the frequency characteristic of the edge component is changed by changing the weight between the low-frequency subband (LL) and the high-frequency subband (LH, HL, HH).
  • FIG. 13 is a diagram showing weighting factors for the low-frequency subband (LL) and the high-frequency subband (LH, HL, HH). However, it is not necessary to use the same kl between LH and HL.
  • the low frequency subband here is a low frequency edge component image
  • the high frequency subband is a high frequency edge component image.
  • the low-frequency edge component image and the high-frequency edge component image in which the weight is modulated between the frequency bands of the edge components are used for the inverse wavelet transform.
  • the inverse wavelet transform uses a low-frequency edge component image and a high-frequency edge component image whose weights are modulated at each resolution, until one edge component image having the same resolution as the original image is obtained. Repeat the inverse wavelet transform (integration) sequentially. Then, based on the finally integrated edge component, edge enhancement of the original image is performed.
  • both the high-frequency subband and low-frequency subband force edge extraction of the multi-resolution conversion image are performed, and the weighting coefficient between the subbands is introduced. Therefore, it is possible to provide an environment where the frequency band can be easily changed and the appearance of edge enhancement can be easily changed.
  • FIG. 18 is a flowchart illustrating edge enhancement processing using multi-resolution conversion in which the predetermined edge component extraction processing for the real space image signal SO (LLO) is omitted from FIG. Thereby, an effective edge enhancement process can be performed while reducing the process.
  • an example of wavelet conversion is shown as multi-resolution conversion.
  • a Laplacian 'pyramid may be used instead of the wavelet transform as the multi-resolution conversion.
  • the low-frequency subband (LL) of the wavelet transform corresponds to each of the Gaussian 'pyramids generated during the generation of the Laplacian' pyramid, and the Laplacian to the high-frequency subbands (LH, HL, HH) of the wavelet transform 'Each pyramid corresponds.
  • the low-frequency subband and the corresponding high-frequency subband have the same resolution, but in the Laplacian 'pyramid, the low-frequency subband Gaussian' band has a corresponding high-frequency. The only difference is that the resolution of the sub-band Laplacian band is one higher than that of the Gaussian band.
  • a steerable' pyramid steererable wavelet transform, directional wavelet transform
  • the low-frequency sub-band corresponds to the Laplacian's Gaussian's band as it is
  • the high-frequency sub-band is the Laplacian's pyramid in which only one type of isotropic hynos component is generated as a Laplacian band. Force Multiple Laplacian bands with anisotropic high-pass components in multiple directions It will only respond.
  • FIG. 14 is a diagram showing a schematic diagram of a correspondence relationship between a low-frequency subband and a high-frequency subband in various multi-resolution representations of orthogonal wavelet transform, Laplacian 'pyramid, steerable pyramid.
  • noise removal by the “Analy S i S sequential” method is described for both the luminance component and the color difference component.
  • the luminance component and the color difference component are described.
  • An example of noise removal by the “Synthesis sequential” method has been described for both difference components.
  • noise removal may be performed using “Analysis sequential” for the luminance component and “Synthesis sequential” for the color difference component.
  • noise removal may be performed using “Synthesis sequential” for luminance components and “Analysis sequential” for color difference components!
  • the power shown in the example in which processing is performed by the personal computer 1 is not necessarily limited to this content.
  • the processing may be performed in an imaging device such as a camera. Another device may be used. That is, the present invention can be applied to any apparatus that handles image data.
  • the power of the improved bilateral filter and the Laplacian noise extraction method may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

 画像に含まれるノイズを除去する画像処理方法は、複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分解して、逐次的に低い解像度を持つ複数の低周波画像と、逐次的に低い解像度を持つ複数の高周波画像を生成する多重解像度画像生成手順と、低周波画像と高周波画像の各々に対してノイズ除去処理を行うノイズ除去処理手順と、ノイズ除去された低周波画像とノイズ除去された高周波画像の双方の結果に基づいて、原画像からノイズが除去された画像を得る画像取得手順とを有する。

Description

明 細 書
画像処理方法
技術分野
[0001] 本発明は、画像に含まれるノイズを除去する画像処理方法に関する。
背景技術
[0002] 通常、画像に含まれるノイズ信号は高周波成分に含むと考えられ、原画像を低周 波成分と高周波成分に分けて、高周波成分の値を士閾値内の範囲はゼロに落とす、 いわゆるコアリングと呼ばれる技術が特許文献 1によって示されている。また、それを 多重解像度のウェーブレット変換やラプラシアン'ピラミッド表現への応用に発展させ た技術が、非特許文献 1〜4、特許文献 2、 3に示されている。
[0003] 非特許文献 1〜3は、ウェーブレット変換係数のハイパス成分を閾値処理ないしは 非線形閾値処理によりコアリングする、いわゆるウェーブレット縮退と呼ばれる技術に 相当する。特許文献 2、 3は、ラプラシアン'ピラミッド表現されたハイパス成分 (ガウシ アンとラプラシアンに分解された中のラプラシアン成分)に対して、閾値近辺をなだら かに扱う非線形閾値処理によるコアリング技術が開示されている。
[0004] 非特許文献 4は、通常の直交ウェーブレット変換よりも幅広い方向特性や回転不変 性に対応したステアラブル 'ウェーブレット変換係数のハイパス成分に対して非線形 閾値処理を行っている。また、このようなコアリングをアナログ回路で、トランジスタの 応答帯域に制約がある中で複数のバンドパス帯域への分割をうまくこなしながら実現 する方法を特許文献 4は開示して 、る。
[0005] 他方、このような多重解像度変換されたハイパス ·サブバンドに含まれるノイズを、サ ブバンド係数自身の係数のみによって決めるのではなぐ周辺画素のサブバンド係 数との関係を見ながら除去していく方法が、特許文献 5〜9に示されている。
[0006] 特許文献 5では、ステアラブル 'ウェーブレット変換された高周波サブバンドの係数 を空間フィルタリングしてノイズ除去した後に、逆変換してノイズ除去画像を得る方法 が開示されている。特許文献 6では、ラプラシアン'ピラミッド表現された高周波サブ バンドに対してオーダー ·スタティスティックス ·フィルタを掛ける方法が開示されて!ヽ る。
[0007] また、特許文献 7では、ラプラシアンピラミッド表現の高周波サブバンド係数に含ま れるノイズ信号を、周辺画素との状況を見た局所統計値とサブバンド内で共通の大 局統計値に基づいて抽出して減衰させることによってノイズ除去する方法が開示され ている。特許文献 8では、 LL成分を順次直交ウェーブレット変換して多重解像度分割 されたサブバンドの内、低周波サブバンド LLを除く高周波サブバンドの LH,HL,HHに 含まれるノイズ信号を抽出して、それらのノイズ信号を逆ウェーブレット変換して統合 する処理が開示されて!ヽる。
[0008] これらとは対照的に、多重解像度変換の途中で一時的に生成される縮小画像、す なわち直交ウェーブレット変換の場合は低周波サブバンド LL成分に対して逐次的に ノイズ除去を行う方法が特許文献 9、 10に開示されている。
[0009] 一方、上述のような通常の一般画像を扱う問題とは全く異なる、特定の分布構造の みを扱うガンマ線画像の分野では、一段階の解像度変換を直交ウェーブレット変換 を用いて行って、 LL,LH,HL,HHの中でノイズ成分をあまり含まないドミナント 'サブバ ンドを選択して、それら対してはノイズ除去処理を行い、非ドミナント 'サブバンドは完 全にゼロに落とすコアリングを適用して再統合する手法が特許文献 11に開示されて いる。
[0010] これらのノイズ除去フィルタを用いる系統の概念とは異なる方法として、原画像をラ ブラシアン'ピラミッドの多重解像度サブバンド画像に分解をして、再統合する際にサ ブバンドに対して重みを掛けて原画像と異なる周波数特性を持った画像に変換する こと〖こよって、ノイズ除去効果を得ようとする試みも非特許文献 5に開示されている。
[0011] ただし、上述した直交ウェーブレット変換とは、 2次元フィルタを一次元分離型フィル タとして直交する 2方向のフィルタリングに表現できる変換を指し、双直交ウェーブレツ ト変換を含む意味で用いて 、る。以下で用いるときもその意味にぉ 、て使う。
[0012] また、カラー画像に含まれるノイズを実空間面のままの単チャンネルで処理する従 来技術はこれまでに種々提案されてきて 、る。通常は輝度面と色差面に分離して扱 う。例えば、特許文献 12では、輝度成分に対しては方向性を考慮した適応的平滑ィ匕 を、色差成分に対しては等方的平滑ィ匕を行って、輝度成分と色差成分の間で処理を 変える開示がある。このように処理の切り分けを必要とするような単純なフィルタを用 いるのではなぐ高精細な適応的ノイズ除去フィルタ、例えば edge-preserving filterの代表例の 1つである Bilateral Filterを用いる場合の開示が非特許文献 6にあり 、その中では Lab空間の各面に対して適応的フィルタを同じように掛ける開示がなさ れている。
[0013] 一方、多重解像度表現のような多チャンネルの周波数バンドを用いてノイズ除去を 行う場合のカラー画像への応用方法に関する深くまで踏み込んだ研究はほとんどな されて 、な 、のが事実である。これは多重解像度表現を利用したノイズ除去技術が、 主にモノクロ画像を扱う X線撮影や MRI等における医療分野を中心に発展してきたこ とが理由として挙げられる。そのような状況の中で、多重解像度表現を用いたノイズ 除去をデジタルカラー画像に対して応用した従来技術として前述した特許文献 9が ある。しかし、これは、 σフィルタによる同じノイズ除去アルゴリズムを、 LCC輝度'色差 表現の各面に適用する例を示しているにすぎない。 σフィルタの閾値の設定は輝度 成分と色差成分の間で変えては ヽるものの、多重解像度を利用したノイズ除去アル ゴリズム自体は同じままである。
[0014] 特許文献 1:米国特許第 4,523,230号明細書
特許文献 2:米国特許第 5,467,404号明細書
特許文献 3 :米国特許第 5,805,721号明細書
特許文献 4 :米国特許第 6,728,381号明細書
特許文献 5:米国特許第 5,526,446号明細書
特許文献 6:米国特許第 5,708,693号明細書
特許文献 7:米国特許第 5,461 ,655号明細書
特許文献 8:米国特許第 6,754,398号明細書
特許文献 9:米国特許第 6,937,772号明細書
特許文献 10:特開 2000-224421号公報
特許文献 11:米国特許第 5,576,548号明細書
特許文献 12:米国特許第 6,618,503号明細書
非特許文献 1 :J. B. Weaver, X. Yansun, D. M. Healy, Jr. and L. D. Cromwell, "Filter ing Noise from Images with Wavelet Transforms", MagneticResonance in Medicine, v ol. 21, no. 2, pp. 288—295, 1991.
非特言午文献 2 : R. A. DeVor and B. J. Lucier, "Fast wavelet techniques fornear- optim al image processing", IEEE Military Communications Conf. Rec.San Diego, Oct. 11 -14, 1992, vol.3, pp.1129- 1135.
非特言午文献 3 : D. L. Donoho, "De- noising by soft-thresholding, IEEE.TransInform. Theory, Vol.41, pp. 613—627, 1995.
特言午文献 4 : A. F. Laine and C. Chang, "De— Noising via Wavelet TransformsUsing Steerable Filters, IEEE International Symposium on Circuits andSystems,Vol.3, 19 95, pp, 1956-1959.
特言午文献 5 : S. Ranganath, "Image Filtering Using MultiresolutionRepresentations" , IEEE transactions on Pattern and Macnine Intelligence, Vol.13 , No.5, May 1991, p p.426-440.
非特言午文献 6 : C. Tomasi et al" "Bilateral Filtering for Gray and Colorlmages, Proc eedings of the 1998 IEEE international Conference on ComputerVision, Bombay, Indi a.
発明の開示
発明が解決しょうとする課題
[0015] このような状況の中、従来の多重解像度変換された高周波サブバンドをノイズ除去 する方式を実際のデジタル画像に適用した場合、突出点状のノイズや筋状構造のノ ィズが残留する問題があった。
[0016] 一方、従来の低周波サブバンドを逐次的にノイズ除去する方式を適用した場合に は、画像がのつぺりと平面的になりやすいという問題があるとともに、突出点状のノィ ズが残留するという問題もあった。また、比較的ノイズ成分を分離しやすいガンマ線 画像は、基本的にエッジとノイズの分離が難しい一般画像と性質が異なるため、単純 な適用は難しいという課題があった。更に、原画像を等価表現した多重解像度サブ バンド画像を加重統合するだけでは、画像の空間的な局所変化を観察して 、な!、た めに高精細なノイズ除去効果が得られな 、恐れもあった。 [0017] また、カラー画像にぉ 、て、多チャンネルの周波数バンドで表された画像に対して 、輝度成分と色差成分に同じノイズ除去アルゴリズムを適用しただけでは、今日扱う デジタル写真画像に於 ヽては十分に満足の行く高精細な画質を得るのが難 ヽと ヽ う問題が生じ始めていた。例えば、特許文献 2に記載されるような方法では、輝度成 分が階調性を失って平面的な画像になりやすいという問題を抱える一方、色差成分 には色境界部等で突出点状のノイズが残りやすいといった問題を抱える。
課題を解決するための手段
[0018] 本発明の第 1の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分解して 、逐次的に低い解像度を持つ複数の低周波画像と、逐次的に低い解像度を持つ複 数の高周波画像を生成する多重解像度画像生成手順と、低周波画像と高周波画像 の各々に対してノイズ除去処理を行うノイズ除去処理手順と、ノイズ除去された低周 波画像とノイズ除去された高周波画像の双方の結果に基づ!、て、原画像からノイズ が除去された画像を得る画像取得手順とを有する。
本発明の第 2の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分解して 、逐次的に低い解像度を持つ 1つ以上の低周波画像と、それらの各々と対をなして 逐次的に低い解像度を持つ 1つ以上の高周波画像を生成する多重解像度画像生 成手順とを有し、多重解像度画像生成手順は、高周波画像に対してノイズ除去処理 を行ってノイズ除去された高周波画像を得、ノイズ除去された高周波画像に基づ ヽ て、次に高い解像度の高周波画像と対をなす低周波画像を得、次に高い解像度の 高周波画像と対をなす低周波画像に対して、更にノイズ除去処理を行ってノイズ除 去された低周波画像を得、ノイズ除去された低周波画像とノイズ除去された高周波画 像の双方の結果に基づ ヽて、原画像からノイズが除去された画像を得る画像取得手 順をさらに有する。
本発明の第 3の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分解して 、逐次的に低い解像度を持つ 1つ以上の低周波画像と、それらの各々と対をなして 逐次的に低い解像度を持つ 1つ以上の高周波画像を生成する多重解像度画像生 成手順を有し、多重解像度画像生成手順は、低周波画像に対してノイズ除去処理を 行ってノイズ除去された低周波画像を得、ノイズ除去された低周波画像に基づ 、て、 次に低!ヽ解像度の低周波画像と対をなす高周波画像を得、次に低!ヽ解像度の低周 波画像と対をなす高周波画像に対して更にノイズ除去処理を行ってノイズ除去され た高周波画像を得、ノイズ除去された低周波画像とノイズ除去された高周波画像の 双方の結果に基づ ヽて、原画像カゝらノイズが除去された画像を得る画像取得手順を さらに有する。
本発明の第 4の態様によると、第 1〜3のいずれかの態様の画像処理方法において 、画像取得手順は、原画像と同じ解像度を持つ実空間におけるノイズ除去処理を行 い、実空間におけるノイズ除去の結果を低周波画像のノイズ除去の結果と同様に扱 V、、原画像力もノイズが除去された画像の画像データを得るのが好ま 、。
本発明の第 5の態様によると、多重解像度表現された画像を生成する画像処理方 法は、複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分 解して、逐次的に低い解像度を持つ 1つ以上の低周波画像と、それらの各々と対を なして逐次的に低い解像度を持つ 1つ以上の高周波画像を生成する多重解像度画 像生成手順を有し、多重解像度画像生成手順は、高周波画像に対してノイズ除去処 理を行ってノイズ除去された高周波画像を得、ノイズ除去された高周波画像に基づ いて、次に高い解像度の高周波画像と対をなす低周波画像を得、次に高い解像度 の高周波画像と対をなす低周波画像に対して更にノイズ除去処理を行ってノイズ除 去された低周波画像を得る。
本発明の第 6の態様によると、多重解像度表現された画像を生成する画像処理方 法は、複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分 解して、逐次的に低い解像度を持つ 1つ以上の低周波画像と、それらの各々と対を なして逐次的に低い解像度を持つ 1つ以上の高周波画像を生成する多重解像度画 像生成手順を有し、多重解像度画像生成手順は、 a)
低周波画像の画像データに対してノイズ除去処理を行ってノイズ除去された低周波 画像の画像データを得、 b)低周波画像と対をなす高周波画像の画像データに対し てノイズ除去処理を行ってノイズ除去された高周波画像の画像データを得、 c) ノイズ除去された低周波画像の画像データとノイズ除去された高周波画像の画像デ ータの双方の結果に基づいて、次に高い解像度の低周波画像の画像データを得、 d )次に高い解像度の低周波画像が原画像と同等以下の解像度になるまで、解像度 の最も低 、方から高 、方へ向力つて順に、 a)力 c)の処理を繰り返す。
本発明の第 7の態様によると、多重解像度表現された画像を生成する画像処理方 法は、複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分 解して、逐次的に低い解像度を持つ 1つ以上の低周波画像と、それらの各々と対を なして逐次的に低い解像度を持つ 1つ以上の高周波画像を生成する多重解像度画 像生成手順を有し、多重解像度画像生成手順は、 a)高周波画像の画像データに対 してノイズ除去処理を行ってノイズ除去された高周波画像の画像データを得、 b)ノィ ズ除去された高周波画像の画像データに基づいて、次に高い解像度の高周波画像 と対をなす低周波画像の画像データを得、 c)次に高 、解像度の高周波画像と対をな す低周波画像の画像データに対してノイズ除去処理を行ってノイズ除去された低周 波画像の画像データを得、 d)ノイズ除去された低周波画像が原画像と同等以下の解 像度になるまで、解像度の低い方から高い方へ向かって順に、 a)力 c)の処理を繰り 返す。
本発明の第 8の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分解して 、逐次的に低い解像度を持つ 1つ以上の低周波画像と、それらの各々と対をなして 逐次的に低い解像度を持つ 1つ以上の高周波画像を生成する多重解像度画像生 成手順と、低周波画像と高周波画像の各々に含まれるノイズ成分を抽出して、それ ぞれに対応した低周波ノイズ画像と高周波ノイズ画像を生成するノイズ抽出手順と、 低周波ノイズ画像とそれと対をなす高周波ノイズ画像を合成して、次に高 ヽ解像度の 低周波画像と同じ解像度を持つ 1つのノイズ画像に統合するとともに、次に高い解像 度の低周波画像に対応する低周波ノイズ画像と結合させることにより、更に 1つのノィ ズ画像に統合するノイズ統合手順と、統合されたノイズ画像に基づいて、原画像に含 まれるノイズを除去するノイズ除去手順とを有する。 本発明の第 9の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分解して 、逐次的に低い解像度を持つ 1つ以上の低周波画像と、それらの各々と対をなして 逐次的に低い解像度を持つ 1つ以上の高周波画像を生成する多重解像度画像生 成手順と、低周波画像と高周波画像の各々に含まれるノイズ成分を抽出して、それ ぞれに対応した低周波ノイズ画像と高周波ノイズ画像を生成するノイズ抽出手順と、 低周波ノイズ画像とそれと対をなす高周波ノイズ画像を合成して、次に高 ヽ解像度の 低周波画像と同じ解像度を持つ 1つのノイズ画像に統合するとともに、次に高い解像 度の低周波画像に対応する低周波ノイズ画像と結合させることにより、 1つの新たな 低周波ノイズ画像に統合するノイズ統合手順と、ノイズ統合手順で生成された新たな 低周波ノイズ画像を、ノイズ統合手順の低周波ノイズ画像として代入し、最終的に生 成される新たな低周波ノイズ画像が原画像と同じ解像度を持つ 1つのノイズ画像にな るまで、逐次的にノイズ統合手順の統合処理を繰り返すノイズ統合繰り返し手順と、ノ ィズ統合手順とノイズ統合繰り返し手順で統合されたノイズ画像に基づ ヽて、原画像 に含まれるノイズを除去するノイズ除去手順とを有する。
本発明の第 10の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力する画像入力手順と、入力した原画像を分解して 、逐次的に低い解像度を持つ複数の低周波画像と、逐次的に低い解像度を持つ複 数の高周波画像を生成する多重解像度画像生成手順と、低周波画像と高周波画像 の各々に含まれるノイズ成分を抽出するノイズ抽出手順と、抽出された低周波画像と 抽出された高周波画像の双方のノイズ成分に基づいて、原画像の各画素に含まれる ノイズ信号を推定するノイズ推定手順とを有する。
本発明の第 11の態様によると、第 10の態様の画像処理方法において、ノイズ推定 手順で推定されたノイズ信号に基づ ヽて、原画像に含まれるノイズを除去するノイズ 除去手順を更に有するのが好まし 、。
本発明の第 12の態様によると、第 1〜11のいずれかの態様の画像処理方法にお いて、低周波画像と高周波画像は、 1)直交ウエーブレット変換における低周波成分 と高周波成分、 2)ラプラシアン'ピラミッド表現におけるガウシアン成分とラプラシアン 成分、 3)方向ウエーブレット変換における低周波成分と各方向毎の高周波成分、の 何れかに対応するのが好まし!/、。
本発明の第 13の態様によると、第 12の態様の画像処理方法において、 2次元直交 ウェーブレット変換を行って多重解像度画像を生成する場合、低周波画像は LLサブ バンドに、高周波画像は LH、 HL、 HHサブバンドに対応するのが好ましい。
本発明の第 14の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力し、入力した原画像を、多重解像度変換を行ない 、解像度の異なる低周波画像と高周波画像を逐次生成し、それぞれの解像度にお いて、生成した低周波画像と高周波画像を使用して、低周波画像と高周波画像に対 応するノイズ成分を抽出し、それぞれの解像度にぉ ヽて抽出した低周波画像と高周 波画像に対応するノイズ成分を使用して、多重解像度逆変換を行ない、原画像と同 じ解像度を持つノイズ成分を生成し、生成した原画像と同じ解像度を持つノイズ成分 を使用して、原画像カゝらノイズを除去した画像を生成する。
本発明の第 15の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力し、入力した原画像を、低い解像度を持つ低周波 画像と高周波画像に分解し、分解した低!ヽ解像度を持つ低周波画像と高周波画像 のノイズ信号を抽出するとともに、分解した低い解像度を持つ低周波画像に対してノ ィズ除去処理を行い、ノイズ除去処理を行った低い解像度を持つ低周波画像を、さ らに低い解像度を持つ低周波画像と高周波画像に分解し、分解したさらに低い解像 度を持つ低周波画像と高周波画像のノイズ信号を抽出し、抽出したさらに低い解像 度を持つ低周波画像と高周波画像のノイズ信号を使用して、低 、解像度を持つ低周 波画像に対応するノイズ信号を合成し、合成した低 ヽ解像度を持つ低周波画像に対 応するノイズ信号と抽出した低い解像度を持つ低周波画像と高周波画像のノイズ信 号を使用して、原画像と同じ解像度を持つノイズ信号を合成し、合成した原画像と同 じ解像度を持つノイズ信号に基づき、原画像カゝらノイズを除去した画像を得る。
本発明の第 16の態様によると、画像に含まれるノイズを除去する画像処理方法は、 複数の画素からなる原画像を入力し、入力した原画像を、低い解像度を持つ低周波 画像と高周波画像に分解し、分解した低い解像度を持つ低周波画像を、さらに低い 解像度を持つ低周波画像と高周波画像に分解し、分解したさらに低!ヽ解像度を持つ 低周波画像と高周波画像のノイズ信号を抽出し、抽出したさらに低い解像度を持つ 低周波画像と高周波画像のノイズ信号を使用して、低 、解像度を持つ低周波画像 に対応するノイズ信号を合成し、合成した低 ヽ解像度を持つ低周波画像に対応する ノイズ信号と分解した低い解像度を持つ低周波画像を使用して、低い解像度を持つ 低周波画像のノイズ信号を抽出するとともに、分解した低い解像度を持つ高周波画 像のノイズ信号を抽出し、抽出した低 ヽ解像度を持つ低周波画像と高周波画像のノ ィズ信号と、合成した低!ヽ解像度を持つ低周波画像に対応するノイズ信号とを使用 して、原画像と同じ解像度を持つノイズ信号を合成し、合成した原画像と同じ解像度 を持つノイズ信号に基づき、原画像カゝらノイズを除去した画像を得る。
本発明の第 17の態様によると、輝度成分と色差成分からなる画像に含まれるノイズ を除去する画像処理方法は、複数の画素からなる輝度成分の原画像および複数の 画素からなる色差成分の原画像の各々を入力する画像入力手順と輝度成分の原画 像を分解して、逐次的に低い解像度を持つ 1つ以上の輝度成分の低周波画像と、逐 次的に低!ヽ解像度を持つ 1つ以上の輝度成分の高周波画像を生成し、色差成分の 原画像を分解して、逐次的に低 ヽ解像度を持つ 1つ以上の色差成分の低周波画像 と、逐次的に低い解像度を持つ 1つ以上の色差成分の高周波画像を生成する多重 解像度画像生成手順と、輝度成分に関しては、少なくとも輝度成分の高周波画像に 含まれるノイズを除去した結果に基づ ヽて、輝度成分の原画像カゝらノイズが除去され た輝度成分の画像を得、色差成分に関しては、少なくとも色差成分の低周波画像に 含まれるノイズを除去した結果に基づ ヽて、色差成分の原画像カゝらノイズが除去され た色差成分の画像を得るノイズ除去手順とを有する。
本発明の第 18の態様によると、第 17の態様の画像処理方法において、ノイズ除去 手順は、更に輝度成分に関しては、輝度成分の低周波画像に含まれるノイズを除去 した結果にも基づ ヽて、輝度成分の原画像からノイズが除去された輝度成分の画像 を得、色差成分に関しては、色差成分の高周波画像に含まれるノイズを除去した結 果にも基づ ヽて、色差成分の原画像からノイズが除去された色差成分の画像を得、 低周波画像のノイズ除去の程度と高周波画像のノイズ除去の程度を、輝度成分と色 差成分の間で異ならせるのが好ま 、。
本発明の第 19の態様によると、第 18の態様の画像処理方法において、ノイズ除去 手順は、輝度成分の場合は、高周波画像のノイズ除去の程度を低周波画像のノイズ 除去の程度よりも強くし、色差成分の場合は、低周波画像のノイズ除去の程度を高周 波画像のノイズ除去の程度よりも強ぐあるいは、同程度にするのが好ましい。
本発明の第 20の態様によると、第 18または 19の態様の画像処理方法において、ノ ィズ除去手順は、更に輝度成分の原画像に対してもノイズ除去処理を行い、輝度成 分の原画像に対するノイズ除去処理の結果を輝度成分の低周波画像に含まれるノィ ズを除去した結果と同様に扱!ヽ、色差成分の原画像に対してもノイズ除去処理を行 V、、色差成分の原画像に対するノイズ除去処理の結果を色差成分の低周波画像に 含まれるノイズを除去した結果と同様に扱うのが好ましい。
本発明の第 21の態様によると、輝度成分と色差成分からなる画像に含まれるノイズ を除去する画像処理方法は、複数の画素からなる輝度成分の原画像および複数の 画素からなる色差成分の原画像の各々を入力する画像入力手順と輝度成分の原画 像を分解して、逐次的に低い解像度を持つ 1つ以上の輝度成分の低周波画像と、逐 次的に低!ヽ解像度を持つ 1つ以上の輝度成分の高周波画像を生成し、色差成分の 原画像を分解して、逐次的に低 ヽ解像度を持つ 1つ以上の色差成分の低周波画像 と、逐次的に低い解像度を持つ 1つ以上の色差成分の高周波画像を生成する多重 解像度画像生成手順と、輝度成分の低周波画像と高周波画像のそれぞれに含まれ るノイズ成分を抽出して、各々に対応する輝度成分の低周波ノイズ画像と高周波ノィ ズ画像を生成し、生成した輝度成分の低周波ノイズ画像と高周波ノイズ画像に対して 重みづけ処理を行 ヽ、重みづけ処理を行った輝度成分の低周波ノイズ画像と高周波 ノイズ画像を使用して逆多重解像度変換し、輝度成分の原画像と同じ解像度のノィ ズ信号に変換する輝度成分ノイズ信号変換手順と、色差成分の低周波画像と高周 波画像のそれぞれに含まれるノイズ成分を抽出して、各々に対応する色差成分の低 周波ノイズ画像と高周波ノイズ画像を生成し、生成した色差成分の低周波ノイズ画像 と高周波ノイズ画像に対して重みづけ処理を行 ヽ、重みづけ処理を行った色差成分 の低周波ノイズ画像と高周波ノイズ画像を使用して逆多重解像度変換し、色差成分 の原画像と同じ解像度のノイズ信号に変換する色差成分ノイズ信号変換手順とを有 し、輝度成分と色差成分の間で異なる重みづけ処理を行う。
本発明の第 22の態様によると、第 21の態様の画像処理方法において、輝度成分 ノイズ信号変換手順は、輝度成分の高周波ノイズ画像の重みを低周波ノイズ画像の 重みよりも大きく設定し、色差成分ノイズ信号変換手順は、色差成分の低周波ノイズ 画像の重みを高周波ノイズ画像の重みよりも大きぐあるいは、同程度に設定するの が好ましい。
本発明の第 23の態様によると、第 21または 22の態様の画像処理方法において、 輝度成分ノイズ信号変換手順は、輝度成分の低周波画像と高周波画像の他に、輝 度成分の原画像と同じ解像度を持つ実空間画像に含まれるノイズ成分も抽出して輝 度成分の実空間ノイズ画像を生成し、生成した実空間ノイズ画像を低周波ノイズ画像 と同様の重みづけを行って輝度成分の原画像と同じ解像度のノイズ信号を得、色差 成分ノイズ信号変換手順は、色差成分の低周波画像と高周波画像の他に、色差成 分の原画像と同じ解像度を持つ実空間画像に含まれるノイズ成分も抽出して色差成 分の実空間ノイズ画像を生成し、生成した実空間ノイズ画像を低周波ノイズ画像と同 様の重みづけを行って色差成分の原画像と同じ解像度のノイズ信号を得るのが好ま しい。
本発明の第 24の態様によると、輝度成分と色差成分からなる画像に含まれるノイズ を除去する画像処理方法は、複数の画素からなる輝度成分の原画像および複数の 画素からなる色差成分の原画像の各々を入力する画像入力手順と輝度成分の原画 像を、複数の周波数帯域画像に変換し、変換した複数の周波数帯域画像で輝度成 分のノイズ信号を抽出する輝度成分ノイズ抽出手順と色差成分の原画像を、複数の 周波数帯域画像に変換し、変換した複数の周波数帯域画像で色差成分ノイズ信号 を抽出する色差成分ノイズ抽出手順と複数の周波数帯域画像で抽出した輝度成分 ノイズ信号を合成し、輝度成分の原画像と同じ周波数帯域内で表される 1つの輝度 成分ノイズ信号に変換する輝度成分ノイズ合成手順と複数の周波数帯域画像で抽 出した色差成分ノイズ信号を合成し、色差成分の原画像と同じ周波数帯域内で表さ れる 1つの色差成分ノイズ信号に変換する色差成分ノイズ合成手順とを有し、輝度成 分ノイズ合成手順と色差成分ノイズ合成手順は、異なる合成処理を行うことによって 合成された輝度成分ノイズ信号と合成された色差成分ノイズ信号の周波数特性を異 ならせる。
本発明の第 25の態様によると、第 24の態様の画像処理方法において、複数の周 波数帯域画像は、少なくとも、 1)原画像の周波数帯域を低周波側に帯域制限した低 周波画像と、 2)原画像の周波数帯域を高周波側に帯域制限した高周波画像と を含むのが好ましい。
本発明の第 26の態様によると、第 25の態様の画像処理方法において、輝度成分 ノイズ合成手順および色差成分ノイズ合成手順は、それぞれ、複数の周波数帯域の ノイズ信号の各々に加重係数を掛けて加重合成を行い、輝度成分ノイズ合成手順は 、輝度成分の高周波画像カゝら抽出されたノイズ信号の加重係数を低周波画像力ゝら抽 出されたノイズ信号の加重係数よりも大きく設定し、色差成分ノイズ合成手順は、色 差成分の低周波画像から抽出されたノイズ信号の加重係数を高周波画像から抽出さ れたノイズ信号の加重係数よりも大きく設定する、あるいは、同程度に設定するのが 好ましい。
本発明の第 27の態様によると、輝度成分と色差成分からなる画像に含まれるノイズ を除去する画像処理方法は、複数の画素からなる輝度成分の原画像および複数の 画素からなる色差成分の原画像の各々を入力する画像入力手順と輝度成分の原画 像をフィルタリングして、少なくとも 1つの輝度成分の帯域制限画像を生成する輝度 成分帯域制限画像生成手順と、色差成分の原画像をフィルタリングして、少なくとも 1 つの色差成分の帯域制限画像を生成する色差成分帯域制限画像生成手順と、少な くとも 1つの輝度成分の帯域制限画像を用いて、輝度成分のノイズ信号を抽出する 輝度成分ノイズ信号抽出手順と、少なくとも 1つの色差成分の帯域制限画像を用い て、色差成分のノイズ信号を抽出する色差成分ノイズ信号抽出手順と、輝度成分のノ ィズ信号に基づ ヽて、輝度成分の原画像からノイズ成分を除去する輝度成分ノイズ 除去手順と、色差成分のノイズ信号に基づいて、色差成分の原画像からノイズ成分 を除去する色差成分ノイズ除去手順とを有し、輝度成分の帯域制限画像と色差成分 の帯域制限画像の周波数帯域を異ならせる、あるいは、輝度成分の帯域制限画像と 色差成分の帯域制限画像が同一の帯域幅でも通過周波数強度分布を異ならせるよ うにフィルタリングのフィルタ特性を輝度成分と色差成分の間で変えることにより、抽 出される輝度成分のノイズ信号と抽出される色差成分のノイズ信号の周波数特性を 異ならせる。
本発明の第 28の態様によると、第 27の態様の画像処理方法において、少なくとも 1 つの輝度成分の帯域制限画像は高周波帯域画像であり、少なくとも 1つの色差成分 の帯域制限画像は低周波帯域画像であるのが好ましい。
本発明の第 29の態様によると、第 27の態様の画像処理方法において、少なくとも 1 つの輝度成分の帯域制限画像については高周波通過フィルタを用い、少なくとも 1 つの色差成分の帯域制限画像については低周波通過フィルタを用いることにより、フ ィルタリングのフィルタ特性を輝度成分と色差成分の間で変えるのが好ましい。
本発明の第 30の態様によると、第 17から 23のいずれかの態様の画像処理方法に おいて、低周波画像と高周波画像は、 1)直交ウェーブレット変換における低周波成 分と高周波成分、 2)ラプラシアン'ピラミッド表現におけるガウシアン成分とラプラシァ ン成分、 3)方向ウエーブレット変換における低周波成分と各方向毎の高周波成分、 の何れかに対応するのが好ましい。
本発明の第 31の態様によると、第 30の態様の画像処理方法において、 2次元直交 ウェーブレット変換を行って多重解像度画像を生成する場合、低周波画像は LLサブ バンドに、高周波画像は LH、 HL、 HHサブバンドに各々対応するのが好ましい。 本発明の第 32の態様によると、輝度成分と色差成分からなる画像に含まれるノイズ を除去する画像処理方法は、複数の画素からなる輝度成分の原画像および複数の 画素からなる色差成分の原画像の各々を入力し、入力した輝度成分の原画像を、多 重解像度変換により解像度の異なる輝度成分低周波画像と輝度成分高周波画像を 逐次生成し、入力した色差成分の原画像を、多重解像度変換により解像度の異なる 色差成分低周波画像と色差成分高周波画像を逐次生成し、生成した輝度成分低周 波画像と輝度成分高周波画像を使用して輝度成分の低周波ノイズ成分と輝度成分 の高周波ノイズ成分を抽出し、生成した色差成分低周波画像と色差成分高周波画 像を使用して色差成分の低周波ノイズ成分と色差成分の高周波ノイズ成分を抽出し 、輝度成分の原画像から除去するノイズを合成するとき、輝度成分の低周波ノイズ成 分より輝度成分の高周波ノイズ成分を主に使用し、色差成分の原画像から除去する ノイズを合成するとき、色差成分の高周波ノイズ成分より色差成分の低周波ノイズ成 分を主に使用する。
本発明の第 33の態様によると、コンピュータ読み込み可能なコンピュータプロダラ ム製品は、第 1から 32のいずれかの態様の画像処理方法をコンピュータまたは画像 処理装置に実行させる画像処理プログラムを有する。
本発明の第 34の態様によると、画像処理装置は、第 1から 32のいずれかの態様の 画像処理方法を実行する制御装置を有する。
発明の効果
[0019] 本発明は、以上説明したように構成しているので、ノイズ抽出に最適な周波数空間 でノイズ抽出を行うことが可能となり、抽出しきれない残留ノイズの問題がなくなり、高 精細なノイズ除去を可能とする。
図面の簡単な説明
[0020] [図 1]本発明の一実施の形態である画像処理装置を示す図である。
[図 2]パーソナルコンピュータ 1が処理する色空間変換処理の流れを示す図である。
[図 3]第 1の実施の形態における、輝度成分の処理の流れ図を示す図である。
[図 4]第 1の実施の形態における、色差成分の処理の流れ図を示す図である。
[図 5]5段のウェーブレット変換によるサブバンド分割の様子を示す図である。
[図 6]通例用いられる最も単純なラプラシアンフィルタを示す図である。
[図 7]輝度成分のノイズ成分の低周波サブバンド (LL)と高周波サブバンド (LH,HL,HH
)の加重係数を示す図である。
[図 8]色差成分のノイズ成分の低周波サブバンド (LL)と高周波サブバンド (LH,HL,HH )の加重係数を示す図である。
[図 9]強度パラメータ (Intensity) σ th、 rth、周波数特性変更パラメータ (grainness)kO、 ノイズ除去の強度に関するパラメータ (sharpness) λの設定画面を示す図である。
[図 10]第 2の実施の形態における、輝度成分の処理の流れ図を示す図である。
[図 11]第 2の実施の形態における、色差成分の処理の流れ図を示す図である。 [図 12]多重解像度変換を利用したエッジ強調処理の流れ図を示す図である。
[図 13]輝度成分のエッジ成分の低周波サブバンド (LL)と高周波サブバンド (LH,HL,H
H)の加重係数を示す図である。
[図 14]各種多重解像度表現における、低周波サブバンドと高周波サブバンドの対応 関係の模式図を示す図である。
[図 15]多重解像度表現した高周波サブバンドと低周波サブバンドのカバーする周波 数帯域の模式図である。
[図 16]図 3から実空間の画像信号に対する所定のノイズ除去処理を省略した輝度成 分の処理の流れ図を示す図である。
[図 17]図 10から実空間の画像信号に対する所定のノイズ除去処理を省略した輝度 成分の処理の流れ図を示す図である。
[図 18]図 12から実空間の画像信号に対する所定のエッジ成分抽出処理を省略した 多重解像度変換を利用したエッジ強調処理の流れ図を示す図である。
[図 19]パーソナルコンピュータの構成を示す図である。
発明を実施するための最良の形態
[0021] (基本的考え)
まず初めに、実施の形態に述べるアルゴリズムを採る必要性が生じた背景や理由、 及びそれに対処する方法の基本的考えについて説明する。
[0022] 多重解像度表現を利用した従来技術は、既に述べたように大きく分けて 2種類に分 類される。多重解像度表現法には、直交ウェーブレット変換やラプラシアン'ピラミッド 表現、さらにはステアラブル'ウェーブレット変換や DCTピラミッド表現といった各種の 表現方法が存在する。しかし、何れも相互対応関係は公知文献等により明らかであ るので、簡単のため直交ウェーブレット変換を例にとって説明する。
[0023] 1つ目の種類は、直交ゥヱーブレット変換された高周波側サブバンド (LH,HL,HH)に 対してノイズ除去をカ卩えていく方式である。 2つ目の種類は、直交ウェーブレット変換 された低周波サブバンド (LL)に対して逐次的にノイズ除去をカ卩えていく方式である。
[0024] カラー画像のノイズ除去は、通常、輝度面と色差面に分けて各々にノイズ除去を行 い、輝度面に対するノイズ除去はザラツキノイズを抑制し、色差面に対するノイズ除去 は色斑ノイズを抑制する役割を果たす。
[0025] 実験的にこれらの 2種類のアルゴリズムを輝度'色差表現されたカラー画像に対して 適用してみた結果、次のようなことが判明した。色差成分に対するノイズ除去は、高 周波サブバンドに対してノイズ除去を加えて行く方式よりもむしろ低周波サブバンド に対して逐次的にノイズ除去をカ卩えていく方式のほうが、色斑ノイズ除去効果と色構 造保存の両立の観点で好ましいことが判明した。すなわち、色差成分の高周波側サ ブバンドに対するノイズ除去は、色境界滲みを引き起こしゃすい欠点がある。他方の 低周波側サブバンドに対するノイズ除去は色境界滲みを起こしにくい性質がある。
[0026] 一方、輝度成分に対するノイズ除去は、低周波成分に対して逐次的にノイズ除去を 加えていく方式よりも高周波サブバンドに対してノイズ除去をカ卩えていく方式のほうが 明らかに優れるということが判明した。すなわち、輝度成分の低周波サブバンドに対 する逐次的なノイズ除去は、階調性を失い 2値化されたようなぺったりとした画像が出 来やす 、欠点がある。他方の高周波サブバンドに対するノイズ除去は階調性を失わ ず、テキスチャ等の画像構造をよく保存する性質がある。
[0027] このような輝度と色差成分の間の特徴の違いは、恐らぐ輝度面と色差面が有する 画像構造の周波数的特徴の違 、が起因して!/、て、そのノイズ成分を分離するのに最 適な周波数空間が異なって 、ることから生じて 、ると考えられる。
[0028] そこで、輝度成分に対しては従来の高周波サブバンドに対するノイズ除去を行!、、 色差成分に対しては従来の低周波サブバンドに対する逐次的なノイズ除去を行う方 式を採用した。しかし、その結果、各々のノイズ除去フィルタとして如何に優れた edge -preserving smoothing filterを用いても、輝度成分には平坦部で筋状やチェックパ ターン状のノイズ成分が残存し、色差成分には突出点状の色ノイズ力 とりわけ色境 界部付近で多く残存するという問題があるということが判明した。
[0029] 図 15は、多重解像度表現した高周波サブバンドと低周波サブバンドのカバーする 周波数帯域の模式図である。図 15を見ながら、上述の問題をまず輝度成分に関して 考察してみる。原画像は、最低解像度の低周波サブバンドと各解像度の高周波サブ バンドで表現するだけで完全に再構築できるため、高周波サブバンドのみをノイズ除 去するだけで全周波数帯域のノイズ成分を表面的にはカバーしているように見える。 しかし、異なる解像度の高周波成分に順次に遷移していった場合に、異なる解像度 の階層間で重なり合う周波数帯域の強度が小さい部分は、ノイズ成分としては十分 に抽出しきれない恐れがあることが大きな原因と考えられる。
[0030] 一方の色差成分に関しても同様に、低周波サブバンドのみをノイズ除去するだけで こちらも全周波数帯域のノイズ成分を表面的にはカバーしているように見える。しかし 、突出点状のノイズは、原画像を低周波成分と高周波成分に分解していく中で、主に 高周波成分側の信号として認知されるため、高周波成分側に流れたノイズ成分が残 存し続けることが要因と考えられる。
[0031] ここで述べた逆のことが、輝度成分と色差成分のノイズを抽出するのに適した周波 数空間の違いが生じる要因になっていることが推察できるであろう。すなわち、実験 的に得られた知見から、単チャンネルで扱う実空間面や多チャンネルで扱う多重解 像度表現における低周波側サブバンドの平滑ィ匕フィルタリング処理は、階調性を失 つてフィルタリング範囲内の平均的値に階調を揃える方向に働くという事実が一般的 に半 lj明した。
[0032] その事実を踏まえて考えると、輝度成分には画像構造の大部分のエッジ成分が投 影され、ノイズ成分も多くは高周波サブバンド側に流入しやすい。そのような状況のな かで低周波サブバンド側で無理にノイズ成分を抽出しようとしてもうまく行かず、階調 性を失ってしまう弊害が出やす 、。
[0033] 一方の色差成分には、広範囲領域で緩やかな振る舞いをする大局的な色情報を 表す画像成分が投影されやすぐ激しく変動する色テキスチャは一般的に少ないと 考えられているのが普通である。したがって、ノイズ成分も低周波側で分離しやすい という輝度成分とは逆の対応関係が成り立つ。ただし、ノイズ成分のゆらぎ情報は高 周波サブバンドにも流入しやす ヽと 、う一般的事実と、色テキスチャの多 、画像にも 対処するためには、高周波サブバンド側でもノイズ成分を分離することも考えなけれ ばならない。
[0034] したがって、これらの問題に対処するため、本実施形態では、高周波サブバンドと 低周波サブバンドの両方のサブバンドからノイズ成分を抽出することにより、上記ノィ ズ除去に用いたサブバンドとは共役なサブバンドからノイズの取りこぼし成分を拾!ヽ 上げる対策を講じる。この共役なサブバンドは、輝度成分の場合は低周波サブバンド に相当し、色差成分の場合は高周波サブバンドに相当する。
[0035] ところが、上述したように共役なサブバンド成分に対してノイズ除去を行うと画像構 造破壊の影響が大き 、と 、う実験事実があるため、単純な方法では導入できな 、。 そこで、ノイズ成分の抽出と実際のノイズ除去を切り離して考え、実際のノイズ除去に おける共役なサブバンドの役割は基本的には補足的に扱うことによって画像構造の 破壊を防ぐ。
[0036] すなわち、実際のノイズ除去において、輝度成分は高周波側サブバンドを主要バ ンドとし低周波側サブバンドを補足バンドと位置づけたノイズ除去を行 ヽ、色差成分 は低周波側サブバンドを主要バンドとし高周波側サブバンドを補足バンドと位置づけ たノイズ除去を行う。ただし、色差成分の場合は、ノイズ除去フィルタが高性能であれ ば主要バンドと補足バンドの役割の区別は輝度成分ほど強める必要はなぐ同等レ ベル程度に扱ってもよいというの力 実験的に得られた知見である。これは、恐らく先 程述べた輝度面と色差面の画像構造の特徴の違いと帯域間のノイズ成分の流入特 性を組み合わせた総合的特性の違!、が、輝度面と色差面のそれぞれのノイズ除去 に最適な周波数投影空間の存在を示す表れだと思われる。
[0037] し力しながら、補足バンドにおけるノイズ除去の程度を弱 、目にすると、先程から述 ベて 、る残留ノイズ成分を補足バンド自身力 うまく抽出しきれな 、と 、う問題に今度 は直面することになる。しかし、このようなサブバンド間の役割分担は実際のノイズ除 去にお ヽて適用すればょ ヽことであって、本発明にお ヽてはノイズ抽出とノイズ除去 の概念を分離して扱う方式を導入するので、ノイズ抽出のためだけに扱うのであれば 、正確なノイズ抽出が可能になるレベルまで仮想的にサブバンド画像をいくら破壊し ても構わないという新たな考え方を導入することができる。すなわち、ノイズ抽出のた めの仮想的なノイズ除去と実際のノイズ除去処理を行うためのノイズ除去という 2種類 のノイズ除去の概念を導入する。
[0038] こうして、残留ノイズである輝度の筋状ノイズは低周波画像の中で画像構造と明確 に区別して抽出しやすくなる環境が整い、色差の突出点状ノイズは高周波画像の中 で画像構造と明確に区別して抽出しやすくなる環境が整ったことになる。 [0039] 仮想的なノイズ除去を利用してさらに正確なノイズ抽出を可能とするために、低周 波画像と高周波画像の各々のサブバンド面カゝら独立にノイズ成分を抽出するのでは なぐ異なる解像度レベル間で相互に依存させて抽出する方式を採用する。すなわ ち、本実施の形態では、解像度レベルの異なる上層ないしは下層のサブバンド画像 を、仮想的に画像構造を壊してでもノイズフリーになるほど強力にノイズ除去し、さら にその結果を現時点で対象となる解像度レベルのサブバンドに対して反映させ、逐 次的に解像度レベルを変えながらノイズ抽出してゆく方式を採用する。
[0040] 逐次的に解像度レベルを変えながらノイズ抽出してゆく方式は、低周波側サブバン ドのみについては、従来技術の米国特許第 6,937,772号明細書、ないしは特開 2000- 224421号公報で導入された技術である。しかし、高周波側サブバンドを主体としたノ ィズ除去や、低周波側と高周波側の両方を用いる新たな状況下で有効に作用させる ために、その方法につ!、て以下の実施の形態にぉ 、て説明する。
[0041] ここで具体的に逐次的ノイズ除去の効果について述べておくと、高周波バンドと低 周波バンドの両成分を用いるとき、主に補足バンドにおけるノイズ抽出能力向上に一 役を担う。すなわち、輝度成分の場合は、低周波側の補足バンドに含まれる縦横筋 やチェックパターン状のノイズを漏れなく抽出することに役立ち、色差成分の場合は、 高周波側の補足バンドに含まれる突出点状のノイズを漏れなく抽出することに役立つ
[0042] 輝度成分にお!、て残留ノイズ成分の特徴が縦横筋やチェックパターン状になるの は、ある意味にぉ 、て処理の冗長性 (overcompleteness)の少な 、直交ウェーブレット 変換を 2次元分離型フィルタとして用いて 、ることも間接的に関与して 、る。このような 特定の方向性をなくす試みとして多重解像度変換に多数の方向に関して高周波バ ンドを生成して 、くステアラブル'ウェーブレットを用いると 、つた方法等が存在する。
[0043] しかし、方向性を増やした分だけ処理すべきノイズ除去面が増え、保持すべきメモリ も増えるという処理の飛躍的な増大面から見て導入がはば力 れる。これに代替する 技術として、ある意味で逐次的ノイズ除去が簡略性を維持した有効な解決の糸口を 与え、低周波サブバンドと高周波サブバンドを同時に考慮した逐次方式が更にその 有効性を高める。 [0044] ただし、本実施の形態で示すその効果は、直交ウェーブレット変換に留まらず、ラ ブラシアン'ピラミッド表現ゃステアラブル 'ウェーブレツト変換等を用 ヽた多重解像度 表現におけるノイズ除去にぉ 、ても、それぞれが弱点とする多重解像度変換フィルタ 特性の機能をカバーする意味において、有効に機能する技術である。
[0045] 仮想的ノイズ除去を解像度レベル間で逐次的に反映させていく順序として、解像度 を低 、ほうに分解しながら行う方式と、解像度を高 、ほうに統合しながら行う方式の 2 種類が考えられる。本実施の形態では、前者を nalysis逐次」と命名し、後者を「Syn thesis逐次」と命名する。
[0046] 「Analysis」は、画像データを解像度の低!、多重解像度のデータに分解して ヽくこと に相当し、「Synthesis」は、分解された多重解像度のデータを元の高い解像度のデ ータに統合 (合成)していくことに相当する。ウェーブレット変換で言えば、「Analysis」 はウェーブレット変換に相当し、「Synthesis」は逆ウェーブレット変換に相当する。以 下、「Analysis逐次」の方式を第 1の実施の形態で説明し、 Synthesis逐次」の方式を 第 2の実施の形態で説明する。
[0047] (第 1の実施の形態)
図 1は、本発明の実施の形態である画像処理装置を示す図である。画像処理装置 は、パーソナルコンピュータ 1により実現される。パーソナルコンピュータ 1は、デジタ ルカメラ 2、 CD— ROMなどの記録媒体 3、他のコンピュータ 4などと接続され、各種 の画像データの提供を受ける。パーソナルコンピュータ 1は、提供された画像データ に対して、以下に説明する画像処理を行う。コンピュータ 4は、インターネットやその 他の電気通信回線 5を経由して接続される。
[0048] パーソナルコンピュータ 1が画像処理のために実行するプログラムは、図 1の構成と 同様に、 CD— ROMなどの記録媒体や、インターネットやその他の電気通信回線を 経由した他のコンピュータ力 提供され、パーソナルコンピュータ 1内にインストールさ れる。図 19は、パーソナルコンピュータ 1の構成を示す図である。パーソナルコンビュ ータ 1は、 CPU11、メモリ 12、およびその周辺回路 13などから構成され、 CPU11が インストールされたプログラムを実行する。
[0049] プログラム力 Sインターネットやその他の電気通信回線を経由して提供される場合は 、プログラムは、電気通信回線、すなわち、伝送媒体を搬送する搬送波上の信号に 変換して送信される。このように、プログラムは、記録媒体や搬送波などの種々の形 態のコンピュータ読み込み可能なコンピュータプログラム製品として供給される。
[0050] 以下、パーソナルコンピュータ 1が実行する画像処理について説明する。図 2は、パ 一ソナルコンピュータ 1が処理する第 1の実施の形態の画像処理のフローチャートを 示す図である。ステップ S1では、線形 RGB画像データを入力する。ステップ S2では、 均等色'均等ノイズ空間に変換する。ステップ S3では、ノイズ除去処理をする。ステツ プ S4では、色空間を逆変換する。ステップ S5では、処理が終了した画像データを出 力する。以下、各ステップの処理の詳細について説明する。
[0051] [1]色空間変換
ステップ S1では、光強度に線形な階調の RGBカラー画像データを入力する。ステツ プ S2では、ノイズを階調に対して均等化する均等ノイズ空間に変換して、ノイズ除去 の行いやすい状態にする。ここでは、更に発展させた均等色性と均等ノイズ性を同時 に実現する均等色 ·均等ノイズ空間に変換し、ノイズ除去効果と色再現性保持の両 立を図る。
[0052] この均等色 ·均等ノイズ空間の画像処理空間は、本出願の発明者と同一発明者の 特願 2004-365881号に記載されているので、詳細は特願 2004-365881号を参照する こととし、以下、 sRGB入力画像データを一例に挙げて説明する。ただし、 sRGB画像 のようなガンマ補正がなされた画像は、ガンマ補正を解 、て線形階調に戻した状態 にして力 始める。
[0053] まず、線形階調 RGB値を XYZ値に変換する。すなわち、 XYZ表色系空間に変換す る。これは RGB原刺激の分光特性で決まる 3x3行列変換により実施する。例えば、 sR GB入力画像に対しては、以下のような規格通りの変換を行う。
X=0.4124*R+0.3576*G+0.1805*B ...(1)
Y=0.2126*R+0.7152*G+0.0722*B ...(2)
Z=0.0193*R+0.1192*G+0.9505*B ...(3)
[0054] 次に、次式により、 XYZ空間から擬似的に均等色配分された知覚的な属性を表す 非線形階調のじ a" 空間へ変換する。ここで定義するじ a" 空間は、従来のいわゆる 均等色空間 L*a*b*に対し、均等ノイズ性を考慮して変形を加えたものであり、便宜的 にじ a Tと名付けたものである。
じ =100* Y/Y0) ...(4)
a~=500*[ X/X0)— Y/Y0)] ...(5)
=200*[ Y/Y0)— Z/ZO)] ...(6)
[0055] ここに、 ΧΟ,ΥΟ,ΖΟは照明光によって定まる値であり、例えば、標準光 D65下で 2度視 野の場合、 Χ0=95.045、 Υ0=100.00、 Ζ0=108.892のような値をとる。また、非線形階調 変換関数 t)は以下の式で定義する。この関数 t)の特性により均等ノイズィ匕を実現 する。ただし、変数 tは t=(Y/Y0),t=(X/X0),t=(Z/Z0)であり、 0≤(Y/Y0)≤1,0≤(X/X0) ≤ 1 , 0≤ (Ζ/Ζ0)≤ 1となるように ΧΥΖ値の階調数の最大値で規格化された値をとる。
[数 1]
【数 1】
Figure imgf000025_0001
[0056] なお、原点と飽和点を規格ィ匕する必要がある場合は、以下の式を用いる c
[数 2]
【数 2】
Figure imgf000025_0002
εは線形階調の信号に対してカ卩えるオフセット信号で、 εの値は、センサーによつ ても異なるが、低感度設定のときはほぼ 0に近い値を、高感度設定のときは 0.05程度 の値をとる。
[0057] [2]ノイズ除去
次に、ステップ S3のノイズ除去処理について説明する。図 3は、輝度成分 (輝度信 号)の処理の流れ図を示す図であり、図 4は、色差成分 (色差信号)の処理の流れ図 を示す図である。ただし、図 4は、後述するように、図 3の輝度成分の処理の流れ図と 異なるところを抽出して図示して 、る。
[0058] [2-1]多重解像度変換について
図 3、図 4は、 5段のウェーブレット変換を用いて多重解像度変換した図に相当する 力 入力する原画像のサイズに応じて増減させてよい。通常は、この程度の段数を採 れば問題とするノイズ成分の周波数帯域をほぼ網羅することができる。
[0059] [2- 1-1]ウェーブレット変換: Analysis/Decompositionプロセス
ウェーブレット変換とは、画像データを周波数成分に変換するものであり、画像の周 波数成分をハイパス成分とローパス成分に分割する。本実施の形態では、 5/3フィル タを用いて上述のように 5段のウェーブレット変換をする。 5/3フィルタは、ローパス成 分をタップ数 5 (1次元 5画素)のフィルタで生成し、ハイパス成分をタップ数 3 (1次元 3画素)のフィルタで生成する。
[0060] ハイパス成分およびローパス成分の生成式は、次式で示される。ここで、 nは画素位 置を示し、 x[]はウェーブレット変換を行う対象画像の画素値を示す。例えば、横方向 に 100画素ある場合は、 nは 0〜49である。下記式によりハイパス成分あるいはローバ ス成分を抽出すると、それぞれ、現在の画素数 100の半分の 50画素分のハイパス成 分およびローパス成分のデータが抽出される。
ハイパス成分: d[n]=x[2n+l]- (x[2n+2]+x[2n])/2 ...(9)
ローパス成分: s[n]=x[2n]+(d[n]+d[n- 1])/4 ...(10)
[0061] 上記定義の 1次元ウェーブレット変換を、横方向と縦方向に独立に 2次元分離型フィ ルタ処理を行うことによって、ウェーブレット分解する。係数 sを L面に集め、係数 dを H 面に集める。入力画像と同じ実空間面も LL0面として、ウェーブレット変換係数の低 周波サブバンド LL1,LL2,LL3,LL4,LL5と同様に、低周波サブバンド側の最高解像度 面として扱う。
[0062] より具体的には、以上の式を使用して、次のように、順次 5段のウェーブレット変換を する。本実施の形態では、後述するように、各段で生成される LL成分のデータや LH, HL,HH成分のデータを使用して逐次的にノイズ信号の抽出を行いながらウェーブレ ット変換を行っていく。なお、 LLを低周波サブバンド、 LH,
HL, HHを高周波サブバンドと言う。また、低周波サブバンドを低周波画像、高周波サ ブバンドを高周波画像と言ってもよい。さらに、各サブバンドを周波数帯域制限画像 と言ってもよい。低周波サブバンドは、原画像の周波数帯域を低周波側に帯域制限 した画像であり、高周波サブバンドは、原画像の周波数帯域を高周波側に帯域制限 した画像である。
第 1段ウェーブレット変換: LL0 (実空間)→ LL1, LH1, HL1, HH1
2 ク m—ブレソ卜 :しし 1→しし 2,し H2, Hし 2, HH2
3 ク m—ブレソ卜 :しし 2→しし 3,し H3, Hし 3, HH3
第 4段ウェーブレット変換: LL3→ LL4, LH4, HL4, HH4
5 ク m—ブレソ卜 :しし 4→しし 5,し H5, Hし 5, HH5
[0063] 図 5は、 5段のウェーブレット変換によるサブバンド分割の様子を示す図である。例 えば、第 1段のウェーブレット変換では、実空間の画像データに対し、まず横方向に すべての行にっ 、てハイパス成分およびローパス成分のデータを抽出する。その結 果、横方向に半分の画素数のハイパス成分およびローパス成分のデータが抽出され る。それを、例えば実空間の画像データがあったメモリ領域右側にハイパス成分、左 側にローパス成分を格納する。
[0064] 次に、メモリ領域右側に格納されたハイパス成分および左側に格納されたローパス 成分のデータに対して、それぞれ縦方向にすべての列について、同様の上記式によ り、ハイパス成分およびローパス成分のデータを抽出する。その結果、メモリ領域右 側のハイノ ス成分および左側のローパス成分のそれぞれから、さらにハイパス成分 およびローパス成分のデータが抽出される。それらを、それぞれのデータがあったメ モリ領域下側にハイパス成分、上側にローパス成分を格納する。 [0065] その結果、横方向にハイパス成分として抽出されたデータ力 縦方向にハイパス成 分として抽出されたデータを HHと表し、横方向にハイパス成分として抽出されたデー タカも縦方向にローパス成分として抽出されたデータを HLと表し、横方向にローパス 成分として抽出されたデータ力 縦方向にハイパス成分として抽出されたデータを L Hと表し、横方向にローパス成分として抽出されたデータ力 縦方向にローパス成分 として抽出されたデータを LLと表す。ただし、縦方向と横方向は独立であるので、抽 出の順序を入れ替えても等価である。
[0066] 次に、第 2段のウェーブレット変換では、第 1段のウェーブレット変換で横方向に口 一パス成分として抽出されたデータ力 縦方向にローパス成分として抽出されたデー タ LLに対し、同様にハイパス成分及びローパス成分の抽出を行う。これを 5段繰り返 した結果が、図 5の図である。
[0067] [2- 1-2]逆ウェーブレット変換: Synthesis/Reconstructionプロセス
逆ウェーブレット変換 (多重解像度逆変換)は、次式を使用して行う。
x[2n]=s[n]-(d[n]+d[n-l])/4 ...(11)
x[2n+l]=d[n]+(x[2n+2]+x[2n])/2 ...(12)
ただし、図 3に示すように、ウェーブレット変換時の Xの値には画像を表す信号を入 力し、生成されたウェーブレット変換係数 s,dに含まれるノイズ成分を抽出し、抽出さ れたノイズ成分を逆ウェーブレット時の s,dに代入してノイズ画像 Xを生成してゆく用い 方をする。
[0068] [2-2]ノイズ除去処理について
各サブバンド面に対するノイズ除去処理は、任意のノイズ除去フィルタを用いてょ ヽ o edge-preserving smoothing filterの代¾例として、例 ば文献「Jong— ¾en
Lee, Digital Image Smoothing and the Sigma Filter, Computer vision,
Graphics and Image Processing 24(1983) pp.255- 269」のような σフィルタや、文献「C . Tomasi et
al., Bilateral Filtering for ray and し olor Images, Proceedings of
the 1998 IEEE international Conference onf Computer Vision, Bombay, India.」のよう な Bilateral Filterがある。
[0069] しかし、ここではより高性能な改良型 Bilateral Filter (より詳細は、本出願の発明者と 同一発明者の特願 2004-367263号を参照)と、もっと簡略で高速なノイズ除去フィル タ (より詳細は、本出願の発明者と同一発明者の特願 2005- 101545号を参照、 Laplaci anノイズ抽出法と呼ぶことにする)の 2種類を例示する。これらの何れのノイズ除去フィ ルタを用いてもよい。
[0070] 入力サブバンド画像面の原信号を V (ベクトル r)で表し、ノイズ除去された画像面の 信号を V' (ベクトル r)ないしは V〃(ベクトル r)で表すことにする。なお、以下の数式内の 矢印つき r (ベクトル rと言う)および矢印つき r' (ベクトル r'と言う)は、ベクトルを示し、 2 次元座標位置を示す。
[0071] [2- 2-1]改良型 Bilateral Filter
[数 3]
【数 3】
(1 3)
Figure imgf000029_0002
Figure imgf000029_0001
[0072] 空間方向に関する閾値 rthは、ノイズ除去フィルタの範囲をその 2倍程度にとってい るので、多重解像度の異なる階層間で重なり合うように 0.5〜3.0画素程度の範囲にと るとよい。また、撮像感度によって変えるようにしてもよい。階調方向に関する閾値 a t hは撮像感度が高くなるほど大きく設定し、また適用するサブバンド毎によっても最適 値を変える。
[0073] 従来の Bilateral Filterは、フィルタの加重係数が画素値差分 (V'-V)のみを引数とし た photometric項の加重係数 w_photo[V'-V]と空間的な距離 (r'-r)のみを引数とした ge ometric項のカ卩重係数 w_geometric[r'-r]の積で表されるので、カ卩重係数力 ^hotometri c項と geometric項に分離できる分離力卩重型 Bilateral Filterと呼べる。し力し、この改 良型 Bilateral
Filterは、加重係数力 photometric項と geometric項に分離できない非分離力卩重型 Bila teral Filterを用いている。言い換えれば、 2つの引数の積で表される値を 1つの指数 とする 1つの指数関数であらされる加重係数のフィルタを使用して 、る。
[0074] [2- 2- 2]Laplacianノイズ抽出法
色差成分の場合は、以下の式によりノイズを抽出する。
[数 4]
【数 4】
V'(r) = V(r) - W(r) · f[W2V(r)) - (1 4)
[0075] 輝度成分の場合は、以下の式によりノイズを抽出する。
[数 5]
【数 5】
V'(r) = V{r) - W(r) · /(W(r)) … 5 ) V r) = V'{r) + W'(r) · (W'(r)) …(1 6)
[0076] ここで、 x)は、以下の式に示す通りである。 V2は、ラプラシアンフィルタ(ノヽィパス フィルタ)である。図 6は、通例用いられる最も単純なラプラシアンフィルタを示す図で ある。
[数 6]
【数 6】
Figure imgf000030_0001
なお、階調方向に関する閾値 a thは、上述の改良型 Bilateral Filterと同様な考え方 で設定を行えばよい。輝度と色差成分の間でも、もちろんそれぞれに適した個別の 値を設定する。
[0077] なお、上記改良型 Bilateral Filterやラプラシアンフィルタは、局所的な範囲に含まれ る信号値の関数である。すなわち、上記では、低周波サブバンドと高周波サブバンド の各々の局所的な信号値の観察に基づいて、それぞれのノイズが抽出される。
[0078] [2-3]輝度成分 (じ)のノイズ除去
次に、図 3を参照して、輝度成分 (じ)のノイズ除去について、詳細に説明する。前述 したように、「Analysis逐次」によるノイズ抽出を行う。なお、以下の各処理 (χ-χ)は、図 3 にお 、て (X-X)と記載して対応付ける。
[0079] [2-3-1]多重解像度変換と逐次ノイズ抽出
[2-3-1-1]実空間最高解像度における処理
処理 (0-1)では、実空間の画像信号 SO(LLO)に対して、上述のノイズ除去フィルタに よりノイズ除去を行ってノイズ除去画像信号 SO'(LLO)を作る。処理 (0-2)では、 LL0サブ バンドのノイズ成分を n0(LL0)=S0(LL0)- SO'(LLO)により抽出する。処理 (0-3)では、ノィ ズ信号 n0(LL0)を等倍強度のまま (あるいは oc (0)倍してもょ 、)画像信号 S0(LL0)に対 して減算処理を行って、 S0(LL0)のノイズ除去を行う。ただし、 0< α (0)≤1、通常は α (0)=1。処理 (0-4)では、処理 (0-3)でノイズ除去された LL0面の画像信号をウェーブレ ット変換して、 1/2解像度の画像信号 S1(LL1 ,LH1 ,HL1 ,HH1)を生成する。
[0080] [2-3-1-2] 1/2解像度における処理
処理 (1-1)では、画像信号 S1(LL1 ,LH1 ,HL1 ,HH1)の各々に対して、上述のノイズ除 去フィルタによりノイズ除去を行ってノイズ除去画像信号 S1 '(LL1 ,LH1 ,HL1 ,HH1)を作 る。処理 (1-2)では、各サブバンドのノイズ成分を、 nl(LLl)=Sl(LLl)- S1 '(LL1)、 nl(LH 1)=S1(LH1)— S1 '(LH1)、 nl(HLl)=Sl(HLl)— S1 '(HL1)、 nl(HHl)=Sl(HHl)— Sl '(HHl)に より抽出する。処理 (1-3)では、ノイズ信号 nl(LLl)を、等倍強度のまま (あるいは《(1) 倍してもよい)画像信号 Sl(LLl)に対して減算処理を行って、 Sl(LLl)のノイズ除去を 行う。ただし、 0< α (1)≤1、通常は α (1)=1。処理 (1_4)では、処理 (1-3)でノイズ除去さ れた LL1面の画像信号をウェーブレット変換して、 1/4解像度の画像信号 S2(LL2,LH2 ,HL2,HH2)を生成する。
[0081] [2-3-1-3]1/4解像度における処理
上記 [2-3-1-2]1/2解像度における処理と同様である。
[0082] [2-3-1-4]1/8解像度における処理
上記 [2-3-1-2]1/2解像度における処理と同様である。
[0083] [2-3-1-5]1/16解像度における処理
処理 (4-1)では、画像信号 S4(LL4,LH4,HL4,HH4)の各々に対して、上述のノイズ除 去フィルタによりノイズ除去を行って、ノイズ除去画像信号 S4'(LL4,LH4,HL4,HH4)を 作る。処理 (4- 2)では、各サブバンドのノイズ成分を、 n4(LL4)=S4(LL4)-S4'(LL4)、 n4( LH4)=S4(LH4)— S4'(LH4)、 n4(HL4)=S4(HL4)— S4'(HL4)、 n4(HH4)=S4(HH4)-S4'(HH4 )により抽出する。処理 (4-3)では、ノイズ信号 n4(LL4)を、等倍強度のまま (あるいは α (4)倍してもょ ヽ)画像信号 S4(LL4)に対して減算処理を行って、 S4(LL4)のノイズ除去 を行う。ただし、 0< α (4)≤1、通常は α (4)=1。処理 (4_4)では、処理 (4- 3)でノイズ除 去された LL4面の画像信号をウェーブレット変換して、 1/32解像度の画像信号 S5(LL 5,LH5,HL5,HH5)を生成する。
[0084] [2-3-1-6]1/32最低解像度における処理
処理 (5-1)では、画像信号 S5(LL5,LH5,HL5,HH5)の各々に対して、上述のノイズ除 去フィルタによりノイズ除去を行ってノイズ除去画像信号 S5'(LL5,LH5,HL5,HH5)を作 る。処理 (5- 2)では、各サブバンドのノイズ成分を n5(LL5)=S5(LL5)- S5'(LL5)、 n5(LH5 )=S5(LH5)— S5,(LH5)、 n5(HL5)=S5(HL5)— S5 ' (HL5)、 n5(HH5)=S 1 (HH5)— S5 '(HH5)に より抽出する。
[0085] ここで注目すべき点は、従来技術と異なり逐次的にノイズ除去された低周波サブバ ンド LLから生成される低解像度側の高周波サブバンド LH,HL,HHのノイズ成分も、一 且高解像度側でノイズ除去された状態から精度よく抽出して ヽる点である。すなわち 、上層の低周波サブバンドのノイズ除去結果が下層の低周波サブバンドのみならず 高周波サブバンドのノイズ抽出にも影響を及ぼしている。こうして多重解像度表現に ぉ 、て、低周波サブバンドも高周波サブバンドも両方とも残留ノイズの少な ヽ両成分 力ものノイズ成分が抽出可能になる。 [0086] [2-3-2]ノイズ成分の周波数特性変更
次に、抽出されたノイズ成分を実際のノイズ除去を行うためのノイズ成分に修正する 。この修正は、抽出されたノイズ成分カゝら実際のノイズ除去を行うためのノイズ成分を
II
さらに再抽出していることになる。これは、輝度成分の画像構造非破壊性を保持する ための手法であり、且つノイズ除去効果の見栄えを容易に変えるための可変パラメ一 タの役割を果たす。すなわち、低周波サブバンド (LL)と高周波サブバンド (LH,HL,HH )の間の重みを変えてノイズ成分の周波数特性を変える。このパラメータは、ソフトゥェ ァ処理等のグラフィック.ユーザ一.インターフェースにおいて、ノイズ除去の粒状性 変更パラメータとして提供できる。言い換えれば、低周波サブバンドのノイズ成分と高 周波サブバンドのノイズ成分に異なる加重係数を掛けて(下記の例では LLサブバン ドに対する kOとその他のサブバンドに対する 1)、ノイズ成分の周波数帯域間の重みを 変調している。
[0087] これらは、次式に示す通り行われ、図 3では、処理 (0-5)、処理 (1-5)、処理 (2-5)、処 理 (3-5)、処理 (4-5)、処理 (5-5)に対応する。
n0,(LL0)= k0(0)*n0(LL0) . ..(18)
kO(l)*nl(LLl) . ..(19)
n2'(LL2)= kO(2)*n2(LL2) . ..(20)
n3'(LL3)= kO(3)*n3(LL3) . ..(21)
n4'(LL4)= kO(4)*n4(LL4) . ..(22)
n5'(LL5)= kO(5)*n5(LL5) . ..(23)
[0088] ここで、次のようにする。
nl'(LLl)と nl(LHl,HLl,HHl)をそのまま束ねて nl'(LLl,LHl,HLl,HHl)と表す。 n2'(LL2)と n2(LH2,HL2,HH2)をそのまま束ねて n2'(LL2,LH2,HL2,HH2)と表す。 n3'(LL3)と n3(LH3,HL3,HH3)をそのまま束ねて n3'(LL3,LH3,HL3,HH3)と表す。 n4'(LL4)と n4(LH4,HL4,HH4)をそのまま束ねて n4'(LL4,LH4,HL4,HH4)と表す。 n5'(LL5)と n5(LH5,HL5,HH5)をそのまま束ねて n5'(LL5,LH5,HL5,HH5)と表す。
[0089] 通常は、 k0=k0(0)=k0(l)=k0(2)=k0(3)=k0(4)=k0(5)に設定し、 0≤k0≤ 1の範囲で可 変とする。残留ノイズ成分の発生予防と適度な粒状性を残すことによるテキスチャ画 像構造を保存するには k0=0.5のような中間値近辺の値を採るとよぐ粒状性維持によ る画像構造保存に重点を置く場合には k0=0.2と ヽつた値を採ればよ!ヽし、画像全面 に広がるサ一つとした高周波背景ノイズ抑制に重点を置く場合には k0=0.8といった値 をとればよい。
[0090] 高周波サブバンドのノイズ信号に対しては、通常等倍のまま出力する。言 、換えれ ば、高周波サブバンドに対する重みの方が低周波サブバンドに対する重みよりも大き く設定される。ただし、場合によっては加重係数を掛けても良い。図 7は、低周波サブ バンド (LL)と高周波サブバンド (LH,HL,HH)の加重係数を示す図である。
[0091] 以上のように、ノイズ成分を抽出するためのノイズ除去と画像構造非破壊性の保持 が要求される実際のノイズ除去のためのノイズ除去の 2種類のノイズ除去概念を導入 し、ノイズ抽出のためのノイズ除去は画像構造非破壊性保持の条件〖こ拘束されること なぐ必要な強度だけ自由にノイズ除去が行えるようになった。すなわち、ノイズ成分 を抽出するためのノイズ除去の方を、実際のノイズ除去のためのノイズ除去より自由 に強くすることができる。これにより、各サブバンド毎に正確なノイズ抽出が可能となる とともに画像構造の非破壊性も維持することができる。
[0092] また、高周波サブバンドと低周波サブバンドのうち、補足サブバンドに対する加重 係数を導入するだけで、統合されたノイズ成分の周波数特性を容易に変更できる。こ れにより、高精細なノイズ除去を維持したままノイズ除去除去効果の見栄えを簡易に 変更できる環境が提供できる。また、最も処理時間の力かるノイズ抽出のためのノイズ 除去処理を再度行う必要がな 、ので、高速にその見栄え変更の結果を提示すること ができる。
[0093] [2-3-3]ノイズ成分の統合
こうして修正されたノイズ成分を、最低解像度側から順次逆ウェーブレット変換を行 いながら、ノイズ成分の統合を行う。
[0094] [2-3-3-1]1/32最低解像度における処理
処理 (5- 7)では、バンド間で加重処理の施された単層のノイズ信号 n5'(LL5,LH5,HL 5,HH5)を逆ウェーブレット変換することにより、 LL4サブバンド面に対応するノイズ信 号 N5(LL4)を生成する。 [0095] [2-3-3-2] 1/ 16解像度における処理
処理 (4-6)では、 LL4面自身カゝら抽出して加重処理の施されたノイズ信号 n4'(LL4)と N5(LL4)を、次式の加算処理により結合する。
n4"(LL4)=n4'(LL4)+N5(LL4) ...(24)
n4"(LL4)と n4'(LH4,HL4,HH4)をそのまま束ねて n4"(LL4,LH4,HL4,HH4)と表す。 これにより、 LL4面のノイズ成分は、図 3からも分力ゝるように、 2層のノイズ成分が統合さ れたことになる。ただし、 LH4,HL4,HH4のノイズ成分は単層である。(4- 7)では、 2層の ノイズ成分が統合されたノイズ信号 n4"(LL4,LH4,HL4,HH4)を逆ウェーブレット変換 することにより、 LL3サブバンド面に対応するノイズ信号 N4(LL3)を生成する。
[0096] [2-3-3-3]1/8解像度における処理
上記「[2- 3-3-2]1/16解像度における処理」と同様である。
[0097] [2-3-3-4]1/4解像度における処理
上記「[2- 3-3-2]1/16解像度における処理」と同様である。
[0098] [2-3-3-5]1/2解像度における処理
処理 (1-6)では、 LL1面自身力 抽出して加重処理の施されたノイズ信号 nl'(LLl)と N2(LL1)を次式の加算処理により結合する。
ηΓ (しし 1)=η1' (しし 1)+N2(しし 1) ...(25)
nl"(LLl)と nl'(LHl,HLl,HHl)をそのまま束ねて nl"(LLl,LHl,HLl,HHl)と表す。 処理 (1-7)では、 2層のノイズ成分が統合されたノイズ信号 nl〃(LLl,LHl,HLl,HHl)を 逆ウェーブレット変換することにより、 LL0サブバンド面に対応するノイズ信号 Nl(LLO) を生成する。
[0099] [2-3-3-6]実空間最高解像度における処理
処理 (0-6)では、 LL0面自身から抽出して加重処理の施されたノイズ信号 nO'(LLO)と Nl(LLO)を次式の加算処理により結合する。
n0"(LL0)=n0'(LL0)+Nl(LL0) ...(26)
[0100] ここで、注目すべき点は、低周波サブバンドのノイズ成分力 従来技術とは違って、 低解像度側の低周波と高周波の両サブバンドから統合されてきたノイズ成分と同時 に着目解像度の低周波サブバンド自身カゝら抽出したノイズ成分の 2層構造を利用し てノイズ合成が行われている点である。これにより、残留ノイズ成分のない正確なノィ ズ成分の合成が容易になるとともに、画像構造の非破壊性が高ぐかつ容易に見栄 えの変えられるノイズ特性の合成が可能となっている。
[0101] 2層構造のノイズ成分を結合する加算時に、更に異なる解像度の階層間でノイズ成 分の強度を変えて周波数特性をもっと自由自在に変更できるようにしてもよい。このと きは、下式のような処理になる。
n4"(LL4)=n4'(LL4)+ β (5)*N5(LL4) ...(27)
n3"(LL3)=n3'(LL3)+ β (4)*N4(LL3) ...(28)
n2"(LL2)=n2'(LL2)+ β (3)*N3(LL2) ...(29)
nl"(LLl)=nl'(LLl)+ β (2)*N2(LL1) ...(30)
n0"(LL0)=n0'(LL0)+ β (1)*N1(LL0) ...(31)
ただし、 0< (1)≤1、 0< j8 (2)≤l、 0< j8 (3)≤l、 0< j8 (4)≤l、 0< j8 (5)≤l。このよ うなパラメータを使うような状況は、例えばランダムノイズがあらゆる周波数で均等なホ ワイトノイズと仮定できな 、ような場合に生じる力もしれな 、。
[0102] [2-3-4]実際のノイズ除去処理
実空間と同じ解像度を持つ状態にまで 1つに統合されたノイズ成分に対し、画像全 体のノイズ除去の程度が可変設定できるようにノイズ除去率と 、う加重係数パラメータ λを掛けてから、ノイズ除去を実行する。すなわち、
S0NR(LL0)=S0(LL0)- λ *n0"(LL0) ...(32)
ただし、 0≤λ≤1。
[0103] [2-4]色差成分 (a)のノイズ除去
輝度成分 (じ)と同様に、「AnalySiS逐次」によるノイズ抽出を行う。輝度成分のノイズ 除去と異なるところは、上記「[2-3-2]ノイズ成分の周波数特性変更」の処理における 周波数特性を変更する際の加重係数を掛けるサブバンドの対象が異なること、すな わち重みづけ処理が異なることと、「[2-3-4]実際のノイズ除去処理」におけるノイズ除 去率のパラメータ設定の仕方が異なるだけである。以下、この異なる点について記載 する。なお、図 4は、図 3と異なる「ノイズ成分の周波数特性変更」の処理の部分のみ を抽出した図である。 [0104] [2-4-1]ノイズ成分の周波数特性変更
色差成分の実際のノイズ除去における突出点ノイズ除去効果とカラフルネス維持の 両立を図るための加重係数パラメータを、次式の通り、高周波サブバンド (LH,HL,HH )のノイズ成分に対して掛ける。これは色差成分にぉ ヽては低周波サブバンドが主要 バンドで、高周波サブバンドが補足バンドに対応するためである。
nl: '(LH1)= kl(l)*nl(LHl) ., ..(33)
nl: '(HL1)= kl(l)*nl(HLl) ., ..(34)
nl: '(HH1)= : k2(l)*nl(HHl) . ...(35)
n2: '(LH2)= kl(2)*n2(LH2) ., ..(36)
n2: '(HL2)= kl(2)*n2(HL2) ., ..(37)
n2: '(HH2)= : k2(2)*n2(HH2) . ...(38)
n3: '(LH3)= kl(3)*n3(LH3) ., ..(39)
n3: '(HL3)= kl(3)*n3(HL3) ., ..(40)
n3: '(HH3)= k2(3)*n3(HH3) . ...(41)
n4: '(LH4)= kl(4)*n4(LH4) ., ..(42)
n4: '(HL4)= kl(4)*n4(HL4) ., ..(43)
n4: '(HH4)= : k2(4)*n4(HH4) . ...(44)
n5: '(LH5)= kl(5)*n5(LH5) ., ..(45)
n5: '(HL5)= kl(5)*n5(HL5) ., ..(46)
n5: '(HH5)= : k2(5)*n5(HH5) . ...(47)
[0106] ここで、
nl(LLl)と nl'(LHl,HLl,HHl)をそのまま束ねて nl'(LLl,LHl,HLl,HHl)と表す。 n2(LL2)と n2'(LH2,HL2,HH2)をそのまま束ねて n2'(LL2,LH2,HL2,HH2)と表す。 n3(LL3)と n3'(LH3,HL3,HH3)をそのまま束ねて n3'(LL3,LH3,HL3,HH3)と表す。 n4(LL4)と n4'(LH4,HL4,HH4)をそのまま束ねて n4'(LL4,LH4,HL4,HH4)と表す。 n5(LL5)と n5'(LH5,HL5,HH5)をそのまま束ねて n5'(LL5,LH5,HL5,HH5)と表す。
[0107] 通常は kl= kl(l)=kl(2)=kl(3)=kl(3)=kl(5)、 k2= k2(l)=k2(2)=k2(3)=k2(4)=k2(5)に設 定し、 0≤kl,k2≤lの範囲で可変で、 kl=0.9、 k2=0.8といった値をとる。通常使用では 0.8〜1.0の値でよい。また、 LHサブバンドと HLサブバンドに対しては共通の klを設定 したが、別々〖こ設定してもよい。図 8は、低周波サブバンド (LL)と高周波サブバンド (L H,HL,HH)の加重係数を示す図である。低周波サブバンド (LL)の加重係数は 1であり 、そのままの値を使用する。言い換えれば、低周波サブバンドに対する重みを高周 波サブバンドの重みよりも大きく設定する。ただし、 kl=0.9、 k2=0.8と 1に近い値である ので、同程度であるともいえる。
[0108] [2-4-2]実際のノイズ除去処理
輝度成分 (じ)の「[2-3-4]実際のノイズ除去処理」と同様である。ただし、色差成分に 関するノイズ除去率は、通常え =1.0でよい。
[0109] このように、多チャンネル表現の特性を有効に活用することによって、輝度と色差に 分離されたそれぞれの面における画像構造とノイズの性質の違いに応じて、ノイズ成 分が抽出しやすい最適な周波数空間に射影してノイズ抽出処理を行うので、画像構 造の破壊が少なく残留ノイズも少な 、高精細なカラー画像のノイズ除去が、容易に実 現することができる。
[0110] [2-5]色差成分 0 のノイズ除去
「[2- 4]色差成分 (a)のノイズ除去」と同様である。
[0111] 上記において、ソフトウェア等でユーザーが容易に可変できる主なノイズ除去パラメ ータとして以下のような 3つの性質の異なる機能がある。
1)ノイズ成分を抽出するときの強度パラメータ (Intensity) : σ th (フィルタによっては rth も合わせて)
2)ノイズの粒状性に関する周波数特性変更パラメータ (grainness): k0
3)ノイズ除去の強度に関するパラメータ (sharpness): λ
[0112] 図 9は、上記強度パラメータ (Intensity) σ th、 rth、周波数特性変更パラメータ (grainn ess)k0、ノイズ除去の強度に関するパラメータ (sharpness)えの設定画面を示す図であ る。各項目はスライドバーで示され、各スライドバー中のカーソルを任意の位置に設 定することにより各項目を任意の値に設定することができる。
[0113] 具体的には、パーソナルコンピュータ 1のモニタ(不図示)に図 9の設定画面が表示 され、ユーザーはキーボード (不図示)やマウス(不図示)を使用してスライドバー中の カーソルを任意の位置に設定する。これにより、ユーザは簡易に上記パラメータを設 定することができる。例えば、周波数特性変更パラメータ (grainness)kOを上記のように 変更することにより、高精細性を保ったまま容易にノイズ除去効果の見栄えを変更で きる。また、 kOとえの変更に対しては高速に動作が追随する。
[0114] [3]逆色空間変換、画像データ出力
図 2に戻ると、ステップ S4では、上記のステップ S3においてノイズ除去処理が終わ つた画像データについて、上記ステップ S2の「[1]色空間変換」の逆変換を行って RG B画像に戻す。ステップ S5では、 RGB画像に戻った画像データを出力する。
[0115] 以上のように、第 1の実施の形態では、ノイズ抽出とノイズ除去を分離して 2種類のノ ィズ除去に相当する処理を行い、更に上層の低周波サブバンドのノイズ除去結果が 下層の低周波サブバンドのみならず高周波サブバンドのノイズ抽出にも影響を与え るようにした。すなわち、多重解像度変換画像の高周波サブバンドと低周波サブバン ドの両方から、しカゝも相互に影響を及ぼし合いながら逐次的にノイズ抽出を行うので 、扱う周波数帯域の合成の自由度が広がり、ノイズ抽出に最適な周波数空間でノイズ 抽出を行うことが可能となり、抽出しきれない残留ノイズの問題がなくなりつつも、画 像構造を破壊しな 、高精細なノイズ除去を可能とする。
[0116] すなわち、デジタル写真のような一般画像において、残留ノイズ問題を適切に対処 しつつ画像構造非破壊性の高 、、高精細なノイズ除去処理 (Edge-preserving smoothing)を実現して 、る。
[0117] なお、本実施の形態では、実空間の画像信号 S0(LL0)に対して所定のノイズ除去処 理を行う例を示した(図 3)。しかし、実空間の画像信号 S0(LL0)に対する処理は非常 に重たい処理となる。一方、本実施の形態では、画像信号 S1(LL1,LH1,HL1,HH1)以 下の解像度における処理だけでも十分に高精細なノイズ除去処理が可能となる。従 つて、実空間の画像信号 S0(LL0)に対する所定のノイズ除去処理を省略してもよ 、。 図 16は、図 3から実空間の画像信号 S0(LL0)に対する所定のノイズ除去処理を省略 した輝度成分 (輝度信号)の処理の流れ図を示す図である。色差成分の処理にっ 、 ても同様である。これにより、処理を軽くしながら高精細なノイズ除去処理が可能とな る。 [0118] (第 2の実施の形態)
第 1の実施の形態では、画像データを解像度の低いほうに分解しながら、逐次的に ノイズの抽出を行っていく「AnalySiS逐次」の方式を説明した。第 2の実施の形態では 、多重解像度のデータに分解された画像データを、解像度の高いほうに統合しなが ら逐次的にノイズの抽出を行う「Synthesis逐次」の方式について説明する。
[0119] 第 2の実施の形態の画像処理装置の構成は、第 1の実施の形態と同様であるので 、図 1を参照し、その説明を省略する。また、パーソナルコンピュータ 1が処理する第 2 の実施の形態の画像処理のフローチャートも、流れとしては図 2と同様であるので、そ の説明を省略する。以下、第 1の実施の形態の処理と異なる点を中心に説明をする。
[0120] [1]色空間変換
[2]ノイズ除去
[2-1]多重解像度変換にっ ヽて
[2- 1-1]ウェーブレット変換: Analysis/Decompositionプロセス
[2- 1-2]逆ウェーブレット変換: Synthesis/Reconstructionプロセス
[2-2]ノイズ除去処理につ!ヽて
[2- 2-1]改良型 Bilateral Filter
[2- 2- 2]Laplacianノイズ抽出法
以上は、第 1の実施の形態と同様であるので、説明を省略する。
[0121] [2-3]輝度成分 (じ)のノイズ除去
図 10は、輝度成分の処理の流れ図を示す図であり、図 11は、色差成分の処理の 流れ図を示す図である。ただし、図 11は、後述するように、図 10の輝度成分の処理 の流れ図と異なるところを抽出して図示している。なお、以下の各処理 (XX)および処 理 (xx-x)は、図 10にお!/、て (XX)および (xx-x)と記載して対応付ける。
[0122] [2-3-1]多重解像度変換
[2-3-1-1]実空間最高解像度における処理
処理 (10)では、実空間面の画像信号 S0(LL0)をウェーブレット変換して、 1/2解像度 の画像信号 S1(LL1,LH1,HL1,HH1)を生成する。
[0123] [2-3-1-2]1/2解像度における処理 処理 (11)では、 LL1面の画像信号 Sl(LLl)をウェーブレット変換して、 1/4解像度の 画像信号 S2(LL2,LH2,HL2,HH2)を生成する。
[0124] [2-3-1-3]1/4解像度における処理
処理 (12)では、 LL2面の画像信号 S2(LL2)をウェーブレット変換して、 1/8解像度の 画像信号 S3(LL3,LH3,HL3,HH3)を生成する。
[0125] [2-3-1-4]1/8解像度における処理
処理 (13)では、 LL3面の画像信号 S3(LL3)をウェーブレット変換して、 1/16解像度の 画像信号 S4(LL4,LH4,HL4,HH4)を生成する。
[0126] [2-3-1-5]1/16解像度における処理
処理 (14)では、 LL4面の画像信号 S4(LL4)をウェーブレット変換して、 1/32解像度の 画像信号 S5(LL5,LH5,HL5,HH5)を生成する。
[0127] [2-3-2]逐次ノイズ抽出
[2-3-2-1]1/32最低解像度における処理
処理 (15-1)では、画像信号 S5(LL5,LH5,HL5,HH5)の各々に対してノイズ除去を行 つてノイズ除去画像信号 S5'(LL5,LH5,HL5,HH5)を作る。処理 (15-2)では、各サブバ ンドのノイズ信号を、 n5(LL5)=S5(LL5)- S5'(LL5)、 n5(LH5)=S5(LH5)- S5'(LH5)、 n5(H L5)=S5(HL5)- S5'(HL5)、 n5(HH5)=S5(HH5)- S5'(HH5)により抽出する。処理 (15- 4)で は、ノイズ信号 n5(LL5,LH5,HL5,HH5)を逆ウェーブレット変換 (Synthesis)することによ り、 LL4サブバンド面に対応するノイズ抽出用のノイズ信号 N5(LL4)を生成する。
[0128] [2-3-2-211/16解像度における処理
処理 (14-0)では、ノイズ信号 N5(LL4)を等倍強度のまま (あるいは a (5)倍してもょ ヽ )画像信号 S4(LL4)に対して減算処理を行って、画像信号 S4'(LL4)を得る。ただし、 0 < α (5)≤1、通常は α (5)=1。なお、 S4'(LL4)と S4(LH4,HL4,HH4)をそのまま束ねて S4 ,(LL4,LH4,HL4,HH4)と表す。
[0129] 処理 (14-1)では、画像信号 S4'(LL4,LH4,HL4,HH4)の各々に対してノイズ除去を行 つてノイズ除去画像信号 S4"(LL4,LH4,HL4,HH4)を作る。図 10では、 S4"(LL4",LH4' ,HL4',HH4')と記載している力 上記 S4"(LL4,LH4,HL4,HH4)のことである。処理 (14- 2)では、各サブバンドのノイズ信号を n4(LL4)=S4'(LL4)-S4"(LL4)、 n4(LH4)=S4'(LH4) — S4"(LH4)、 n4(HL4)=S4'(HL4)-S4"(HL4), n4(HH4)=S4'(HH4)— S4"(HH4)により抽出 する。
[0130] 処理 (14-3)では、 LL4面のノイズ除去処理により抽出したノイズ信号 n4(LL4)と下層 力 ノイズ抽出用に統合したノイズ信号 N5(LL4)を次式の加算処理により結合する。 n4'(LL4)=n4(LL4)+N5(LL4) ...(48)
n4'(LL4)と n4(LH4,HL4,HH4)をそのまま束ねて n4'(LL4,LH4,HL4,HH4)と表す。 処理 (14-4)では、ノイズ信号 n4'(LL4,LH4,HL4,HH4)を逆ウェーブレット変換すること により、 LL3サブバンド面に対応するノイズ信号 N4(LL3)を生成する。
[0131] [2-3-2-3]1/8解像度における処理
上記 [2- 3-2-2]1/16解像度における処理と同様である。
[0132] [2-3-2-4]1/4解像度における処理
上記 [2- 3-2-2]1/16解像度における処理と同様である。
[0133] [2-3-2-5]1/2解像度における処理
処理 (11-0)では、ノイズ信号 N2(LL1)を等倍強度のまま (あるいは α (2)倍してもよい )画像信号 Sl(LLl)に対して減算処理を行って、画像信号 Sl'(LLl)を得る。ただし、 0 < α (2)≤1、通常は α (2)=1。なお、 Sl'(LLl)と S1(LH1,HL1,HH1)をそのまま束ねて S1 '(LL1,LH1,HL1,HH1)と表す。
[0134] 処理 (11-1)では、画像信号 S1'(LL1,LH1,HL1,HH1)の各々に対してノイズ除去を行 つてノイズ除去画像信号 S1"(LL1,LH1,HL1,HH1)を作る。図 10では、 S '(LLl",LHl' ,HL1',HH1')と記載している力 上記 S1"(LL1,LH1,HL1,HH1)のことである。処理 (11- 2)では、各サブバンドのノイズ信号を nl(LLl)=Sl'(LLl)- S1"(LL1)、 nl(LHl)=Sl'(LHl) — S1"(LH1)、 nl(HLl)=Sl'(HLl)— S1"(HL1)、 nl(HHl)=Sl'(HHl)— S1"(HH1)により抽出 する。
[0135] 処理 (11-3)では、 LL1面のノイズ除去処理により抽出したノイズ信号 nl(LLl)と下層 力もノイズ抽出用に統合したノイズ信号 N2(LL1)を次式の加算処理により結合する。 nl'(LLl)=nl(LLl)+N2(LLl) ...(49)
nl'(LLl)と nl(LHl,HLl,HHl)をそのまま束ねて nl'(LLl,LHl,HLl,HHl)と表す。 処理 (11-4)では、ノイズ信号 nl'(LLl,LHl,HLl,HHl)を逆ウェーブレット変換すること により、 LLOサブバンド面に対応するノイズ信号 Nl(LLO)を生成する。
[0136] [2-3-2-6]実空間最高解像度における処理
処理 (10-0)では、ノイズ信号 Nl(LLO)を等倍強度のまま (あるいは a (1)倍してもよ!ヽ )画像信号 SO(LLO)に対して減算処理を行って、画像信号 SO'(LLO)を得る。ただし、 0 < α (1)≤1、通常は α (1)=1。処理 (10-1)では、画像信号 SO'(LLO)に対してノイズ除去 を行ってノイズ除去画像信号 S0〃(LL0)を作る。処理 (10-2)では、ノイズ信号を n0(LL0) =S0'(LL0)-S0"(LL0)により抽出する。
[0137] ここで注目すべき点は、従来技術の低解像度側低周波サブバンドのノイズ除去の 効果を高解像度側低周波サブバンドのノイズ抽出に反映させているだけではなぐ低 解像度側高周波サブバンドのノイズ除去効果も一緒に反映させて 、る点である。す なわち、下層の低周波サブバンドと高周波サブバンドのノイズ除去結果が同時に上 層の低周波サブバンドのノイズ抽出にも影響を及ぼしている。こうして多重解像度表 現における低周波サブバンド側力 抽出すべき正確なノイズ成分の抽出が可能とな り、残留ノイズの少な ゾィズ成分が抽出可能になる。
[0138] 輝度成分に対して、このような「Synthesis逐次」を用いるときは特に、高周波サブバ ンド側のノイズ除去効果が低周波側サブバンドに潜む筋状やチェックパターン状の 残留ノイズ成分をうまく引っ張り出す効果が期待できる。
[0139] [2-3-3]ノイズ成分の周波数特性変更
次に、抽出されたノイズ成分を実際のノイズ除去を行うためのノイズ成分に修正する 。すなわち、低周波サブバンド (LL)と高周波サブバンド (LH,HL,HH)の間の重みを 変えてノイズ成分の周波数特性を変える。第 1の実施の形態と話は同様で、パラメ一 タ設定も同様である。
[0140] これらは、次式に示す通り行われ、図 10では、処理 (10-5)、処理 (11-5)、処理 (12-5) 、処理 (13-5)、処理 (14-5)、処理 (15-5)に対応する。
n0"(LL0)= k0(0)*n0(LL0) ...(50)
nl"(LLl)= k0(l)*nl(LLl) ...(51)
n2"(LL2)= kO(2)*n2(LL2) ...(52)
n3"(LL3)= kO(3)*n3(LL3) ...(53) n4"(LL4)= kO(4)*n4(LL4) ...(54)
n5"(LL5)= kO(5)*n5(LL5) ...(55)
[0141] ここで、
nl"(LLl)と nl(LHl,HLl,HHl)をそのまま束ねて nl"(LLl,LHl,HLl,HHl)と表す。 n2"(LL2)と n2(LH2,HL2,HH2)をそのまま束ねて n2"(LL2,LH2,HL2,HH2)と表す。 n3"(LL3)と n3(LH3,HL3,HH3)をそのまま束ねて n3"(LL3,LH3,HL3,HH3)と表す。 n4"(LL4)と n4(LH4,HL4,HH4)をそのまま束ねて n4"(LL4,LH4,HL4,HH4)と表す。 n5"(LL5)と n5(LH5,HL5,HH5)をそのまま束ねて n5"(LL5,LH5,HL5,HH5)と表す。
[0142] [2-3-4]ノイズ成分の統合
こうして修正されたノイズ成分を最低解像度側カゝら順次逆ウェーブレット変換を行い ながら、実際にノイズ除去に使うためのノイズ成分の統合を行う。
[0143] [2-3-4-1]1/32最低解像度における処理
処理 (15-7)では、バンド間で加重処理の施された単層のノイズ信号 n5"(LL5,LH5,H
L5,HH5)を逆ウェーブレット変換することにより、 LL4サブバンド面に対応する実際の ノイズ除去用のノイズ信号 N5'(LL4)を生成する。
[0144] [2-3-4-2] 1/ 16解像度における処理
処理 (14-6)では、 LL4面自身カゝら抽出して加重処理の施されたノイズ信号 n4〃(LL4) と下層から実際のノイズ除去用に統合したノイズ信号 N5'(LL4)を、次式の加算処理に より結合する。
n4'"(LL4)=n4"(LL4)+N5'(LL4) ...(56)
n4"'(LL4)と n4"(LH4,HL4,HH4)をそのまま束ねて n4"'(LL4,LH4,HL4,HH4)と表す。 これにより、 LL4面のノイズ成分は、図 10からも分かるように、 2層のノイズ成分が統合 されたことになる。ただし、 LH4,HL4,HH4のノイズ成分は単層である。処理 (14-7)では 、 2層のノイズ成分が統合されたノイズ信号 n4"'(LL4,LH4,HL4,HH4)を逆ウェーブレツ ト変換することにより、 LL3サブバンド面に対応するノイズ信号 N4'(LL3)を生成する。
[0145] [2-3-4-3]1/8解像度における処理
上記 [2-3-4-2]1/16解像度における処理と同様である。
[0146] [2-3-4-4]1/4解像度における処理 上記 [2-3-4-2]l/16解像度における処理と同様である。
[0147] [2-3-4-5]1/2解像度における処理
処理 (11-6)では、 LL1面自身力 抽出して加重処理の施されたノイズ信号 nl"(LLl) と下層から実際のノイズ除去用に統合した N2'(LL1)を、次式の加算処理により結合す る。
nl'"(LLl)=nl"(LLl)+N2'(LLl) ...(57)
nl"'(LLl)と nl"(LHl,HLl,HHl)をそのまま束ねて nr'(LLl,LHl,HLl,HHl)と表す。 処理 (11-7)では、 2層のノイズ成分が統合されたノイズ信号 nl〃'(LLl,LHl,HLl,HHl) を逆ウェーブレット変換することにより、 LL0サブバンド面に対応するノイズ信号 N1'(L L0)を生成する。
[0148] [2-3-4-6]実空間最高解像度における処理
処理 (10-6)では、 LL0面自身カゝら抽出して加重処理の施されたノイズ信号 n0〃(LL0) と下層から実際のノイズ除去用に統合した Nl'(LLO)を、次式の加算処理により結合す る。
n0'"(LL0)=n0"(LL0)+Nl'(LL0) ...(58)
[0149] 第 1の実施の形態と同様に、ここでも、 2層構造のノイズ成分を結合する加算時に、 更に異なる解像度の階層間でノイズ成分の強度を変えて周波数特性をもっと自由自 在に変更できるようにしてもよい。このときは、同様に下式のような処理になる。
n4'"(LL4)=n4"(LL4)+ β (5)*N5'(LL4) ...(59)
n3'"(LL3)=n3"(LL3)+ β (4)*N4'(LL3) ...(60)
n2'"(LL2)=n2"(LL2)+ β (3)*N3'(LL2) ...(61)
nl'"(LLl)=nl"(LLl)+ β (2)*N2'(LL1) ...(62)
n0'"(LL0)=n0"(LL0)+ β (1)*N1'(LL0) ...(63)
ただし、 0< (1)≤1、 0< j8 (2)≤l、 0< j8 (3)≤l、 0< j8 (4)≤l、 0< j8 (5)≤l。
[0150] ここで、注目すべき点は、ノイズ抽出用と実際のノイズ除去用の 2種類のノイズ成分 を、 2系統のノイズ統合手段を用意してそれぞれ別々に統合していっている点である 。これによりそれぞれの用途に適したノイズ成分の強度特性変更や周波数特性変更 の最適化処理が容易となる。 [0151] 更に第 1の実施の形態と同様に、これらのノイズ統合処理において、低周波サブバ ンドのノイズ成分力 従来技術とは違って、低解像度側の低周波と高周波の両サブ バンドから統合さててきたノイズ成分と同時に、着目解像度の低周波サブバンド自身 カゝら抽出したノイズ成分の、 2層構造を利用してノイズ合成を行っている。これによつ て、ノイズの周波数特性変更を容易にし、かつ 2系統の用途のそれぞれに適したノィ ズ成分を調合することを可能として 、る。
[0152] [2-3-5]実際のノイズ除去処理
第 1の実施の形態の「[2-3-4]実際のノイズ除去処理」と同様である。
[0153] [2-4]色差成分 (a)のノイズ除去
第 1の実施の形態の「[2-4]色差成分 (a)のノイズ除去」と同様である。ただし、使つ て 、る式の定義が少しずれるので、以下の通りそれを書き直すのみである。
[0154] [2-4-1]ノイズ成分の周波数特性変更
ηΓ' (LH1)= kl(l)*nl(LHl) ., ..(64)
ηΓ' (HL1)= kl(l)*nl(HLl) ., ..(65)
ηΓ' (ΗΗ1)= k2(l)*nl(HHl) . ...(66)
η2"' (LH2)= kl(2)*n2(LH2) ., ..(67)
η2"' (HL2)= kl(2)*n2(HL2) ., ..(68)
η2"' (ΗΗ2)= k2(2)*n2(HH2) . ...(69)
η3"' (LH3)= kl(3)*n3(LH3) ., ..(70)
η3"' (HL3)= kl(3)*n3(HL3) ., ..(71)
η3"' (HH3)= k2(3)*n3(HH3) . ...(72)
η4"' (LH4)= kl(4)*n4(LH4) ., ..(73)
η4"' (HL4)= kl(4)*n4(HL4) ., ..(74)
η4"' (HH4)= k2(4)*n4(HH4) . ...(75)
η5"' (LH5)= kl(5)*n5(LH5) ., ..(76)
η5"' (HL5)= kl(5)*n5(HL5) ., ..(77)
η5"' (HH5)= k2(5)*n5(HH5) . ...(78)
[0155] ここで、 nl(LLl)と nl"(LHl,HLl,HHl)をそのまま束ねて nl"(LLl,LHl,HLl,HHl)と表す。 n2(LL2)と n2"(LH2,HL2,HH2)をそのまま束ねて n2"(LL2,LH2,HL2,HH2)と表す。 n3(LL3)と n3"(LH3,HL3,HH3)をそのまま束ねて n3"(LL3,LH3,HL3,HH3)と表す。 n4(LL4)と n4"(LH4,HL4,HH4)をそのまま束ねて n4"(LL4,LH4,HL4,HH4)と表す。 n5(LL5)と n5"(LH5,HL5,HH5)をそのまま束ねて n5"(LL5,LH5,HL5,HH5)と表す。
[0156] [2-5]色差成分 0 のノイズ除去
「[2- 4]色差成分 (a)のノイズ除去」と同様である。
[0157] 以上のように、第 2の実施の形態では、ノイズ抽出とノイズ除去を分離して 2種類の ノイズ除去に相当する処理を行い、かつ下層の低周波サブバンドのノイズ除去結果 のみならず下層の高周波サブバンドのノイズ除去結果も上層の低周波サブバンドの ノイズ抽出にも影響を与えるようにした。すなわち、第 1の実施の形態と同様に、多重 解像度変換画像の高周波サブバンドと低周波サブバンドの両方から、し力も相互に 影響を及ぼし合いながら逐次的にノイズ抽出を行うので、扱う周波数帯域の合成の 自由度が広がり、ノイズ抽出に最適な周波数空間でノイズ抽出を行うことが可能となり 、抽出しきれない残留ノイズの問題がなくなりつつも、画像構造を破壊しない高精細 なノイズ除去を可能とする。
[0158] すなわち、デジタル写真のような一般画像にぉ 、て、残留ノイズ問題を適切に対処 しつつ画像構造非破壊性の高 、、高精細なノイズ除去処理 (Edge-preserving smoothing)を実現して 、る。
[0159] ここで、第 1の実施の形態と第 2の実施の形態の違いについて少し触れておく。パラ メータの設定を変えることによって「Analysis逐次」と Synthesis逐次」の方式はほぼ同 等のノイズ除去効果とノイズ残留問題対策効果を得ることが出来ることが実験的に確 認されている。し力し、敢えてその違いを述べてみるなら処理の順序からいって、「An alysis逐次」方式は後段に低解像度側がくるので、別の解像度に対して確実に影響 を及ぼす低解像度側の長周期成分のノイズ抽出漏れ防止効果が高いのに対し、「Sy nthesis逐次」方式は反対に後段に高解像度側がくるので、高解像度側のノイズ抽出 漏れ防止効果が高ぐチェックパターン等のナイキスト周波数のしっこいノイズ抽出に 強いといえる。 [0160] なお、本実施の形態では、実空間の画像信号 SO(LLO)に対して所定のノイズ除去処 理を行う例を示した(図 10)。しかし、実空間の画像信号 SO(LLO)に対する処理は非 常に重たい処理となる。一方、本実施の形態では、画像信号 S1(LL1,LH1,HL1,HH1) 以下の解像度における処理だけでも十分に高精細なノイズ除去処理が可能となる。 従って、実空間の画像信号 S0(LL0)に対する所定のノイズ除去処理を省略してもよ 、 。図 17は、図 10から実空間の画像信号 S0(LL0)に対する所定のノイズ除去処理を省 略した輝度成分 (輝度信号)の処理の流れ図を示す図である。色差成分の処理につ いても同様である。これにより、処理を軽くしながら高精細なノイズ除去処理が可能と なる。
[0161] (第 3の実施の形態)
第 1の実施の形態や第 2の実施の形態では、ノイズ除去処理の例について説明を した。
第 3の実施の形態では、このノイズ除去処理をエッジ強調処理に置き換えた、多重解 像度における周波数特性の変更が容易なエッジ強調処理の例について説明する。
[0162] 第 3の実施の形態の画像処理装置の構成は、第 1の実施の形態と同様であるので 、その説明を省略する。図 12は、多重解像度変換を利用したエッジ強調処理の流れ 図を示す図である。変更の要点は、ノイズ除去で行っていた逐次処理のフィードバッ ク 'ルーチンが不要となり、ノイズ成分抽出処理がエッジ成分抽出処理に置き換わる だけである。エッジ成分抽出処理は例えば、各サブバンド面のアンシャープ 'マスク 処理やバンドパス.フィルタリング処理等によって行う。
[0163] これらの処理は、第 1の実施の形態や第 2の実施の形態のノイズ成分を抽出するた めに変換した多重解像度画像を用いて同時に行ってもょ 、し、第 1の実施の形態や 第 2の実施の形態のようなノイズ除去処理が済んだ画像に対して改めて処理を行な つてもよい。また、エッジ強調だけの目的ならば単独で用いてもよい。ただし、基本的 には輝度面に対してだけ行なう。
[0164] 本実施の形態では、説明の簡略ィ匕のためエッジ強調を単独で行う場合の説明をす る力 高画質ィ匕の観点からは、本来ノイズ除去とエッジ強調を同時に行い、エッジ抽 出成分にノイズ成分が含まれないように第 1の実施の形態や第 2の実施の形態でノィ ズフリーになるまで仮想的に強力にノイズ除去されたサブバンド面力 エッジ成分を 抽出して統合し、実際のノイズ除去が済んだ画像に加算処理を行うのが良い。従つ て、例えば、第 2の実施の形態に追加した場合を例に取ると、図 10の右側の再構築 処理では、 1)仮想的ノイズ除去のためのノイズ成分統合、 2)実際のノイズ除去のた めのノイズ成分統合、 3)実際のエッジ強調のためのエッジ成分統合の 3系統の処理 が走ることになる。
[0165] こうして、多重解像度変換を用いたノイズ除去処理にぉ 、て、ノイズ成分の周波数 特性や強度が容易に変更できてノイズ除去効果の見栄えの変化を容易に確認でき たのと同様に、多重解像度変換を用いたエッジ強調処理において、エッジ成分の周 波数特性や強度が容易に変更できてエッジ強調効果の見栄えの変化を容易に確認 することが可能なシステムを提供することが可能となる。
[0166] 抽出したエッジ成分について、低周波サブバンド (LL)と高周波サブバンド (LH,HL, HH)の間の重みを変えてエッジ成分の周波数特性を変える。図 13は、低周波サブバ ンド (LL)と高周波サブバンド (LH,HL,HH)の加重係数を示す図である。ただし、 LH,H L間で同じ klを用いなくてもよい。ここで言う低周波サブバンドは低周波エッジ成分画 像、高周波サブバンドは高周波エッジ成分画像である。
[0167] このように、エッジ成分の周波数帯域間で重みが変調された低周波エッジ成分画 像と高周波エッジ成分画像は、逆ウェーブレット変換に使用される。逆ウェーブレット 変換は、図 12に示す通り、各解像度において重みが変調された低周波エッジ成分 画像と高周波エッジ成分画像を使用しながら、原画像と同じ解像度を持つ 1つのエツ ジ成分画像になるまで逐次、逆ウェーブレット変換 (統合)を繰り返す。そして、最終 的に統合されたエッジ成分に基づ 、て、原画像のエッジ強調を行う。
[0168] 第 1の実施の形態や第 2の実施の形態と同様に、多重解像度変換画像の高周波サ ブバンドおよび低周波サブバンドの両方力 エッジ抽出を行 、、サブバンド間の加重 係数を導入して統合するので、エッジ成分の周波数帯域の間隔がなぐかつ、周波 数特性を容易に変更でき、エッジ強調の見栄えを簡易に変更できる環境も提供でき る。
[0169] なお、本実施の形態では、実空間の画像信号 SO(LLO)に対して所定のエッジ成分 抽出処理を行う例を示した(図 10)。しかし、実空間の画像信号 SO(LLO)に対する処 理は非常に重たい処理となる。一方、本実施の形態では、画像信号 S1(LL1,LH1,HL Ι,ΗΗΙ)以下の解像度における処理だけでも十分に高精細なエッジ強調処理が可能 となる。従って、実空間の画像信号 SO(LLO)に対する所定のエッジ成分抽出処理を省 略してもよい。図 18は、図 12から実空間の画像信号 SO(LLO)に対する所定のエッジ 成分抽出処理を省略した多重解像度変換を利用したエッジ強調処理の流れ図を示 す図である。これにより、処理を軽くしながら効果的なエッジ強調処理が可能となる。
[0170] (変形例)
なお、上記第 1の実施の形態力 第 3の実施の形態では、多重解像度変換としてゥ エーブレット変換の例を示した。多重解像度変換としてウェーブレット変換の代わりに 、ラプラシアン'ピラミッドを用いてもよい。ウェーブレット変換の低周波サブバンド (LL) には、ラプラシアン'ピラミッドを生成する途中で生成されるガウシアン 'ピラミッドの各 々が対応し、ウェーブレット変換の高周波サブバンド(LH,HL,HH)にはラプラシアン' ピラミッドの各々が対応する。注意すべき点は、ウェーブレット変換では低周波サブバ ンドとそれに対応する高周波サブバンドが同じ解像度であったところが、ラプラシアン 'ピラミッドでは、低周波サブバンドのガウシアン 'バンドに対して、それに対応する高 周波サブバンドのラプラシアンバンドの解像度がガウシアン 'バンドに対して 1つ高い 解像度を持って ヽる点のみ異なって ヽることである。
[0171] ラプラシアン ·ピラミッドに関しては、文献「P. H. Burt and E. H. Adelson, "The Lapl acian Pyramid
as a Compact Image Code," IEEE Transactions on Communications , Vol.31, No.4, pp.532- 540, 1983.」を参照。
[0172] また、多重解像度変換としてラプラシアン'ピラミッド表現の代わりにステアラブル 'ピ ラミツド (ステアラブルウェーブレット変換、方向ウェーブレット変換)表現を用いてもよ い。ステアラブル 'ピラミッドにおいても低周波サブバンドはラプラシアン'ピラミッドの ガウシアン 'バンドがそのまま対応し、高周波サブバンドにはラプラシアン'ピラミッドで は等方的ハイノス成分が一種類のみラプラシアン.バンドとして生成されていたもの 力 複数方向の異方的ハイパス成分によるラプラシアン'バンドが複数個存在して対 応することになるだけである。
[0173] ステアラブル 'フィルタについては、文献「W. T. Freeman and E. H. Adelson, "The Design and Use
of Steerable Filters. IEEE Transactions on Pattern and Macnine
Intelligence, Vol.13, No.9, pp.891— 906, Septempber 1991.」を参照。
[0174] 図 14は、直交ウェーブレット変換、ラプラシアン'ピラミッド、ステアラブル.ピラミッド の各種多重解像度表現における、低周波サブバンドと高周波サブバンドの対応関係 の模式図を示す図である。
[0175] 上記第 1の実施の形態では、輝度成分および色差成分ともに、「AnalySiS逐次」方 式によるノイズ除去の例を説明し、上記第 2の実施の形態では、輝度成分および色 差成分ともに、「Synthesis逐次」方式によるノイズ除去の例を説明した。しかし、輝度 成分に対しては「Analysis逐次」を、色差成分に対しては Synthesis逐次」を用いたノ ィズ除去を行うようにしてもよい。また、輝度成分に対しては「Synthesis逐次」を、色差 成分に対しては「Analysis逐次」を用いたノイズ除去を行うようにしてもよ!、。
[0176] 上記実施の形態では、パーソナルコンピュータ 1で処理を行う例を示した力 必ずし もこの内容に限定する必要はない。カメラなどの撮像装置の中で処理を行う場合であ つてもよい。また、他の装置であってもよい。すなわち、本発明は、画像データを扱う あらゆる装置に適用することができる。
[0177] 上記実施の形態、例えば Synthesis逐次では、 2系統のノイズ成分統合を行う過程 で仮想ノイズ除去と実ノイズ除去の 2種類のノイズ除去概念導入の説明を行ったが、 必ずしもこれに限るものではない。例えば、従来技術の特許文献 5や 9に示されてい るように、ノイズ除去されたサブバンド画像を統合して再構築して行く方式では、 2種 類のノイズ除去されたサブバンド画像を用意して 2系統で統合して行けばよい。
[0178] 上記実施の形態では、ノイズ除去処理の例として、改良型 Bilateral Filterと Laplacia nノイズ抽出法の例を示した力 他の種類のノイズ除去フィルタであってもよ 、。
[0179] 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容 に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態 様も本発明の範囲内に含まれる。 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。 日本国特許出願 2006年第 096984号(2006年 3月 31日出願) 日本国特許出願 2006年第 096985号(2006年 3月 31日出願)

Claims

請求の範囲
[1] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ複数の低周波画像と 、逐次的に低い解像度を持つ複数の高周波画像を生成する多重解像度画像生成 手順と、
前記低周波画像と前記高周波画像の各々に対してノイズ除去処理を行うノイズ除 去処理手順と、
前記ノイズ除去された低周波画像と前記ノイズ除去された高周波画像の双方の結
Figure imgf000053_0001
ヽて、原画像からノイズが除去された画像を得る画像取得手順とを有する。
[2] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ 1つ以上の低周波画 像と、それらの各々と対をなして逐次的に低い解像度を持つ 1つ以上の高周波画像 を生成する多重解像度画像生成手順とを有し、
前記多重解像度画像生成手順は、前記高周波画像に対してノイズ除去処理を行 つてノイズ除去された高周波画像を得、前記ノイズ除去された高周波画像に基づ ヽ て、次に高い解像度の高周波画像と対をなす低周波画像を得、前記次に高い解像 度の高周波画像と対をなす低周波画像に対して、更にノイズ除去処理を行ってノィ ズ除去された低周波画像を得、
前記ノイズ除去された低周波画像と前記ノイズ除去された高周波画像の双方の結 果に基づ ヽて、前記原画像カゝらノイズが除去された画像を得る画像取得手順をさら に有する。
[3] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ 1つ以上の低周波画 像と、それらの各々と対をなして逐次的に低い解像度を持つ 1つ以上の高周波画像 を生成する多重解像度画像生成手順を有し、 前記多重解像度画像生成手順は、前記低周波画像に対してノイズ除去処理を行 つてノイズ除去された低周波画像を得、前記ノイズ除去された低周波画像に基づ ヽ て、次に低い解像度の低周波画像と対をなす高周波画像を得、前記次に低い解像 度の低周波画像と対をなす高周波画像に対して更にノイズ除去処理を行ってノイズ 除去された高周波画像を得、
前記ノイズ除去された低周波画像と前記ノイズ除去された高周波画像の双方の結 果に基づ ヽて、前記原画像カゝらノイズが除去された画像を得る画像取得手順をさら に有する。
[4] 請求項 1〜3の 、ずれかに記載の画像処理方法にお!、て、
前記画像取得手順は、前記原画像と同じ解像度を持つ実空間におけるノイズ除去 処理を行!ヽ、前記実空間におけるノイズ除去の結果を前記低周波画像のノイズ除去 の結果と同様に扱 ヽ、前記原画像からノイズが除去された画像の画像データを得る。
[5] 多重解像度表現された画像を生成する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ 1つ以上の低周波画 像と、それらの各々と対をなして逐次的に低い解像度を持つ 1つ以上の高周波画像 を生成する多重解像度画像生成手順を有し、
前記多重解像度画像生成手順は、
前記高周波画像に対してノイズ除去処理を行ってノイズ除去された高周波画像を 得、
前記ノイズ除去された高周波画像に基づいて、次に高い解像度の高周波画像と対 をなす低周波画像を得、
前記次に高い解像度の高周波画像と対をなす低周波画像に対して更にノイズ除去 処理を
行ってノイズ除去された低周波画像を得る。
[6] 多重解像度表現された画像を生成する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ 1つ以上の低周波画 像と、それらの各々と対をなして逐次的に低い解像度を持つ 1つ以上の高周波画像 を生成する多重解像度画像生成手順を有し、
前記多重解像度画像生成手順は、
a)前記低周波画像の画像データに対してノイズ除去処理を行ってノイズ除去され た低周波画像の画像データを得、
b)前記低周波画像と対をなす高周波画像の画像データに対してノイズ除去処理を 行ってノイズ除去された高周波画像の画像データを得、
c)前記ノイズ除去された低周波画像の画像データと前記ノイズ除去された高周波 画像の画像データの双方の結果に基づいて、次に高い解像度の低周波画像の画像 データを得、
d)前記次に高い解像度の低周波画像が原画像と同等以下の解像度になるまで、 解像度の最も低 、方から高 、方へ向力つて順に、 a)力も c)の処理を繰り返す。
[7] 多重解像度表現された画像を生成する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ 1つ以上の低周波画 像と、それらの各々と対をなして逐次的に低い解像度を持つ 1つ以上の高周波画像 を生成する多重解像度画像生成手順を有し、
前記多重解像度画像生成手順は、
a)前記高周波画像の画像データに対してノイズ除去処理を行ってノイズ除去され た高周波画像の画像データを得、
b)前記ノイズ除去された高周波画像の画像データに基づいて、次に高い解像度の 高周波画像と対をなす低周波画像の画像データを得、
c)前記次に高い解像度の高周波画像と対をなす低周波画像の画像データに対し てノイズ除去処理を行ってノイズ除去された低周波画像の画像データを得、 d)前記ノイズ除去された低周波画像が原画像と同等以下の解像度になるまで、解 像度の低い方力 高い方へ向力つて順に、 a)から c)の処理を繰り返す。
[8] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、 前記入力した原画像を分解して、逐次的に低い解像度を持つ 1つ以上の低周波画 像と、それらの各々と対をなして逐次的に低い解像度を持つ 1つ以上の高周波画像 を生成する多重解像度画像生成手順と、
前記低周波画像と高周波画像の各々に含まれるノイズ成分を抽出して、それぞれ に対応した低周波ノイズ画像と高周波ノイズ画像を生成するノイズ抽出手順と、 前記低周波ノイズ画像とそれと対をなす高周波ノイズ画像を合成して、次に高 、解 像度の低周波画像と同じ解像度を持つ 1つのノイズ画像に統合するとともに、前記次 に高い解像度の低周波画像に対応する低周波ノイズ画像と結合させることにより、更 に 1つのノイズ画像に統合するノイズ統合手順と、
前記統合されたノイズ画像に基づ ヽて、原画像に含まれるノイズを除去するノイズ 除去手順とを有する。
画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ 1つ以上の低周波画 像と、それらの各々と対をなして逐次的に低い解像度を持つ 1つ以上の高周波画像 を生成する多
重解像度画像生成手順と、
前記低周波画像と高周波画像の各々に含まれるノイズ成分を抽出して、それぞれ に対応した低周波ノイズ画像と高周波ノイズ画像を生成するノイズ抽出手順と、 前記低周波ノイズ画像とそれと対をなす高周波ノイズ画像を合成して、次に高 、解 像度の低周波画像と同じ解像度を持つ 1つのノイズ画像に統合するとともに、前記次 に高い解像度の低周波画像に対応する低周波ノイズ画像と結合させることにより、 1 つの新たな低周波ノイズ画像に統合するノイズ統合手順と、
前記ノイズ統合手順で生成された新たな低周波ノイズ画像を、前記ノイズ統合手順 の低周波ノイズ画像として代入し、最終的に生成される新たな低周波ノイズ画像が原 画像と同じ解像度を持つ 1つのノイズ画像になるまで、逐次的に前記ノイズ統合手順 の統合処理を繰り返すノイズ統合繰り返し手順と、
前記ノイズ統合手順と前記ノイズ統合繰り返し手順で統合されたノイズ画像に基づ ヽて、前記原画像に含まれるノイズを除去するノイズ除去手順とを有するする。
[10] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力する画像入力手順と、
前記入力した原画像を分解して、逐次的に低い解像度を持つ複数の低周波画像と 、逐次的に低い解像度を持つ複数の高周波画像を生成する多重解像度画像生成 手順と、
前記低周波画像と前記高周波画像の各々に含まれるノイズ成分を抽出するノイズ 抽出手順と、
前記抽出された低周波画像と前記抽出された高周波画像の双方のノイズ成分に基 づ ヽて、前記原画像の各画素に含まれるノイズ信号を推定するノイズ推定手順とを 有する。
[11] 請求項 10に記載の画像処理方法において、
前記ノイズ推定手順で推定されたノイズ信号に基づ ヽて、原画像に含まれるノイズ を除去するノイズ除去手順を更に有する。
[12] 請求項 1〜: L 1の 、ずれかに記載の画像処理方法にお!、て、
前記低周波画像と前記高周波画像は、
1)直交ウエーブレット変換における低周波成分と高周波成分、
2)ラプラシアン'ピラミッド表現におけるガウシアン成分とラプラシアン成分、
3)方向ウエーブレット変換における低周波成分と各方向毎の高周波成分、 の何れかに対応する。
[13] 請求項 12に記載の画像処理方法において、
2次元直交ウェーブレット変換を行って多重解像度画像を生成する場合、前記低周 波画像は LLサブバンドに、前記高周波画像は LH、 HL、 HHサブバンドに対応する。
[14] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力し、
前記入力した原画像を、多重解像度変換を行ない、解像度の異なる低周波画像と 高周波画像を逐次生成し、
前記それぞれの解像度において、前記生成した低周波画像と高周波画像を使用し て、低周波画像と高周波画像に対応するノイズ成分を抽出し、
前記それぞれの解像度において抽出した低周波画像と高周波画像に対応するノィ ズ成分を使用して、多重解像度逆変換を行ない、前記原画像と同じ解像度を持つノ ィズ成分を生成し、
前記生成した原画像と同じ解像度を持つノイズ成分を使用して、前記原画像からノ ィズを除去した画像を生成する。
[15] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力し、
前記入力した原画像を、低!ヽ解像度を持つ低周波画像と高周波画像に分解し、 前記分解した低い解像度を持つ低周波画像と高周波画像のノイズ信号を抽出する とともに、前記分解した低 ヽ解像度を持つ低周波画像に対してノイズ除去処理を行 い、
前記ノイズ除去処理を行った低 、解像度を持つ低周波画像を、さらに低 、解像度 を持つ低周波画像と高周波画像に分解し、
前記分解したさらに低い解像度を持つ低周波画像と高周波画像のノイズ信号を抽 出し、
前記抽出したさらに低い解像度を持つ低周波画像と高周波画像のノイズ信号を使 用して、前記低い解像度を持つ低周波画像に対応するノイズ信号を合成し、 前記合成した低い解像度を持つ低周波画像に対応するノイズ信号と前記抽出した 低い解像度を持つ低周波画像と高周波画像のノイズ信号を使用して、前記原画像と 同じ解像度を持つノイズ信号を合成し、
前記合成した前記原画像と同じ解像度を持つノイズ信号に基づき、前記原画像か らノイズを除去した画像を得る。
[16] 画像に含まれるノイズを除去する画像処理方法であって、
複数の画素からなる原画像を入力し、
前記入力した原画像を、低!ヽ解像度を持つ低周波画像と高周波画像に分解し、 前記分解した低!ヽ解像度を持つ低周波画像を、さらに低!ヽ解像度を持つ低周波画 像と高周波画像に分解し、 前記分解したさらに低い解像度を持つ低周波画像と高周波画像のノイズ信号を抽 出し、
前記抽出したさらに低い解像度を持つ低周波画像と高周波画像のノイズ信号を使 用して、前記低い解像度を持つ低周波画像に対応するノイズ信号を合成し、 前記合成した低い解像度を持つ低周波画像に対応するノイズ信号と前記分解した 低 ヽ解像度を持つ低周波画像を使用して、前記低 ヽ解像度を持つ低周波画像のノ ィズ信号を抽出するとともに、前記分解した低い解像度を持つ高周波画像のノイズ信 号を抽出し、
前記抽出した低!ヽ解像度を持つ低周波画像と高周波画像のノイズ信号と、前記合 成した低い解像度を持つ低周波画像に対応するノイズ信号とを使用して、前記原画 像と同じ解像度を持つノイズ信号を合成し、
前記合成した前記原画像と同じ解像度を持つノイズ信号に基づき、前記原画像か らノイズを除去した画像を得る。
[17] 輝度成分と色差成分からなる画像に含まれるノイズを除去する画像処理方法であ つて、
複数の画素からなる輝度成分の原画像および複数の画素からなる色差成分の原 画像の各々を入力する画像入力手順と
前記輝度成分の原画像を分解して、逐次的に低い解像度を持つ 1つ以上の輝度 成分の低周波画像と、逐次的に低い解像度を持つ 1つ以上の輝度成分の高周波画 像を生成し、前記色差成分の原画像を分解して、逐次的に低い解像度を持つ 1っ以 上の色差成分の低周波画像と、逐次的に低い解像度を持つ 1つ以上の色差成分の 高周波画像を生成する多重解像度画像生成手順と、
前記輝度成分に関しては、少なくとも前記輝度成分の高周波画像に含まれるノイズ を除去した結果に基づ ヽて、前記輝度成分の原画像カゝらノイズが除去された輝度成 分の画像を得、前記色差成分に関しては、少なくとも前記色差成分の低周波画像に 含まれるノイズを除去した結果に基づ ヽて、前記色差成分の原画像カゝらノイズが除 去された色差成分の画像を得るノイズ除去手順とを有する。
[18] 請求項 17に記載の画像処理方法において、 前記ノイズ除去手順は、更に
前記輝度成分に関しては、前記輝度成分の低周波画像に含まれるノイズを除去し た結果
にも基づ 、て、前記輝度成分の原画像力 ノイズが除去された輝度成分の画像を得 前記色差成分に関しては、前記色差成分の高周波画像に含まれるノイズを除去し た結果にも基づ 、て、前記色差成分の原画像からノイズが除去された色差成分の画 像を得、
前記低周波画像のノイズ除去の程度と前記高周波画像のノイズ除去の程度を、前 記輝度成分と前記色差成分の間で異ならせる。
[19] 請求項 18に記載の画像処理方法において、
前記ノイズ除去手順は、
前記輝度成分の場合は、前記高周波画像のノイズ除去の程度を前記低周波画像 のノイズ除去の程度よりも強くし、
前記色差成分の場合は、前記低周波画像のノイズ除去の程度を前記高周波画像 のノイズ除去の程度よりも強ぐあるいは、同程度にする。
[20] 請求項 18または 19に記載の画像処理方法において、
前記ノイズ除去手順は、更に
前記輝度成分の原画像に対してもノイズ除去処理を行!ヽ、前記輝度成分の原画像 に対するノイズ除去処理の結果を前記輝度成分の低周波画像に含まれるノイズを除 去した結果と同様に扱い、
前記色差成分の原画像に対してもノイズ除去処理を行!ヽ、前記色差成分の原画像 に対するノイズ除去処理の結果を前記色差成分の低周波画像に含まれるノイズを除 去した結果と同様に扱う。
[21] 輝度成分と色差成分からなる画像に含まれるノイズを除去する画像処理方法であ つて、
複数の画素からなる輝度成分の原画像および複数の画素からなる色差成分の原 画像の各々を入力する画像入力手順と 前記輝度成分の原画像を分解して、逐次的に低い解像度を持つ 1つ以上の輝度 成分の低周波画像と、逐次的に低い解像度を持つ 1つ以上の輝度成分の高周波画 像を生成し、前記色差成分の原画像を分解して、逐次的に低い解像度を持つ 1っ以 上の色差成分の低周波画像と、逐次的に低い解像度を持つ 1つ以上の色差成分の 高周波画像を生成する多重解像度画像生成手順と、
前記輝度成分の低周波画像と高周波画像のそれぞれに含まれるノイズ成分を抽出 して、各々に対応する輝度成分の低周波ノイズ画像と高周波ノイズ画像を生成し、前 記生成した輝度成分の低周波ノイズ画像と高周波ノイズ画像に対して重みづけ処理 を行 ヽ、前記重みづけ処理を行った輝度成分の低周波ノイズ画像と高周波ノイズ画 像を使用して逆多重解像度変換し、前記輝度成分の原画像と同じ解像度のノイズ信 号に変換する輝度成分ノイズ信号変換手順と、
前記色差成分の低周波画像と高周波画像のそれぞれに含まれるノイズ成分を抽出 して、各々に対応する色差成分の低周波ノイズ画像と高周波ノイズ画像を生成し、前 記生成した色差成分の低周波ノイズ画像と高周波ノイズ画像に対して重みづけ処理 を行 ヽ、前記重みづけ処理を行った色差成分の低周波ノイズ画像と高周波ノイズ画 像を使用して逆多重解像度変換し、前記色差成分の原画像と同じ解像度のノイズ信 号に変換する色差成分ノイズ信号変換手順とを有し、
前記輝度成分と色差成分の間で異なる重みづけ処理を行う。
[22] 請求項 21に記載の画像処理方法にぉ 、て、
前記輝度成分ノイズ信号変換手順は、前記輝度成分の高周波ノイズ画像の重みを 前記低周波ノイズ画像の重みよりも大きく設定し、
前記色差成分ノイズ信号変換手順は、前記色差成分の低周波ノイズ画像の重みを 前記高周波ノイズ画像の重みよりも大きぐあるいは、同程度に設定する。
[23] 請求項 21または 22に記載の画像処理方法において、
前記輝度成分ノイズ信号変換手順は、前記輝度成分の低周波画像と高周波画像 の他に、前記輝度成分の原画像と同じ解像度を持つ実空間画像に含まれるノイズ成 分も抽出して輝度成分の実空間ノイズ画像を生成し、前記生成した実空間ノイズ画 像を前記低周波ノイズ画像と同様の重みづけを行って前記輝度成分の原画像と同じ 解像度のノイズ信号を得、
前記色差成分ノイズ信号変換手順は、前記色差成分の低周波画像と高周波画像 の他に、前記色差成分の原画像と同じ解像度を持つ実空間画像に含まれるノイズ成 分も抽出して色差成分の実空間ノイズ画像を生成し、前記生成した実空間ノイズ画 像を前記低周波ノイズ画像と同様の重みづけを行って前記色差成分の原画像と同じ 解像度のノイズ信号を得る。
[24] 輝度成分と色差成分からなる画像に含まれるノイズを除去する画像処理方法であ つて、
複数の画素からなる輝度成分の原画像および複数の画素からなる色差成分の原 画像の各々を入力する画像入力手順と
前記輝度成分の原画像を、複数の周波数帯域画像に変換し、前記変換した複数 の周波数帯域画像で輝度成分のノイズ信号を抽出する輝度成分ノイズ抽出手順と 前記色差成分の原画像を、複数の周波数帯域画像に変換し、前記変換した複数 の周波数帯域画像で色差成分ノイズ信号を抽出する色差成分ノイズ抽出手順と 前記複数の周波数帯域画像で抽出した前記輝度成分ノイズ信号を合成し、前記輝 度成分の原画像と同じ周波数帯域内で表される 1つの輝度成分ノイズ信号に変換す る輝度成分ノイズ合成手順と
前記複数の周波数帯域画像で抽出した前記色差成分ノイズ信号を合成し、前記色 差成分の原画像と同じ周波数帯域内で表される 1つの色差成分ノイズ信号に変換す る色差成分ノイズ合成手順とを有し、
前記輝度成分ノイズ合成手順と前記色差成分ノイズ合成手順は、異なる合成処理 を行うことによって前記合成された輝度成分ノイズ信号と前記合成された色差成分ノ ィズ信号の周波数特性を異ならせる。
[25] 請求項 24に記載の画像処理方法にぉ 、て、
前記複数の周波数帯域画像は、少なくとも
1)原画像の周波数帯域を低周波側に帯域制限した低周波画像と、
2)原画像の周波数帯域を高周波側に帯域制限した高周波画像と
を含む。 [26] 請求項 25に記載の画像処理方法にぉ ヽて、
前記輝度成分ノイズ合成手順および前記色差成分ノイズ合成手順は、それぞれ、 複数の周波数帯域のノイズ信号の各々〖こ加重係数を掛けて加重合成を行 、、 前記輝度成分ノイズ合成手順は、前記輝度成分の高周波画像から抽出されたノィ ズ信号の加重係数を低周波画像カゝら抽出されたノイズ信号の加重係数よりも大きく 設定し、
前記色差成分ノイズ合成手順は、前記色差成分の低周波画像カゝら抽出されたノィ ズ信号の加重係数を高周波画像カゝら抽出されたノイズ信号の加重係数よりも大きく 設定する、あるいは、同程度に設定する。
[27] 輝度成分と色差成分からなる画像に含まれるノイズを除去する画像処理方法であ つて、
複数の画素からなる輝度成分の原画像および複数の画素からなる色差成分の原 画像の各々を入力する画像入力手順と
前記輝度成分の原画像をフィルタリングして、少なくとも 1つの輝度成分の帯域制 限画像を生成する輝度成分帯域制限画像生成手順と、
前記色差成分の原画像をフィルタリングして、少なくとも 1つの色差成分の帯域制 限画像を生成する色差成分帯域制限画像生成手順と、
前記少なくとも 1つの輝度成分の帯域制限画像を用いて、輝度成分のノイズ信号を 抽出
する輝度成分ノイズ信号抽出手順と、
前記少なくとも 1つの色差成分の帯域制限画像を用いて、色差成分のノイズ信号を 抽出する色差成分ノイズ信号抽出手順と、
前記輝度成分のノイズ信号に基づ ヽて、前記輝度成分の原画像からノイズ成分を 除去する輝度成分ノイズ除去手順と、
前記色差成分のノイズ信号に基づ!ヽて、前記色差成分の原画像からノイズ成分を 除去する色差成分ノイズ除去手順とを有し、
前記輝度成分の帯域制限画像と前記色差成分の帯域制限画像の周波数帯域を 異ならせる、あるいは、前記輝度成分の帯域制限画像と前記色差成分の帯域制限 画像が同一の帯域幅でも通過周波数強度分布を異ならせるように前記フィルタリング のフィルタ特性を輝度成分と色差成分の間で変えることにより、前記抽出される輝度 成分のノイズ信号と前記抽出される色差成分のノイズ信号の周波数特性を異ならせ る。
[28] 請求項 27に記載の画像処理方法にぉ 、て、
前記少なくとも 1つの輝度成分の帯域制限画像は高周波帯域画像であり、前記少 なくとも 1つの色差成分の帯域制限画像は低周波帯域画像である。
[29] 請求項 27に記載の画像処理方法にぉ 、て、
前記少なくとも 1つの輝度成分の帯域制限画像については高周波通過フィルタを 用い、前記少なくとも 1つの色差成分の帯域制限画像については低周波通過フィル タを用 Vヽることにより、前記フィルタリングのフィルタ特性を輝度成分と色差成分の間 で変える。
[30] 請求項 17から 23のいずれかに記載の画像処理方法において、
前記低周波画像と前記高周波画像は、
1)直交ウエーブレット変換における低周波成分と高周波成分、
2)ラプラシアン'ピラミッド表現におけるガウシアン成分とラプラシアン成分、
3)方向ウエーブレット変換における低周波成分と各方向毎の高周波成分 の何れかに対応する。
[31] 請求項 30に記載の画像処理方法において、
2次元直交ウェーブレット変換を行って多重解像度画像を生成する場合、前記低周 波画像は LLサブバンドに、前記高周波画像は LH、 HL、 HHサブバンドに各々対応す る。
[32] 輝度成分と色差成分からなる画像に含まれるノイズを除去する画像処理方法であ つて、
複数の画素からなる輝度成分の原画像および複数の画素からなる色差成分の原 画像の各々を入力し、
前記入力した輝度成分の原画像を、多重解像度変換により解像度の異なる輝度成 分低周波画像と輝度成分高周波画像を逐次生成し、 前記入力した色差成分の原画像を、多重解像度変換により解像度の異なる色差成 分低周波画像と色差成分高周波画像を逐次生成し、
前記生成した輝度成分低周波画像と輝度成分高周波画像を使用して輝度成分の 低周波ノイズ成分と輝度成分の高周波ノイズ成分を抽出し、
前記生成した色差成分低周波画像と色差成分高周波画像を使用して色差成分の 低周波ノイズ成分と色差成分の高周波ノイズ成分を抽出し、
前記輝度成分の原画像から除去するノイズを合成するとき、前記輝度成分の低周 波ノイズ成分より前記輝度成分の高周波ノイズ成分を主に使用し、
前記色差成分の原画像から除去するノイズを合成するとき、前記色差成分の高周 波ノイズ成分より前記色差成分の低周波ノイズ成分を主に使用する。
コンピュータ読み込み可能なコンピュータプログラム製品であって、
請求項 1から 32のいずれかに記載の画像処理方法をコンピュータまたは画像処理 装置に実行させる画像処理プログラムを有する。
画像処理装置であって、
請求項 1から 32のいずれかに記載の画像処理方法を実行する制御装置を有する。
PCT/JP2006/319145 2006-03-31 2006-09-27 画像処理方法 WO2007116543A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06810636A EP2003612A4 (en) 2006-03-31 2006-09-27 IMAGE PROCESSING
US12/230,165 US8244034B2 (en) 2006-03-31 2008-08-25 Image processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006096984A JP5352942B2 (ja) 2005-03-31 2006-03-31 画像処理方法、画像処理プログラム、および画像処理装置
JP2006-096985 2006-03-31
JP2006096985A JP5256582B2 (ja) 2006-03-31 2006-03-31 画像処理方法、画像処理プログラム、および画像処理装置
JP2006-096984 2006-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/230,165 Continuation US8244034B2 (en) 2006-03-31 2008-08-25 Image processing method

Publications (1)

Publication Number Publication Date
WO2007116543A1 true WO2007116543A1 (ja) 2007-10-18

Family

ID=38580847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319145 WO2007116543A1 (ja) 2006-03-31 2006-09-27 画像処理方法

Country Status (3)

Country Link
US (1) US8244034B2 (ja)
EP (1) EP2003612A4 (ja)
WO (1) WO2007116543A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120679B2 (en) 2008-08-01 2012-02-21 Nikon Corporation Image processing method
US8687907B2 (en) 2009-01-28 2014-04-01 Fujitsu Limited Image processing apparatus and image processing method
US8849447B2 (en) 2008-03-25 2014-09-30 Sicpa Holding Sa Method and system for controlling production of items
US9972072B2 (en) 2013-09-12 2018-05-15 Nec Corporation Noise reduction apparatus, method and program for the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766118B2 (ja) 2007-02-02 2011-09-07 株式会社ニコン 画像処理方法
WO2008093835A1 (ja) * 2007-02-02 2008-08-07 Nikon Corporation 画像処理方法
JP4858610B2 (ja) * 2007-02-28 2012-01-18 株式会社ニコン 画像処理方法
KR101464743B1 (ko) * 2008-01-17 2014-11-25 삼성전자주식회사 카메라 모듈에서 신호 의존적인 잡음 추정 장치 및 방법
JP5272219B2 (ja) * 2008-03-04 2013-08-28 オリンパス株式会社 画像処理装置及び画像処理プログラム
JP5097914B2 (ja) * 2008-07-30 2012-12-12 オリンパス株式会社 成分抽出補正装置、成分抽出補正方法、成分抽出補正プログラム、又は電子機器
US8538189B2 (en) * 2008-11-14 2013-09-17 Ati Technologies Ulc Image noise filter and method
CA2745380C (en) * 2008-12-11 2018-07-17 Imax Corporation Devices and methods for processing images using scale space
JP5430379B2 (ja) 2009-02-03 2014-02-26 キヤノン株式会社 撮像装置及びその制御方法及びプログラム
US8754363B2 (en) 2010-02-08 2014-06-17 Canon Kabushiki Kaisha Method and apparatus for reducing noise in mass signal
US8588551B2 (en) * 2010-03-01 2013-11-19 Microsoft Corp. Multi-image sharpening and denoising using lucky imaging
JP5677040B2 (ja) 2010-11-08 2015-02-25 キヤノン株式会社 画像処理装置およびその制御方法
JP2012216109A (ja) * 2011-04-01 2012-11-08 Sony Corp 画像処理装置と画像処理方法
KR20130008304A (ko) * 2011-07-12 2013-01-22 삼성전자주식회사 색 왜곡 보정 방법 및 장치
KR20130031572A (ko) * 2011-09-21 2013-03-29 삼성전자주식회사 영상 처리 방법 및 영상 처리 장치
EP2851866A4 (en) * 2012-05-14 2016-05-25 Nat Inst Japan Science & Technology Agency Image processing device, image processing method, program, printing medium and recording medium
US20130335634A1 (en) * 2012-06-19 2013-12-19 Silicon Integrated Systems Corp. Noise reduction device and noise reduction method
JP5904281B2 (ja) 2012-08-10 2016-04-13 株式会社ニコン 画像処理方法、画像処理装置、撮像装置および画像処理プログラム
US9805496B2 (en) * 2014-05-27 2017-10-31 Disney Enterprises, Inc. Example based editing of virtual terrain maps
WO2016075914A1 (ja) * 2014-11-13 2016-05-19 日本電気株式会社 画像信号処理装置、画像信号処理方法及び画像信号処理プログラム
US10410398B2 (en) * 2015-02-20 2019-09-10 Qualcomm Incorporated Systems and methods for reducing memory bandwidth using low quality tiles
US9582861B2 (en) * 2015-04-10 2017-02-28 Stmicroelectronics (Grenoble 2) Sas Image processing technique using high frequency data analysis to filter low frequency data by dynamic kernel adjustment
WO2019079398A1 (en) 2017-10-18 2019-04-25 Gopro, Inc. CHROMINANCE DENGING
KR102216965B1 (ko) * 2019-05-07 2021-02-18 주식회사 힐세리온 이산 웨이브릿 변환을 이용한 영상신호의 노이즈 제거 장치 및 이를 포함하는 원격 의료 진단 시스템
US20220188985A1 (en) * 2020-12-11 2022-06-16 Samsung Electronics Co., Ltd. Method and apparatus for adaptive hybrid fusion

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523230A (en) 1983-11-01 1985-06-11 Rca Corporation System for coring an image-representing signal
US5461655A (en) 1992-06-19 1995-10-24 Agfa-Gevaert Method and apparatus for noise reduction
US5467404A (en) 1991-08-14 1995-11-14 Agfa-Gevaert Method and apparatus for contrast enhancement
US5526446A (en) 1991-09-24 1996-06-11 Massachusetts Institute Of Technology Noise reduction system
US5576548A (en) 1995-06-05 1996-11-19 University Of South Florida Nuclear imaging enhancer
US5708693A (en) 1995-06-23 1998-01-13 U.S. Philips Corporation Image processing for noise reduction
JP2000224421A (ja) 1999-02-03 2000-08-11 Fuji Photo Film Co Ltd 画像処理方法および装置並びに記録媒体
JP2001167264A (ja) * 1999-09-30 2001-06-22 Fuji Photo Film Co Ltd 画像処理方法および装置並びに記録媒体
JP2002300465A (ja) * 2001-04-02 2002-10-11 Fuji Photo Film Co Ltd 画像処理方法及び撮影装置並びに撮影システム
US6528381B2 (en) 2000-01-28 2003-03-04 Hynix Semiconductor, Inc. Method of forming silicide
JP2003134352A (ja) * 2001-10-26 2003-05-09 Konica Corp 画像処理方法及び装置並びにプログラム
US6618503B2 (en) 1999-04-30 2003-09-09 Hewlett-Packard Development Company, L.P. Image demosaicing method utilizing directional smoothing
JP2003263635A (ja) * 2002-03-07 2003-09-19 Fuji Photo Film Co Ltd 画像システム
US6754398B1 (en) 1999-06-10 2004-06-22 Fuji Photo Film Co., Ltd. Method of and system for image processing and recording medium for carrying out the method
JP2005101545A (ja) 2003-08-05 2005-04-14 Rohm & Haas Electronic Materials Cmp Holdings Inc 半導体層を研磨するための組成物
US6937772B2 (en) 2000-12-20 2005-08-30 Eastman Kodak Company Multiresolution based method for removing noise from digital images
JP2006096985A (ja) 2004-08-31 2006-04-13 Ricoh Co Ltd 微粒子、微粒子の製造方法、微粒子分散液およびそれを用いた画像表示媒体、装置
JP2006096984A (ja) 2004-07-22 2006-04-13 Air Products & Chemicals Inc 残留物を除去するための組成物及び方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540528B2 (ja) * 1995-12-27 2004-07-07 三洋電機株式会社 ノイズ除去回路
JP4363667B2 (ja) * 1997-06-06 2009-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像のノイズ圧縮方法
JP2002074356A (ja) 2000-08-28 2002-03-15 Fuji Photo Film Co Ltd 画像処理方法および装置並びに記録媒体
JP2004242285A (ja) 2003-01-14 2004-08-26 Fuji Photo Film Co Ltd ノイズ抑制処理方法および装置並びにプログラム
JP2004240955A (ja) 2003-01-16 2004-08-26 Konica Minolta Holdings Inc 画像処理方法、画像処理装置、画像処理プログラム及び画像記録装置
US7548656B2 (en) * 2003-01-16 2009-06-16 Konica Minolta Holdings, Inc. Method and apparatus for processing image signals by applying a multi-resolution conversion processing for reducing the image size and applying a dyadic wavelet transform
EP1614059A1 (en) * 2003-03-19 2006-01-11 Nik Multimedia Inc. Selective enhancement of digital images
US20050281458A1 (en) * 2004-06-16 2005-12-22 Eastman Kodak Company Noise-reducing a color filter array image
JP4129254B2 (ja) * 2004-08-03 2008-08-06 富士フイルム株式会社 ノイズ低減装置および方法
US7940983B2 (en) 2004-12-17 2011-05-10 Nikon Corporation Image processing method
EP1840830B1 (en) 2004-12-20 2011-11-02 Nikon Corporation Image processing method
DE602006021728D1 (de) 2005-03-31 2011-06-16 Nippon Kogaku Kk Bildverarbeitungsverfahren

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523230A (en) 1983-11-01 1985-06-11 Rca Corporation System for coring an image-representing signal
US5467404A (en) 1991-08-14 1995-11-14 Agfa-Gevaert Method and apparatus for contrast enhancement
US5805721A (en) 1991-08-14 1998-09-08 Agfa-Gevaert Method and apparatus for contrast enhancement
US5526446A (en) 1991-09-24 1996-06-11 Massachusetts Institute Of Technology Noise reduction system
US5461655A (en) 1992-06-19 1995-10-24 Agfa-Gevaert Method and apparatus for noise reduction
US5576548A (en) 1995-06-05 1996-11-19 University Of South Florida Nuclear imaging enhancer
US5708693A (en) 1995-06-23 1998-01-13 U.S. Philips Corporation Image processing for noise reduction
JP2000224421A (ja) 1999-02-03 2000-08-11 Fuji Photo Film Co Ltd 画像処理方法および装置並びに記録媒体
US6618503B2 (en) 1999-04-30 2003-09-09 Hewlett-Packard Development Company, L.P. Image demosaicing method utilizing directional smoothing
US6754398B1 (en) 1999-06-10 2004-06-22 Fuji Photo Film Co., Ltd. Method of and system for image processing and recording medium for carrying out the method
JP2001167264A (ja) * 1999-09-30 2001-06-22 Fuji Photo Film Co Ltd 画像処理方法および装置並びに記録媒体
US6528381B2 (en) 2000-01-28 2003-03-04 Hynix Semiconductor, Inc. Method of forming silicide
US6937772B2 (en) 2000-12-20 2005-08-30 Eastman Kodak Company Multiresolution based method for removing noise from digital images
JP2002300465A (ja) * 2001-04-02 2002-10-11 Fuji Photo Film Co Ltd 画像処理方法及び撮影装置並びに撮影システム
JP2003134352A (ja) * 2001-10-26 2003-05-09 Konica Corp 画像処理方法及び装置並びにプログラム
JP2003263635A (ja) * 2002-03-07 2003-09-19 Fuji Photo Film Co Ltd 画像システム
JP2005101545A (ja) 2003-08-05 2005-04-14 Rohm & Haas Electronic Materials Cmp Holdings Inc 半導体層を研磨するための組成物
JP2006096984A (ja) 2004-07-22 2006-04-13 Air Products & Chemicals Inc 残留物を除去するための組成物及び方法
JP2006096985A (ja) 2004-08-31 2006-04-13 Ricoh Co Ltd 微粒子、微粒子の製造方法、微粒子分散液およびそれを用いた画像表示媒体、装置

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A.F LAINE; C. CHANG: "De-noising via Wavelet Transforms Using Steerable Filters", IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, vol. 3, 1995, pages 1956 - 1959, XP000559079
C. TOMASI ET AL.: "Bilateral Filtering for Gray and Color Images", PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION
C. TOMASIETAL.: "Bilateral Filtering For Gray and Color Images", PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION
D.L. DONOHO: "De-noising by Soft-thesholding", IEEE TRANSINFORM THEORY, vol. 41, 1995, pages 613 - 627
J.B.WEAVER ET AL.: "Filtering Noise From Images With Wavelet Transforms", MAGNETIC RESONANCE IN MEDICINE, vol. 21, no. 2, 1991, pages 288 - 295, XP000235331
JONG - SEN LEE: "Digital image smoothing and the Sigma filter", COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING, vol. 24, 1983, pages 255 - 269, XP002511283, DOI: doi:10.1016/0734-189X(83)90047-6
P.H. BURT; E.H. ADELSON: "The Laplacian Pyramid as a Compact Image Code", IEEE TRANSACTIONS ON COMMUNICATION, vol. 31, no. 4, 1983, pages 532 - 540, XP000570701, DOI: doi:10.1109/TCOM.1983.1095851
R.A. DEVOR; B.J. LUCIER: "Fast wavelet techniques for near-optimal image processing", IEEE MILITARY COMMUNICATIONS CONF. REC., vol. 3, November 1992 (1992-11-01), pages 1129 - 1135
S. RANGANATH: "Image Filtering Using Multiresolution Representations", IEEE TRANSACTIONS ON PATTERN AND MACHINE INTELLIGENCE, vol. 13, no. 5, May 1991 (1991-05-01), pages 426 - 440, XP000228854, DOI: doi:10.1109/34.134042
See also references of EP2003612A4
W.T. FREEMAN; E.H. ADELSON: "The Design and Use of Steerable Filters", IEEE TRANSACTION ON PATTERN ANDMACHINE INTELLIGENCE, vol. 13, no. 9, September 1991 (1991-09-01), pages 891 - 906, XP000231520, DOI: doi:10.1109/34.93808

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8849447B2 (en) 2008-03-25 2014-09-30 Sicpa Holding Sa Method and system for controlling production of items
US8120679B2 (en) 2008-08-01 2012-02-21 Nikon Corporation Image processing method
US8339484B2 (en) 2008-08-01 2012-12-25 Nikon Corporation Image processing method
US8687907B2 (en) 2009-01-28 2014-04-01 Fujitsu Limited Image processing apparatus and image processing method
US9972072B2 (en) 2013-09-12 2018-05-15 Nec Corporation Noise reduction apparatus, method and program for the same

Also Published As

Publication number Publication date
EP2003612A9 (en) 2009-02-25
US20090040386A1 (en) 2009-02-12
US8244034B2 (en) 2012-08-14
EP2003612A4 (en) 2010-10-13
EP2003612A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP5541339B2 (ja) 画像処理方法、画像処理プログラム、および画像処理装置
WO2007116543A1 (ja) 画像処理方法
JP5352942B2 (ja) 画像処理方法、画像処理プログラム、および画像処理装置
Liu et al. Efficient single image dehazing and denoising: An efficient multi-scale correlated wavelet approach
JP5023702B2 (ja) 画像処理方法、画像処理プログラム、記録媒体及び画像処理装置
EP1865460B1 (en) Image processing method
CN111583123A (zh) 一种基于小波变换的融合高低频信息的图像增强算法
JP5256582B2 (ja) 画像処理方法、画像処理プログラム、および画像処理装置
Iqbal et al. Dual-tree complex wavelet transform and SVD based medical image resolution enhancement
Suganya et al. Survey on image enhancement techniques
Liu et al. Survey of natural image enhancement techniques: Classification, evaluation, challenges, and perspectives
Almutiry et al. Underwater images contrast enhancement and its challenges: a survey
Sharma et al. Graph signal processing based underwater image enhancement techniques
Josephus et al. Multilayered contrast limited adaptive histogram equalization using frost filter
Navarro et al. Logarithmic wavelets
Cui et al. Attention-guided multi-scale feature fusion network for low-light image enhancement
Rout et al. Multiresolution visual enhancement of hazy underwater scene
Deivalakshmi et al. Balanced GHM Mutiwavelet Transform Based Contrast Enhancement Technique for Dark Images Using Dynamic Stochastic Resonance.
Ding et al. Learning-based underwater image enhancement: An efficient two-stream approach
Rela et al. Efficient image enhancement techniques applied on medical imaging-A state-of-the art survey
CN113658086A (zh) 一种基于小波融合的clahe和直方图拉伸水下图像增强方法
CN114450710A (zh) 用于噪声降低的方法和装置
He et al. A novel hybrid model framework to blind color image deconvolution
Kawasaki et al. A multiscale retinex with low computational cost
Kwan et al. Comparison of denoising algorithms for demosacing low lighting images using cfa 2.0

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2006810636

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE