WO2007111186A1 - 基地局、移動局および伝搬路測定用信号の送信制御方法 - Google Patents

基地局、移動局および伝搬路測定用信号の送信制御方法 Download PDF

Info

Publication number
WO2007111186A1
WO2007111186A1 PCT/JP2007/055576 JP2007055576W WO2007111186A1 WO 2007111186 A1 WO2007111186 A1 WO 2007111186A1 JP 2007055576 W JP2007055576 W JP 2007055576W WO 2007111186 A1 WO2007111186 A1 WO 2007111186A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
measurement signal
mobile station
base station
propagation path
Prior art date
Application number
PCT/JP2007/055576
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Ofuji
Kenichi Higuchi
Mamoru Sawahashi
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to EP07739019A priority Critical patent/EP1998482A4/en
Priority to BRPI0709040-4A priority patent/BRPI0709040A2/pt
Priority to MX2008011887A priority patent/MX2008011887A/es
Priority to CN2007800162076A priority patent/CN101438522B/zh
Priority to US12/293,511 priority patent/US8345636B2/en
Publication of WO2007111186A1 publication Critical patent/WO2007111186A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Base station mobile station, and transmission path measurement signal transmission control method
  • the present invention relates to a base station, a mobile station, and a transmission path measurement signal transmission control method.
  • the 4th generation mobile communication system flexibly supports a multi-cell environment such as a cellular system to an isolated cell environment such as a hot spot area or indoors, and further improves the frequency utilization efficiency in both cell environments. It is hoped that it will increase.
  • the following radio access system has been proposed for the link of the mobile station power to the base station (hereinafter referred to as uplink).
  • Single carrier transmission system ! Jx.
  • IiD3 ⁇ 4 CDMA (.airect sequence code division multiple a ccess) system
  • IFDMA Interleaved Frequency Division Multiple Access
  • VSCRF variable spreading factor 'chip repetition factor
  • CDMA Variable Spreading and Chip Repetition Factors
  • OFDM Orthogonal Frequency Divisi- on Multiplexing
  • MC—CDMA Multi-carrier code division multiple access
  • VS F-Spread OFDM Variable Spreading Factor Spread OFDM
  • the peak power is small with respect to the power consumption of the terminal, so that the backoff of the transmission power amplifier can be reduced and the power efficiency is good.
  • PAPR peak-to-peak
  • -Single carrier transmission which can increase the efficiency of transmission amplifiers with a small average power ratio, is suitable. Also, by applying single carrier transmission, farther Since the transmission signal reaches, the coverage can be expanded.
  • the user terminal is required to transmit data using a band in a better reception state. It is necessary to transmit a broadband state signal.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-297756
  • the present invention has been made in view of the above problems, and provides a base station, a mobile station, and a transmission method of a propagation path state measurement signal that can improve the measurement accuracy of the propagation path state. With the goal.
  • a base station of the present invention includes:
  • One of the features is that it comprises a transmission method notification means for notifying the mobile station of information indicating the determined transmission method.
  • the mobile station it is possible to cause the mobile station to transmit a signal for measuring the propagation path state at intervals in the frequency domain using a multicarrier signal. Further, it is possible to measure the reception channel state over a wide frequency range without increasing the total transmission bandwidth of the propagation path state measurement signal, that is, without reducing the power density.
  • the channel state One of the features is that data mapping means for mapping the signal sequence of the measurement signal to the subcarrier is provided.
  • a transmission control method for a propagation path measurement signal of the present invention includes:
  • the signal sequence of the propagation path state measurement signal is converted into a subcarrier.
  • the mobile station has a propagation path measurement signal transmission step of transmitting the propagation path measurement signal.
  • the base station can cause the mobile station to transmit a signal for measuring the propagation path state at intervals in the frequency domain using a multicarrier signal.
  • the base station must measure the state of the reception channel in a wide frequency range without increasing the total transmission bandwidth of the propagation path state measurement signal, that is, without reducing the power density. Can do.
  • FIG. 1 is a partial block diagram showing a transmission apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing transmission band allocation of a channel state measurement signal according to an embodiment of the present invention.
  • FIG. 3 Assignment of transmission band of a propagation path state measurement signal according to an embodiment of the present invention. It is explanatory drawing shown.
  • FIG. 4 is a partial block diagram illustrating a receiving apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing the operation of the wireless communication system according to one embodiment of the present invention. Explanation of symbols
  • the radio communication system includes a base station 100 and a mobile station 200.
  • Base station 100 includes a transmission device, and transmission device receives transmission method determination unit 102 to which path loss and maximum transmission power value notified from mobile station 200 are input, and the output signal of transmission method determination unit 102 is input.
  • a code management unit 110 connected to the code allocation unit 106;
  • Transmission scheme determining section 102 determines the transmission scheme of the propagation path state measurement signal transmitted by mobile station 200. For example, the transmission scheme determination unit 102 determines whether to transmit a propagation path state measurement signal to each user using a single carrier transmission scheme or to transmit a propagation path state measurement signal using a multicarrier transmission scheme.
  • the transmission scheme determining unit 102 determines that a user located in the vicinity of the base station is to transmit a channel state measurement signal by the multicarrier transmission scheme. Further, transmission scheme determining section 102 determines that a user other than the users located in the vicinity of the base station is to transmit a propagation path state measurement signal using the single carrier transmission scheme.
  • the transmission method determination unit 102 performs path loss and maximum transmission power notified from the mobile station 200. Based on the force value, it is determined whether to transmit the channel measurement signal using the multicarrier system or the single carrier system.
  • the mobile station 200 transmits a propagation path measurement signal in a wide band, the transmission power per unit band becomes small. Therefore, in base station 100, the reception level of the received channel measurement signal is lowered, and the measurement accuracy is deteriorated. In this case, at base station 100
  • the mobile stations that can transmit in a wide band are limited.
  • the mobile station that transmits by the multi-carrier scheme and the mobile station that transmits by the single-carrier scheme are frequency division multiplexed (FDM).
  • code division multiple access may be used between mobile stations transmitting by the multicarrier method.
  • frequency division multiple access may be used between mobile stations that transmit using the multicarrier method.
  • frequency division multiple access FDM A
  • code division multiple access CDMA
  • IFDMA may be performed between a mobile station transmitting using the multicarrier scheme and a mobile station transmitting using the single carrier scheme.
  • frequency division multiple access F DMA
  • code division multiple access CDMA
  • FDMA frequency division multiple access
  • CDMA code division multiple access
  • the base station 100 does not widen the total transmission bandwidth of the propagation path state measurement signal, that is, without reducing the power density, the reception channel in a wide frequency range.
  • the state can be measured.
  • a user terminal having a sufficient transmission power is caused to transmit a signal for measuring a propagation path state at intervals in the frequency domain by a multicarrier method.
  • transmission scheme determining section 102 estimates transmission power that gives a predefined reception quality based on the notified path loss, and the difference between the maximum transmission power value and the estimated value is a predetermined threshold value. It is decided to transmit the channel measurement signal to the above mobile station using the multicarrier method. Determine.
  • Transmission band determining section 104 determines the transmission band of the propagation path state measurement signal.
  • the transmission band determining unit 104 does not transmit a channel state measurement signal to the mobile station determined by the transmission method determining unit 102 using the multicarrier transmission method but on the frequency axis instead of a continuous band. Allocate continuous bandwidth. Further, the transmission band determining unit 104 allocates a continuous band by narrowing the band to the mobile station determined by the transmission method determining unit 102 to transmit the channel state measurement signal by the single carrier transmission method.
  • the transmission band determining unit 104 determines that the system bandwidth is to be transmitted. If it is determined that the system bandwidth is to be transmitted, a plurality of discontinuous frequency blocks are allocated among the frequency blocks obtained by dividing the system bandwidth into blocks of continuous frequency subcarrier power (UEs with sufficient transmission power), If it is determined to transmit using the single carrier method, one or more frequency blocks that are contiguous in the frequency domain are assigned (UE with no margin for transmission power).
  • the mobile station 200 transmits a channel measurement signal using the allocated band.
  • the base station 100 performs scheduling based on the reception state of the propagation path measurement signal, and sets the transmission band of the data channel within the range of the band in which each mobile station transmits the propagation path measurement signal. assign.
  • the transmission band determination unit 104 determines that the transmission frequency is transmitted by a plurality of discontinuous frequency blocks having a frequency subcarrier power that is discretely distributed within the system bandwidth.
  • a plurality of discontinuous frequency blocks are allocated. If a certain UE) decides to transmit using a single carrier scheme, it allocates one or more continuous distributed frequency blocks (UE with no available transmission power).
  • Mobile station 200 transmits a channel measurement signal using the allocated band.
  • the base station 100 executes scheduling based on the reception state of the propagation path measurement signal, Allocate a band for data channel transmission within the range of the band in which each mobile station transmits the signal for channel measurement.
  • the transmission band management unit 108 manages the allocation status of the frequency bands allocated by the transmission band determination unit 104. That is, the transmission bandwidth management unit 108 manages the usage status of the current bandwidth by the user and the power that which user is using which bandwidth.
  • the code assigning unit 106 determines the code of the channel state measurement signal. For example, the code assignment unit 106 assigns a code so that each mobile station that transmits a channel measurement signal is orthogonal on the frequency axis. Further, the code allocation unit 106 notifies the mobile station 200 of the transmission state, transmission band, and code of the propagation path state measurement signal.
  • the code management unit 110 manages the code assignment status for the channel state measurement signal. That is, the code management unit 110 manages the usage status of the code.
  • the mobile station 200 includes a receiving device, and the receiving device receives a transmission signal sequence generation unit 202 to which information indicating a propagation path state measurement code notified by the base station 100 is input, and a transmission signal sequence generation unit.
  • a DFT (Discrete Fourier transform) unit 204 to which an output signal of 202 is input, a data mapping unit to which an output signal of the DFT unit 204, information indicating a band notified by the base station 100 and information indicating a transmission method are input 206 and an IFFT (Inverse Fast Fourier Transform) unit 208 to which an output signal of the data mapping unit 206 is input.
  • IFFT Inverse Fast Fourier Transform
  • Transmission signal sequence generation section 202 generates a signal sequence of a channel state measurement signal based on the notified code, and inputs it to DFT section 204.
  • the DFT unit 204 performs a discrete Fourier transform process on the input signal sequence of the propagation path state measurement signal, generates a signal sequence, and inputs the signal sequence to the data mapping unit 206. For example, the DFT unit 204 converts a time domain waveform into a frequency domain waveform.
  • Data mapping section 206 maps the generated signal sequence to subcarriers based on the notified transmission method and transmission band, and inputs them to IFFT section 208.
  • the data mapping unit 206 Is a signal sequence of channel state measurement signals in a plurality of discontinuous frequency blocks among the frequency blocks obtained by dividing the system bandwidth into frequency subcarrier blocks when it is determined that transmission is performed by the multicarrier method. If it is determined that the system bandwidth is to be transmitted by the single carrier method, the signal sequence of the channel state measurement signal is mapped to a frequency block obtained by dividing the system bandwidth into continuous frequency subcarrier blocks.
  • the data mapping unit 206 is determined to transmit using a multicarrier scheme.
  • the signal sequence of the channel state measurement signal is mapped to a plurality of discontinuous frequency blocks among the dispersive frequency blocks having the frequency subcarrier power discretely dispersed within the system bandwidth, and the cinder
  • the signal sequence of the channel state measurement signal is mapped to the distributed frequency block having the frequency subcarrier power dispersed discretely within the system bandwidth.
  • IFFT section 208 performs an inverse Fourier transform process on the signal sequence mapped to the subcarrier, and transmits the result.
  • the mobile station 200 measures the path loss between the mobile station 200 and the base station 100 by measuring the transmission power using the downlink pilot signal that the base station 100 always transmits, and the mobile station 200 Together with the maximum transmission power value of the base station 100 (step S502).
  • the base station 100 determines the propagation path state measurement signal based on the path loss between the mobile station and the base station notified from the mobile station 200 and the maximum transmission power value of the mobile station! The transmission method is determined (step S504).
  • base station 100 determines the transmission band and code of the propagation path state measurement signal of mobile station 200 (step S506).
  • Base station 100 determines a transmission band and a code of a channel state measurement signal at a predetermined cycle.
  • base station 100 assigns a code so that each mobile station is orthogonal on the frequency axis.
  • base station 100 notifies mobile station 200 of the transmission state, transmission band, and code of the propagation path state measurement signal (step S508).
  • mobile station 200 transmits a channel state measurement signal using the transmission method, transmission band and code notified from base station 100 (step S510).
  • base station 100 determines the propagation state measurement signal reception state of each mobile station.
  • step S512 scheduling is performed, and a band for data channel transmission is allocated within the range of the band in which each mobile station transmits a propagation path state measurement signal (step S512).
  • the base station, mobile station, and propagation path measurement signal transmission control method according to the present invention can be applied to a radio communication system.

Abstract

 基地局に、伝搬路測定用信号をマルチキャリア方式により送信させるかシングルキャリア方式により送信させるかを決定する送信方式決定手段と、決定された送信方式を示す情報を前記移動局に通知する送信方式通知手段とを備え、移動局に、基地局により通知された伝搬路測定用信号をマルチキャリア方式により送信させるかシングルキャリア方式により送信させるかを示す送信方式に基づいて、伝搬路状態測定用信号の信号系列をサブキャリアにマッピングするデータマッピング手段を備えることにより達成される。

Description

明 細 書
基地局、移動局および伝搬路測定用信号の送信制御方法
技術分野
[0001] 本発明は、基地局、移動局および伝搬路測定用信号の送信制御方法に関する。
背景技術
[0002] IMT- 2000 (International Mobile Telecommunication 2000)の次世代 の移動通信方式である第 4世代移動通信方式 (4G)の開発が進められている。
[0003] 第 4世代移動通信方式では、セルラシステムを始めとするマルチセル環境から、ホ ットスポットエリアや屋内などの孤立セル環境までを柔軟にサポートし、さらに双方の セル環境で周波数利用効率の増大を図ることが望まれている。
[0004] 第 4世代移動通信方式において移動局力も基地局へのリンク(以下、上りリンクと呼 ぶ)については、以下の無線アクセス方式が提案されている。シングルキャリア伝送 方式 ま、 !Jx. iiD¾― CDMA (.airect sequence code division multiple a ccess)方式、 IFDMA (Interleaved Frequency Division Multiple Access) 方式、可変拡散率'チップ繰り返しファクタ(VSCRF— CDMA : Variable Spread ing and Chip Repetition Factors— CDMA)方式が提案されている(例えば 、特許文献 1参照)。
[0005] マルチキャリア伝送方式では、例えば OFDM (Orthogonal Frequency Divisi on Multiplexing)方式、 Spread OFDM、マルチキャリア符号分割多元接続(M C— CDMA : Multi— Carrier Code Division Multiple Access)方式、 VS F - Spread OFDM (Variable Spreading Factor Spread OFDM)方式が 提案されている。
[0006] シングルキャリア方式は、端末の消費電力に関して、ピーク電力が小さいので、送 信電力増幅器のバックオフを小さくでき、電力効率がよい。
[0007] また、上りリンクではユーザ端末の送信電力の制限の観点から、 PAPR (peak-to
- average power ratio)が小さぐ送信アンプの効率を高く出来る、シングルキヤ リア伝送が適している。また、シングルキャリア伝送を適用することにより、より遠くまで 送信信号が届くため、カバレッジを広げることができる。
[0008] 一方、周波数選択性フ ージングによる周波数領域の伝搬路変動を利用する、周 波数スケジューリング法においては、より良好な受信状態の帯域を用いて、データの 伝送を行うために、ユーザ端末は広帯域の伝搬路状態測定用信号を送信する必要 がある。
特許文献 1:特開 2004 - 297756号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、上述した背景技術には以下の問題がある。
[0010] 広帯域で伝搬路状態測定用信号を送信する場合、帯域あたりの送信電力密度、基 地局側では、受信信号電力密度が小さくなるため、基地局における伝搬路状態の測 定精度が劣化する問題がある。
[0011] そこで本発明は、上記問題に鑑みてなされたものであり、伝搬路状態の測定精度を 向上させることができる基地局、移動局および伝搬路状態測定用信号の送信方法を 提供することを目的とする。
課題を解決するための手段
[0012] 上記課題を解決するため、本発明の基地局は、
移動局に対して、伝搬路測定用信号をマルチキャリア方式により送信させるかシン ダルキャリア方式により送信させるかを決定する送信方式決定手段と、
決定された送信方式を示す情報を前記移動局に通知する送信方式通知手段と を備えることを特徴の 1つとする。
[0013] このように構成することにより、移動局に対して、マルチキャリア信号により、周波数 領域で、間隔を開けて、伝搬路状態測定用の信号を送信させることができる。また、 伝搬路状態測定用信号のトータルの送信帯域幅を広げずに、すなわち電力密度を 小さくせずに、周波数領域の広 、範囲の受信チャネル状態を測定することができる。
[0014] また、本発明の移動局は、
基地局により通知された伝搬路測定用信号をマルチキャリア方式により送信させる かシングルキャリア方式により送信させるかを示す送信方式に基づいて、伝搬路状態 測定用信号の信号系列をサブキャリアにマッピングするデータマッピング手段 を備えることを特徴の 1つとする。
[0015] このように構成することにより、マルチキャリア信号により、周波数領域で、間隔を開 けて、伝搬路状態測定用の信号を送信することができる。
[0016] また、本発明の伝搬路測定用信号の送信制御方法は、
基地局が、移動局に対して、伝搬路測定用信号をマルチキャリア方式により送信さ せるかシングルキャリア方式により送信させるかを決定する送信方式決定ステップと、 基地局が、決定された送信方式を示す情報を前記移動局に通知する送信方式通 知ステップと、
移動局が、基地局により通知された伝搬路測定用信号をマルチキャリア方式により 送信させるかシングルキャリア方式により送信させるかを示す送信方式に基づいて、 伝搬路状態測定用信号の信号系列をサブキャリアにマッピングするデータマッピング ステップと、
移動局が、前記伝搬路測定用信号を送信する伝搬路測定用信号送信ステップと を有することを特徴の 1つとする。
[0017] このようにすることにより、基地局は、移動局に対して、マルチキャリア信号により、 周波数領域で、間隔を開けて、伝搬路状態測定用の信号を送信させることができる。 また、基地局は、伝搬路状態測定用信号のトータルの送信帯域幅を広げずに、すな わち電力密度を小さくせずに、周波数領域の広!、範囲の受信チャネル状態を測定 することができる。
発明の効果
[0018] 本発明の実施例によれば、伝搬路状態の測定精度を向上させることができる基地 局、移動局および伝搬路状態測定用信号の送信方法を実現できる。
図面の簡単な説明
[0019] [図 1]本発明の一実施例に力かる送信装置を示す部分ブロック図である。
[図 2]本発明の一実施例にかかる伝搬路状態測定用信号の送信帯域の割り当てを 示す説明図である。
[図 3]本発明の一実施例にかかる伝搬路状態測定用信号の送信帯域の割り当てを 示す説明図である。
[図 4]本発明の一実施例に力かる受信装置を示す部分ブロック図である。
[図 5]本発明の一実施例に力かる無線通信システムの動作を示すフロー図である。 符号の説明
[0020] 10 送信装置
20 受信装置
発明を実施するための最良の形態
[0021] 次に、本発明の実施例について図面を参照して説明する。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号 を用い、繰り返しの説明は省略する。
[0022] 本発明の実施例に力かる無線通信システムについて説明する。
[0023] 本実施例に力かる無線通信システムは、基地局 100と移動局 200とを備える。
[0024] 次に、本実施例に力かる基地局 100について、図 1を参照して説明する。
[0025] 基地局 100は送信装置を備え、送信装置は、移動局 200より通知されるパスロス、 最大送信電力値が入力される送信方式決定部 102と、送信方式決定部 102の出力 信号が入力される送信帯域決定部 104と、送信帯域決定部 104と接続された送信帯 域管理部 108と、送信帯域決定部 104の出力信号が入力される送信方式通知手段 としての符号割り当て部 106と、符号割り当て部 106と接続された符号管理部 110と を備える。
[0026] 送信方式決定部 102は、移動局 200が送信する伝搬路状態測定用信号の送信方 式を決定する。例えば、送信方式決定部 102は、各ユーザに対してシングルキャリア 送信方式により伝搬路状態測定用信号を送信させるか、マルチキャリア送信方式に より伝搬路状態測定用信号を送信させるかを決定する。
[0027] 例えば、送信方式決定部 102は、基地局の近傍に位置するユーザに対してマルチ キャリア送信方式により伝搬路状態測定用信号を送信させると決定する。また、送信 方式決定部 102は、基地局の近傍に位置するユーザ以外のユーザに対して、シング ルキャリア送信方式により伝搬路状態測定用信号を送信させると決定する。
[0028] 例えば、送信方式決定部 102は、移動局 200より通知されるパスロス、最大送信電 力値に基づ 、て、伝搬路測定用信号をマルチキャリア方式により送信させるかシング ルキャリア方式により送信させるかを決定する。
[0029] 移動局 200が、広い帯域で伝搬路測定用信号を送信した場合、単位帯域当たりの 送信電力は小さくなる。したがって、基地局 100においては受信される伝搬路測定用 信号の受信レベルが低くなり、測定精度が悪くなる。この場合、基地局 100において
、伝搬路測定用信号の受信レベルが悪くならな 、移動局を選択するようにした場合、 広い帯域で送信できる移動局が限定される。
[0030] そこで、本実施例においては、マルチキャリア方式により送信する移動局と、シング ルキャリア方式により送信する移動局とを周波数分割多重 (FDM)する。
[0031] この場合、マルチキャリア方式により送信する移動局間を符号分割多重接続 (CD MA)するようにしてもよい。さらに、マルチキャリア方式により送信する移動局間を周 波数分割多元接続 (FDMA)するようにしてもよ 、。
[0032] また、シングルキャリア方式により送信する移動局間を周波数分割多重接続 (FDM A)および符号分割多重接続 (CDMA)するようにしてもょ ヽ。
[0033] また、マルチキャリア方式により送信する移動局と、シングルキャリア方式により送信 する移動局とを IFDMAするようにしてもょ 、。
[0034] この場合、マルチキャリア方式により送信する移動局間を周波数分割多元接続 (F DMA)および符号分割多重接続 (CDMA)するようにしてもょ 、。
シングルキャリア方式により送信する移動局間を周波数分割多元接続 (FDMA)およ び符号分割多重接続 (CDMA)するようにしてもょ ヽ。
[0035] このようにすることにより、基地局 100は、伝搬路状態測定用信号のトータルの送信 帯域幅を広げずに、すなわち電力密度を小さくせずに、周波数領域の広い範囲の受 信チャネル状態を測定することができる。
[0036] 例えば、送信電力に余裕のあるユーザ端末に対して、マルチキャリア方式により、 周波数領域で間隔を空けて、伝搬路状態測定用の信号を送信させる。この場合、送 信方式決定部 102は、通知されたパスロスに基づいて、予め規定した受信品質とな るような送信電力を推定し、最大送信電力値と該推定値との差が所定の閾値以上で ある移動局に対して、伝搬路測定用信号をマルチキャリア方式により送信させると決 定する。
[0037] 送信帯域決定部 104は、伝搬路状態測定用信号の送信帯域を決定する。
[0038] 例えば、送信帯域決定部 104は、送信方式決定部 102によりマルチキャリア送信 方式により伝搬路状態測定用信号を送信させると決定した移動局に対し、連続した 帯域ではなく周波数軸上で不連続な帯域を割り当てる。また、送信帯域決定部 104 は、送信方式決定部 102によりシングルキャリア送信方式により伝搬路状態測定用 信号を送信させると決定した移動局に対し、帯域を狭めて連続した帯域を割り当てる
[0039] 例えば、マルチキャリア方式により送信する移動局と、シングルキャリア方式により 送信する移動局とを周波数分割多重するシステムの場合、送信帯域決定部 104は、 図 2に示すように、マルチキャリア方式により送信させると決定された場合に、システ ム帯域幅を連続する周波数サブキャリア力 なるブロックに分割した周波数ブロック のうち、不連続な複数の周波数ブロックを割り当て (送信電力に余裕のある UE)、シ ングルキャリア方式により送信させると決定された場合に、周波数領域で連続する 1 つ以上の周波数ブロックを割り当てる(送信電力に余裕のな!ヽ UE)。
[0040] 移動局 200は、割り当てられた帯域を使用して伝搬路測定用信号を送信する。基 地局 100は、伝搬路測定用信号の受信状態に基づいてスケジューリングを実行し、 各移動局が伝搬路測定用信号を送信している帯域の範囲内で、データチャネルの 送信用の帯域を割り当てる。
[0041] また、例えばマルチキャリア方式により送信する移動局と、シングルキャリア方式に より送信する移動局とを IFDMAするシステムの場合、送信帯域決定部 104は、図 3 に示すように、マルチキャリア方式により送信させると決定された場合に、システム帯 域幅内に離散的に分散した周波数サブキャリア力 なる分散型周波数ブロックのうち 、不連続な複数の分散型周波数ブロックを割り当て (送信電力に余裕のある UE)、シ ングルキャリア方式により送信させると決定された場合に、 1つ以上の連続した分散 型周波数ブロックを割り当てる(送信電力に余裕のな 、UE)。
[0042] 移動局 200は、割り当てられた帯域を使用して伝搬路測定用信号を送信する。基 地局 100は、伝搬路測定用信号の受信状態に基づいてスケジューリングを実行し、 各移動局が伝搬路測定用信号を送信している帯域の範囲内で、データチャネルの 送信用の帯域を割り当てる。
[0043] 送信帯域管理部 108は、送信帯域決定部 104により割り当てられた周波数帯域の 割り当て状況を管理する。すなわち、送信帯域管理部 108は、現在の帯域のユーザ による使用状況、どの帯域をどのユーザが使用している力を管理する。
[0044] 符号割り当て部 106は、伝搬路状態測定用信号の符号を決定する。例えば、符号 割り当て部 106は、伝搬路測定用信号を送信する各移動局を、周波数軸上で直交さ せるように符号を割り当てる。また、符号割り当て部 106は、移動局 200へ、伝搬路状 態測定用信号の送信方式、送信帯域および符号を通知する。
[0045] 符号管理部 110は、伝搬路状態測定用信号用に対する符号の割り当て状況を管 理する。すなわち、符号管理部 110は、符号の使用状況を管理する。
[0046] 次に、本実施例に力かる移動局 200について、図 4を参照して説明する。
[0047] 移動局 200は受信装置を備え、受信装置は、基地局 100により通知される伝搬路 状態測定用の符号を示す情報が入力される送信信号系列生成部 202と、送信信号 系列生成部 202の出力信号が入力される DFT(Discrete Fourier transform) 部 204と、 DFT部 204の出力信号と、基地局 100により通知される帯域を示す情報 および送信方式を示す情報が入力されるデータマッピング部 206と、データマツピン グ部 206の出力信号が入力される IFFT(Inverse Fast Fourier Transform)部 208とを備える。
[0048] 送信信号系列生成部 202は、通知された符号に基づき、伝搬路状態測定用信号 の信号系列を生成し、 DFT部 204に入力する。
[0049] DFT部 204は、入力された伝搬路状態測定用信号の信号系列に対して、離散的 フーリエ変換処理を行い、信号系列を生成し、データマッピング部 206に入力する。 例えば、 DFT部 204は、時間領域の波形を周波数領域の波形に変換する。
[0050] データマッピング部 206は、通知された送信方式、送信帯域に基づき、生成した信 号系列をサブキャリアにマッピングし、 IFFT部 208に入力する。
[0051] 例えば、マルチキャリア方式により送信する移動局と、シングルキャリア方式により 送信する移動局とを周波数分割多重するシステムの場合、データマッピング部 206 は、マルチキャリア方式により送信させると決定された場合に、システム帯域幅を周波 数サブキャリアのブロックに分割した周波数ブロックのうち、不連続な複数の周波数 ブロックに伝搬路状態測定用信号の信号系列をマッピングし、シングルキャリア方式 により送信させると決定された場合に、システム帯域幅を連続する周波数サブキヤリ ァのブロックに分割した周波数ブロックに伝搬路状態測定用信号の信号系列をマツ ビングする。
[0052] また、例えばマルチキャリア方式により送信する移動局と、シングルキャリア方式に より送信する移動局とを IFDMAするシステムの場合、データマッピング部 206は、マ ルチキャリア方式により送信させると決定された場合に、システム帯域幅内に離散的 に分散した周波数サブキャリア力 なる分散型周波数ブロックのうち、不連続な複数 の分散型周波数ブロックに伝搬路状態測定用信号の信号系列をマッピングし、シン ダルキャリア方式により送信させると決定された場合に、システム帯域幅内に離散的 に分散した周波数サブキャリア力 なる分散型周波数ブロックに伝搬路状態測定用 信号の信号系列をマッピングする。
[0053] IFFT部 208は、サブキャリアにマッピングされた信号系列に対し、逆フーリエ変換 処理を行い、送信する。
[0054] 次に、本実施例に力かる無線通信システムの動作について、図 5を参照して説明 する。
[0055] 移動局 200は、基地局 100が常に送信している下りパイロット信号を用いて、その 送信電力を測定することにより、移動局 200と基地局 100間のパスロスを測定し、移 動局の最大送信電力値と共に、基地局 100に通知する(ステップ S502)。
[0056] 次に、基地局 100は、移動局 200から通知された移動局と基地局間のパスロスおよ び移動局の最大送信電力値に基づ!、て、伝搬路状態測定用信号の送信方式を決 定する(ステップ S 504)。
[0057] 次に、基地局 100は、移動局 200の伝搬路状態測定用信号の送信帯域および符 号を決定する (ステップ S506)。基地局 100は、ある所定の周期で伝搬路状態測定 用信号の送信帯域および符号を決定する。基地局 100は、測定用信号を送信させる 場合、周波数軸上で、各移動局を直交させように符号を割り当てる。 [0058] 次に、基地局 100から移動局 200に、伝搬路状態測定用信号の送信方式、送信帯 域および符号を通知する (ステップ S508)。
[0059] 次に、移動局 200は、基地局 100から通知された送信方式、送信帯域および符号 を用いて伝搬路状態測定用信号を送信する (ステップ S510)。
[0060] 次に、基地局 100は、各移動局の伝搬路状態測定用信号の受信状態に基づいて
、スケジューリングを実行し、各移動局が伝搬路状態測定用信号を送信している帯域 の範囲で、データチャネルの送信用の帯域を割り当てる (ステップ S512)。
[0061] 本実施例によれば、帯域あたりの電力密度を高く保ちつつ、(周波数領域で)広範 囲の伝搬路状態を測定することが可能となる。
[0062] その結果、周波数スケジューリングを適用することにより、より伝搬路状態のよい帯 域を用いて、データチャネルを送信することが可能となる。
[0063] 本国際出願は、 2006年 3月 20日に出願した日本国特許出願 2006— 077816号 に基づく優先権を主張するものであり、 2006— 077816号の全内容を本国際出願 に援用する。
産業上の利用可能性
[0064] 本発明にかかる基地局、移動局および伝搬路測定用信号の送信制御方法は、無 線通信システムに適用できる。

Claims

請求の範囲
[1] 移動局に対して、伝搬路測定用信号をマルチキャリア方式により送信させるかシン ダルキャリア方式により送信させるかを決定する送信方式決定手段;
決定された送信方式を示す情報を前記移動局に通知する送信方式通知手段; を備えることを特徴とする基地局。
[2] 請求項 1に記載の基地局において:
前記送信方式決定手段は、移動局より通知されるパスロス、最大送信電力値に基 づいて、前記移動局に対して、伝搬路測定用信号をマルチキャリア方式により送信さ せるかシングルキャリア方式により送信させるかを決定することを特徴とする基地局。
[3] 請求項 2に記載の基地局において:
前記送信方式決定手段は、通知されたパスロスに基づいて、予め規定した受信品 質となるような送信電力を推定し、前記最大送信電力値と該推定値との差が所定の 閾値以上である移動局に対して、伝搬路測定用信号をマルチキャリア方式により送 信させると決定することを特徴とする基地局。
[4] 請求項 1に記載の基地局において:
マルチキャリア方式により送信させると決定された場合に、システム帯域幅を連続す る周波数サブキャリア力もなるブロックに分割した周波数ブロックのうち、不連続な複 数の周波数ブロックを割り当て、シングルキャリア方式により送信させると決定された 場合に、周波数領域で連続する 1つ以上の周波数ブロックを割り当てる送信帯域決 定手段;
を備えることを特徴とする基地局。
[5] 請求項 1に記載の基地局において:
マルチキャリア方式により送信させると決定された場合に、システム帯域幅内に離 散的に分散した周波数サブキャリア力 なる分散型周波数ブロックのうち、不連続な 複数の分散型周波数ブロックを割り当て、シングルキャリア方式により送信させると決 定された場合に、 1つ以上の連続した分散型周波数ブロックを割り当てる送信帯域決 定手段;
を備えることを特徴とする基地局。
[6] 基地局により通知された伝搬路測定用信号をマルチキャリア方式により送信させる かシングルキャリア方式により送信させるかを示す送信方式に基づいて、伝搬路状態 測定用信号の信号系列をサブキャリアにマッピングするデータマッピング手段; を備えることを特徴とする移動局。
[7] 請求項 6に記載の移動局において:
前記データマッピング手段は、マルチキャリア方式により送信させると決定された場 合に、システム帯域幅を周波数サブキャリアのブロックに分割した周波数ブロックのう ち、不連続な複数の周波数ブロックに伝搬路状態測定用信号の信号系列をマツピン グし、シングルキャリア方式により送信させると決定された場合に、システム帯域幅を 連続する周波数サブキャリアのブロックに分割した周波数ブロックに伝搬路状態測定 用信号の信号系列をマッピングすることを特徴とする移動局。
[8] 請求項 6に記載の移動局において:
前記データマッピング手段は、マルチキャリア方式により送信させると決定された場 合に、システム帯域幅内に離散的に分散した周波数サブキャリア力もなる分散型周 波数ブロックのうち、不連続な複数の分散型周波数ブロックに伝搬路状態測定用信 号の信号系列をマッピングし、シングルキャリア方式により送信させると決定された場 合に、システム帯域幅内に離散的に分散した周波数サブキャリア力もなる分散型周 波数ブロックに伝搬路状態測定用信号の信号系列をマッピングすることを特徴とする 移動局。
[9] 基地局が、移動局に対して、伝搬路測定用信号をマルチキャリア方式により送信さ せるかシングルキャリア方式により送信させるかを決定する送信方式決定ステップ; 基地局が、決定された送信方式を示す情報を前記移動局に通知する送信方式通 知ステップ;
移動局が、基地局により通知された伝搬路測定用信号をマルチキャリア方式により 送信させるかシングルキャリア方式により送信させるかを示す送信方式に基づいて、 伝搬路状態測定用信号の信号系列をサブキャリアにマッピングするデータマッピング ステップ;
移動局が、前記伝搬路測定用信号を送信する伝搬路測定用信号送信ステップ; を有することを特徴とする伝搬路測定用信号の送信制御方法。
[10] 請求項 9に記載の伝搬路測定用信号の送信制御方法にぉ 、て:
移動局が、パスロス、最大送信電力値を通知するステップ;
を有し、
前記送信方式決定ステップは、移動局より通知されるパスロス、最大送信電力値に 基づいて、前記移動局に対して、伝搬路測定用信号をマルチキャリア方式により送 信させるかシングルキャリア方式により送信させるかを決定することを特徴とする伝搬 路測定用信号の送信制御方法。
[11] 請求項 10に記載の伝搬路測定用信号の送信制御方法において:
前記送信方式決定ステップは、通知されたパスロスに基づいて、予め規定した受信 品質となるような送信電力を推定し、前記最大送信電力値と該推定値との差が所定 の閾値以上である移動局に対して、伝搬路測定用信号をマルチキャリア方式により 送信させると決定することを特徴とする伝搬路測定用信号の送信制御方法。
[12] 請求項 9に記載の伝搬路測定用信号の送信制御方法において:
マルチキャリア方式により送信させると決定された場合に、システム帯域幅を連続す る周波数サブキャリア力もなるブロックに分割した周波数ブロックのうち、不連続な複 数の周波数ブロックを割り当て、シングルキャリア方式により送信させると決定された 場合に、連続する 1つ以上の周波数ブロックを割り当てる送信帯域決定ステップ; を有することを特徴とする伝搬路測定用信号の送信制御方法。
[13] 請求項 9に記載の伝搬路測定用信号の送信制御方法にぉ 、て:
マルチキャリア方式により送信させると決定された場合に、システム帯域幅内に離 散的に分散した周波数サブキャリア力 なる分散型周波数ブロックのうち、不連続な 複数の分散型周波数ブロックを割り当て、シングルキャリア方式により送信させると決 定された場合に、連続した 1つ以上の分散型周波数ブロックを割り当てる送信帯域決 定手段;
を備えることを特徴とする伝搬路測定用信号の送信制御方法。
PCT/JP2007/055576 2006-03-20 2007-03-19 基地局、移動局および伝搬路測定用信号の送信制御方法 WO2007111186A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07739019A EP1998482A4 (en) 2006-03-20 2007-03-19 BASE STATION, MOBILE STATION AND METHOD FOR CONTROLLING SPEECH PATH MEASUREMENT SIGNAL TRANSMISSION
BRPI0709040-4A BRPI0709040A2 (pt) 2006-03-20 2007-03-19 método para controle de transmissão de sinal com medição de estação base, estação móvel e de percurso de propagação
MX2008011887A MX2008011887A (es) 2006-03-20 2007-03-19 Estacion base, estacion movil y metodo de control de transmision de señales que miden la via de propagacion.
CN2007800162076A CN101438522B (zh) 2006-03-20 2007-03-19 基站、移动台以及传播路径测定用信号的发送控制方法
US12/293,511 US8345636B2 (en) 2006-03-20 2007-03-19 Base station, mobile station, and propagation path measuring signal transmission control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-077816 2006-03-20
JP2006077816A JP5065609B2 (ja) 2006-03-20 2006-03-20 基地局、移動局および伝搬路測定用信号の送信制御方法

Publications (1)

Publication Number Publication Date
WO2007111186A1 true WO2007111186A1 (ja) 2007-10-04

Family

ID=38541106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055576 WO2007111186A1 (ja) 2006-03-20 2007-03-19 基地局、移動局および伝搬路測定用信号の送信制御方法

Country Status (10)

Country Link
US (1) US8345636B2 (ja)
EP (1) EP1998482A4 (ja)
JP (1) JP5065609B2 (ja)
KR (1) KR20090008209A (ja)
CN (1) CN101438522B (ja)
BR (1) BRPI0709040A2 (ja)
MX (1) MX2008011887A (ja)
RU (1) RU2416878C2 (ja)
TW (1) TW200803225A (ja)
WO (1) WO2007111186A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110054A1 (ja) * 2008-03-03 2009-09-11 富士通株式会社 無線通信装置及び無線通信方法
WO2009147296A1 (en) * 2008-06-03 2009-12-10 Nokia Corporation Cell search for flexible spectrum use
CN101978730A (zh) * 2008-03-25 2011-02-16 富士通株式会社 无线通信方法、终端装置、基站装置及无线通信系统
JP2011523268A (ja) * 2008-05-16 2011-08-04 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 単一のスペクトラム集約を用いる無線(asingleradioaggregatedspectrum)受信器のための方法、コンピュータプログラム、受信器及び端末

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769657B2 (ja) * 2006-07-28 2011-09-07 京セラ株式会社 無線通信方法及び無線通信端末
JP4829049B2 (ja) * 2006-08-30 2011-11-30 京セラ株式会社 無線通信方法及び無線基地局
CN102014447A (zh) * 2008-03-25 2011-04-13 富士通株式会社 无线通信方法、终端装置、基站装置及无线通信系统
US8654692B2 (en) * 2008-10-30 2014-02-18 Panasonic Corporation Wireless communication apparatus and wireless communication method
AU2009315179B2 (en) * 2008-11-14 2013-11-14 Sun Patent Trust Wireless communication terminal apparatus, wireless communication base station apparatus, and cluster constellation setting method
CN101990194A (zh) * 2009-08-04 2011-03-23 中兴通讯股份有限公司 快乐位的上报方法、终端以及网络侧
CN103053201B (zh) * 2010-08-12 2016-04-06 富士通株式会社 通信设定方法、无线基站、移动台
US8848698B2 (en) * 2011-10-22 2014-09-30 Lg Electronics Inc. Scheduling method in multiple access system and apparatus using the same
US10231248B2 (en) 2014-03-04 2019-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for managing connectivity for a service

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005652A1 (en) * 2001-07-06 2003-01-16 Intersil Americas Inc. Wireless communication system configured to communicate using a mixed waveform configuration
WO2003005740A2 (en) * 2001-07-06 2003-01-16 Intersil Americas Inc. Burst configuration with single carrier and multicarrier sections
WO2003028329A2 (en) * 2001-09-26 2003-04-03 Intersil Americas Inc. Single-carrier and multicarrier receiver architecture
JP2004080333A (ja) * 2002-08-16 2004-03-11 Nec Saitama Ltd マルチキャリア送信機及びそのシングルキャリア送信方法
JP2004297756A (ja) 2003-02-06 2004-10-21 Ntt Docomo Inc 移動局、基地局、無線伝送プログラム、及び無線伝送方法
JP2005020599A (ja) * 2003-06-27 2005-01-20 Toshiba Corp 無線装置
JP2006077816A (ja) 2004-09-07 2006-03-23 Hokushin Ind Inc ブッシュの絞り加工治具

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175550B1 (en) * 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
JP2001320346A (ja) * 2000-02-29 2001-11-16 Toshiba Corp 直交周波数分割多重変調とスペクトル拡散を併用する送信装置、受信装置および基地局
US6535739B1 (en) * 2000-04-07 2003-03-18 Qualcomm Incorporated Method of handoff within a telecommunications system containing digital base stations with different spectral capabilities
TW529313B (en) * 2000-07-05 2003-04-21 Ericsson Telefon Ab L M Allocated frequency spectrum sharing between wideband and narrowband radio access technologies
US6760317B1 (en) * 2000-07-06 2004-07-06 Nokia Mobile Phones Ltd. Adaptive transmission channel allocation method and system for ISM and unlicensed frequency bands
JP2002125260A (ja) * 2000-10-12 2002-04-26 Sony Corp 無線通信方法及び無線通信端末
US6810236B2 (en) 2001-05-14 2004-10-26 Interdigital Technology Corporation Dynamic channel quality measurement procedure for adaptive modulation and coding techniques
EP1557057A4 (en) 2002-11-01 2006-12-13 Interdigital Tech Corp METHOD FOR PREDICTING THE QUALITY OF THE WAY IN WIRELESS COMMUNICATION SYSTEMS
FR2851384B1 (fr) * 2003-02-17 2009-12-18 Wavecom Procede de transmission de donnees radio, signal, systeme et dispositifs correspondant.
US8422434B2 (en) * 2003-02-18 2013-04-16 Qualcomm Incorporated Peak-to-average power ratio management for multi-carrier modulation in wireless communication systems
US7203459B2 (en) * 2003-04-03 2007-04-10 Pctel, Inc. Mode adaptation in wireless systems
JP3771914B2 (ja) * 2003-06-09 2006-05-10 日本テレコム株式会社 パイロット信号送信方法及び基地局装置
DE60303109T2 (de) * 2003-07-28 2006-07-27 Alcatel Verfahren und Vorrichtung zur Auswahl von Unterträgern gemäss Dienstqualitätsanforderungen in einem Mehrträgerkommunikationssystem
JP4148884B2 (ja) * 2003-12-02 2008-09-10 日立建機株式会社 建設機械のエンジンラグダウン抑制装置
EP1542488A1 (en) * 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US7433708B2 (en) * 2004-02-04 2008-10-07 Nokia Corporation Variable bandwidth in a communication system
JP2005241899A (ja) 2004-02-26 2005-09-08 Harison Toshiba Lighting Corp バックライト
KR100640516B1 (ko) 2004-02-27 2006-10-30 삼성전자주식회사 직교주파수분할다중화 통신 시스템에서 채널품질 정보의전송방법 및 장치
JP4423097B2 (ja) 2004-04-26 2010-03-03 京セラ株式会社 半導体素子搭載装置
JP2006074492A (ja) * 2004-09-02 2006-03-16 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及びリソース割り当て方法
CN101390359A (zh) * 2004-10-15 2009-03-18 艾利森电话股份有限公司 信号调制的各种分辨率级别取决于传播条件的无线电通信的方法和系统
US7957351B2 (en) * 2005-04-04 2011-06-07 Qualcomm Incorporated Method and apparatus for management of multi-carrier communications in a wireless communication system
US7751368B2 (en) * 2006-05-01 2010-07-06 Intel Corporation Providing CQI feedback to a transmitter station in a closed-loop MIMO system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005652A1 (en) * 2001-07-06 2003-01-16 Intersil Americas Inc. Wireless communication system configured to communicate using a mixed waveform configuration
WO2003005740A2 (en) * 2001-07-06 2003-01-16 Intersil Americas Inc. Burst configuration with single carrier and multicarrier sections
WO2003028329A2 (en) * 2001-09-26 2003-04-03 Intersil Americas Inc. Single-carrier and multicarrier receiver architecture
JP2004080333A (ja) * 2002-08-16 2004-03-11 Nec Saitama Ltd マルチキャリア送信機及びそのシングルキャリア送信方法
JP2004297756A (ja) 2003-02-06 2004-10-21 Ntt Docomo Inc 移動局、基地局、無線伝送プログラム、及び無線伝送方法
JP2005020599A (ja) * 2003-06-27 2005-01-20 Toshiba Corp 無線装置
JP2006077816A (ja) 2004-09-07 2006-03-23 Hokushin Ind Inc ブッシュの絞り加工治具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1998482A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110054A1 (ja) * 2008-03-03 2009-09-11 富士通株式会社 無線通信装置及び無線通信方法
JP5126352B2 (ja) * 2008-03-03 2013-01-23 富士通株式会社 無線通信装置及び無線通信方法
US8761275B2 (en) 2008-03-03 2014-06-24 Fujitsu Limited Wireless communication apparatus and method for wireless communication
US8938017B2 (en) 2008-03-03 2015-01-20 Fujitsu Limited Wireless communication apparatus and method for wireless communication
CN101978730A (zh) * 2008-03-25 2011-02-16 富士通株式会社 无线通信方法、终端装置、基站装置及无线通信系统
US8600313B2 (en) 2008-03-25 2013-12-03 Fujitsu Limited Radio communication method in radio communication system, terminal apparatus, base station apparatus, and radio communication system
JP2011523268A (ja) * 2008-05-16 2011-08-04 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 単一のスペクトラム集約を用いる無線(asingleradioaggregatedspectrum)受信器のための方法、コンピュータプログラム、受信器及び端末
WO2009147296A1 (en) * 2008-06-03 2009-12-10 Nokia Corporation Cell search for flexible spectrum use
US9491689B2 (en) 2008-06-03 2016-11-08 Nokia Corporation Cell search for flexible spectrum use

Also Published As

Publication number Publication date
US20090225666A1 (en) 2009-09-10
CN101438522A (zh) 2009-05-20
US8345636B2 (en) 2013-01-01
RU2008141084A (ru) 2010-04-27
TWI337476B (ja) 2011-02-11
BRPI0709040A2 (pt) 2011-06-21
EP1998482A4 (en) 2012-12-26
KR20090008209A (ko) 2009-01-21
RU2416878C2 (ru) 2011-04-20
EP1998482A1 (en) 2008-12-03
MX2008011887A (es) 2008-09-30
JP5065609B2 (ja) 2012-11-07
TW200803225A (en) 2008-01-01
JP2007258839A (ja) 2007-10-04
CN101438522B (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2007111186A1 (ja) 基地局、移動局および伝搬路測定用信号の送信制御方法
JP6575782B2 (ja) 無線通信システム、無線通信の設定方法、基地局、及び移動局
KR101071596B1 (ko) 멀티-캐리어 통신 시스템에 있어서의 파일럿 그룹핑 및 경로 프로토콜
JP4954720B2 (ja) 基地局及びユーザ端末並びに受信チャネル品質測定用信号の送信制御方法
KR100973946B1 (ko) 직교 주파수 분할 다중 접속 통신 시스템에서 밴드 적응적변조 및 코딩 서브 채널 운용을 위한 시스템 및 방법
KR100933606B1 (ko) 주파수 분할 다중 액세스 통신 시스템에서 업링크 자원할당을 위한 방법 및 장치
JP4773506B2 (ja) マルチキャリア通信システムにおけるパイロットグルーピング及びセット管理
JP5088506B2 (ja) 広帯域通信システムにおける物理資源管理方法及び物理資源管理装置
JP5468267B2 (ja) 基地局装置及び通信制御方法
KR20060093003A (ko) 통신 시스템에서 동적 하이브리드 다중 접속 제공 장치 및방법
JP2011524103A (ja) 未使用リソースのシグナリング
JP2008118311A (ja) ユーザ端末装置及び基地局装置
KR20050110268A (ko) 직교 주파수 분할 다중 접속 시스템에서 주파수 자원 할당방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739019

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007739019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007739019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/011887

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3922/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087024528

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008141084

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780016207.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12293511

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0709040

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080922