WO2007111311A1 - 受信装置 - Google Patents

受信装置 Download PDF

Info

Publication number
WO2007111311A1
WO2007111311A1 PCT/JP2007/056250 JP2007056250W WO2007111311A1 WO 2007111311 A1 WO2007111311 A1 WO 2007111311A1 JP 2007056250 W JP2007056250 W JP 2007056250W WO 2007111311 A1 WO2007111311 A1 WO 2007111311A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
filter
low
band
Prior art date
Application number
PCT/JP2007/056250
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Takeyama
Takashi Enoki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007111311A1 publication Critical patent/WO2007111311A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a receiving apparatus, and more particularly to a receiving apparatus applied to multicarrier communication.
  • the OFDM signal is a frequency division multiplexing digital modulation scheme that transmits digital information using a plurality of orthogonal subcarriers.
  • the multipath is strong in multipath, and is difficult to interfere with other transmission systems. It has features such as high frequency utilization efficiency.
  • the direct conversion method is a method that directly converts a high-frequency signal received by an antenna into a baseband signal.
  • the configuration of the high frequency circuit section is simplified and the number of components such as a filter can be reduced as compared with the conventional superheterodyne method.
  • processing such as band limitation and AGC (Auto Gain Control), which has been conventionally performed in the intermediate frequency band, can be performed almost in the baseband region. Therefore, a circuit for performing these processes can be realized by a CMOS (Complementary Metal Oxide Semiconductor) analog circuit, which is suitable for LSI (Large Scale Integration).
  • CMOS Complementary Metal Oxide Semiconductor
  • a direct conversion type receiver circuit is capable of interfering with adjacent channel frequencies.
  • a low-pass filter (LPF: Low Pass Filter) for limiting the band of the analog baseband signal and an AD converter for converting the signal passing through the LPF into a digital signal,
  • LPF Low Pass Filter
  • the output signal of the AD converter is detected, and the gain control of the receiving system is performed so that the level of the detected signal becomes constant, whereby the desired wave signal is obtained.
  • Optimize the input signal level of the AD converter and digital signal processing unit so that the signal is not degraded by residual interference.
  • Figure 1 shows the frequency characteristics when a 7th-order LPF with a passband of 2 MHz and a 7th-order LPF with a passband of 9 MHz are used. It can be seen that the skirt characteristics (bandwidth 9MHz ⁇ : 11MHz) become gentle in LPF with a passband of 9MHz. If there is an interfering wave nearby due to this frequency characteristic, the attenuation of the interfering wave cannot be obtained sufficiently by the LPF, so the dynamic range of the desired wave cannot be increased in the AD converter, and the communication quality deteriorates.
  • Patent Document 1 discloses a direct conversion type receiving apparatus that suppresses nearby interference waves.
  • a configuration example of such a receiving apparatus is shown in FIG. Fig. 2 is a diagram showing the configuration of a direct conversion receiver equipped with a nearby interfering wave suppression function.
  • the receiving device 2100 shown in FIG. FIR) 2106a and 2106b, signal detectors (DET) 2107 and 2108, a finoleta controller 2109, and a demodulator 2110 are included.
  • Radio signal receiving section 2102 converts the signal received by antenna 2101 into I and Q signals.
  • the filter control unit 2109 determines the interference wave level according to the outputs of the signal detection units 2107 and 2108, and narrows the signal passband of the low frequency filter 2104a and 2104b if the interference wave level is equal to or higher than a predetermined level. To control.
  • the digital inductors 2106a and 2106b operate so as to compensate for the degradation of the output signals from the low-pass filters 2104a and 2104b.
  • Patent Document 2 proposes a filter circuit that performs correction processing using a variation correction circuit.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2005-151011
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-172911
  • Non-patent document 1 ITU—RS book (TG11 / 3)
  • Non-Patent Document 2 Television Society Research Report Vol.17, No.54, p7_12, BCS 93-33 (Sep. l99 3)
  • the present invention provides a receiving apparatus capable of suppressing deterioration of reception quality when a disturbing wave having a strong reception intensity is input even in the case of using a low-pass filter whose suppression characteristic is not steep in multicarrier communication.
  • One aspect of the receiving apparatus of the present invention includes a radio signal receiving unit that receives a radio signal and converts the received signal into an analog baseband signal, and switches the filter characteristics to change the analog signal.
  • a low-pass filter unit that attenuates signal components outside the band of the baseband signal, and the signal level of the analog baseband signal output from the low-pass filter unit is variable so that the input level of the subsequent AD conversion unit becomes constant.
  • An automatic gain control unit that adjusts the analog baseband signal output from the automatic gain control unit to a digital signal, and a digital signal output from the AD conversion unit.
  • a filter characteristic of the low-pass filter unit based on information obtained at the time of OFD M demodulation processing of the digital signal processing unit and the digital signal processing unit that executes processing
  • a configuration that includes a filter controller for changing Ri, a.
  • one aspect of the receiving device of the present invention includes the desired signal band in the configuration of (1) according to the frequency band of the disturbing signal included in the received signal.
  • An in-band deviation generating unit for generating a deviation in the frequency band, and a level ratio detecting unit for detecting a ratio between a disturbing wave level and a desired wave level of a single carrier signal separated in the OFDM demodulation processing of the digital signal processing unit;
  • the filter control unit generates an in-band deviation so as to suppress an interference wave in the in-band deviation generating unit based on the level ratio detected by the level ratio detecting unit.
  • one aspect of the receiving device of the present invention includes a variation correction unit having a switching element that corrects variation in filter characteristics of the low-pass filter unit in the configuration of (1),
  • the filter control unit switches the switching element of the variation correction unit.
  • a configuration for switching the filter characteristics of the low-pass filter section is adopted.
  • One aspect of the receiving device of the present invention is the configuration of (1) or (2), wherein an external input terminal for inputting a control signal from the outside to the variation correction unit is provided,
  • the filter characteristic of the low-pass filter unit can be switched by a control signal input to the external input terminal, and at least a baseband signal generation function in the radio signal receiving unit, the low-pass filter unit, and the automatic gain control unit
  • the variation correcting unit is configured as a semiconductor integrated circuit.
  • an external input terminal that can be input from the outside is provided in the semiconductor integrated circuit as an analog LSI circuit, and the variation correction circuit is controlled from the outside, thereby reducing the size and cost.
  • a receiving device to which a semiconductor integrated circuit can be applied can be provided.
  • FIG. 1 is a diagram showing an example of conventional low-pass filter characteristics.
  • FIG.2 Diagram showing the configuration of a conventional direct conversion receiver
  • FIG. 3 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing a configuration example of a low-pass filter according to Embodiment 1.
  • FIG. 5 is a diagram showing frequency characteristics of each filter constituting the low-pass filter according to Embodiment 1.
  • FIG. 6 is a diagram showing frequency characteristics obtained by combining the filter characteristics of FIG. 5 according to Embodiment 1.
  • FIG. 7 shows an image of the constellation characteristics of pilot symbols according to Embodiment 1.
  • FIG. 8 is a diagram showing the relationship between U / D ratio and BER when an 8-bit AD converter is used for the OFDM signal according to Embodiment 1.
  • FIG. 9 is a diagram showing frequency characteristics when the zero point of the secondary active filter LPF1 according to Embodiment 1 is changed.
  • FIG. 10 is a diagram showing the frequency characteristics of the basic characteristics, switching characteristics 1 and switching characteristics 2 due to the zero point change of the secondary active filter LPF1 according to the first embodiment.
  • FIG. 11 is a diagram showing delay characteristics corresponding to the basic characteristics, switching characteristics 1 and switching characteristics 2 of FIG. 10 according to the first embodiment.
  • FIG. 12 is a diagram showing BER characteristics when the filter characteristic switching conditions of FIGS. 10 and 11 are applied to the OFDM signal according to Embodiment 1.
  • FIG. 13 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 2
  • FIG. 14 is a diagram showing a circuit configuration example of an in-band deviation generating circuit according to the second embodiment.
  • FIG. 15 is a diagram showing characteristics of the in-band deviation generating circuit according to the second embodiment.
  • FIG. 16 is a diagram showing an image of the FFT band by the FFT processing according to the second embodiment.
  • FIG. 17 is a diagram showing frequency characteristics when no in-band deviation is generated in the receiving apparatus according to Embodiment 2
  • FIG. 17A is a diagram showing received signal characteristics
  • FIG. 17B is an input frequency characteristic of a low-pass filter
  • Figure 17C shows the output frequency characteristics of the low-pass filter.
  • FIG. 18 is a diagram showing frequency characteristics when an in-band deviation is generated in the receiving apparatus according to Embodiment 2
  • FIG. 18A is a diagram showing received signal characteristics
  • FIG. 18B is an input frequency of the low-pass filter
  • Figure 18C shows the output frequency characteristics of the low-pass filter.
  • FIG. 19 is a block diagram showing a configuration of a receiving apparatus according to the third embodiment.
  • FIG. 20 is a diagram showing a circuit configuration of a variation correction circuit according to the third embodiment.
  • FIG. 21 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 4.
  • FIG. 3 is a block diagram showing a configuration of receiving apparatus 100 according to Embodiment 1 of the present invention.
  • the receiving apparatus 100 shown in FIG. 3 includes an antenna 101, a radio signal receiving unit 102, low-pass finolators 103a and 103b, AGC units 104a and 104b, AD conversion units 105a and 105b, a fine-letter control unit 106, and an OFDM ( Orthogonal Frequency Division Multiplexing) demodulation section 107 is provided.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Radio signal receiving section 102 has antenna sharing section 102a for sharing antenna 101 between a receiving system constituted by the above blocks and a transmission system (not shown), and low noise amplification that amplifies the received signal with low noise.
  • Unit 102b, low-power signal oscillation unit 102c that inputs a local signal to quadrature demodulation unit 102d, and low-noise amplification unit 102b input signals from I and Q are orthogonally transformed by local signals
  • a quadrature demodulating unit 102d that operates to convert the received signal input by the antenna 101 into I and Q baseband signals.
  • Low-pass filters 103a and 103b suppress unnecessary components from the I and Q baseband signals input from radio signal receiving section 102, respectively.
  • the low-pass filters 103a and 103b can be switched to a plurality of filter characteristics by switching a part of the elements constituting the filter in a plurality of stages.
  • FIG. 4 is a block diagram illustrating a configuration example of the low-pass filters 103a and 103b.
  • the low-pass filters 103a and 103b are, for example, seventh-order filters, and as shown in FIG. 4, a passive first-order filter LPF0 (201) and three-stage second-order active filters LPF1 (202), LPF2 (203), Consists of LPF3 (204).
  • FIG. 5 shows the frequency characteristics of each filter of FIG. 4, where the horizontal axis represents frequency and the vertical axis represents gain.
  • the solid line is the frequency characteristic of the primary filter LPF0 (201)
  • the broken line is the frequency characteristic of the secondary active filter LPF1 (202)
  • the alternate long and short dash line is the frequency characteristic of the secondary active filter LPF2 (203)
  • the dotted line shows the frequency characteristics of the secondary active filter LPF3 (204).
  • the AGC units 104a and 104b have I and Q bases input from the low pass filters 103a and 103b.
  • the amplitude level of the band signal is adjusted and output so that it becomes the optimum input level in the AD converters 105a and 105b in the subsequent process.
  • AD converters 105 a and 105 b AD-convert the amplitude-adjusted I and Q baseband signals and output the converted I and Q baseband signals to OFDM demodulator 107.
  • Filter control section 106 switches and controls each filter characteristic of low-pass filters 103a and 103b based on pilot symbol amplitude information obtained during OFDM demodulation processing by OFDM demodulation section 107.
  • the OFDM demodulator 107 includes a fast Fourier transform (FFT) 107a and a channel estimator 107b.
  • the fast Fourier transform unit 107a performs fast Fourier transform (FFT) on the AD-converted I and Q baseband signals, and converts the time-domain signal into a frequency-domain signal.
  • the OFDM demodulator 107 can separate a desired wave and an interference wave by performing a fast Fourier transform process.
  • Channel estimation section 107b performs channel estimation on the desired wave separated by fast Fourier transform section 107a using the pilot signal, and obtains the power of the desired wave signal.
  • channel estimation is performed using pilot signals (symbol amplitude and phase rotation amount are obtained and the fluctuation amount is obtained by comparison with ideal values). Correct the amount of fluctuation.
  • the AGC units 104a and 104b operate so that the signal level including the desired wave and the interference wave is constant at the input stage of the AD conversion units 105a and 105b, the amplitude of the pilot symbol in the channel estimation It is possible to obtain the interference wave level / desired wave level ratio (U / D ratio) by information.
  • FIG. 7 shows an image of pilot symbol constellation characteristics. As shown in Fig. 7, it is possible to estimate the U / D ratio of the received signal by the position in the constellation. For example, when a threshold is provided as shown in FIG. 7, the UZD ratio can be divided into four stages (0 dB, 3 dB, 6 dB, and 9 dB).
  • Fig. 8 shows the BER characteristics at each UZD ratio.
  • the horizontal axis is CNR (carrier power to noise power ratio) [dB], and the vertical axis is the BER after error correction. From Fig. 8, it can be seen that the BER characteristics deteriorate exponentially as the U / D ratio increases from “no disturbing signal ⁇ 6 dB ⁇ 9 dB ⁇ 12 dB”.
  • FIG. 9 is a diagram showing frequency characteristics when the zero point of the secondary active filter LPF1 (202) in FIG. 4 is changed.
  • the filter control unit 106 changes the zero point of the secondary active filter LPF1 (202) as shown in Fig. 9 to change the basic characteristic (solid line), switching characteristic 1 (broken line), and switching as shown in Fig. 10. It can be controlled so that it has the frequency characteristic 2 (—dotted line).
  • the horizontal axis represents frequency and the vertical axis represents gain.
  • FIG. 11 shows the delay characteristics of the basic characteristics, switching characteristics 1 and switching characteristics 2 shown in FIG.
  • the horizontal axis is frequency and the vertical axis is delay time.
  • FIG. 10 it can be seen that by switching to basic characteristic force switching characteristic 1, an interference wave suppression effect of approximately 6 dB in signal amplitude at 11.5 MHz is obtained. Also, by switching from switching characteristic 1 to switching characteristic 2, it is possible to obtain an interference wave suppression effect of approximately 6 dB in signal amplitude at 11.5 MHz.
  • OFDM signal (16QAM, coding rate 3Z4, FFT size: 960, Total SubCarrier:
  • Figure 12 shows the BER characteristics when the low-pass filters 103a and 103b are the switching characteristics 1, switching characteristics 2, basic characteristics, and filter characteristics shown in Figs. As shown in Fig. 12, it can be seen that there is a BER degradation of 0.3 dB (BER: l. 0E -03) by switching the filter characteristics.
  • the interference wave System performance degradation is greater than degradation associated with switching of filter characteristics.
  • the BER characteristic in which the interference wave power is suppressed to 6 dB by switching the filter characteristic to the switching characteristic 2 is shown in FIG. Improve the characteristics from 12dB to U / D ratio 6dB. However, since there is also deterioration due to switching of the filter characteristics, the BER characteristics of switching characteristics 2 shown in Fig. 12 are obtained, and the CNR is improved by about 3.5 dB (BER: l.0E-03).
  • the filter control unit 106 has a relationship between the U / D ratio and the filter characteristic as a table in advance, and switches the filter characteristic according to the U / D ratio input from the OFDM demodulation unit 107. As a result, the system performance can be improved.
  • the filter controller switches the filter characteristics of the low-pass filter according to the symbol amplitude information, so that deterioration due to jamming waves can be minimized even when jamming waves with strong reception strength without adding a detector are received.
  • FIG. 4 a force showing a configuration in which low-pass filters are connected in series.
  • an AGC amplifier is disposed between the low-pass filters. Even in such a configuration, the effect of the present embodiment is not impaired depending on the position of the A GC amplifier.
  • the connection relationship between the low-pass filter and the AGC unit is not limited to the configuration shown in FIGS.
  • the force S shown as an example of a 7th-order filter that is, it is sufficient if the U / D ratio is improved by switching the filter characteristics. is not. Also, by switching the filter order to generate in-band deviation, the UZD ratio can be improved and the same effect can be obtained.
  • the power described in the case where a pilot signal is used for detection of the U / D ratio since the FFT processing is performed for demodulation, the signal level of each subcarrier is set. It is possible to ask. Therefore, the level of each subcarrier may be detected instead of the pilot signal, and the filter characteristic switching control described above may be performed based on this level. In this way, interference wave detection can be performed with the addition of a smaller circuit. In addition, in order to detect the presence of an interference wave, a BER (bit error or rate) result obtained in signal processing may be used.
  • a BER bit error or rate
  • an amplitude deviation is generated in the in-band signal according to the ratio of the disturbing wave level and the desired wave level, and the communication performance associated with the switching of the filter characteristics is achieved.
  • FIG. 13 is a block diagram showing a configuration of receiving apparatus 1100 according to Embodiment 2.
  • the receiving apparatus 1100 in FIG. 13 has a configuration in which an in-band deviation generating circuit 1102a is added to the wireless signal receiving unit 1102 and a level ratio detecting unit 1108 is added to FIG.
  • the in-band deviation generating circuit 1102a is added to the wireless signal receiving unit 1102 and a level ratio detecting unit 1108 is added to FIG.
  • the in-band deviation generating circuit 1102a has a circuit configuration as shown in FIG. 14, for example.
  • the in-band deviation generation circuit 1102a includes notch finishers 1201 and 1202 and switches 1203 and 1204.
  • FIG. 15 shows the characteristics of the in-band deviation generating circuit 1102a when the notch filter 1201 is operated by turning on the switch 1203 to enter the pass mode.
  • the horizontal axis is frequency and the vertical axis is gain. From FIG. 15, it can be seen that when the switch 1203 is set to the pass mode, an in-band deviation is generated in which the gain increases on the high frequency side in the band A.
  • FIG. 15 shows the characteristics of the in-band deviation generation circuit 1102a when the notch filter 1202 operates by turning on the switch 1204 to enter the pass mode. As shown in FIG. 15, when the switch 1204 is set to the pass mode, the gain decreases on the high frequency side in the band A, and an in-band deviation is generated.
  • Fig. 16 shows an image of the FFT bandwidth where FFT processing is performed.
  • the horizontal axis is frequency (subcarrier number) and the vertical axis is signal level [dBm].
  • the FFT processing shown in FIG. 16 is executed by the fast Fourier transform unit 107a, so that a band within the desired signal band and a part outside the desired signal are separated into a single carrier at predetermined subcarrier intervals.
  • the level ratio detection unit 1108 When the U / D ratio of the single carrier separated by the fast Fourier transform unit 107a is large, the level ratio detection unit 1108 has the desired signal signal outer band Low and the desired signal signal outer band Up shown in FIG. The power is measured to determine which band has the higher signal level. Then, the interference wave detection unit 1108 detects the ratio between the interference wave level and the desired wave level, and sends the detection result to the filter control unit 1106.
  • reception apparatus 1100 configured as described above.
  • a level ratio detection unit 1108 detects a ratio between the interference wave level and the desired wave level, and the filter control unit 1106 generates an in-band deviation generation circuit based on the level ratio. In-band deviation is generated in 1102a to suppress interference Make it. Further, the filter control unit 1106 changes the filter characteristics by switching the orders of the low-pass filters 103a and 103b in accordance with the level ratio. Specifically, the filter characteristics may be steeper as the interference wave level becomes higher than the desired wave level.
  • FIG. 17 and FIG. 18 show the characteristics of the interference wave and the desired wave when the in-band deviation is generated and when it is not generated in the receiving apparatus 1100.
  • 17A to 17C and FIGS. 18A to 18C the horizontal axis is frequency, the left end axis is signal level, and the right end axis is filter gain.
  • Fig. 17 shows the case where no in-band deviation occurs
  • Fig. 17A shows the received signal characteristics
  • Fig. 17B shows the input frequency characteristics of low-pass filters 103a and 103b
  • Fig. 17C shows the output frequency characteristics of low-pass filters 103a and 103b.
  • . 18 shows the case where in-band deviation is generated
  • FIG. 18A shows the received signal characteristics
  • FIG. 18B shows the input frequency characteristics of the low-pass filters 103a and 103b
  • FIG. 18C shows the output frequency characteristics of the low-pass filters 103a and 103b.
  • the characteristic of the low-pass filter 103a is selected so that the in-band fluctuation is small as shown in FIG. 18B compared to the setting with in-band deviation. it can.
  • the receiving apparatus of the second embodiment even when the bandwidth of the analog baseband and the filter characteristics are varied, the in-band gain deviation is generated in the high-frequency band, thereby preventing the interference wave. It is possible to suppress degradation of a signal in a band where no signal exists. As a result, more subcarriers can be demodulated in the OF DM signal than when no in-band deviation is generated, and the communication quality of the received signal can be improved.
  • the control of the filter characteristics and the variation correction control of the low pass filter according to the UZD ratio are performed, and a part of the circuits are shared. We propose to downsize the receiver.
  • FIG. 19 is a block diagram showing a configuration of receiving apparatus 1600 according to Embodiment 3.
  • the receiver 1600 of FIG. 19 has a configuration in which a variation correction circuit 1601 is added to FIG. 3, and the filter control unit 106 switches and controls the filter characteristics of the low-pass filters 103a and 103b via the variation correction circuit 1601. .
  • FIG. 20 is a diagram showing a circuit configuration of the variation correction circuit 1601.
  • the variation correction circuit 1601 in FIG. 20 includes a correction value detection circuit 1701 and a filter circuit 1702.
  • Correction value detection circuit 1701 receives the demodulated signal of OFDM demodulation section 107, detects the interference wave included in this demodulation signal, and obtains a correction value based on the detected interference wave. That is, in addition to the filter control signal, the demodulated signal from the OFDM demodulator 107 is output to the variation correction circuit 1601 from the filter control unit 106 in FIG. 19, and the correction value detection circuit 1701 of the variation correction circuit 1601 demodulates the demodulated signal. A control signal is input to the filter circuit 1702.
  • Fine-letter circuit 1702f Fine-letter circuit 1702f, resistors 1703 (1), 1703 (n), 1704 (1), 1704 (n), capacitors 1705, 1706, and old amplifier 1707, Composed of force.
  • the resistance values of 03 (1) to 1703 (n) are set to different values. 1704 (1) to 17
  • the resistance value of 04 (n) is set to a different value.
  • the variation correction circuit 1601 inputs the control value from the filter control unit 106 to the filter circuit 1702 and inputs the OFDM demodulated signal to the correction value detection circuit 1701.
  • Variation correction circuit 1601 switches between resistances 1703 and 1704 based on the correction value detected by correction value detection circuit 1701.
  • the control signal from the fineletter control unit 106 manually operated by the fineletter circuit 1702 indicates which one of the resistors 1703 (1) to 1703 (n) is selected and the resistors 1704 (1) to:
  • a different value is output from the filter circuit 1702 to the low-pass filters 103a and 103b.
  • variations in the filter characteristics of the low-pass filters 103a and 103b are corrected, and the interference wave is suppressed.
  • the resistors 1703 and 1704 are used in the variation correction circuit 1601 as the switching element, so that the interference wave suppression circuit and the filter characteristic switching circuit are shared. can do.
  • Receiving apparatus 1600 can suppress interference waves by switching and controlling resistors 1703 and 1704, which are basic characteristic force switching elements of this filter, based on the filter characteristics after the filter dispersion correction. ing.
  • the variation correction circuit 1601 is also provided with the function of the disturbance wave suppression circuit, in addition to the variation correction effect, The wave suppression effect can be obtained with a small circuit scale.
  • variation correction circuit 1601 is replaced with low-pass filter 103a.
  • the variation correction circuit 1601 may be incorporated in the low-pass filters 103a, 103b.
  • the correction circuit 1601 may be configured using a plurality of capacitors C, and the filter characteristics of the low-pass filters 103a and 103b may be switched by switching the capacitor C.
  • the terminal force variation correction circuit 1601 in the receiving apparatus 1600 when a part of the configuration including the variation correction circuit 1601 in the receiving apparatus 1600 is converted into an analog LSI, a terminal that can be input from the outside is provided, and the terminal force variation correction circuit is controlled. It is characterized by its configuration.
  • FIG. 21 is a block diagram showing a configuration of receiving apparatus 1600 according to Embodiment 4.
  • the same components as those in FIGS. 3 and 19 are denoted by the same reference numerals, and description thereof is omitted.
  • 1800 is a semiconductor integrated circuit.
  • the semiconductor integrated circuit 1800 includes a local signal oscillation unit 102c, an orthogonal transformation unit 102d, a low-pass filter 10
  • the semiconductor integrated circuit 1800 operates to control the filter elements (resistors 1703 and 1704) in the variation correction circuit 1601 in accordance with the control signal input from the filter control unit 106 to the external input terminal 1801.
  • the semiconductor integrated circuit as the analog LSI circuit is provided with the external input terminal that can be input from the outside, and the variation correction circuit is controlled from the outside. With this configuration, it is possible to provide a receiving device to which a small and low-cost semiconductor integrated circuit can be applied.
  • the present invention is suitable for application to an OFDM receiver having a direct conversion type receiver circuit, for example.

Abstract

 マルチキャリア通信において、抑圧特性が急峻でないローパスフィルタを用いた場合にも、受信強度が強い妨害波入力時に受信品質の劣化を抑える受信装置を提供する。フィルタ制御部(106)は、OFDM復調部(107)のOFDM復調処理中に得られるパイロットシンボル振幅情報に応じてローパスフィルタ(103a,103b)のフィルタ特性を切り換える。これにより、検波器を追加することなく、受信強度が強い妨害波受信時においても妨害波による劣化を最小限に抑える。

Description

明 細 書
受信装置
技術分野
[0001] 本発明は受信装置に関し、特に、マルチキャリア通信に適用される受信装置に関 する。
背景技術
[0002] 近年、移動体通信システムにおいても 100Mbps以上のスループットを広範囲の力 バレッジにわたつて提供するシステム容量の増大に向けた検討がなされている。例え ば、無線帯域幅が 20MHz以上の移動体通信システムを用いた検討が報告されてい る。
[0003] 無線帯域幅が 20MHz以上の広い帯域を用いた伝送方式として、〇FDM (Orthog onal Frequency Division Multiplexing :直交周波数分割多重)方式が知られている( 非特許文献 1及び非特許文献 2参照)。 OFDM信号は、直交する複数のサブキヤリ ァを用いてデジタル情報を伝送する周波数分割多重のデジタル変調方式であり、マ ルチパスに強レ、、他の伝送系に妨害を与えにくい、妨害を受けにくい、周波数利用 効率が高い等の特徴を有している。
[0004] また、近年、無線通信機能を備えた携帯機器においてはダイレクトコンバージョン 方式を採用している。ダイレクトコンバージョン方式はアンテナにより受信された高周 波信号をベースバンド信号に直接変換する方式である。このダイレクトコンバージョン 方式を採用した受信機によれば、従来のスーパーヘテロダイン方式に比べて、高周 波回路部の構成が簡略化され、フィルタ等の部品点数を削減することができる。また 、このダイレクトコンバージョン方式を採用した受信機によれば、従来中間周波数帯 域で行っていた帯域制限や AGC (Auto Gain Control:自動利得制御)等の処理も ほとんどベースバンド領域で行うことができるため、これらの処理を行うための回路を CMOS (Complementary Metal Oxide Semiconductor )アナログ回路で実現すること ができ LSI (Large Scale Integration )化に向いている。
[0005] また、ダイレクトコンバージョン方式の受信回路は、隣接チャンネル周波数等の妨害 波を抑圧するために、アナログベースバンド信号の帯域制限用の低域通過フィルタ( LPF: Low Pass Filter )と、該 LPFを通過した信号をデジタル信号に変換するための AD変換器とを備え、デジタル信号処理部にて復調する構成が一般的である。
[0006] さらに、ダイレクトコンバージョン方式の受信回路では、上記 AD変換器の出力信号 を検波し、検波信号のレベルが一定になるように受信系の利得制御を行うことによつ て、希望波信号が妨害波の残留分で劣化しないように、 AD変換器やデジタル信号 処理部の入力信号レベルを適正化してレ、る。
[0007] 一般に、広帯域向けのダイレクトコンバージョン方式の受信機においては、フィルタ の次数を大きくする必要がある。図 1に通過帯域 2MHzの 7次 LPFと、通過帯域 9M Hzの 7次 LPFとを採用した場合の各周波数特性を示す。通過帯域 9MHzの LPFに おいてはスカート特性(帯域 9MHz〜: 11MHz)がなだらかになることが分かる。この 周波数特性により近傍に妨害波があった場合、 LPFにて妨害波の減衰が充分に得 られないために、 AD変換器において希望波のダイナミックレンジが大きく取れないた め通信品質が劣化する。
[0008] 近傍の妨害波を抑圧するダイレクトコンバージョン方式の受信装置として、例えば、 特許文献 1に開示されたものがある。このような受信装置の構成例を図 2に示す。図 2 は、近傍妨害波抑圧機能を備えたダイレクトコンバージョン方式の受信装置の構成を 示す図である。図 2に示す受信装置 2100は、アンテナ 2101、無線信号受信部 210 2、 AGC咅 B2103a, 2103b,ローノ スフイノレタ 2104a, 2104b, AD (Analog to Digit al )変換咅 2105a, 2105b、デジタノレフイノレタ(FIR) 2106a, 2106b、信号検波咅 ( DET) 2107, 2108、フィノレタ制御部 2109、及び復調部 2110を有してレヽる。
[0009] 無線信号受信部 2102は、アンテナ 2101により受信された信号を I、 Q信号に変換 する。フィルタ制御部 2109は、信号検波部 2107, 2108の各出力により妨害波レべ ノレを判断し、妨害波レベルが所定のレベル以上であれば、ローノ スフイノレタ 2104a, 2104bの信号通過帯域を狭くするように制御する。デジタノレフイノレタ 2106a, 2106b は、ローパスフィルタ 2104a, 2104bからの出力信号の劣化分を補償するように動作 する。
[0010] また、上記のようなフィルタ回路を半導体を用いてアナログ LSIを作成する場合は、 一般に製造上のばらつきが大きいため、フィルタ回路においてばらつき補正回路を 用いて補正処理を行うものが特許文献 2により提案されている。
特許文献 1 :特開 2005— 151011号公報
特許文献 2 :特開 2004— 172911号公報
非特許文献 1: ITU— RS奇書 (TG11/3)
非特許文献 2 :テレビジョン学会研究報告 Vol.17, No.54, p7_12, BCS 93-33(Sep. l99 3)
発明の開示
発明が解決しょうとする課題
[0011] し力、しながら、急峻な抑圧特性を有するローパスフィルタを実現しょうとした場合、フ ィルタ次数を上げる必要があり、これにより消費電力、回路規模がともに大きくなると レ、う課題があった。また、次数が大きくなることで帯域内の遅延偏差が大きくなり、こ れにより遅延補償回路が必要になるという課題もあった。
[0012] また、上記従来の受信装置の回路方式では妨害波検出のため新たに検波器を設 ける必要があつたため、そのコストを上昇させるという課題があった。また、上記従来 の受信装置では、デジタル回路であるデジタルフィルタでアナログ回路であるローパ スフィルタの出力信号の補正を行う場合、アナログ回路の個体差に対応した補正が 必要となり、デジタル回路の構成が複雑になり、やはり回路規模を増大させるという課 題がある。
[0013] また、アナログベースバンドフィルタの帯域幅及びフィルタ特性を可変して、帯域内 の一部の信号も劣化する場合は、常に DCを中心として両側のサブキャリアが劣化す るという課題もあった。また、フィルタ特性を切り換えるために複数の追加回路が必要 になり、回路規模を増大させるという課題がある。また、上記従来の受信装置を集積 化する場合は大幅な回路構成の変更が必要になるという課題もあった。
[0014] 本発明は、マルチキャリア通信において、抑圧特性が急峻でないローパスフィルタ を用いた場合にも、受信強度が強い妨害波入力時に受信品質の劣化を抑えることが できる受信装置を提供する。
課題を解決するための手段 [0015] (1)本発明の受信装置の一つの態様は、無線信号を受信して該受信信号をアナ口 グベースバンド信号に変換する無線信号受信部と、フィルタ特性を切り換えて、前記 アナログベースバンド信号の帯域外の信号成分を減衰させるローパスフィルタ部と、 前記ローパスフィルタ部から出力されるアナログベースバンド信号の信号レベルを可 変して後段の AD変換部の入力レベルが一定になるように調整する自動利得制御部 と、前記自動利得制御部から出力されるアナログベースバンド信号をデジタル信号 に変換する AD変換部と、前記 AD変換部から出力されるデジタル信号に対して〇F DM復調処理を実行するデジタル信号処理部と、前記デジタル信号処理部の OFD M復調処理時に得られる情報に基づいて前記ローパスフィルタ部のフィルタ特性を 切り換えるフィルタ制御部と、を具備する構成を採る。
[0016] この構成によれば、マルチキャリア通信において、抑圧特性が急峻でないローパス フィルタを用いた場合にも、受信強度が強い妨害波入力時に受信品質の劣化を抑え ること力 Sできる。
[0017] (2)また、本発明の受信装置の一つの態様は、(1)の構成において、前記受信信 号に含まれた妨害波信号の周波数帯に応じて希望波信号帯域内を含む周波数帯 に偏差を発生する帯域内偏差発生部と、前記デジタル信号処理部の OFDM復調処 理において分離されるシングノレキャリア信号の妨害波レベルと希望波レベルの比を 検出するレベル比検出部と、を具備し、前記フィルタ制御部は、前記レベル比検出 部よつて検出された前記レベル比に基づいて、前記帯域内偏差発生部において妨 害波を抑圧するように帯域内偏差を発生させる構成を採る。
[0018] この構成によれば、アナログベースバンドの帯域幅、フィルタ特性を可変する場合 でも、高周波帯域で帯域内利得偏差を発生させることで、妨害波が存在しない帯域 の信号の劣化を抑えることができる。その結果、 OFDM信号においては帯域内偏差 を発生させない場合と比較して、多くのサブキャリアが復調可能となり受信信号の通 信品質を改善することができる。
[0019] (3)また、本発明の受信装置の一つの態様は、(1)の構成において、前記ローパス フィルタ部のフィルタ特性のばらつきを補正する切り換え素子を有するばらつき補正 部を具備し、前記フィルタ制御部は、前記ばらつき補正部の切り換え素子を切り換え て前記ローパスフィルタ部のフィルタ特性を切り換える構成を採る。
[0020] この構成によれば、ローバスフィルタのばらつき補正後のフィルタ特性を基準として 、フィルタ特性を切り換え素子を切り換え制御することで妨害波の抑圧が可能になる 。このため、ばらつき補正回路と、妨害波抑圧用回路を共用可能となり、妨害波抑圧 機能を追加する場合でも回路規模を大きくすることなく実現することができる。
[0021] (4)また、本発明の受信装置の一つの態様は、(1)又は(2)の構成において、前記 ばらつき補正部に対して外部から制御信号を入力する外部入力端子を設け、該外 部入力端子に入力する制御信号により前記ローパスフィルタ部のフィルタ特性を切り 換え可能とし、少なくとも前記無線信号受信部内のベースバンド信号生成機能と、前 記ローパスフィルタ部と、前記自動利得制御部と、前記ばらつき補正部とを半導体集 積回路として構成した構成を採る。
[0022] この構成によれば、アナログ LSI回路としての半導体集積回路に外部から入力可 能な外部入力端子をもうけて、外部からばらつき補正回路を制御する構成とすること により、小型かつ低コストの半導体集積回路を適用可能な受信装置を提供することが できる。
発明の効果
[0023] 本発明によれば、マルチキャリア通信において、抑圧特性が急峻でないローパスフ ィルタを用いた場合にも、受信強度が強い妨害波入力時に受信品質の劣化を抑える こと力 Sできる。
図面の簡単な説明
[0024] [図 1]従来のローパスフィルタ特性の一例を示す図
[図 2]従来のダイレクトコンバージョン方式の受信装置の構成を示す図
[図 3]本発明の実施の形態 1に係る受信装置の構成を示すブロック図
[図 4]実施の形態 1に係るローパスフィルタの構成例を示すブロック図
[図 5]実施の形態 1に係るローパスフィルタを構成する各フィルタの周波数特性を示 す図
[図 6]実施の形態 1に係る図 5の各フィルタ特性を合成した周波数特性を示す図 [図 7]実施の形態 1に係るパイロットシンボルのコンスタレーシヨン特性のイメージを示 す図
[図 8]実施の形態 1に係る OFDM信号に 8bitの AD変換部を用いた場合の U/D比 と BERの関係を示す図
[図 9]実施の形態 1に係る 2次アクティブフィルタ LPF1のゼロ点を変化させる場合の 周波数特性を示す図
[図 10]実施の形態 1に係る 2次アクティブフィルタ LPF1のゼロ点変化による基本特性 、切り換え特性 1及び切り換え特性 2の周波数特性を示す図
[図 11]実施の形態 1に係る図 10の基本特性、切り換え特性 1及び切り換え特性 2に 対応する各遅延特性を示す図
[図 12]実施の形態 1に係る OFDM信号に対して図 10及び図 11のフィルタ特性切り 換え条件を適用した場合の BER特性を示す図
[図 13]実施の形態 2に係る受信装置の構成を示すブロック図
[図 14]実施の形態 2に係る帯域内偏差発生回路の回路構成例を示す図
[図 15]実施の形態 2に係る帯域内偏差発生回路の特性を示す図
[図 16]実施の形態 2に係る FFT処理による FFT帯域のイメージを示す図
[図 17]実施の形態 2に係る受信装置において帯域内偏差を発生させない場合の周 波数特性を示す図であり、図 17Aは受信信号特性を示す図、図 17Bはローパスフィ ルタの入力周波数特性を示す図、図 17Cはローパスフィルタの出力周波数特性を示 す図
[図 18]実施の形態 2に係る受信装置において帯域内偏差を発生させた場合の周波 数特性を示す図であり、図 18Aは受信信号特性を示す図、図 18Bはローパスフィル タの入力周波数特性を示す図、図 18Cはローパスフィルタの出力周波数特性を示す 図
[図 19]実施の形態 3に係る受信装置の構成を示すブロック図
[図 20]実施の形態 3に係るばらつき補正回路の回路構成を示す図
[図 21]実施の形態 4に係る受信装置の構成を示すブロック図
発明を実施するための最良の形態
以下、本発明の実施の形態について図面を参照して詳細に説明する。 [0026] (実施の形態 1)
図 3は、本発明の実施の形態 1に係る受信装置 100の構成を示すブロック図である 。図 3に示す受信装置 100は、アンテナ 101、無線信号受信部 102、ローパスフィノレ タ 103a, 103b、 AGC部 104a, 104b、 AD変換部 105a, 105b、フイノレタ制 ί卸部 10 6、及び OFDM (Orthogonal Frequency Division Multiplexing)復調部 107を有して いる。
[0027] 無線信号受信部 102は、アンテナ 101を上記ブロックにより構成される受信系と図 示しない送信系とで共用させるアンテナ共用部 102aと、受信した信号を低雑音で増 幅する低雑音増幅部 102bと、ローカル信号を直交復調部 102dへ入力するロー力 ル信号発振部 102cと、低雑音増幅部 102bから入力された信号をローカル信号によ り I, Qの各ベースバンド信号を直交変換する直交復調部 102dとを備えており、アン テナ 101により入力された受信信号を I, Qの各ベースバンド信号に変換するように動 作する。
[0028] ローパスフィルタ 103a, 103bは、無線信号受信部 102から入力された I, Qベース バンド信号に対してそれぞれ不要成分を抑圧するする。ローパスフィルタ 103a, 103 bは、フィルタを構成している素子の一部を複数段階で切り換えることで、複数のフィ ルタ特性に切り換えることができるようになつている。
[0029] 図 4は、ローパスフィルタ 103a, 103bの構成例を示すブロック図である。ローパス フィルタ 103a, 103bは、例えば 7次のフィルタであり、図 4に示すように、パッシブの 1次フィルタ LPF0 (201)と、 3段の 2次アクティブフィルタ LPF1 (202) , LPF2 (203 ) , LPF3 (204)により構成される。
[0030] 図 5は、図 4の各フィルタの周波数特性を示しており、横軸が周波数、縦軸が利得 を示す。図 5において、実線が 1次フィルタ LPF0 (201)の周波数特性、破線が 2次 アクティブフイノレタ LPF1 (202)の周波数特性、一点鎖線が 2次アクティブフィルタ LP F2 (203)の周波数特性、二点鎖線が 2次アクティブフィルタ LPF3 (204)の周波数 特性を示す。これらのフィルタ LPF0 (201)〜LPF3 (204)の特性を合成すると図 6 に示す周波数特性となる。
[0031] AGC部 104a, 104bは、ローパスフィルタ 103a, 103b力、ら入力された I, Qベース バンド信号の振幅レベルを、後工程の AD変換部 105a, 105bにおいて最適な入力 レベルになるように調整して出力する。
[0032] AD変換部 105a, 105bは、振幅調整された I, Qベースバンド信号を AD変換し、 変換後の I, Qベースバンド信号を OFDM復調部 107に出力する。フィルタ制御部 1 06は、 OFDM復調部 107の OFDM復調処理時に得られるパイロットシンボル振幅 情報に基づいて、ローパスフィルタ 103a, 103bの各フィルタ特性を切り換え制御す る。
[0033] OFDM復調部 107は、高速フーリエ変換部(FFT) 107aと、チャネル推定部 107b とを有する。高速フーリエ変換部 107aは、 AD変換された I, Qベースバンド信号に対 して高速フーリエ変換(FFT: Fast Fourier Transform)を行レ、、時間領域の信号を周 波数領域の信号に変換する。 OFDM復調部 107では、高速フーリエ変換処理を行 うことにより、希望波と妨害波を分離できる。
[0034] チャネル推定部 107bは、高速フーリエ変換部 107aにより分離された希望波を、パ ィロット信号を用いてチャネル推定し、希望波信号の電力を求める。
[0035] 一般に OFDM復調処理においては、パイロット信号を用いてチャネル推定(シンポ ルの振幅、位相回転量を求め、理想値と比較することで変動量を求める)を行い、デ ータ信号に対して変動量を補正する。
[0036] AGC部 104a, 104bは、希望波、妨害波も含めた信号レベルを、 AD変換部 105a , 105bの入力段において一定とするように動作するので、チャネル推定においてパ ィロットシンボルの振幅情報により妨害波レベル/希望波レベル比(U/D比)を求 めること力 Sできる。
[0037] 例えば、図 7にパイロットシンボルのコンスタレーシヨン特性をイメージした図を示す 。図 7に示すようにコンスタレーシヨン内の位置によって受信信号の U/D比を推定す ること力 Sできる。例えば、図 7に示すように閾値を設けた場合は、 UZD比を 4段階 (0 dB、 3dB、 6dB、 9dB)に分けることができる。
[0038] 次に、図 3の受信装置 100の動作について説明する。
[0039] 一般に OFDM受信装置においては、その復調過程において FFT処理を行レ、、こ の FFT処理により希望波と妨害波とを分離できる。しかし、 U/D比が大きい場合、 A D変換部における希望波の分解度 (ダイナミックレンジ)が小さくなるため、その AD変 換時の量子化雑音により信号品質が劣化する。
[0040] 例えば、 OFDM信号(16QAM、符号化率 3/4、 FFT size: 960、 Total SubC airier: 540)の受信にぉレ、て、 8bitの AD変換部を用いた場合の UZD比と BER (Bi t Error Rate)の関係を図 8に示す。
[0041] 図 8は各 UZD比における BER特性を示しており、横軸が CNR (搬送波電力対雑 音電力比) [dB]であり、縦軸が誤り訂正後の BERである。この図 8により U/D比が「 妨害波なし→6dB→9dB→12dB」と大きくなるに従い指数関数的に BER特性が劣 化することが分かる。
[0042] 次に、ローパスフィルタ 103a, 103bのフィルタ特性切り換えに伴う BER変化の一 例について図を参照して示す。
[0043] 図 9は、図 4の 2次アクティブフィルタ LPF1 (202)のゼロ点を変化させる場合の周 波数特性を示す図である。フィルタ制御部 106では、図 9に示すように 2次アクティブ フィルタ LPF1 (202)のゼロ点を変化させることで、図 10に示すように基本特性 (実 線)、切り換え特性 1 (破線)、切り換え特性 2 (—点鎖線)の周波数特性になるように 制御できる。図 10において横軸は周波数、縦軸は利得である。
[0044] 図 11に、図 10に示した基本特性、切り換え特性 1、切り換え特性 2の遅延特性を示 す。図 11において横軸は周波数、縦軸は遅延時間である。図 10に示すように、基本 特性力 切り換え特性 1に切り換えることにより、 11. 5MHzにて信号振幅で約 6dB の妨害波抑圧効果が得られていることが分かる。また、切り換え特性 1から切り換え特 性 2に切り換えることにより、 11. 5MHzにて信号振幅で約 6dBの妨害波抑圧効果が 得られてレ、ることが分力、る。
[0045] OFDM信号(16QAM、符号化率 3Z4、 FFT size: 960、 Total SubCarrier:
540)の受信において、ローパスフィルタ 103a, 103bを図 10及び図 11に示した切り 換え特性 1、切り換え特性 2、基本特性とフィルタ特性としたときの BER特性を図 12 に示す。図 12に示すように、フィルタ特性の切り換えによって、 0. 3dB (BER: l . 0E -03)の BER劣化があることが分かる。
[0046] このように受信強度が強い妨害波が受信装置 100に入力される場合、妨害波によ るシステム性能劣化は、フィルタ特性の切り換えに伴う劣化に比べて大きくなる。
[0047] また、 U/D比が 12dBの状態においては、フィルタ特性を切り換え特性 2に切り換 えることによって、妨害波電力が 6dBに抑圧された BER特性を、図 8に示す U/D比 12dBの特性から U/D比 6dBの特性に改善する。しかし、フィルタ特性の切り換え による劣化もあるため、図 12に示す切り換え特性 2の BER特性となり、 CNRにおい て約 3. 5dB (BER: l . 0E— 03)の改善となる。
[0048] また、 U/D比が 9dBの状態においては、フィルタ特性を切り換え特性 1に切り換え ることによって、切り換え特性 2の設定よりも特性が改善する。フィルタ特性の設定を 切り換え特性 2とした場合の UZD比は 9dBから 3dBに改善する力 フィルタ特性に よる劣化が支配的となり、 BER特性は図 12に示す切り換え特性 2の BER特性となる 。フィルタ特性を切り換え特性 1にした場合は、妨害波は電力で 3dB抑圧されて BER 特性は図 8に示す UZD比 6dBの特性となり、切り換え特性 2に比べて 0. 2dB (BER : 1. OE— 03)改善する。
[0049] 上記の結果を用いて予め U/D比とフィルタ特性との関係をテーブルとしてフィルタ 制御部 106に持ち、 OFDM復調部 107から入力される U/D比に応じてフィルタ特 性を切り換えることにより、システム性能を改善することができる。
[0050] 以上のように、本実施の形態 1の受信装置によれば、フィルタ次数の低い抑圧特性 が急峻でないローパスフィルタを用いた場合においても、 OFDM復調部の OFDM 復調処理中に得られるパイロットシンボル振幅情報に応じてフィルタ制御部がローパ スフィルタのフィルタ特性を切り換えることにより、検波器を追加することなぐ受信強 度が強い妨害波受信時においても妨害波による劣化を最小限に抑えることができる
[0051] なお、フィルタ特性の切り換えによって AD変換部 105a, 105bへの信号入力が変 化することは明白であり、変化量が推定できる場合は AGC部 104a, 104bも切り換え ることが望ましい。
[0052] また、図 4においてローパスフィルタを直列に接続した構成を示した力 一般的には 各ローパスフィルタの間には AGCアンプが配置される。このような構成においても A GCアンプの配置位置によって、本実施の形態の効果が損なわれることはなレ、。また 、ローパスフィルタと AGC部の接続関係は、図 3及び図 4に示した構成に限定される ものではない。
[0053] また、本実施の形態 1では、 2次アクティブフィルタ LPF1の特性を変化させる場合 を説明したが、要はフィルタ特性を切り換えることで UZD比が改善すれば良ぐ 1次 フイノレタ LPF0、 2次アクティブフィルタ LPF1, LPF2, LPF3のうち何れかのフィルタ 特性を切り換えるようにしても同様の効果を得ることができる。例えば、カットオフ周波 数を複数段に切り換える場合は、帯域内の遅延特性が変化するが、 OFDM信号受 信装置においてはガードインターバル時間内の遅延補正が可能であるため、アナ口 グフィルタ補正用のデジタルフィルタは必要がなくなる。
[0054] また、本実施の形態 1では、 7次フィルタを例として示した力 S、要はフィルタ特性を切 り換えることで U/D比が改善すれば良ぐ 7次に限定されるものではない。またフィ ルタ次数を切り換えて帯域内偏差を発生させることで、 UZD比を改善することもでき 、同様の効果を得ることができる。
[0055] また、本実施の形態 1では、 U/D比の検出にパイロット信号を用いる場合を説明し た力 OFDM受信装置においては復調に FFT処理を行うため、各サブキャリアの信 号レベルを求めることが可能である。よって、パイロット信号の代わりに各サブキャリア のレベルを検出し、これに基づいて上述したフィルタ特性の切り換え制御を行うように しても良い。このようにすれば、一段と小規模な回路追加で妨害波検波を行うことが 可能となる。また、妨害波の存在を検出するために、信号処理内で求める BER(bit err or rate)結果を用いても良い。
[0056] (実施の形態 2)
本実施の形態 2では、実施の形態 1の構成に加えて、妨害波レベルと希望波レべ ルの比に応じて帯域内信号に振幅偏差を生じさせ、フィルタ特性の切り換えに伴う通 信性能の劣化を改善することを提案する。
[0057] 図 13は、本実施の形態 2に係る受信装置 1100の構成を示すブロック図である。な お、図 13の受信装置 1100において、図 3の構成と同一部には同一符号を付して説 明を省略する。図 13の受信装置 1100は、図 3に対して、無線信号受信部 1102内 に帯域内偏差発生回路 1102aを追加し、レベル比検出部 1108を追加した構成を採 る。
[0058] 帯域内偏差発生回路 1102aは、例えば、図 14に示すような回路構成を採る。帯域 内偏差発生回路 1102aは、ノッチフイノレタ 1201 , 1202と、スィッチ 1203, 1204を 備える。
[0059] スィッチ 1203をオンして通過モードとすることで、ノッチフィルタ 1201が動作する際 の帯域内偏差発生回路 1102aの特性を図 15に示す。図 15において横軸は周波数 、縦軸は利得である。図 15により、スィッチ 1203を通過モードとした時には、帯域 A において高周波側に利得が大きくなる、帯域内偏差が発生していることが分かる。
[0060] 同様にスィッチ 1204をオンして通過モードにすることで、ノッチフィルタ 1202が動 作する際の帯域内偏差発生回路 1102aの特性を図 15に示す。図 15により、スイツ チ 1204を通過モードとした時には、帯域 Aにおいて高周波側に利得が小さくなる、 帯域内偏差が発生してレ、ること力 S分力、る。
[0061] 次に、レベル比検出部 1108の動作について説明する。
[0062] 一般に OFDM復調においては、信号のサブキャリア数以上の FFTサイズにて FF T処理が行われる。 FFT処理が行われる FFT帯域のイメージ図を図 16に示す。図 1 6において横軸は周波数 (サブキャリア番号)、縦軸は信号レベル [dBm]である。
[0063] この図 16に示す FFT処理を高速フーリエ変換部 107aにより実行することにより、希 望信号帯域内、一部の希望信号外の帯域を所定のサブキャリア間隔でシングノレキヤ リアに分離する。
[0064] レベル比検出部 1108は、高速フーリエ変換部 107aで分離されたシングルキャリア の U/D比が大きい場合は、図 16に示す希望波信号外帯域 Low、希望波信号外帯 域 Upの電力を測定して、どちらの帯域の信号レベルが大きいか判断する。そして、 妨害波検出部 1108は、妨害波レベルと希望波レベルの比を検出し、検出結果をフ ィルタ制御部 1106に送出する。
[0065] 次に、上記のように構成された受信装置 1100による受信動作について説明する。
[0066] 受信強度が強い妨害波を受信した場合、レベル比検出部 1108において妨害波レ ベルと希望波レベルの比を検出し、このレベル比に基づいてフィルタ制御部 1106は 帯域内偏差発生回路 1102aにおいて妨害波を抑圧するように帯域内偏差を発生さ せる。また、フィルタ制御部 1106は、レベル比に応じて、ローパスフィルタ 103a, 10 3bの次数を切り換えることで、フィルタ特性を変化させる。具体的には、妨害波レべ ルが希望波レベルよりも大きくなるほど、急峻なフィルタ特性とすればよい。
[0067] 受信装置 1100において、帯域内偏差を発生させた場合と、発生させなかった場合 の妨害波と希望波の特性を図 17及び図 18に示す。図 17A〜図 17C及び図 18A〜 図 18Cにおいて、横軸は周波数、左端軸は信号レベル、右端軸はフィルタ利得であ る。図 17は帯域内偏差を発生させない場合を示しており、図 17Aは受信信号特性、 図 17Bはローパスフィルタ 103a, 103bの入力周波数特性、図 17Cはローパスフィル タ 103a, 103bの出力周波数特性を示す。図 18は帯域内偏差を発生させる場合を 示しており、図 18Aは受信信号特性、図 18Bはローパスフィルタ 103a, 103bの入力 周波数特性、図 18Cはローパスフィルタ 103a, 103bの出力周波数特性を示す。
[0068] 帯域内偏差を発生させて、妨害波抑圧を同等とした場合、帯域内偏差有りの設定 に比べて図 18Bに示すようにローパスフィルタ 103aの特性は、帯域内変動が小さい ものを選択できる。
[0069] また、図 17Cと図 18Cを比較して分かるように、帯域内偏差ありの設定においては、 フィルタ特性を可変することで妨害波の抑圧を行う場合に、妨害波周波数帯の反対 側サブキャリアのレベル劣化を抑えることができる。
[0070] 以上のように、本実施の形態 2の受信装置によれば、アナログベースバンドの帯域 幅、フィルタ特性を可変する場合でも、高周波帯域で帯域内利得偏差を発生させる ことで、妨害波が存在しない帯域の信号の劣化を抑えることができる。その結果、 OF DM信号においては帯域内偏差を発生させない場合と比較して、多くのサブキャリア が復調可能となり受信信号の通信品質を改善することができる。
[0071] (実施の形態 3)
本実施の形態 3では、実施の形態 1の構成に加えて、 UZD比に応じたローバスフ ィルタのフィルタ特性の制御とばらつき補正制御を行レ、、さらに一部の回路を共通化 することにより、受信装置を小型化することを提案する。
[0072] 図 19は、本実施の形態 3に係る受信装置 1600の構成を示すブロック図である。な お、図 19の受信装置 1600において、図 3の構成と同一部には同一符号を付して説 明を省略する。図 19の受信装置 1600は、図 3に対して、ばらつき補正回路 1601を 追加し、フィルタ制御部 106はばらつき補正回路 1601を介してローパスフィルタ 103 a, 103bのフィルタ特性を切り換え制御する構成を採る。
[0073] 図 20は、ばらつき補正回路 1601の回路構成を示す図である。図 20のばらつき補 正回路 1601は、補正値検出回路 1701とフィルタ回路 1702を有する。
[0074] 補正値検出回路 1701は、 OFDM復調部 107の復調信号を入力し、この復調信号 に含まれる妨害波を検出し、検出した妨害波に基づいて補正値を求める。すなわち 、図 19のフィルタ制御部 106からは、フィルタ制御信号に加えて、 OFDM復調部 10 7からの復調信号がばらつき補正回路 1601に出力され、ばらつき補正回路 1601の 補正値検出回路 1701には復調信号が、フィルタ回路 1702には制御信号が入力さ れる。
[0075] フイノレタ回路 1702fま、抵抗 1703 (1)、 · · ·、 1703 (n)、 1704 (1)、 · · ·、 1704 (n) と、コンデンサ 1705, 1706と、才ぺアンプ 1707と、力ら構成される。ここで、抵抗 17
03 (1)〜1703 (n)の抵抗値はそれぞれ異なる値に設定されており、 1704 (1)〜17
04 (n)の抵抗値はそれぞれ異なる値に設定されている。
[0076] ばらつき補正回路 1601によるばらつき補正について説明する。
[0077] ばらつき補正回路 1601は、フィルタ回路 1702にフィルタ制御部 106からの制御値 を入力すると共に、補正値検出回路 1701に OFDM復調信号を入力する。ばらつき 補正回路 1601は、補正値検出回路 1701において検出された補正値に基づいて抵 抗 1703, 1704を切り換える。これにより、フイノレタ回路 1702に人力されたフイノレタ制 御部 106からの制御信号は、抵抗 1703 (1)〜1703 (n)のうちのどの抵抗が選択さ れたか、及び抵抗 1704 (1)〜: 1704 (n)のどの抵抗が選択されたかに応じて、異な る値とされて、フィルタ回路 1702からローパスフィルタ 103a, 103bへと出力される。 これにより、ローパスフィルタ 103a, 103bのフィルタ特性のばらつきが補正されると 共に、妨害波が抑圧される。
[0078] 本実施の形態 3では、フィルタ特性の切り換え制御において、その切り換え素子とし てのばらつき補正回路 1601内に抵抗 1703, 1704を用いるようにしたため、妨害波 抑圧回路とフィルタ特性切り換え回路を共有することができる。 [0079] 受信装置 1600では、フィルタのばらつき補正後のフィルタ特性を基準として、この フィルタの基本特性力 切り換え素子である抵抗 1703, 1704を切り換え制御するこ とで、妨害波を抑圧できるようになつている。
[0080] 以上のように、本実施の形態 3の受信装置によれば、ばらつき補正回路 1601に妨 害波抑圧回路の機能をも持たせるようにしたことにより、ばらつき補正効果に加えて、 妨害波抑圧効果を、小さい回路規模で得ることができる。
[0081] なお、本実施の形態においては、ばらつき補正回路 1601をローパスフィルタ 103a
, 103bとは別に図示したが、ばらつき補正回路 1601をローパスフィルタ 103a, 103 bに組み込んだ構成としてもよい。
[0082] また、本実施の形態においては、ばらつき補正回路 1601に抵抗 1703, 1704を設 け、その抵抗値を切り換えることでローパスフィルタ 103a, 103bのフィルタ特性を切 り換える場合について述べた力 ばらつき補正回路 1601を複数の容量 Cを用いた 構成とし、容量 Cを切り換えることでローパスフィルタ 103a, 103bのフィルタ特性を切 り換えるようにしてもよい。
[0083] (実施の形態 4)
本実施の形態 4では、上記受信装置 1600内のばらつき補正回路 1601を含む一 部の構成をアナログ LSI化する際に、外部から入力可能な端子を設けて、この端子 力 ばらつき補正回路を制御する構成とすることに特徴がある。
[0084] 図 21は、本実施の形態 4に係る受信装置 1600の構成を示すブロック図である。な お、図 21の受信装置 1600において、図 3及び図 19の構成と同一部には同一符号 を付して説明を省略する。
[0085] 図 21の受信装置 1600において、 1800は半導体集積回路である。半導体集積回 路 1800は、ローカル信号発振部 102cと、直交変換部 102dと、ローパスフィルタ 10
3a, 103bと、 AGC咅^ 04a, 104bと、は、らつきネ甫正回路 1601と、外咅人力端子 18
01と、を有してレヽる。
[0086] 半導体集積回路 1800は、外部入力端子 1801にフィルタ制御部 106から入力され る制御信号に応じて、ばらつき補正回路 1601内のフィルタ素子(抵抗 1703, 1704 )を制御するように動作する。 [0087] 以上のように、本実施の形態 4の受信装置によれば、アナログ LSI回路としての半 導体集積回路に外部から入力可能な外部入力端子をもうけて、外部からばらつき補 正回路を制御する構成とすることにより、小型かつ低コストの半導体集積回路を適用 可能な受信装置を提供することができる。
[0088] 2006年 3月 27曰出願の特願 2006— 86701の曰本出願に含まれる明糸田書、図面 および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0089] 本発明は、例えばダイレクトコンバージョン方式の受信回路を有する OFDM受信 装置に適用して好適である。

Claims

請求の範囲
[1] 無線信号を受信して該受信信号をアナログベースバンド信号に変換する無線信号 受信部と、
フィルタ特性を切り換えて、前記アナログベースバンド信号の帯域外の信号成分を 減衰させるローパスフィルタ部と、
前記ローパスフィルタ部から出力されるアナログベースバンド信号の信号レベルを 可変して後段の AD変換部の入力レベルが一定になるように調整する自動利得制御 部と、
前記自動利得制御部から出力されるアナログベースバンド信号をデジタル信号に 変換する AD変換部と、
前記 AD変換部から出力されるデジタル信号に対して OFDM復調処理を実行する デジタル信号処理部と、
前記デジタル信号処理部の OFDM復調処理時に得られる情報に基づいて前記口 一パスフィルタ部のフィルタ特性を切り換えるフィルタ制御部と、
を具備する受信装置。
[2] 前記受信信号に含まれた妨害波信号の周波数帯に応じて希望波信号帯域内を含 む周波数帯に偏差を発生する帯域内偏差発生部と、
前記デジタル信号処理部の OFDM復調処理において分離されるシングルキャリア 信号の妨害波レベルと希望波レベルの比を検出するレベル比検出部と、をさらに具 備し、
前記フィルタ制御部は、前記レベル比検出部で検出された前記レベル比に基づい て、前記帯域内偏差発生部において妨害波を抑圧するように帯域内偏差を発生さ せる
請求項 1記載の受信装置。
[3] 前記ローパスフィルタ部のフィルタ特性のばらつきを補正する切り換え素子を有す るばらつき補正部を、さらに具備し、
前記フィルタ制御部は、前記ばらつき補正部の切り換え素子を切り換えることにより 前記ローパスフィルタ部のフィルタ特性を切り換える 請求項 1記載の受信装置。
前記ばらつき補正部に対して外部から制御信号を入力する外部入力端子を設け、 該外部入力端子に入力する制御信号により前記ローパスフィルタ部のフィルタ特性 を切り換え可能とし、少なくとも前記無線信号受信部内のベースバンド信号生成機能 と、前記ローパスフィルタ部と、前記自動利得制御部と、前記ばらつき補正部とを半 導体集積回路として構成した
請求項 3記載の受信装置。
PCT/JP2007/056250 2006-03-27 2007-03-26 受信装置 WO2007111311A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-086701 2006-03-27
JP2006086701 2006-03-27

Publications (1)

Publication Number Publication Date
WO2007111311A1 true WO2007111311A1 (ja) 2007-10-04

Family

ID=38541228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056250 WO2007111311A1 (ja) 2006-03-27 2007-03-26 受信装置

Country Status (1)

Country Link
WO (1) WO2007111311A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523261A (ja) * 2008-05-09 2011-08-04 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線受信機回路
US8306499B2 (en) 2007-12-03 2012-11-06 Panasonic Corporation High-frequency filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143102A (ja) * 2001-10-30 2003-05-16 Sanyo Electric Co Ltd Ofdm復調機
JP2005151011A (ja) * 2003-11-13 2005-06-09 Renesas Technology Corp 高周波信号受信装置および半導体集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143102A (ja) * 2001-10-30 2003-05-16 Sanyo Electric Co Ltd Ofdm復調機
JP2005151011A (ja) * 2003-11-13 2005-06-09 Renesas Technology Corp 高周波信号受信装置および半導体集積回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306499B2 (en) 2007-12-03 2012-11-06 Panasonic Corporation High-frequency filter
JP2011523261A (ja) * 2008-05-09 2011-08-04 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線受信機回路

Similar Documents

Publication Publication Date Title
JP5783251B2 (ja) 受信装置及び受信方法
US8862081B2 (en) Transceiver with receive path performance diversity and combiner with jammer detect feedback
EP1989784B1 (en) Controlling a receiver to reduce influence by interference
US7580722B2 (en) Control of a power amplifier for reducing power consumption in a transceiver
US20050147192A1 (en) High frequency signal receiver and semiconductor integrated circuit
US20040229581A1 (en) Diversity receiver and diversity receiving method
US7460890B2 (en) Bi-modal RF architecture for low power devices
JPH11234150A (ja) デジタル復調装置
US20100119019A1 (en) Receiving apparatus and method, program and recording medium used for the same
JP3822163B2 (ja) Agcシステム
WO2012017627A1 (ja) 高周波受信装置及び無線受信機
US10237100B2 (en) Method and apparatus for digitization of broadband analog signals
JP2003198981A (ja) Agc制御型中間周波増幅回路
WO2007111311A1 (ja) 受信装置
WO2007007761A1 (ja) 受信装置および受信方法
US20100183105A1 (en) Ofdm receiver
US9281792B2 (en) Receiver and method for gain control
JP4126005B2 (ja) 無線通信システムの自動利得制御回路
JP2009177568A (ja) 受信装置とこれを用いた電子機器
JP4957734B2 (ja) 受信装置、撮像装置及び受信方法
US7280616B2 (en) Optimizing a filter bandwidth in a digital receiver
JP4941560B2 (ja) Zero−IF方式により直交周波数分割多重された信号を受信する受信機及び受信方法
JP4518896B2 (ja) 受信装置
JP2010226153A (ja) 回線状況推定器
KR100577264B1 (ko) 자동 이득 제어 장치를 포함한 수신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP