WO2007114243A1 - 室外機 - Google Patents

室外機 Download PDF

Info

Publication number
WO2007114243A1
WO2007114243A1 PCT/JP2007/056847 JP2007056847W WO2007114243A1 WO 2007114243 A1 WO2007114243 A1 WO 2007114243A1 JP 2007056847 W JP2007056847 W JP 2007056847W WO 2007114243 A1 WO2007114243 A1 WO 2007114243A1
Authority
WO
WIPO (PCT)
Prior art keywords
outdoor
fan
frost formation
outdoor unit
outdoor fan
Prior art date
Application number
PCT/JP2007/056847
Other languages
English (en)
French (fr)
Inventor
Hideki Sangenya
Katsunori Murata
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP07740285A priority Critical patent/EP2012078A4/en
Priority to AU2007232984A priority patent/AU2007232984B2/en
Publication of WO2007114243A1 publication Critical patent/WO2007114243A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the present invention relates to an outdoor unit of an air conditioner that includes an outdoor fan that accelerates heat exchange by applying air to an outdoor heat exchanger, and controls the rotation speed of the outdoor fan when the outdoor heat exchanger is frosted.
  • the subject of this invention is providing the outdoor unit of the air conditioning apparatus which can suppress the ventilation sound of the fan which does not reduce driving
  • An outdoor unit is an outdoor unit of an air conditioner to which the indoor unit is connected, and includes an outdoor heat exchanger, an outdoor fan, and a control unit.
  • the outdoor heat exchanger exchanges heat with air as an evaporator during heating operation.
  • the outdoor fan generates an air flow that passes through the outdoor heat transfer surface.
  • the controller detects or estimates frost formation on the outdoor heat exchanger. When it is, the fan control at the time of frost formation is performed to reduce the rotation speed of the outdoor fan. In this outdoor unit, even if the ventilation resistance increases due to frost formation, the increase amount of the blowing sound is small. For this reason, unpleasant noise is suppressed.
  • An outdoor unit according to a second aspect of the present invention is the outdoor unit according to the first aspect of the present invention, and the frosting fan control is not executed until a predetermined time has elapsed for the heating operation start force.
  • the heating operation is maintained for a predetermined time, even if the operation is started with low outside air, it is possible to provide warm air.
  • An outdoor unit according to a third aspect of the present invention is the outdoor unit according to the first aspect of the present invention, and the fan control at the time of frost formation includes reducing a preset target rotational speed of the outdoor fan.
  • An outdoor unit according to a fourth aspect of the present invention is the outdoor unit according to the first aspect of the present invention, and the frosting fan control includes lowering an upper limit of an input value supplied to the outdoor fan. .
  • An outdoor unit according to a fifth aspect of the present invention is the outdoor unit according to the first aspect of the present invention, wherein a predetermined time has elapsed since the start of heating operation, and the evaporating temperature of the outdoor heat exchanger has fallen below a predetermined temperature. Fan control is executed.
  • frost formation is detected without using a special device, and blowing noise is suppressed.
  • An outdoor unit according to a sixth aspect of the present invention is the outdoor unit according to the first aspect of the present invention, wherein a predetermined time has elapsed since the start of heating operation and the outside air temperature has fallen below a predetermined temperature, fan control during frost formation Is executed.
  • the outdoor unit according to the seventh aspect of the present invention is the outdoor unit according to the first aspect of the present invention, wherein the frosting fan control is executed when a predetermined time has elapsed from the start of the heating operation and the low pressure side falls below a predetermined pressure. .
  • the outdoor unit according to the eighth aspect of the invention is the outdoor unit according to the first aspect of the invention, and is When the fixed time has elapsed and the on-time ratio in one cycle of the drive voltage supplied to the outdoor fan exceeds the preset on-time ratio, fan control during frost formation is executed.
  • frost formation is detected without using a special device, and blowing noise is suppressed.
  • An outdoor unit according to a ninth aspect of the present invention is the outdoor unit according to the first aspect of the present invention, wherein a predetermined time has elapsed from the start of heating operation, and the rotational speed of the outdoor fan is less than a preset target rotational speed. At that time, fan control during frost formation is executed.
  • An outdoor unit according to a tenth aspect of the present invention is the outdoor unit according to the first aspect of the present invention, wherein an average value of inputs supplied to the outdoor fan is calculated before the start of frost fan control, While the fan control is being executed, the average value of the input calculated previously is supplied to the outdoor fan.
  • An outdoor unit according to an eleventh aspect of the present invention is the outdoor unit according to the first aspect of the present invention, wherein when the frosting fan control is performed, the rotational speed of the outdoor fan is preset. If it falls below, start defrosting operation.
  • An outdoor unit is the outdoor unit according to the first aspect of the present invention, wherein the number of rotations of the outdoor fan and the number of rotations of the outdoor fan before frosting are determined when fan control is performed during frost formation. If the difference exceeds the preset tolerance, start defrosting operation.
  • the heating capacity decreases due to fan control during frost formation, so the difference between the rotation speed of the outdoor fan and the rotation speed of the outdoor fan before frost formation is monitored, and the heating capacity exceeds the allowable range. To prevent it from falling. For this reason, the defrosting operation will be started in a timely manner when frosting has progressed to such an extent that the increase in blowing noise cannot be suppressed. Heating performance recovers before starting.
  • An outdoor unit is the outdoor unit according to the first aspect of the present invention, wherein the rotation speed of the outdoor fan and the rotation of the outdoor fan before frost formation are performed when fan control is performed during frost formation.
  • the defrosting operation is started.
  • the heating capacity decreases due to fan control during frost formation, so the integrated value of the difference between the rotation speed of the outdoor fan before frost formation and the current rotation speed is monitored, and the heating capacity is within the allowable range. It is prevented from falling over.
  • the defrosting operation is started in a timely manner, so that the heating performance is restored before the user feels that heating is insufficient.
  • the start of the defrosting operation is determined based on the integrated value of the rotational speed difference, even if a sudden back wind acts on the outdoor fan and the rotational speed suddenly drops, or the power supply voltage drops. However, even if the rotational speed of the outdoor fan drops suddenly, the defrosting operation will not be started by mistake.
  • the heating operation is maintained for a predetermined time, so that warm air can be provided even when the operation is started with low outside air.
  • frost formation is detected without using a special device, and blowing noise is suppressed.
  • the outdoor unit according to the tenth aspect of the invention automatically reduces the rotational speed of the outdoor fan due to ventilation resistance due to frost formation. For this reason, the increase amount of blowing sound is small.
  • the defrosting operation is started in a timely manner when the frosting progresses to such an extent that the increase in the blowing noise cannot be suppressed. Therefore, before the user feels insufficient heating. Heating performance is restored.
  • FIG. 1 is a refrigerant circuit of an air conditioner including an outdoor unit according to an embodiment of the present invention.
  • Figure 2 Control block diagram of the air conditioner including the outdoor unit
  • FIG. 3 is a graph showing the relationship between outdoor fan input, outdoor fan rotation speed, and outdoor fan blowing sound when normal control is performed during frost formation.
  • FIG. 4 is a graph showing the relationship between outdoor fan input, outdoor fan rotation speed, and outdoor fan blowing sound when fan control is performed during frost formation.
  • FIG. 5 is a flowchart of fan control during frost formation.
  • FIG. 6 is a graph showing the relationship between outdoor fan input, outdoor fan rotation speed, outdoor fan blowing sound, and frost formation when fan control during frost formation is continued.
  • FIG. 7 Fan control start force during frost formation Flow chart until defrost control starts.
  • FIG. 8 is a flowchart up to the start of defrosting control of the fan control start force during frosting of the outdoor unit according to the first modification of the embodiment of the present invention.
  • FIG. 9 is a flowchart up to the start of defrosting control of the fan control start force during frost formation of the outdoor unit according to the second modification of the embodiment of the present invention.
  • FIG. 1 shows a refrigerant circuit of an air conditioner including an outdoor unit according to an embodiment of the present invention.
  • the air conditioner 1 is a multi-room air conditioner, and has a configuration in which a plurality of indoor units 3 are connected in parallel to a single outdoor unit 2.
  • the refrigerant circuit 10 of the air conditioner 1 is mainly composed of a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an indoor heat exchanger 16 connected in this order. It is a cycle.
  • the compressor 11 is a variable capacity inverter compressor that performs rotational speed control by an inverter.
  • an accumulator 2 that separates liquid refrigerant and gas refrigerant is provided on the suction pipe side of the compressor 11. 0 is provided.
  • the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13 and the expansion valve 14 are included in the outdoor unit 2, and the indoor heat exchanger 16 is included in the indoor unit 3.
  • the four-way switching valve 12 and the indoor heat exchanger 16 are connected by a refrigerant communication pipe 17a, and the expansion valve 14 and the indoor heat exchanger 16 are connected by a refrigerant communication pipe 17b.
  • the refrigerant communication pipes 17a and 17b are arranged between the outdoor unit 2 and the indoor unit 3.
  • the internal refrigerant circuit of the outdoor unit 2 is provided with a gas side closing valve 18 and a liquid side closing valve 19.
  • the gas side closing valve 18 is arranged on the four-way switching valve 12 side, and the liquid side closing valve 19 is arranged on the expansion valve 14 side.
  • a refrigerant communication pipe 17a is connected to the gas side closing valve 18, and a refrigerant communication pipe 17b is connected to the liquid side closing valve 19. These closing valves 18 and 19 are closed when the outdoor unit 2 and the indoor unit 3 are installed. The closing valves 18 and 19 are opened after the outdoor unit 2 and the indoor unit 3 are installed on the site and the refrigerant communication pipe 17a and the refrigerant communication pipe 17b are connected to the closing valves 18 and 19, respectively.
  • the outdoor unit 2 is provided with an outdoor fan 29 for generating an air flow in order to promote heat exchange between the air and the outdoor heat exchanger 13.
  • the air conditioner 1 including the outdoor unit 2 of the present embodiment includes a number of temperature sensors that are thermistors.
  • the outdoor temperature sensor 102 detects the ambient temperature where the outdoor unit 2 is installed, and the discharge pipe temperature sensor 111 is attached to the discharge pipe of the compressor 11 and detects the discharge pipe temperature To.
  • the evaporating temperature sensor 113 during heating operation is attached to the outdoor heat exchanger 13 to detect the evaporating temperature Te, and the liquid pipe temperature sensor 117 is attached to the outlet side during heating operation of the indoor heat exchanger 16 to Detect tube temperature T1.
  • a low pressure side pressure sensor 213 for detecting a low pressure side pressure is provided between the four-way switching valve 12 and the outdoor heat exchanger 13. Based on the detected values of the temperature sensor and the detected value of the pressure sensor, the control unit 4 controls the operation of the air conditioner 1.
  • the four-way switching valve 12 is maintained in the state indicated by the solid line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 through the four-way selector valve 12, and the outdoor air Exchange heat and condense.
  • the liquefied refrigerant is depressurized to a predetermined low pressure by the expansion valve 14 and is further evaporated by exchanging heat with room air by heat exchange in the room.
  • the indoor air cooled by the evaporation of the refrigerant is blown out into the room by an indoor fan (not shown) to cool the room.
  • the refrigerant evaporated and vaporized in the indoor heat exchanger 16 returns to the outdoor unit 2 through the refrigerant communication pipe 17a, and is sucked into the compressor 11.
  • the four-way selector valve 12 is held in the state indicated by the broken line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchange of each indoor unit 3 through the four-way switching valve 12, and exchanges heat with the indoor air to condense and liquidate. .
  • the indoor air heated by the condensation of the refrigerant is blown out into the room by the indoor fan to heat the room.
  • the refrigerant liquefied in the indoor heat exchanger 16 returns to the outdoor unit 2 through the refrigerant communication pipe 17b.
  • the refrigerant that has returned to the outdoor unit 2 is decompressed to a predetermined low pressure by the expansion valve 14, and is further evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 13.
  • the refrigerant evaporated and evaporated in the outdoor heat exchanger 13 is sucked into the compressor 11 through the four-way switching valve 12.
  • the outdoor fan 29 includes a motor 29a.
  • the motor 29a is a long-life DC brushless motor, and the number of revolutions can be changed by controlling the ON time ratio (DUTY ratio) during one cycle of power input (DUTY control).
  • the rotational speed is detected by a rotational speed sensor 129 that is provided in the motor 29a and is a Hall IC.
  • the rotational speed of the outdoor fan 29 decreases. This rotational speed decrease is detected by the rotational speed sensor 129. Further, as the duty ratio is increased, the input supplied to the motor 29a of the outdoor fan 29 increases, so the rotational speed of the outdoor fan 29 increases.
  • Fig. 3 is a graph showing ⁇ Relationship between outdoor fan input, outdoor fan rotation speed, and outdoor fan blowing sound under normal control during frost formation '', and the horizontal axis is the elapsed time after the start of heating operation. The vertical axis shows the outdoor fan input, outdoor fan speed, and outdoor fan blowing sound in descending order. Show.
  • the frost starts to increase and the draft resistance starts to increase.
  • the outdoor fan input is increased to keep the rotational speed of the outdoor fan 29 constant so that the rotational speed does not drop due to draft resistance. For this reason, ventilation sound increases rapidly.
  • FIG. 2 is a control block diagram of the air conditioner 1 including the outdoor unit 2 of the present embodiment.
  • the control unit 4 receives detection values from the outdoor temperature sensor 102, the evaporation temperature sensor 113, the outdoor fan rotation speed sensor 129, and the low pressure side pressure sensor 213 through the frost detection unit 41, and performs outdoor heat exchange.
  • the outdoor fan 29 is controlled via the outdoor fan control unit 42 by detecting or estimating the frost formation of the vessel 13.
  • control unit 4 keeps the outdoor fan input constant when the frosting of the outdoor heat exchanger 13 starts and the ventilation resistance starts to increase, and the outdoor fan speed is reduced. I try to go down. This is fan control at the time of frost formation, and this suppresses the increase of the blowing sound.
  • FIG. 4 is a graph showing “relationship between outdoor fan input, outdoor fan rotation speed, and outdoor fan blowing sound when fan control is performed during frost formation”, and the horizontal axis indicates the start of heating operation. The elapsed time is shown, and the vertical axis shows the outdoor fan input, outdoor fan rotation speed, and outdoor fan blowing sound in order from the bottom.
  • the heating operation is started and the predetermined time TD is passed, frosting of the outdoor heat exchanger 13 starts and the ventilation resistance starts to increase.
  • the outdoor fan input is kept constant, the rotational speed of the outdoor fan 29 naturally decreases due to the ventilation resistance, and the increase in the blowing noise becomes smaller than when the normal control is maintained.
  • FIG. 5 is a flowchart of fan control during frost formation.
  • the heating operation is started, the elapsed time TD after the heating operation is started in S1.
  • TD2 After waiting for a certain time (TD2) in S2, it is determined in S3 whether or not the outside air temperature is lower than a predetermined temperature (Doadef). If Yes, the average value of the outdoor fan input is calculated in S4. Then, the process proceeds to S5, in which it is determined whether or not the time TD that has elapsed since the start of timekeeping has reached the predetermined time (TD1). Determine whether the temperature is lower than Tedef. If S6 is Yes, proceed to S7 so that the average value of the input calculated by the outdoor fan input force S4 is maintained. If any of S3, S5, and S6 is No, the system enters normal operation.
  • S1 to S7 are the conditions for starting fan control during frost formation, and S7 is the fan control operation during frost formation.
  • FIG. 6 is a graph showing the relationship between the outdoor fan input, the outdoor fan rotation speed, the outdoor fan blowing sound, and the amount of frost formation when the fan control during frost formation is continued. As shown in Fig. 6, if the amount of frost formation increases excessively, even if the rotational speed of the outdoor fan 29 continues to decrease, the amount of increase in the blowing noise increases, and the blowing noise finally reaches the allowable limit value Qs. To reach. The rotation speed of the outdoor fan 29 at this time is defined as the lower limit rotation speed Ns.
  • the defrosting control is executed.
  • the control unit 4 performs fan control during frost formation
  • the frost formation amount increases. It is determined that the blowing sound has reached the allowable limit value Qs, and the fan control during frost formation is switched to defrost control.
  • FIG. 7 is a flowchart from the start of fan control during frost formation to the start of defrost control.
  • the control unit 4 keeps the input to the outdoor fan 29 constant at step S11.
  • step S12 the rotational speed N of the outdoor fan 29 is detected.
  • step S13 it is determined whether or not the rotational speed N of the outdoor fan 29 has fallen below the lower limit rotational speed Ns. When it determines with Yes at step S13, it switches to defrost control at step S14. No in step S13 If set, return to step S12.
  • FIG. 8 is a flowchart from the start of fan control during frost formation to the start of defrost control of the outdoor unit according to the first modification of the embodiment of the present invention.
  • the control unit 4 keeps the input to the outdoor fan 29 constant at step S21.
  • step S22 the rotational speed Na of the outdoor fan 29 before frost formation is stored.
  • step S23 the rotational speed N of the outdoor fan 29 is detected.
  • step S24 it is determined whether or not the difference (Na ⁇ N) between the rotational speed Na of the outdoor fan 29 before frost formation and the detected rotational speed N of the outdoor fan 29 exceeds an allowable value L. If YES in step S24, switch to defrost control in step S25. If it is determined No in step S24, the process returns to step S23.
  • the first modification since it is determined to switch to defrost control based on the instantaneous rotational speed of the outdoor fan 29, for example, natural wind against the air blowing direction of the outdoor fan 29 hits the outdoor fan 29 and rotates. If the number decreases instantaneously, or if the power supply voltage decreases and the rotational speed of the outdoor fan 29 decreases instantaneously, there is a possibility of erroneously switching to defrost control. Therefore, in the second modification, switching to defrosting control is performed when the integrated value of the difference from the rotational speed of the outdoor fan 29 before frosting exceeds the allowable volume calculation value.
  • FIG. 9 is a flowchart from the start of fan control during frost formation to the start of defrost control of the outdoor unit according to the second modification of the embodiment of the present invention.
  • the control unit 4 performs step S3. 1 keeps the input to the outdoor fan 29 constant.
  • step S32 the rotational speed Na of the outdoor fan 29 before frost formation is stored.
  • step S33 the rotational speed Ni of the outdoor fan 29 is detected i times (for example, 5 times) every t seconds (for example, 60 seconds).
  • step S34 it is determined whether the integrated value ⁇ (Na — Ni) of the difference between the rotational speed Na of the outdoor fan 29 before frost formation and each detected rotational speed of the outdoor fan 29 exceeds the allowable integrated value M. judge. If it is determined as Yes in step S34, switch to defrost control in step S35. If it is determined No in step S34, return to step S33.
  • the outdoor unit 2 includes an outdoor heat exchanger 13, an outdoor fan 29, and a control unit 4.
  • the outdoor heat exchanger 13 exchanges heat with air as an evaporator during heating operation.
  • the outdoor fan 29 generates an air flow passing through the outdoor heat exchange surface.
  • the control unit 4 performs frost formation fan control for reducing the rotation speed of the outdoor fan 29. For this reason, even if ventilation resistance increases due to frost formation, unpleasant noise is suppressed because the amount of increase in blowing noise is small.
  • the fan control during frost formation is not executed until the heating operation start force predetermined time elapses. For this reason, since the heating operation is maintained for a predetermined time, even if the operation is started with low outside air, warm air is provided.
  • the fan control at the time of frost formation of the outdoor unit 2 includes lowering the target rotational speed of the outdoor fan 29 set in advance. Alternatively, it includes lowering the upper limit of the input value supplied to the outdoor fan 29. As a result, the rotational speed of the outdoor fan 29 decreases during frost formation, and the amount of increase in the blowing sound is reduced. For this reason, noise is suppressed.
  • the frosting fan control is executed when a predetermined time elapses in the heating operation start force and the evaporation temperature of the outdoor heat exchange is lower than the predetermined temperature.
  • a predetermined time has elapsed from the start of heating operation and the outside air temperature falls below a predetermined temperature
  • fan control during frost formation is executed.
  • the frosting fan control is executed.
  • the frosting fan control is executed when the heating operation start force has also passed the predetermined time and the outdoor fan speed falls below a preset target speed. For this reason, frost formation is detected without using a special device, and blowing noise is suppressed.
  • the average value of the input supplied to the outdoor fan 29 is calculated before the start of frost fan control, and while the frost fan control is being executed, the outdoor fan To 29, the average value of the previously calculated input is supplied.
  • the rotational speed of the outdoor fan 29 is automatically reduced by the draft resistance due to frost formation. For this reason, the increase amount of blowing sound becomes small.
  • the defrosting operation is started when the rotation speed of the outdoor fan falls below the lower limit rotation speed Ns during fan control during frost formation.
  • the fan control during frosting reduces the heating capacity, so the outdoor fan speed is monitored to prevent the heating capacity from falling beyond the allowable range.
  • the defrosting operation is started in a timely manner, so that the heating performance is restored before the user feels that heating is insufficient.
  • defrosting occurs when the integrated value of the difference between the rotational speed of the outdoor fan 29 and the rotational speed of the outdoor fan 29 before frost exceeds the allowable integrated value M. You may start driving. As a result, even if a sudden back wind acts on the outdoor fan and its rotation speed suddenly decreases, or even if the power supply voltage decreases and the outdoor fan rotation speed suddenly decreases, the defrosting operation is mistakenly performed. Will never start.
  • the outdoor unit according to the present invention generates a low noise from the outdoor fan during frost formation. It is effective as an outdoor unit for an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 運転効率を低下させることなく、ファンの送風音を抑制することができる空気調和装置の室外機を提供する。室外機(3)は、室外熱交換器(13)と、室外ファン(29)と、制御部(4)とを備えている。室外熱交換器(13)は、暖房運転時には蒸発器として空気と熱交換を行う。室外ファン(29)は、室外熱交換器(13)表面を通過する空気流を発生させる。制御部(4)は、室外熱交換器(13)への着霜が検知又は推定されたとき、室外ファン(29)の回転数を低くするための着霜時ファン制御を行う。

Description

明 細 書
室外機
技術分野
[0001] 本発明は、室外熱交換器に空気を当て熱交換を促進する室外ファンを有し、室外 熱交換器の着霜時に室外ファンの回転数を制御する空気調和装置の室外機に関す る。
背景技術
[0002] 空気調和装置の室外機内部には、室外熱交換器と、空気流を発生させる室外ファ ンとが配置されている。暖房運転時は、室外熱交^^が蒸発器となり、運転時間の 経過とともに霜が室外熱交換器表面を覆い始める。着霜がさらに進行すると通風抵 抗となり、性能低下を招く可能性が高い。この性能低下を防ぐために、室外ファンを 回転させているモータへの入力を増加させて回転数を一定に維持する、若しくは回 転数を増加させるための制御が広く採用されている(例えば、特許文献 1を参照)。 特許文献 1 :特開 2004— 218936号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、通風抵抗が大きいまま、室外ファンを同一回転数で維持しょうとする と、室外ファンの送風音が増大し、ユーザーに不快感を与えることがある。また、デフ ロスト(除霜)運転を早めに行えば送風音の増大を解決できるが、運転効率が低下す るので、好ましくない。
本発明の課題は、運転効率を低下させることなぐファンの送風音を抑制することが できる空気調和装置の室外機を提供することにある。
課題を解決するための手段
[0004] 第 1発明に係る室外機は、室内機が接続される空気調和装置の室外機であって、 室外熱交換器と、室外ファンと、制御部とを備えている。室外熱交換器は、暖房運転 時には蒸発器として空気と熱交換を行う。室外ファンは、室外熱交 表面を通過 する空気流を発生させる。制御部は、室外熱交換器への着霜が検知又は推定され たとき、室外ファンの回転数を低くするための着霜時ファン制御を行う。 この室外機では、着霜により通風抵抗が増加しても、送風音の増加量が小さい。こ のため、不快な騒音が抑制される。
[0005] 第 2発明に係る室外機は、第 1発明に係る室外機であって、着霜時ファン制御は、 暖房運転開始力 所定時間が経過するまで実行されない。
ここでは、暖房運転が、所定時間維持されるので、低外気で運転が開始されても、 暖気を提供することができる。
第 3発明に係る室外機は、第 1発明に係る室外機であって、着霜時ファン制御には 、予め設定されている室外ファンの目標回転数を下げることが含まれている。
ここでは、着霜時に室外ファンの回転数が下がり、送風音の増加量が小さくなる。こ のため、騒音が低減される。
[0006] 第 4発明に係る室外機は、第 1発明に係る室外機であって、着霜時ファン制御には 、室外ファンに供給される入力値の上限を下げることが含まれて 、る。
ここでは、着霜時に室外ファンの回転数が下がり、送風音の増加量が小さくなる。こ のため、騒音が低減される。
第 5発明に係る室外機は、第 1発明に係る室外機であって、暖房運転開始から所 定時間が経過し、室外熱交換器の蒸発温度が所定温度を下回ったときに、着霜時フ アン制御が実行される。
ここでは、特別な装置を用いることなく着霜が検知され、送風音が抑制される。
[0007] 第 6発明に係る室外機は、第 1発明に係る室外機であって、暖房運転開始から所 定時間が経過し、外気温が所定温度を下回ったときに、着霜時ファン制御が実行さ れる。
ここでは、特別な装置を用いることなく着霜が検知され、送風音が抑制される。 第 7発明に係る室外機は、第 1発明に係る室外機であって、暖房運転開始から所 定時間が経過し、低圧側が所定圧力を下回ったときに、着霜時ファン制御が実行さ れる。
ここでは、特別な装置を用いることなく着霜が検知され、送風音が抑制される。 第 8発明に係る室外機は、第 1発明に係る室外機であって、暖房運転開始から所 定時間が経過し、室外ファンに供給される駆動電圧の 1サイクル中のオン時間比率 が予め設定されているオン時間比率を上回ったときに、着霜時ファン制御が実行され る。
ここでは、特別な装置を用いることなく着霜が検知され、送風音が抑制される。
[0008] 第 9発明に係る室外機は、第 1発明に係る室外機であって、暖房運転開始から所 定時間が経過し、室外ファンの回転数が予め設定されている目標回転数を下回った ときに、着霜時ファン制御が実行される。
ここでは、特別な装置を用いることなく着霜が検知され、送風音が抑制される。 第 10発明に係る室外機は、第 1発明に係る室外機であって、着霜時ファン制御が 開始される前段階で、室外ファンに供給される入力の平均値が算出され、着霜時ファ ン制御が実行されている間は、室外ファンへ、先に算出された入力の平均値が供給 される。
ここでは、着霜による通風抵抗で、室外ファンの回転数が自動的に下がる。このた め、送風音の増加量が小さくなる。
[0009] 第 11発明に係る室外機は、第 1発明に係る室外機であって、着霜時ファン制御が 行われているときに、室外ファンの回転数が予め設定されている下限回転数を下回 つた場合は除霜運転を開始する。
この室外機では、着霜時ファン制御によって暖房能力が低下していくので、室外フ アンの回転数を監視し、暖房能力が許容範囲を超えて低下することを防止している。 このため、送風音の増大を抑制できない程度まで着霜が進行すると、適時に除霜運 転が開始されるので、ユーザーに暖房不足を感じさせる前に暖房性能が回復する。 第 12発明に係る室外機は、第 1発明に係る室外機であって、着霜時ファン制御が 行われているときに、室外ファンの回転数と着霜前の室外ファンの回転数との差が予 め設定されている許容値を上回った場合は除霜運転を開始する。
この室外機では、着霜時ファン制御によって暖房能力が低下していくので、室外フ アンの回転数と着霜前の室外ファンの回転数との差を監視し、暖房能力が許容範囲 を超えて低下することを防止している。このため、送風音の増大を抑制できない程度 まで着霜が進行すると適時に除霜運転が開始されるので、ユーザーに暖房不足を感 じさせる前に暖房性能が回復する。
[0010] 第 13発明に係る室外機は、第 1発明に係る室外機であって、着霜時ファン制御が 行われているときに、室外ファンの回転数と着霜前の室外ファンの回転数との差の積 算値が予め設定されている許容積算値を上回った場合は除霜運転を開始する。 この室外機では、着霜時ファン制御によって暖房能力が低下していくので、着霜前 の室外ファンの回転数と現在の回転数との差の積算値を監視し、暖房能力が許容範 囲を超えて低下することを防止している。このため、送風音の増大を抑制できない程 度まで着霜が進行すると適時に除霜運転が開始されるので、ユーザーに暖房不足を 感じさせる前に暖房性能が回復する。また、回転数差の積算値によって除霜運転開 始の判断がなされるので、突発的な逆風が室外ファンへ作用し回転数が瞬時に急低 下した場合でも、或 、は電源電圧が低下し室外ファンの回転数が急低下した場合で も、誤って除霜運転が開始されることはない。
発明の効果
[0011] 第 1発明に係る室外機では、着霜により通風抵抗が増加しても、送風音の増加量は 小さい。このため、不快な騒音が抑制される。
第 2発明に係る室外機は、暖房運転が、所定時間維持されるので、低外気で運転 が開始されても、暖気を提供することができる。
第 3発明、第 4発明に係る室外機は、着霜時に室外ファンの回転数が下がり、送風 音の増加量が小さくなる。このため、騒音が抑制される。
第 5発明から第 9発明に係る室外機は、特別な装置を用いることなく着霜が検知さ れ、送風音が抑制される。
第 10発明に係る室外機は、着霜による通風抵抗で、室外ファンの回転数が自動的 に下がる。このため、送風音の増加量が小さい。
[0012] 第 11発明から第 13発明に係る室外機は、送風音の増大を抑制できない程度まで 着霜が進行すると適時に除霜運転が開始されるので、ユーザーに暖房不足を感じさ せる前に暖房性能が回復する。
図面の簡単な説明
[0013] [図 1]本発明の一実施形態に係る室外機を含む空気調和装置の冷媒回路。 [図 2]同室外機を含む空気調和装置の制御ブロック図
[図 3]着霜時通常制御した場合の、室外ファン入力と、室外ファン回転数と、室外ファ ン送風音との関係を表したグラフ。
[図 4]着霜時ファン制御した場合の、室外ファン入力と、室外ファン回転数と、室外フ アン送風音との関係を表したグラフ。
[図 5]着霜時ファン制御のフローチャート。
[図 6]着霜時ファン制御を継続した場合の室外ファン入力と、室外ファン回転数と、室 外ファン送風音と、着霜量との関係を表したグラフ。
[図 7]着霜時ファン制御開始力 除霜制御開始までのフローチャート。
[図 8]本発明の実施形態の第 1変形例に係る室外機の着霜時ファン制御開始力 除 霜制御開始までのフローチャート。
[図 9]本発明の実施形態の第 2変形例に係る室外機の着霜時ファン制御開始力 除 霜制御開始までのフローチャート。
符号の説明
[0014] 1 空気調和装置
2 室外機
3 室内機
4 制御部
13 室外熱交換器
発明を実施するための最良の形態
[0015] <空気調和装置の構成 >
本発明の一実施形態に係る室外機を含む空気調和装置の冷媒回路を、図 1に示 す。空気調和装置 1は、多室型空気調和装置であって、 1つの室外機 2に対して複 数の室内機 3が並列に接続される構成となっている。空気調和装置 1の冷媒回路 10 は、主として圧縮機 11、四路切換弁 12、室外熱交換器 13、膨張弁 14、室内熱交換 器 16が順に接続されたものであり、蒸気圧縮式の冷凍サイクルとなっている。ここで、 圧縮機 11は、インバータによる回転数制御を行う容量可変のインバータ圧縮機であ る。また、圧縮機 11の吸入管側には、液冷媒とガス冷媒を分離するアキュムレータ 2 0が設けられている。
圧縮機 11、四路切換弁 12、室外熱交換器 13および膨張弁 14は室外機 2に含ま れており、室内熱交換器 16は室内機 3に含まれている。また、四路切換弁 12と室内 熱交換器 16との間は冷媒連絡配管 17aにより接続され、膨張弁 14と室内熱交換器 16との間は冷媒連絡配管 17bにより接続される。冷媒連絡配管 17a、 17bは、室外 機 2と室内機 3との間に配置される。室外機 2の内部冷媒回路には、ガス側閉鎖弁 18 と液側閉鎖弁 19とが設けられている。ガス側閉鎖弁 18は四路切換弁 12側に配置さ れており、液側閉鎖弁 19は膨張弁 14側に配置されている。ガス側閉鎖弁 18には冷 媒連絡配管 17aが接続され、液側閉鎖弁 19には冷媒連絡配管 17bが接続される。 これらの閉鎖弁 18, 19は、室外機 2や室内機 3を設置するときには閉状態にされて いる。そして、閉鎖弁 18、 19は、室外機 2、室内機 3を現地に設置し冷媒連絡配管 1 7aおよび冷媒連絡配管 17bを閉鎖弁 18, 19に接続した後に開状態とされる。
[0016] また、室外機 2には、空気と室外熱交翻 13との熱交換を促進させるため、空気流 を発生させる室外ファン 29が配置されて 、る。
また、本実施形態の室外機 2を含む空気調和装置 1は、サーミスタカ 成る多くの 温度センサを備えている。室外温度センサ 102は、室外機 2が設置されている周囲 温度を検知し、吐出管温度センサ 111は、圧縮機 11の吐出配管に取付けられ、吐 出管温度 Toを検出する。暖房運転時の蒸発温度センサ 113は、室外熱交換器 13 に取付けられ、蒸発温度 Teを検出し、液管温度センサ 117は、室内熱交換器 16の 暖房運転時の出口側に取付けられ、液管温度 T1を検出する。
また、四路切換弁 12と室外熱交 13との間には低圧側圧力を検出する低圧側 圧力センサ 213が設けられている。これらの温度センサの検出値、圧力センサの検 出値に基づき、制御部 4が空気調和装置 1を運転制御する。
[0017] <空気調和装置の動作 >
(冷房運転)
次に、この空気調和装置 1の運転動作について説明する。冷房運転時は、四路切 換弁 12が図 1において実線で示す状態に保持される。圧縮機 11から吐出された高 温高圧のガス冷媒は、四路切換弁 12を介して室外熱交換器 13に流入し、室外空気 と熱交換して凝縮'液ィ匕する。液ィ匕した冷媒は、膨張弁 14で所定の低圧に減圧され 、さらに室内熱交 で室内空気と熱交換して蒸発する。そして、冷媒の蒸発に よって冷却された室内空気は、図示しない室内ファンによって室内へと吹き出され、 室内を冷房する。また、室内熱交換器 16で蒸発して気化した冷媒は、冷媒連絡配管 17aを通って室外機 2に戻り、圧縮機 11に吸 、込まれる。
[0018] (暖房運転)
暖房運転時は、四路切換弁 12が図 1において破線で示す状態に保持される。圧 縮機 11カゝら吐出された高温高圧のガス冷媒は、四路切換弁 12を介して各室内機 3 の室内熱交 に流入し、室内空気と熱交換して凝縮'液ィ匕する。冷媒の凝縮に よって加熱された室内空気は、室内ファンによって室内へと吹き出され、室内を暖房 する。室内熱交換器 16において液化した冷媒は、冷媒連絡配管 17bを通って室外 機 2に戻る。室外機 2に戻った冷媒は、膨張弁 14で所定の低圧に減圧され、さらに室 外熱交換器 13で室外空気と熱交換して蒸発する。そして、室外熱交換器 13で蒸発 して気化した冷媒は、四路切換弁 12を介して圧縮機 11に吸い込まれる。
<室外機の室外ファン >
室外ファン 29は、モータ 29aを備えている。モータ 29aは、高寿命の DCブラシレス モータであり、電源入力 1サイクル中のオン時間比率(DUTY比)を制御(DUTY制 御)することによって回転数を変更することができる。回転数は、モータ 29aに設けら れて 、るホール ICから成る回転数センサ 129によって検知される。
[0019] 例えば、室外熱交換器 13の着霜によって通風抵抗が増加すると、室外ファン 29の 回転数が低下するが、この回転数の低下は、回転数センサ 129によって検出される。 また、 DUTY比を増加させていくと、室外ファン 29のモータ 29aへ供給される入力が 増加するので、室外ファン 29の回転数が増加する。
通常制御では、室外ファン 29の回転数を一定に保っために入力を増減しており、 回転数の増減に対して、室外ファン入力を増減して一定回転数を維持しょうとする。 図 3は、「着霜時通常制御した場合の、室外ファン入力と、室外ファン回転数と、室外 ファン送風音との関係」を表したグラフであり、横軸は暖房運転開始後の経過時間を 示し、縦軸は下力 順に、室外ファン入力、室外ファン回転数、室外ファン送風音を 示す。暖房運転が開始されて力 所定時間 TDが過ぎるころには、室外熱交
の着霜が始まり、通風抵抗が増加し始める。通常制御ならば、通風抵抗で回転数が 落ちないように、室外ファン入力を増力!]させて室外ファン 29の回転数を一定に維持 しょうとする。このため、送風音が急激に増大する。
[0020] <着霜時ファン制御 >
図 2は、本実施形態の室外機 2を含む空気調和装置 1の制御ブロック図である。図 2において、制御部 4は、着霜検出部 41によって、室外温度センサ 102、蒸発温度セ ンサ 113、室外ファン回転数センサ 129および低圧側圧力センサ 213からの検出値 を受信し、室外熱交換器 13の着霜を検知或いは推定を行い、室外ファン制御部 42 を介して、室外ファン 29を制御する。
制御部 4は、室外ファン 29の送風音増大を防止するために、室外熱交換器 13の着 霜が始まり通風抵抗が増加し始めると、室外ファン入力を一定に維持し、室外ファン 回転数が下がるようにしている。これが着霜時ファン制御であり、これによつて、送風 音の増加量が抑制される。
[0021] 図 4は、「着霜時ファン制御した場合の、室外ファン入力と、室外ファン回転数と、室 外ファン送風音との関係」を表したグラフであり、横軸は暖房運転開始後の経過時間 を示し、縦軸は下カゝら順に、室外ファン入力、室外ファン回転数、室外ファン送風音 を示す。暖房運転が開始されて、所定時間 TDを過ぎるころには、室外熱交換器 13 の着霜が始まり通風抵抗が増加し始める。しかし、室外ファン入力を一定に維持して いるので、室外ファン 29の回転数は通風抵抗によって自然に低下し、送風音の増加 量が通常制御を維持した場合よりも小さくなる。
<着霜時ファン制御ロジック >
図 5は、着霜時ファン制御のフローチャートである。暖房運転が開始されると、 S1で 暖房運転開始後の経過時間 TDの計時が開始される。 S2で一定時間 (TD2)待機し た後、 S3で外気温度が所定温度 (Doadef)未満か否かが判定され、 Yesならば、 S4 で室外ファン入力の平均値が算出される。そして、 S5に進み、計時が開始されてか ら経過した時間 TDが所定時間(TD1)に達した力否かを判定し、 Yesならば、 S6で 蒸発温度 (室外熱交換器温度)が所定温度 (Tedef)未満であるか否かを判定する。 S6で Yesならば、 S7へ進み、室外ファン入力力 S4で求めた入力の平均値が維持 されるようにする。なお、 S3、 S5、 S6のいずれかの判定が Noの場合は通常運転に 入る。 S1から S7までは、着霜時ファン制御の開始条件であり、 S7が着霜時ファン制 御運転である。
[0022] <着霜時ファン制御開始後の動作 >
着霜時ファン制御では、着霜時に室外ファン 29への入力が一定となるので、室外 ファン 29の回転数が通風抵抗に応じて低下し、室外ファン 29の送風音の増大が抑 制される。しかし、室外熱交換器 13上の霜は成長し続けるので、室外ファン 29の回 転数低下による送風音抑制にも限界がある。また、着霜時ファン制御は、暖房性能を 低下させながら送風音の増大を抑制する制御であるので、着霜時ファン制御を無制 限に継続することは、暖房性能を著しく低下させユーザーに暖房不足を感じさせるこ ととなる。したがって、所定の条件で除霜制御へ切り替える必要がある。
図 6は、着霜時ファン制御を継続した場合の室外ファン入力と、室外ファン回転数と 、室外ファン送風音と、着霜量との関係を表したグラフである。図 6に示すように、着 霜量が過度に増加した場合は、たとえ室外ファン 29の回転数が低下し続けても送風 音の増加量が大きくなり、最終的に送風音が許容限界値 Qsに達する。このときの室 外ファン 29の回転数を下限回転数 Nsとする。
[0023] 通常、室外熱交換器温度が圧縮機 11の運転周波数と外気温とから算出される「狙 いの室外熱交換器温度」を所定時間下回ったときに、除霜制御が実行される。これに カロえて、本実施形態では、制御部 4が着霜時ファン制御を行っているときに、室外フ アン 29の回転数が下限回転数 Nsを下回ったときは、着霜量が増加し送風音が許容 限界値 Qsに達したと判断して、着霜時ファン制御から除霜制御に切り替える。以下、 図面を用いて着霜時ファン制御開始後の動作について説明する。
図 7は、着霜時ファン制御開始から除霜制御開始までのフローチャートである。図 7 において、制御部 4は、ステップ S11で室外ファン 29への入力を一定に維持している 。ステップ S12では、室外ファン 29の回転数 Nを検出する。ステップ S13では、室外 ファン 29の回転数 Nが下限回転数 Nsを下回ったか否かを判定する。ステップ S 13で Yesと判定したときは、ステップ S 14で除霜制御に切り替える。ステップ S13で Noと判 定したときは、ステップ S12に戻る。
[0024] この制御によって、室外ファン 29の回転数を、送風音抑制効果が得られ且つユー ザ一に暖房不足を感じさせない程度まで低下させることができるので、着霜時ファン 制御の効果を最大限に発揮させることができる。
<第 1変形例 >
上記の実施形態では、室外ファン 29の回転数が下限回転数 Nsを下回ったときに、 送風音が許容限界値 Qsに達したと判定しているが、これに限定されるものではなぐ 例えば、着霜前の室外ファン 29の回転数との差が許容値 Lを上回ったときに、送風 音が許容限界値 Qsに達したと判定しても良い。なお、着霜前の室外ファン 29の回転 数は、先の除霜制御後にサンプリングした室外ファン 29の回転数の平均値を採用し ている。以下、図面を用いて説明する。
[0025] 図 8は、本発明の実施形態の第 1変形例に係る室外機の着霜時ファン制御開始か ら除霜制御開始までのフローチャートである。図 8において、制御部 4は、ステップ S2 1で室外ファン 29への入力を一定に維持している。ステップ S22では、着霜前の室外 ファン 29の回転数 Naを記憶する。ステップ S23では、室外ファン 29の回転数 Nを検 出する。ステップ S24では、着霜前の室外ファン 29の回転数 Naと、検出した室外フ アン 29の回転数 Nとの差 (Na— N)が許容値 Lを上回ったか否かを判定する。ステツ プ S24で Yesと判定したときは、ステップ S25で除霜制御に切り替える。ステップ S24 で Noと判定したときは、ステップ S23に戻る。
<第 2変形例 >
第 1変形例は、室外ファン 29の瞬時の回転数に基づいて、除霜制御に切り替える 判定を行っているので、例えば、室外ファン 29の送風方向に逆らう自然風が室外フ アン 29に当り回転数が瞬間的に低下した場合、或 ヽは電源電圧が低下し室外ファン 29の回転数が瞬間的に低下した場合には、誤って除霜制御に切り替える可能性が ある。そこで、第 2変形例は、着霜前の室外ファン 29の回転数との差の積算値が許 容積算値を上回ったときに除霜制御に切り替えている。
[0026] 図 9は、本発明の実施形態の第 2変形例に係る室外機の着霜時ファン制御開始か ら除霜制御開始までのフローチャートである。図 9において、制御部 4は、ステップ S3 1で室外ファン 29への入力を一定に維持している。ステップ S32では、着霜前の室外 ファン 29の回転数 Naを記憶する。ステップ S33では、 t秒 (例えば 60秒)毎に i回(例 えば 5回)、室外ファン 29の回転数 Niを検出する。ステップ S34では、着霜前の室外 ファン 29の回転数 Naと、検出した室外ファン 29の各回転数との差の積算値∑ (Na — Ni)が許容積算値 Mを上回った力否かを判定する。ステップ S 34で Yesと判定した ときは、ステップ S35で除霜制御に切り替える。ステップ S34で Noと判定したときは、 ステップ S33〖こ戻る。
<特徴 >
(1)
この室外機 2は、室外熱交換器 13と、室外ファン 29と、制御部 4とを備えている。室 外熱交換器 13は、暖房運転時には蒸発器として空気と熱交換を行う。室外ファン 29 は、室外熱交 表面を通過する空気流を発生させる。制御部 4は、室外熱交換 器 13への着霜が検知又は推定されたとき、室外ファン 29の回転数を低くするための 着霜時ファン制御を行う。このため、着霜により通風抵抗が増加しても、送風音の増 加量が小さいので不快な騒音が抑制される。また、着霜時ファン制御は、暖房運転 開始力 所定時間が経過するまで実行されない。このため、暖房運転が、所定時間 維持されるので、低外気で運転が開始されても、暖気が提供される。
(2)
この室外機 2の着霜時ファン制御には、予め設定されている室外ファン 29の目標回 転数を下げることが含まれている。或いは、室外ファン 29に供給される入力値の上限 を下げることが含まれている。これによつて着霜時に室外ファン 29の回転数が下がり 、送風音の増加量が小さくなる。このため、騒音が抑制される。
(3)
この室外機 2では、暖房運転開始力 所定時間が経過し、室外熱交 の蒸発 温度が所定温度を下回ったときに、着霜時ファン制御が実行される。或いは、暖房運 転開始から所定時間が経過し、外気温が所定温度を下回ったときに、着霜時ファン 制御が実行される。或いは、暖房運転開始カゝら所定時間が経過し、低圧側が所定圧 力を下回ったときに、着霜時ファン制御が実行される。或いは、暖房運転開始から所 定時間が経過し、室外ファンに供給される駆動電圧の 1サイクル中のオン時間比率 が予め設定されているオン時間比率を上回ったときに、着霜時ファン制御が実行され る。或いは、暖房運転開始力も所定時間が経過し、室外ファンの回転数が予め設定 されている目標回転数を下回ったときに、着霜時ファン制御が実行される。このため、 特別な装置を用いることなく着霜が検知され、送風音が抑制される。
[0028] (4)
この室外機 2では、着霜時ファン制御が開始される前段階で、室外ファン 29に供給 される入力の平均値が算出され、着霜時ファン制御が実行されている間は、室外ファ ン 29へ、先に算出された入力の平均値が供給される。これによつて、着霜による通風 抵抗で室外ファン 29の回転数が自動的に下がる。このため、送風音の増加量が小さ くなる。
(5)
この室外機 2では、着霜時ファン制御が行われているときに、室外ファンの回転数 が下限回転数 Nsを下回った場合は除霜運転を開始する。着霜時ファン制御では暖 房能力が低下するので、室外ファンの回転数を監視し、暖房能力が許容範囲を超え て低下することを防止している。これによつて、送風音の増大を抑制できない程度ま で着霜が進行すると、適時に除霜運転が開始されるので、ユーザーに暖房不足を感 じさせる前に暖房性能が回復する。
[0029] また、着霜時ファン制御が行われているときに、現在の室外ファン 29の回転数と着 霜前の室外ファン 29の回転数との差が許容値 Lを上回った場合に除霜運転を開始 しても、上記と同様の効果が得られる。
また、着霜時ファン制御が行われているときに、室外ファン 29の回転数と着霜前の 室外ファン 29の回転数との差の積算値が許容積算値 Mを上回った場合に除霜運転 を開始してもよい。これによつて、突発的な逆風が室外ファンへ作用しその回転数が 瞬時に急低下した場合、或いは電源電圧が低下し室外ファンの回転数が急低下し た場合でも、誤って除霜運転が開始されることはない。
産業上の利用可能性
[0030] 以上説明したように、本発明の室外機は、着霜時、室外ファンの送風音が小さぐ 空気調和装置の室外機として有効である。

Claims

請求の範囲
[1] 室内機 (3)が接続される空気調和装置(1)の室外機 (2)であって、
暖房運転時には蒸発器として空気と熱交換を行う室外熱交換器 (13)と、 前記室外熱交換器(13)表面を通過する空気流を発生させる室外ファン (29)と、 暖房運転時に、前記室外熱交 (13)への着霜が検知又は推定されたとき、前 記室外ファン(29)の回転数を低くするための着霜時ファン制御を行う制御部 (4)と、 を備えた室外機 (2)。
[2] 前記着霜時ファン制御は、暖房運転開始から所定時間が経過するまで実行されな い、
請求項 1に記載の室外機 (2)。
[3] 前記着霜時ファン制御は、予め設定されている前記室外ファン (29)の目標回転数 を下げることを含む、
請求項 1に記載の室外機 (2)。
[4] 前記着霜時ファン制御は、室外ファン (29)に供給される入力値の上限を下げること を含む、
請求項 1に記載の室外機 (2)。
[5] 前記着霜時ファン制御は、暖房運転開始から所定時間が経過し、前記室外熱交換 器(13)の蒸発温度が所定温度を下回ったときに実行される、
請求項 1に記載の室外機 (2)。
[6] 前記着霜時ファン制御は、暖房運転開始力 所定時間が経過し、外気温が所定温 度を下回ったときに実行される、
請求項 1に記載の室外機 (2)。
[7] 前記着霜時ファン制御は、暖房運転開始力 所定時間が経過し、低圧側が所定圧 力を下回ったときに実行される、
請求項 1に記載の室外機 (2)。
[8] 前記着霜時ファン制御は、暖房運転開始から所定時間が経過し、前記室外ファン(
29)に供給される駆動電圧の 1サイクル中のオン時間比率が予め設定されているォ ン時間比率を上回ったときに実行される、 請求項 1に記載の室外機 (2)。
[9] 前記着霜時ファン制御は、暖房運転開始から所定時間が経過し、前記室外ファン (
29)の回転数が予め設定されている目標回転数を下回ったときに実行される、 請求項 1に記載の室外機 (2)。
[10] 前記着霜時ファン制御が開始される前段階で、前記室外ファン (29)に供給される 入力の平均値が算出され、前記着霜時ファン制御が実行されている間は、前記室外 ファン(29)へ前記入力の前記平均値が供給される、
請求項 1に記載の室外機 (2)。
[11] 前記着霜時ファン制御が行われているときに、前記室外ファン(29)の回転数が予 め設定されている下限回転数を下回った場合は除霜運転を開始する、
請求項 1に記載の室外機 (2)。
[12] 前記着霜時ファン制御が行われているときに、前記室外ファン(29)の回転数と着 霜前の前記室外ファン (29)の回転数との差が予め設定されている許容値を上回つ た場合は除霜運転を開始する、
請求項 1に記載の室外機 (2)。
[13] 前記着霜時ファン制御が行われているときに、前記室外ファン(29)の回転数と着 霜前の前記室外ファン (29)の回転数との差の積算値が予め設定されている許容積 算値を上回った場合は除霜運転を開始する、
請求項 1に記載の室外機 (2)。
PCT/JP2007/056847 2006-03-31 2007-03-29 室外機 WO2007114243A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07740285A EP2012078A4 (en) 2006-03-31 2007-03-29 OUTDOOR UNIT
AU2007232984A AU2007232984B2 (en) 2006-03-31 2007-03-29 Outdoor unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-099386 2006-03-31
JP2006099386 2006-03-31
JP2006-345396 2006-12-22
JP2006345396A JP4270274B2 (ja) 2006-03-31 2006-12-22 室外機

Publications (1)

Publication Number Publication Date
WO2007114243A1 true WO2007114243A1 (ja) 2007-10-11

Family

ID=38563511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056847 WO2007114243A1 (ja) 2006-03-31 2007-03-29 室外機

Country Status (4)

Country Link
EP (1) EP2012078A4 (ja)
JP (1) JP4270274B2 (ja)
AU (1) AU2007232984B2 (ja)
WO (1) WO2007114243A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025906A1 (ja) * 2013-08-23 2015-02-26 サンデン株式会社 車両用空気調和装置
JPWO2017122265A1 (ja) * 2016-01-12 2018-03-29 三菱電機株式会社 空気調和機
WO2024069705A1 (ja) * 2022-09-26 2024-04-04 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060530A1 (en) * 2009-05-29 2012-03-15 Daikin Industries, Ltd. Air conditioner
JP5366768B2 (ja) * 2009-11-18 2013-12-11 ダイキン工業株式会社 空気調和機の室外機
JP5257462B2 (ja) * 2011-01-11 2013-08-07 ダイキン工業株式会社 空気調和装置
DE102013218429A1 (de) * 2013-09-13 2015-04-02 Robert Bosch Gmbh Verfahren zum Enteisen einer Wärmepumpe
CN103557651B (zh) * 2013-10-25 2015-12-30 周晓明 一种风冷热泵空调智能除霜方法
EP3225930B1 (en) * 2014-11-26 2020-08-12 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269070A (ja) * 1985-09-20 1987-03-30 株式会社日立製作所 空気調和機
JPS6370039A (ja) * 1986-09-10 1988-03-30 Hitachi Ltd 空気調和機
JPH02306042A (ja) * 1989-05-18 1990-12-19 Daikin Ind Ltd 冷凍装置の除霜装置
JPH0498059A (ja) * 1990-08-10 1992-03-30 Daikin Ind Ltd 冷凍装置の蒸発器の凍結検知装置
JPH10148378A (ja) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd 空気調和機
JP2004218936A (ja) * 2003-01-15 2004-08-05 Hitachi Ltd 空気調和機及び空気調和機の室外機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189085A (en) * 1960-09-13 1965-06-15 Westinghouse Electric Corp Air conditioning apparatus
US3461681A (en) * 1968-03-11 1969-08-19 Carrier Corp Refrigeration system defrost control
US4332137A (en) * 1979-10-22 1982-06-01 Carrier Corporation Heat exchange apparatus and method having two refrigeration circuits
JPS62255762A (ja) * 1986-04-30 1987-11-07 株式会社日立製作所 空気調和機
JP3495858B2 (ja) * 1996-10-31 2004-02-09 東芝キヤリア株式会社 空気調和機
US6092378A (en) * 1997-12-22 2000-07-25 Carrier Corporation Vapor line pressure control
JP4254532B2 (ja) * 2003-12-26 2009-04-15 ダイキン工業株式会社 ヒートポンプ式給湯装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269070A (ja) * 1985-09-20 1987-03-30 株式会社日立製作所 空気調和機
JPS6370039A (ja) * 1986-09-10 1988-03-30 Hitachi Ltd 空気調和機
JPH02306042A (ja) * 1989-05-18 1990-12-19 Daikin Ind Ltd 冷凍装置の除霜装置
JPH0498059A (ja) * 1990-08-10 1992-03-30 Daikin Ind Ltd 冷凍装置の蒸発器の凍結検知装置
JPH10148378A (ja) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd 空気調和機
JP2004218936A (ja) * 2003-01-15 2004-08-05 Hitachi Ltd 空気調和機及び空気調和機の室外機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025906A1 (ja) * 2013-08-23 2015-02-26 サンデン株式会社 車両用空気調和装置
CN105473356A (zh) * 2013-08-23 2016-04-06 三电控股株式会社 车辆用空调装置
US10712066B2 (en) 2013-08-23 2020-07-14 Sanden Holdings Corporation Vehicle air conditioner
JPWO2017122265A1 (ja) * 2016-01-12 2018-03-29 三菱電機株式会社 空気調和機
WO2024069705A1 (ja) * 2022-09-26 2024-04-04 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Also Published As

Publication number Publication date
AU2007232984A1 (en) 2007-10-11
EP2012078A1 (en) 2009-01-07
AU2007232984B2 (en) 2010-06-03
EP2012078A4 (en) 2009-11-18
JP4270274B2 (ja) 2009-05-27
JP2007292439A (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4270274B2 (ja) 室外機
JP4711020B2 (ja) 空気調和装置
JP4158820B2 (ja) 電力量制御装置
JP5634071B2 (ja) 空気調和機および空気調和機の除霜運転方法
JP6768546B2 (ja) 空気調和機
JP5402027B2 (ja) 空気調和機
JP6071648B2 (ja) 空気調和装置
JP5204189B2 (ja) 冷凍サイクル装置
JP2009058222A (ja) 室外機
CN111780382A (zh) 一种空调器
JP2010096474A (ja) 空調制御装置及び空気調和システム
JP6749471B2 (ja) 空気調和装置
WO2012046850A1 (ja) 空気調和機
JP2007192422A (ja) 多室形空気調和機
JP3599011B2 (ja) 空気調和装置
JP3849467B2 (ja) 空気調和機
JP5171759B2 (ja) 空気調和機
JP2014085078A (ja) 空気調和装置
JP3620540B1 (ja) 多室形空気調和機の制御方法
JP2013204821A (ja) 空気調和機
JP2004225929A (ja) 空気調和装置及び空気調和装置の制御方法
JP2011242097A (ja) 冷凍装置
JP5403078B2 (ja) 空気調和機
JP5598392B2 (ja) 空気調和機
JP2003050066A (ja) 空気調和機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007232984

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007740285

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007232984

Country of ref document: AU

Date of ref document: 20070329

Kind code of ref document: A