WO2007114197A1 - 無線受信装置、無線送信装置、無線基地局、受信方法、及び送信方法 - Google Patents

無線受信装置、無線送信装置、無線基地局、受信方法、及び送信方法 Download PDF

Info

Publication number
WO2007114197A1
WO2007114197A1 PCT/JP2007/056739 JP2007056739W WO2007114197A1 WO 2007114197 A1 WO2007114197 A1 WO 2007114197A1 JP 2007056739 W JP2007056739 W JP 2007056739W WO 2007114197 A1 WO2007114197 A1 WO 2007114197A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
signal
transmission
unit
reception
Prior art date
Application number
PCT/JP2007/056739
Other languages
English (en)
French (fr)
Inventor
Takanori Tanaka
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US12/295,233 priority Critical patent/US8184733B2/en
Priority to EP07740177A priority patent/EP2009825A1/en
Priority to CN200780011233XA priority patent/CN101411151B/zh
Priority to JP2008508578A priority patent/JP4829292B2/ja
Publication of WO2007114197A1 publication Critical patent/WO2007114197A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the present invention relates to a wireless receiver, a wireless transmitter, a wireless base station, a reception method, and a transmission method.
  • the present invention relates to a radio reception apparatus, radio transmission apparatus, radio base station, reception method, and transmission method that employ orthogonal frequency division multiplexing (OFDM).
  • OFDM orthogonal frequency division multiplexing
  • a V adaptive adaptive antenna system (AAS) is used to obtain weighting factors used to suppress delay waves and interference waves and to give directivity to a desired wave.
  • Adaptive array processing (hereinafter referred to as AAS processing) is known (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-264526
  • repeating IFFT and FFT may put an excessive processing load on the processor.
  • the present invention has been made in view of such a situation, and provides a highly accurate AAS process and can reduce a processing load, a radio reception apparatus, a radio transmission apparatus, and a radio base station.
  • An object of the present invention is to provide a reception method and a transmission method.
  • the present invention provides a radio reception apparatus, radio transmission apparatus, radio base station, reception method, and radio communication apparatus that can improve the accuracy of AAS processing in a multipath propagation environment that occurs in communication with urban areas and mobile terminals.
  • An object is to provide a transmission method.
  • a radio reception apparatus includes a plurality of antennas, a channel estimation unit that performs channel estimation on a reception signal of each antenna, and the channel estimation unit.
  • a channel equalization unit that equalizes the channel response value estimated in the above and a burst distribution unit that distributes a received signal to each burst constituting a plurality of bursts, the burst distribution unit A calculation unit for calculating the reception weight coefficient of each antenna, an integration unit for integrating the reception weight coefficient with the reception signal, and a coupling unit for combining the reception signals with the reception weight coefficient integrated by the integration unit including.
  • a radio reception apparatus includes a plurality of antennas, a weighting unit that performs predetermined weighting on a transmission signal component of each antenna, and each of the transmission signals that has been subjected to the weighting.
  • a distribution unit that distributes to antennas, a channel equalization unit that performs channel equalization of at least channel response values of each channel using the distributed weighted transmission signal as a frequency component, and the channel equalization performed
  • a transmission unit that converts a transmission signal into a time domain and also transmits the antenna force according to a predetermined format.
  • a radio base station includes a plurality of antennas, a radio reception device that receives radio signals, and a radio transmission that transmits radio signals in a predetermined format via each antenna.
  • the wireless reception device includes: a channel estimation unit that performs channel estimation on the reception signal of each antenna; and channel equalization of the channel response value estimated by the channel estimation unit.
  • a channel equalization unit that performs the reception and a burst distribution unit that distributes the received signal to each burst constituting a plurality of bursts.
  • a calculation unit that calculates a reception weight coefficient of the antenna, an integration unit that integrates the reception weight coefficient with the reception signal, and a coupling unit that combines the reception signal with the reception weight coefficient integrated by the integration unit.
  • the wireless transmission device includes a weighting unit that performs predetermined weighting on the transmission signal components of the antennas, a distribution unit that distributes the weighted transmission signals to the antennas, and a distributed weighted signal.
  • the transmission signal is a frequency component, and at least a channel equalization unit that performs channel equalization of the channel response value of each channel, and the transmission signal that has been subjected to channel equalization is converted into a time domain to have a predetermined format.
  • a transmitter for transmitting from the antenna cable is a frequency component, and at least a channel equalization unit that performs channel equalization of the channel response value of each channel, and the transmission signal that has been subjected to channel equalization is converted into a time domain to have a predetermined format.
  • the burst distribution unit obtains a covariance matrix of each burst after distributing the received signal to each burst, calculates a transmission weighting coefficient based on the covariance matrix,
  • the transmission weight coefficient of the list is stored, and the weighting unit of the wireless transmission device performs weighting based on the stored transmission weight coefficient.
  • the channel estimation unit of the radio reception apparatus obtains a ratio between the received signal and a desired signal for each sub-channel in a specific frequency band as a channel response value, and the channel equalization unit Channel equalization is performed for each channel.
  • the channel estimation unit estimates the channel response value after converting the received signal into a frequency domain.
  • the output signal of the channel equalization unit includes a predetermined preamble signal
  • the integration unit estimates a reception weighting coefficient by performing matrix operation using Cholesky decomposition.
  • the output signal of the channel equalization unit of the radio reception device includes a predetermined preamplifier signal
  • the weighting unit of the radio transmission device performs transmission weighting by performing a matrix operation using Cholesky decomposition. Estimate the coefficients.
  • the channel equalization unit of the wireless transmission device distributes a coefficient obtained by integrating a calibration vector that compensates for a path difference between the transmission side and the reception side and the channel response value of each channel.
  • the channel equalization is performed by adding the weighted transmission signal to the signal divided into frequency components.
  • a fourth feature of the present invention is an orthogonal frequency division multiplexing reception method using a plurality of subchannels, which includes a plurality of amplifiers.
  • the third step of distributing the received signal to each of the bursts constituting the plurality of bursts based on the association and in the third step, a covariance matrix is obtained, and reception of each antenna is performed based on the covariance matrix.
  • a fifth feature of the present invention is an orthogonal frequency division multiplexing transmission method having a plurality of antennas and using a plurality of subchannels, wherein a predetermined weight is assigned to a transmission signal component of each antenna.
  • a coefficient obtained by integrating the calibration vector of the subcarrier for compensating the path difference and the channel response value of each channel is added to the signal obtained by dividing the distributed weighted transmission signal into the frequency components.
  • the fourth step of performing the channel equalization, and the transmission signal subjected to the channel equalization is converted into the time domain, and the antenna power is converted into a predetermined format. And a fifth Sutetsu flop to Shin.
  • a radio reception device, radio transmission device, radio base station, reception method, and transmission method capable of providing highly accurate AAS processing and reducing the processing load. Can be provided.
  • a radio receiving device in a multipath propagation environment caused by communication with an urban area or a moving terminal, a radio receiving device, a radio transmitting device, a radio base station, a receiving device that can improve the accuracy of AAS processing.
  • a method and a transmission method can be provided.
  • FIG. 1 is a block diagram of an OFDM radio receiving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of an OFDM radio transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration example of downlink and uplink OFDM mapping frames in the present embodiment of the present invention.
  • FIG. 4 is a reception processing flow for performing channel estimation, channel equalization, and AAS processing in the frequency domain.
  • FIG. 5 is a transmission processing flow for performing channel estimation, channel equalization, and AAS processing in the frequency domain.
  • FIG. 1 is a block diagram of an OFDM radio receiving apparatus according to this embodiment.
  • FIG. 2 is a block diagram of the OFDM radio transmission apparatus according to this embodiment.
  • OFDM radio receiving apparatus 100 includes an AAS (adaptive antenna system). Specifically, as shown in FIG. 1, the OFDM radio receiving apparatus 100 includes a plurality of (in this embodiment, K) antennas 110-1 ⁇ : L10—K and antennas 110-1 ⁇ : L10. — Receiving processing units 120—1 to 120—K provided for each of K and performing channel estimation, channel equalization processing, etc. on the received signal, and a plurality (N in this embodiment) of burst units 130. — 1 to 1 30 — N, and a distribution unit 140 that distributes the reception signals from the reception processing units 120 — 1 to 120 — K to the burst units 130 — 1 to 1 30 — N. In the present embodiment, a burst distribution unit is configured by the burst units 130-1 to 130-N and the distribution unit.
  • the reception processing units 120-1 to 120-K convert the serial signal from which the guard interval CP is removed into a parallel signal and the guard interval removal unit 121 that removes the guard interval CP from the digitized reception signal.
  • Serial 'Parallel Transformer (S / P) 122 Fast Fourier Transform (FFT: Fast Fourier Transform) 123 that performs Fast Fourier Transform on the parallel signal output from Serial-Parallel Transformer 122, and FFT Unit
  • the channel estimation unit 124 performs channel estimation based on the signals output from the 123 channels, and the channel response value obtained by the channel estimation unit 124 is multiplied by the signal after the fast Fourier transform of the FFT unit 123 to obtain a channel.
  • Distribution section 140 distributes received signal X to each of burst sections 130-1 to 130-N. To do. That is, distribution section 140 maps data corresponding to symbols in a predetermined frequency domain as a received signal of each burst (physical ⁇ logical mapping).
  • Burst units 130-1 to 130-N obtain a covariance matrix (Ln) common to multiple users from the distributed received signals, and antennas 1101 to 1101 corresponding to a desired user based on the obtained covariance matrix:
  • a combining unit 133 that combines (synthesizes) the received signals distributed by the distributing unit 140, and a decoder 134 that decodes the signal output from the combining unit 133 and separated by the desired user.
  • the combining unit 133 extracts the desired signal for each SDMA user.
  • the OFDM radio transmission apparatus 200 includes an AAS (adaptive antenna system). Specifically, as shown in FIG. 2, the OFDM radio transmission apparatus 200 includes a plurality (K in this embodiment) of antennas 210-1 to 210-K (110-1 to: L10-K). , Antennas 210-1 to 21 0- are provided corresponding to each of ⁇ and transmit processing units (data generation units) 220-1 to perform channel estimation and channel equalization processing for radio signals transmitted from the antennas. 220 — ⁇ and a plurality of (in this embodiment, ⁇ ) burst parts 230-1 to 230— ⁇ ⁇ ⁇ ⁇ and burst parts 230-1 to 230— ⁇ are signal components transmitted to each antenna. And a distribution unit 240 that maps (distributes) the data to each transmission processing unit 220-1 to 220-IV.
  • AAS adaptive antenna system
  • Burst sections 230-1 to 230- are used to encode a signal transmitted in the entire band in units of bursts, and output a weighted coefficient using encoder 231 that outputs modulated signal X and a pre-calculated transmission weight coefficient.
  • the beamforming unit 233 generates a signal component to be transmitted to each antenna and supplies it to the distribution unit 240.
  • Distribution section 240 distributes the signal components to be transmitted to each antenna obtained by beam forming section 233 of burst sections 230-1 to 230-IV to transmission processing sections 220-1 to 220-IV. That is, the distribution unit 240 converts the weighted transmission signal of each burst into a predetermined frequency domain. Map to (symbol) (logical ⁇ physical mapping).
  • the transmission processing unit 220-1 to 220-K includes a serial-parallel conversion unit (S / P) 221 that converts the transmission signal distributed by the distribution unit 240 from a serial signal to a parallel signal, and each antenna. Compensates for the path difference between the channel response value calculation unit 222 for calculating the channel response value C m of the subchannel and the opposite device obtained in advance in a specific frequency band, that is, the path difference between the transmission side and the reception side
  • a channel equalization unit 223 that performs channel equalization using a coefficient obtained by integrating the channel response value to the calibration vector, and an inverse Fourier transform of the signal subjected to the channel equalization processing by the channel equalization unit 223 are performed.
  • IFFT Inverse Fourier transform unit
  • P / S parallel 'serial conversion unit
  • guard interval adding unit 226 for adding a guard interval CP to the transmission signal converted into the serial signal.
  • the transmission processing units 220-1 to 220- ⁇ transmit the transmission signals weighted by the AAS processing from the respective antennas 210-1 to 210-K with the guard interval CP.
  • the antennas 210-1 to 210-K of the OFDM wireless transmission device 200 in FIG. 2 can be shared using an antenna switch (Duplexer).
  • FIG. 3 is a diagram showing a configuration example of the downlink and uplink OFDM mapping frames according to the present embodiment.
  • the OFDM mapping frame 300 is provided with an uplink subframe 310 as shown in FIG.
  • Uplink subframe 310 includes ranging 311, AAS downlink preamble 312, AAS uplink preamble 313, and uplink data burst 314.
  • FIG. 3 shows an Nth uplink subframe 310, and the uplink subframe extracted by the reception processing unit 120 -N by the distribution unit 140 of the OFDM radio receiving apparatus 100.
  • An example of physical to logical mapping is shown below.
  • the downlink (not shown) includes a preamble, FCH / MA, and a downlink data burst occupying the entire band.
  • the AAS downlink preamble 312 corresponds to the frequency of the downlink data burst
  • the AAS uplink preamble 313 corresponds to the frequency of each uplink data burst 314.
  • the uplink ranging 311 is not necessary.
  • channel estimation can be performed using pilot subcarriers included in the uplink data burst 314. Alternatively, channel estimation may not be performed.
  • preamble For the ranging, preamble, AAS downlink preamble, AAS uplink preamble, and pilot subcarrier, a known signal that can be generated in the OFDM radio receiving apparatus 100 and a sequence with low correlation are used.
  • channel response values h m is obtained. Specifically, k is shown in equation (1).
  • the ratio of the received signal to the desired signal is determined for each subchannel in a specific frequency band.
  • Channel estimation requires a section in which the OFDM radio receiving apparatus 100 can generate a known reference signal.
  • ranging, preamble, pilot subcarrier, and the like are performed.
  • E [] represents the ensemble average and falls within the range of N samples.
  • the channel response h m is used during transmission, so It is held by Mori.
  • X m (t) is an output signal of channel equalization. * Represents a complex conjugate.
  • R is the received signal in the burst part 130- ⁇
  • H represents a complex conjugate transpose.
  • X (t) is k, n after channel equalization of antenna 110—K
  • the number of samples used for weight estimation is fixed so that AAS processing can be uniformly applied to various conditions.
  • the subchannel number with the smaller subchannel number is selected as the signal to be sampled.
  • the signal selection method may be different.
  • r in Eq. (3) is the cross-correlation vector between the received signal and the reference signal.
  • represents transposition.
  • r (t) is a reference signal at time t of burst n.
  • AA S downlink preamble and AAS uplink preamble correspond to the reference signal.
  • the covariance matrix R is subjected to Cholesky decomposition as shown in Equation (6).
  • L represents a lower triangular matrix
  • Equation (3) is modified as follows.
  • equation (8) is obtained.
  • X is obtained from equation (10). Also, the weighting factor W can be obtained by substituting X into Eq. (9).
  • L is a lower triangular matrix, the number of operations can be halved compared to the case of obtaining an inverse matrix.
  • Equations (3) to (10) are used in the same manner in estimating the reception weighting factor and the transmission weighting factor.
  • the transmission weighting factor is calculated in the AAS downlink preamble section included in the uplink.
  • the obtained transmission weight coefficient is held in a memory (not shown) until transmission.
  • a weighting coefficient synthesis circuit (not shown) executes a calculation using equation (11).
  • the output signal y (t) of the weight coefficient synthesis circuit is subjected to demodulation and decoding processing.
  • the decoded output signal is sent to the upper processing.
  • the transmission data is subjected to the encoding process and the modulation process for each burst, and weighting is performed on the component for each antenna as shown in Expression (12).
  • the weighted signal is mapped to a specific frequency band as an OFDM signal and serial-parallel (SZP) converted. Since the signal after SZP conversion is divided into frequency components, it is integrated with the channel response vector for each subchannel as shown in Equation (13).
  • Equation (13) c m represents the channel response value of the subchannel in each antenna.
  • the channel response value is obtained using equation (14).
  • H m is a vector obtained by collecting channel responses obtained by channel estimation as elements of each antenna.
  • H m can be expressed as in Equation (15).
  • (V ⁇ ⁇ indicates a calibration vector, which can be expressed as in Equation (16).
  • the calibration vector (V) m is determined by the transmission side and the reception side in the subchannel.
  • Equation (17) 1 software path difference.
  • equation (14) is a significant vector only, so that instead of equation (14) Equation (17) is used.
  • FIG. 4 shows a reception processing flow including channel estimation, channel equalization, and AAS processing in the frequency domain.
  • OFDM radio reception apparatus 100 (guard interval removal unit 121) including AAS (adaptive 'antenna' system) performs digital reception on each antenna reception signal. Remove the guard interval CP.
  • AAS adaptive 'antenna' system
  • OFDM radio receiving apparatus 100 performs serial Fourier transform (SZP), and then performs fast Fourier transform.
  • SZP serial Fourier transform
  • step ST3 channel estimation is performed by OFDM radio receiving apparatus 100 (channel estimation unit 124).
  • step ST4 the OFDM radio receiving apparatus 100 (channel equalization unit 125) multiplies the channel response value obtained in the channel estimation by the channel response value obtained by the fast Fourier transform, and performs channel equalization. Do.
  • step ST6 the OFDM radio receiving apparatus 100 converts the normal signal after channel equalization into a parallel 'serial'
  • the converter 126 converts the signal into a serial signal.
  • the OFDM wireless reception device 100 maps the serial signal to each burst unit 130-1 to 130-N.
  • step ST8 the OFDM radio receiving apparatus 100 (calculation unit 131) performs covariance. Find the matrix.
  • step ST9 OFDM radio receiving apparatus 100 (accumulation unit 132) calculates a reception weight coefficient based on the covariance matrix and estimates the weight coefficient.
  • step ST10 OF The DM radio receiving apparatus 100 combines (synthesizes) the antenna signals by accumulating the estimated reception weight coefficients on the signals mapped to the respective bursts.
  • step ST11 OFD M radio receiving apparatus 100 (decoder 133) demodulates and decodes the combined signal.
  • OFDM radio receiving apparatus 100 performs the processing of steps ST8 to ST11 by the number of bursts.
  • FIG. 5 shows a transmission processing flow including channel estimation, channel equalization, and AAS processing in the frequency domain.
  • the transmission weight coefficient is calculated based on the covariance matrix of each burst, and the transmission weight coefficient of each burst is stored. In the transmission process, the stored transmission weight coefficient is used.
  • OFDM radio transmission apparatus 200 encoder 231 performs encoding processing and modulation processing for each burst on the data transmitted at the signal transmission timing. Apply.
  • step ST22 OFDM radio transmitting apparatus 200 integrates transmission weighting factors obtained in advance in each burst with respect to the transmission signal of each burst.
  • beam forming section 233 adds signal X obtained by encoder 231 to transmission weight coefficient W D L by weight integrating section 232, and adds up the signal for each SDMA user for each antenna.
  • step ST24 the OFDM wireless transmission device 200 transmits signal components to be transmitted to each antenna to each transmission processing unit. 220—1 to 220—K, that is, mapping to each frequency range (OFDM mapping) occupied by each burst!
  • step ST25 OFDM radio transmitting apparatus 200 performs channel equalization.
  • the serial-to-parallel converter 221 converts the distributed signal from a serial signal to a parallel signal.
  • the channel equalization unit 223 calculates a calibration vector that compensates for a path difference between the OFDM radio transmission apparatus 200 and the OFDM radio reception apparatus 100 obtained in advance in a specific frequency band, and a coefficient obtained by integrating the channel response values.
  • Channel equalization is performed by integrating the signal after SZP conversion.
  • step ST27 After performing the processing of step ST25 according to the number of subchannels (YES of step ST26), in step ST27, the OFDM wireless transmission device 200 (inverse Fourier transform unit 224) performs channel equalization processing. Inverse Fourier transform of the received signal.
  • OFDM radio transmitting apparatus 200 converts the signal subjected to inverse Fourier transform into a serial signal, and adds guard interval CP.
  • OFDM radio transmitting apparatus 200 performs the processing of steps ST24 to ST28 for the number K of antennas.
  • transmission signals weighted by AAS processing and to which a guard interval CP is added are transmitted from the respective antennas 210-1 to 210-K.
  • OFDM radio receiving apparatus 100 having a plurality of antennas 110-1 to 110-K includes an AAS (adaptive antenna system) and includes a received signal power. Remove guard interval CP. Further, the OFDM radio receiving apparatus 100 performs S / P conversion, FFT, and channel estimation of the received signal. Furthermore, the OFDM radio receiving apparatus 100 performs channel equalization by multiplying the channel response value obtained in this way by the channel response value obtained by the FFT after the channel estimation.
  • AAS adaptive antenna system
  • OFDM radio receiving apparatus 100 performs PZS conversion of the received signal and maps it to each burst, and then obtains a covariance matrix for each burst. Further, OFDM radio receiving apparatus 100 calculates a reception weighting coefficient based on the covariance matrix, adds the reception weighting coefficient to the signal mapped to each burst, and combines the received signals. The OFDM radio receiving apparatus 100 demodulates and decodes the combined received signal.
  • OFDM radio reception apparatus 100 may calculate a covariance matrix common to SDMA users after mapping to each burst, and calculate a reception weight coefficient for each SDMA user based on the covariance matrix. Good. Furthermore, the OFDM wireless receiver 100 maps to each burst. Each received signal may be combined by integrating the received weight coefficient with the received signal. Further, the OFDM radio receiving apparatus 100 may extract a desired signal for each SDMA signal, and perform decoding and decoding of the extracted desired signal.
  • the OFDM radio receiving apparatus 100 receives, via each antenna, a signal including a preamble signal that can be generated on the receiving side in the frequency domain.
  • OFDM radio receiving apparatus 100 performs FFT on the received signal and estimates the channel response value.
  • Sarako OFDM radio receiving apparatus 100 performs channel equalization.
  • the channel-equalized output signal further includes an AAS preamble.
  • OF DM wireless receiving apparatus 100 performs AAS reception processing for estimating a reception weight coefficient by performing matrix operation using Cholesky decomposition.
  • the OFDM radio receiving apparatus 100 may include a multiplexed preamble for SDMA in OFDM signal processing. Also, the OFDM radio receiving apparatus 100 may generate a known signal of a desired SDMA user on the receiving side, and perform a matrix operation using Cholesky decomposition to estimate a reception weight coefficient. Furthermore, the OFDM radio receiving apparatus 100 may estimate the optimum reception weight coefficient for each SDMA user, perform AAS reception processing, and separate user information from the spatially multiplexed signal!
  • An OFDM radio transmission apparatus 200 having a plurality of antennas 210-1 to 210-K includes an AAS, stores transmission weighting coefficients of each burst, and performs code delay processing and modulation processing at signal transmission timing.
  • the transmission weight coefficient is multiplied with the transmission signal of each burst.
  • the OFDM radio transmission apparatus 200 performs OFDM mapping of the transmission signal distributed to each antenna.
  • the OFDM radio transmission apparatus 200 performs SZP conversion of the transmission signal and integrates a calibration vector and a channel response value for each channel. Further, the OFDM radio transmission apparatus 200 performs IFFT and PZS conversion of the transmission signal and adds a CP.
  • the OFDM wireless transmission device 200 transmits a transmission signal to which a CP is added via each antenna.
  • the OFDM radio transmission apparatus 200 integrates the transmission weight coefficient to the transmission signal and distributes the transmission signal to each antenna for transmission.
  • the OFDM wireless transmission device 200 may include a multiplexed preamble for SDMA in OFDM signal processing.
  • the OFDM radio transmission apparatus 200 may generate a known signal of a desired SDMA user on the reception side, and perform a matrix operation using Cholesky decomposition to estimate a transmission weight coefficient.
  • the OFDM radio transmission apparatus 200 estimates an optimal transmission weighting factor for each SDMA user, adds the transmission weighting factor to the transmission signal at the time of transmission, adds up the signals for SDMA users, and adds each antenna. It is also possible to distribute the multiplexed transmission signal.
  • the OFDM radio receiving apparatus 100 and the OFDM radio transmitting apparatus 200 can obtain the following effects because of having such a configuration.
  • a preamble can be used on the frequency axis in AAS processing. Therefore, it is possible to increase the number of data symbols that can be transmitted without having to use a plurality of preambles on the time axis. That is, the data throughput is improved.
  • a beam can be directed to a desired terminal, and a null point can be directed to other terminals.
  • the OFDM radio transceiver apparatus in the OFDM radio transceiver apparatus, it has excellent AAS characteristics in a multipath propagation environment caused by communication with a metropolitan area or a mobile terminal. Interference with other terminals can be suppressed. In addition, it is possible to provide directivity to a desired terminal. That is, frequency utilization efficiency can be increased. Ma In addition, the simplified AAS processing reduces the amount of computation related to AAS processing, thereby reducing the cost of device development and manufacturing.
  • the present invention solves the following problems in the background art.
  • the configuration example of the OFDM radio reception apparatus, the configuration example of the OFDM radio transmission apparatus, and the OFDM signal reception processing by the OFDM radio reception apparatus according to this embodiment are the same as those in the first embodiment described above.
  • the number of terminals that can be processed simultaneously by the base station can be increased by using SDMA, and frequency use efficiency can be improved.
  • SDMA since multiple user signals are multiplexed on the same time and on the same frequency, it is necessary to provide directivity to the desired user terminal and to direct the null point to other user terminals. is there.
  • SDMA is realized by an adaptive antenna system (AAS).
  • AAS adaptive antenna system
  • MMSE is often used as an AAS algorithm.
  • an individual known signal is added for each terminal to the transmission signal transmitted to each user terminal.
  • the base station determines a weighting factor that minimizes the error between the known signal transmitted from the desired terminal and the replica of the known signal.
  • a weighting factor is estimated by a matrix of subchannel components and antenna components.
  • the present invention provides a radio reception apparatus, radio transmission apparatus, radio base station, reception method, and transmission method capable of suppressing interference with other signals and sufficiently obtaining the ability to direct a null point to other terminals. The purpose is to do.
  • a radio reception apparatus includes a plurality of antennas, a channel estimation unit that performs channel estimation on the reception signals of the antennas, and the channel estimation unit.
  • a channel equalizer for performing channel equalization of the estimated channel response value, and a burst distributor for distributing received signals to each burst constituting a plurality of bursts.
  • a calculation unit that calculates the reception weighting factor for each user, an integration unit that integrates the reception weighting factor with the received signal, and a coupling unit that combines the reception signals integrated with the reception weighting factor by the integration unit including.
  • the radio transmitting apparatus includes a plurality of antennas, a weighting unit that performs predetermined weighting on a transmission signal component of each antenna for each user, and the weighting described above for each user.
  • a distribution unit that distributes the transmitted signal to each antenna, and a channel equalization unit that equalizes at least the channel response value of each channel using the distributed weighted transmission signal as a frequency component.
  • a transmission unit that converts the transmission signal subjected to channel equalization into a time domain and transmits the antenna force in a predetermined format.
  • a radio base station includes a plurality of antennas, a radio reception apparatus that receives radio signals, and a radio transmission apparatus that transmits radio signals in a predetermined format via each antenna.
  • the radio reception apparatus performs channel equalization of the channel response value estimated by the channel estimation unit and the channel estimation unit for performing channel estimation on the reception signal of each antenna.
  • a channel equalization unit and a burst distribution unit that distributes a received signal to each burst constituting a plurality of bursts.
  • the burst distribution unit calculates a reception weight coefficient of each antenna for each user.
  • the reception weight coefficient An integrating unit that integrates the received signal, and a combining unit that combines the received signal obtained by integrating the reception weight coefficient by the integrating unit, wherein the wireless transmission device includes the transmission signal component of each antenna A weighting unit that performs predetermined weighting for each user, a distribution unit that distributes the weighted transmission signal to each antenna, and the distributed weighted transmission signal as a frequency component, and at least a channel of each channel A channel equalization unit that performs channel equalization of response values, and a transmission unit that converts the transmission signal subjected to channel equalization into a time domain and also transmits the antenna force in a predetermined format.
  • the wireless transmission device includes the transmission signal component of each antenna A weighting unit that performs predetermined weighting for each user, a distribution unit that distributes the weighted transmission signal to each antenna, and the distributed weighted transmission signal as a frequency component, and at least a channel of each channel A channel equalization unit that performs channel equalization of response values, and a transmission unit that converts
  • the burst distribution unit distributes the received signal to each burst, obtains a common covariance matrix for the user, and transmits to each user based on the covariance matrix.
  • a weighting factor is calculated, the transmission weighting factor of each burst is stored, and the weighting unit of the wireless transmission device performs weighting based on the stored transmission weighting factor.
  • the channel estimation unit of the radio reception apparatus obtains a ratio between the received signal and a desired signal for each subchannel in a specific frequency band as a channel response value, and the channel equalization unit Channel equalization is performed for each channel.
  • the channel estimation unit estimates the channel response value after converting the received signal into a frequency domain.
  • the output signal of the channel equalization unit includes a predetermined preamble signal
  • the integration unit estimates a reception weighting coefficient by performing matrix operation using Cholesky decomposition.
  • the output signal of the channel equalization unit of the radio reception apparatus includes a predetermined preamble signal
  • the weighting unit of the radio transmission apparatus performs transmission weighting by performing matrix operation using Cholesky decomposition. Estimate the coefficients.
  • the channel equalization unit of the wireless transmission device is distributed with a coefficient obtained by integrating a calibration vector that compensates for a path difference between the transmission side and the reception side and the channel response value of each channel.
  • the channel equalization is performed by adding the weighted transmission signal to a signal divided into frequency components.
  • the fourth feature of the present invention is that an orthogonal frequency division multiplexing system using a plurality of subchannels is used.
  • the first method is to perform channel estimation for each received signal of a plurality of antennas.
  • the first step the second step for performing channel equalization of the channel response value estimated in the first step, and each of the plurality of bursts constituting the plurality of bursts based on the association between the subchannel and the plurality of bursts.
  • a fourth covariance matrix is obtained for each user, and a reception weight coefficient for each user is calculated based on the covariance matrix.
  • a fifth feature of the present invention is an orthogonal frequency division multiplexing transmission method having a plurality of antennas and using a plurality of subchannels.
  • the distributed weighted transmission signal is divided into frequency components by multiplying a coefficient obtained by integrating the calibration vector of the subcarrier that compensates for the path difference between the transmission side and the reception side and the channel response value of each channel.
  • a fourth step of performing channel equalization by multiplying the received signal, and converting the transmission signal subjected to channel equalization to a time domain, and A fifth step of transmitting antenna power.
  • the radio reception device, radio transmission device, radio base station, reception method, and transmission method according to the present invention provide highly accurate AAS processing and reduce processing load. Can do.
  • the wireless receiver, the wireless transmitter, the wireless base station, the receiver according to the present invention can improve the simultaneous terminal processing capability of the base station, and can also improve the frequency utilization efficiency. Therefore, it is useful for wireless communications such as mobile communications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数のアンテナ110-1~110-Kを有するOFDM無線受信装置100は、受信信号からガードインターバルCPを除去し、受信信号のS/P変換、FFT及びチャネル推定を行う。OFDM無線受信装置100は、チャネル推定において求めたチャネル応答値をFFT後の信号に乗算することによってチャネル等化を行う。また、OFDM無線受信装置100は、各バーストの共分散行列を求め、共分散行列を基に受信重み係数を計算する。さらに、OFDM無線受信装置100は、各バーストにマッピングされた信号に受信重み係数を積算して各受信信号を結合する。

Description

明 細 書
無線受信装置、無線送信装置、無線基地局、受信方法、及び送信方法 技術分野
[0001] 本発明は、直交周波数分割多重変調 (OFDM: Orthogonal Frequency Division M ultiplex)を採用した無線受信装置、無線送信装置、無線基地局、受信方法及び送 信方法に関するものである。
背景技術
[0002] OFDM無線送受信装置において、遅延波や干渉波を抑圧して所望波への指向性 を付与するために用いられる重み係数を求める、 Vヽゎゆるァダプティブ'アンテナ ·シ ステム (AAS)によるァダプティブアレイ処理(以下、 AAS処理)が知られて ヽる(例え ば、特許文献 1)。
[0003] AAS処理では、無線信号の受信時には、遅延波や干渉波を抑圧することによって
、所望信号のみについて、複数アンテナによるダイバーシティゲインを得る。
[0004] また、無線信号の送信時には、アンテナ本数分のゲインとビームフォーミングゲイン とを合算することによって生成された無線信号を所望の端末に送信する。このため、 所望の端末以外の端末に干渉波が届くことを抑制することができる。
[0005] し力しながら、 OFDMでは、隣接するサブキャリア間で直交性が保たれて 、な!/、場 合、受信信号の復号誤りが増大する。このため、 OFDMでは、サブキャリア単位のチ ャネル推定が必要である。
[0006] 特許文献 1に記載されて!、る無線通信装置では、 OFDMにお 、て AASを行う際 に、受信信号のうち、直接波や受信レベルが高い遅延波に対して最適化するため、 チャネル推定をした後に AAS処理が行われて!/、る。
特許文献 1:特開 2003 - 264526号公報
発明の開示
[0007] 特許文献 1に記載された無線通信装置では、直接波や受信レベルが高い遅延波 が存在する場合、チャネル推定の精度、つまり、 AAS処理の精度は高い。しかしな がら、直接波が存在せず、遅延波が複数存在する場合など、所望波の選択が難しい 伝播路環境では、 AAS処理の精度は低下する。
[0008] また、チャネル推定において、 IFFTや FFTを繰り返すことはプロセッサに対して過 度な処理負荷を掛ける可能性がある。
[0009] 本発明は、このような状況に鑑みてなされたものであり、精度の高い AAS処理を提 供するとともに、処理負荷を軽減することができる無線受信装置、無線送信装置、無 線基地局、受信方法、及び送信方法を提供することを目的とする。
[0010] また、本発明は、都市部や移動する端末との通信で生じるマルチパス伝播環境下 において、 AAS処理の精度を向上できる無線受信装置、無線送信装置、無線基地 局、受信方法、及び送信方法を提供することを目的とする。 前記目的を達成するた め、本発明の第 1の特徴に係る無線受信装置は、複数のアンテナと、前記各アンテ ナの受信信号に対してチャネル推定を行うチャネル推定部と、前記チャネル推定部 にお!/、て推定したチャネル応答値のチャネル等化を行うチャネル等化部と、複数の バーストを構成する各バーストへ受信信号を分配するバースト分配部とを有し、前記 バースト分配部は、各アンテナの受信重み係数を計算する計算部と、前記受信重み 係数を前記受信信号に積算する積算部と、前記積算部によって前記受信重み係数 が積算された前記受信信号を結合する結合部とを含む。
[0011] 本発明の第 2の特徴に係る無線受信装置は、複数のアンテナと、前記各アンテナ の送信信号成分に所定の重み付けを行う重み付け部と、前記重み付けを行った前 記送信信号を各アンテナに分配する分配部と、分配された重み付け後の前記送信 信号を周波数成分とし、少なくとも各チャネルのチャネル応答値のチャネル等化を行 うチャネル等化部と、チャネル等化が行われた前記送信信号を時間領域に変換し、 所定のフォーマットによって前記アンテナ力も送信する送信部とを有する。
[0012] 本発明の第 3の特徴に係る無線基地局は、複数のアンテナと、無線信号を受信す る無線受信装置と、無線信号を所定のフォーマットで各アンテナを介して送信する無 線送信装置と、を有し、前記無線受信装置は、前記各アンテナの受信信号に対して チャネル推定を行うチャネル推定部と、前記チャネル推定部にお!ヽて推定したチヤ ネル応答値のチャネル等化を行うチャネル等化部と、複数のバーストを構成する各バ 一ストへ受信信号を分配するバースト分配部とを有し、前記バースト分配部は、各ァ ンテナの受信重み係数を計算する計算部と、前記受信重み係数を前記受信信号に 積算する積算部と、前記積算部によって前記受信重み係数が積算された前記受信 信号を結合する結合部とを含み、前記無線送信装置は、前記各アンテナの送信信 号成分に所定の重み付けを行う重み付け部と、前記重み付けを行った前記送信信 号を各アンテナに分配する分配部と、分配された重み付け後の前記送信信号を周波 数成分とし、少なくとも各チャネルのチャネル応答値のチャネル等化を行うチャネル 等化部と、チャネル等化が行われた前記送信信号を時間領域に変換し、所定のフォ 一マットによって前記アンテナカゝら送信する送信部とを含む。
[0013] 好適には、前記バースト分配部は、前記受信信号を各バーストに分配した後に、各 バーストの共分散行列を求め、前記共分散行列を基に送信重み係数を計算し、各バ 一ストの送信重み係数を記憶し、前記無線送信装置の重み付け部は、記憶された前 記送信重み係数を基に重み付けを行う。
[0014] 好適には、前記無線受信装置のチャネル推定部は、前記受信信号と、特定周波数 帯のサブチャネル毎の所望信号との比をチャネル応答値として求め、前記チャネル 等化部は、サブチャネル毎にチャネル等化を行う。
[0015] 好適には、前記チャネル推定部は、前記受信信号を周波数領域への変換した後 に前記チャネル応答値を推定する。
[0016] 好適には、前記チャネル等化部の出力信号は、所定のプリアンブル信号を含み、 前記積算部は、コレスキー分解を用いて行列操作して受信重み付け係数を推定する
[0017] 好適には、前記無線受信装置のチャネル等化部の出力信号は、所定のプリアンプ ル信号を含み、前記無線送信装置の重み付け部は、コレスキー分解を用いて行列 操作して送信重み付け係数を推定する。
[0018] 好適には、前記無線送信装置のチャネル等化部は、送信側と受信側の経路差を 補償するキャリブレーションベクトルと、各チャネルの前記チャネル応答値とを積算し た係数を、分配された重み付け後の前記送信信号が周波数成分に分けられた信号 に積算することによって前記チャネル等化を行う。 本発明の第 4の特徴は、複数の サブチャネルを用いた直交周波数分割多重方式の受信方法であって、複数のアン テナの各受信信号に対してチャネル推定を行う第 1ステップと、前記第 1ステップにお V、て推定したチャネル応答値のチャネル等化を行う第 2ステップと、サブチャネルと複 数のバーストとの関連付けに基づいて、前記複数のバーストを構成する各バーストへ 受信信号を分配する第 3ステップと、前記第 3ステップでは、共分散行列を求め、前 記共分散行列を基に各アンテナの受信重み係数を計算する第 4ステップと、前記受 信重み係数を前記受信信号に積算する第 5ステップと、前記受信重み係数が積算さ れた前記受信信号を結合する第 6ステップとを含む。
[0019] 本発明の第 5の特徴は、複数のアンテナを有し、複数のサブチャネルを用いた直交 周波数分割多重方式の送信方法であって、前記各アンテナの送信信号成分に所定 の重み付けを行う第 1ステップと、前記重み付けを行った前記送信信号を各アンテナ に分配する第 2ステップと、分配された重み付け後の前記送信信号を周波数成分と する第 3ステップと、送信側と受信側の経路差を補償するサブキャリアのキヤリブレー シヨンベクトルと、各チャネルの前記チャネル応答値とを積算した係数を、分配された 重み付け後の前記送信信号が周波数成分に分けられた信号に積算することによつ て前記チャネル等化を行う第 4ステップと、チャネル等化が行われた前記送信信号を 時間領域に変換し、所定のフォーマットによって前記アンテナ力 送信する第 5ステツ プとを有する。
[0020] 本発明の特徴によれば、精度の高い AAS処理を提供するとともに、処理負荷を軽 減することができる無線受信装置、無線送信装置、無線基地局、受信方法、及び送 信方法を提供することができる。
[0021] また、本発明によれば、都市部や移動する端末との通信で生じるマルチパス伝播 環境下において、 AAS処理の精度を向上できる無線受信装置、無線送信装置、無 線基地局、受信方法、及び送信方法を提供することができる。
図面の簡単な説明
[0022] [図 1]図 1は、本発明の実施形態に係る OFDM無線受信装置のブロック図である。
[図 2]図 2は、本発明の実施形態に係る OFDM無線送信装置のブロック図である。
[図 3]図 3は、本発明の本実施形態におけるダウンリンク及びアップリンクの OFDMマ ッビングフレームの構成例を示す図である。 [図 4]図 4は、周波数領域でのチャネル推定、チャネル等化及び AAS処理を行う受 信処理フローである。
[図 5]図 5は、周波数領域でのチャネル推定、チャネル等化及び AAS処理を行う送 信処理フローである。
発明を実施するための最良の形態
[0023] (第 1実施形態)
以下、本発明の第 1実施形態を添付図面に関連付けて説明する。
[0024] 図 1は、本実施形態に係る OFDM無線受信装置のブロック図である。図 2は、本実 施形態に係る OFDM無線送信装置のブロック図である。
[0025] OFDM無線受信装置 100は、 AAS (ァダプティブ.アンテナ.システム)を含む。具 体的には、 OFDM無線受信装置 100は、図 1に示すように、複数 (本実施形態では K個)のアンテナ 110— 1〜: L 10— Kと、アンテナ 110— 1〜: L 10— Kのそれぞれに対 応して設けられ、受信信号に対するチャネル推定やチャネル等化処理等を行う受信 処理部 120— 1〜 120— Kと、複数 (本実施形態では N個)のバースト部 130— 1〜1 30— Nと、受信処理部 120— 1〜120— Kによる受信信号をバースト部 130— 1〜1 30— Nに分配する分配部 140と、を有する。本実施形態では、バースト部 130— 1〜 130— N及び分配部によって、バースト分配部が構成される。
[0026] 受信処理部 120— 1〜120— Kは、デジタル化された受信信号からガードインター バル CPを除去するガードインターバル除去部 121と、ガードインターバル CPが除去 されたシリアル信号をパラレル信号に変換するシリアル 'パラレル変換部 (S/P) 122 と、シリアル ·パラレル変換部 122から出力されたパラレル信号に対して高速フーリエ 変換を行う高速フーリエ変換(FFT: Fast Fourier Transform)部 123と、 FFT部 123 カゝら出力された信号に基づ 、てチャネル推定を行うチャネル推定部 124と、チャネル 推定部 124によって求められたチャネル応答値を FFT部 123の高速フーリエ変換後 の信号に掛け合わせてチャネル等化処理を行うチャネル等化部 125と、チャネル等 化部 125によってチャネル等化処理が施された受信信号をパラレル信号からシリア ル信号に変換するパラレル 'シリアル変換部 126と、有する。
[0027] 分配部 140は、バースト部 130— 1〜130—Nのそれぞれに受信信号 X を分配 する。すなわち、分配部 140は、所定の周波数領域のシンボルに対応するデータを 各バーストの受信信号としてマッピング (物理→論理マッピング)する。
[0028] バースト部 130—1〜130—Nは、分配された受信信号から多重ユーザ共通の共 分散行列 (Ln)を求め、求めた共分散行列を基に所望ユーザ対応するアンテナ 110 1〜: L 10— Kの受信重み係数 Wを計算する計算部 131と、計算部 131から供給さ れる重み係数 Wを受信信号に積算する積算部 132と、積算部 132で積算された重 み係数に基づ!ヽて、分配部 140により分配された受信信号を結合 (合成)する結合 部 133と、結合部 133から出力され、所望ユーザに分離された信号の復号処理を行 うデコーダ 134と、を有する。なお、結合部 133は、 SDMAユーザ毎に所望信号を抽 出することちでさる。
[0029] OFDM無線送信装置 200は、 AAS (ァダプティブ.アンテナ.システム)を含む。具 体的には、 OFDM無線送信装置 200は、図 2に示すように、複数 (本実施形態では K個)のアンテナ 210— 1〜210— K(110— 1〜: L 10— K)と、アンテナ 210— 1〜21 0— Κのそれぞれに対応して設けられ、アンテナから送信される無線信号に対するチ ャネル推定やチャネル等化処理等を行う送信処理部(データ生成部) 220— 1〜220 — Κと、複数 (本実施形態では Ν個)のバースト部 230— 1〜230— Νと、バースト部 2 30— 1〜230—Νにお ヽて得られた各アンテナに送信する信号成分を各送信処理 部 220— 1〜220—Κにマッピング (分配)する分配部 240と、を有する。
[0030] バースト部 230— 1〜230— Νは、全帯域に送信される信号をバースト単位で符号 、変調した信号 Xを出力するエンコーダ 231と、予め計算された送信重み係数を用 いて重み係数 W DLを計算する積算部 232と、エンコーダ 231で得られた信号 Xに積 算部 232によって計算された送信重み係数 W を積算するとともに、多重された信 号をアンテナ毎に加算するビームフォーミング部 233と、を有する。また、ビームフォ 一ミング部 233は、各アンテナに送信する信号成分を生成して分配部 240に供給す る。
[0031] 分配部 240は、バースト部 230— 1〜230—Νのビームフォーミング部 233で得られ た各アンテナに送信する信号成分を送信処理部 220— 1〜220— Κに分配する。す なわち、分配部 240は、重み付けされた各バーストの送信信号を所定の周波数領域 (シンボル)にマッピング (論理→物理マッピング)する。
[0032] 送信処理部 220— 1〜220— Kは、分配部 240により分配された送信信号をシリア ル信号からパラレル信号に変換するシリアル 'パラレル変換部 (S/P) 221と、各アン テナにおけるサブチャネルのチャネル応答値 Cmを計算するチャネル応答値計算部 2 22と、特定の周波数帯において予め求められた対向装置との経路差、つまり、送信 側と受信側の経路差を補償するキャリブレーションベクトルにチャネル応答値を積算 した係数を用いてチャネル等化を行うチャネル等化部 223と、チャネル等化部 223に よってチャネル等化処理が施された信号の逆フーリエ変換を行 ヽ、送信信号を周波 数領域から時間領域に変換する逆フーリエ変換部 (IFFT) 224と、逆フーリエ変換が 行われたパラレル信号をシリアル信号に変換するパラレル 'シリアル変換部 (P/S) 2 25と、シリアル信号に変換された送信信号にガードインターバル CPを付加するガー ドインターバル付加部 226と、を有する。
[0033] 送信処理部 220—1〜220—Κは、ガードインターバル CPを付カ卩して各アンテナ 2 10— 1〜210— Kから AAS処理によって重み付けが行われた送信信号を送信する
[0034] なお、図 1における OFDM無線受信装置 100のアンテナ 110— 1〜: L 10—Kと、図
2における OFDM無線送信装置 200のアンテナ 210— 1〜210—Kは、アンテナ切 替器 (Duplexer)を用いて共用可能である。
[0035] また、 OFDM無線受信装置 100と、 OFDM無線送信装置 200を備えた無線基地 局を構成することも勿論可能である。
[0036] 図 3は、本実施形態に係るダウンリンク及びアップリンクの OFDMマッピングフレー ム構成例を示す図である。
[0037] OFDMマッピングフレーム 300は、図 3に示すように、アップリンクサブフレーム 310 が設けられる。アップリンクサブフレーム 310には、レンジング 311、 AASダウンリンク プリアンブル 312、 AASアップリンクプリアンブル 313、及びアップリンクデータバー スト 314が含まれる。
[0038] 図 3は、 N番目のアップリンクサブフレーム 310を示し、 OFDM無線受信装置 100 の分配部 140によって、受信処理部 120— Nで抽出されたアップリンクサブフレーム に対して、物理→論理マッピングを行った例を示して 、る。
[0039] ダウンリンク(不図示)は、プリアンブル、 FCH/MA、全帯域に占めるダウンリンクデ ータバーストを備える。
[0040] AASダウンリンクプリアンブル 312は、ダウンリンクデータバーストの周波数に対応 し、 AASアップリンクプリアンブル 313は、各アップリンクデータバースト 314の周波 数に対応する。
[0041] なお、アップリンクのレンジング 311はなくてもよい。この場合、チャネル推定はアツ プリングデータバースト 314に含まれるパイロットサブキャリアを用いて行うことができ る。或いは、チャネル推定を行わないようにしてもよい。
[0042] レンジング、プリアンブル、 AASダウンリンクプリアンブル、 AASアップリンクプリアン ブル及びパイロットサブキャリアは、 OFDM無線受信装置 100において生成可能な 既知信号で相関性の低い系列が用いられる。
[0043] 以下に、本実施形態に係る OFDM無線受信装置 100におけるチャネル推定、チヤ ネル等化及び AAS処理につ 、て説明する。
[0044] チャネル推定では、チャネル応答値 h mが求められる。具体的には、式 (1)に示すよ k
うに、特定の周波数帯域におけるサブチャネル毎に、受信信号と所望信号との比が 求められる。
[0045] [数 1]
Figure imgf000010_0001
[0046] ここで、 dm(t)、 V m(t)は、サブチャネルにおける時間 tの参照信号、アンテナ 110— K k
を介して受信した当該サブチャネルの時間 tにおける受信信号を表す。
[0047] チャネル推定には、 OFDM無線受信装置 100において既知の参照信号を生成で きる区間が必要となる。本実施形態では、レンジング、プリアンブル及びパイロットサ ブキャリア等で行う。
[0048] 式 (1)において、 E[ ]は、アンサンブル平均を表し、サンプル数 N の範囲におい samp
て平均が求められる。チャネル応答 h mは、送信時に用いられるため、図示しないメ モリに保持される。
[0049] チャネル等化は、式 (2)の演算を受信信号のサブチャネル毎に行われる。
[0050] [数 2]
Figure imgf000011_0001
[0051] ここで、 X m(t)は、チャネル等化の出力信号である。 *は、複素共役を表す。
k
[0052] AASの重み係数は、式 (3)によって求められる。
[数 3]
W ψ τ η = R χ~χl, η r xr. ( 3 )
[0053] ここで、 _1は、逆行列を表す。 R は、バースト部 130— ηにおける受信信号の共 η
分散行列であり、式 (4)によって求められる。
[0054] 画
ϋ (り]
Figure imgf000011_0003
Figure imgf000011_0002
[0055] ここで、 Hは、複素共役転置を表す。 X (t)は、アンテナ 110— Kのチャネル等化後 k, n
の信号 x m(t)をパラレル 'シリアル (PZS)変換し、バースト n成分を抽出した時間 tの サンプル信号である。ここでのサンプル数 N は、各バーストが占める周波数幅が
AAS
一定ではないため、 AASダウンリンクプリアンブル、 AASアップリンクプリアンブルの 周波数領域でのシンボル数は一定ではな 、。
[0056] しかし、諸条件に対して均一に AAS処理が施せるよう、重み推定に用いるサンプル 数は固定とされる。図 3では、サブチャネル番号が小さいサブチャネル力 サンプル される信号として選択されるようにしている力 プリアンブル内であれば、サンプルさ れる信号の選択方法は、異なっていてもよい。
[0057] 式 (3)の r は、受信信号と参照信号の相互相関ベクトルであり、式 (5)によって求め
n
られる。
[0058] [数 5]
Figure imgf000012_0001
[0059] ここで、 τは、転置を表す。 r (t)は、バースト nの時間 tにおける参照信号である。 AA Sダウンリンクプリアンブル、 AASアップリンクプリアンブルが、参照信号に該当する。
[0060] 共分散行列 R の逆行列を求める際には、単純に逆行列を計算した場合、演算
n
精度誤差が生じ易い。また、演算数も非常に多くなるため、コレスキー分解も用いた 連立一次方程式の解法が用いられる。
[0061] 共分散行列 R は、式 (6)のようにコレスキー分解される。
n
[0062] 園
D - T TH
^χχ, η 一ム" " · . . (6 )
[0063] ここで、 Lは、下三角行列を表す。
[0064] 重み係数の推定では、式 (3)を次のように変形される。
[0065] [数 7]
R = r . . . ( 7 )
[0066] 式 (7)に式 (6)を代入し、式 (8)を得る。
[0067] [数 8]
LLHW = r ( 8
[0068] 次に、式 (9)のように、代入行列 Xが仮定される [0069] [数 9]
LHW = X . · · ( 9 )
[0070] 式 (9)を式 (8)に代入し、式 (10)を得る。
[数 10]
LX = · · · d o )
[0071] 式 (10)より Xが求められる。また、式 (9)に Xを代入することによって、重み係数 Wが求 められる。
[0072] Lは、下三角行列であるため、逆行列を求める場合と比較して、演算数を半分にす ることが可能である。
[0073] 式 (3)〜式 (10)は、受信重み係数及び送信重み係数の推定において、同様に用い られる。
[0074] 送信重み係数は、図 3に示すように、アップリンクに含まれる AASダウンリンクブリア ンブル区間において計算される。求められた送信重み係数は、送信時まで図示しな いメモリに保持される。
[0075] 図示しない重み係数合成回路は、式 (11)を用いた演算を実行する。
[数 11] yni!) = wn Hxn {t)
[0076] 重み係数合成回路の出力信 y (t)には、復調及び復号処理が施される。復号された 出力信号は、上位の処理に送られる。
[0077] 次に、 OFDM無線送信装置 200における送信処理について説明する。
[0078] 送信処理では、送信されるデータをバースト毎に、符号化処理及び変調処理が施 され、式 (12)に示すように、アンテナ毎の成分に対して重み付けが行われる。
[0079] [数 12]
Figure imgf000014_0001
[0080] 重み付けされた信号は、 OFDM信号として特定の周波数帯域にマッピングされ、 シリアル 'パラレル (SZP)変換される。 SZP変換後の信号は、周波数成分に分かれ るため、式 (13)のように、サブチャネル毎にチャネル応答ベクトルと積算される。
[0081] [数 13]
Figure imgf000014_0002
[0082] 式 (13)において、 c mは、各アンテナにおけるサブチャネルのチャネル応答値を示
k
す。チャネル応答値は、式 (14)を用いて求められる。
[0083] [数 14]
Figure imgf000014_0003
[0084] ここで、 Hmは、チャネル推定によって求めたチャネル応答を各アンテナの要素とし てまとめたベクトルである。 Hmは、式 (15)のように表すことができる。
[数 15]
Figure imgf000014_0004
[0085] また、(V 广は、キャリブレーションベクトルを示し、式(16)のように表すことができ
CAL
る。
[0086] [数 16]
Figure imgf000014_0005
VCAL AVCAL )K ] · · ' ( 1 6 )
[0087] キャリブレーションベクトル (V )mは、サブチャネルにおける送信側と受信側のハ
CAL
一ドウエア経路差である。チャネル推定及びチャネル等化を行わな 、処理の場合、 式 (14)は、キャリブレーションベクトルのみ有意のベクトルであるため、式 (14)の代えて 、式 (17)が用いられる。
[数 17]
Ck = (VCAL )m . · · ( 1 7 )
[0088] 次に、以上説明した本実施形態に係る OFDM無線受信装置 100の受信処理、及 び OFDM無線送信装置 200の送信処理の概要を説明する。
[0089] 図 4は、周波数領域でのチャネル推定、チャネル等化及び AAS処理を含む受信処 理フローを示す。
[0090] 図 4に示すように、ステップ ST1において、 AAS (ァダプティブ 'アンテナ'システム) を含む OFDM無線受信装置 100 (ガードインターバル除去部 121)は、デジタルィ匕 された各アンテナ受信信号に対して、ガードインターバル CPを除去する。
[0091] ステップ ST2において、 OFDM無線受信装置 100は、シリアル 'パラレル(SZP) 変換した後、高速フーリエ変換を行う。
[0092] ステップ ST3にお!/、て、 OFDM無線受信装置 100 (チャネル推定部 124)でチヤネ ル推定を行う。
[0093] ステップ ST4において、 OFDM無線受信装置 100 (チャネル等化部 125)は、チヤ ネル推定にお!、て求めたチャネル応答値を高速フーリエ変換後の信号に乗算し、チ ャネル等化を行う。
[0094] サブチャネルの数に応じてステップ ST3及び ST4の処理を行った後(ステップ ST5 の YES)、ステップ ST6において、 OFDM無線受信装置 100は、チャネル等化後の ノ ラレル信号をパラレル 'シリアル変換部 126でシリアル信号に変換する。さら〖こ、 O FDM無線受信装置 100は、当該シリアル信号を各バースト部 130— 1〜130— Nに マッピングする。
[0095] アンテナの本数 Kにつ!/、て、ステップ ST1〜ST6の処理を繰り返した後(ステップ S T7の YES)、ステップ ST8において、 OFDM無線受信装置 100 (計算部 131)は、 共分散行列を求める。
[0096] ステップ ST9において、 OFDM無線受信装置 100 (積算部 132)は、共分散行列 を基に受信重み係数を計算し、重み係数を推定する。ステップ ST10において、 OF DM無線受信装置 100は、各バーストにマッピングされた信号に推定した受信重み 係数を積算して各アンテナ信号を結合 (合成)する。ステップ ST11において、 OFD M無線受信装置 100 (デコーダ 133)は、結合された信号を復調及び復号する。
[0097] なお、 ST8において、 SDMAユーザ共通の共分散行列を求め、 ST9において、 S DMAユーザ毎に受信重み計数を計算することもできる。さら〖こ、 ST11において、結 合された SDMAユーザ毎の所望信号を復調及び復号することもできる。
[0098] OFDM無線受信装置 100は、ステップ ST8〜ST11の処理をバーストの数だけ行
[0099] 図 5は、周波数領域でのチャネル推定、チャネル等化及び AAS処理を含む送信処 理フローを示す。
[0100] 上述したように、受信処理では、各バーストの共分散行列に基づ 、て送信重み係 数が計算され、各バーストの送信重み係数が記憶される。送信処理では、当該記憶 された送信重み係数が用いられる。
[0101] なお、各バーストの SDMAユーザ共通の共分散行列を求め、 SDMAユーザ毎に 送信重み計数を計算することもできる。
[0102] 図 5に示すように、ステップ ST21において、 OFDM無線送信装置 200 (ェンコ一 ダ 231)は、信号送信タイミングにおいて送信されるデータに対して、バースト毎に符 号化処理及び変調処理を施す。
[0103] ステップ ST22において、 OFDM無線送信装置 200は、各バーストの送信信号に 対して、各バーストで予め求められた送信重み係数を積算する。なお、 ST22におい て、ビームフォーミング部 233は、エンコーダ 231で得られた信号 Xを重み積算部 23 2による送信重み係数 W DLを積算してアンテナ毎に SDMAユーザ毎の信号を合算 することちでさる。
[0104] バーストの数に応じてステップ ST21及び ST22の処理を行った後(ステップ ST23 の YES)、ステップ ST24において、 OFDM無線送信装置 200は、各アンテナに送 信する信号成分を各送信処理部 220— 1〜220— Kに分配、すなわち、各アンテナ にお!/ヽて各バーストが占める全周波数領域にマッピング(OFDMマッピング)する。
[0105] ステップ ST25において、 OFDM無線送信装置 200は、チャネル等化を行う。具体 的には、シリアル 'パラレル変換部 221は、分配された信号をシリアル信号からパラレ ル信号に変換する。さらに、チャネル等化部 223は、特定の周波数帯で予め求めら れた OFDM無線送信装置 200と OFDM無線受信装置 100との経路差を補償する キャリブレーションベクトル、及びチャネル応答値を積算した係数を SZP変換された 信号に積算してチャネル等化を行う。
[0106] サブチャネルの数に応じてステップ ST25の処理を行った後(ステップ ST26の YE S)、ステップ ST27において、 OFDM無線送信装置 200 (逆フーリエ変換部 224)は 、チャネル等化処理を行った信号の逆フーリエ変換を行う。
[0107] ステップ ST28において、 OFDM無線送信装置 200は、逆フーリエ変換がおこな れた信号をシリアル信号に変換し、ガードインターバル CPを付加する。
[0108] OFDM無線送信装置 200は、ステップ ST24〜ST28の処理をアンテナの本数 K だけ行う。
[0109] なお、 AAS処理によって重み付けがされ、ガードインターバル CPを付加された送 信信号は、各アンテナ 210— 1〜210— Kから送信される。
[0110] 以上説明したように、本実施形態によれば、複数のアンテナ 110— 1〜110— Kを 有する OFDM無線受信装置 100は、 AAS (ァダプティブ.アンテナ.システム)を含 み、受信信号力 ガードインターバル CPを除去する。また、 OFDM無線受信装置 1 00は、受信信号の S/P変換、 FFT及びチャネル推定を行う。さら〖こ、 OFDM無線受 信装置 100は、チャネル推定にぉ 、て求めたチャネル応答値を FFT後の信号に乗 算することによってチャネル等化を行う。
[0111] 次いで、 OFDM無線受信装置 100は、当該受信信号の PZS変換を行い、各バー ストにマッピングした後に、各バーストの共分散行列を求める。さらに、 OFDM無線 受信装置 100は、共分散行列を基に受信重み係数を計算して、各バーストにマツピ ングされた信号に受信重み係数を積算して各受信信号を結合する。 OFDM無線受 信装置 100は、結合した受信信号の復調及び復号を行う。
[0112] なお、 OFDM無線受信装置 100は、各バーストにマッピングした後に、 SDMAュ 一ザ共通の共分散行列を求め、共分散行列を基に SDMAユーザ毎に受信重み係 数を計算してもよい。さらに、 OFDM無線受信装置 100は、各バーストにマッピング された信号に受信重み係数を積算して各受信信号を結合してもよい。また、 OFDM 無線受信装置 100は、 SDMA信号毎の所望信号を抽出し、抽出した所望信号の復 調及び復号を行ってもょ ヽ。
[0113] また、 OFDM無線受信装置 100は、 OFDMの信号処理において、受信側おいて 生成可能なプリアンブル信号を周波数領域に含む信号を各アンテナ介して受信する 。 OFDM無線受信装置 100は、受信信号の FFTを行い、チャネル応答値を推定す る。さら〖こ、 OFDM無線受信装置 100は、チャネル等化を行う。
[0114] チャネル等化された出力信号には、さらに AAS用のプリアンブルが含まれる。 OF DM無線受信装置 100は、コレスキー分解を用いて行列操作して受信重み係数を推 定する AAS受信処理を行う。
[0115] なお、 OFDM無線受信装置 100は、 OFDMの信号処理において、 SDMA用の 多重化されたプリアンブルを含めるようにしてもよい。また、 OFDM無線受信装置 10 0は、受信側において所望する SDMAユーザの既知信号を生成し、コレスキー分解 を用いて行列操作して受信重み係数を推定してもよい。さらに、 OFDM無線受信装 置 100は、 SDMAユーザに対してそれぞれ最適な受信重み係数を推定し、 AAS受 信処理を行!、空間多重された信号からユーザ情報を分離してもよ!ヽ。
[0116] 複数のアンテナ 210— 1〜210—Kを有する OFDM無線送信装置 200は、 AAS を含み、各バーストの送信重み係数を記憶し、信号送信タイミングにおいて、符号ィ匕 処理及び変調処理が施された各バーストの送信信号に対して、送信重み係数を積 算する。
[0117] また、 OFDM無線送信装置 200は、各アンテナに分配される送信信号の OFDM マッピングを行う。 OFDM無線送信装置 200は、当該送信信号の SZP変換を行い 、各チャネルに対してキャリブレーションベクトルとチャネル応答値を積算する。さらに 、 OFDM無線送信装置 200は、当該送信信号の IFFT及び PZS変換を行い、 CPを 付加する。 OFDM無線送信装置 200は、 CPが付加された送信信号を各アンテナを 介して送信する。
[0118] また、 OFDM無線送信装置 200は、 OFDMの信号処理において、送信信号に送 信重み係数を積算して各アンテナに送信信号を分配して送信を行う。 [0119] なお、 OFDM無線送信装置 200は、 OFDMの信号処理において、 SDMA用の 多重化されたプリアンブルを含めるようにしてもよい。また、 OFDM無線送信装置 20 0は、受信側において所望する SDMAユーザの既知信号を生成し、コレスキー分解 を用いて行列操作して送信重み係数を推定してもよい。さらに、 OFDM無線送信装 置 200は、 SDMAユーザに対してそれぞれ最適な送信重み係数を推定し、送信時 に送信信号に送信重み係数を積算して SDMAユーザ分の信号を合算し、各アンテ ナに多重化された送信信号を分配してもよい。
[0120] OFDM無線受信装置 100及び OFDM無線送信装置 200は、このような構成を有 すること力 、以下の効果を得ることができる。
[0121] 本実施形態によれば、チャネル推定は、周波数領域で行われるため、 AAS処理で は周波数軸上にプリアンブルを用いることができる。そのため、時間軸上に複数のプ リアンブルを用いる必要がなぐ送信できるデータシンボル数を増やすことができる。 つまり、データのスループットが向上する。
[0122] また、都市部等の通信で生じるマルチパス伝播環境下においても、 SDMAが用い られた受信処理において、所望する端末の情報のみを有効に分離することができる 。また、送信処理において、所望する端末に対してビームを向けて、それ以外の端末 に対してはヌル点を向けることができる。
[0123] さらに、本実施形態では、周波数軸上に配置されたプリアンブルに対して、小演算 量で推定精度の高いコレスキー分解が用いられる。すなわち、連立一次方程式の解 法を用いて重み係数が推定されるため、優れた AAS特性と、演算処理装置の低コス ト化を図ることができる。
[0124] チャネル推定においても、 FFT後に周波数領域において処理が行われるため、演 算量も少ない。そのため、プロセッサの個数を減らす等により装置の開発及び製造コ ストを削減できる。
[0125] すなわち、本実施形態によれば、 OFDM方式の無線送受信装置において、都巿 部や移動する端末との通信で生じるマルチパスの伝播環境下にお 、て、優れた AA S特性によって他の端末に対する干渉を抑えることができる。また、所望端末への指 向性を備えることができる。すなわち、周波数の利用効率を高めることができる。 ま た、簡素化された AASの処理によって、 AAS処理に関する演算量が削減されるた め、装置の開発及び製造のコストを削減できる。
[0126] (第 2実施形態)
次に、本発明の第 2実施形態について説明する。本実施形態では、本発明は、以 下の背景技術における課題を解決する。また、本実施形態に係る OFDM無線受信 装置の構成例、 OFDM無線送信装置の構成例、及び OFDM無線受信装置による OFDM信号の受信処理は、上述した第 1実施形態と同様である。
[0127] (1)背景技術
マルチアンテナを有する無線基地局装置では、 SDMAを利用することによって、基 地局が同時間に処理できる端末数を増大させることができ、周波数利用効率を高め られる。 SDMAでは、同一時間、同一周波数上に複数のユーザ信号が多重されるた め、所望のユーザ端末に対しては指向性を持たせるとともに、それ以外のユーザ端 末にはヌル点を向ける必要がある。
[0128] 一般的に、 SDMAは、ァダプティブ ·アンテナ ·システム (AAS)により実現される。
また、 AASのアルゴリズムとして MMSEが使用されることが多い。 MMSEでは、各ュ 一ザの端末に送信される送信信号に対して、端末毎に個別の既知信号が付加され る。基地局では、所望端末から送信された既知信号と、既知信号のレプリカとの誤差 が最小になるような重み係数を決定する。
[0129] 例えば、特開 2003— 152676号公報に記載されている方法では、遅延波などの 影響によりサブキャリア間に直交性が保てなくなり、 AAS性能の劣化、すなわち、 SD MA処理能力が低減してしまうことへの対策が図られている。具体的には、既知信号 として、予め端末毎に個別の周波数が割り当てられる。さらに、サブキャリア毎のチヤ ネル推定が行われるとともに、端末毎に重み係数が求められる。
[0130] また、当該特許文献には、サブチャネル成分とアンテナ成分とのマトリクスによって 重み係数を推定することが記載されて 、る。
[0131] (2)発明が解決しょうとする課題
ところが、上述した特許文献に記載されている方法では、データ信号は空間上に多 重されているのに対して、既知信号はそれぞれ独立の周波数帯に割り当てられる。こ のため、所望端末に対してビームが向けられたとしても、他の信号との干渉を抑圧す ることや、他の端末にヌル点を向ける能力が十分に得られないという可能性がある。 本発明は、他の信号との干渉を抑圧することや、他の端末にヌル点を向ける能力が 十分に得られる無線受信装置、無線送信装置、無線基地局、受信方法、及び送信 方法を提供することを目的とする。
[0132] (3)課題を解決するための手段
前記目的を達成するため、本発明の第 1の特徴の無線受信装置は、複数のアンテ ナと、前記各アンテナの受信信号に対してチャネル推定を行うチャネル推定部と、前 記チャネル推定部にお 、て推定したチャネル応答値のチャネル等化を行うチャネル 等化部と、複数のバーストを構成する各バーストへ受信信号を分配するバースト分配 部とを有し、前記バースト分配部は、各アンテナの受信重み係数をユーザ毎に計算 する計算部と、前記受信重み係数を前記受信信号に積算する積算部と、前記積算 部によって前記受信重み係数が積算された前記受信信号を結合する結合部とを含 む。
[0133] 本発明の第 2の特徴の無線送信装置は、複数のアンテナと、前記各アンテナの送 信信号成分に、ユーザ毎に所定の重み付けを行う重み付け部と、前記ユーザ毎に前 記重み付けを行った前記送信信号を各アンテナに分配する分配部と、分配された重 み付け後の前記送信信号を周波数成分とし、少なくとも各チャネルのチャネル応答 値のチャネル等化を行うチャネル等化部と、チャネル等化が行われた前記送信信号 を時間領域に変換し、所定のフォーマットによって前記アンテナ力も送信する送信部 とを有する。
[0134] 本発明の第 3の特徴の無線基地局は、複数のアンテナと、無線信号を受信する無 線受信装置と、無線信号を所定のフォーマットで各アンテナを介して送信する無線 送信装置と、を有し、前記無線受信装置は、前記各アンテナの受信信号に対してチ ャネル推定を行うチャネル推定部と、前記チャネル推定部にぉ 、て推定したチヤネ ル応答値のチャネル等化を行うチャネル等化部と、複数のバーストを構成する各バ 一ストへ受信信号を分配するバースト分配部とを有し、前記バースト分配部は、各ァ ンテナの受信重み係数をユーザ毎に計算する計算部と、前記受信重み係数を前記 受信信号に積算する積算部と、前記積算部によって前記受信重み係数が積算され た前記受信信号を結合する結合部とを含み、前記無線送信装置は、前記各アンテ ナの送信信号成分に、前記ユーザ毎に所定の重み付けを行う重み付け部と、前記 重み付けを行った前記送信信号を各アンテナに分配する分配部と、分配された重み 付け後の前記送信信号を周波数成分とし、少なくとも各チャネルのチャネル応答値 のチャネル等化を行うチャネル等化部と、チャネル等化が行われた前記送信信号を 時間領域に変換し、所定のフォーマットによって前記アンテナ力も送信する送信部と を含む。
[0135] 好適には、前記バースト分配部は、前記受信信号を各バーストに分配した後に、前 記ユーザに共通の共分散行列を求め、前記共分散行列を基に、前記ユーザ毎に送 信重み係数を計算し、各バーストの送信重み係数を記憶し、前記無線送信装置の重 み付け部は、記憶された前記送信重み係数を基に重み付けを行う。
[0136] 好適には、前記無線受信装置のチャネル推定部は、前記受信信号と、特定周波数 帯のサブチャネル毎の所望信号との比をチャネル応答値として求め、前記チャネル 等化部は、サブチャネル毎にチャネル等化を行う。
[0137] 好適には、前記チャネル推定部は、前記受信信号を周波数領域への変換した後 に前記チャネル応答値を推定する。
[0138] 好適には、前記チャネル等化部の出力信号は、所定のプリアンブル信号を含み、 前記積算部は、コレスキー分解を用いて行列操作して受信重み付け係数を推定する
[0139] 好適には、前記無線受信装置のチャネル等化部の出力信号は、所定のプリアンプ ル信号を含み、前記無線送信装置の重み付け部は、コレスキー分解を用いて行列 操作して送信重み付け係数を推定する。
[0140] 好適には、前記無線送信装置のチャネル等化部は送信側と受信側の経路差を補 償するキャリブレーションベクトルと、各チャネルの前記チャネル応答値とを積算した 係数を、分配された重み付け後の前記送信信号が周波数成分に分けられた信号に 積算することによって前記チャネル等化を行う。
[0141] 本発明の第 4の特徴は、複数のサブチャネルを用いた直交周波数分割多重方式 の受信方法であって、複数のアンテナの各受信信号に対してチャネル推定を行う第
1ステップと、前記第 1ステップにお 、て推定したチャネル応答値のチャネル等化を 行う第 2ステップと、サブチャネルと複数のバーストとの関連付けに基づいて、前記複 数のバーストを構成する各バーストへ受信信号を分配する第 3ステップと、前記第 3ス テツプでは、各ユーザに共通の共分散行列を求め、前記共分散行列を基に、各ユー ザの受信重み係数を計算する第 4ステップと、前記受信重み係数を前記受信信号に 積算する第 5ステップと、前記受信重み係数が積算された前記受信信号を結合する 第 6ステップを含む。
[0142] 本発明の第 5の特徴は、複数のアンテナを有し、複数のサブチャネルを用いた直交 周波数分割多重方式の送信方法であって、前記各アンテナの送信信号成分に、ュ 一ザ毎に所定の重み付けを行う第 1ステップと、前記重み付けを行った前記送信信 号を各アンテナに分配する第 2ステップと、分配された重み付け後の前記送信信号 を周波数成分とする第 3ステップと、送信側と受信側の経路差を補償するサブキヤリ ァのキャリブレーションベクトルと、各チャネルの前記チャネル応答値とを積算した係 数を、分配された重み付け後の前記送信信号が周波数成分に分けられた信号に積 算することによって前記チャネル等化を行う第 4ステップと、チャネル等化が行われた 前記送信信号を時間領域に変換し、所定のフォーマットによって前記アンテナ力 送 信する第 5ステップとを有する。
[0143] 本発明の特徴によれば、基地局の同時端末処理能力を向上することができ、トータ ルの周波数利用効率も向上させることが可能となる利点がある。
[0144] (その他)
なお、日本国特許出願第 2006— 092429号(2006年 3月 29日出願)、及び日本 国特許出願第 2006— 092430号(2006年 3月 29日出願)の全内容が、参照により 、本願明細書に組み込まれている。
産業上の利用の可能性
[0145] 以上のように、本発明に係る無線受信装置、無線送信装置、無線基地局、受信方 法、及び送信方法は、精度の高い AAS処理を提供するとともに、処理負荷を軽減す ることができる。また、本発明に係る無線受信装置、無線送信装置、無線基地局、受 信方法、及び送信方法は、基地局の同時端末処理能力を向上することができ、周波 数利用効率も向上させることができる。このため、移動体通信などの無線通信におい て有用である。

Claims

請求の範囲
[1] 複数のアンテナと、
前記各アンテナの受信信号に対してチャネル推定を行うチャネル推定部と、 前記チャネル推定部にお ヽて推定したチャネル応答値のチャネル等化を行うチヤ ネル等化部と、
複数のバーストを構成する各バーストへ受信信号を分配するバースト分配部と を有し、
前記バースト分配部は、
各アンテナの受信重み係数を計算する計算部と、
前記受信重み係数を前記受信信号に積算する積算部と、
前記積算部によって前記受信重み係数が積算された前記受信信号を結合する結 合部と
を含む無線受信装置。
[2] 前記チャネル推定部は、前記受信信号と、特定周波数帯のサブチャネル毎の所望 信号との比をチャネル応答値として求め、
前記チャネル等化部は、サブチャネル毎にチャネル等化を行う請求項 1記載の無 線受信装置。
[3] 前記チャネル推定部は、前記受信信号を周波数領域への変換した後に前記チヤ ネル応答値を推定する請求項 1または 2記載の無線受信装置。
[4] 前記チャネル等化部の出力信号は、所定のプリアンブル信号を含み、
前記積算部は、コレスキー分解を用いて行列操作して受信重み付け係数を推定す る請求項 1乃至 3の何れか一項に記載の無線受信装置。
[5] 複数のアンテナと、
前記各アンテナの送信信号成分に所定の重み付けを行う重み付け部と、 前記重み付けを行った前記送信信号を各アンテナに分配する分配部と、 分配された重み付け後の前記送信信号を周波数成分とし、少なくとも各チャネルの チャネル応答値のチャネル等化を行うチャネル等化部と、
チャネル等化が行われた前記送信信号を時間領域に変換し、所定のフォーマット によって前記アンテナカゝら送信する送信部と
を有する無線送信装置。
[6] 前記チャネル等化部は、送信側と受信側の経路差を補償するキャリブレーションべ タトルと、各チャネルの前記チャネル応答値とを積算した係数を、分配された重み付 け後の前記送信信号が周波数成分に分けられた信号に積算することによって前記 チャネル等化を行う請求項 5記載の無線送信装置。
[7] 複数のアンテナと、
無線信号を受信する無線受信装置と、
無線信号を所定のフォーマットで各アンテナを介して送信する無線送信装置と、を 有し、
前記無線受信装置は、
前記各アンテナの受信信号に対してチャネル推定を行うチャネル推定部と、 前記チャネル推定部にお ヽて推定したチャネル応答値のチャネル等化を行うチヤ ネル等化部と、
複数のバーストを構成する各バーストへ受信信号を分配するバースト分配部と を有し、
前記バースト分配部は、
各アンテナの受信重み係数を計算する計算部と、
前記受信重み係数を前記受信信号に積算する積算部と、
前記積算部によって前記受信重み係数が積算された前記受信信号を結合する結 合部と
を含み、
前記無線送信装置は、
前記各アンテナの送信信号成分に所定の重み付けを行う重み付け部と、 前記重み付けを行った前記送信信号を各アンテナに分配する分配部と、 分配された重み付け後の前記送信信号を周波数成分とし、少なくとも各チャネルの チャネル応答値のチャネル等化を行うチャネル等化部と、
チャネル等化が行われた前記送信信号を時間領域に変換し、所定のフォーマット によって前記アンテナカゝら送信する送信部と
を含む
無線基地局。
[8] 前記バースト分配部は、
前記受信信号を各バーストに分配した後に、各バーストの共分散行列を求め、 前記共分散行列を基に送信重み係数を計算し、各バーストの送信重み係数を記憶 し、
前記無線送信装置の重み付け部は、記憶された前記送信重み係数を基に重み付 けを行う請求項 7記載の無線基地局。
[9] 前記無線受信装置のチャネル推定部は、前記受信信号と、特定周波数帯のサブ チャネル毎に所望信号との比をチャネル応答値として求め、
前記チャネル等化部は、サブチャネル毎にチャネル等化を行う請求項 7または 8記 載の無線基地局。
[10] 前記チャネル推定部は、前記受信信号を周波数領域への変換した後に前記チヤ ネル応答値を推定する請求項 7乃至 9の何れか一項に記載の無線基地局。
[11] 前記チャネル等化部の出力信号は、所定のプリアンブル信号を含み、
前記積算部は、コレスキー分解を用いて行列操作して受信重み付け係数を推定す る請求項 7乃至 10の何れか一項に記載の無線基地局。
[12] 前記無線受信装置のチャネル等化部の出力信号は、所定のプリアンブル信号を含 み、
前記無線送信装置の重み付け部は、コレスキー分解を用いて行列操作して送信重 み付け係数を推定する請求項 7乃至 11の何れか一項に記載の無線基地局。
[13] 前記無線送信装置のチャネル等化部は、送信側と受信側の経路差を補償するキヤ リブレーシヨンベクトルと、各チャネルの前記チャネル応答値とを積算した係数を、分 配された重み付け後の前記送信信号が周波数成分に分けられた信号に積算するこ とによって前記チャネル等化を行う請求項 7乃至 12の何れか一項に記載の無線基地 局。
[14] 複数のサブチャネルを用いた直交周波数分割多重方式の受信方法であって、 複数のアンテナの各受信信号に対してチャネル推定を行う第 1ステップと、 前記第 1ステップにおいて推定したチャネル応答値のチャネル等化を行う第 2ステ ップと、
サブチャネルと複数のバーストとの関連付けに基づいて、前記複数のバーストを構 成する各バーストへ受信信号を分配する第 3ステップと、
前記第 3ステップでは、
共分散行列を求め、前記共分散行列を基に各アンテナの受信重み係数を計算す る第 4ステップと、
前記受信重み係数を前記受信信号に積算する第 5ステップと、
前記受信重み係数が積算された前記受信信号を結合する第 6ステップと を含む受信方法。
[15] 複数のアンテナを有し、複数のサブチャネルを用いた直交周波数分割多重方式の 送信方法であって、
前記各アンテナの送信信号成分に所定の重み付けを行う第 1ステップと、 前記重み付けを行った前記送信信号を各アンテナに分配する第 2ステップと、 分配された重み付け後の前記送信信号を周波数成分とする第 3ステップと、 送信側と受信側の経路差を補償するサブキャリアのキャリブレーションベクトルと、 各チャネルの前記チャネル応答値とを積算した係数を、分配された重み付け後の前 記送信信号が周波数成分に分けられた信号に積算することによって前記チャネル等 化を行う第 4ステップと、
チャネル等化が行われた前記送信信号を時間領域に変換し、所定のフォーマット によって前記アンテナ力 送信する第 5ステップと
を有する送信方法。
[16] 複数のアンテナと、
前記各アンテナの受信信号に対してチャネル推定を行うチャネル推定部と、 前記チャネル推定部にお ヽて推定したチャネル応答値のチャネル等化を行うチヤ ネル等化部と、
複数のバーストを構成する各バーストへ受信信号を分配するバースト分配部と を有し、
前記バースト分配部は、
各アンテナの受信重み係数をユーザ毎に計算する計算部と、
前記受信重み係数を前記受信信号に積算する積算部と、
前記積算部によって前記受信重み係数が積算された前記受信信号を結合する結 合部と
を含む無線受信装置。
[17] 前記チャネル推定部は、前記受信信号と、特定周波数帯のサブチャネル毎の所望 信号との比をチャネル応答値として求め、
前記チャネル等化部は、サブチャネル毎にチャネル等化を行う請求項 16記載の無 線受信装置。
[18] 前記チャネル推定部は、前記受信信号を周波数領域への変換した後に前記チヤ ネル応答値を推定する請求項 16または 17記載の無線受信装置。
[19] 前記チャネル等化部の出力信号は、所定のプリアンブル信号を含み、
前記積算部は、コレスキー分解を用いて行列操作して受信重み付け係数を推定す る請求項 16乃至 18の何れか一項に記載の無線受信装置。
[20] 複数のアンテナと、
前記各アンテナの送信信号成分に、ユーザ毎に所定の重み付けを行う重み付け部 と、
前記ユーザ毎に前記重み付けを行った前記送信信号を各アンテナに分配する分 配部と、
分配された重み付け後の前記送信信号を周波数成分とし、少なくとも各チャネルの チャネル応答値のチャネル等化を行うチャネル等化部と、
チャネル等化が行われた前記送信信号を時間領域に変換し、所定のフォーマット によって前記アンテナカゝら送信する送信部と
を有する無線送信装置。
[21] 前記チャネル等化部は、送信側と受信側の経路差を補償するキャリブレーションべ タトルと、各チャネルの前記チャネル応答値とを積算した係数を、分配された重み付 け後の前記送信信号が周波数成分に分けられた信号に積算することによって前記 チャネル等化を行う請求項 20記載の無線送信装置。
複数のアンテナと、
無線信号を受信する無線受信装置と、
無線信号を所定のフォーマットで各アンテナを介して送信する無線送信装置と、を 有し、
前記無線受信装置は、
前記各アンテナの受信信号に対してチャネル推定を行うチャネル推定部と、 前記チャネル推定部にお ヽて推定したチャネル応答値のチャネル等化を行うチヤ ネル等化部と、
複数のバーストを構成する各バーストへ受信信号を分配するバースト分配部と を有し、
前記バースト分配部は、
各アンテナの受信重み係数をユーザ毎に計算する計算部と、
前記受信重み係数を前記受信信号に積算する積算部と、
前記積算部によって前記受信重み係数が積算された前記受信信号を結合する結 合部と
を含み、
前記無線送信装置は、
前記各アンテナの送信信号成分に、前記ユーザ毎に所定の重み付けを行う重み 付け部と、
前記重み付けを行った前記送信信号を各アンテナに分配する分配部と、 分配された重み付け後の前記送信信号を周波数成分とし、少なくとも各チャネルの チャネル応答値のチャネル等化を行うチャネル等化部と、
チャネル等化が行われた前記送信信号を時間領域に変換し、所定のフォーマット によって前記アンテナカゝら送信する送信部と
を含む
無線基地局。 [23] 前記バースト分配部は、
前記受信信号を各バーストに分配した後に、前記ユーザに共通の共分散行列を求 め、
前記共分散行列を基に、前記ユーザ毎に送信重み係数を計算し、各バーストの送 信重み係数を記憶し、
前記無線送信装置の重み付け部は、記憶された前記送信重み係数を基に重み付 けを行う請求項 22記載の無線基地局。
[24] 前記無線受信装置のチャネル推定部は、前記受信信号と、特定周波数帯のサブ チャネル毎に所望信号との比をチャネル応答値として求め、
前記チャネル等化部は、サブチャネル毎にチャネル等化を行う請求項 22または 23 記載の無線基地局。
[25] 前記チャネル推定部は、前記受信信号を周波数領域への変換した後に前記チヤ ネル応答値を推定する請求項 22乃至 24の何れか一項に記載の無線基地局。
[26] 前記チャネル等化部の出力信号は、所定のプリアンブル信号を含み、
前記積算部は、コレスキー分解を用いて行列操作して受信重み付け係数を推定す る請求項 22乃至 25の何れか一項に記載の無線基地局。
[27] 前記無線受信装置のチャネル等化部の出力信号は、所定のプリアンブル信号を含 み、
前記無線送信装置の重み付け部は、コレスキー分解を用いて行列操作して送信重 み付け係数を推定する請求項 22乃至 26の何れか一項に記載の無線基地局。
[28] 前記無線送信装置のチャネル等化部は送信側と受信側の経路差を補償するキヤリ ブレーシヨンベクトルと、各チャネルの前記チャネル応答値とを積算した係数を、分配 された重み付け後の前記送信信号が周波数成分に分けられた信号に積算すること によって前記チャネル等化を行う請求項 22乃至 27の何れか一項に記載の無線基地 局。
[29] 複数のサブチャネルを用いた直交周波数分割多重方式の受信方法であって、 複数のアンテナの各受信信号に対してチャネル推定を行う第 1ステップと、 前記第 1ステップにおいて推定したチャネル応答値のチャネル等化を行う第 2ステ ップと、
サブチャネルと複数のバーストとの関連付けに基づいて、前記複数のバーストを構 成する各バーストへ受信信号を分配する第 3ステップと、
前記第 3ステップでは、
各ユーザに共通の共分散行列を求め、前記共分散行列を基に、各ユーザの受信 重み係数を計算する第 4ステップと、
前記受信重み係数を前記受信信号に積算する第 5ステップと、
前記受信重み係数が積算された前記受信信号を結合する第 6ステップと を含む受信方法。
複数のアンテナを有し、複数のサブチャネルを用いた直交周波数分割多重方式の 送信方法であって、
前記各アンテナの送信信号成分に、ユーザ毎に所定の重み付けを行う第 1ステツ プと、
前記重み付けを行った前記送信信号を各アンテナに分配する第 2ステップと、 分配された重み付け後の前記送信信号を周波数成分とする第 3ステップと、 送信側と受信側の経路差を補償するサブキャリアのキャリブレーションベクトルと、 各チャネルの前記チャネル応答値とを積算した係数を、分配された重み付け後の前 記送信信号が周波数成分に分けられた信号に積算することによって前記チャネル等 化を行う第 4ステップと、
チャネル等化が行われた前記送信信号を時間領域に変換し、所定のフォーマット によって前記アンテナ力 送信する第 5ステップと
を有する送信方法。
PCT/JP2007/056739 2006-03-29 2007-03-28 無線受信装置、無線送信装置、無線基地局、受信方法、及び送信方法 WO2007114197A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/295,233 US8184733B2 (en) 2006-03-29 2007-03-28 Radio reception device, radio transmission device, radio base station, reception method, and transmission method
EP07740177A EP2009825A1 (en) 2006-03-29 2007-03-28 Radio reception device, radio transmission device, radio base station, reception method, and transmission method
CN200780011233XA CN101411151B (zh) 2006-03-29 2007-03-28 无线接收设备、无线发送设备、无线基站、接收方法和发送方法
JP2008508578A JP4829292B2 (ja) 2006-03-29 2007-03-28 無線受信装置、無線送信装置、無線基地局、受信方法、及び送信方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006092429 2006-03-29
JP2006-092430 2006-03-29
JP2006092430 2006-03-29
JP2006-092429 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007114197A1 true WO2007114197A1 (ja) 2007-10-11

Family

ID=38563466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056739 WO2007114197A1 (ja) 2006-03-29 2007-03-28 無線受信装置、無線送信装置、無線基地局、受信方法、及び送信方法

Country Status (6)

Country Link
US (1) US8184733B2 (ja)
EP (1) EP2009825A1 (ja)
JP (2) JP4829292B2 (ja)
KR (1) KR100976278B1 (ja)
CN (1) CN101411151B (ja)
WO (1) WO2007114197A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062945A (ja) * 2008-09-04 2010-03-18 Mitsubishi Electric Corp 無線受信装置および復調方法
JP2011066709A (ja) * 2009-09-17 2011-03-31 Fujitsu Ltd 移動体通信機及び移動体通信方法
CN102324959A (zh) * 2011-06-10 2012-01-18 宁波大学 一种基于多天线系统协方差矩阵的频谱感知方法
CN102544755A (zh) * 2011-12-31 2012-07-04 哈尔滨工业大学 一种基于强散射点的均匀线阵校准方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8831063B2 (en) * 2008-03-18 2014-09-09 Qualcomm Incorporated Single carrier burst structure for decision feedback equalization and tracking
JP5616378B2 (ja) * 2012-02-21 2014-10-29 日本電信電話株式会社 基地局装置、無線通信方法、及び無線通信システム
JP5729833B2 (ja) * 2012-07-09 2015-06-03 日本電信電話株式会社 基地局装置、無線通信方法、及び無線通信システム
JP2015076700A (ja) * 2013-10-08 2015-04-20 株式会社Nttドコモ 無線装置、無線制御装置及び通信制御方法
WO2016199202A1 (ja) * 2015-06-08 2016-12-15 三菱電機株式会社 センサ装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183844A (ja) * 1998-12-16 2000-06-30 Sharp Corp 受信機及び受信方法
JP2002368714A (ja) * 2001-06-07 2002-12-20 Denso Corp Ofdm方式の送受信機
JP2003152676A (ja) 2001-11-12 2003-05-23 Denso Corp Ofdm方式の通信機
JP2003218772A (ja) * 2002-01-22 2003-07-31 Japan Telecom Co Ltd Cdma方式における基地局アンテナ指向性制御装置およびcdmaセルラー方式における基地局アンテナ指向性制御装置
JP2003264526A (ja) 2002-03-12 2003-09-19 Sony Corp 無線通信装置及び方法、並びにコンピュータ・プログラム
JP2004088767A (ja) * 2002-08-08 2004-03-18 Kddi Corp 時空間送信ダイバーシチマルチキャリアcdma方式による送信装置及び受信装置並びに該送信装置及び受信装置を備えた無線通信システム
JP2006025328A (ja) * 2004-07-09 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> 空間多重伝送用送信方法および装置
JP2006092429A (ja) 2004-09-27 2006-04-06 Tokyo Big Sight Inc 計画搬入搬出システム、計画搬入搬出方法、および計画搬入搬出プログラム
JP2006092430A (ja) 2004-09-27 2006-04-06 Denso Corp 音楽再生装置
WO2006087977A1 (ja) * 2005-02-15 2006-08-24 Sanyo Electric Co., Ltd キャリブレーション方法ならびにそれを利用した基地局装置、端末装置および無線装置
WO2006134949A1 (ja) * 2005-06-14 2006-12-21 Ntt Docomo, Inc. 送信装置、送信方法、受信装置及び受信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012978B2 (en) * 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver
KR100571138B1 (ko) * 2004-01-15 2006-04-13 삼성전자주식회사 파일럿 신호를 이용한 빔 형성 방법, 이를 수행하기 위한장치 및 시스템
EP1757000B1 (en) * 2004-06-18 2011-05-11 Nokia Corporation Frequency domain equalization of frequency-selective mimo channels
US7525988B2 (en) * 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183844A (ja) * 1998-12-16 2000-06-30 Sharp Corp 受信機及び受信方法
JP2002368714A (ja) * 2001-06-07 2002-12-20 Denso Corp Ofdm方式の送受信機
JP2003152676A (ja) 2001-11-12 2003-05-23 Denso Corp Ofdm方式の通信機
JP2003218772A (ja) * 2002-01-22 2003-07-31 Japan Telecom Co Ltd Cdma方式における基地局アンテナ指向性制御装置およびcdmaセルラー方式における基地局アンテナ指向性制御装置
JP2003264526A (ja) 2002-03-12 2003-09-19 Sony Corp 無線通信装置及び方法、並びにコンピュータ・プログラム
JP2004088767A (ja) * 2002-08-08 2004-03-18 Kddi Corp 時空間送信ダイバーシチマルチキャリアcdma方式による送信装置及び受信装置並びに該送信装置及び受信装置を備えた無線通信システム
JP2006025328A (ja) * 2004-07-09 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> 空間多重伝送用送信方法および装置
JP2006092429A (ja) 2004-09-27 2006-04-06 Tokyo Big Sight Inc 計画搬入搬出システム、計画搬入搬出方法、および計画搬入搬出プログラム
JP2006092430A (ja) 2004-09-27 2006-04-06 Denso Corp 音楽再生装置
WO2006087977A1 (ja) * 2005-02-15 2006-08-24 Sanyo Electric Co., Ltd キャリブレーション方法ならびにそれを利用した基地局装置、端末装置および無線装置
WO2006134949A1 (ja) * 2005-06-14 2006-12-21 Ntt Docomo, Inc. 送信装置、送信方法、受信装置及び受信方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062945A (ja) * 2008-09-04 2010-03-18 Mitsubishi Electric Corp 無線受信装置および復調方法
JP2011066709A (ja) * 2009-09-17 2011-03-31 Fujitsu Ltd 移動体通信機及び移動体通信方法
CN102324959A (zh) * 2011-06-10 2012-01-18 宁波大学 一种基于多天线系统协方差矩阵的频谱感知方法
CN102324959B (zh) * 2011-06-10 2013-10-16 宁波大学 一种基于多天线系统协方差矩阵的频谱感知方法
CN102544755A (zh) * 2011-12-31 2012-07-04 哈尔滨工业大学 一种基于强散射点的均匀线阵校准方法
CN102544755B (zh) * 2011-12-31 2013-12-11 哈尔滨工业大学 一种基于强散射点的均匀线阵校准方法

Also Published As

Publication number Publication date
CN101411151B (zh) 2012-02-29
JP4906947B2 (ja) 2012-03-28
JP2011010353A (ja) 2011-01-13
JP4829292B2 (ja) 2011-12-07
US20090316808A1 (en) 2009-12-24
JPWO2007114197A1 (ja) 2009-08-13
CN101411151A (zh) 2009-04-15
US8184733B2 (en) 2012-05-22
KR20080106475A (ko) 2008-12-05
KR100976278B1 (ko) 2010-08-16
EP2009825A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP4906947B2 (ja) 無線通信装置および送信方法
JP5159274B2 (ja) 無線送信装置及び無線送信方法
US7688909B2 (en) Radio communication system, radio communication method, radio transmitter and radio receiver
EP2790331B1 (en) MIMO-OFDM transmission device and MIMO-OFDM transmission method
CN102571177B (zh) 无线基站装置、终端装置及无线通信方法
EP2148484B1 (en) OFDM transmitter with subcarrier group phase rotation
JP5117159B2 (ja) 無線アクセスシステム、基地局装置及び移動局装置
KR100875889B1 (ko) 다중 안테나를 사용하는 다중반송파 통신 시스템에서 송신경로 보정 장치 및 방법
KR20090085046A (ko) 안테나 가중치 피드백을 이용하는 모바일 지원 다운링크 빔포밍
CN102655430A (zh) 通过信道传送信号的方法和无线电通信装置
WO2005024995A3 (en) Communication system and method for channel estimation and beamforming using a multi-element array antenna
CN101515917A (zh) 基于双向中继的多用户无线通信系统及方法
WO2006070756A1 (ja) 無線受信装置、無線送信装置、および、干渉信号除去方法
WO2010053019A1 (ja) 通信装置
KR20060104561A (ko) 광대역 무선 통신 시스템에서 안테나 선택 다이버시티 장치및 방법
CN1941663B (zh) 多天线信道复用的方法及波束赋形的方法
US20070188381A1 (en) Receiver, transmission device and receiving method
JP4231078B2 (ja) 通信装置及びその方法
JP4765336B2 (ja) 無線通信装置及び無線通信方法
KR20070024310A (ko) Ofdma 이동통신 시스템에서의 간섭을 제거하는 수신방법 및 장치
KR20110079755A (ko) 멀티 유저 mimo 시스템, 수신 장치 및 송신 장치
KR100243106B1 (ko) 안테나 어레이를 이용한 다중 반송파 코드 분할 다중 접속 수신기의 구조 및 신호 수신 방법
WO2008069105A1 (ja) 無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法
KR101088089B1 (ko) 광대역 무선통신시스템에서 스마트 안테나 빔 형성 장치 및방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508578

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780011233.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087025615

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2007740177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007740177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5882/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12295233

Country of ref document: US