RU2470190C2 - Компрессорная система для морской подводной эксплуатации - Google Patents

Компрессорная система для морской подводной эксплуатации Download PDF

Info

Publication number
RU2470190C2
RU2470190C2 RU2009145531/06A RU2009145531A RU2470190C2 RU 2470190 C2 RU2470190 C2 RU 2470190C2 RU 2009145531/06 A RU2009145531/06 A RU 2009145531/06A RU 2009145531 A RU2009145531 A RU 2009145531A RU 2470190 C2 RU2470190 C2 RU 2470190C2
Authority
RU
Russia
Prior art keywords
housing
cooling
compressor
gas
stator
Prior art date
Application number
RU2009145531/06A
Other languages
English (en)
Other versions
RU2009145531A (ru
Inventor
Мария БАДЕ
Йоахим МУХА
Аксель МЕЛЕ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2009145531A publication Critical patent/RU2009145531A/ru
Application granted granted Critical
Publication of RU2470190C2 publication Critical patent/RU2470190C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Изобретение относится к компрессорной системе для морской добычи газов или газонефтяных смесей. Компрессорная система содержит стойкий к морской воде корпус, по меньшей мере, с одним входным отверстием для сжимаемых газов или газонефтяных смесей и, по меньшей мере, одним выходным отверстием для сжатых газов или газонефтяных смесей. В корпусе расположены компрессор и электродвигатель для привода компрессора. Указанный компрессор соединен с входной стороны с входным отверстием, а с выходной стороны - с выходным отверстием. Указанный электродвигатель содержит статорный и роторный пакеты. Статорный пакет расположен на расстоянии от внутренней стороны корпуса и образует, по меньшей мере, с одной противоположной частью внутренней стороны корпуса кольцеобразную охлаждающую камеру. При этом статорный пакет ограничивает охлаждающую камеру с радиально внутренней стороны. В охлаждающей камере находится охлаждающее средство. Изобретение направлено на повышение герметичности и компактности установки. 5 з.п. ф-лы, 4 ил.

Description

Изобретение относится к компрессорной системе, в частности для морской добычи газов или газонефтяных смесей. Компрессорная система содержит стойкий к морской воде корпус, по меньшей мере, с одним входным отверстием для сжимаемых газов или газонефтяных смесей и, по меньшей мере, одним выходным отверстием для сжатых газов или газонефтяных смесей. В корпусе расположен компрессор, соединенный с входной стороны с входным отверстием, а с выходной стороны - с выходным отверстием. В корпусе расположен также электродвигатель, содержащий охлаждаемый через внутреннюю сторону корпуса статорный пакет и роторный пакет для привода компрессора.
Из DE 3729486 С1 известен компрессорный блок для морской добычи природного газа с приводом посредством высокочастотного двигателя для сжатия газов, который подходит для больших морских глубин. Высокочастотный двигатель компрессорного блока опирается на магнитные подшипники и приводит в общем, газонепроницаемом наружу корпусе компрессорные ступени. Охлаждение двигателя, подшипников и компрессорных ступеней осуществляется посредством окружающей общий корпус жидкости.
Из DE 19623553 А1 известна охлаждаемая жидкостью электрическая машина, которая выполнена в виде погружного двигателя без герметизирующего экрана в воздушном зазоре и полностью заполнена низковязкой заполняющей жидкостью. Для оптимизации распределения тепла внутри статора предусмотрены охлаждающие трубы, проходящие параллельно воздушному зазору между статором и ротором. Вся используемая в целях охлаждения заполняющая жидкость течет параллельно через охлаждающие трубы и воздушный зазор.
Из DE 4209118 А1 известен электродвигатель с герметичным корпусом, который заполнен газом под высоким давлением. Чтобы уменьшить возникающие в электродвигателе потери тепла, предусмотрена капсула, которая со стороны привода и/или с боков охватывает роторные стержни.
Из FR 1181680 А известен компрессор, содержащий компрессорный блок и приводящий его через общий вал электродвигатель. Вал установлен на охлаждаемой жидкостью оси.
Морская добыча, т.е. добыча нефти и газа в прибрежных водах, предъявляет высокие требования к компрессорным системам. Они должны быть стойкими к суровому климату, корродирующим влияниям окружающей среды и непредвиденным составам газа. Компрессорные системы могут приводиться электродвигателем или газовой турбиной. Электродвигателем является преимущественно бесщеточный асинхронный двигатель. Обычно для сжатия используется быстровращающаяся турбина, причем в этом случае турбина и электродвигатель установлены на одном общем валу. Бесщеточный и безредукторный привод обеспечивает почти не требующую обслуживания эксплуатацию таких компрессорных систем. В качестве альтернативы для сжатия могут использоваться также винтовые или поршневые компрессоры.
Рассматриваемые компрессорные системы могут быть установлены в нефтехимических устройствах на берегу, на буровых платформах или же под водой. В последнем случае привод компрессора осуществляется обычно электродвигателем.
Подача газа или газонефтяной смеси происходит обычно по трубопроводу, который прифланцован к наружной стороне корпуса компрессорной системы. Соответствующим образом дальнейшая транспортировка сжатого газа или сжатой газонефтяной смеси происходит на выходной стороне по дополнительному трубопроводу. В качестве альтернативы вместо трубопровода может использоваться напорный шланг.
Высокая электрическая присоединенная мощность используемых электродвигателей в диапазоне нескольких сотен кВт делает необходимым их охлаждение. Обычно используется масляная установка обратного охлаждения, которая в виде отдельного блока присоединена приточными и обратными трубопроводами к компрессорной системе. Из-за расположенных извне масляных установок обратного охлаждения такие компрессорные системы имеют тот недостаток, что они требуют много места.
Другой недостаток в том, что внешние масляные установки обратного охлаждения со временем могут стать негерметичными. Во-первых, негерметичными могут стать сами приточные и обратные трубопроводы, в частности за счет обусловленной морской водой коррозии или механических воздействий, например удара волны. Во-вторых, негерметичными могут стать выполненные герметичными под давлением присоединения трубопроводов к корпусу компрессорной системы. Вытекающая нефть или нефтегазовая смесь представляет собой в этой связи потенциальную экологическую опасность для окружающих вод.
Задачей изобретения является создание компрессорной системы, которая позволила бы избежать описанных выше недостатков.
Эта задача решается посредством компрессорной системы с признаками п.1 формулы. Другие предпочтительные варианты осуществления изобретения приведены в зависимых п.п.2-6.
Согласно изобретению, статорный пакет расположен на расстоянии от внутренней стороны корпуса. В этом случае статорный пакет образует, по меньшей мере, с одной противоположной частью внутренней стороны корпуса кольцеобразную охлаждающую камеру. В ней находится охлаждающее средство.
С этим связано то преимущество, что сопротивление теплопередаче от статорного пакета к корпусу резко уменьшается вследствие полного погружения статорного пакета в охлаждающее средство и вследствие смачивания им внутренней стороны корпуса. Причина этого в том, что статорный пакет своими особенно горячими участками, например своими аксиально выступающими лобовыми частями обмотки, полностью погружен в охлаждающее средство. Поэтому охлаждение таких горячих и критических участков является особенно эффективным. Термином «аксиально» обозначены направления параллельно оси вращения электродвигателя.
Преимущественно охлаждающим средством является жидкость, в частности масло, например, силиконовое или минеральное. Помимо высокой удельной теплоемкости оно оказывает предпочтительно электроизолирующее действие на токоведущие лобовые части обмотки. В качестве альтернативы могут использоваться и другие охлаждающие жидкости, например охлаждающие жидкости на водной основе. В качестве альтернативы охлаждающим средством может быть хладагент, например фреон® R134a. В этом случае охлаждающим средством является рассол, т.е. газожидкостная смесь.
Согласно одному варианту осуществления изобретения, в статорном пакете выполнены проходящие, в основном, аксиально к оси вращения электродвигателя, охлаждающие каналы. За счет этого предпочтительным образом возможно охлаждение внутри статорного пакета.
Согласно другому варианту осуществления изобретения, компрессорная система содержит циркуляционный насос для охлаждающего средства. За счет циркуляции достигается более равномерная и более высокая охлаждающая мощность.
Согласно одному предпочтительному варианту осуществления изобретения, для предусмотренной в соответствии с назначением эксплуатации компрессорная система установлена таким образом, что ось вращения электродвигателя проходит, в основном, в вертикальном направлении. То же относится к охлаждающим каналам. Благодаря такому расположению внутри охлаждающей камеры автоматически возникает охлаждающий контур. Нагрев охлаждающего средства в соответствующих охлаждающих каналах вызывает то, что оно поднимается и вытекает из верхней осевой торцевой стороны статорного пакета. Текущее следом охлаждающее средство перемещает нагретое охлаждающее средство принудительным образом к холодной по сравнению с температурой охлаждающего средства внутренней стороне корпуса. Последующее охлаждение вызывает увеличение удельной массы и опускание охлаждающего средства. На нижнем конце охлаждающей камеры охлажденное охлаждающее средство всасывается в направлении нижней осевой торцевой стороны статорного пакета. Таким образом, охлаждающий контур замкнут. При этом омывающая наружную сторону корпуса холодная морская вода с типичными температурами по Цельсию в диапазоне однозначных чисел действует в качестве теплостока. Температурный градиент между нагретым охлаждающим средством и холодной морской водой вызывает большой тепловой поток от охлаждающего средства через стенку корпуса к морской воде.
Для целенаправленного отклонения образующегося в охлаждающей камере циркулирующего потока жидкости, например, на осевых концах статорного пакета могут быть расположены дефлекторы.
Согласно другому предпочтительному варианту осуществления изобретения, корпус имеет наружную сторону, на которой расположено большое число охлаждающих ребер. Они вызывают значительное увеличение поверхности охлаждения в направлении морской воды. В зависимости от формы и числа охлаждающих ребер увеличенная поверхность охлаждения может составлять кратное обычно имеющейся наружной поверхности корпуса компрессорной системы. Преимущественно охлаждающие ребра направлены от наружной стороны корпуса.
Преимущественно корпус имеет цилиндрическую конструктивную форму. В этом случае охлаждающие ребра направлены радиально от наружной стороны корпуса. Термином «радиально» обозначены направления к оси симметрии цилиндрического корпус и от нее. Обычно ось симметрии совпадает с осью вращения электродвигателя.
Другие предпочтительные свойства изобретения приведены в описании примера его осуществления с помощью чертежей, на которых изображают:
- фиг.1: разрез традиционной компрессорной системы вдоль оси вращения электродвигателя и компрессора;
- фиг.2: разрез предложенной компрессорной системы;
- фиг.3: разрез компрессорной системы в одном варианте осуществления изобретения;
- фиг.4: вид сбоку компрессорной системы по фиг.3 по стрелке IV.
На фиг.1 изображен разрез традиционной компрессорной системы 1 вдоль оси DA вращения электродвигателя 7 и компрессора 8.
Изображенные на фиг.1-3 компрессорные системы выполнены, в частности, для морской добычи газов и/или газонефтяных смесей. В частности, корпус 2 выполнен стойким к морской воде. Он изготовлен преимущественно из стали и во избежание коррозии может иметь защитное покрытие. Применяемой сталью может быть, в качестве альтернативы или дополнительно, нержавеющая сталь. В качестве альтернативы корпус 2 может быть изготовлен из стойкого к морской воде алюминия. Преимущественно корпус 2 выполнен герметичным под давлением, а именно в соответствии с предусмотренной для эксплуатации компрессорной системы 1 рабочей глубиной под поверхностью или на дне моря. Требования к герметичности под давлением относятся не только к самому корпусу 2, но и к проходам в нем, например для электрических и управляющих кабелей для энергоснабжения и управления компрессорной системой 1 и/или ее контроля.
Корпус 2 имеет, например, входное 3 и выходное 4 отверстия для сжимаемых газов и/или газонефтяных смесей. В качестве альтернативы могут быть выполнены также несколько отверстий 3, 4. На обоих отверстиях 3, 4 обычно размещены присоединительные элементы, например муфты или фланцы, для присоединения к ним трубопроводов или напорных шлангов. В отношении требуемой герметичности под давлением присоединительные элементы и трубопроводы следует выполнить соответствующим образом технически прочными.
В корпусе 2 расположен компрессор 8, который с входной стороны соединен с входным отверстием 3, а с выходной стороны - с выходным отверстием 4. Стрелки в зоне отверстий 3, 4 указывают направления течения. В примере на фиг.1 компрессор 8 содержит турбину 81 с турбинными лопатками (не обозначены). Их диаметр уменьшается в осевом направлении, т.е. в направлении течения, причем за счет сжатия одновременно возрастает давление. Позицией 83 обозначен выходной канал высокого давления. Оттуда через трубное соединение (не показано) внутри корпуса 2 происходит транспортировка сжатого газа к выходному отверстию 4.
В корпусе 2 расположен также электродвигатель 7 для привода компрессора 8. Электродвигатель 7 содержит статорный 71 и роторный 72 пакеты. Кроме того, в примере на фиг.1 компрессор 8 и электродвигатель 7 содержат общий, установленный в подшипниках 6 вал 5.
Статорный пакет 71 электродвигателя 7 охлаждается через внутреннюю сторону GI корпуса 2 компрессорной системы 1. В примере на фиг.1 охлаждение происходит через наружную сторону SA статора, которая плотно прилегает к внутренней стороне GI корпуса 2. Стрелки в зоне контактирования наружной стороны SA статора и внутренней стороны GI корпуса 2 обозначают тепловой поток. Чтобы повысить охлаждающую мощность, между наружной стороной SA статора и внутренней стороной GI корпуса 2 может быть помещена хорошо проводящая тепло масса, например паста, консистентная смазка и т.п.
Изображенная компрессорная система 1 установлена таким образом, что ось DA вращения электродвигателя 7 проходит, в основном, в вертикальном направлении. В качестве альтернативы она может быть ориентирована также в горизонтальном положении.
Кроме того, корпус 2 имеет наружную сторону GA, на которой расположено большое число отстоящих охлаждающих ребер 21. В данном случае цилиндрической конструктивной формы корпуса 2 охлаждающие ребра 21 направлены радиально от его наружной стороны GA. Также предложенная компрессорная система 1 и варианты ее выполнения на фиг.2 и 3 имеют такую цилиндрическую конструктивную форму.
На фиг.2 изображен разрез компрессорной системы 1. По отношению к оси DA вращения электродвигателя 7 она установлена также вертикально.
В отличие от компрессорной системы на фиг.1 статорный пакет 71, согласно изобретению, расположен на расстоянии от внутренней стороны GI корпуса 2. Среднее радиальное расстояние составляет преимущественно 5-15 см. В зависимости от электрической присоединенной мощности электродвигателя 7 расстояние может быть также выше указанных значений и составлять, например, 20 см, или ниже указанных значений и составлять, например, 3 см. Статорный пакет 71 образует, по меньшей мере, с одной противоположной частью внутренней стороны GI корпуса 2 кольцеобразную охлаждающую камеру 9, в которой находится охлаждающее средство. В охлаждающей камере 9 находятся также лобовые части 73 обмотки статорного пакета 71, которые аксиально выступают из него. Охлаждающая камера 9 имеет в примере на фиг.2 только одно отделение. В качестве альтернативы она может иметь несколько отделений, причем в этом случае соседние камеры отделены друг от друга соответственно радиально-аксиальными перегородками.
Охлаждающая камера 9 образована двумя обручами 91, 92 и круговым диском 94. Внутренний диаметр обоих обручей 91, 92 соответствует внутреннему диаметру статорного пакета 71. Обруч 91 герметично размещен на нижней осевой торцевой стороне статорного пакета 71, например, приварен. Ось симметрии обруча 91 совпадает с осью DA вращения электродвигателя 7. Осевая высота обруча 91 почти соответствует осевому расстоянию статорного пакета 71 до нижней плиты 22 корпуса 2. Нижний край обруча 91 может быть герметизирован посредством уплотнительного кольца 93 от нижней плиты 22 или герметично сварен с ней.
Обруч 92 соответствующим образом размещен на верхнем осевом конце статорного пакета 71. Круговой диск 94 имеет внутренний диаметр, приблизительно соответствующий внутреннему диаметру обручей 91, 92. Наружный диаметр приблизительно соответствует внутреннему диаметру корпуса 2. Обруч 92 и круговой диск 94 преимущественно герметично сварены между собой и образуют сообща фланец 92, 94. Наружный край кругового диска 94 или фланца 92, 94 посредством дополнительного уплотнительного кольца 95 герметизирован от внутренней стороны GI корпуса 2 или герметично сварен с ней. Обручи 91, 92, круговой диск 94, радиальная внутренняя сторона статорного пакета 71 и внутренняя сторона GI корпуса 2 образуют полый цилиндр.
В охлаждающей камере 9 в качестве охлаждающей жидкости находится охлаждающее средство, преимущественно масло. В частности, рассматривается так называемое трансформаторное масло на основе минерального или силиконового масла. Преимущественно вся охлаждающая камера 9 заполнена охлаждающей жидкостью. В корпусе 2 и за пределами охлаждающей камеры 9 может находиться компенсирующий сосуд для охлаждающей жидкости, чтобы компенсировать обусловленное температурой изменение объема охлаждающего средства.
В качестве альтернативы маслу охлаждающим средством может быть также хладагент, например. Особенно предпочтительным в отношении экологичности является лишенный фторхлоруглеводорода фреон® R134a. В этом случае охлаждающая камера 9 заполнена рассолом, т.е. газожидкостной смесью.
Кроме того, в статорном пакете 71 выполнены проходящие, в основном, аксиально к оси DA вращения электродвигателя 7 охлаждающие каналы 75. За счет нахождения статорного пакета 71 в охлаждающем средстве они также заполнены охлаждающим средством. Во время работы компрессорной системы 1 в охлаждающей камере 1 возникает циркуляция охлаждающего средства. Это обозначено стрелками. При этом нагретое в охлаждающих каналах 75 охлаждающее средство поднимается вверх и охлаждается в обратном направлении сверху вниз вдоль холодной внутренней стороны GI корпуса 2. При этом термически особенно критические лобовые части 73 обмотки омываются циркулирующим охлаждающим средством и, тем самым, эффективно охлаждаются.
Горизонтальные стрелки обозначают теплоперенос от охлаждающего средства через стенку корпуса 2 в морскую воду, которая омывает его наружную сторону GA. Возникающий в охлаждающей камере 9 охлаждающий контур можно назвать также первичным охлаждающим контуром, тогда как на наружной стороне GA корпуса 2, правда, только в случае спокойной воды, возникает встречное течение, протекающее снизу вверх вдоль наружной стороны GA корпуса 2. Охлаждение морской водой можно назвать также вторичным охлаждением.
Для дальнейшего повышения охлаждающей мощности компрессорная система 1 может содержать циркуляционный насос для охлаждающего средства. Циркуляционный насос представляет собой, например, центробежный насос, установленный в или на охлаждающей камере 9.
По сравнению с фиг.1 охлаждающие ребра 21 на наружной стороне GA корпуса 2 выполнены по длине более короткими. Они проходят только на осевом «горячем» участке корпуса 2, противоположном охлаждающей камере 9. Охлаждение компрессора 8 происходит в этой связи через сами сжимаемые газы или газонефтяные смеси.
На фиг.3 изображен разрез компрессорной системы 1 в третьем варианте осуществления изобретения.
По сравнению с фиг.2 охлаждающая камера 9 выполнена, в основном, тороидальной, причем она имеет изогнутые стенки 96, 97, которые за счет своей формы способствуют циркулирующему характеру течения. Поэтому в этом варианте охлаждающая мощность при таком же конструктивном объеме выше по сравнению со вторым вариантом. Стенки 96, 97 охлаждающей камеры 9 помимо ее образования выполняют также функцию направления течения. Позициями 98, 99 обозначены дополнительные уплотнительные кольца для герметизации стенок 96, 97 от внутренней стороны GI корпуса 2. В качестве альтернативы стенки 96, 97 могут быть герметично сварены с внутренней стороной GI корпуса 2.
На фиг.4 изображен вид сбоку компрессорной системы 1 по фиг.3 по стрелке IV.
Фиг.4 показывает взгляд во входное отверстие 3, т.е. в направлении компрессора. Статорный пакет 71 имеет большое число равномерно распределенных по периферии охлаждающих каналов 75. По своей радиальной длине они расположены по обеим сторонам лобовых частей 73 обмотки (см. также фиг.2 и 3). Охлаждающие каналы 75 расположены преимущественно на магнитно менее активном участке статорного пакета 71. Большое число охлаждающих каналов 75 обеспечивает эффективное охлаждение статорного пакета 71 в некотором роде изнутри.
На наружной стороне GA корпуса 2 видно большое число направленных радиально от нее охлаждающих ребер 21. Они вызывают резкое увеличение поверхности охлаждения, имеющейся в распоряжении для охлаждения морской водой. Преимущественно охлаждающие ребра 21 являются неотъемлемой составной частью корпуса 2 сбоку компрессорной системы 1. В частности, корпус 2 изготовлен в виде отливки.
Предложенная компрессорная система подходит также для быстровращающихся компрессорных систем с частотой вращения до 15000 об/мин и мощностью от нескольких сот кВт до 10 МВт и более.

Claims (6)

1. Компрессорная система, в частности, для морской добычи газов и/или газонефтяных смесей, содержащая стойкий к морской воде корпус (2), по меньшей мере, с одним входным отверстием (3) для сжимаемых газов или газонефтяных смесей и, по меньшей мере, одним выходным отверстием (4) для сжатых газов или газонефтяных смесей, расположенный в корпусе (2) компрессор (8), соединенный с входной стороны с входным отверстием (3), а с выходной стороны - с выходным отверстием (4), и расположенный в корпусе (2) электродвигатель (7), содержащий охлаждаемый через внутреннюю сторону (GI) корпуса (2) статорный пакет (71) и роторный пакет (72) для привода компрессора (8), отличающаяся тем, что статорный пакет (71) расположен на расстоянии от внутренней стороны (GI) корпуса (2) и образует, по меньшей мере, с одной противоположной частью внутренней стороны (GI) корпуса (2) кольцеобразную охлаждающую камеру (9), при этом статорный пакет ограничивает охлаждающую камеру с радиально внутренней стороны, причем в охлаждающей камере (9) находится охлаждающее средство.
2. Система по п.1, отличающаяся тем, что охлаждающим средством является масло.
3. Система по п.1 или 2, отличающаяся тем, что в статорном пакете (71) выполнены проходящие в основном аксиально к оси (DA) вращения электродвигателя (7) охлаждающие каналы (75).
4. Система по п.1 или 2, отличающаяся тем, что она содержит циркуляционный насос для охлаждающего средства.
5. Система по п.1 или 2, отличающаяся тем, что при предусмотренной в соответствии с назначением эксплуатации она установлена таким образом, что ось (DA) вращения электродвигателя (7) проходит, в основном, в вертикальном направлении.
6. Система по п.1 или 2, отличающаяся тем, что корпус (2) имеет наружную сторону (GA), при этом на наружной стороне (GA) корпуса (2) расположено большое число охлаждающих ребер (21).
RU2009145531/06A 2007-05-09 2008-05-07 Компрессорная система для морской подводной эксплуатации RU2470190C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007021720.1 2007-05-09
DE102007021720.1A DE102007021720B4 (de) 2007-05-09 2007-05-09 Verdichtersystem für den Unterwassereinsatz im Offshore-Bereich
PCT/EP2008/055629 WO2008138829A1 (de) 2007-05-09 2008-05-07 Verdichtersystem für den unterwassereinsatz im offshore-bereich

Publications (2)

Publication Number Publication Date
RU2009145531A RU2009145531A (ru) 2011-06-20
RU2470190C2 true RU2470190C2 (ru) 2012-12-20

Family

ID=39645280

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009145531/06A RU2470190C2 (ru) 2007-05-09 2008-05-07 Компрессорная система для морской подводной эксплуатации

Country Status (8)

Country Link
US (1) US8313316B2 (ru)
EP (1) EP2142806B1 (ru)
CN (1) CN101675249B (ru)
BR (1) BRPI0811221B1 (ru)
CA (1) CA2686794A1 (ru)
DE (1) DE102007021720B4 (ru)
RU (1) RU2470190C2 (ru)
WO (1) WO2008138829A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613794C1 (ru) * 2016-03-31 2017-03-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Интегрированный перекачивающий агрегат для транспортировки углеводородов по подводным и континентальным трубопроводам
RU2674438C1 (ru) * 2014-12-18 2018-12-10 Сименс Акциенгезелльшафт Статор для электрической машины
RU2675596C1 (ru) * 2017-07-14 2018-12-20 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Способ работы электродвигателя под водой

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021098A1 (de) * 2009-05-13 2010-11-18 Siemens Aktiengesellschaft Elektrisches Antriebssystem
DE102009031371B4 (de) 2009-07-01 2011-05-26 Siemens Aktiengesellschaft Läufer und Verfahren zur Herstellung eines Läufers einer elektrischen Maschine
DE102009045633A1 (de) * 2009-10-13 2011-04-14 Man Diesel & Turbo Se Unterwasser-Kompressoranordnung und damit ausgerüstete Unterwasser-Prozessfluidförderanordnung
US9106109B2 (en) 2009-10-21 2015-08-11 Siemens Aktiengesellschaft Generator
DE102010026231A1 (de) * 2010-07-06 2012-01-12 Andritz Ritz Gmbh Unterwasserantriebseinheit für Offshore-Einsatz mit Hochspannungsgleichstromversorgung sowie Unterwasserantriebssystem
NO333696B1 (no) 2010-12-17 2013-08-26 Vetco Gray Scandinavia As System og fremgangsmate for momentan hydrostatisk drift av hydrodynamiske aksiallagre i en vertikal fluidfortregningsmodul
US8558422B2 (en) * 2011-03-31 2013-10-15 Caterpillar Inc. Uniform contained cooling for stator
ES2428017T3 (es) 2011-04-04 2013-11-05 Siemens Aktiengesellschaft Procedimiento para montar una máquina eléctrica
NO333170B1 (no) * 2011-08-08 2013-03-25 Smartmotor As Elektrisk maskin med høy momenttetthet
WO2013090708A1 (en) 2011-12-14 2013-06-20 Once Innovations Inc Light emitting system with adjustable watt equivalence
WO2013090505A1 (en) * 2011-12-14 2013-06-20 Once Innovations Inc. Aquaculture lighting devices and methods
ITCO20120024A1 (it) * 2012-05-09 2013-11-10 Nuovo Pignone Srl Equalizzatore di pressione
WO2014042626A1 (en) * 2012-09-12 2014-03-20 Cunningham Christopher E Subsea multiphase pump or compressor with magnetic coupling and cooling or lubrication by liquid or gas extracted from process fluid
SG11201501910TA (en) 2012-09-12 2015-04-29 Fmc Technologies Subsea compressor or pump with hermetically sealed electric motor and with magnetic coupling
WO2014042624A1 (en) 2012-09-12 2014-03-20 Cunningham Christopher E Up-thrusting fluid system
CN103075353B (zh) * 2013-02-18 2015-02-25 罗培基 一种利用风力产生压缩空气的方法及其装置
BR112015022924B1 (pt) 2013-03-15 2022-03-03 Fmc Technologies, Inc Sistema de fluido de poço submersível
CN104253509A (zh) * 2013-06-28 2014-12-31 殷天明 电机绕组线圈直接冷却方法及系统
EP2851387A1 (en) 2013-09-19 2015-03-25 Solvay Specialty Polymers USA, LLC. Oil and gas recovery articles
EP2899232A1 (en) 2014-01-22 2015-07-29 Solvay Specialty Polymers USA, LLC. Oil and gas recovery articles
US9554562B2 (en) 2014-08-07 2017-01-31 Once Innovations, Inc. Lighting system and control for experimenting in aquaculture
US11044895B2 (en) 2016-05-11 2021-06-29 Signify North America Corporation System and method for promoting survival rate in larvae
WO2018086873A1 (en) 2016-11-11 2018-05-17 Solvay Specialty Polymers Usa, Llc Polyarylether ketone copolymer
CN110177823B (zh) 2016-11-11 2023-04-28 索尔维特殊聚合物美国有限责任公司 聚芳醚酮共聚物
US10778056B2 (en) * 2017-05-16 2020-09-15 Hamilton Sunstrand Corporation Generator with enhanced stator cooling and reduced windage loss
GB2563624B (en) 2017-06-20 2020-04-08 Dyson Technology Ltd A compressor
CN107676266B (zh) * 2017-11-13 2019-07-19 珠海格力电器股份有限公司 压缩机电机冷却结构、压缩机及制冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1056376A1 (ru) * 1980-05-08 1983-11-23 Одесский Технологический Институт Холодильной Промышленности Закрыта электрическа машина
WO1994029597A1 (en) * 1993-06-15 1994-12-22 Multistack International Limited Compressor
RU2034999C1 (ru) * 1992-03-03 1995-05-10 Королев Эдуард Геннадьевич Центробежный криогенный компрессор
RU2072609C1 (ru) * 1987-11-02 1997-01-27 Акционерное общество открытого типа "Электросила" Электрическая машина ветохина эмв
DE19623553A1 (de) * 1996-06-13 1997-12-18 Klein Schanzlin & Becker Ag Flüssigkeitsgefüllter Unterwassermotor
RU2205129C2 (ru) * 1997-07-21 2003-05-27 Сименс Акциенгезелльшафт Электрический гондольный привод для судна

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734459A (en) * 1956-02-14 zimsky
DE337561C (de) * 1917-12-29 1921-09-28 Michael Seidner Dr Ing Anordnung zur Kuehlung von elektrischen Maschinen
US1269909A (en) * 1918-02-20 1918-06-18 Thomas Lancelot Reed Cooper Electric motor.
US1347732A (en) * 1919-03-25 1920-07-27 Cooper Thomas Lancelot Reed Combined motor-pump
GB146624A (en) * 1920-04-10 1920-07-12 Siemens Brothers Dynamo Works Improvements relating to dynamo electric machines
US1507606A (en) * 1920-09-17 1924-09-09 Kalman V Kando Rotary electric machine
US1871286A (en) * 1930-03-15 1932-08-09 Westinghouse Electric & Mfg Co Oil seal for dynamo-electric machines
US2844745A (en) * 1953-07-13 1958-07-22 Gen Electric Fluid-cooled dynamoelectric machine
US2862122A (en) * 1955-03-14 1958-11-25 Westinghouse Electric Corp Submersible dynamoelectric machine
FR1181680A (fr) * 1957-08-27 1959-06-17 Commissariat Energie Atomique Palier fluide pour compresseur
US2975309A (en) * 1958-07-18 1961-03-14 Komplex Nagyberendezesek Expor Oil-cooled stators for turboalternators
CH525392A (de) * 1970-09-08 1972-07-15 Allweiler Ag Stopfbuchsloses Pumpenaggregat
US3704078A (en) * 1971-01-22 1972-11-28 Hydr O Matic Pump Co Deep well type pump
CA1177328A (en) * 1981-01-16 1984-11-06 Toshiaki Tsutsui Canned motor pump for use in the high temperature
FR2525830A1 (fr) * 1982-04-23 1983-10-28 Renault Machine electrodynamique refroidie par un liquide
DE3729486C1 (de) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit
SE467752B (sv) * 1991-09-03 1992-09-07 Flygt Ab Itt Anordning foer aastadkommande av kylning av en vaetsketaett kapslad elmotor
DE4209118C2 (de) * 1991-12-23 1993-12-09 Loher Ag Asynchronmotor
US6059539A (en) * 1995-12-05 2000-05-09 Westinghouse Government Services Company Llc Sub-sea pumping system and associated method including pressure compensating arrangement for cooling and lubricating
US5795135A (en) * 1995-12-05 1998-08-18 Westinghouse Electric Corp. Sub-sea pumping system and an associated method including pressure compensating arrangement for cooling and lubricating fluid
CN1108501C (zh) * 1996-04-18 2003-05-14 株式会社三进 5或8kw制冷系统的离心式压缩机组
US7211919B2 (en) * 1999-08-16 2007-05-01 American Superconductor Corporation Thermally-conductive stator support structure
US6364620B1 (en) * 2000-08-29 2002-04-02 Zoeller Company Submersible pump containing two levels of moisture sensors
JP4923374B2 (ja) * 2001-09-26 2012-04-25 日産自動車株式会社 回転電機のステータ構造
CN100335795C (zh) * 2002-05-07 2007-09-05 Emu潜水泵有限公司 尤其适用于泵的电机
DE10317593A1 (de) * 2003-04-16 2004-11-18 Siemens Ag Elektrische Maschine mit gekühlten Ständer- und Läuferblechpaketen und Wicklungen
US7538457B2 (en) * 2006-01-27 2009-05-26 General Motors Corporation Electric motor assemblies with coolant flow for concentrated windings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1056376A1 (ru) * 1980-05-08 1983-11-23 Одесский Технологический Институт Холодильной Промышленности Закрыта электрическа машина
RU2072609C1 (ru) * 1987-11-02 1997-01-27 Акционерное общество открытого типа "Электросила" Электрическая машина ветохина эмв
RU2034999C1 (ru) * 1992-03-03 1995-05-10 Королев Эдуард Геннадьевич Центробежный криогенный компрессор
WO1994029597A1 (en) * 1993-06-15 1994-12-22 Multistack International Limited Compressor
DE19623553A1 (de) * 1996-06-13 1997-12-18 Klein Schanzlin & Becker Ag Flüssigkeitsgefüllter Unterwassermotor
RU2205129C2 (ru) * 1997-07-21 2003-05-27 Сименс Акциенгезелльшафт Электрический гондольный привод для судна

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674438C1 (ru) * 2014-12-18 2018-12-10 Сименс Акциенгезелльшафт Статор для электрической машины
RU2613794C1 (ru) * 2016-03-31 2017-03-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Интегрированный перекачивающий агрегат для транспортировки углеводородов по подводным и континентальным трубопроводам
RU2675596C1 (ru) * 2017-07-14 2018-12-20 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Способ работы электродвигателя под водой

Also Published As

Publication number Publication date
EP2142806B1 (de) 2018-02-28
WO2008138829A1 (de) 2008-11-20
DE102007021720B4 (de) 2014-01-23
BRPI0811221B1 (pt) 2019-09-03
CN101675249A (zh) 2010-03-17
RU2009145531A (ru) 2011-06-20
EP2142806A1 (de) 2010-01-13
CA2686794A1 (en) 2008-11-20
US8313316B2 (en) 2012-11-20
US20100239441A1 (en) 2010-09-23
DE102007021720A1 (de) 2008-11-13
BRPI0811221A2 (pt) 2014-10-29
CN101675249B (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
RU2470190C2 (ru) Компрессорная система для морской подводной эксплуатации
US8523540B2 (en) Fluid pump system
CN1989679B (zh) 带有内置热交换器的电动机及冷却电动机的方法
EP2539994B1 (en) Cooling system for a multistage electric motor
RU2631677C2 (ru) Система и способ охлаждения электродвигателя
US20100014990A1 (en) Compressor Unit
RU2394172C1 (ru) Компрессорный блок и применение охлаждающей среды
JP4655181B2 (ja) 冷却水封入形熱交換器付乾式水中モータポンプ
US8696327B2 (en) Submersible pump motor cooling through external oil circulation
CA3114640C (en) Active and passive refrigeration systems for downhole motors
NO20110786A1 (no) Subsea kompressor direkte drevet av en permanentmagnetmotor med en stator og rotor nedsunket i vaeske
CN103629118A (zh) 一种立式管道永磁屏蔽泵
JP2015165575A (ja) 熱交換型変圧器冷却装置
CN108953146A (zh) 一种循环油冷的罗茨泵
CN102624121A (zh) 一种电机绕组端部冷却结构
RU2520301C2 (ru) Пресс высокого давления
JP4972469B2 (ja) ポンプ
JPS61118595A (ja) 水中用ポンプの冷却装置
JP2018204518A (ja) ポンプ及びブライン循環装置
JP2019143509A (ja) 立軸ポンプ
KR20100045428A (ko) 랭킨사이클을 활용한 리니어모터 냉각장치