EP2142806B1 - Verdichtersystem für den unterwassereinsatz im offshore-bereich - Google Patents

Verdichtersystem für den unterwassereinsatz im offshore-bereich Download PDF

Info

Publication number
EP2142806B1
EP2142806B1 EP08759450.3A EP08759450A EP2142806B1 EP 2142806 B1 EP2142806 B1 EP 2142806B1 EP 08759450 A EP08759450 A EP 08759450A EP 2142806 B1 EP2142806 B1 EP 2142806B1
Authority
EP
European Patent Office
Prior art keywords
housing
compressor system
cooling
compressor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08759450.3A
Other languages
English (en)
French (fr)
Other versions
EP2142806A1 (de
Inventor
Maria Bade
Joachim Mucha
Axel MÖHLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2142806A1 publication Critical patent/EP2142806A1/de
Application granted granted Critical
Publication of EP2142806B1 publication Critical patent/EP2142806B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine

Definitions

  • the invention relates to a compressor system, in particular for the promotion of gases or gas / oil mixtures in the offshore sector.
  • the compressor system has a seawater-resistant housing with at least one access opening for gases or gas / oil mixtures to be compressed and with at least one outlet opening for the compressed gases or gas / oil mixtures. It has a compressor arranged in the housing, which is connected on the input side to the access opening and on the output side to the output opening.
  • an electric motor is arranged with a stator core which can be cooled via an inner side of the housing and with a rotor core for driving the compressor.
  • German patent DE 37 29 486 C1 is a compressor unit for the production of natural gas in the offshore area with drive by a high-frequency motor for the compression of gases is known, which is suitable for large water depths.
  • the high-frequency motor of the compressor unit is magnetically mounted and drives the compressor stages in a common gas-tight housing. The cooling of the engine, the bearings and the compressor stages takes place through the liquid surrounding the common housing.
  • German patent application DE 42 09 118 A1 is an electric motor with a motor pressure housing, filled with gas. under high pressure, known.
  • a capsule is provided which surrounds the rotor rods on the drive side and / or side.
  • a compressor which has a compressor unit and an electric motor driving the same via a common shaft.
  • the shaft is mounted on a liquid cooled axle.
  • the compressor systems can be driven by an electric motor or by a gas turbine.
  • the electric motor is preferably a brushless asynchronous motor.
  • a high-speed turbine is used for compression, in which case the turbine and the electric motor are preferably arranged on a common shaft.
  • the brush and gearless drive allows virtually maintenance-free operation of such compressor systems.
  • screw or reciprocating compressors can be used for compression.
  • the considered compressor systems may be installed in coastal petrochemical facilities, on drilling platforms or under water. In the latter case, the drive of the compressor is typically carried out with an electric motor.
  • the supply of the gas or the gas / oil mixture is usually via a pipe which is flanged to the outside of the housing of the compressor system. In a corresponding manner, the further transport of the compressed gas or gas / oil mixture takes place on the output side via another Pipeline.
  • a pressure hose can be used instead of a pipe.
  • the high electrical connection capacity of the electric motors used in the range of several 100 kW requires cooling of the electric motors.
  • an oil recooling system is used, which is connected as a separate unit via oil supply lines and oil return lines to the compressor system.
  • Such compressor systems are disadvantageously expansive because of the externally arranged oil recooling.
  • Another disadvantage is that the external oil recooling systems may leak over time.
  • the oil feed pipes and the oil return pipes themselves may become leaky, in particular due to corrosion caused by sea water or due to mechanical effects, such as corrosion. by waves.
  • pressure-tight connection connections of the pipelines to the housing of the compressor system can become leaky over time. Escaping oil and oil / gas mixtures in this context represents a potential ecological hazard to the surrounding waters.
  • the stator core is spaced from the inside of the housing.
  • the stator in this case forms with at least one opposite part of the inside of the housing an annular cooling chamber.
  • a coolant is present in the cooling chamber.
  • the coolant is a liquid, especially an oil, e.g. a silicone or mineral oil. In addition to the high specific heat capacity, this has an advantageous electrically insulating effect with regard to the live winding ends.
  • other cooling liquids may be used, such as e.g. Water based coolants.
  • the coolant may alternatively be a refrigerant, such as e.g. Freon® R134a.
  • the coolant is a sol, that is, a liquid / gas mixture.
  • cooling passages extending essentially axially to the axis of rotation of the electric motor are provided in the stator core.
  • the compressor system comprises a circulation pump for the coolant.
  • the compressor system for the intended use is installed such that the axis of rotation of the electric motor is substantially in the vertical direction.
  • the present arrangement causes automatically adjusts a cooling circuit within the cooling chamber. Because the heating of the coolant in the respective cooling channels causes it to rise and flow out of the upper axial face of the stator core. Subsequent coolant forcibly conveys the heated coolant to the inside of the housing that is cold compared to the coolant temperature. The subsequent cooling causes an increase in specific gravity and a decrease in the coolant. At the lower end of the cooling chamber, the cooled coolant is sucked in the direction of the axially lower end face of the stator core. The cooling circuit is closed.
  • the cold outside of the outside of the housing which has typical temperatures in the single-digit Celsius range, acts as a heat sink.
  • the large temperature gradient between heated coolant and cold seawater causes a large heat flow from the coolant through the housing wall to the seawater.
  • baffles For the purpose of directing the circulating liquid flow forming in the cooling chamber, baffles, e.g. be arranged at the axial ends of the stator.
  • the housing has an outer housing side, on which a plurality of cooling fins is arranged.
  • the cooling fins cause a significant increase in the cooling surface to the sea water.
  • the enlarged cooling surface may, depending on the shape and number of existing cooling fins, be a multiple of the otherwise existing outer surface of the housing of the compressor system.
  • the cooling fins are away from the outside of the housing.
  • the housing has a cylindrical shape.
  • the heat sinks are radially away from the outside of the housing.
  • With “radial" directions are referred to the axis of symmetry of the cylindrical housing to and away from her.
  • the axis of symmetry coincides with the axis of rotation of the electric motor.
  • FIG. 1 shows a sectional view of a non-inventive compressor system 1 along the axis of rotation DA of an electric motor 7 and a compressor eighth
  • a housing 2 is seawater resistant.
  • the housing 2 is preferably made of steel and may have a protective coating to prevent corrosion.
  • the steel used may alternatively or additionally be a stainless steel.
  • the housing 2 may be made of a seawater resistant aluminum.
  • the housing is pressure-tight, in accordance with the intended for operation of the compressor system 1 depth of use under the sea water level or on the seabed.
  • the pressure-tight requirements relate not only to the housing 2 itself, but also implementations in the housing, such as for power and control cables for power supply and for controlling and / or monitoring of the compressor system. 1
  • the housing 2 has, for example, an access opening 3 for the gases or gas / oil mixtures to be compressed and an outlet opening 4 for the compressed gases or gas / oil mixtures.
  • a plurality of openings 3, 4 may be present.
  • At the two openings 3, 4 are usually connecting elements, such as couplings or flanges, mounted in order to connect to these pipes or pressure hoses.
  • the connection elements and the pipes are to be designed in a technically robust manner with regard to the respectively required pressure tightness.
  • the compressor 8 is arranged, which is the input side connected to the access opening 3 and the output side to the output port 4.
  • the arrows shown in the region of the openings 3, 4 indicate the flow directions.
  • the compressor 8 has a turbine 81 with turbine blades not further specified. Their diameter decreases in the axial direction, that is, in the flow direction, whereby the pressure increases due to the compression at the same time.
  • the reference numeral 83 denotes a high-pressure discharge. From there, via a pipe connection, not further described, inside the housing 2, the transport of the compressed gas to the exit opening 3 takes place.
  • the electric motor 7 is further arranged for driving the compressor 8.
  • the electric motor 7 has a stator 71 and a rotor package 72. Furthermore, in the example of the FIG. 1 both the compressor 8 and the electric motor 7 on a common, guided in bearings 6 shaft 5.
  • the stator 71 of the electric motor 7 is cooled via a housing inner side GI of the housing 2 of the compressor system 1.
  • cooling takes place via a stator outer side SA, which rests flush against the inside of the housing GI.
  • the arrows entered in the contact area between the outside of the stator SA and the inside of the housing GI symbolize the heat flow.
  • a good thermal conductivity mass such as a good thermal conductivity paste, a grease or the like.
  • the compressor system 1 shown is installed such that the axis of rotation DA of the electric motor 7 extends substantially in the vertical direction. It can alternatively be aligned in a horizontal position.
  • the housing 2 has a housing outside GA, on which a plurality of projecting cooling fins 21 is arranged.
  • the cooling fins 21 are radially away from the housing outside GA.
  • the compressor system 1 according to the invention and an embodiment according to FIG. 2 and FIG. 3 have such a cylindrical design.
  • FIG. 2 shows a sectional view of a compressor system according to the invention 1.
  • the compressor system 1 shown is in turn mounted vertically with respect to the axis of rotation DA of the electric motor 7.
  • stator 71 In contrast to the compressor system according to FIG. 1 is the stator 71 according to the invention from the inside GI of the housing 2 spaced.
  • the mean radial distance is preferably in a range of 5 cm to 15 cm. Depending on the electrical connection performance of the electric motor 7, the distance values can also be above, for example, at 20 cm, or below, such as at 3 cm.
  • the stator 71 forms with at least one opposite part of the housing inner side GI an annular cooling chamber 9, in which a coolant 9 is present.
  • the cooling chamber 9 In the cooling chamber 9 are also the winding heads 73 of the stator 71, which protrude axially from the stator 71.
  • the cooling chamber 9 has in the example of FIG. 2 only one chamber up. It may alternatively have a plurality of chambers, in which case adjacent chambers are separated from each other by a radially axially extending bulkhead.
  • the cooling chamber 9 is formed by two ripeness 91, 92 and a circular disk 94.
  • the two ripen 91, 92 have an inner diameter which corresponds to the inner diameter of the stator 71.
  • the first hoop 91 is sealed to a lower axial end face of the stator pack 71, such as e.g. welded.
  • the axis of symmetry of this hoop 91 is aligned with the axis of rotation DA of the electric motor 7.
  • the axial height of the first hoop 91 corresponds to almost the axial distance of the stator 71 to a bottom plate 22 of the housing 2.
  • the lower edge of the first hoop 91 can via a sealing ring 93 for Bottom plate 22 to be sealed towards sealed or welded to the bottom plate 22.
  • the second hoop 92 is similarly attached to the upper axial end of the stator core 71.
  • the circular disk 94 has an inner diameter which corresponds approximately to the inner diameter of the maturity 91, 92.
  • the outer diameter corresponds approximately to the inner diameter of the housing 2.
  • the second hoop 92 and the circular disk 94 are preferably welded together tightly and together form a flange 92, 94.
  • the outer edge of the circular disk 94 and the flange 92, 94 can via another Gasket 95 may be sealed to the inside of the housing GI or tightly welded to the inside of the housing GI.
  • the maturity 91, 92, the circular disk 94, a radial inner side of the stator core 71 and the inside of the housing GI thus form a hollow cylinder.
  • a coolant preferably an oil
  • a so-called transformer oil based on mineral oil or silicone oil comes into consideration.
  • the entire cooling chamber 9 is filled with the cooling liquid.
  • a compensating vessel for the cooling liquid may be present to compensate for a temperature-induced change in volume of the coolant.
  • the coolant may alternatively be a refrigerant, such as a Freon®. It is particularly advantageous in terms environmental compatibility a CFC-free Freon®, such as Freon® R134a.
  • the cooling chamber 9 is filled with a sol, that is, with a liquid / gas mixture.
  • cooling passages 75 extending essentially axially to the axis of rotation DA of the electric motor 7 are present in the stator pack 71. Because of the embedding of the stator 71 in the coolant, these are also filled with the coolant.
  • a circulation of the coolant in the cooling chamber 9 is established. This is represented by flow arrows.
  • the coolant heated in the cooling channels 75 rises upward and cools in the reverse direction from top to bottom along the cold inside of the housing GI again.
  • the thermally particularly critical winding heads 73 are surrounded by the circulating coolant and thus effectively cooled.
  • the horizontal arrows symbolize the heat transfer from the coolant, continue on the wall of the housing 2 in the sea water, which surrounds the outside of the housing GA 2.
  • the adjusting in the cooling chamber 9 cooling circuit can also be referred to as a primary cooling circuit, while adjusts to the outside of the housing, but only in the case of a stationary water, a counterflow, which sweeps from bottom to top along the outside of the housing GA.
  • the cooling by the seawater can also be called secondary cooling.
  • the compressor system 1 may comprise a circulation pump for the coolant.
  • the circulating pump is e.g. a centrifugal pump which is mounted in or on the cooling chamber 9.
  • cooling fins 21 are formed on the outside of the housing 2 GA shorter in length. They extend only in the axial "hot" region of the housing 2, which is opposite to the cooling chamber 9.
  • the cooling of the compressor 8 takes place in this context on the gases to be compressed or gas / oil mixtures themselves.
  • FIG. 3 shows a sectional view of a compressor system 1 according to a third embodiment of the invention.
  • the cooling chamber 9 is substantially torus-shaped, wherein the cooling chamber 9 curved cooling chamber walls 96, 97 which favor the circulating flow through their shape.
  • the cooling capacity of this embodiment is therefore larger in comparison to the second embodiment with the same construction volume.
  • the cooling chamber walls 96, 97 fulfill in addition to the formation of the cooling chamber 9 and a Strömungsleitfunktion.
  • Reference numerals 98, 99 denote further sealing rings for sealing the cooling chamber walls 96, 97 with the inside of the housing GI.
  • the cooling chamber walls 96, 97 may be tightly welded to the inside of the housing GI.
  • FIG. 4 shows a side view of the compressor system 1 according to FIG. 3 according to the in FIG. 3 marked line of vision IV.
  • FIG. 4 shows the view into the access opening 3, that is in the direction of the compressor.
  • the stator 71 has a plurality of circumferentially uniformly distributed cooling channels 75 on.
  • the cooling channels 75 are arranged with respect to their radial position to the winding heads 73 on both sides of the winding heads 73 (see also FIG. 2 and FIG. 3 ).
  • the arrangement of the cooling channels 75 is preferably carried out in the magnetically less active region of the stator 71.
  • the plurality of cooling channels 75 allows effective cooling of the stator 71 from the inside out.
  • cooling fins 21 On the outer side of the housing GA there is a large number of cooling fins 21 arranged radially away from the outside of the housing to see.
  • the cooling fins 21 cause a drastic increase in the cooling surface available for cooling by seawater.
  • the cooling fins 21 are an integral part of the housing 2 of the compressor system 1.
  • the housing 2 is made of a casting.
  • the compressor system according to the invention is also suitable for high-speed compressor systems at speeds of up to 15,000 rpm and powers of a few 100 kW up to 10 MW and more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die Erfindung betrifft ein Verdichtersystem, insbesondere zur Förderung von Gasen oder Gas-/Ölgemischen im Offshore-Bereich. Das Verdichtersystem weist ein seewasserfestes Gehäuse mit zumindest einer Zugangsöffnung für zu verdichtende Gase oder Gas-/Ölgemische und mit zumindest einer Ausgangsöffnung für die verdichteten Gase oder Gas-/Ölgemische auf. Es weist einen im Gehäuse angeordneten Verdichter auf, welcher eingangsseitig mit der Zugangsöffnung und ausgangsseitig mit der Ausgangsöffnung verbunden ist. Im Gehäuse ist ein Elektromotor mit einem über eine Innenseite des Gehäuses kühlbaren Statorpaket und mit einem Rotorpaket zum Antreiben des Verdichters angeordnet.
  • Aus dem deutschen Patent DE 37 29 486 C1 ist eine Kompressoreinheit zur Förderung von Erdgas im Offshore-Bereich mit Antrieb durch einen Hochfrequenzmotor zur Verdichtung von Gasen bekannt, die für große Wassertiefen geeignet ist. Der Hochfrequenzmotor der Kompressoreinheit ist magnetisch gelagert und treibt in einem gemeinsamen nach außen gasdichten Gehäuse die Kompressorstufen an. Die Kühlung des Motors, der Lager sowie der Kompressorstufen erfolgt durch die das gemeinsame Gehäuse umgebende Flüssigkeit.
  • Aus der deutschen Offenlegungsschrift DE 196 23 553 A1 ist eine flüssigkeitsgekühlte elektrische Maschine bekannt, die als Unterwassermotor in spaltrohrloser Bauweise ausgebildet ist und vollständig mit Motorfüllflüssigkeit niedriger Viskosität gefüllt ist. Zur Optimierung der Wärmeverteilung innerhalb des Stators sind Kühlrohre vorgesehen, die parallel zum Luftspalt zwischen Stator und Rotor verlaufen. Die gesamte für Kühlzwecke verwendete Motorfüllflüssigkeit strömt parallel durch die Kühlrohre und den Luftspalt.
  • Aus der deutschen Offenlegungsschrift DE 42 09 118 A1 ist ein Elektromotor mit einem Motor-Druckgehäuse, gefüllt mit Gas . unter hohem Druck, bekannt. Um die in dem Elektromotor anfallende Verlustwärme zu verringern, ist eine Kapsel vorgesehen, die die Rotorstäbe antriebsseitig und/oder nebenseitig umschließt.
  • Aus dem französischen Patent FR 1 181 680 A ist ein Kompressor bekannt, der eine Kompressoreinheit und einen diese über eine gemeinsame Welle antreibenden Elektromotor aufweist. Die Welle ist auf einer flüssigkeitsgekühlten Achse gelagert.
  • Die Offshore-Förderung, das heißt die Förderung von Öl und Gas in küstennahen Gewässern, stellt hohe Anforderungen an Verdichtersysteme. Sie müssen rauem Klima, korrodierenden Umweltbedingungen sowie unberechenbaren Gaszusammensetzungen gewachsen sein. Die Verdichtersysteme können mit einem Elektromotor oder mit einer Gasturbine angetrieben werden. Der Elektromotor ist vorzugsweise ein bürstenloser Asynchronmotor. Üblicherweise wird zum Verdichten eine schnelllaufende Turbine verwendet, wobei in diesem Falle die Turbine und der Elektromotor vorzugsweise auf einer gemeinsamen Welle angeordnet sind. Der bürsten- und getriebelose Antrieb erlaubt einen nahezu wartungsfreien Betrieb derartiger Verdichtersysteme. Alternativ können auch Schrauben- oder Kolbenkompressoren zum Verdichten verwendet werden.
  • Die betrachteten Verdichtersysteme können in Einrichtungen der Petrochemie an der Küste, auf Bohrplattformen oder auch unter Wasser installiert sein. Im letzteren Fall erfolgt der Antrieb des Verdichters typischerweise mit einem Elektromotor.
  • Die Zuführung des Gases bzw. des Gas-/Ölgemisches erfolgt üblicherweise über eine Rohrleitung, welche an der Gehäuseaußenseite des Verdichtersystems angeflanscht ist. In entsprechender Weise erfolgt der Weitertransport des verdichteten Gases bzw. Gas-/Ölgemisches ausgangsseitig über eine weitere Rohrleitung. Alternativ kann anstelle einer Rohrleitung ein Druckschlauch verwendet werden.
  • Die hohe elektrische Anschlussleistung der verwendeten Elektromotoren im Bereich von mehreren 100 kW macht eine Kühlung der Elektromotoren erforderlich. Üblicherweise wird eine Ölrückkühlanlage verwendet, welche als separate Einheit über Ölzulaufleitungen und Ölrücklaufleitungen an das Verdichtersystem angeschlossen ist. Derartige Verdichtersysteme sind wegen der außerhalb angeordneten Ölrückkühlanlagen nachteilig raumgreifend.
  • Ein weiterer Nachteil ist, dass die externen Ölrückkühlanlagen mit der Zeit undicht werden können. Zum einen können die Ölzulaufleitungen und die Ölrücklaufleitungen selbst undicht werden, insbesondere durch eine meerwasserbedingte Korrosion oder durch mechanische Einwirkungen, wie z.B. durch Wellenschlag. Zum anderen können auch druckdicht ausgeführte Anschlussverbindungen der Rohrleitungen am Gehäuse des Verdichtersystems mit der Zeit undicht werden. Austretendes Öl sowie Öl-/Gasgemische stellt in diesem Zusammenhang eine potentielle ökologische Gefahr für die umgebenden Gewässer dar.
  • Es ist eine Aufgabe der Erfindung ein Verdichtersystem anzugeben, bei welchem die zuvor beschriebenen Nachteile vermieden werden.
  • Die Aufgabe der Erfindung wird durch ein Verdichtersystem mit den Merkmalen des Anspruchs 1 gelöst. Weitere vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen 2 bis 6 angegeben.
  • Erfindungsgemäß ist das Statorpaket von der Innenseite des Gehäuses beabstandet. Das Statorpaket bildet in diesem Fall mit zumindest einem gegenüberliegenden Teil der Gehäuseinnenseite eine ringförmige Kühlkammer aus. In der Kühlkammer ist ein Kühlmittel vorhanden.
  • Damit ist der Vorteil verbunden, dass der Wärmeübergangswiderstand vom Statorpaket zum Gehäuse wegen der vollständigen Einbettung des Statorpakets im Kühlmittel und wegen der Benetzung der Gehäuseinnenseite mit dem Kühlmittel drastisch reduziert wird. Der Grund dafür ist, dass das Statorpaket mit seinen besonders heißen Stellen, wie z.B. mit seinen axial überstehenden Wickelköpfen, komplett im Kühlmittel eingetaucht ist. Die Kühlung dieser heißen und kritischen Stellen ist daher besonders effektiv. Mit "axial" sind Richtungen parallel zur Drehachse des Elektromotors bezeichnet.
  • Vorzugsweise ist das Kühlmittel eine Flüssigkeit, insbesondere ein Öl, wie z.B. ein Silikon- oder Mineralöl. Neben der hohen spezifischen Wärmekapazität wirkt dieses in Hinblick auf die spannungsführenden Wickelköpfe vorteilhaft elektrisch isolierend. Alternativ können andere Kühlflüssigkeiten verwendet werden, wie z.B. Kühlflüssigkeiten auf Wasserbasis. Das Kühlmittel kann alternativ ein Kältemittel sein, wie z.B. Freon® R134a. In diesem Fall ist das Kühlmittel ein Sol, das heißt ein Flüssigkeits-/Gasgemisch.
  • Nach einer Ausführungsform sind im Statorpaket im Wesentlichen axial zur Drehachse des Elektromotors verlaufende Kühlkanäle vorhanden. Dadurch ist in vorteilhafter Weise eine Kühlung im Inneren des Statorpakets möglich.
  • Einer weiteren Ausführungsform zufolge weist das Verdichtersystem eine Umwälzpumpe für das Kühlmittel auf. Durch die Umwälzung wird eine gleichmäßigere und auch höhere Kühlleistung erzielt.
  • Nach einer bevorzugten Ausführungsform ist das Verdichtersystem für den bestimmungsgemäßen Einsatz derart installiert, dass die Drehachse des Elektromotors im Wesentlichen in vertikaler Richtung verläuft. Selbiges trifft auf die Kühlkanäle zu. Die vorliegende Anordnung bewirkt, dass sich selbsttätig ein Kühlkreislauf innerhalb der Kühlkammer einstellt. Denn die Erwärmung des Kühlmittels in den jeweiligen Kühlkanälen bewirkt, dass dieses aufsteigt und aus der oberen axialen Stirnseite des Statorpakets herausströmt. Nachströmendes Kühlmittel befördert das erhitzte Kühlmittel zwangläufig zu der im Vergleich zur Kühlmitteltemperatur kalten Gehäuseinnenseite. Die nachfolgende Abkühlung bewirkt eine Erhöhung des spezifischen Gewichts und ein Absinken des Kühlmittels. Am unteren Ende der Kühlkammer angelangt wird das abgekühlte Kühlmittel in Richtung zur axialen unteren Stirnseite des Statorpakets angesaugt. Der Kühlkreislauf ist damit geschlossen. Dabei wirkt das die Gehäuseaußenseite umspülende kalte Meerwasser mit typischen Temperaturen im einstelligen Celsius-Bereich als Wärmesenke. Der große Temperaturgradient zwischen erhitztem Kühlmittel und kaltem Meerwasser bewirkt einen großen Wärmestrom vom Kühlmittel über die Gehäusewandung zum Meerwasser.
  • Zur gezielten Lenkung der sich in der Kühlkammer ausbildenden zirkulierenden Flüssigkeitsströmüng können auch Leitbleche z.B. an den axialen Enden des Statorpakets angeordnet sein.
  • Nach einer weiteren vorteilhaften Ausführungsform weist das Gehäuse eine Gehäuseaußenseite auf, an der eine Vielzahl von Kühlrippen angeordnet ist. Die Kühlrippen bewirken eine erhebliche Vergrößerung der Kühlfläche zum Meerwasser hin. Die vergrößerte Kühlfläche kann, je nach Ausformung und Anzahl der vorhandenen Kühlrippen, ein Vielfaches der sonst vorliegenden Außenfläche des Gehäuses des Verdichtersystems sein. Vorzugsweise weisen die Kühlrippen von der Außenseite des Gehäuses weg.
  • Vorzugsweise weist das Gehäuse eine zylindrische Bauform auf. In diesem Fall weisen die Kühlkörper radial von der Gehäuseaußenseite weg. Mit "radial" sind Richtungen auf die Symmetrieachse des zylindrischen Gehäuses zu und von ihr weg bezeichnet. Typischerweise fällt die Symmetrieachse mit der Drehachse des Elektromotors zusammen.
  • Weitere vorteilhafte Eigenschaften der Erfindung ergeben sich aus deren beispielhafter Erläuterung anhand der Figuren. Es zeigen
  • FIG 1
    eine Schnittdarstellung eines nicht erfindungsgemäßen Verdichtersystems entlang der Drehachse eines Elektromotors und eines Verdichters,
    FIG 2
    eine Schnittdarstellung eines erfindungsgemäßen Verdichtersystems,
    FIG 3
    eine Schnittdarstellung eines Verdichtersystems gemäß einer Ausführungsform der Erfindung und
    FIG 4
    eine Seitenansicht des Verdichtersystems gemäß FIG 3 entsprechend der in FIG 3 eingezeichneten Blickrichtung IV.
  • FIG 1 zeigt eine Schnittdarstellung eines nicht erfindungsgemäßen Verdichtersystems 1 entlang der Drehachse DA eines Elektromotors 7 und eines Verdichters 8.
  • Die in den Figuren FIG 1 bis FIG 3 dargestellten Verdichtersysteme sind insbesondere zur Förderung von Gasen und/oder Gas-/Ölgemischen im Offshore-Bereich ausgebildet. Insbesondere ist ein Gehäuse 2 seewasserfest ausgeführt. Das Gehäuse 2 ist vorzugsweise aus Stahl gefertigt und kann zur Vermeidung von Korrosion einen Schutzanstrich aufweisen. Der verwendete Stahl kann alternativ oder zusätzlich ein nichtrostender Stahl sein. Alternativ kann das Gehäuse 2 aus einem seewasserfesten Aluminium hergestellt sein. Vorzugsweise ist das Gehäuse druckdicht ausgeführt, und zwar entsprechend der zum Betrieb des Verdichtersystems 1 vorgesehenen Einsatztiefe unter dem Meerwasserspiegel oder am Meeresgrund. Die druckdichten Anforderungen betreffen nicht nur das Gehäuse 2 selbst, sondern auch Durchführungen im Gehäuse, wie z.B. für Strom- und Steuerungskabel zur Energieversorgung und zur Steuerung und/oder Überwachung des Verdichtersystems 1.
  • Das Gehäuse 2 weist beispielhaft eine Zugangsöffnung 3 für die zu verdichtenden Gase oder Gas-/Ölgemische und eine Ausgangsöffnung 4 für die verdichteten Gase oder Gas-/Ölgemische auf. Es können alternativ auch mehrere Öffnungen 3, 4 vorhanden sein. An den beiden Öffnungen 3, 4 sind üblicherweise Anschlusselemente, wie z.B. Kupplungen oder Flansche, angebracht, um an diese Leitungsrohre oder Druckschläuche anschließen zu können. Die Anschlusselemente sowie die Leitungsrohre sind hinsichtlich der jeweils geforderten Druckdichtigkeit in entsprechender Weise technisch robust auszulegen.
  • Im Gehäuse 2 ist der Verdichter 8 angeordnet, welcher eingangsseitig mit der Zugangsöffnung 3 und ausgangsseitig mit der Ausgangsöffnung 4 verbunden ist. Die im Bereich der Öffnungen 3, 4 dargestellten Pfeile zeigen die Strömungsrichtungen an. Im Beispiel der FIG 1 weist der Verdichter 8 eine Turbine 81 mit nicht weiter bezeichneten Turbinenblättern auf. Deren Durchmesser nimmt in axialer Richtung, das heißt in Strömungsrichtung ab, wobei durch die Verdichtung zugleich der Druck zunimmt. Mit dem Bezugszeichen 83 ist eine Hochdruckausleitung bezeichnet. Von dort aus erfolgt über eine nicht weiter bezeichnete Rohrverbindung im Inneren des Gehäuses 2 der Transport des verdichteten Gases zur Ausgangsöffnung 3 hin.
  • Im Gehäuse 2 ist weiterhin der Elektromotor 7 zum Antreiben des Verdichters 8 angeordnet. Der Elektromotor 7 weist ein Statorpaket 71 sowie ein Rotorpaket 72 auf. Weiterhin weisen im Beispiel der FIG 1 sowohl der Verdichter 8 als auch der Elektromotor 7 eine gemeinsame, in Lagern 6 geführte Welle 5 auf.
  • Das Statorpaket 71 des Elektromotors 7 ist über eine Gehäuseinnenseite GI des Gehäuses 2 des Verdichtersystems 1 kühlbar. Im Beispiel der FIG 1 erfolgt die Kühlung über eine Statoraußenseite SA, welche bündig an der Gehäuseinnenseite GI anliegt. Die im Kontaktbereich zwischen Statoraußenseite SA und Gehäuseinnenseite GI eingetragenen Pfeile versinnbildlichen den Wärmestrom. Um die Kühlleistung zu erhöhen, kann zwischen der Statoraußenseite SA und der Gehäuseinnenseite GI eine gut wärmeleitfähige Masse eingebracht sein, wie z.B. eine gut wärmeleitende Paste, ein Fett oder dergleichen.
  • Das gezeigte Verdichtersystem 1 ist derart installiert, dass die Drehachse DA des Elektromotors 7 im Wesentlichen in vertikaler Richtung verläuft. Sie kann alternativ auch in waagrechter Position ausgerichtet sein.
  • Des Weiteren weist das Gehäuse 2 eine Gehäuseaußenseite GA, an welcher eine Vielzahl von abstehenden Kühlrippen 21 angeordnet ist. Bei dem vorliegenden Fall einer zylindrischen Bauform des Gehäuses 2 weisen die Kühlrippen 21 radial von der Gehäuseaußenseite GA weg. Auch das erfindungsgemäße Verdichtersystem 1 und eine Ausführungsform dessen gemäß FIG 2 und FIG 3 weisen eine derartige zylindrische Bauform auf.
  • FIG 2 zeigt eine Schnittdarstellung eines erfindungsgemäßen Verdichtersystems 1. Das gezeigte Verdichtersystem 1 ist in Bezug auf die Drehachse DA des Elektromotors 7 wiederum vertikal installiert.
  • Im Unterschied zum Verdichtersystem gemäß FIG 1 ist das Statorpaket 71 gemäß der Erfindung von der Innenseite GI des Gehäuses 2 beabstandet. Der mittlere radiale Abstand liegt vorzugsweise in einem Bereich von 5 cm bis 15 cm. Je nach elektrischer Anschlussleistung des Elektromotors 7 können die Abstandswerte auch darüber liegen, wie z.B. bei 20 cm, oder darunter liegen, wie z.B. bei 3 cm. Das Statorpaket 71 bildet mit zumindest einem gegenüberliegenden Teil der Gehäuseinnenseite GI eine ringförmige Kühlkammer 9 aus, in welcher ein Kühlmittel 9 vorhanden ist. In der Kühlkammer 9 liegen auch die Wickelköpfe 73 des Statorpakets 71, welche axial aus dem Statorpaket 71 herausragen. Die Kühlkammer 9 weist im Beispiel der FIG 2 nur eine Kammer auf. Sie kann alternativ mehrere Kammern aufweisen, wobei in diesem Fall benachbarte Kammern jeweils durch ein radialaxial verlaufendes Schott von einander getrennt sind.
  • Die Kühlkammer 9 ist durch zwei Reife 91, 92 und eine Kreisscheibe 94 gebildet. Die beiden Reife 91, 92 weisen einen Innendurchmesser auf, der dem Innendurchmesser des Statorpakets 71 entspricht. Der erste Reif 91 ist an einer unteren axialen Stirnseite des Statorpakets 71 abgedichtet angebracht, wie z.B. angeschweißt. Die Symmetrieachse dieses Reifs 91 fluchtet mit der Drehachse DA des Elektromotors 7. Die axiale Höhe des ersten Reifs 91 entspricht nahezu dem axialen Abstand des Statorpakets 71 zu einer Bodenplatte 22 des Gehäuses 2. Der untere Rand des ersten Reifs 91 kann über einen Dichtungsring 93 zur Bodenplatte 22 hin abgedichtet sein oder mit der Bodenplatte 22 dicht verschweißt sein.
  • Der zweite Reif 92 ist in entsprechender Weise am oberen axialen Ende des Statorpakets 71 angebracht. Die Kreisscheibe 94 weist einen Innendurchmesser auf, der in etwa dem Innendurchmesser der Reife 91, 92 entspricht. Der Außendurchmesser entspricht in etwa dem Innendurchmesser des Gehäuses 2. Der zweite Reif 92 und die Kreisscheibe 94 sind vorzugsweise mit einander dicht verschweißt und bilden gemeinsam einen Flansch 92, 94. Der Außenrand der Kreisscheibe 94 bzw. des Flansches 92, 94 kann über einen weiteren Dichtungsring 95 zur Gehäuseinnenseite GI abgedichtet sein oder mit der Gehäuseinnenseite GI dicht verschweißt sein. Die Reife 91, 92, die Kreisscheibe 94, eine radiale Innenseite des Statorpakets 71 und die Gehäuseinnenseite GI bilden somit einen Hohlzylinder.
  • In der Kühlkammer 9 ist ein Kühlmittel, vorzugsweise ein Öl, als Kühlflüssigkeit vorhanden. Insbesondere kommt ein sogenanntes Trafoöl auf Mineralölbasis oder Silikonölbasis in Betracht. Vorzugsweise ist die gesamte Kühlkammer 9 mit der Kühlflüssigkeit gefüllt. Im Gehäuse 2 und außerhalb der Kühlkammer 9 kann ein Ausgleichsgefäß für die Kühlflüssigkeit vorhanden sein, um eine temperaturbedingte Volumenänderung des Kühlmittels auszugleichen.
  • Das Kühlmittel kann alternativ zum Öl auch ein Kältemittel sein, wie z.B. ein Freon®. Besonders vorteilhaft ist hinsichtlich der Umweltverträglichkeit ein FCKW-freies Freon®, wie z.B. Freon® R134a. In diesem Fall ist die Kühlkammer 9 mit einem Sol gefüllt, das heißt mit einem Flüssigkeits-/Gasgemisch.
  • Des Weiteren sind im Statorpaket 71 im Wesentlichen axial zur Drehachse DA des Elektromotors 7 verlaufende Kühlkanäle 75 vorhanden. Wegen der Einbettung des Statorpakets 71 in dem Kühlmittel sind diese gleichfalls mit dem Kühlmittel gefüllt. Während des Betriebs des Verdichtersystems 1 stellt sich eine Zirkulation des Kühlmittels in der Kühlkammer 9 ein. Dies ist durch Strömungspfeile dargestellt. Dabei steigt das in den Kühlkanälen 75 erhitzte Kühlmittel nach oben und kühlt sich in umgekehrter Richtung von oben nach unten entlang der kalten Gehäuseinnenseite GI wieder ab. Dabei werden die thermisch besonders kritischen Wickelköpfe 73 durch das zirkulierende Kühlmittel umspült und damit wirksam gekühlt.
  • Die waagrechten Pfeile symbolisieren den Wärmetransport vom Kühlmittel, weiter über die Wandung des Gehäuses 2 in das Meerwasser, welches die Außenseite GA des Gehäuses 2 umspült. Der sich in der Kühlkammer 9 einstellende Kühlkreislauf kann auch als Primärkühlkreislauf bezeichnet werden, während sich an der Gehäuseaußenseite, allerdings nur im Falle eines ruhenden Gewässers, eine Gegenströmung einstellt, welche von unten nach oben entlang der Gehäuseaußenseite GA entlang streicht. Die Kühlung durch das Meerwasser kann auch als Sekundärkühlung bezeichnet werden.
  • Zur weiteren Steigerung der Kühlleistung kann das Verdichtersystem 1 eine Umwälzpumpe für das Kühlmittel aufweisen. Die Umwälzpumpe ist z.B. eine Kreiselpumpe, welche in oder an der Kühlkammer 9 angebracht ist.
  • Im Vergleich zur FIG 1 sind die Kühlrippen 21 an der Außenseite GA des Gehäuses 2 hinsichtlich ihrer Länge kürzer ausgebildet. Sie erstrecken sich nur in dem axialen "heißen" Bereich des Gehäuses 2, welcher der Kühlkammer 9 gegenüberliegt. Die Kühlung des Verdichters 8 erfolgt in diesem Zusammenhang über die zu verdichtenden Gase bzw. Gas-/Ölgemische selbst.
  • FIG 3 zeigt eine Schnittdarstellung eines Verdichtersystems 1 gemäß einer dritten Ausführungsform der Erfindung.
  • Im Vergleich zur FIG 2 ist die Kühlkammer 9 im Wesentlichen torusförmig ausgebildet, wobei die Kühlkammer 9 gebogene Kühlkammerwände 96, 97 aufweist, welche durch ihre Formgebung den zirkulierenden Strömungsverlauf begünstigen. Die Kühlleistung dieser Ausführungsform ist daher im Vergleich zur zweiten Ausführungsform bei gleichem Bauvolumen größer. Die Kühlkammerwände 96, 97 erfüllen neben der Ausbildung der Kühlkammer 9 auch eine Strömungsleitfunktion. Mit den Bezugszeichen 98, 99 sind weitere Dichtungsringe zur Abdichtung der Kühlkammerwände 96, 97 mit der Gehäuseinnenseite GI bezeichnet. Alternativ können die Kühlkammerwände 96, 97 mit der Gehäuseinnenseite GI dicht verschweißt sein.
  • FIG 4 zeigt eine Seitenansicht des Verdichtersystems 1 gemäß FIG 3 entsprechend der in FIG 3 eingezeichneten Blickrichtung IV.
  • FIG 4 zeigt den Blick in die Zugangsöffnung 3, das heißt in Richtung auf den Verdichter. Wie FIG 4 weiter zeigt, weist das Statorpaket 71 eine Vielzahl in Umfangrichtung gleichmäßig verteilt angeordneter Kühlkanäle 75 auf. Die Kühlkanäle 75 sind hinsichtlich ihrer radialen Lage zu den Wickelköpfe 73 zu beiden Seiten der Wickelköpfe 73 angeordnet (vgl. dazu auch FIG 2 und FIG 3). Die Anordnung der Kühlkanäle 75 erfolgt vorzugsweise im magnetisch weniger aktiven Bereich des Statorpakets 71. Die Vielzahl von Kühlkanälen 75 ermöglicht eine effektive Kühlung des Statorpakets 71 quasi von innen heraus.
  • An der Gehäuseaußenseite GA ist eine Vielzahl von radial von der Gehäuseaußenseite weg weisend angeordneten Kühlrippen 21 zu sehen. Die Kühlrippen 21 bewirken eine drastische Erhöhung der zur Kühlung durch Meerwasser zur Verfügung stehenden Kühlfläche. Vorzugsweise sind die Kühlrippen 21 integraler Bestandteil des Gehäuses 2 des Verdichtersystems 1. Insbesondere ist das Gehäuse 2 aus einem Guss gefertigt.
  • Das erfindungsgemäße Verdichtersystem eignet sich auch für schnelllaufende Verdichtersysteme bei Drehzahlen bis zu 15000 U/min und Leistungen von einigen 100 kW bis zu 10 MW und mehr.

Claims (6)

  1. Verdichtersystem, insbesondere zur Förderung von Gasen oder Gas-/Ölgemischen im Offshore-Bereich, mit einem seewasserfesten Gehäuse (2) mit zumindest einer Zugangsöffnung (3) für zu verdichtende Gase oder Gas-/Ölgemische und mit zumindest einer Ausgangsöffnung (4) für die verdichteten Gase oder Gas-/Ölgemische, mit einem im Gehäuse (2) angeordneten Verdichter (8), welcher eingangsseitig mit der Zugangsöffnung (3) und ausgangsseitig mit der Ausgangsöffnung (4) verbunden ist, und mit einem im Gehäuse (2) angeordneten Elektromotor (7) mit einem über eine Innenseite (GI) des Gehäuses (2) kühlbaren Statorpaket (71) und mit einem Rotorpaket (72) zum Antreiben des Verdichters (8),
    dadurch gekennzeichnet,
    - dass das Statorpaket (71) von der Innenseite (GI) des Gehäuses (2) beabstandet ist,
    - dass das Statorpaket (71) mit zumindest einem gegenüberliegenden Teil der Gehäuseinnenseite (GI) eine ringförmige Kühlkammer (9) ausbildet und
    - dass in der Kühlkammer (9) ein Kühlmittel vorhanden ist.
  2. Verdichtersystem nach Anspruch 1, dadurch ge- kennzeichnet, dass das Kühlmittel ein Öl ist.
  3. Verdichtersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Statorpaket (71) im Wesentlichen axial zur Drehachse (DA) des Elektromotors (7) verlaufende Kühlkanäle (75) vorhanden sind.
  4. Verdichtersystem nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass das Verdichtersystem eine Umwälzpumpe für das Kühlmittel aufweist.
  5. Verdichtersystem nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass das Verdichtersystem im bestimmungsgemäßen Einsatz derart installiert ist, dass die Drehachse (DA) des Elektromotors (7) im Wesentlichen in vertikaler Richtung verläuft.
  6. Verdichtersystem nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass das Gehäuse (2) eine Gehäuseaußenseite (GA) aufweist und dass an der Gehäuseaußenseite (GA) eine Vielzahl von Kühlrippen (21) angeordnet ist.
EP08759450.3A 2007-05-09 2008-05-07 Verdichtersystem für den unterwassereinsatz im offshore-bereich Active EP2142806B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007021720.1A DE102007021720B4 (de) 2007-05-09 2007-05-09 Verdichtersystem für den Unterwassereinsatz im Offshore-Bereich
PCT/EP2008/055629 WO2008138829A1 (de) 2007-05-09 2008-05-07 Verdichtersystem für den unterwassereinsatz im offshore-bereich

Publications (2)

Publication Number Publication Date
EP2142806A1 EP2142806A1 (de) 2010-01-13
EP2142806B1 true EP2142806B1 (de) 2018-02-28

Family

ID=39645280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08759450.3A Active EP2142806B1 (de) 2007-05-09 2008-05-07 Verdichtersystem für den unterwassereinsatz im offshore-bereich

Country Status (8)

Country Link
US (1) US8313316B2 (de)
EP (1) EP2142806B1 (de)
CN (1) CN101675249B (de)
BR (1) BRPI0811221B1 (de)
CA (1) CA2686794A1 (de)
DE (1) DE102007021720B4 (de)
RU (1) RU2470190C2 (de)
WO (1) WO2008138829A1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021098A1 (de) * 2009-05-13 2010-11-18 Siemens Aktiengesellschaft Elektrisches Antriebssystem
DE102009031371B4 (de) 2009-07-01 2011-05-26 Siemens Aktiengesellschaft Läufer und Verfahren zur Herstellung eines Läufers einer elektrischen Maschine
DE102009045633A1 (de) * 2009-10-13 2011-04-14 Man Diesel & Turbo Se Unterwasser-Kompressoranordnung und damit ausgerüstete Unterwasser-Prozessfluidförderanordnung
CN102577044B (zh) 2009-10-21 2015-04-29 西门子公司 发电机
DE102010026231A1 (de) * 2010-07-06 2012-01-12 Andritz Ritz Gmbh Unterwasserantriebseinheit für Offshore-Einsatz mit Hochspannungsgleichstromversorgung sowie Unterwasserantriebssystem
NO333696B1 (no) 2010-12-17 2013-08-26 Vetco Gray Scandinavia As System og fremgangsmate for momentan hydrostatisk drift av hydrodynamiske aksiallagre i en vertikal fluidfortregningsmodul
US8558422B2 (en) * 2011-03-31 2013-10-15 Caterpillar Inc. Uniform contained cooling for stator
ES2428017T3 (es) 2011-04-04 2013-11-05 Siemens Aktiengesellschaft Procedimiento para montar una máquina eléctrica
NO333170B1 (no) * 2011-08-08 2013-03-25 Smartmotor As Elektrisk maskin med høy momenttetthet
WO2013090505A1 (en) 2011-12-14 2013-06-20 Once Innovations Inc. Aquaculture lighting devices and methods
US9374985B2 (en) 2011-12-14 2016-06-28 Once Innovations, Inc. Method of manufacturing of a light emitting system with adjustable watt equivalence
ITCO20120024A1 (it) 2012-05-09 2013-11-10 Nuovo Pignone Srl Equalizzatore di pressione
RU2015113439A (ru) * 2012-09-12 2016-11-10 ЭфЭмСи ТЕКНОЛОДЖИЗ, ИНК. Подводный мультифазный насос или компрессор с магнитной муфтой и охлаждением или смазкой посредством жидкости или газа, выделяемых из технологического флюида
AU2012389805B2 (en) 2012-09-12 2017-07-13 Fmc Technologies, Inc. Subsea compressor or pump with hermetically sealed electric motor and with magnetic coupling
EP2901017B1 (de) 2012-09-12 2020-06-03 FMC Technologies, Inc. Aufwärtslaufendes flüssigkeitssystem
CN103075353B (zh) * 2013-02-18 2015-02-25 罗培基 一种利用风力产生压缩空气的方法及其装置
SG10201902570SA (en) 2013-03-15 2019-04-29 Fmc Technologies Submersible well fluid system
CN104253509A (zh) * 2013-06-28 2014-12-31 殷天明 电机绕组线圈直接冷却方法及系统
EP2851387A1 (de) 2013-09-19 2015-03-25 Solvay Specialty Polymers USA, LLC. Öl und Gasgewinnungsartikel
EP2899232A1 (de) 2014-01-22 2015-07-29 Solvay Specialty Polymers USA, LLC. Öl und Gasrückgewinnungsartikel
US9554562B2 (en) 2014-08-07 2017-01-31 Once Innovations, Inc. Lighting system and control for experimenting in aquaculture
EP3035501A1 (de) * 2014-12-18 2016-06-22 Siemens Aktiengesellschaft Stator für eine elektrische Maschine
RU2613794C1 (ru) * 2016-03-31 2017-03-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Интегрированный перекачивающий агрегат для транспортировки углеводородов по подводным и континентальным трубопроводам
US11044895B2 (en) 2016-05-11 2021-06-29 Signify North America Corporation System and method for promoting survival rate in larvae
EP3538589B1 (de) 2016-11-11 2021-10-20 Solvay Specialty Polymers USA, LLC Polyaryletherketoncopolymer
WO2018086873A1 (en) 2016-11-11 2018-05-17 Solvay Specialty Polymers Usa, Llc Polyarylether ketone copolymer
US10778056B2 (en) * 2017-05-16 2020-09-15 Hamilton Sunstrand Corporation Generator with enhanced stator cooling and reduced windage loss
GB2563624B (en) 2017-06-20 2020-04-08 Dyson Technology Ltd A compressor
RU2675596C1 (ru) * 2017-07-14 2018-12-20 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Способ работы электродвигателя под водой
CN107676266B (zh) * 2017-11-13 2019-07-19 珠海格力电器股份有限公司 压缩机电机冷却结构、压缩机及制冷系统

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734459A (en) * 1956-02-14 zimsky
DE337561C (de) * 1917-12-29 1921-09-28 Michael Seidner Dr Ing Anordnung zur Kuehlung von elektrischen Maschinen
US1269909A (en) * 1918-02-20 1918-06-18 Thomas Lancelot Reed Cooper Electric motor.
US1347732A (en) * 1919-03-25 1920-07-27 Cooper Thomas Lancelot Reed Combined motor-pump
GB146624A (en) * 1920-04-10 1920-07-12 Siemens Brothers Dynamo Works Improvements relating to dynamo electric machines
US1507606A (en) * 1920-09-17 1924-09-09 Kalman V Kando Rotary electric machine
US1871286A (en) * 1930-03-15 1932-08-09 Westinghouse Electric & Mfg Co Oil seal for dynamo-electric machines
US2844745A (en) * 1953-07-13 1958-07-22 Gen Electric Fluid-cooled dynamoelectric machine
US2862122A (en) * 1955-03-14 1958-11-25 Westinghouse Electric Corp Submersible dynamoelectric machine
FR1181680A (fr) * 1957-08-27 1959-06-17 Commissariat Energie Atomique Palier fluide pour compresseur
US2975309A (en) * 1958-07-18 1961-03-14 Komplex Nagyberendezesek Expor Oil-cooled stators for turboalternators
CH525392A (de) * 1970-09-08 1972-07-15 Allweiler Ag Stopfbuchsloses Pumpenaggregat
US3704078A (en) * 1971-01-22 1972-11-28 Hydr O Matic Pump Co Deep well type pump
SU1056376A1 (ru) * 1980-05-08 1983-11-23 Одесский Технологический Институт Холодильной Промышленности Закрыта электрическа машина
CA1177328A (en) * 1981-01-16 1984-11-06 Toshiaki Tsutsui Canned motor pump for use in the high temperature
FR2525830A1 (fr) * 1982-04-23 1983-10-28 Renault Machine electrodynamique refroidie par un liquide
DE3729486C1 (de) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit
RU2072609C1 (ru) * 1987-11-02 1997-01-27 Акционерное общество открытого типа "Электросила" Электрическая машина ветохина эмв
SE467752B (sv) * 1991-09-03 1992-09-07 Flygt Ab Itt Anordning foer aastadkommande av kylning av en vaetsketaett kapslad elmotor
DE4209118C2 (de) * 1991-12-23 1993-12-09 Loher Ag Asynchronmotor
RU2034999C1 (ru) * 1992-03-03 1995-05-10 Королев Эдуард Геннадьевич Центробежный криогенный компрессор
IL109967A (en) 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
US6059539A (en) * 1995-12-05 2000-05-09 Westinghouse Government Services Company Llc Sub-sea pumping system and associated method including pressure compensating arrangement for cooling and lubricating
US5795135A (en) * 1995-12-05 1998-08-18 Westinghouse Electric Corp. Sub-sea pumping system and an associated method including pressure compensating arrangement for cooling and lubricating fluid
BR9612598A (pt) * 1996-04-18 1999-07-20 Zakrytoe Aktsionernoe Oschestv Sistema de refrigeração de 5 ou 8kw e montagen de compressor centrífugo para o dito sistema
DE19623553A1 (de) * 1996-06-13 1997-12-18 Klein Schanzlin & Becker Ag Flüssigkeitsgefüllter Unterwassermotor
CN1106318C (zh) * 1997-07-21 2003-04-23 西门子公司 船用吊舱式电动推进装置
US7211919B2 (en) * 1999-08-16 2007-05-01 American Superconductor Corporation Thermally-conductive stator support structure
US6364620B1 (en) * 2000-08-29 2002-04-02 Zoeller Company Submersible pump containing two levels of moisture sensors
JP4923374B2 (ja) * 2001-09-26 2012-04-25 日産自動車株式会社 回転電機のステータ構造
CN100335795C (zh) * 2002-05-07 2007-09-05 Emu潜水泵有限公司 尤其适用于泵的电机
DE10317593A1 (de) * 2003-04-16 2004-11-18 Siemens Ag Elektrische Maschine mit gekühlten Ständer- und Läuferblechpaketen und Wicklungen
US7538457B2 (en) * 2006-01-27 2009-05-26 General Motors Corporation Electric motor assemblies with coolant flow for concentrated windings

Also Published As

Publication number Publication date
RU2009145531A (ru) 2011-06-20
EP2142806A1 (de) 2010-01-13
RU2470190C2 (ru) 2012-12-20
DE102007021720A1 (de) 2008-11-13
US20100239441A1 (en) 2010-09-23
CA2686794A1 (en) 2008-11-20
CN101675249A (zh) 2010-03-17
BRPI0811221A2 (pt) 2014-10-29
BRPI0811221B1 (pt) 2019-09-03
US8313316B2 (en) 2012-11-20
CN101675249B (zh) 2013-01-09
DE102007021720B4 (de) 2014-01-23
WO2008138829A1 (de) 2008-11-20

Similar Documents

Publication Publication Date Title
EP2142806B1 (de) Verdichtersystem für den unterwassereinsatz im offshore-bereich
DE4121430C1 (de)
DE112011103349B4 (de) Kühlmittel-Ablasssystem und Verfahren für eine elektrische Maschine
EP0543280B1 (de) Elektromotor
EP2054592B1 (de) Motorkreiselpumpe mit kühlmittelpumpe
DE112009003640B4 (de) Verbesserte Tauchpumpenkühlung durch externe Ölzirkulation
EP0010911A1 (de) Kühlapparat für viskose Flüssigkeiten
WO2007110271A1 (de) Verdichtereinheit und verwendung eines kühlmediums
DE102006045178A1 (de) Elektrische Maschine
DE1908272U (de) Elektrischer spaltrohrmotor.
DE3828512C2 (de)
EP3108145B2 (de) Rotationsmaschine sowie verfahren für den wärmeaustausch in einer rotationsmaschine
WO2008043389A1 (de) Transformator für meeresströmungskraftwerk
DE1538797A1 (de) Tauchfaehiger Elektromotor aus mehreren Einheiten
CH706860A2 (de) Stützvorrichtung zur Stützung eines Turbinenrotors und eines Turbinengehäuses.
DE102016112251A1 (de) Elektromaschine mit einer Kühlvorrichtung
CH334061A (de) Motorpumpenaggregat
EP1910685B1 (de) Elektromotor mit koaxial zugeordneter pumpe
EP1913676B1 (de) Kühlmittelpumpe für elektromotore
DE4209118A1 (de) Elektromotor
EP0904626B1 (de) Flüssigkeitsgefüllter unterwassermotor
DE10120409B4 (de) Kreiselpumpe zur Förderung heißer Medien
DE102007036032A1 (de) Unterwassermotor mit Wärmetauscher
EP3061974B1 (de) Kühl- und entgasungssystem für eine wärmeträgerpumpe
DE102016004936B4 (de) Elektrische Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20170619

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 974479

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015927

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180228

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180528

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180529

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015927

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180528

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

26N No opposition filed

Effective date: 20181129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180507

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 974479

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190802

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200518

Year of fee payment: 13

Ref country code: NL

Payment date: 20200504

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200525

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008015927

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200507

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230511

Year of fee payment: 16

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: LNNOMOTICS GMBH, DE