WO2007110275A1 - Verdichtereinheit - Google Patents

Verdichtereinheit Download PDF

Info

Publication number
WO2007110275A1
WO2007110275A1 PCT/EP2007/051474 EP2007051474W WO2007110275A1 WO 2007110275 A1 WO2007110275 A1 WO 2007110275A1 EP 2007051474 W EP2007051474 W EP 2007051474W WO 2007110275 A1 WO2007110275 A1 WO 2007110275A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor unit
unit
compressor
housing
automation
Prior art date
Application number
PCT/EP2007/051474
Other languages
English (en)
French (fr)
Inventor
Gaston Mathijssen
Mark Van Aarsen
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN2007800104920A priority Critical patent/CN101410623B/zh
Priority to BRPI0709128-1A priority patent/BRPI0709128A2/pt
Priority to EP07704600A priority patent/EP1999374A1/de
Priority to US12/225,517 priority patent/US20090263265A1/en
Publication of WO2007110275A1 publication Critical patent/WO2007110275A1/de
Priority to NO20084450A priority patent/NO20084450L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention relates to a compressor unit, in particular for underwater operation, comprising a compressor with an axis of rotation and an electric motor, which compressor unit comprises a housing having an inlet and an outlet for a pumped medium, with an automation unit which is designed such that it Performs control tasks and control tasks for the compressor unit.
  • Compressor units regularly require numerous electrical connections for their operation, in particular for the power supply and the transmission of control signals between a higher-level automation unit and the compressor unit.
  • Automation units are separated from the Compressor unit arranged at some distance, on the one hand to achieve a high modularity of the structure and on the other hand to ensure optimum operating conditions for the electronics of the automation unit.
  • numerous signal lines are required between the automation unit and the compressor unit, which transmit different measured values to the automation unit and transmit corresponding control parameters to the magnetic bearings.
  • Compressor unit and the automation unit makes a considerable effort required because the numerous lines, inter alia, by means of very expensive
  • Plug connection must be formed separable. The cost aspect wins many times more important, if it is a suitable for the subsea plant facility, since this must meet the special requirements of the connector.
  • a cooling system has to be provided by means of which the not inconsiderable power loss of the components designed in part as power electronics has to be dissipated.
  • the invention has taken on the task of creating an improved interaction of the automation unit with the compressor unit and in particular to reduce the cost of cooling the automation unit and the signal and power transmission.
  • a compressor unit according to claim 1 is proposed.
  • the subclaims contain advantageous developments of the invention.
  • the arrangement of an additional housing in which the automation unit is arranged on the housing of the compressor unit has the particular advantage that corresponding power supply and signal lines between the automation unit and the
  • Compressor unit no longer have to be designed sufficiently a standard that has the ability for direct contact with the ambient conditions. Rather, these lines can be designed so that they only meet the always reproducible and exactly predictable operating conditions inside the additional housing and the housing of the compressor unit. In addition, no special connectors for separating lines between automation unit and compressor unit are required. Surprisingly, it has also been found that some areas on the housing of the compressor unit provide the thermal constraints required for operation of the automation unit without additional modification. This decisive advantage means that a separate cooling system for the automation unit is no longer required.
  • Compressor unit is highly limited and therefore additional cooling media, if at all, are difficult to obtain.
  • the use of seawater as cooling medium is almost impossible due to the aggressive chemical properties.
  • the power loss can easily be absorbed by the cold fluid.
  • a problem here is the introduction of heat in the flow.
  • a compressor unit in particular, if it is a single-shaft construction with a motor and a compressor unit along a single axis of rotation, elongated and results in the longitudinal extent of a temperature profile during operation. In the axial region of the inlet or the suction nozzle, the temperature for the heat-conductive attachment of the additional housing of the automation unit is particularly favorable.
  • the heat is dissipated according to the invention by means of heat conduction in the region of the intake manifold of the housing from the automation unit and introduced into the conveying medium flowing through the compressor unit.
  • the additional housing At which circumferential position in the axial region of the suction nozzle the additional housing is attached can be decided by the skilled person in coordination with the planteleit sculpture between the housing of the compressor unit and the additional housing.
  • the automation unit is expediently connected to components of the compressor unit by means of internal signal lines and / or internal power supply lines.
  • These internal lines can be suitably formed separable by means of plug-in connection, so that even in the context of maintenance work items can be easily replaced.
  • the connectors require only a dimensioning that meets the always reproducible and predictable operating conditions inside the housing.
  • Automation unit related components are in particular magnetic bearings of the rotor of the compressor and the motor and the electric motor.
  • various temperature measurements and pressure measurements can be provided.
  • the automation unit is suitably connected to a base station by means of an external signal line or an external power supply line or both.
  • An advantageous development of the invention provides that the additional housing is connected by welding to the housing of the compressor unit, which on the one hand ensures good heat conduction between the housings and on the other hand produces the required gas tightness, in particular for underwater operation. So that the components in the additional housing are still accessible for maintenance, it is advantageous if the additional housing has a closable opening. This closable opening may be sealed by means of a conventional seal. For longer phases of underwater operation, it is also conceivable that this additional opening is sealed by a weld, which withstands the adverse operating conditions in any case.
  • Underwater operation are designed such that various components of the compressor unit are lapped by the fluid and in this way the heat loss is delivered to the fluid.
  • the invention is based on a special
  • FIG. 1 shows a section along a compressor unit 1 according to the invention, which has as essential components a motor 2 and a compressor 3 in a gas-tight housing 4.
  • the housing 4 accommodates the engine 2 and the compressor 3.
  • the housing 4 is provided with an inlet 6 and an outlet 7, through the inlet 6 by means of an intake 8 to be compressed Fluid is sucked and flows through the outlet 7, the compressed fluid.
  • the compressor unit 1 is arranged vertically in operation, wherein a motor rotor 15 of the motor 2 are combined via a compressor rotor 9 of the compressor 3 forming a common shaft 19 which rotates about a common vertical axis of rotation 60.
  • the motor rotor 15 is mounted in a first radial bearing 21 at the upper end of the motor rotor 15.
  • the compressor rotor 9 is mounted in a second radial bearing 22 in the lower position.
  • a thrust bearing 25 is provided at the upper end of the common shaft 19 so at the upper end of the motor rotor 15.
  • the radial bearings 21, 22 and the thrust bearing 25 operate electromagnetically and are each carried out encapsulated.
  • the radial bearings 21, 22 extend in this case in the circumferential direction about the respective bearing point of the shaft 19 and are in this case formed 360 ° circumferentially and undivided.
  • the compressor 3 designed as a centrifugal compressor has three compressor stages 11 which are in each case connected by means of an overflow 33.
  • the resulting at the compressor stages 11 pressure differentials provide a thrust on the compressor rotor 9, which transmits via the clutch 18 on the motor rotor 15 and against the weight of the resulting entire rotor of the compressor rotor 9 and motor rotor 15, is directed, so that in the nominal operation as far as possible thrust compensation takes place.
  • the thrust bearing 25 can be dimensioned comparatively smaller than in a horizontal arrangement.
  • the electromagnetic bearings 21, 22, 25 are cooled by means of a cooling system 31 to operating temperature, wherein the cooling system 31 provides a tap 32 in an overflow of the compressor 3. From the tap 32 is a part of the pumped medium, which is preferably natural gas, passed through a filter 35 and then passed through two separate pipes to the respective outer bearing points (first radial bearing 21 and second radial bearing 22 and thrust bearing 25) by means of piping.
  • This cooling by means of the cold pumped medium saves additional supply lines.
  • the motor rotor 15 is surrounded by a stator 16, which has an encapsulation 39, so that the aggressive conveying medium does not damage windings of the stator 16.
  • the encapsulation 39 is preferably designed so that it can bear the full operating pressure. This is also because a separate stator cooling 40 is provided, which promotes its own cooling medium 41 via a heat exchanger 43 by means of a pump 42.
  • At least the encapsulation 39 is designed such that the portion which extends between the stator 16 and the motor rotor 15 has a thin wall thickness, however, is able to withstand the exhaust pressure when the stator cooling 40 is completely filled by means of the cooling medium 41 , In this way, larger eddy current losses are avoided in this area and the efficiency of the overall arrangement improves.
  • the compressor rotor 9 expediently has a compressor shaft 10 on which the individual compressor stages 11 are mounted. This can preferably be done by means of a thermal shrinkage fit. Likewise, a positive connection, for example by means of polygons possible. Another embodiment sees a weld different compressor stages 11 to each other, from which a one-piece compressor rotor 9 results.
  • an additional housing 56 is heat-conductively attached by means of a weld 58.
  • the additional housing 56 includes an opening 57 through which the interior of the additional housing 56 is accessible and which is closed by means of screws 59 and a cover 70.
  • the cover 70 is welded by means of a sealing seam 63 with the adjacent elements of the additional housing 56, so that the surrounding medium can not penetrate underwater operation.
  • Inside the additional housing 56 is an automation unit 51 consisting of power electronics 52 and other components.
  • the automation unit 51 is thermally conductively connected by means of a heat conducting element 64 to the housing 4 of the compressor unit, so that resulting power loss is dissipated by means of heat conduction to the housing 4.
  • the additional housing 56 is arranged in the axial region 50 of the inlet 6 or the intake manifold 8 of the compressor unit, so that the prevailing there thermal conditions for particularly efficient cooling of the automation unit 51.
  • a specific temperature profile arises, which essentially has a low point in the region of the intake manifold 8.
  • the automation unit 51 is by means of external
  • Compressor unit 1 takes over, in conjunction.
  • the external ones
  • Signal lines 66 and power supply lines 68 are formed by external connectors 69 separable.
  • a passage 53 seals the entry of the external lines (66, 68) into the additional housing 56.
  • the automation unit 51 communicates with components of the compressor unit 1 by way of internal signal lines 55 and internal power supply lines 67.
  • the components are thrust bearings 25, and radial bearings 21, 22 and the motor 2.
  • other sensors and components are provided, which are in communication with the automation unit 51, but will not be explained in detail here.
  • the additional housing is designed especially for underwater operation made of stainless steel.
  • the power supply from the base station 65 is 400V.

Abstract

Die Erfindung betrifft eine Verdichtereinheit (1), insbesondere für den Unterwasserbetrieb, umfassend einen Verdichter (3) mit einer Drehachse (60) und einem elektrischen Motor (2), welche Verdichtereinheit (1) ein Gehäuse (4) aufweist, mit einer Automatisierungseinheit (51), für Steuerungs- und Regelaufgaben. Die Erfindung hat es sich zur Aufgabe gemacht, ein verbessertes Zusammenwirken der Automatisierungseinheit mit der Verdichtereinheit zu schaffen und insbesondere den Aufwand der Kühlung der Automatisierungseinheit und der Signal- und Energieübermittlung zu verringern. Hierzu wird vorgeschlagen, an dem Gehäuse (4) ein Zusatzgehäuse (56) anzubringen, in welchem die Automatisierungseinheit (51) angeordnet ist.

Description

Beschreibung
Verdichtereinheit
Die Erfindung betrifft eine Verdichtereinheit, insbesondere für den Unterwasserbetrieb, umfassend einen Verdichter mit einer Drehachse und einen elektrischen Motor, welche Verdichtereinheit ein Gehäuse umfasst, welches einen Einlass und einen Auslass für ein Fördermedium aufweist, mit einer Automatisierungseinheit, die derart ausgebildet ist, dass sie Steuerungsaufgaben und Regelungsaufgaben für die Verdichtereinheit durchführt.
Jüngste Entwicklungen im Bereich des Verdichterbaus fokussieren sich auch auf Unterseeanordnung großer Verdichter, welcher der Förderung von Erdgasen dienen sollen. Aufgrund der besonderen Betriebsbedingungen, insbesondere wegen der stark eingeschränkten Zugänglichkeit sowohl zu Wartungszwecken als auch mittels Versorgungsleitungen sieht sich die Fachwelt vor großen Herausforderungen gestellt. Einschlägige Umweltbestimmungen verbieten jeglichen stofflichen Austausch zwischen den zu installierenden Aggregaten und dem umgebenden Seewasser. Hinzukommt, dass das Seewasser ein aggressives Medium ist und in den verschiedenen Meerestiefen extreme Druck- und Temperaturbedingungen anzutreffen sind. Eine weitere Anforderung besteht darin, dass die Aggregate einerseits eine äußerst hohe Standzeit aufweisen sollen und andererseits nahezu wartungsfrei ausgebildet sein müssen. Erschwerend ist zusätzlich eine nicht unerhebliche Verschmutzung des teilweise chemisch aggressiven zu fördernden Mediums.
Verdichtereinheiten benötigen für ihren Betrieb regelmäßig zahlreiche elektrische Anschlüsse, insbesondere für die Energieversorgung und die Übermittlung von Steuersignalen zwischen einer übergeordneten Automatisierungseinheit und der Verdichtereinheit. Die übergeordneten
Automatisierungseinheiten sind hierbei getrennt von der Verdichtereinheit in einigem Abstand angeordnet, einerseits um eine hohe Modularität des Aufbaus zu erzielen und andererseits um für die Elektronik der Automatisierungseinheit optimale Betriebsbedingungen sicherzustellen. Insbesondere bei dem Einsatz von aktiven Magnetlagern sind zahlreiche Signalleitungen zwischen der Automatisierungseinheit und der Verdichtereinheit erforderlich, die verschiedene Messwerte an die Automatisierungseinheit übermitteln und entsprechende Steuerungsparameter an die Magnetlager übermitteln.
Die Übermittlung der Energie zum Betrieb der Verdichtereinheit und der Signale zwischen der
Verdichtereinheit und der Automatisierungseinheit macht einen erheblichen Aufwand erforderlich, da die zahlreichen Leitungen unter anderem mittels sehr kostspieliger
Steckverbindung trennbar ausgebildet sein müssen. Der Kostengesichtspunkt gewinnt um ein vielfaches an höherer Bedeutung, wenn es sich um eine für den Unterseebetrieb geeignete Anlage handelt, da hierfür die Steckverbindung besonderen Anforderungen genügen muss.
Für die Automatisierungseinheit ist darüber hinaus ein Kühlsystem bereitzustellen, mittels dessen die nicht unerhebliche Verlustleistung der teilweise als Leistungselektronik ausgelegten Bauelemente abgeführt werden muss.
Ausgehend von den Problemen des Standes der Technik hat es sich die Erfindung zur Aufgabe gemacht, ein verbessertes Zusammenwirken der Automatisierungseinheit mit der Verdichtereinheit zu schaffen und insbesondere den Aufwand der Kühlung der Automatisierungseinheit und der Signal- und Energieübermittlung zu verringern.
Zur Lösung der erfindungsgemäßen Aufgabe wird eine Verdichtereinheit nach Anspruch 1 vorgeschlagen. Die Unteransprüche beinhalten vorteilhafte Weiterbildungen der Erfindung. Die Anordnung eines Zusatzgehäuses, in welchem die Automatisierungseinheit angeordnet ist, an dem Gehäuse der Verdichtereinheit hat vor allem den Vorteil, dass entsprechende Energieversorgungs- und Signalleitungen zwischen der Automatisierungseinheit und der
Verdichtereinheit nicht mehr einem Standard genügend ausgebildet sein müssen, der Eignung für einen unmittelbaren Kontakt mit den Umgebungsbedingungen aufweist. Vielmehr können diese Leitungen so ausgelegt werden, dass sie lediglich den stets reproduzierbaren und exakt vorhersehbaren Betriebsbedingungen im Inneren des Zusatzgehäuses und des Gehäuses der Verdichtereinheit genügen. Darüber hinaus sind keine besonderen Steckverbindungen zum Trennen von Leitungen zwischen Automatisierungseinheit und Verdichtereinheit erforderlich. Überraschenderweise konnte außerdem festgestellt werden, dass einige Bereiche an dem Gehäuse der Verdichtereinheit die für den Betrieb der Automatisierungseinheit erforderlichen thermischen Randbedingungen ohne zusätzliche Modifikation bereitstellen. Dieser entscheidende Vorteil führt dazu, dass ein gesondertes Kühlsystem für die Automatisierungseinheit nicht mehr erforderlich ist. Dieser Vorteil kommt insbesondere dann zum Tragen, wenn das Zusatzgehäuse für die Automatisierungseinheit in dem Bereich eines Saugstutzens des Einlasses Wärme-leitend an dem Gehäuse angebracht ist, so dass die Verlustleistung der Automatisierungseinheit mittels Wärmeleitung an das Gehäuse abgeführt wird. Obgleich dieser Vorteil grundsätzlich für Verdichtereinheiten relevant ist, gewinnt er an zusätzlicher Bedeutung im Bereich des Unterwasserbetriebes, da hier die Zugänglichkeit der
Verdichtereinheit im höchsten Maße eingeschränkt ist und aus diesem Grund zusätzliche Kühlmedien, wenn überhaupt nur schwer verfügbar sind. Die Verwendung von Seewasser als Kühlmedium ist aufgrund der aggressiven chemischen Eigenschaften nahezu ausgeschlossen. Bei einer Förderung von Erdgas kann die Verlustleistung problemlos von dem kalten Fördermedium aufgenommen werden. Ein Problem hierbei ist jedoch die Einleitung der Wärme in den Förderstrom. Regelmäßig ist eine Verdichtereinheit, insbesondere, wenn es sich um eine einwellige Konstruktion mit einem Motor und einem Verdichtereinheit entlang einer einzigen Drehachse handelt, länglich ausgebildet und es ergibt sich in Längserstreckung ein Temperaturprofil im Betrieb. Im axialen Bereich des Einlasses bzw. des Saugstutzens ist die Temperatur für die Wärme-leitende Anbringung des Zusatzgehäuses der Automatisierungseinheit besonders günstig. Die Wärme wird erfindungsgemäß mittels Wärmeleitung im Bereich des Ansaugstutzens des Gehäuses aus der Automatisierungseinheit abgeführt und in das die Verdichtereinheit durchströmende Fördermedium eingeleitet. An welcher Umfangsposition im axialen Bereich des Saugstutzens das Zusatzgehäuse angebracht wird, kann von dem Fachmann in Abstimmung mit den Wärmeleitbedingungen zwischen dem Gehäuse der Verdichtereinheit und dem Zusatzgehäuse entschieden werden .
Die Automatisierungseinheit steht hierbei zweckmäßig mit Bauelementen der Verdichtereinheit mittels interner Signalleitungen und/oder interner Energieversorgungsleitungen in Verbindung. Diese internen Leitungen können zweckmäßig mittels Steckverbindung trennbar ausgebildet sein, so dass auch im Rahmen von Wartungsarbeiten problemlos Elemente ausgetauscht werden können. Die Steckverbindungen benötigen lediglich eine Dimensionierung, die den stets reproduzierbaren und vorhersehbaren Betriebsbedingungen im Gehäuseinneren genügt. Bei den mit der
Automatisierungseinheit in Verbindung stehenden Bauelementen handelt es sich insbesondere um magnetische Lagerungen des Rotors des Verdichters und des Motors und um den elektrischen Motor. Daneben können verschiedene Temperaturmessungen und Druckmessungen vorgesehen sein.
Die Automatisierungseinheit steht zweckmäßig mittels einer externen Signalleitung oder einer externen Energieversorgungsleitung oder mittels beidem mit einer Basisstation in Verbindung. Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass das Zusatzgehäuse mittels Schweißung mit dem Gehäuse der Verdichtereinheit verbunden ist, was einerseits eine gute Wärmeleitung zwischen den Gehäusen gewährleistet und andererseits insbesondere für den Unterwasserbetrieb die erforderliche Gasdichtheit herstellt. Damit die Bauelemente in dem Zusatzgehäuse dennoch für Wartungsarbeiten zugänglich sind, ist es vorteilhaft, wenn das Zusatzgehäuse eine verschließbare Öffnung aufweist. Diese verschließbare Öffnung kann mittels einer herkömmlichen Dichtung abgedichtet sein. Für längere Phasen des Unterwasserbetriebes ist es auch denkbar, dass diese Zusatzöffnung mittels einer Schweißnaht abgedichtet ist, was in jedem Fall den widrigen Betriebsbedingungen standhält.
Damit einerseits die Verlustleistung aus der
Automatisierungseinheit und andererseits diejenige aus dem Betrieb der Verdichtereinheit sicher abgeführt werden, ist es zweckmäßig, wenn die Verdichtereinheit selbst ein leistungsstarkes Kühlsystem aufweist. Dieses Kühlsystem kann insbesondere bei der Förderung von Erdgas im
Unterwasserbetrieb derart ausgebildet werden, dass verschiedene Bauelemente der Verdichtereinheit von dem Fördermedium umspült werden und auf diese Weise die Verlustwärme an das Fördermedium abgegeben wird.
Im Folgenden ist die Erfindung anhand eines speziellen
Ausführungsbeispiels zur Verdeutlichung unter Bezugnahme auf Zeichnungen näher beschrieben. Die gezeigte Ausführungsform ist lediglich zur Verdeutlichung als Beispiel der Erfindung zu verstehen. Es zeigt:
Figur 1 einen Längsschnitt durch eine
Verdichtereinheit mit einer erfindungsgemäßen Anbringung einer Automatisierungseinheit in schematischer Darstellung. Figur 1 zeigt einen Schnitt längs einer erfindungsgemäßen Verdichtereinheit 1, welche als wesentliche Bauteile einen Motor 2 und einen Verdichter 3 in einem gasdicht ausgebildeten Gehäuse 4 aufweist. Das Gehäuse 4 beherbergt den Motor 2 und den Verdichter 3. Im Bereich des Übergangs von dem Motor 2 zu dem Verdichter 3 ist das Gehäuse 4 mit einem Einlass 6 und einem Auslass 7 versehen, wobei durch den Einlass 6 mittels eines Ansaugstutzens 8 das zu verdichtende Fluid angesaugt wird und durch den Auslass 7 das verdichtete Fluid abströmt.
Die Verdichtereinheit 1 ist im Betrieb vertikal angeordnet, wobei ein Motorrotor 15 des Motors 2 über einem Verdichterrotor 9 des Verdichters 3 eine gemeinsame Welle 19 bildend vereint sind, die sich um eine gemeinsame vertikale Drehachse 60 dreht.
Der Motorrotor 15 ist in einem ersten Radiallager 21 am oberen Ende des Motorrotors 15 gelagert.
Der Verdichterrotor 9 ist in einem zweiten Radiallager 22 in unterer Position gelagert.
Am oberen Ende der gemeinsamen Welle 19 also am oberen Ende des Motorrotors 15 ist ein Axiallager 25 vorgesehen. Die Radiallager 21, 22 und das Axiallager 25 arbeiten elektromagnetisch und sind jeweils gekapselt ausgeführt. Die Radiallager 21, 22 erstrecken sich hierbei in Umfangsrichtung um die jeweilige Lagerstelle der Welle 19 und sind hierbei 360° umlaufend und ungeteilt ausgebildet.
Der als Zentrifugalverdichter ausgebildete Verdichter 3 weist drei Verdichterstufen 11 auf, die jeweils mittels einer Überströmung 33 in Verbindung stehen. Die sich an den Verdichterstufen 11 ergebenen Druckdifferenzen sorgen für einen Schub an dem Verdichterrotor 9, der sich über die Kupplung 18 auf dem Motorrotor 15 überträgt und entgegen der Gewichtskraft des sich ergebenden gesamten Rotors aus Verdichterrotor 9 und Motorrotor 15, gerichtet ist, so dass ein im Nennbetrieb weitestgehender Schubausgleich erfolgt. Auf diese Weise kann das Axiallager 25 vergleichsweise kleiner dimensioniert sein als in einer horizontalen Anordnung .
Die elektromagnetischen Lager 21, 22, 25 sind mittels eines Kühlsystems 31 auf Betriebstemperatur gekühlt, wobei das Kühlsystem 31 eine Anzapfung 32 in einer Überströmung des Verdichters 3 vorsieht. Von der Anzapfung 32 wird mittels Rohrleitungen ein Teil des Fördermediums, welches vorzugsweise Erdgas ist, durch einen Filter 35 geleitet und anschließend durch zwei separate Rohrleitungen zu den jeweils äußeren Lagerstellen (erstes Radiallager 21 und zweites Radiallager 22 sowie Axiallager 25) geführt. Diese Kühlung mittels des kalten Fördermediums erspart zusätzliche Versorgungsleitungen.
Der Motorrotor 15 ist von einem Stator 16 umgeben, der eine Kapselung 39 aufweist, so dass das aggressive Fördermedium Wicklungen des Stators 16 nicht beschädigt. Die Kapselung 39 ist hierbei bevorzugt so ausgelegt, dass sie den vollen Betriebsdruck zu ertragen vermag. Dies auch deshalb, weil eine separate Statorkühlung 40 vorgesehen ist, die ein eigenes Kühlmedium 41 über einen Wärmetauscher 43 mittels einer Pumpe 42 fördert. Zumindest ist die Kapselung 39 derart ausgeführt, dass der Abschnitt, der sich zwischen dem Stator 16 und dem Motorrotor 15 erstreckt zwar eine dünne Wandstärke aufweist jedoch bei einer vollständigen Füllung der Statorkühlung 40 mittels des Kühlmediums 41 in der Lage ist, dem Auslegedruck Stand zu halten. Auf diese Weise werden größere Wirbelstromverluste in diesem Bereich vermieden und der Wirkungsgrad der Gesamtanordnung verbessert sich.
Der Verdichterrotor 9 weist zweckmäßig eine Verdichterwelle 10 auf, auf der die einzelnen Verdichterstufen 11 montiert sind. Dies kann bevorzugt mittels einer thermischen Schrumpfpassung erfolgen. Ebenso ist ein Formschluss, beispielsweise mittels Polygonen möglich. Eine andere Ausführungsform sieht eine Schweißung verschiedener Verdichterstufen 11 an einander vor, aus der ein einstückiger Verdichterrotor 9 resultiert.
An dem Gehäuse 4 der Verdichtereinheit 1 ist ein Zusatzgehäuse 56 mittels einer Schweißnaht 58 wärmeleitend angebracht. Das Zusatzgehäuse 56 umfasst eine Öffnung 57, durch welche das Innere des Zusatzgehäuses 56 zugänglich ist und die mittels Schrauben 59 und einem Deckel 70 verschlossen ist. Der Deckel 70 ist mittels einer Dichtnaht 63 mit den angrenzenden Elementen des Zusatzgehäuses 56 verschweißt, damit im Unterwasserbetrieb das Umgebungsmedium nicht eindringen kann. Im Inneren des Zusatzgehäuses 56 befindet sich eine Automatisierungseinheit 51 bestehend aus Leistungselektronik 52 und weiteren Bauelementen. Die Automatisierungseinheit 51 ist mittels eines Wärmeleitelementes 64 wärmeleitend mit dem Gehäuse 4 der Verdichtereinheit verbunden, so dass entstehende Verlustleistung mittels Wärmeleitung an das Gehäuse 4 abgeführt wird.
Das Zusatzgehäuse 56 ist im axialen Bereich 50 des Einlasses 6 bzw. des Ansaugstutzens 8 der Verdichtereinheit angeordnet, so dass die dort vorherrschenden thermischen Bedingungen für eine besonders effiziente Kühlung der Automatisierungseinheit 51 sorgen. Entlang der Drehachse 60 der Verdichtereinheit stellt sich im Betrieb ein bestimmtes Temperaturprofil ein, welches im Bereich des Ansaugstutzens 8 im Wesentlichen einen Tiefpunkt aufweist.
Die Automatisierungseinheit 51 steht mittels externer
Signalleitungen 66 und externer
Energieversorgungsleitungen 68 mit einer Station 65, die einerseits die Steuerung und andererseits die Versorgung der
Verdichtereinheit 1 übernimmt, in Verbindung. Die externen
Signalleitungen 66 und Energieversorgungsleitungen 68 sind mittels externer Steckverbindungen 69 trennbar ausgebildet.
Eine Durchführung 53 dichtet den Eintritt der externen Leitungen (66, 68) in das Zusatzgehäuse 56 ab. Die Automatisierungseinheit 51 steht mit Bauelementen der Verdichtereinheit 1 mittels interner Signalleitungen 55 und interner Energieversorgungsleitungen 67 in Verbindung. Bei den Bauelementen handelt es sich um Axiallager 25, und Radiallager 21, 22 sowie den Motor 2. Daneben sind noch weitere Sensoren und Bauelemente vorgesehen, die mit der Automatisierungseinheit 51 in Verbindung stehen, hier jedoch nicht näher erläutert werden.
Das Zusatzgehäuse ist insbesondere für den Unterwasserbetrieb aus Edelstahl ausgeführt. Die Energieversorgung ausgehend von der Basisstation 65 erfolgt mit 400V.

Claims

Patentansprüche
1. Verdichtereinheit (1), insbesondere für den Unterwasserbetrieb, umfassend einen Verdichter (3) mit einer Drehachse (60) und einem elektrischen Motor (2), welche Verdichtereinheit (1) ein Gehäuse (4) aufweist, welches einen Einlass (6) und einen Auslass (7) für ein Fördermedium aufweist, mit einer
Automatisierungseinheit (51), die derart ausgebildet ist, dass sie Steuerungs- und Regelaufgaben für die Verdichtereinheit (1) durchführt, dadurch gekennzeichnet, dass an dem Gehäuse (4) ein Zusatzgehäuse (56) angebracht ist, in welchem die Automatisierungseinheit (51) angeordnet ist.
2. Verdichtereinheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Zusatzgehäuse (56) in dem Bereich eines Ansaugstutzens (8) des Einlasses (6) Wärme-leitend an dem Gehäuse (4) angebracht ist, so dass die Verlustleistung der Automatisierungseinheit (56) mittels Wärmeleitung an das Gehäuse (4) abgeführt wird.
3. Verdichtereinheit (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fördermedium Erdgas und die Verdichtereinheit (1) für den Unterwasserbetrieb ausgebildet ist.
4. Verdichtereinheit (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Automatisierungseinheit (56) mit Bauelementen mittels interner Signalleitungen (55) und/oder interner Energieversorgungsleitungen (67) in Verbindung steht
5. Verdichtereinheit (1) nach Anspruch 4, dadurch gekennzeichnet, dass die Bauelemente magnetische Lager (Axiallager 25, Radiallager 21, 22) und/oder der Motor (2) sind.
6. Verdichtereinheit (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Automatisierungseinheit (51) mittels externer
Signalleitungen (66) und/oder externer
Energieversorgungsleitungen (68) mit einer Station (65) in
Verbindung steht .
7. Verdichtereinheit (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zusatzgehäuse (56) mittels einer Schweißung (Schweißnaht (58)) mit dem Gehäuse (4) verbunden ist.
8. Verdichtereinheit (1) nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass das Zusatzgehäuse (56) eine verschließbare Öffnung (57; aufweist,
9. Verdichtereinheit (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Kühlsystem (31) vorgesehen ist, das eine
Anzapfung (32) vorsieht und derart ausgebildet ist, dass mittels des Fördermediums die Verdichtereinheit (1) gekühlt wird.
PCT/EP2007/051474 2006-03-24 2007-02-15 Verdichtereinheit WO2007110275A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800104920A CN101410623B (zh) 2006-03-24 2007-02-15 压缩机单元
BRPI0709128-1A BRPI0709128A2 (pt) 2006-03-24 2007-02-15 unidade compressora
EP07704600A EP1999374A1 (de) 2006-03-24 2007-02-15 Verdichtereinheit
US12/225,517 US20090263265A1 (en) 2006-03-24 2007-02-15 Compressor Unit
NO20084450A NO20084450L (no) 2006-03-24 2008-10-22 Kompressorenhet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06006059.7 2006-03-24
EP06006059 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007110275A1 true WO2007110275A1 (de) 2007-10-04

Family

ID=38016605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/051474 WO2007110275A1 (de) 2006-03-24 2007-02-15 Verdichtereinheit

Country Status (7)

Country Link
US (1) US20090263265A1 (de)
EP (1) EP1999374A1 (de)
CN (1) CN101410623B (de)
BR (1) BRPI0709128A2 (de)
NO (1) NO20084450L (de)
RU (1) RU2396466C2 (de)
WO (1) WO2007110275A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150628A1 (en) * 2008-08-13 2011-06-23 Norbert Wagner Fluid energy machine
DE102008057472B4 (de) * 2008-11-14 2011-07-14 Atlas Copco Energas GmbH, 50999 Mehrstufiger Radial-Turboverdichter
DE102011002627A1 (de) * 2011-01-13 2012-07-19 Continental Automotive Gmbh Abgasturbolader mit einem Verdichtergehäuse mit integriertem Wastegate-Steller
ITCO20110020A1 (it) * 2011-05-25 2012-11-26 Nuovo Pignone Spa Metodi e sistemi per condotti a bassa tensione privi di olio
WO2016087303A1 (en) * 2014-12-05 2016-06-09 Nuovo Pignone Srl Motor-compressor unit with magnetic bearings
IT201700097796A1 (it) * 2017-08-31 2019-03-03 Nuovo Pignone Tecnologie Srl Sistemi di turbomacchine con refrigerazione di cuscini magnetici attivi e metodo

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1979622B1 (de) * 2006-02-03 2010-07-07 Siemens Aktiengesellschaft Verdichtereinheit
EP2290241A1 (de) * 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbokompressoreinheit mit einem Kühlsystem
JP2013169136A (ja) * 2012-01-17 2013-08-29 Asmo Co Ltd 駆動装置
DE102012204403A1 (de) * 2012-03-20 2013-09-26 Man Diesel & Turbo Se Radialverdichtereinheit
ITCO20120030A1 (it) * 2012-06-06 2013-12-07 Nuovo Pignone Srl Compressori ad alto rapporto di pressione con intercooler multiplo e relativi metodi
EP2901017B1 (de) 2012-09-12 2020-06-03 FMC Technologies, Inc. Aufwärtslaufendes flüssigkeitssystem
WO2014042626A1 (en) 2012-09-12 2014-03-20 Cunningham Christopher E Subsea multiphase pump or compressor with magnetic coupling and cooling or lubrication by liquid or gas extracted from process fluid
US10161418B2 (en) 2012-09-12 2018-12-25 Fmc Technologies, Inc. Coupling an electric machine and fluid-end
BR112015005555A2 (pt) 2012-09-12 2018-05-22 Fmc Tech Inc compressor submarino ou bomba com motor elétrico hermeticamente selado e com acoplamento magnético
CA2906544C (en) * 2013-03-15 2023-10-17 Fmc Technologies, Inc. Submersible well fluid system
US9571135B2 (en) * 2015-03-20 2017-02-14 Intel IP Corporation Adjusting power amplifier stimuli based on output signals
FI128651B (en) * 2017-06-30 2020-09-30 Lappeenrannan Teknillinen Yliopisto System for an electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729486C1 (de) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit
WO1994029597A1 (en) * 1993-06-15 1994-12-22 Multistack International Limited Compressor
AU706634B2 (en) * 1995-12-28 1999-06-17 Ebara Corporation Pump assembly
EP0990798A1 (de) * 1999-07-16 2000-04-05 Sulzer Turbo AG Turboverdichter
WO2005003512A1 (en) * 2003-07-02 2005-01-13 Kvaerner Oilfield Products As Subsea compressor module and a method for controlling the pressure in such a subsea compressor module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568771A (en) * 1969-04-17 1971-03-09 Borg Warner Method and apparatus for lifting foaming crude by a variable rpm submersible pump
US3963367A (en) * 1974-08-21 1976-06-15 International Harvester Company Turbine surge detection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729486C1 (de) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit
WO1994029597A1 (en) * 1993-06-15 1994-12-22 Multistack International Limited Compressor
AU706634B2 (en) * 1995-12-28 1999-06-17 Ebara Corporation Pump assembly
EP0990798A1 (de) * 1999-07-16 2000-04-05 Sulzer Turbo AG Turboverdichter
WO2005003512A1 (en) * 2003-07-02 2005-01-13 Kvaerner Oilfield Products As Subsea compressor module and a method for controlling the pressure in such a subsea compressor module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150628A1 (en) * 2008-08-13 2011-06-23 Norbert Wagner Fluid energy machine
DE102008057472B4 (de) * 2008-11-14 2011-07-14 Atlas Copco Energas GmbH, 50999 Mehrstufiger Radial-Turboverdichter
DE102011002627A1 (de) * 2011-01-13 2012-07-19 Continental Automotive Gmbh Abgasturbolader mit einem Verdichtergehäuse mit integriertem Wastegate-Steller
ITCO20110020A1 (it) * 2011-05-25 2012-11-26 Nuovo Pignone Spa Metodi e sistemi per condotti a bassa tensione privi di olio
US8978243B2 (en) 2011-05-25 2015-03-17 Nuovo Pignone S.P.A. Methods and systems for oil free low voltage conduits
EP2527657A3 (de) * 2011-05-25 2016-06-29 Nuovo Pignone S.p.A. Verfahren und Systeme für ölfreie Niederspannungsleitungen
WO2016087303A1 (en) * 2014-12-05 2016-06-09 Nuovo Pignone Srl Motor-compressor unit with magnetic bearings
US10151316B2 (en) 2014-12-05 2018-12-11 Nuovo Pignone Srl Motor compressor unit with magnetic bearings
IT201700097796A1 (it) * 2017-08-31 2019-03-03 Nuovo Pignone Tecnologie Srl Sistemi di turbomacchine con refrigerazione di cuscini magnetici attivi e metodo
EP3450701A1 (de) * 2017-08-31 2019-03-06 Nuovo Pignone Tecnologie SrL Turbomaschinensysteme mit magnetlagerkühlung und verfahren
US11686214B2 (en) 2017-08-31 2023-06-27 Nuovo Pignone Tecnologie Srl Turbomachine systems with magnetic bearing cooling and method

Also Published As

Publication number Publication date
NO20084450L (no) 2008-12-18
BRPI0709128A2 (pt) 2011-06-28
RU2396466C2 (ru) 2010-08-10
EP1999374A1 (de) 2008-12-10
RU2008142113A (ru) 2010-04-27
US20090263265A1 (en) 2009-10-22
CN101410623A (zh) 2009-04-15
CN101410623B (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
EP1999374A1 (de) Verdichtereinheit
EP1999375B1 (de) Verdichtereinheit
EP1999380B1 (de) Verdichtereinheit und montageverfahren
DE102012111150B4 (de) Elektrische Wasserpumpe
EP2122169B1 (de) Fluidarbeitsmaschine
EP2142806B1 (de) Verdichtersystem für den unterwassereinsatz im offshore-bereich
EP0305700B1 (de) Kompressoreinheit
EP0580659B1 (de) Fluidpumpe
DE102016107387A1 (de) Elektrische Wasserpumpe mit niedrigem Energieverbrauch und hoher Lebensdauer für Fahrzeuge
EP2305981B1 (de) Elektrischer Turbolader
EP1999378A1 (de) Verdichtereinheit und verwendung eines kühlmediums
EP2250367B1 (de) Rohrturbinen-generatoreinheit
EP1979622A1 (de) Verdichtereinheit
DE3925337A1 (de) Elektromotor
EP3108145B2 (de) Rotationsmaschine sowie verfahren für den wärmeaustausch in einer rotationsmaschine
EP2403750B1 (de) Strömungsmaschine mit einem gehäuse mit erhöhter dichtheit
DE102005003476B4 (de) Spaltrohrmotor mit geschlossenem Kühlsystem
DE4020416C2 (de)
DE102014218782B4 (de) Aufgeladene Brennkraftmaschine mit flüssigkeitsgekühlter Turbine und Lagergehäuse
DE2209938B2 (de) Unterirdische transformatorstation
DE102015224754A1 (de) Modularer Verdichter
WO2011044892A1 (de) Unterwasser-kompressoranordnung und damit ausgerüstete unterwasser-prozessfluidförderanordnung
DE102018202172A1 (de) Antriebsvorrichtung für ein Luftfahrzeug mit elektrischer Maschine und Kühleinrichtung
DE102009032264A1 (de) Baugruppe für einen druckresistenten Elektromotor für den Einsatz bei großen Druckunterschieden zwischen dem Motorraum und der Umgebung
DE102004047637A1 (de) Elektrisch betriebene Pumpe mit Außenrotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07704600

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007704600

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12225517

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780010492.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008142113

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0709128

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080923