WO2007111267A1 - 車両走行制御装置および車両走行制御方法 - Google Patents

車両走行制御装置および車両走行制御方法 Download PDF

Info

Publication number
WO2007111267A1
WO2007111267A1 PCT/JP2007/056075 JP2007056075W WO2007111267A1 WO 2007111267 A1 WO2007111267 A1 WO 2007111267A1 JP 2007056075 W JP2007056075 W JP 2007056075W WO 2007111267 A1 WO2007111267 A1 WO 2007111267A1
Authority
WO
WIPO (PCT)
Prior art keywords
target acceleration
acceleration
limit value
vehicle
braking
Prior art date
Application number
PCT/JP2007/056075
Other languages
English (en)
French (fr)
Inventor
Kyoichi Abe
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07739516A priority Critical patent/EP2000380A4/en
Priority to US12/278,462 priority patent/US20090118958A1/en
Publication of WO2007111267A1 publication Critical patent/WO2007111267A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to a vehicle travel control device and a vehicle travel control method, and more specifically, a vehicle travel control device and a vehicle travel control method for setting a target acceleration and generating a braking / driving force corresponding to the target acceleration. It is about.
  • ACC adaptive cruise control
  • the target acceleration is set according to the running situation of the vehicle, such as the acceleration according to the set speed and the acceleration to follow the preceding vehicle, and based on this target acceleration!
  • the engine or brake that generates this braking / driving force is controlled. Examples of techniques for controlling the generation of braking / driving force based on the target acceleration include those disclosed in Patent Documents 1 to 3.
  • Patent Document 4 JP 2003-339980 A
  • Patent Document 2 JP-A-10-109627
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-286426
  • Patent Document 4 Japanese Patent Laid-Open No. 11-348746
  • the limit value is not made constant but is changed according to the target deceleration. Specifically, the limit value increases as the target deceleration increases. In other words, the target deceleration limited by the limit value gradually increases as the target deceleration increases and gradually approaches the set target deceleration. Therefore, if the target deceleration is large, it will not be comfortable for the crew of the host vehicle! In the range, the target deceleration limited by the limit value can reach the target deceleration set quickly. it can.
  • the present invention has been made in view of the above, and can smoothly perform acceleration / deceleration in accordance with the traveling state of the host vehicle, and can improve the followability to the set target deceleration. It is an object of the present invention to provide a travel control device and a vehicle travel control method.
  • target acceleration setting means for setting a target acceleration of the host vehicle
  • actual acceleration acquisition means for acquiring the actual acceleration of the host vehicle
  • a limit value for limiting a change in the target acceleration Limit value setting means for setting the target acceleration based on the set limit value and the braking / driving force so as to generate the braking / driving force based on the limited target acceleration!
  • Braking / driving force control means for controlling the generating means
  • the limit value setting means is configured to determine a difference between the set target acceleration and the detected actual acceleration. The larger the value is, the larger the limit value is set.
  • the procedure for setting the target acceleration of the host vehicle the procedure for acquiring the actual acceleration of the host vehicle, the set target acceleration, and the detected actual acceleration
  • the larger the difference from the acceleration is, the larger the limit value for limiting the change in the target acceleration, the procedure for limiting the target acceleration based on the set limit value, and the limitation on the target acceleration.
  • the target acceleration limited by the limit value is not increased without increasing the limit value. Make it difficult to reach the set target acceleration.
  • the difference between the set target acceleration and the actual acceleration is large, that is, when rapid acceleration or deceleration is performed, the limit value is increased and the target acceleration limited by the limit value is set to the set target acceleration. Get to it quickly. Therefore, during normal driving where the difference between the set target acceleration and the actual acceleration is small, acceleration / deceleration is performed smoothly, and the passenger comfort of the vehicle is worse than the followability to the set target acceleration. It is possible to perform vehicle travel control that places emphasis on suppression.
  • acceleration / deceleration is allowed to be performed rapidly, and the target set for the vehicle's crew is less than the suppression of poor ride comfort. It is possible to perform vehicle travel control that emphasizes the improvement of follow-up performance with respect to acceleration. As a result, acceleration / deceleration can be performed smoothly according to the traveling state of the host vehicle, and the followability to the set target acceleration can be improved.
  • the limit value setting means uses a limit value when the set target acceleration is negative when the set target acceleration is positive. It is preferable to set a value larger than the limit value.
  • the limit value is compared with the case where the host vehicle is accelerated.
  • the target acceleration limited by is quickly reached by the set target acceleration. That is, when the host vehicle is decelerated, the followability to the set target deceleration is further improved as compared with the case where the host vehicle is accelerated. Therefore, for example, the preceding vehicle is When the vehicle enters the same lane, or when the preceding vehicle in the same lane decelerates significantly, the difference between the set target acceleration that is negative and the detected actual acceleration becomes large.
  • the host vehicle can be greatly decelerated. This makes it possible to perform vehicle travel control that places importance on the safety of the host vehicle.
  • the vehicle travel control device and the vehicle travel control method according to the present invention do not increase the limit value when the difference between the set target acceleration and the actual acceleration is small, and the set target acceleration and actual acceleration. Since the limit value is increased when the difference between the two is large, the acceleration / deceleration is smoothly performed according to the traveling state of the host vehicle, and the followability to the set target acceleration is improved.
  • FIG. 1 is a diagram showing a configuration example of a vehicle travel control apparatus according to the present invention.
  • FIG. 2 is a diagram showing a configuration example of a vehicle travel control device according to the present invention.
  • Fig. 3 is an operation flow diagram of the vehicle travel control device that is effective in the present invention.
  • FIG. 4 is a diagram showing a reference limit value map.
  • FIG. 5 is a diagram showing the relationship between acceleration and limit value magnification.
  • Target acceleration setting section (Target acceleration setting means)
  • Target acceleration limiter 24b Braking / driving force generation selection section
  • FIG. 1 and 2 are diagrams showing a configuration example of a vehicle travel control device according to the present invention.
  • a vehicle travel control device 1 is mounted on a host vehicle (not shown), and is a vehicle travel control that can reduce the driving operation of the host vehicle by a driver, that is, ACC is performed.
  • This vehicle travel control device 1 includes a control device 2, an object detection sensor 3, a cruise control switch 4, a correct sensor 5, a G sensor 6, a vehicle speed sensor 7, a brake sensor 8, a brake device 9, A throttle device 10 and a transmission 11 are configured.
  • the ACC includes constant speed traveling control that causes the host vehicle to travel at a set speed and preceding vehicle following traveling control that causes the host vehicle to follow the preceding vehicle.
  • the control device 2 controls the entire vehicle travel control device 1.
  • the control device 2 is also for controlling the operation of an engine (not shown).
  • the control device 2 includes at least a target acceleration setting unit 21, an actual acceleration acquisition unit 22, a limit value setting unit 23, a braking / driving force control unit 24, and a recognition unit 25.
  • the target acceleration setting unit 21 is target acceleration setting means.
  • the target acceleration setting unit 21 sets a target acceleration of the host vehicle (not shown).
  • the target acceleration setting unit 21 sets a target acceleration corresponding to the traveling control state of the host vehicle by the vehicle traveling control device 1.
  • the target acceleration setting unit 21 includes a tracking target acceleration calculation unit 21a, a constant speed target acceleration calculation unit 21b, a corner acceleration prohibition target acceleration calculation unit 21c, and an arbitration unit 21d.
  • the target acceleration includes a positive target acceleration and a negative target acceleration, that is, a target deceleration.
  • the following target acceleration calculation unit 21a is driven by a preceding vehicle on the same lane as the vehicle travels in the traveling direction of the host vehicle (not shown). Thus, when it is determined that the preceding vehicle following traveling control of the own vehicle is performed on the preceding vehicle, the following target acceleration is calculated and set.
  • the following target acceleration calculation unit 21a is connected to the recognition unit 25 and the arbitration unit 21d. Therefore, the following target acceleration calculation unit 21a recognizes the preceding vehicle when the recognition unit 25 recognizes the preceding vehicle.
  • the position data of the preceding vehicle thus input is input, the tracking target acceleration is calculated based on the position data, and the set tracking target acceleration is output to the arbitrating unit 21d.
  • the constant speed target acceleration calculation unit 21b calculates and sets the constant speed target acceleration based on the set speed set by the cruise control switch 4 or the like.
  • This constant speed target acceleration calculating unit 21b performs not only the case where the vehicle traveling control device 1 performs constant speed traveling control of the host vehicle based on the constant acceleration target acceleration set by the vehicle traveling control device 1, but also the vehicle traveling Even when the control device 1 performs the preceding vehicle tracking control, the target acceleration for constant speed is calculated and set.
  • the constant speed target acceleration calculation unit 21b is connected to the arbitration unit 21d. Therefore, the constant speed target acceleration calculation unit 21b outputs the set constant speed target acceleration to the arbitration unit 21d.
  • the target acceleration calculation unit 21c for prohibiting corner acceleration is estimated by a vehicle shape control device 1 such as V, which is not illustrated by the vehicle travel control device 1, and a road shape estimation device which estimates the road shape in the traveling direction of the host vehicle. Forces such as the road shape and the rotation speed of the vehicle detected by the rate sensor 5 Estimate of the road calculated from the corner If the vehicle determines that the vehicle is driving a corner, corner acceleration is prohibited from acceleration at the corner. Calculate and set the target acceleration for prohibition.
  • the target acceleration calculation unit 21c for prohibiting corner acceleration is connected to the arbitration unit 21d. Therefore, the corner acceleration prohibiting target acceleration calculating unit 21c outputs the set corner acceleration prohibiting target acceleration to the arbitrating unit 21d.
  • the arbitration unit 21d sets a target acceleration to be used when controlling the traveling of the host vehicle, not shown by the target acceleration force vehicle traveling control device 1 calculated by each of the calculating units. .
  • the arbitrating unit 21d sets the target acceleration having the smallest value among the calculated target accelerations as the target acceleration.
  • the arbitrating unit 21d includes the following target acceleration calculated by the following target acceleration calculating unit 21a, the target acceleration for constant speed calculated by the target acceleration calculating unit 21b, and the corner.
  • the corner acceleration prohibiting target accelerations calculated by the acceleration prohibiting target acceleration calculating unit 21c the most powerful value or the target acceleration is selected and set as the target acceleration.
  • the actual acceleration acquisition unit 22 is an actual acceleration acquisition unit. In this embodiment, the actual acceleration acquisition unit 22 acquires the actual acceleration of the host vehicle (not shown) detected by the G sensor 6. Is.
  • the limit value setting unit 23 is limit value setting means.
  • the limit value setting unit 23 sets a limit value for limiting the change in the target acceleration set by the target acceleration setting unit 21.
  • the limit value setting unit 23 is connected to the actual acceleration acquisition unit 22 and the target acceleration limit unit 24a of the braking / driving force control unit 24. Therefore, the limit value setting unit 23 receives the actual acceleration of the host vehicle (not shown) acquired by the actual acceleration acquisition unit 22, and outputs the set limit value to the target acceleration limit unit 24a.
  • the braking / driving force control unit 24 is braking / driving force control means.
  • the braking / driving force control unit 24 limits the target acceleration set by the target acceleration setting unit 21 based on the limit value set by the limit value setting unit 23, and based on the limited target acceleration!
  • the braking / driving force generating means in this embodiment, the brake device 9, the throttle device 10, and the transmission device 11 are controlled so as to generate braking / driving force (braking force or driving force).
  • the braking / driving force control unit 24 includes a target acceleration limiting unit 24a and a braking / driving force generation selecting unit 24b.
  • the target acceleration limiting unit 24a limits the target acceleration set by the target acceleration setting unit 21 based on the limit value, and calculates the target acceleration limited by the limit value.
  • the target acceleration limiting unit 24a is connected to the arbitrating unit 21d, the limit value setting unit 23, and the braking / driving force generation selecting unit 24b of the target acceleration setting unit 21. Therefore, the target acceleration limiting unit 24a receives the target acceleration set by the arbitration unit 21d and the limit value set by the limit value setting unit 23, and calculates the target acceleration limited by the limit value.
  • the target acceleration limited by the calculated limit value is output to the braking / driving force generation selection unit 24b.
  • the braking / driving force generation selecting unit 24b is configured to generate at least one of the braking device 9, the throttle device 10, and the transmission device 11 capable of generating the braking / driving power based on the target acceleration limited by the limit value. And the selected device is controlled to generate a braking / driving force based on the target acceleration limited by the limit value.
  • the braking / driving force generation selection unit 24b is connected to the target acceleration limiting unit 24a, the brake device 9, the throttle device 10, and the transmission 11. Accordingly, the braking / driving force generation selecting unit 24b receives the target acceleration limited by the target acceleration limiting unit 24a and is limited by this limiting value.
  • the control signal is output to at least one of the brake device 9, the throttle device 10 and the transmission device 11 so that the braking / driving force based on the target acceleration can be generated.
  • the recognizing unit 25 moves from the position data of the object detected by the object detection sensor 3 in the direction of travel of the vehicle V (not shown). It recognizes the preceding vehicle running on the road.
  • the recognition unit 25 is connected to the object detection sensor 3 and the target acceleration calculation unit 21a for tracking of the target acceleration setting unit 21. Therefore, the position data of the object detected by the object detection sensor 3 is input to the recognition unit 25, the input position data force recognizes the preceding vehicle, and the position data of the recognized preceding vehicle is used for following. It outputs to the target acceleration calculation part 21a.
  • the control device 2 includes an input / output port (IZO) (not shown), a processing unit, and a storage unit.
  • An input / output port (not shown) is connected to the various sensors and the various devices, and inputs data output from the various sensors to the control device 2 and outputs control signals from the control device 2 to the various devices.
  • a processing unit (not shown) includes a RAM (Random Access Memory) and a CPU (Central Processing Unit). This processing unit is realized by loading a program based on the vehicle travel control method, for example, into the RAM and executing it.
  • a storage unit (not shown) is configured by ROM (Read Only Memory), RAM, or a combination thereof.
  • the object detection sensor 3 detects the position of an object existing in the traveling direction of the host vehicle (not shown).
  • This object detection sensor 3 uses, for example, a millimeter wave radar in this embodiment.
  • the millimeter wave radar detects the position of an object by a detection method using millimeter waves, and the position data of the detected object is output to the recognition unit 25 of the control device 2.
  • the object detection sensor 3 is attached to the center of the front surface of the host vehicle, for example, the front grill. Here, the object detection sensor 3 emits a millimeter wave.
  • the object detection sensor 3 emits a millimeter wave which is emitted from a front surface of the own vehicle in a predetermined range in the traveling direction and reflected by an object existing in the traveling direction of the own vehicle.
  • the millimeter-wave radar measures the distance from the millimeter-wave radar to the object in the traveling direction of the host vehicle by measuring the time until the output force is received. Is calculated.
  • millimeter wave radar can calculate the relative velocity with the object by using the Doppler effect.
  • the millimeter wave radar detects the direction of the millimeter wave that is received with the strongest reflection of the received millimeter waves, and calculates the angle between the traveling direction of the vehicle and the direction of the object from that direction. .
  • the object detection sensor 3 is not limited to the millimeter wave radar, for example, a radar using a laser or an infrared ray, an image recognition device using image data obtained by capturing the traveling direction of the own vehicle with a stereo camera or the like. It's okay.
  • the cruise control switch 4 causes the vehicle travel control device 1 to perform vehicle travel control, that is, ACC.
  • This cruise control switch 4 is provided in the vicinity of the steering of the vehicle (not shown).
  • the cruise control switch 4 outputs the start of ACC by the vehicle travel control device 1 to the control device 2.
  • the cruise control switch 4 is not shown in the figure during the constant speed traveling control by the vehicle traveling control device 1. ⁇ The speed of the own vehicle, the distance between the own vehicle and the preceding vehicle during the preceding vehicle following traveling control, etc. It is also something to set.
  • the correct sensor 5 detects the rotation speed of the host vehicle, not shown.
  • the G sensor 6 is actual acceleration detecting means for detecting the actual acceleration of the host vehicle (not shown).
  • the actual acceleration detected by the G sensor 6 is output to the actual acceleration acquisition unit 22.
  • the vehicle speed sensor 7 detects the vehicle speed of the host vehicle, not shown! Although not shown, the vehicle speed detected by the vehicle speed sensor 7 is output to the target acceleration setting unit 21 and used when each target acceleration is calculated by each calculation unit.
  • the brake sensor 8 detects whether or not a brake pedal (not shown) is depressed by a driver (not shown), that is, whether or not the driver has a braking intention.
  • the braking intention of the driver detected by the brake sensor 8 is output to the control device 2.
  • the control device 2 Priority is given to the braking intention of the person, and there is constant speed running control! That is, when the driver is willing to brake, the constant speed traveling control or the preceding vehicle following traveling control is stopped, and the constant speed traveling control or the preceding vehicle following traveling control is not resumed even if the driver does not intend to brake. Therefore, regardless of the control state by the vehicle travel control device, braking force is generated by the brake device 9 and the host vehicle (not shown) is decelerated.
  • the brake device 9 generates braking force and decelerates the host vehicle (not shown).
  • the brake device 9 includes a brake control device 91, a brake actuator 92, and a brake 93.
  • the brake control device 91 controls the operation of the braking system, for example, the operation of the brake actuator 92 connected to the brake control device 91.
  • the brake control device 91 activates the brake actuator 92 based on the amount of depression of a brake pedal (not shown) by the driver and the traveling state of the host vehicle.
  • the brake control device 91 can also operate the brake actuator 92 by a control signal from the braking / driving force generation selection unit 24b of the control device 2.
  • the brake actuator 92 controls the supply of oil to the brake 93 that is hydraulically operated.
  • the brake 93 applies a braking force to the host vehicle based on the hydraulic pressure controlled by the brake actuator 92.
  • the brake 93 is arranged to be paired with each wheel of the host vehicle.
  • the brake 93 is a hydraulic brake that is operated by a hydraulic pressure such as a disc brake or a drum brake.
  • the brake actuator 92 is actuated by the brake control device 91 to apply hydraulic pressure to the brake 93 and assist the driver in generating the braking force. Assist the driver to decelerate the vehicle.
  • the brake device 9 operates the brake actuator 92 with the brake control device 91 in response to a control signal from the braking / driving force generation selection unit 24b even when the driver does not depress the brake pedal, and applies hydraulic pressure to the brake 93.
  • the braking force is generated and the vehicle can be decelerated.
  • the brake control device 91 includes an input / output port (not shown), a processing unit, a storage unit, and the like, similar to the control device 2 described above.
  • Throttle device 10 controls the amount of intake air taken into an engine (not shown). This engine generates driving force or braking force depending on the amount of intake air taken in Then, the vehicle is accelerated or decelerated (not shown).
  • the throttle device 10 is composed of a throttle actuator 101 and a throttle 102.
  • the throttle actuator 101 is operated by a control signal output from the control device 2 based on the depression amount of an accelerator pedal (not shown) by the driver, that is, the accelerator opening. Further, the throttle actuator 101 is also activated by a control signal of the braking / driving force generation selection unit 24b of the control device 2.
  • the throttle 102 has an opening controlled by the operation of the throttle actuator 101, and adjusts the intake air amount by the opening.
  • the throttle device 10 when the driver depresses the accelerator pedal, the throttle device 10 operates the throttle actuator 101 by the control device 2, controls the opening of the throttle 102, and controls the amount of intake air taken into the engine. Adjust and generate driving force or braking force by this engine. Further, the brake device 9 controls the opening degree of the throttle 102 by operating the throttle actuator 101 by the control signal from the braking / driving force generation selection unit 24b without the driver depressing the accelerator pedal. By adjusting the amount of intake air taken into the engine, this engine can generate driving force or braking force.
  • the transmission 11 is connected to an engine (not shown) and controls a transmission 112 that transmits the output of the engine to each vehicle (not shown).
  • the transmission 11 includes a valve body 111 and a transmission 112.
  • the valve body 111 is controlled by the control device 2 based on the V, shift lever operation not shown by the driver, or not shown by the driver !, based on the accelerator pedal depression amount, that is, the accelerator opening. It is activated by a signal.
  • the valve body 111 is also activated by a control signal from the braking / driving force generation selection unit 24b of the control device 2.
  • the transmission 112 changes, or adjusts, the driving force or the braking force generated by the engine by changing the gear ratio between the engine and each wheel (not shown) by the operation of the valve body 111.
  • the transmission 112 when the driver operates the shift lever or the driver depresses the accelerator pedal, the valve body 111 is operated by the control device 2, the transmission ratio is changed by the transmission 112, and the engine is generated.
  • the driving force or braking force to be adjusted is adjusted.
  • the transmission 11 operates the valve body 111 by the control signal from the braking / driving force generation selection unit 24b even if the driver does not operate the shift lever or the accelerator pedal, and the transmission 11 2 can change the gear ratio and adjust the driving force or braking force generated by the engine.
  • FIG. 3 is an operation flowchart of the vehicle travel control apparatus according to the present invention.
  • Figure 4 shows the reference limit value map.
  • Fig. 5 shows the relationship between acceleration and limit value magnification.
  • the target acceleration setting unit 21 of the control device 2 sets a target acceleration TG (step ST1).
  • the tracking target acceleration calculation unit 21a calculates the tracking target acceleration
  • the constant speed target acceleration calculation unit 21b calculates the constant speed target acceleration
  • the corner acceleration prohibition target acceleration calculation unit 21c calculates the corner acceleration.
  • the prohibition target acceleration is calculated
  • the arbitration unit 21d selects the highest value and the target acceleration among the calculated target accelerations, and sets the selected target acceleration as the target acceleration TG.
  • limit value setting unit 23 of control device 2 acquires reference limit value A based on the set target acceleration TG (step ST2).
  • the limit value setting unit 23 is based on the set target acceleration TG and the set target acceleration TG and the reference limit value A stored in the storage unit (not shown) of the control device 2.
  • the reference limit value A is determined from the calculated reference limit value map. As shown in Fig. 4, this reference limit value map has four reference limit values A to A set based on the sign of the set target acceleration TG and the sign of the set target acceleration TG change. Has been. Therefore, the limit value setting unit 23 will
  • the target acceleration TG set this time is determined based on the comparison between the target acceleration TG set by the setting unit 21 and the target acceleration TG previously set by the target acceleration setting unit 21 and the target acceleration TG set this time.
  • the reference limit value A is determined from the force that has changed to either positive or negative in a predetermined period (in this embodiment, per second) with respect to the previously set target acceleration TG.
  • these four reference limit values A to A are obtained when the target acceleration TG is negative.
  • Reference limit values A to A are the target acceleration TG is positive.
  • the reference limit value A is 0.05 G / S, when the target acceleration TG is positive and the change is positive.
  • Reference limit value A is 0.1 GZS, target acceleration when the target acceleration TG is positive and the change is negative
  • the reference limit value A is 0.2 G / S and the target acceleration TG is
  • the reference limit A for negative and positive changes is set to 0.2GZS.
  • Zs is the acceleration per second.
  • the actual acceleration acquisition unit 22 of the control device 2 acquires an actual acceleration RG of the host vehicle (not shown) (step ST3).
  • the actual acceleration acquisition unit 22 acquires the actual acceleration RG of the host vehicle detected by the G sensor 6.
  • the actual acceleration acquisition unit 22 outputs the acquired actual acceleration RG to the limit value setting unit 23 as described above.
  • limit value setting unit 23 of control device 2 calculates limit value magnification K (step ST4).
  • the limit value setting unit 23 calculates the limit value magnification K based on the set target acceleration TG and the actual acceleration RG.
  • the limit value magnification K is calculated by the following equation (1).
  • the constant is determined based on the type of vehicle on which the vehicle travel control device 1 is mounted, the characteristics of the engine mounted on the vehicle, and the like.
  • the limit value magnification K is limited to 1 to n.
  • n is about 5, for example.
  • K I TG-RG I / constant-"(1)
  • limit value setting unit 23 of control device 2 calculates limit value S (step ST5).
  • the limit value setting unit 23 calculates a limit value S from the determined reference limit value A and the calculated limit value magnification K.
  • the limit value S is calculated by multiplying the determined reference limit value A and the calculated limit value magnification K.
  • the limit value S is a value obtained by multiplying the reference limit value A by several times, and thus indicates an allowable change amount per second of the set target acceleration TG.
  • the limit value setting unit 23 outputs the calculated limit value S to the target acceleration limiting unit 24a of the braking / driving force control unit 24 as described above.
  • the limit value S increases as the difference between the set target acceleration TG and the actual acceleration RG increases as shown in the above formula (1).
  • the limit value setting unit 23 sets the set target acceleration TG If the difference between the actual acceleration RG and the actual acceleration RG is large, that is, if the vehicle is rapidly accelerated or decelerated by the vehicle travel control device 1, the limit value S is increased.
  • the calculated limit value S is the reference limit value A to A (absolute value) when the target acceleration TG for which the reference limit value map is set is negative.
  • the target acceleration limiting unit 24a of the control device 2 calculates the target acceleration SG limited by the calculated limit value S (step ST6).
  • the target acceleration limiting unit 24a limits the set target acceleration TG based on the limit value S calculated as the allowable change amount per second, and is limited by the limit value S.
  • the target acceleration SG is calculated.
  • the braking / driving force generation selection unit 24b of the control device 2 calculates the braking / driving force based on the target acceleration SG limited by the calculated limit value S, and calculates the calculated braking / driving force.
  • the braking / driving force generating means for generating the force is selected (step ST7).
  • the braking / driving force generation selection unit 24b calculates the braking / driving force capable of achieving the limited target acceleration SG from the traveling state of the host vehicle such as the current vehicle speed of the host vehicle (not shown). To do.
  • the braking / driving force generation selection unit 24b adjusts the braking device 9 that generates braking force, the throttle device 10 that generates braking force or driving force for an engine (not shown), and the braking force or driving force generated by the engine.
  • a device that can generate the calculated braking / driving force in the current traveling state of the host vehicle is selected from at least one of the transmissions 11.
  • At least one of the selected braking / driving force generation means that is, the brake device 9, the throttle device 10, and the transmission device 11 generates the calculated braking / driving force (step ST8).
  • the braking / driving force generation selecting unit 24b of the control device 2 outputs a control signal to the selected braking / driving force generating means so that the selected braking / driving force generating means can generate the calculated braking / driving force.
  • the selected braking / driving force generating means is controlled.
  • the vehicle travel control device 1 is set when constant speed travel control is performed, or when the preceding vehicle travels at a constant speed when performing preceding vehicle tracking travel control.
  • the difference between the target acceleration TG and the actual acceleration RG is small, and during normal driving, acceleration / deceleration is performed smoothly, and the vehicle's crew is less likely to follow the set target acceleration TG. It is possible to perform vehicle travel control that emphasizes
  • the vehicle travel control device 1 performs the constant speed travel control and shifts from the state where the vehicle travels to the preceding vehicle following travel control (V immediately before the preceding vehicle enters the lane in which the host vehicle travels, not shown) ), Or when the vehicle shifts from constant state to constant-speed travel control by performing preceding vehicle following travel control (such as the lane where the host vehicle is traveling, the preceding vehicle, or immediately after it is gone) The difference from the actual acceleration is large!
  • the vehicle travel control device 1 can smoothly accelerate and decelerate according to the traveling state of the host vehicle, and improve the followability to the set target deceleration.
  • the vehicle travel control device 1 when the set target acceleration TG is negative, that is, at least the brake device 9, the throttle device 10 and the transmission device 11 which are braking / driving force generating means.
  • the target acceleration set by the target acceleration SG limited by the limit value S is compared with the case of accelerating the host vehicle. TG can be reached sooner. That is, when the host vehicle is decelerated, the followability to the set target deceleration can be further improved compared to the case where the host vehicle is accelerated. Therefore, the vehicle travel control device 1 shifts from, for example, the state where constant speed travel control is performed to the preceding vehicle following travel control.
  • the vehicle travel control device 1 can perform vehicle travel control that places importance on the safety of the host vehicle.
  • the vehicle travel control device and the vehicle travel control method according to the present invention provide a vehicle travel control device and a vehicle travel control method for setting a target acceleration and generating a braking / driving force corresponding to the target acceleration. It is useful, and is particularly suitable for smooth acceleration / deceleration according to the running state of the vehicle and improving the follow-up performance to the set target deceleration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Regulating Braking Force (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

 自車両の目標加速度を設定し(ステップST1)、設定された目標加速度TGに基づいて基準制限値Aを取得し(ステップST2)、自車両の実加速度を取得し(ステップST3)、設定された目標加速度TGと検出された実加速度RGとの差が大きいほど、目標加速度の変化を制限する制限値Sを大きくなるように制限値倍率Kを算出し(ステップST4)、制限値Sを算出し(ステップST5)、設定された制限値Sに基づいて設定された目標加速度TGを制限し(ステップST6)、制限された目標加速度SGに基づいて制駆動力を算出し(ステップST7)、算出された制駆動力を選択した制駆動力発生手段により発生させる(ステップST8)。車両の走行状態に応じて、加減速を滑らかに行い、設定された目標減速度に対する追従性を向上することができる。

Description

車両走行制御装置および車両走行制御方法
技術分野
[0001] この発明は、車両走行制御装置および車両走行制御方法に関し、更に詳しくは、 目標加速度を設定し、この目標加速度に応じた制駆動力を発生させる車両走行制 御装置および車両走行制御方法に関するものである。
背景技術
[0002] 従来の車両には、運転者による自車両の運転操作を軽減するものとして、自車両 に設定速度走行、先行車両追従走行などを行わせる車両走行制御、すなわちァダ プティブクルーズコントロール (ACC)を行う車両走行制御装置が搭載されて!ヽる。 A CCでは、設定速度に応じた加速度や、先行車両に追従するための加速度など、自 車両の走行状況に応じて目標加速度が設定され、この目標加速度に基づ!、た制駆 動力を発生するように、この制駆動力を発生するエンジンあるいはブレーキが制御さ れる。 目標加速度に基づいて制駆動力の発生を制御する技術としては、例えば特許 文献 1〜3に示すものがある。
[0003] ここで、この目標加速度と自車両の実際の加速度である実加速度との差が大き 、と 、急激な加速や、減速となるため、加減速が滑らかに行われず自車両の搭乗員にと つて乗り心地の悪いものとなる問題があった。そこで、従来の車両走行制御装置では 、例えば特許文献 4に示すように、目標減速度が急変、すなわち目標減速度と実力口 速度との差が大きい場合は、目標減速度が急変後の目標減速度に向けて徐々に変 化する制限値によって制限される技術が提案されている。つまり、設定された目標減 速度をこの目標減速度の変化を制限する制限値に基づいて制限され、エンジンある いはブレーキは、この制限された目標減速度に応じた制駆動力を発生することとなる 特許文献 1:特開 2003 - 339980号公報
特許文献 2 :特開平 10— 109627号公報
特許文献 3:特開平 5 - 286426号公報 特許文献 4:特開平 11― 348746号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、上記特許文献 1に示す車両走行制御装置では、制限値を一定にせずに 、目標減速度に応じて変化させている。具体的には、目標減速度が大きいほど制限 値が大きくなる。つまり、制限値によって制限された目標減速度は、目標減速度が大 きいほど徐々に制限値が大きくなるため、設定された目標減速度に徐々に近づくこと となる。従って、目標減速度が大きい場合は、自車両の搭乗員にとって乗り心地の悪 くならな!、範囲で、制限値によって制限された目標減速度が設定された目標減速度 に早く到達することができる。
[0006] しかしながら、上記特許文献 1に示す車両走行制御装置では、自車両が加速状態 から減速する場合に、制限値が大きくないため、制限値によって制限された目標減 速度が設定された目標減速度にな力な力到達しないという問題があった。また、この 車両走行制御装置では、制限値は、自車両の搭乗員にとって乗り心地の悪くならな V、範囲で、制限値によって制限された目標減速度が設定された目標減速度に早く到 達させるため、すなわち両立を図れるように設定される。従って、自車両の走行状態 によっては、加減速を滑らかにできず、制限値によって制限された目標減速度が設 定された目標減速度に早く到達できな 、と 、う問題もあった。
[0007] 本発明は、上記に鑑みてなされたものであって、自車両の走行状態に応じて、加減 速を滑らかに行い、設定された目標減速度に対する追従性を向上することができる 車両走行制御装置および車両走行制御方法を提供することを目的とする。
課題を解決するための手段
[0008] この車両走行制御装置の発明では、自車両の目標加速度を設定する目標加速度 設定手段と、前記自車両の実加速度を取得する実加速度取得手段と、目標加速度 の変化を制限する制限値を設定する制限値設定手段と、前記設定された制限値に 基づ 、て目標加速度を制限し、当該制限された目標加速度に基づ!/、た制駆動力を 発生するように制駆動力発生手段を制御する制駆動力制御手段と、を備え、前記制 限値設定手段は、前記設定された目標加速度と前記検出された実加速度との差が 大きいほど、前記制限値を大きく設定する。
[0009] また、この車両走行制御方法の発明では、自車両の目標加速度を設定する手順と 、前記自車両の実加速度を取得する手順と、前記設定された目標加速度と前記検 出された実加速度との差が大きいほど、目標加速度の変化を制限する制限値を大き く設定する手順と、前記設定された制限値に基づいて目標加速度を制限する手順と 、前記制限された目標加速度に基づ!、て制駆動力発生手段に制駆動力に応じた制 駆動力を発生させる手順と、を含む。
[0010] 設定された目標加速度と実加速度との差が小さ 、場合、すなわち急激な加速、減 速を行わない場合は、制限値を大きくせずに、制限値によって制限された目標加速 度を設定された目標加速度に到達し難くさせる。また、設定された目標加速度と実加 速度との差が大きい場合、すなわち急激な加速、減速が行われる場合は、制限値を 大きくし、制限値によって制限された目標加速度を設定された目標加速度に早く到 達させる。従って、設定された目標加速度と実加速度との差が小さい通常走行時に は、加減速を滑らかに行 、、設定された目標加速度に対する追従性よりも自車両の 搭乗員にとって乗り心地の悪ィ匕の抑制を重視した車両走行制御を行うことができる。 また、設定された目標加速度と実加速度との差が大きい緊急走行時には、加減速を 急激に行うことを許容し、自車両の搭乗員にとって乗り心地の悪ィ匕の抑制よりも設定 された目標加速度に対する追従性の向上を重視した車両走行制御を行うことができ る。これにより、自車両の走行状態に応じて、加減速を滑らかに行い、設定された目 標加速度に対する追従性を向上することができる。
[0011] また、この発明では、上記車両走行制御装置において、前記制限値設定手段は、 前記設定された目標加速度が負である場合における制限値を前記設定された目標 加速度が正である場合における制限値よりも大きく設定することが好ましい。
[0012] 前記設定された目標加速度が負である場合、すなわち制駆動力発生手段によって 制動力を発生し、自車両を減速する場合は、自車両を加速する場合と比較して、制 限値によって制限された目標加速度を設定された目標加速度により早く到達させる。 つまり、自車両を減速する場合は、自車両を加速する場合と比較して、設定された目 標減速度に対する追従性をさらに向上させる。従って、例えば先行車両が自車両と 同一車線に進入してきた場合、同一車線の先行車両が大きく減速した場合など、負 である設定された目標加速度と検出された実加速度との差が大きくなる際に、自車両 の制動初期からこの自車両を大きく減速させることができる。これにより、自車両の安 全性を重視した車両走行制御を行うことができる。
発明の効果
[0013] この発明にかかる車両走行制御装置および車両走行制御方法は、設定された目 標加速度と実加速度との差が小さい場合に制限値を大きくせず、設定された目標加 速度と実加速度との差が大きい場合に制限値を大きくするので、自車両の走行状態 に応じて、加減速を滑らかに行い、設定された目標加速度に対する追従性を向上す るという効果を奏する。
図面の簡単な説明
[0014] [図 1]図 1は、この発明にかかる車両走行制御装置の構成例を示す図である。
[図 2]図 2は、この発明にかかる車両走行制御装置の構成例を示す図である。
[図 3]図 3は、この発明に力かる車両走行制御装置の動作フロー図である。
[図 4]図 4は、基準制限値マップを示す図である。
[図 5]図 5は、加速度と制限値倍率との関係を示す図である。
符号の説明
[0015] 1 車両走行制御装置
2 制御装置
21 目標加速度設定部(目標加速度設定手段)
21a 追従用目標加速度算出部
21b 定速用目標加速度算出部
21c コーナー加速禁止用目標加速度算出部
21d 調停部
22 実加速度取得部
23 制限値設定部
24 制駆動力制御部
24a 目標加速度制限部 24b 制駆動力発生選択部
25 認識部
3 物体検出センサ
4 タノレーズコントローノレスィッチ
5 ョーレートセンサ
6 Gセンサ
7 車速センサ
8 ブレーキセンサ
9 ブレーキ装置
91 ブレーキ制御装置
92 ブレーキアクチユエータ
93 ブレーキ
10 スロットル装置
101 スロットルァクチユエータ
102 スロットル
11 変速装置
111 バノレブボディ
112 変速機
A, A〜A 基準制限値
1 4
κ 制限値倍率
s 制限値
RG 実加速度
SG 制限された目標加速度
TG 設定された目標加速度
発明を実施するための最良の形態
以下、この発明につき図面を参照しつつ詳細に説明する。なお、下記の実施例に よりこの発明が限定されるものではない。また、下記の実施例における構成要素には 、当業者が容易に想定できるもの或いは実質的に同一のものが含まれる。 実施例
[0017] 図 1および図 2は、この発明にかかる車両走行制御装置の構成例を示す図である。
同図に示すように、この発明に力かる車両走行制御装置 1は、図示しない自車両に 搭載されるものであり、運転者による自車両の運転操作を軽減することができる車両 走行制御、すなわち ACCを行うものである。この車両走行制御装置 1は、制御装置 2 と、物体検出センサ 3と、クルーズコントロールスィッチ 4と、ョーレートセンサ 5と、 Gセ ンサ 6と、車速センサ 7と、ブレーキセンサ 8と、ブレーキ装置 9と、スロットル装置 10と 、変速装置 11とにより構成されている。なお、この ACCには、設定速度で自車両を 走行させる定速走行制御や、先行車両に対して自車両を追従させる先行車両追従 走行制御が含まれる。
[0018] 制御装置 2は、車両走行制御装置 1全体の制御を行うものである。また、制御装置 2 は、図示しないエンジンの運転制御を行うものでもある。この制御装置 2は、少なくとも 目標加速度設定部 21と、実加速度取得部 22と、制限値設定部 23と、制駆動力制御 部 24と、認識部 25により構成されている。
[0019] 目標加速度設定部 21は、目標加速度設定手段である。この目標加速度設定部 21 は、図示しない自車両の目標加速度を設定するものである。目標加速度設定部 21 は、この車両走行制御装置 1による自車両の走行制御状態に応じた目標加速度をそ れぞれ設定するものである。例えば、図 2に示すように、目標加速度設定部 21には、 追従用目標加速度算出部 21a、定速用目標加速度算出部 21b、コーナー加速禁止 用目標加速度算出部 21c、調停部 21dなどにより構成されている。なお、目標加速 度は、正の目標加速度と負の目標加速度、すなわち目標減速度も含まれるものであ る。
[0020] 追従用目標加速度算出部 21aは、車両走行制御装置 1が図示しない自車両の進 行方向にお 、て、この自車両が走行して 、る車線と同一車線上を先行車両が走行し て 、ると判定し、この先行車両に対して自車両の先行車両追従走行制御を行って 、 る場合に、追従用目標加速度を算出し、設定するものである。この追従用目標加速 度算出部 21aは、認識部 25と調停部 21dとに接続されている。従って、この追従用 目標加速度算出部 21aは、認識部 25により先行車両が認識された場合に、この認識 された先行車両の位置データが入力され、この位置データに基づいて追従用目標 加速度を算出し、設定された追従用目標加速度が調停部 21dに出力する。
[0021] 定速用目標加速度算出部 21bは、クルーズコントロールスィッチ 4などにより設定さ れた設定速度に基づいて、定速用目標加速度を算出し、設定するものである。この 定速用目標加速度算出部 21bは、車両走行制御装置 1が設定された定速用目標加 速度に基づ 、て自車両の定速走行制御を行って 、る場合のみならず、車両走行制 御装置 1が先行車両追従走行制御を行っている場合においても、定速用目標加速 度を算出し、設定する。定速用目標加速度算出部 21bは、調停部 21dに接続されて いる。従って、定速用目標加速度算出部 21bは、設定された定速用目標加速度を調 停部 21dに出力する。
[0022] コーナー加速禁止用目標加速度算出部 21cは、車両走行制御装置 1が図示しな V、自車両の進行方向における道路形状を推定する図示しな!、道路形状推定装置な どにより推定された道路形状や、ョーレートセンサ 5により検出された自車両の自転 速度など力 算出された道路の推定 Rからこの自車両がコーナーを走行していると判 定した場合に、コーナーにおける加速禁止したコーナー加速禁止用目標加速度を 算出し、設定する。コーナー加速禁止用目標加速度算出部 21cは、調停部 21dに接 続されている。従って、コーナー加速禁止用目標加速度算出部 21cは、設定された コーナー加速禁止用目標加速度を調停部 21dに出力する。
[0023] 調停部 21dは、上記各算出部により算出された各目標加速度力 車両走行制御装 置 1により図示しな!ヽ自車両の走行を制御する際に用いる目標加速度を設定するも のである。この調停部 21dは、この実施例では、上記算出された各目標加速度のうち 最も値の小さい目標加速度を目標加速度として設定するものである。つまり、この実 施例では、調停部 21dは、追従用目標加速度算出部 21aにより算出された追従用目 標加速度、定速用目標加速度算出部 21bにより算出された定速用目標加速度、コー ナー加速禁止用目標加速度算出部 21cにより算出されたコーナー加速禁止用目標 加速度のうち、最も値力 、さい目標加速度を選択し、目標加速度として設定する。
[0024] 実加速度取得部 22は、実加速度取得手段である。この実加速度取得部 22は、こ の実施例では、 Gセンサ 6により検出された図示しない自車両の実加速度を取得する ものである。
[0025] 制限値設定部 23は、制限値設定手段である。この制限値設定部 23は、目標加速 度設定部 21により設定された目標加速度の変化を制限する制限値を設定するもの である。制限値設定部 23は、実加速度取得部 22と制駆動力制御部 24の目標加速 度制限部 24aとに接続されている。従って、この制限値設定部 23は、実加速度取得 部 22により取得された図示しない自車両の実加速度が入力され、設定された制限値 が目標加速度制限部 24aに出力される。
[0026] 制駆動力制御部 24は、制駆動力制御手段である。この制駆動力制御部 24は、制 限値設定部 23により設定された制限値に基づいて目標加速度設定部 21により設定 された目標加速度を制限し、制限された目標加速度に基づ!、た制駆動力(制動力あ るいは駆動力)を発生するように、制駆動力発生手段、この実施例では、ブレーキ装 置 9、スロットル装置 10、変速装置 11を制御するものである。制駆動力制御部 24は、 目標加速度制限部 24aと、制駆動力発生選択部 24bとにより構成されている。
[0027] 目標加速度制限部 24aは、上記目標加速度設定部 21により設定された目標加速 度を制限値に基づ 、て制限し、この制限値により制限された目標加速度を算出する ものである。この目標加速度制限部 24aは、目標加速度設定部 21の調停部 21dと、 制限値設定部 23と、制駆動力発生選択部 24bとに接続されている。従って、この目 標加速度制限部 24aは、調停部 21dにより設定された目標加速度と、制限値設定部 23により設定された制限値とが入力され、制限値により制限された目標加速度を算 出し、算出された制限値により制限された目標加速度を制駆動力発生選択部 24bに 出力する。
[0028] 制駆動力発生選択部 24bは、制限値により制限された目標加速度に基づいた制駆 動力を発生させることができるブレーキ装置 9、スロットル装置 10あるいは変速装置 1 1の少なくともいずれか 1つを選択し、この選択した装置をこの制限値により制限され た目標加速度に基づ 、た制駆動力を発生するように制御するものである。制駆動力 発生選択部 24bは、目標加速度制限部 24aと、ブレーキ装置 9と、スロットル装置 10 と、変速装置 11とに接続されている。従って、制駆動力発生選択部 24bは、目標加 速度制限部 24aにより制限された目標加速度が入力され、この制限値により制限され た目標加速度に基づいた制駆動力を発生することができるように、制御信号をブレー キ装置 9、スロットル装置 10あるいは変速装置 11の少なくとも 、ずれか 1つに出力す る。
[0029] 認識部 25は、物体検出センサ 3により検出された物体の位置データから図示しな Vヽ自車両の進行方向にぉ 、て、この自車両が走行して 、る車線と同一車線上を走 行している先行車両を認識するものである。この認識部 25は、物体検出センサ 3と目 標加速度設定部 21の追従用目標加速度算出部 21aとに接続されている。従って、 認識部 25には、物体検出センサ 3により検出された物体の位置データが入力され、 この入力された位置データ力 先行車両を認識し、この認識した先行車両の位置デ ータを追従用目標加速度算出部 21aに出力する。
[0030] ここで、制御装置 2は、図示しない入出力ポート (IZO)と、処理部と、記憶部とによ り構成されている。図示しない入出力ポートは、上記各種センサおよび上記各種装 置と接続されており、各種センサから出力されたデータを制御装置 2に入力し、この 制御装置 2から各種装置に制御信号をそれぞれ出力するものである。図示しない処 理部は、 RAM (Random Access Memory)および CPU (Central Processing Unit)など により構成されている。この処理部は、車両走行制御方法に基づくプログラムを例え ば RAMにロードして実行することにより、実現させるものである。また、図示しない記 憶部は、 ROM (Read Only Memory)あるいは RAM、あるいはこれらの組み合わせな どにより構成されている。
[0031] 物体検出センサ 3は、図示しない自車両の進行方向に存在する物体の位置を検出 するものである。この物体検出センサ 3は、この実施例では、例えばミリ波レーダを用 いる。ミリ波レーダは、ミリ波を用いた検出方法により物体の位置を検出するものであ り、検出された物体の位置データが制御装置 2の認識部 25に出力される。物体検出 センサ 3は、自車両の前面部の中央部、例えばフロントグリル内に取り付けられている 。ここで、この物体検出センサ 3は、ミリ波を出射、この実施例では自車両の前面から 進行方向の所定の範囲で出射し、自車両の進行方向に存在する物体により反射し たミリ波を受信するものである。そして、ミリ波レーダは、出射力も受信までの時間を計 測することによって、ミリ波レーダから自車両の進行方向に存在する物体までの距離 を算出する。また、ミリ波レーダは、ドップラー効果を用いることで物体との相対速度を 算出することができる。また、ミリ波レーダは、受信したミリ波のうち最も強く反射して受 信されたミリ波の方向を検出し、その方向から自車両の進行方向と物体の方向とのな す角度を算出する。つまり、ミリ波レーダにより物体の位置が検出された場合、制御 装置 2の認識部 25には、その物体までの距離、相対速度、角度が検出された物体の 位置データとして入力されることとなる。なお、物体検出センサ 3は、ミリ波レーダに限 られるものではなぐ例えばレーザや赤外線などを用いたレーダ、ステレオカメラなど により自車両の進行方向を撮像した画像データを用いた画像認識装置などであって も良い。
[0032] クルーズコントロールスィッチ 4は、車両走行制御装置 1に車両走行制御、すなわち ACCを行わせるものである。このクルーズコントロールスィッチ 4は、図示しない自車 両のステアリング近傍に設けられるものである。クルーズコントロールスィッチ 4は、車 両走行制御装置 1による ACCの開始を制御装置 2に出力するものである。また、クル ーズコントロールスィッチ 4は、車両走行制御装置 1による定速走行制御時における 図示しな!ヽ自車両の速度や先行車両追従走行制御時における自車両と先行車両と の車間距離などを設定するものでもある。
[0033] ョーレートセンサ 5は、図示しな 、自車両の自転速度を検出するものである。
[0034] Gセンサ 6は、実加速度検出手段であり、図示しない自車両の実加速度を検出する ものである。この Gセンサ 6により検出された実加速度は、上記実加速度取得部 22に 出力される。
[0035] 車速センサ 7は、図示しな!、自車両の車速を検出するものである。この車速センサ 7 により検出された車速は、図示は省略するが上記目標加速度設定部 21に出力され、 各算出部において各目標加速度を算出する際に用 、られる。
[0036] ブレーキセンサ 8は、図示しない運転者により図示しないブレーキペダルが踏み込 まれたか、すなわち運転者に制動意志があるか否かを検出するものである。このブレ ーキセンサ 8により検出された運転者の制動意志は、制御装置 2に出力される。例え ば車両走行制御装置 1が定速走行制御ある 、は先行車両追従走行制御を行って 、 る際に、この制御装置 2が運転者の制動意志を取得すると、この制御装置 2は、運転 者の制動意志を優先し、定速走行制御ある!ヽは先行車両追従走行制御を停止する 。つまり、運転者の制動意志があった場合、定速走行制御あるいは先行車両追従走 行制御を停止し、運転者の制動意志がなくなっても定速走行制御あるいは先行車両 追従走行制御を再開しない。従って、車両走行制御装置による制御状態に拘わらず ブレーキ装置 9により制動力が発生し、図示しない自車両が減速することとなる。
[0037] ブレーキ装置 9は、制動力を発生し、図示しない自車両の減速を行うものである。こ のブレーキ装置 9は、ブレーキ制御装置 91と、ブレーキアクチユエータ 92と、ブレー キ 93とにより構成されている。ブレーキ制御装置 91は、制動系の作動を制御、例え ばブレーキ制御装置 91に接続されたブレーキアクチユエータ 92の作動を制御するも のである。また、このブレーキ制御装置 91は、運転者による図示しないブレーキぺダ ルの踏み込み量と自車両の走行状態に基づ!/、てブレーキアクチユエータ 92を作動 させるものである。また、ブレーキ制御装置 91は、制御装置 2の制駆動力発生選択 部 24bからの制御信号によっても、ブレーキアクチユエータ 92を作動させることができ る。ブレーキアクチユエータ 92は、油圧で作動するブレーキ 93への油の供給を制御 するものである。ブレーキ 93は、ブレーキアクチユエータ 92によって制御された油圧 に基づいて、自車両に制動力を付与するものである。このブレーキ 93は、自車両の 各車輪と対になるように配置されている。このブレーキ 93は、例えばディスクブレーキ あるいはドラムブレーキなどの油圧によって作動する油圧ブレーキである。ここで、ブ レーキ装置 9は、運転者がブレーキペダルを踏み込むと、ブレーキアクチユエータ 92 がブレーキ制御装置 91により作動し、ブレーキ 93に油圧を付与し、運転者による制 動力の発生を補助し、運転者による自車両の減速の補助を行う。また、ブレーキ装置 9は、運転者がブレーキペダルを踏み込まなくても、制駆動力発生選択部 24bからの 制御信号によって、ブレーキアクチユエータ 92がブレーキ制御装置 91により作動し、 ブレーキ 93に油圧を付与し、制動力が発生し、 自車両を減速することができる。なお 、ブレーキ制御装置 91は、上記制御装置 2と同様に、図示しない入出力ポート、処理 部、記憶部などにより構成されている。
[0038] スロットル装置 10は、図示しないエンジンに吸気される吸入空気量を制御するもの である。このエンジンは、吸気される吸入空気量よつて駆動力あるいは制動力を発生 し、図示しない自車両の加速あるいは減速を行うものである。スロットル装置 10は、ス ロットルァクチユエータ 101と、スロットル 102とにより構成されている。スロットルァクチ ユエータ 101は、運転者による図示しないアクセルペダルの踏み込み量、すなわちァ クセル開度に基づいて制御装置 2から出力される制御信号によって作動するもので ある。また、スロットルァクチユエータ 101は、制御装置 2の制駆動力発生選択部 24b 力もの制御信号によっても、作動するものである。スロットル 102は、スロットルァクチ ユエータ 101の作動により開度が制御されるものであり、開度によって吸入空気量を 調整するものである。ここで、スロットル装置 10は、運転者がアクセルペダルを踏み込 むと、制御装置 2によりスロットルァクチユエータ 101が作動し、スロットル 102の開度 を制御し、エンジンに吸気される吸入空気量を調整し、このエンジンにより駆動力ある いは制動力を発生させる。また、ブレーキ装置 9は、運転者がアクセルペダルを踏み 込まなくても、制駆動力発生選択部 24bからの制御信号によって、スロットルァクチュ エータ 101が作動し、スロットル 102の開度を制御し、エンジンに吸気される吸入空 気量を調整し、このエンジンにより駆動力あるいは制動力を発生させることができる。 変速装置 11は、図示しないエンジンと連結され、エンジンの出力を図示しない各車 輪に伝達する変速機 112を制御するものである。変速装置 11は、バルブボディ 111 と、変速機 112とにより構成されている。バルブボディ 111は、運転者による図示しな V、シフトレバーの操作、ある 、は運転者による図示しな!、アクセルペダルの踏み込み 量、すなわちアクセル開度に基づいて制御装置 2から出力される制御信号によって 作動するものである。また、バルブボディ 111は、制御装置 2の制駆動力発生選択部 24bからの制御信号によっても、作動するものである。変速機 112は、バルブボディ 1 11の作動により、エンジンと図示しない各車輪との変速比を変更し、エンジンが発生 する駆動力あるいは制動力を変化、すなわち調整するものである。ここで、変速装置 11は、運転者がシフトレバーを操作、あるいは運転者がアクセルペダルを踏み込む と、制御装置 2によりバルブボディ 111が作動し、変速機 112により変速比を変更し、 エンジンが発生する駆動力あるいは制動力を調整する。また、変速装置 11は、運転 者によるシフトレバーの操作やアクセルペダルの踏み込みが行われなくても、制駆動 力発生選択部 24bからの制御信号によって、バルブボディ 111を作動し、変速機 11 2により変速比を変更し、エンジンが発生する駆動力あるいは制動力を調整すること ができる。
[0040] 次に、この発明に力かる車両走行制御装置 1を用いた車両走行制御方法について 説明する。図 3は、この発明にかかる車両走行制御装置の動作フロー図である。図 4 は、基準制限値マップを示す図である。図 5は、加速度と制限値倍率との関係を示す 図である。
[0041] まず、図 3に示すように、制御装置 2の目標加速度設定部 21は、目標加速度 TGを 設定する (ステップ ST1)。ここでは、追従用目標加速度算出部 21aにより追従用目 標加速度を算出し、定速用目標加速度算出部 21bにより定速用目標加速度を算出 し、コーナー加速禁止用目標加速度算出部 21cによりコーナー加速禁止用目標加 速度を算出し、これら算出された各目標加速度のうち最も値力 、さい目標加速度を 調停部 21dが選択し、この選択した目標加速度を目標加速度 TGとして設定する。
[0042] 次に、制御装置 2の制限値設定部 23は、上記設定された目標加速度 TGに基づ ヽ て基準制限値 Aを取得する (ステップ ST2)。ここでは、制限値設定部 23は、設定さ れた目標加速度 TGと、制御装置 2の図示しな ヽ記憶部に格納されて!ヽる設定された 目標加速度 TGと基準制限値 Aとに基づ ヽた基準制限値マップとから基準制限値 A を決定する。この基準制限値マップは、図 4に示すように、設定された目標加速度 T Gの正負と、この設定された目標加速度 TGの変化の正負とに基づいて、 4つの基準 制限値 A〜Aが設定されている。従って、制限値設定部 23は、今回、目標加速度
1 4
設定部 21により設定された目標加速度 TGの正負と、前回、目標加速度設定部 21に より設定された目標加速度 TGと今回設定された目標加速度 TGとの比較から今回設 定された目標加速度 TGが前回設定された目標加速度 TGに対して、所定期間(この 実施例では、 1秒当たり)で正負のいずれにどの程度変化した力とから、基準制限値 Aを決定する。
[0043] ここで、この 4つの基準制限値 A〜A (絶対値)は、目標加速度 TGが負の場合の
1 4
基準制限値 A〜A (絶対値)が目標加速度 TGが正の場合の基準制限値 A〜A (
3 4 1 2 絶対値)よりも大きくなるように設定されている。例えば同図に示す基準制限値マップ では、目標加速度 TGが正であり変化も正の場合の基準制限値 Aは 0. 05G/S,目 標加速度 TGが正であり変化が負の場合の基準制限値 Aは 0. 1GZS、目標加速
2
度 TGが負であり変化も負の場合の基準制限値 Aは 0. 2G/S,目標加速度 TGが
3
負であり変化が正の場合の基準制限値 Aは 0. 2GZSに設定されている。なお、 G
1
Zsとは、 1秒間当たりの加速度を表すものである。
[0044] 次に、制御装置 2の実加速度取得部 22は、図示しない自車両の実加速度 RGを取 得する (ステップ ST3)。ここでは、実加速度取得部 22は、 Gセンサ 6により検出され た自車両の実加速度 RGを取得する。なお、実加速度取得部 22は、上述のように、 取得した実加速度 RGを制限値設定部 23に出力する。
[0045] 次に、制御装置 2の制限値設定部 23は、制限値倍率 Kを算出する (ステップ ST4) 。ここでは、制限値設定部 23は、設定された目標加速度 TGと、実加速度 RGとに基 づいて制限値倍率 Kを算出する。制限値倍率 Kは、この実施例では、以下の式(1) により、算出される。なお、定数は、車両走行制御装置 1が搭載される車両の種類、こ の車両に搭載されているエンジンの特性などに基づいて決定されるものである。また 、この制限値倍率 Kは、 l〜nまでに制限される。ここで、 nは例えば 5程度である。 K= I TG - RG I /定数 - " (1)
[0046] 次に、制御装置 2の制限値設定部 23は、制限値 Sを算出する (ステップ ST5)。ここ では、制限値設定部 23は、上記決定された基準制限値 Aと、上記算出された制限値 倍率 Kとから制限値 Sを算出する。制限値 Sは、この実施例では、決定された基準制 限値 Aと算出された制限値倍率 Kとをカゝけることで算出される。つまり、制限値 Sは、 基準制限値 Aを何倍カゝした値となるため、設定された目標加速度 TGの 1秒間当たり 許容できる変化量を示すものである。なお、制限値設定部 23は、上述のように、算出 した制限値 Sを制駆動力制御部 24の目標加速度制限部 24aに出力する。
[0047] ここで、制限値 S (絶対値)は、上記式(1)に示すように制限値倍率 Kが、設定され た目標加速度 TGと実加速度 RGとの差が大きくなるほど大きくなるため、設定された 目標加速度 TGと実加速度 RGとの差が大きくなるほど大きくなる。つまり、制限値設 定部 23は、設定された目標加速度 TGと実加速度 RGとの差が小さい場合、すなわ ち車両走行制御装置 1により図示しない自車両の急激な加速、減速を行わない場合 は、制限値 Sを大きくしない。また、制限値設定部 23は、設定された目標加速度 TG と実加速度 RGとの差が大きい場合、すなわち車両走行制御装置 1により自車両の急 激な加速、減速が行われる場合は、制限値 Sを大きくする。
[0048] また、算出される制限値 S (絶対値)は、上述のように、基準制限値マップが設定さ れた目標加速度 TGが負の場合の基準制限値 A〜A (絶対値)が設定された目標
3 4
加速度 TGが正の場合の基準制限値 A〜A (絶対値)よりも大きくなるように設定され
1 2
ているため、設定された目標加速度 TGが負の場合のほうが、設定された目標加速 度 TGが正の場合よりも、大きくなる。
[0049] 次に、制御装置 2の目標加速度制限部 24aは、上記算出された制限値 Sにより制限 された目標加速度 SGを算出する (ステップ ST6)。ここでは、目標加速度制限部 24a は、この実施例では、 1秒当たり許容できる変化量として算出された制限値 Sに基づ いて、設定された目標加速度 TGを制限し、制限値 Sにより制限された目標加速度 S Gを算出する。
[0050] 次に、制御装置 2の制駆動力発生選択部 24bは、上記算出された制限値 Sにより 制限された目標加速度 SGに基づいて、制駆動力を算出し、この算出された制駆動 力を発生させる制駆動力発生手段を選択する (ステップ ST7)。ここでは、制駆動力 発生選択部 24bは、例えば図示しな ヽ自車両の現在の車速などの自車両の走行状 態からこの制限された目標加速度 SGを達成することができる制駆動力を算出する。 また、制駆動力発生選択部 24bは、制動力を発生するブレーキ装置 9、図示しない エンジンに制動力あるいは駆動力を発生させるスロットル装置 10、このエンジンが発 生する制動力あるいは駆動力を調整する変速装置 11の少なくともいずれか 1つから 、この算出された制駆動力を現在の自車両の走行状態において発生することができ る装置を選択する。
[0051] 次に、選択された制駆動力発生手段、すなわちブレーキ装置 9、スロットル装置 10 、変速装置 11の少なくともいずれか 1つは、上記算出された制駆動力を発生する (ス テツプ ST8)。ここでは、制御装置 2の制駆動力発生選択部 24bは、選択した制駆動 力発生手段が算出した制駆動力を発生できるようにこの選択した制駆動力発生手段 に制御信号を出力することで、この選択された制駆動力発生手段を制御する。
[0052] 以上ように、図 5に示すように、設定された目標加速度 TG (同図点線)と実加速度 R G (同図一点鎖線)との差が小さい場合、制限値倍率 Kが 1あるいは 1に近づくため、 制限値 Sが大きくならず、制限された目標加速度 SG (同図実線)は、設定された目標 加速度 TGに到達し難くなる。従って、車両走行制御装置 1は、定速走行制御を行つ ている場合や、先行車両追従走行制御を行っている際に、先行車両が定速で走行し て ヽる場合などの設定された目標加速度 TGと実加速度 RGとの差が小さ 、通常走 行時には、加減速を滑らかに行い、設定された目標加速度 TGに対する追従性よりも 自車両の搭乗員にとって乗り心地の悪ィ匕の抑制を重視した車両走行制御を行うこと ができる。
[0053] 一方、設定された目標加速度 TGと実加速度 RGとの差が大きい場合、制限値倍率 Κが ηに近づくため、制限値 Sが大きくなり、制限された目標加速度 SGは、設定され た目標加速度 TGに到達し易くなる。従って、車両走行制御装置 1は、定速走行制御 を行って!/ヽる状態から先行車両追従走行制御に移行する場合 (先行車両が図示しな V、自車両が走行する車線に進入した直後)や、先行車両追従走行制御を行って 、る 状態から定速走行制御に移行する場合 (自車両が走行する車線カゝら先行車両カ^、 なくなった直後)などの設定された目標加速度と実加速度との差が大き!、緊急走行 時には、加減速を急激に行うことを許容し、自車両の搭乗員にとって乗り心地の悪ィ匕 の抑制よりも設定された目標減速度に対する追従性の向上を重視した車両走行制 御を行うことができる。これらにより、車両走行制御装置 1は、自車両の走行状態に応 じて、加減速を滑らかに行い、設定された目標減速度に対する追従性を向上するこ とがでさる。
[0054] また、この実施例に示す車両走行制御装置 1では、設定された目標加速度 TGが 負である場合、すなわち制駆動力発生手段であるブレーキ装置 9、スロットル装置 10 、変速装置 11の少なくともいずれか 1つによって制動力を発生し、図示しない自車両 を減速する場合は、この自車両を加速する場合と比較して、制限値 Sによって制限さ れた目標加速度 SGを設定された目標加速度 TGにより早く到達させることができる。 つまり、自車両を減速する場合は、自車両を加速する場合と比較して、設定された目 標減速度に対する追従性をさらに向上させることができる。従って、車両走行制御装 置 1は、例えば定速走行制御を行っている状態から先行車両追従走行制御に移行 する場合 (先行車両が図示しな!ヽ自車両が走行する車線に進入した直後)や、先行 車両追従制御走行を行っている際に、先行車両が大きく減速した場合など負である 設定された目標加速度 TGと検出された実加速度 RGとの差が大きくなる際に、自車 両の制動初期からこの自車両を大きく減速させることができる。これにより、車両走行 制御装置 1は、自車両の安全性を重視した車両走行制御を行うことができる。
産業上の利用可能性
以上のように、この発明に力かる車両走行制御装置および車両走行制御方法は、 目標加速度を設定し、この目標加速度に応じた制駆動力を発生させる車両走行制 御装置および車両走行制御方法に有用であり、特に、車両の走行状態に応じて、加 減速を滑らかに行い、設定された目標減速度に対する追従性を向上するのに適して いる。

Claims

請求の範囲
[1] 自車両の目標加速度を設定する目標加速度設定手段と、
前記自車両の実加速度を取得する実加速度取得手段と、
目標加速度の変化を制限する制限値を設定する制限値設定手段と、 前記設定された制限値に基づ 、て目標加速度を制限し、当該制限された目標加 速度に基づいた制駆動力を発生するように制駆動力発生手段を制御する制駆動力 制御手段と、
を備え、
前記制限値設定手段は、前記設定された目標加速度と前記検出された実加速度 との差が大きいほど、前記制限値を大きく設定することを特徴とする車両走行制御装 置。
[2] 前記制限値設定手段は、前記設定された目標加速度が負である場合における制 限値を前記設定された目標加速度が正である場合における制限値よりも大きく設定 する請求項 1に記載の車両走行制御装置。
[3] 自車両の目標加速度を設定する手順と、
前記自車両の実加速度を取得する手順と、
前記設定された目標加速度と前記検出された実加速度との差が大き!、ほど、目標 加速度の変化を制限する制限値を大きく設定する手順と、
前記設定された制限値に基づいて目標加速度を制限する手順と、
前記制限された目標加速度に基づ!、て制駆動力発生手段に制駆動力に応じた制 駆動力を発生させる手順と、
を含むことを特徴とする車両走行制御方法。
PCT/JP2007/056075 2006-03-24 2007-03-23 車両走行制御装置および車両走行制御方法 WO2007111267A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07739516A EP2000380A4 (en) 2006-03-24 2007-03-23 DEVICE AND METHOD FOR DRIVING A VEHICLE
US12/278,462 US20090118958A1 (en) 2006-03-24 2007-03-23 Vehicle travel control device and vehicle travel control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006083779A JP2007255382A (ja) 2006-03-24 2006-03-24 車両走行制御装置および車両走行制御方法
JP2006-083779 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007111267A1 true WO2007111267A1 (ja) 2007-10-04

Family

ID=38541184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056075 WO2007111267A1 (ja) 2006-03-24 2007-03-23 車両走行制御装置および車両走行制御方法

Country Status (5)

Country Link
US (1) US20090118958A1 (ja)
EP (1) EP2000380A4 (ja)
JP (1) JP2007255382A (ja)
CN (1) CN101405175A (ja)
WO (1) WO2007111267A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905702B (zh) * 2010-06-02 2012-02-01 魏敏吉 无线网络控制的轨道交通系统
GB2483720B (en) 2010-09-20 2017-10-25 Jaguar Land Rover Ltd Improvements relating to brake control
JP5520766B2 (ja) * 2010-09-29 2014-06-11 日立オートモティブシステムズ株式会社 車両走行制御装置
WO2012101725A1 (ja) * 2011-01-25 2012-08-02 日産自動車株式会社 車両用減速度制御装置、車両用減速度制御方法
AU2015354564B2 (en) * 2015-11-30 2017-11-09 Komatsu Ltd. Work machine control system, work machine, work machine management system, and method for controlling work machine
US10108197B2 (en) * 2015-12-08 2018-10-23 Ford Global Technologies, Llc Deceleration determination of a vehicle
US11400932B2 (en) * 2017-07-03 2022-08-02 Nissan Motor Co., Ltd. Target vehicle speed generation method and target vehicle speed generation device for driving-assisted vehicle
SG11201811002UA (en) * 2017-10-12 2019-05-30 Beijing Didi Infinity Technology & Development Co Ltd Systems and methods for braking control
JP2019111937A (ja) * 2017-12-22 2019-07-11 トヨタ自動車株式会社 車両の制御装置
CN108860178A (zh) * 2018-07-12 2018-11-23 中车株洲电力机车有限公司 一种低地板有轨电车的控制方法、系统和低地板有轨电车
US20220041162A1 (en) * 2018-09-25 2022-02-10 Nissan Motor Co., Ltd. Vehicle control method and vehicle control device
EP3720098B1 (en) * 2019-04-02 2023-10-11 The Raymond Corporation Systems and methods for an arbitration controller to arbitrate multiple automation requests on a warehouse material handling vehicle
JP7068365B2 (ja) * 2020-03-05 2022-05-16 本田技研工業株式会社 車両制御装置、車両及び車両制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297664A (ja) * 1999-04-12 2000-10-24 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2002029285A (ja) * 2000-07-14 2002-01-29 Nissan Motor Co Ltd 車両用追従走行制御装置
JP2003312311A (ja) * 2002-04-26 2003-11-06 Daihatsu Motor Co Ltd 車両走行制御装置および方法
JP2006044326A (ja) * 2004-07-30 2006-02-16 Toyota Motor Corp 車間距離制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532929A (en) * 1992-12-16 1996-07-02 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling vehicle driving power
JPH08318765A (ja) * 1995-05-25 1996-12-03 Hitachi Ltd 情報化自動車制御装置及び方法
JP4419331B2 (ja) * 2001-02-02 2010-02-24 株式会社デンソー 車両の走行制御装置
US7631833B1 (en) * 2007-08-03 2009-12-15 The United States Of America As Represented By The Secretary Of The Navy Smart counter asymmetric threat micromunition with autonomous target selection and homing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297664A (ja) * 1999-04-12 2000-10-24 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2002029285A (ja) * 2000-07-14 2002-01-29 Nissan Motor Co Ltd 車両用追従走行制御装置
JP2003312311A (ja) * 2002-04-26 2003-11-06 Daihatsu Motor Co Ltd 車両走行制御装置および方法
JP2006044326A (ja) * 2004-07-30 2006-02-16 Toyota Motor Corp 車間距離制御装置

Also Published As

Publication number Publication date
EP2000380A9 (en) 2009-03-25
EP2000380A2 (en) 2008-12-10
JP2007255382A (ja) 2007-10-04
EP2000380A4 (en) 2009-03-18
CN101405175A (zh) 2009-04-08
US20090118958A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2007111267A1 (ja) 車両走行制御装置および車両走行制御方法
US11370432B2 (en) Vehicle control apparatus
CN109318891B (zh) 驾驶辅助系统
JP3681052B2 (ja) 追従走行制御装置
JP4172434B2 (ja) 車間距離制御装置
JP4246084B2 (ja) 車両用走行制御装置
US8666631B2 (en) Vehicle travel control device
JP7226348B2 (ja) 運転支援装置
US8359150B2 (en) Following distance control device and following distance control method
JP7139875B2 (ja) 車両の制御装置
JP4660393B2 (ja) 車両のクルーズコントロール装置
JPH11348746A (ja) 車両の走行制御装置
JP2024051012A (ja) 車両運転支援装置
JP2007522021A (ja) 自動車のための距離制御付き速度制限方法及び速度制限装置
JP2022137732A (ja) 車両の走行制御装置
JP3951781B2 (ja) 車両走行制御装置
JP2010096151A (ja) 車速制御装置、車速制御方法
JP6361886B2 (ja) 車両走行制御装置
JP4904924B2 (ja) 車両走行制御装置および車両走行制御方法
JP2021109558A (ja) 車両走行制御装置
JPH11334554A (ja) 車両の走行制御装置
JP6380308B2 (ja) 車両走行制御装置
JPH11334553A (ja) 車両の走行制御装置
JP7343840B2 (ja) 車両制御装置
JP3890932B2 (ja) 先行車両追従制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12278462

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007739516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780010317.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE