WO2007108195A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2007108195A1
WO2007108195A1 PCT/JP2006/326273 JP2006326273W WO2007108195A1 WO 2007108195 A1 WO2007108195 A1 WO 2007108195A1 JP 2006326273 W JP2006326273 W JP 2006326273W WO 2007108195 A1 WO2007108195 A1 WO 2007108195A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
light
display device
film
display
Prior art date
Application number
PCT/JP2006/326273
Other languages
English (en)
French (fr)
Inventor
Akiko Ito
Kozo Nakamura
Shun Ueki
Tokio Taguchi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2008506170A priority Critical patent/JPWO2007108195A1/ja
Priority to US12/280,729 priority patent/US7990499B2/en
Priority to CN2006800535594A priority patent/CN101390001B/zh
Publication of WO2007108195A1 publication Critical patent/WO2007108195A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • the present invention relates to a display device. More specifically, the present invention relates to a reflection / transmission type display device that displays an image in both a transmission region and a reflection region.
  • liquid crystal display devices are widely used in electronic devices such as monitors, projectors, mobile phones, and personal digital assistants (hereinafter also referred to as “PDAs”). Such liquid crystal display devices include a reflection type, a transmission type, and a reflection / transmission type (semi-transmission type).
  • a reflective liquid crystal display device obtains display light by guiding ambient light into the interior of a liquid crystal display panel and reflecting it with a reflecting member.
  • the transmissive liquid crystal display device guides light from a light source (hereinafter referred to as “backlight”) provided on the back side of the liquid crystal display panel to the inside of the panel, and transmits the light through the panel. Display light is obtained by emitting light to the outside.
  • backlight a light source
  • the reflection / transmission type liquid crystal display device in a relatively dark environment such as indoors, the transmission display using the light of the knocklight is mainly observed, but the display such as outdoors In a relatively bright environment, reflection display using ambient light is mainly observed. As a result, a display with a high contrast ratio related to the ambient brightness can be realized.
  • both reflective and transmissive liquid crystal display devices can be displayed in any environment, both indoors and outdoors, and are therefore often installed in mobile devices such as mobile phones, PDAs, and digital cameras.
  • a reflection / transmission liquid crystal display device two types of display areas, a reflection area and a transmission area, are formed on the liquid crystal display panel.
  • the transmissive region light emitted from the backlight passes through the liquid crystal layer and the color filter only once and is emitted to the outside.
  • ambient light that has passed through the color filter and the liquid crystal layer is reflected by the reflection member, passes through the liquid crystal layer and the color filter again, and is emitted to the outside.
  • the transmissive area and the reflective area use different light sources such as the light of the knocklight and the ambient light to display light. Is supposed to generate.
  • the color reproduction range for transmissive display is obtained by transmitting light through the color filter only once, whereas the color reproduction range for reflective display is obtained by transmitting light through the color filter twice. It has become a thing.
  • the color filter used in the conventional liquid crystal display device also has red, green, and blue primary color filter power, and the color of light emitted from each color filter is red, green, and blue.
  • the color reproduction range is limited, so it is not possible to express all colors perceived by humans. Therefore, in recent years, power color filters with more than four colors have been proposed for the purpose of expanding the color reproduction range and improving the light utilization efficiency.
  • Patent Document 1 discloses a color filter using four colors obtained by adding yellow to the three primary colors red, green, and blue (hereinafter also referred to as “four-color filter”). Of these four colors, blue and yellow are complementary colors, and red and green, and blue and yellow are combinations of opposite colors according to human visual characteristics.
  • white balance is one of the important display performances of a display device.
  • White balance refers to the color tone of white displayed by the display device, and is determined mainly by the color tone of the light source and the configuration of the color filter. This white balance is often expressed quantitatively using the color temperature (the absolute temperature of a black body with a chromaticity equal to or close to the chromaticity of a certain light). The color temperature of 6500K or higher is required for the devices that display the above.
  • the white balance of the transmissive display can be improved by adjusting the color tone of the light source of the knock light since the knock light is used as the light source.
  • the white balance of the transmissive display can be improved. Even so, there is a big difference in white balance between transmissive display and reflective display.
  • a method of adjusting the configuration of the four-color filter in advance so as to optimize the white balance of the reflective display is also conceivable.
  • a method can be considered in which the contribution of blue, which is a complementary color of yellow, is increased by making the film thickness of the blue filter extremely thin.
  • the film thickness of the blue filter is reduced, a white color with no yellow color cannot be obtained.
  • the color purity of blue will be reduced, and as a result, the display color will be significantly different from the color obtained using a three-color filter in accordance with the NTSC (National Television System Committee) standard.
  • NTSC National Television System Committee
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-209047
  • the present invention has been made in view of the above-described present situation, and provides a reflection / transmission type display device capable of reducing the difference in white balance between transmission display and reflection display. It aims at and.
  • the inventors of the present invention provided a filter of three or more colors for each pixel, transmits a knocklight light, displays an image, and reflects a surrounding light to reflect an image.
  • white balance can be optimized by adjusting the color of the light source of the backlight, but for reflective display, the light source is ambient light. It was not possible to optimize and the white color was found to be tinted. Therefore, among the multiple color filters used for the white reflective display provided in the pixel, the visible region of the filter measured using the ordinary light source D is applied to the reflection region of at least one color filter.
  • the amount and color of light transmitted through the filter are adjusted. That the white balance of the reflective display can be adjusted. I started. Further, it has been found that the difference in white balance between the transmissive display and the reflective display can be reduced, and the inventors have conceived that the above problems can be solved brilliantly, and have reached the present invention.
  • a filter of three or more colors is provided for each pixel, and a transmission region that displays an image by transmitting the light of the knocklight and a reflection that displays an image by reflecting ambient light.
  • the pixel is provided with a common light source D in the reflection region of at least one color filter among a plurality of color filters used for white reflection display. Less visible transmission spectrum of the above filter measured using
  • Both are display devices in which a film that attenuates light having a peak wavelength is disposed.
  • the display device of the present invention is provided with filters of three or more colors for each pixel.
  • “three or more colors” means that there are at least three hues (color types) among the three attributes of colors.
  • a filter is a film that selectively transmits visible light in a predetermined wavelength range more than visible light in other wavelength ranges, a film that shows uniform transmittance in all wavelength ranges of visible light ( Don't include (slightly achromatic film)! / ⁇ .
  • the material of the filter is not particularly limited, and examples thereof include a resin dyed with a dye, a resin dispersed with a pigment, and a fluidized material (ink) with a pigment dispersed therein.
  • the method for forming the filter is not particularly limited, and examples thereof include a dyeing method, a pigment dispersion method, an electrodeposition method, a printing method, an ink jet method, and a dry film laminating (DFL) method.
  • a pixel means a minimum display unit (pixel) of an image. Since the pixels are usually divided into sub-pixels (sub-pixels) for each filter area, the pixels in the display device of the present invention also have sub-pixel forces of three or more colors. In this specification, all the filters arranged in one pixel are collectively called a color filter! /
  • the arrangement of the filters is not particularly limited, and examples include a stripe arrangement, a delta arrangement, and a mosaic arrangement.
  • the configuration of the filter is not particularly limited.
  • filters of the same color may be collectively formed between pixels arranged adjacent to each other in the same column (vertical direction).
  • a “filter” usually means a filter included per pixel regardless of its configuration.
  • the number of filters to be used is not particularly limited, and a plurality of filters of the same color may be provided in one pixel, but each pixel has a different color from the viewpoint of resolution and signal processing. It is preferable to have multiple filters.
  • a light-shielding member such as a black matrix (BM) is preferably disposed in order to prevent light leakage between the filters.
  • BM black matrix
  • a bank protruding structure, color mixing prevention wall
  • a light shielding member is further disposed between the filters.
  • the light shielding member refers to a member that substantially blocks all visible light. Specifically, the light transmittance is less than 0.1% over the entire visible wavelength range of 400 to 700 nm ( A member with optical density D> 3) and luminous reflectance Y ⁇ 5. The light reflectance of the light shielding member is preferably 5% or less over the entire visible wavelength range of 400 to 7 OOnm.
  • the material of the light-shielding member is not particularly limited, and examples thereof include chrome, chromium oxide, and acrylic resin (photosensitive resin) in which black pigment is dispersed. From the viewpoint of environmental problems, black pigment is dispersed. Preferred are acrylic resins.
  • the black pigment is not particularly limited, and examples thereof include carbon fine particles, chromium or titanium-based black pigment.
  • a method for forming the light shielding member a method similar to a force filter that depends on the material can be used.
  • the configuration thereof is not particularly limited.
  • the light shielding member may be formed by superposing filters of different colors (color superposition BM). ! /
  • the combination of the colors of the three or more filters is not particularly limited, but it is preferable to include at least the three primary colors of red, green, and blue to reproduce colors close to the NTSC standard. In order to effectively enlarge the color, it is more preferable to include complementary colors of the three primary colors such as yellow, cyan, and magenta.
  • red means a hue having a dominant wavelength of 597 nm or more and 780 ⁇ m or less in the xy chromaticity diagram of the XYZ color system (CIE1931 standard color system), preferably Is a hue of 600 nm or more and 620 nm or less.
  • Yellow is a hue having a dominant wavelength of 558 nm or more and less than 597 nm, and preferably a hue having a dominant wavelength of 570 nm or more and 582 nm or less.
  • Green means a dominant wavelength of 5 A hue of 10 nm or more and less than 558 nm, preferably a hue having a dominant wavelength of 520 nm or more and 557 nm or less.
  • Cyan is a hue having a dominant wavelength of 488 nm or more and less than 510 nm, and preferably a hue having a dominant wavelength of 493 nm or more and 503 nm or less.
  • Blue means a hue having a dominant wavelength of 380 nm or more and less than 488 nm, and preferably a hue having a dominant wavelength of 455 nm or more and 475 nm or less.
  • Magenta is a hue having a complementary dominant wavelength of 495 nm or more and less than 565 nm, and preferably a hue having a complementary dominant wavelength of 502 nm or more and 558 nm or less.
  • the color purity of the reflection region of the filter of three or more colors is 20% or more in terms of the area ratio on the xy chromaticity diagram of the XYZ color system.
  • the display device of the present invention usually has a liquid crystal display panel in which a liquid crystal layer is sandwiched between a TFT array substrate and a counter substrate, and the three or more color filters are usually Provided on the opposite substrate side.
  • the filter is provided on the TFT array substrate. May be arranged on the side (CF on Array), and conversely, a TFT array may be provided on the filter (TFT on CF).
  • the light shielding member such as BM may also be arranged on the side of the force TFT array substrate provided on the opposite substrate side as in the case of filters of three or more colors (BM on Array).
  • the display device of the present invention also includes, for each filter, a transmissive area that transmits the light of the knocklight and displays an image, and a reflective area that reflects ambient light and displays an image. That is, since the display device of the present invention is a reflection / transmission type (semi-transmission type) display device, the display device transmits a backlight and displays an image, and the ambient light reflects an image. It is possible to perform both reflection display and display. Further, in the display device of the present invention, filters of three or more colors are provided in each of the transmissive region and the reflective region, so that the color reproduction range can be expanded for both the transmissive display and the reflective display. Yes, four or more colors of filters are provided in each of the transmissive and reflective areas! / In the case of turning over, the color reproduction range can be effectively expanded for both transmissive display and reflective display.
  • a transmissive area that transmits the light of the knocklight and displays an image
  • a reflective area that reflects ambient light and displays an image. That
  • the transmissive region is a region used for transmissive display, and usually a liquid crystal display panel is used.
  • the regions where the transparent conductive member for applying voltage to the liquid crystal layer is formed on each of the TFT array substrate and the opposing substrate.
  • the transparent conductive member on the TFT array substrate side is usually formed for each filter (subpixel) region, that is, to reach the entire transmission region and reflection region of the filter. Further, the transparent conductive member on the counter substrate side is usually formed as an electrode common to all pixels.
  • the material of the transparent conductive member is not particularly limited, and examples thereof include indium tin oxide (ITO).
  • the knock light is not particularly limited, and may be a direct type or an edge light type.
  • the light source of the knocklight is not particularly limited, but in order to optimize the white balance of the transmissive display, it is preferable that the emission spectrum is compatible with the spectral characteristics of the filter, such as a light emitting diode (LED), a cold light.
  • a cathode fluorescent tube (CCFT), a hot cathode fluorescent tube (HCFT), or the like can be used.
  • the reflective region refers to a region used for reflective display.
  • a reflective member is formed on the TFT array substrate side constituting the liquid crystal display panel, and a transparent conductive member is formed on the counter substrate side.
  • the reflecting member reflects substantially all visible light, and specifically has a light reflectance of 70% or more over the entire visible wavelength range of 400 to 700 nm.
  • the light reflectance of the reflecting member is preferably 80% or more over the entire visible wavelength range of 400 to 700 nm.
  • the material of the reflecting member is not particularly limited, and examples thereof include aluminum, silver, and alloys of these metals. Aluminum, chromium, tungsten, etc. having a broad light reflectance over the entire visible wavelength range are preferably used.
  • the reflective member is also referred to as a reflective electrode when it functions as an electrode that may function as an electrode for applying a voltage to the liquid crystal layer.
  • an electrode is separately formed in the reflective region.
  • a transparent conductive member replaces the reflective electrode.
  • the reflecting member may have a light scattering property or a mirror surface by forming a convex surface or the like to improve the light utilization efficiency. In the case of a mirror surface, it is preferable to provide a light scattering layer separately. The light scattering layer may be used in combination with the light scattering property even when the reflecting member has the light scattering property.
  • the reflective region is usually provided with a trapezoidal member (hereinafter also referred to as "multi-gap layer”) that makes the thickness of the liquid crystal layer in the reflective region smaller than the thickness in the transmissive region! / ⁇
  • the multi-gap layer may be arranged on the counter substrate side or on the TFT array substrate side, but is preferably arranged on the counter substrate side in order to improve the aperture ratio.
  • the material of the multi-gap layer is not particularly limited, but when the multi-gap layer is disposed on the observation surface side of the reflecting member, the optical characteristics of the multi-gap layer affect the display quality of the reflective display. Therefore, it is preferable to select appropriately.
  • the thickness of the multi-gap layer is approximately 1Z 2 of the thickness of the liquid crystal layer in the transmission region (hereinafter also referred to as “cell thickness”) in order to equalize the optical path length in the reflection region and the optical path length in the transmission region. Is preferred.
  • the display device of the present invention may be equipped with a front light together with ambient light in the case of reflective display which may be equipped with a so-called front light.
  • the pixel is measured using the common light source D in the reflection region of at least one color filter among the multiple color filters used for white reflective display.
  • a film that attenuates at least the peak wavelength light in the visible transmission spectrum of the filter is disposed.
  • the white balance of the reflective display can be optimized by disposing a light-reducing film corresponding to the spectral characteristics of the filter in the reflection region of the filter.
  • the white balance of the transmissive display can be optimized by adjusting the color temperature of the light source of the backlight and the cell thickness in the transmissive area. The difference in white balance can be reduced.
  • the filter to be dimmed to achieve the object of the present invention is a multi-color filter used for white reflective display. If no dimming film is disposed, the display device performs white reflective display. It is preferable to include a filter having the same hue as that of a white color. For example, when the display device performs white reflective display using a yellow filter and a green filter provided in the pixel, and the white color is yellowish, the dimming film is at least yellow. When the white color, which is preferred to be placed in the reflective area of the filter, is greenish, The light film is preferably disposed at least in the reflection region of the green filter. When the light reduction film is disposed in the reflection region of the filter having the same hue as that of the white color, it may also be disposed in the reflection region of the filter having a hue different from the color. !
  • the ordinary light source D is a light source that approximately realizes the standard light D.
  • the visible transmission spectrum means a transmission spectrum over the entire visible wavelength range of 400 to 700 nm.
  • the peak wavelength is a wavelength at which the light transmittance is maximum in the visible transmission spectrum. Dimming refers to a phenomenon in which light energy is lost (decayed), and usually refers to absorption by the filter medium or absorption and scattering.
  • the light transmittance of the light reducing film is preferably 0.1% or more and 90% or less when the light reducing film is an achromatic film, and the light reducing film is a blue film.
  • the visible light spectral overlap with the filter to be attenuated is small. Is preferably 50% or more.
  • the dimming film may be disposed in at least a part of the reflection region of at least one color filter, but is usually disposed in the entire reflection region of at least one color filter.
  • the arrangement location is not particularly limited as long as the dimming film is arranged in the reflection region of the filter of at least one color.
  • the overlapping order of the light reducing film and the filter is not particularly limited. That is, the positional relationship between the light-reducing film and the filter in the normal direction of the observation surface of the display device is not particularly limited as long as the light-reducing film and the filter are closer to the observation surface than the reflecting member.
  • the filter may be arranged on the back side of the filter, which may be arranged on the observation surface side of the filter. Further, the dimming film and the filter may or may not be in contact.
  • the display device of the present invention is not particularly limited as long as it has the above-described configuration and may or may not have other components. Note that the display device of the present invention does not have to use all the filters in the pixel or all the filters in the pixel when performing white reflective display. In addition, the display device of the present invention does not have to use all the filters in the pixel, or may use all the filters in the pixel, when performing white transmissive display. In addition, a multi-color filter used for white reflective display and a white transparent The multi-color filters used for over-display may be the same combination or different combinations.
  • the light-reducing film has a hue different from that of the light-reduced filter, and when the display device performs white reflective display using the ordinary light source D, the light-reducing film has a reflection region of the light-reduced filter.
  • the dimming film can be dimmed while maintaining the hue of the incident light, so that the white balance of the reflective display can be effectively optimized.
  • the display device is dimmed when performing reflective display using the ordinary light source D.
  • the display device preferably includes a red filter, a green filter, a blue filter, and a yellow filter provided for each pixel.
  • a red filter preferably includes a red filter, a green filter, a blue filter, and a yellow filter provided for each pixel.
  • the dimming film is provided in a reflection region of the yellow filter.
  • a display device in which red, green, blue, and yellow filters are provided for each pixel uses a red, green, blue, and yellow filter provided in the pixel to reflect white light.
  • the white color is yellowish.
  • the white balance of the reflective display can be optimized.
  • the white balance of the transparent display can be optimized by adjusting the color temperature, cell thickness, etc. of the light source of the knocklight, so the difference in white balance between the transparent display and the reflective display can be reduced. Can be reduced.
  • the optical characteristics of the reflecting member and the light reducing film that constitute the reflecting region of the yellow filter it is possible to adjust not only the white balance of the reflecting display but also the brightness and color reproduction range of the reflecting display.
  • the display device is a yellow light that is dimmed when performing white reflective display using the ordinary light source D.
  • the reflection area force of the filter is preferably one that emits yellow light. According to this Since the light reducing film can reduce the light while maintaining the hue of the incident yellow light, the white balance of the reflective display can be effectively optimized.
  • the dimming film is preferably a gray film.
  • the gray film can diminish incident light at an almost constant rate over the entire visible wavelength range of 400-700 nm. That is, since the gray film can be dimmed while maintaining the hue of the incident light, the white balance of the reflection display can be effectively optimized. Therefore, by arranging the gray film in the reflection region of the yellow filter, it is possible to more effectively suppress the white color of the reflective display from becoming yellowish.
  • the gray film refers to a film that exhibits a uniform light transmittance over the entire visible wavelength range of 400 to 700 nm, and is specifically obtained by passing light twice.
  • Light transmittance A film that is 0.1% or more and 90% or less over the entire visible wavelength range of 400 to 700 nm, and is distinguished from a filter that selectively transmits visible light in a predetermined wavelength range.
  • the gray film according to the present invention has a light transmittance of less than 0.1% over the entire visible wavelength range of 400 to 700 nm (optical density D> 3). It is preferable not to include anything.
  • the light passes through the gray film twice before the light enters the display device and the force is emitted to the outside. If used, the light incident on the display device is substantially shielded by the gray film and is not used for display. As a result, sufficient brightness and color reproduction range may not be obtained.
  • the ambient light incident on the reflection area of the yellow filter passes through the gray film twice before being incident and emitted as yellow light. From this, it is preferable to obtain the desired dimming effect in total U ,.
  • the gray film has a light reflectance that preferably has a light transmittance of 0.316% or more obtained by passing light once over the entire visible wavelength range of 400 to 700 nm. It is preferably 1% or less.
  • the material and formation method of the gray film are not particularly limited, and examples thereof include the same material and formation method as the light shielding member. Examples of the method of adjusting the light transmittance of the gray film include a method of controlling the content of the black pigment dispersed in the coconut resin.
  • a neutral density filter JIS C1609-4
  • the gray film may have a single layer structure or a laminated structure as long as it has the above-described optical characteristics as a whole. As long as it has the above-mentioned optical characteristics as a whole, the gray film may be one in which filters of different colors are superimposed (hereinafter also referred to as “color-superimposed gray film”).
  • the above gray is a color in which white is darkened and is usually achromatic, but as long as the difference between the maximum and minimum spectral transmittance is less than 10% (preferably 5%). For example, it may be bluish, reddish, yellowish, greenish or purple. For example, when arranged in the reflection region of a yellow filter, the gray film may be bluish, which is a complementary color of yellow. This also reduces the yellow light intensity hue that has passed through the yellow filter with almost no change, effectively suppressing the white color of the reflective display from becoming yellowish. it can.
  • the dimming film is preferably a blue film. According to this, by arranging a blue film that is a complementary color of yellow in the reflection area of the yellow filter, it is possible to effectively reduce the transmitted light from the reflection area of the yellow filter. It is possible to more effectively suppress the white color of the yellow.
  • the above-described light reducing film may be a cyan film, or the same effect as when a blue film is disposed.
  • the cyan film since the dominant wavelength of cyan is longer than that of blue, the cyan film has a larger overlap with the visible transmission vector of the yellow filter than the blue film, and the green component light There is a risk of allowing transmission.
  • the effect of adjusting the white color temperature of the reflective display is reduced, and the hue when displaying yellow in the reflective display may deviate from the yellow hue. Therefore, from the viewpoint of optimizing white balance, a blue film is more preferable than a cyan film.
  • the display device forms a blue film when performing white reflective display using the ordinary light source D.
  • the blue film preferably has the material strength of a blue filter. According to this, since it is not necessary to prepare a material for the blue film different from the material for the filter, the manufacturing cost can be reduced. Note that the blue film may have substantially the same film thickness as the blue filter. According to this, since the blue film can be formed in the same process as the blue filter, the manufacturing process can be simplified.
  • the light-reducing films such as the gray film, the blue film, and the cyan film are formed by using the ordinary light source D.
  • the measured yellow filter has a spectral transmittance of 80% or more in the visible light spectrum (hereinafter also referred to as the “first wavelength range”). That's right. According to this, since the yellow light transmitted through the yellow filter is attenuated by the light reducing film with almost no change in hue, the white balance of the reflective display can be more effectively optimized. .
  • light in the first wavelength range is substantially uniformly attenuated when any wavelength in the first wavelength range is defined as wavelengths a and b (a ⁇ b). The difference between the amount dimmed by the film and the amount of light of wavelength b dimmed by the dimming film is within ⁇ 20%.
  • the total thickness of the light reducing film and the filter to be attenuated is substantially the same as the film thicknesses of the filters of other colors. According to this, since the flatness of the substrate surface can be achieved, display unevenness can be reduced.
  • the total film thickness of the light-reducing film and the light-reduced filter is substantially the same as the film thicknesses of all other filters arranged in the same pixel. Preferably there is. Note that “substantially the same” includes not only completely the same state but also a state that is different within a range that can be regarded as substantially the same state from the viewpoint of reducing display unevenness.
  • the display device is a liquid crystal display device, and the blue film preferably has a thickness of a liquid crystal layer in a reflection region of the yellow filter smaller than a thickness in a transmission region of the yellow filter. .
  • the reflective region is usually provided with a multi-gap layer. Therefore, according to this embodiment, since the multi-gap layer disposed in the reflection region of the yellow filter can be used as a blue film, it is not necessary to separately provide a blue film, thereby reducing the manufacturing cost. Can do. In this case, the color of the multi-gap layer in the reflection region of the other filter is not particularly limited.
  • the dimming film is provided in the reflection region of filters of all colors. According to this, since the amount of light emitted from each reflection region can be controlled for each color of the filter, the white balance of the reflection display can be effectively optimized.
  • the display device is a liquid crystal display device
  • the light-reducing film is a thickness of the liquid crystal layer in the reflection region of the filter. It is preferable that the thickness is smaller than the thickness in the transmission region of the filter. According to this embodiment, since the multi-gap layer disposed in the reflection region of the filter can be used as a light-reducing film, it is not necessary to separately provide a light-reducing film, and the manufacturing cost can be reduced. .
  • the liquid crystal display device is provided with a red filter, a green filter, a blue filter, and a yellow filter for each pixel.
  • the dimming film is preferably bluish (a blue film).
  • the regular light source D is more yellowish than the knocklight used for transmissive display.
  • the color temperature can be improved, and depending on the design, it is possible to cancel the white yellowishness of the reflection display.
  • the form of FIG. 13 is mentioned, for example. According to the configuration shown in FIG. 13, it is not necessary to separately provide a bluish dimming film, so that the manufacturing cost can be reduced. Further, according to the embodiment of FIG. 13, the multi-gap layer is bluish in the reflection region of all the filters, so that the multi-gap layer can be used as the dimming film, so there is no need to provide a dimming film separately. As a result, the manufacturing cost can be reduced.
  • the pixel has a red filter, a green filter, a yellow filter, and a blue filter arranged in stripes in this order.
  • red and green and yellow and blue which are in opposite colors, are arranged adjacent to each other, and green and yellow having high luminance are arranged in the center of the pixel. Therefore, it is possible to reduce the coloration of the straight line when displaying a white straight line by mixing colors on a black background.
  • the display device is preferably a liquid crystal display device.
  • the color reproduction range can be expanded and the difference in white balance between the transmissive display and the reflective display can be reduced.
  • Provide display device can do.
  • Examples of the display mode of the liquid crystal display device include a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, a transverse electric field direction (IPS) mode, and a twisted nematic (TN) mode.
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • IPS transverse electric field direction
  • TN twisted nematic
  • the ordinary light source D is provided in the reflection region of the filter of at least one color.
  • the optical characteristics of the light reducing film are appropriately adjusted to reflect the light.
  • the white balance of the display can be optimized and the difference in white balance between the transmissive display and the reflective display can be reduced.
  • the display device is a reflection / transmission type liquid crystal display device. That is, according to the display device according to the present embodiment, the observer mainly observes the transmissive display using the light of the knocklight in a relatively dark environment such as indoors. In a relatively bright environment, a reflective display using ambient light is mainly observed.
  • FIG. 1 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission display device according to Embodiment 1 of the present invention.
  • red, green, yellow and blue filters 1 OR, 10G, 10Y and 10B are arranged in stripes in this order.
  • Matrix 10BM is arranged.
  • the arrangement of the filters is the same for all pixels, and each pixel is provided with a reflective area a and a transmissive area b for each filter.
  • the reflective area a is a pixel area used for reflective display
  • the transmissive area b is a pixel area used for transmissive display.
  • the gray resin film lOGy is selectively disposed only in the reflection region Ya of the yellow filter 10Y.
  • FIG. 1 (b) is a schematic diagram showing a cross-sectional configuration taken along the line P—Q in FIG. 1 (a).
  • the display device has a configuration in which a liquid crystal layer 13 is sandwiched between a counter substrate 11 and a pixel substrate 12, as shown in FIG.
  • the counter substrate 11 includes a phase difference plate 22 and a polarizing plate 23 on the outer side (observation surface side) of the glass substrate 21, and red, green, blue, and yellow on the inner side (rear side) of the glass substrate 21.
  • Color filters 10R, 10G, 10B and 10Y, gray resin film 10Gy, black matrix 10BM, overcoat layer 25, counter electrode 26 and alignment film 27 are provided.
  • the phase difference plate 22 is for adjusting the polarization state of the light transmitted through the retardation plate 22 itself.
  • the polarizing plate 23 transmits only light of a specific polarization component.
  • the retardation plate 22 and the polarizing plate 23 are set to function as a circularly polarizing plate by adjusting the arrangement and configuration of the retardation plate 22 and the polarizing plate 23.
  • the four-color filters 10R, 10G, 10B, and 10Y of red, green, blue, and yellow each select the color of light that passes through them.
  • Fig. 2 shows the spectral characteristics of each filter used in this embodiment.
  • the three primary color filters 10R, 10G, and 10B for red, green, and blue mainly transmit the red component, the green component, and the blue component of incident light, respectively, and the yellow filter 10Y is for incident light.
  • the color component of both the red component and the green component is mainly transmitted.
  • the size and film thickness of the filter are substantially equal to each other between the reflective region a and the transparent region b, but it is not necessarily required to be equal. However, since the brightness of the transmitted light of each filter changes when the filter size or film thickness is changed, it is preferable to design so that the white balance is not lost.
  • the gray resin film lOGy is provided only in the reflection region Ya of the yellow filter 10Y.
  • FIG. 3 shows the spectral characteristics of the gray rosin film lOGy used in this embodiment.
  • the gray resin film lOGy attenuates incident light at a substantially constant ratio over the entire visible wavelength range of 400 to 700 nm.
  • the gray oil film lOGy is shown in Fig. L (b As shown in FIG. 5, the place where the force formed directly on the yellow filter 10Y is arranged is not particularly limited as long as it is the reflection area Ya of the yellow filter 10Y.
  • the glass substrate 21 and the yellow filter 10Y Or between the overcoat layer 25 and the counter electrode 26.
  • the overcoat layer 25 prevents the contaminants from eluting into the liquid crystal layer 13 from the four-color filters 10R, 10G, 10B and 10Y of red, green, blue and yellow, and also the surface of the counter substrate 11 It will be flat.
  • the counter electrode 26 is opposed to the reflective electrode 34 and the transparent electrode 35 provided on the pixel substrate 12 side through the liquid crystal layer 13, and drives the liquid crystal molecules by applying a voltage to the liquid crystal layer 13. Used for.
  • the alignment film 27 controls the alignment of the liquid crystal molecules in the liquid crystal layer 13.
  • the pixel substrate 12 includes a phase difference plate 32 and a polarizing plate 33 on the outside (back side) of the glass substrate 31, and a convex portion (multi-gap layer) on the inside (observation surface side) of the glass substrate 31.
  • 37 provided with a reflective electrode 34, a transparent electrode 35, and an alignment film 38 that also function as a reflective member.
  • the convex portion 37 and the reflective electrode 34 are formed in the reflective region a, and the transparent electrode 35 is formed in the transmissive region b.
  • the phase difference plate 32 adjusts the polarization state of the light transmitted therethrough, like the phase difference plate 22.
  • the polarization plate 33 like the polarization plate 23, has a specific polarization component light. It is the one that only transmits.
  • the retardation plate 32 and the polarizing plate 33 are set so as to function as a circularly polarizing plate by adjusting the arrangement and configuration of the retardation plate 32 and the polarizing plate 33.
  • this circularly polarizing plate is disposed so as to be orthogonal to the circularly polarizing plate disposed on the counter substrate 11 side.
  • the convex portion 37 is disposed in each of the reflection regions a of the four-color filters 10R, 10G, 10B, and 10Y of red, green, blue, and yellow, and serves as a base for the reflective electrode 34.
  • the cell thickness in the reflective region a is smaller than the cell thickness in the transmissive region b.
  • the reflective electrode 34 is an electrode having a light reflecting function, and is provided on the convex portion 37.
  • the reflective electrode 34 reflects ambient light and applies a voltage to the liquid crystal layer 13 to drive the liquid crystal molecule, and is used when performing reflective display.
  • Reflective electrode 34 is aluminum Consists of metals such as um (Al).
  • the member that reflects ambient light and the electrode that drives liquid crystal molecules are integrated as the reflective electrode 34, but a reflective member that does not have an electrode function is formed, and A configuration may be employed in which an electrode is separately formed corresponding to the region where the reflecting member is disposed.
  • the reflecting member may be provided on the back side of the glass substrate 31 or may be provided on the liquid crystal layer 13 side. Note that if the reflecting member is provided on the back side of the glass substrate 31, the optical path length becomes long and parallax may occur. Therefore, the reflecting member is preferably provided on the liquid crystal layer 13 side of the glass substrate 31.
  • the transparent electrode 35 is an electrode made of a transparent conductive material such as indium tin oxide (ITO).
  • the reflective electrode 34 and the transparent electrode 35 are arranged for each film on the counter substrate 11 side, and drive the liquid crystal molecules by applying a voltage to the liquid crystal layer 13 for each film region. Similar to the alignment film 27, the alignment film 38 controls the alignment of the liquid crystal molecules in the liquid crystal layer 13.
  • the liquid crystal layer 13 is filled with a liquid crystal material having negative dielectric anisotropy. Therefore, when the voltage applied between the electrodes is zero or less than the threshold voltage, the liquid crystal molecules are aligned perpendicular to the glass substrates 21 and 31. In this case, since the liquid crystal layer 13 does not transmit light to the outside, the display device according to the present embodiment performs display in the normally black mode.
  • nematic liquid crystal having a refractive index anisotropy of 0.0655 is used as the liquid crystal material.
  • FIG. 4 is a graph showing the measurement results of the spectral transmittance and the spectral reflectance of the liquid crystal layer 13.
  • the spectral reflectance is the amount of light incident on the display device from the outside and the amount of light reflected off the reflective region a and emitted as reflected display light when there is no filter.
  • Spectral transmittance is the ratio between the amount of light emitted from the backlight 36 and the amount of light transmitted through the transmissive region b and emitted to the outside as transmissive display light in the absence of a filter.
  • a knock light 36 used for transmissive display is provided on the back side (back side) of the pixel substrate 12.
  • the optical characteristics of the light source used for knocklight 36 are described in (2) below. .
  • FIG. 5 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission display device according to Comparative Example 1, and FIG. 5 (b) shows a cross-sectional configuration taken along the line P—Q in FIG. 5 (a).
  • the display device according to this comparative example is a schematic diagram, except that the reflection film Ya of the yellow filter 10Y is not provided with a gray film lOGy. The configuration is the same as that of the first embodiment.
  • FIG. 6 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission display device according to Reference Example 1, and FIG. 6 (b) shows a cross-sectional configuration taken along the line P—Q in FIG.
  • the display device according to this reference example is a schematic diagram in Embodiment 1 except that a black matrix 10BM is provided in the reflection region Ya of the yellow filter 10Y. The configuration is the same.
  • the liquid crystal display devices according to Embodiment 1, Comparative Example 1 and Reference Example 1 were evaluated for white balance.
  • White balance is usually expressed in terms of color temperature (white display color temperature). Therefore, in this evaluation test, the chromaticity coordinates (x, y) of the XYZ color system (CIE1931 standard color system) when the liquid crystal display device performs white display is measured, and the color temperature is calculated using the following formula.
  • Relative color temperature A method for calculating T was used (see MaCcamy, CS, Correlated color temperature as an explicit lunction of chromaticity coordinates, and olorRes. Appl. 17, 142-144 (1992)).
  • Comparative Example 1 and Reference Example 1 performs transmissive display using four-color filters 10R, 10G, 10B and 10Y of red, green, blue and yellow, red,
  • a light source that matches the spectral characteristics of the green and blue three primary color filters 10R, 10G, and 10B .
  • the white balance collapses to the yellow side and the color temperature decreases. Therefore, in order to optimally adjust the white balance of the transmissive display, the light source a; to ⁇ in FIG.
  • a spectroradiometer (trade name: SR manufactured by Topcon Tetano House Co., Ltd.) — Using 3), we measured the chromaticity coordinates (x, y) during white display in transparent display.
  • the light sources a; to ⁇ emit light with a strong bluish color having a higher color temperature than a light source used in the form of transmissive display with the three primary color filters of red, green, and blue. As shown in FIG. 7, the light emission spectra of the light sources Q; to ⁇ have different forces. Specifically, the light source ⁇ has the weakest blue (lowest color temperature) and the light source a has the strongest blue! The color temperature is the highest!
  • the liquid crystal display device uses ambient light as a light source when performing reflective display.
  • a xenon (Xe) lamp ordinary light source D
  • Xe xenon
  • chromaticity coordinates (X, y) at the time of white display were measured using a product name: SR-3) manufactured by Puconte Tano House.
  • the white color temperature of the reflective display is 5000 to 10000K and the difference in white color temperature between the reflective display and the transmissive display is 2000mm or less, the display quality of both the transmissive display and the reflective display will be improved. It becomes possible to keep it good.
  • the color temperature (relative color temperature) during white display in transmissive display and reflective display is calculated, and the color temperature between modes is calculated using these results.
  • the difference (hereinafter referred to as “mode gap”) was calculated. The results are shown in Table 1.
  • the gray resin film lOGy is selectively disposed in the reflection area Ya of the yellow filter 10Y, the amount of yellow light emitted from the reflection area Ya of the yellow filter 10Y is reduced.
  • the color temperature of the white color on the reflective display is 5700K or higher, and the Y value (? -Transmissivity) is 6.7 to 7.5.
  • the white color temperature of the reflective display is appropriate while maintaining high brightness. Model The color temperature difference between modes could be reduced to 2000K or less.
  • Reference Example 1 since the black matrix 10BM force is placed in the reflection area Ya of the yellow filter 10Y, the result is that the amount of yellow light emitted from the reflection area Ya of the yellow filter 10Y is the exit.
  • the white color temperature of the reflective display is about 6000-9500K
  • the white color temperature of the reflective display can be in the proper range, and the color temperature difference between modes can be reduced to 2000mm or less.
  • Value (luminous transmittance) 5 to 7, and the brightness was lowered.
  • the threshold value (luminous transmittance) was 13.5 to 9.11.
  • the white color temperature of the reflective display was 3800 to It was 4900mm, the white balance collapsed to the yellow side, and the color temperature difference between the modes became 2500mm or more, and the difference in display quality between the transmissive display and the reflective display became large!
  • the color reproduction range of the color filter is expressed as the polygonal area obtained when the chromaticity coordinates (x, y) of each filter are plotted on the xy chromaticity diagram of the XYZ color system (CIE1 931 standard color system).
  • the width of the color reproduction range varies depending on the number of colors and the color purity of the filter.
  • the color purity of the four-color filters 10R, 10G, 10B, and 1 OY of red, green, blue, and yellow is the same in Embodiment 1 and Reference Example 1.
  • the reflective display is performed using the four-color filters 10R, 10G, 10B, and 10Y of red, green, blue, and yellow, whereas the reflective display is performed according to Reference Example 1.
  • the embodiment 1 has a larger polygonal area than the reference example 1 when plotted on the xy chromaticity diagram. Become. That is, Embodiment 1 can perform reflective display with a wider color reproduction range than Reference Example 1.
  • the liquid crystal display device performs white transmission display and reflection display using the four-color filters 10R, 10G, 10B, and 10Y of red, green, blue, and yellow, but has a high color temperature.
  • the white balance of the transmissive display can be optimized.
  • the white color of the reflection display becomes yellowish. Can be suppressed.
  • transparent display and The difference in white balance with the reflective display can be reduced, and the display quality can be kept good.
  • the transmissive display and the reflective display are performed using four-color filters 10R, 10G, 10B and 10Y of red, green, blue and yellow, it is possible to perform a display with a wide color reproduction range. Then, the spectral characteristics such as the cell thickness of the red, green, blue and yellow four-color filters 10R, 10G, 10B and 10Y and the liquid crystal layer 13 and the color temperature of the light source of the knock light 36 or the like should be adjusted appropriately. Thus, the white balance of the transmissive display and the reflective display can be made more suitable.
  • FIG. 8 (a) is a plan view showing a schematic configuration of pixels in the reflective / transmissive display devices according to Embodiments 2 to 10 of the present invention
  • FIG. 8 (b) is a schematic diagram of PQ in FIG.
  • FIG. 6 is a schematic diagram showing a cross-sectional configuration along a line.
  • the blue film 10B ′ is reflected from the yellow filter 10Y instead of the gray resin film lOGy. This is selectively arranged in the area Ya, and other configurations are the same as those in the first embodiment.
  • the blue film 10B ′ may be configured to have other material forces as long as it mainly includes a blue component that has the same material force as the blue filter 10B.
  • the film thickness (Ty) of the yellow filter 10Y and the film thickness of the blue film ⁇ 'in the reflection region Ya of the yellow filter 10Y (The total force (Ty + Tb,) with Tb,) is almost the same as the film thickness of the three primary color filters 10R, 10G, and 10B of red, green, and blue and the film thickness in the transparent region Yb of the yellow filter 10Y.
  • the film thickness and the film thickness ratio of each filter and the blue film ⁇ ′ are not limited to this. For example, as shown in FIG.
  • the red, green, blue and yellow four-color filters 10R, 10G, 10B and 10Y have the same film thickness, and the blue film 10B ′ is formed in the reflection region Ya of the yellow filter 10Y.
  • a laminated structure or the like may be used.
  • the method of laminating the blue film 10B ′ is not particularly limited, and a method of simultaneously producing a blue film 10B ′ and a blue filter having different film thicknesses using a halftone mask, and the number of processes are increased. And a method of separately forming the blue film 10B ′ and the blue filter.
  • FIG. 5 is a diagram showing the spectral characteristics of a laminate (hereinafter referred to as “ ⁇ ′ laminate”) of a yellow filter 10 ⁇ and a blue resin film 10B.
  • the color of the transmitted light is expressed as yellow with a dominant wavelength of 573 nm.
  • X, y Measure the chromaticity coordinates (X, y) of the transmitted light of the laminate using an optical radiometer (trade name: SR—3, manufactured by Topcon Tetano House Co., Ltd.) It is calculated by plotting on the chromaticity diagram of the color system.
  • the luminous transmittance Y is calculated using an equation for measuring the spectral transmittance using a microspectrophotometer (trade name: OSP-SP200, manufactured by Olympus Corporation) and obtaining XYZ.
  • Fig. 12 shows the spectral characteristics of the YB, laminate Al, A2, Bl, B3, and El laminates in Table 2.
  • the right part of Table 2 shows a reflection / transmission type liquid crystal display device having the configuration shown in FIGS. 8 (a) and (b).
  • the white color temperature and luminous transmittance Y of the reflective display are shown. Note that the white color temperature of the reflective display is spectral emission using a xenon (Xe) lamp (ordinary light source D) as the light source of the reflective display.
  • Xe xenon
  • the chromaticity coordinates (X, y) at the time of white display in reflection display were measured using a meter (made by Topcon Tetano House, product name: SR-3), and calculated using the above formula. .
  • the luminous transmittance Y is calculated using an equation for measuring the spectral transmittance using a microspectrophotometer (manufactured by Olympus, trade name: OSP-SP200) and obtaining XYZ.
  • the film thicknesses of the three primary color filters 10R, 10G, and 10B for red, green, and blue are all 1.
  • the cell thicknesses in the transmission region and the reflection region of the liquid crystal layer 13 are the same for all the filters.
  • the white color temperature of the reflective display is 5000 to 10000K and the difference in white color temperature between the reflective display and the transmissive display is 2000mm or less, the display quality of both the transmissive display and the reflective display will be improved. It becomes possible to keep it good.
  • a blue film 10B is laminated on the yellow filter 10Y, thereby obtaining a liquid crystal display.
  • the apparatus is effective in improving the white color temperature of the reflective display.
  • the dominant wavelength of the transmitted light that hardly transmits the red component is in the green dominant wavelength region.
  • the dominant wavelength of the transmitted light was in the range of 558 to 597 nm, which is the yellow dominant wavelength region.
  • the configuration other than YB and laminated body A1 it was possible to emit the yellow transmitted light of the reflection area Ya force of the yellow filter 10Y while reducing only the amount of light that hardly changes the hue. .
  • the blue film 10B ′ having a small film thickness is selectively disposed in the reflection area Ya of the yellow filter 10Y, so that it is emitted from the reflection area Ya of the yellow filter.
  • the white color temperature of the reflective display is 6938K
  • the white color temperature of the reflective display can be within the proper range. Sufficient brightness was maintained.
  • the white balance collapsed to the yellow side.
  • Embodiments 3 to 5 (B1 to B3), by making the film thickness (Ty) of the yellow filter 10Y smaller than that of Embodiment 2 (A3), the white color temperature of the reflective display can be set within an appropriate range. It was possible to improve.
  • the thickness (Ty) of the yellow filter 10Y is made thinner than those of Embodiments 3 and 4 (B1 and B2), so that the white color temperature of the reflective display is adjusted appropriately. It was possible to further improve within the range.
  • the reflection area of the yellow filter Although the blue film 10B is not provided in the area Ya, the film thickness (Ty) of the yellow filter 10Y is made smaller than that of the comparative example 3 (B4), so that the white color temperature of the reflective display is within an appropriate range. I was able to.
  • the thickness (Ty) of the yellow filter 10Y is made smaller than that of Embodiment 6 (C1), so that the white color temperature of the reflective display is within an appropriate range. Can be improved especially.
  • the same operational effects could be achieved by Embodiment 9 (D2).
  • a blue film 10B ′ is provided in the reflection region Ya of the yellow filter 10Y, but the yellow filter 10Y is more than the reference example 3 (C3). By reducing the film thickness (Ty), the white color temperature of the reflective display could be further improved.
  • a transmissive display using backlight light is dominant in a dark environment, whereas a reflective display using ambient light is dominant in a bright environment.
  • the present invention is not limited to this, and either a transparent display or a reflective display is selected according to the ambient light intensity, and the liquid crystal drive method is switched for each selected display mode. Do it!
  • the display device is a force in which a gray resin film or a blue resin film is separately provided in the reflection region of the yellow filter.
  • a mode in which a yellow filter is provided using an appropriate amount of a black or blue component (absorbing medium) contained in a color or blue resin film is also the same as the display device according to the embodiment of the present invention. It is mentioned as what obtains an effect.
  • Such a yellow filter has the same spectral characteristics as a gray filter or blue film laminated on a yellow filter.
  • the display device is a reflection / transmission type liquid crystal display device, but is not limited thereto, and may be configured as a display device of another type. That is, the present display device can be applied to any type of display device as long as the display device is a type that performs display through a multicolored color filter section for both reflective display and transmissive display.
  • the display device can be applied to any type of display device as long as the display device is a type that performs display through a multicolored color filter section for both reflective display and transmissive display.
  • the display device it is possible to apply the configuration of
  • FIG. 1 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission display device according to Embodiment 1 of the present invention, and (b) is a diagram of P in (a). — A schematic diagram showing a cross-sectional configuration along the Q line.
  • FIG. 2 is a diagram showing spectral characteristics of four-color filters of red, green, blue and yellow used in the embodiment of the present invention.
  • FIG. 3 is a diagram showing spectral characteristics of a gray film used in an embodiment of the present invention.
  • FIG. 4 is a graph showing measurement results of spectral transmittance and spectral reflectance of the liquid crystal layer 13.
  • FIG. 5 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission display device according to Comparative Example 1, and (b) is a cross-sectional configuration taken along the line P—Q in (a).
  • FIG. 5 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission display device according to Comparative Example 1, and (b) is a cross-sectional configuration taken along the line P—Q in (a).
  • FIG. 6 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission type display device according to Reference Example 1, and (b) is a cross-sectional configuration taken along line P—Q in (a).
  • FIG. 6 (a) is a plan view showing a schematic configuration of a pixel in a reflection / transmission type display device according to Reference Example 1, and (b) is a cross-sectional configuration taken along line P—Q in (a).
  • FIG. 7 is a diagram showing emission spectra of light sources ⁇ to ⁇ of a backlight 36.
  • FIG. 8 (a) is a plan view showing a schematic configuration of a pixel in a reflective / transmissive display device according to Embodiments 2 to 10, Comparative Examples 2 and 3, and Reference Examples 2 to 4 of the present invention.
  • (B) is a schematic diagram showing a cross-sectional configuration along the line PQ in (a).
  • FIG. 9 is a schematic cross-sectional view showing a modification of the reflection / transmission dual-use display device shown in FIG. [Fig.10] Yellow filter, blue resin film, and laminate of yellow filter and blue resin film when both yellow filter film thickness and blue resin film thickness are 1.8 ⁇ m It is a figure which shows the spectral characteristic of a body.
  • FIG. 12 is a graph showing the spectral characteristics of the YB, laminate Al, A2, Bl, B3, and El laminates in Table 2.
  • FIG. 13 is a schematic diagram showing an example of a cross-sectional configuration of a pixel in a display device according to the present invention.
  • Ra Red filter reflection area
  • Gb Green filter transmission area
  • Ba Blue filter reflection area
  • Bb Blue filter transmission area
  • Ya Yellow filter reflection area
  • Yb Transmission area of yellow filter
  • Ty Film thickness of yellow filter

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、透過表示と反射表示との間のホワイトバランスの差異を低減することが可能な反射透過両用型の表示装置を提供する。本発明の表示装置は、三色以上のフィルタが画素毎に設けられ、バックライトの光を透過させて画像を表示する透過領域と、周囲の光を反射して画像を表示する反射領域とをフィルタ毎に備える反射透過両用型の表示装置であって、上記画素は、白色の反射表示に用いられる複数色のフィルタのうち、少なくとも一色のフィルタの反射領域に、常用光源D65を用いて測定された該フィルタの可視透過スペクトルの少なくともピーク波長の光を減光する膜が配置される表示装置である。

Description

表示装置
技術分野
[0001] 本発明は、表示装置に関する。より詳しくは、透過領域と反射領域との双方で画像を 表示する反射透過両用型の表示装置に関するものである。
背景技術
[0002] 現在、液晶表示装置は、モニター、プロジェクタ、携帯電話、携帯情報端末 (以下「P DA」ともいう。)等の電子機器に幅広く利用されている。このような液晶表示装置には 、反射型、透過型及び反射透過両用型(半透過型)等の種類がある。反射型の液晶 表示装置は、液晶表示パネルの内部に周囲の光を導き、これを反射部材で反射す ることによって、表示光を得るものである。また、透過型の液晶表示装置は、液晶表 示パネルの背面側に設けられた光源(以下「バックライト」とも 、う。)からの光をパネ ルの内部に導き、パネルを介して光を外部に出射することによって、表示光を得るも のである。
[0003] これらに対し、反射透過両用型の液晶表示装置では、屋内等の比較的に暗い環境 下では、ノ ックライトの光を利用した透過表示を主として観察することになる一方、屋 外等の比較的に明るい環境下では、周囲の光を利用した反射表示を主として観察す ることになる。これにより、周囲の明るさに関係なぐコントラスト比の高い表示を実現 できる。すなわち、反射透過両用型の液晶表示装置は、屋内外を問わず、あらゆる 環境下での表示が可能であるため、携帯電話、 PDA,デジタルカメラ等のモパイル 機器に多く搭載されている。
[0004] このような反射透過両用型の液晶表示装置では、液晶表示パネルに反射領域及び 透過領域の二種類の表示領域が形成されている。透過領域では、バックライトから照 射された光が、液晶層及びカラーフィルタを一回だけ通過して外部に出射される。一 方、反射領域では、カラーフィルタ及び液晶層を透過した周囲の光を反射部材で反 射し、再び液晶層及びカラーフィルタを通過して外部に出射される。このように、透過 領域と反射領域とでは、ノ ックライトの光と周囲の光という異なる光源を用いて表示光 を生成するようになっている。また、透過表示の色再現範囲は、光をカラーフィルタに 一回だけ透過させて得られるものであるのに対し、反射表示の色再現範囲は、光を カラーフィルタに二回透過させて得られるものとなっている。
[0005] ここで、従来の液晶表示装置に用いられているカラーフィルタは、赤、緑及び青の三 原色フィルタ力もなり、各カラーフィルタから出射される光の色は、赤、緑及び青の三 原色の加法混色によって表現される。し力しながら、この三原色フィルタだけでは、色 再現範囲が制限されるため、人間の知覚する全ての色を表現することはできない。そ こで、近年、色再現範囲の拡大や光の利用効率の向上を目的として、四色以上の力 ラーフィルタが提案されている。例えば、特許文献 1には、赤、緑及び青の三原色に 黄を追加した四色を用いたカラーフィルタ(以下「四色フィルタ」とも 、う。)が開示され ている。なお、これらの四色は、青と黄とが補色の関係にあり、また、赤と緑、及び、青 と黄とが、それぞれ人間の視覚特性に合わせた反対色の組み合わせである。
[0006] ところで、表示装置の重要な表示性能の一つに、ホワイトバランスがある。ホワイトバラ ンスとは、表示装置によって表示される白色の色調をいい、主に、光源の色調やカラ 一フィルタの構成によって決定されるものである。このホワイトバランスは、色温度(あ る光の色度に等 、か又は近似する色度を有する黒体の絶対温度)を用いて定量的 に表現されることが多ぐ一般的に、 TV映像等を表示する装置では、 6500K以上の 色温度が必要とされている。
[0007] 液晶表示装置のカラーフィルタとして四色フィルタを用いた場合には、色再現範囲の 拡大や明るさの向上を実現することができるものの、ホワイトバランスに重大な影響を 及ぼしてしまう。例えば、三原色フィルタの分光特性に合った光源を備えた液晶表示 装置において、三原色フィルタを四色フィルタに変更した場合、カラーフィルタの色 温度が低くなるため、ホワイトバランスが崩れ、表示装置によって表示される白色が黄 色味を帯びてしまう。
[0008] ここで、透過表示のホワイトバランスに関しては、ノ ックライト光を光源として用いて ヽ ることから、ノ ックライトの光源の色調を調整することにより、改善することができる。し 力しながら、周囲の光を光源とする反射表示については、光源によりホワイトバランス を改善することは困難であるため、透過表示のホワイトバランスを改善することができ たとしても、透過表示と反射表示との間で、ホワイトバランスに大きな差異が生じてし まつ。
[0009] そこで、反射表示のホワイトバランスが最適となるように、四色フィルタの構成を予め 調整しておく方法も考えられる。例えば、青フィルタの膜厚を極端に薄くすることによ り、黄の補色である青の寄与を増加させる方法が考えられる。し力しながら、青フィル タの膜厚を薄くしても、黄色味のない白色は得られない。また、このような設計変更を 行うと、青の色純度が小さくなる結果、表示色が NTSC (National Television Sy stem Committee)規格に沿った三色フィルタを用いて得られる色と大きく異なって しまう。
特許文献 1:特開 2001— 209047号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記現状に鑑みてなされたものであり、透過表示と反射表示との間のホヮ イトバランスの差異を低減することができる反射透過両用型の表示装置を提供するこ とを目的とするものである。
課題を解決するための手段
[0011] 本発明者らは、三色以上のフィルタが画素毎に設けられ、ノ ックライトの光を透過さ せて画像を表示する透過領域と、周囲の光を反射して画像を表示する反射領域とを フィルタ毎に備える反射透過両用型の表示装置にっ 、て種々検討したところ、透過 表示及び反射表示のホワイトバランスに着目した。そして、透過表示に関しては、バッ クライトの光源の色調を調整することにより、ホワイトバランスの適正化が図れるものの 、反射表示に関しては、光源が周囲の光であることから、この方法によってはホワイト バランスの適正化が図れず、白色が色味を帯びてしまうことを見いだした。そこで、画 素内に設けられた白色の反射表示に用いられる複数色のフィルタのうち、少なくとも 一色のフィルタの反射領域に、常用光源 D を用いて測定された該フィルタの可視透
65
過スペクトルの少なくともピーク波長に相当する波長の光を減光する膜 (以下「減光 膜」ともいう。)を配置することにより、該フィルタを透過する光の量や色味の調整を行 うことができるため、反射表示のホワイトバランスを調整することが可能となることを見 いだした。また、これにより、透過表示と反射表示との間のホワイトバランスの差異を 低減することができることを見いだし、上記課題をみごとに解決することができることに 想到し、本発明に到達したものである。
[0012] すなわち、本発明は、三色以上のフィルタが画素毎に設けられ、ノ ックライトの光を透 過させて画像を表示する透過領域と、周囲の光を反射して画像を表示する反射領域 とをフィルタ毎に備える反射透過両用型の表示装置であって、上記画素は、白色の 反射表示に用いられる複数色のフィルタのうち、少なくとも一色のフィルタの反射領 域に、常用光源 D を用いて測定された上記フィルタの可視透過スペクトルの少なく
65
ともピーク波長の光を減光する膜が配置される表示装置である。
以下に本発明を詳述する。
[0013] 本発明の表示装置は、三色以上のフィルタが画素毎に設けられたものである。本明 細書において、三色以上とは、色の三属性のうち、少なくとも色相(色の種類)が三つ 以上あることを意味する。フィルタとは、所定の波長範囲の可視光を選択的に他の波 長範囲の可視光よりも多く透過するものを 、 、、可視光の全ての波長範囲で一様な 透過率を示す膜 ( ヽゎゆる無彩色の膜)を含まな!/ヽ。フィルタの材質としては特に限 定されず、例えば、染料によって染色された榭脂、顔料が分散された榭脂、顔料が 分散された流動性材料 (インク)を固化させてなるものが挙げられる。フィルタの形成 方法としては特に限定されず、例えば、染色法、顔料分散法、電着法、印刷法、イン クジェット法、ドライフィルムラミネート (DFL)法等が挙げられる。また、本明細書にお いて、画素とは、画像の最小表示単位 (ピクセル)をいう。画素は、通常、フィルタの領 域毎に副画素(サブピクセル)に分けられることから、本発明の表示装置における画 素は、三色以上の副画素力も構成されている。なお、本明細書では、一画素に配置 された全てのフィルタをまとめてカラーフィルタとも!/、う。
[0014] 上記フィルタの配列は特に限定されず、ストライプ配列、デルタ配列、モザイク配列等 が挙げられる。フィルタの構成は特に限定されず、例えばストライプ配列されている場 合には、同じ列(縦方向)に隣接配置された画素間で同色のフィルタが一括して形成 されていてもよいが、本明細書では、「フィルタ」は、その構成に関わらず、通常は、一 画素当たりに含まれるフィルタを意味するものとする。また、一つの画素内に設けられ るフィルタの個数は特に限定されず、同色のフィルタが一つの画素内に複数設けら れてもよいが、解像度や信号処理の観点から、一つの画素内には、それぞれ別の色 を持った複数のフィルタが設けられて ヽることが好まし 、。
[0015] 上記フィルタ間(副画素間及び画素間)には、フィルタ間における光漏れを防止する ために、ブラックマトリクス (BM)等の遮光部材が配置されていることが好ましい。また 、フィルタをインクジェット法、印刷法等で形成する場合に、異なる色のインク同士が 混色するのを防ぐために、フィルタ間にはバンク (突起状構造物、混色防止壁)が配 置されていてもよい。なお、バンクが遮光性を有しない場合には、フィルタ間には、更 に遮光部材が配置されて 、ることが好ま 、。
[0016] 本明細書において、遮光部材とは、可視光を実質的に全て遮る部材をいい、具体的 には、 400〜700nmの可視全波長域にわたって、光透過率が 0. 1%未満(光学濃 度 D> 3)であり、視感反射率 Y≤ 5の部材をいう。遮光部材の光反射率は、 400〜7 OOnmの可視全波長域にわたって、 5%以下であることが好ましい。遮光部材の材質 としては特に限定されず、クロム、酸化クロム、黒色顔料が分散されたアクリル系榭脂 (感光性榭脂等)等が挙げられるが、環境問題の観点から、黒色顔料が分散されたァ クリル系樹脂が好ましい。黒色顔料としては特に限定されず、カーボン微粒子、クロム 又はチタン系黒色顔料等が挙げられる。遮光部材の形成方法としては、材質にも依 る力 フィルタと同様の方法が挙げられる。なお、遮光部材は、全体として上述した光 学特性を有する限り、その構成は特に限定されるものではなぐ例えば、異なる色の フィルタを重ね合わせてなるもの(色重ね BM)等であってもよ!/、。
[0017] 上記三色以上のフィルタの色の組み合わせは、特に限定されないが、 NTSCの規格 に近い色を再現するには、少なくとも赤、緑及び青の三原色を含むことが好ましぐ色 再現範囲を効果的に拡大するためには、これらにカ卩えて、黄、シアン、マゼンタ等の 三原色の補色を含むことがより好ましい。なお、本明細書において、赤とは、 XYZ表 色系(CIE1931標準表色系)の xy色度図において、主波長が 597nm以上、 780η m以下の色相のことであり、好ましくは、主波長が 600nm以上、 620nm以下の色相 のことである。黄とは、主波長が 558nm以上、 597nm未満の色相のことであり、好ま しくは、主波長が 570nm以上、 582nm以下の色相のことである。緑とは、主波長が 5 10nm以上、 558nm未満の色相のことであり、好ましくは、主波長が 520nm以上、 5 57nm以下の色相のことである。シアンとは、主波長が 488nm以上、 510nm未満の 色相のことであり、好ましくは、主波長が 493nm以上、 503nm以下の色相のことであ る。青とは、主波長が 380nm以上、 488nm未満の色相のことであり、好ましくは、主 波長が 455nm以上、 475nm以下の色相のことである。マゼンタとは、補色主波長が 495nm以上、 565nm未満の色相のことであり、好ましくは、補色主波長が 502nm 以上、 558nm以下の色相のことである。
なお、三色以上のフィルタの反射領域の色純度は、 XYZ表色系の xy色度図上の面 積比で NTSC比 20%以上を実現することが好ましい。
[0018] 本発明の表示装置は、通常は、 TFTアレイ基板と対向基板との間に液晶層を狭持し た液晶表示パネルを有するものであり、上記三色以上のフィルタは、通常は、対向基 板側に設けられる。しカゝしながら、この形態によれば、 TFT基板と対向基板との貼り 合せ時に位置ずれが生じた場合に、開口率が低減されることから、これを防ぐために 、フィルタは、 TFTアレイ基板側に配置されていてもよく(CF on Array)、逆に、フ ィルタ上に TFTアレイが設けられていてもよい (TFT on CF)。 BM等の遮光部材 もまた、通常は、三色以上のフィルタと同様に対向基板側に設けられる力 TFTァレ ィ基板側に配置されていてもよい(BM on Array)。
[0019] 本発明の表示装置はまた、ノ ックライトの光を透過させて画像を表示する透過領域と 、周囲の光を反射して画像を表示する反射領域とをフィルタ毎に備えるものである。 すなわち、本発明の表示装置は、反射透過両用型 (半透過型)の表示装置であるこ とから、バックライトの光を透過させて画像を表示する透過表示と、周囲の光を反射し て画像を表示する反射表示との両方を行うことができる。また、本発明の表示装置で は、三色以上のフィルタが透過領域及び反射領域のそれぞれに設けられて ヽること から、透過表示及び反射表示の両方について、色再現範囲の拡大を図ることができ 、四色以上のフィルタが透過領域及び反射領域のそれぞれに設けられて!/ヽる場合に は、透過表示及び反射表示の両方について、色再現範囲を効果的に拡大すること ができる。
[0020] 上記透過領域とは、透過表示に用いられる領域をいい、通常は、液晶表示パネルを 構成する TFTアレイ基板及び対向基板のそれぞれに、液晶層に電圧を印加するた めの透明導電性部材が形成された領域を ヽぅ。 TFTアレイ基板側の透明導電性部 材は、通常は、フィルタ(副画素)の領域毎に、すなわちフィルタの透過領域及び反 射領域の全体に至るように形成されている。また、対向基板側の透明導電性部材は 、通常は、全ての画素に共通な電極として形成されている。透明導電性部材の材質 としては特に限定されず、酸化インジウム錫 (ITO)等が挙げられる。ノ ックライトとして は特に限定されず、直下型であってもよぐエッジライト型であってもよい。ノ ックライト の光源としては特に限定されないが、透過表示のホワイトバランスを適正化するため に、発光スペクトルがフィルタの分光特性と適合しているものが好ましぐ例えば、発 光ダイオード (LED)、冷陰極蛍光管 (CCFT)、熱陰極蛍光管 (HCFT)等を用いる ことができる。
[0021] 上記反射領域とは、反射表示に用いられる領域をいい、通常は、液晶表示パネルを 構成する TFTアレイ基板側に反射部材が形成され、対向基板側に透明導電性部材 が形成された領域をいう。本明細書において、反射部材とは、可視光を実質的に全 て反射し、具体的には、 400〜700nmの可視全波長域にわたって、光反射率が 70 %以上のものである。反射部材の光反射率は、 400〜700nmの可視全波長域にわ たって、 80%以上であることが好ましい。反射部材の材質としては特に限定されず、 アルミニウム、銀又はこれら金属の合金等が挙げられる力 可視全波長域にわたって ブロードな光反射率を有するアルミニウム、クロム、タングステン等が好適に用いられ る。反射部材は、液晶層に電圧を印加するための電極としての機能を有していてもよ ぐ電極として機能する場合には、反射電極ともいう。反射部材が電極として機能しな い場合には、反射領域には電極が別途形成されることが好ましぐ通常は、透明導電 性部材が反射電極に代わる。反射部材は、光利用効率を向上させるベぐ表面を凹 凸状等にしてカ卩ェして、光散乱性を持たせてもよいし、鏡面にしてもよい。鏡面にす る場合には、光散乱層を別途設けることが好ましい。なお、光散乱層は、反射部材が 光散乱性を有する場合にも、光散乱性と合わせて用いても構わな 、。
[0022] 上記反射領域には、通常は、液晶層の反射領域における厚みを透過領域における 厚みよりも小さくする台状の部材 (以下「マルチギャップ層」とも 、う。)が設けられて!/ヽ る。マルチギャップ層は、 TFTアレイ基板側に配置されてもよぐ対向基板側に配置 されてもよいが、開口率を向上させるためには、対向基板側に配置されることが好ま しい。マルチギャップ層の材質としては特に限定されないが、マルチギャップ層が反 射部材よりも観察面側に配置されて 、る場合には、マルチギャップ層の光学特性は、 反射表示の表示品位に影響を及ぼすことから、適宜選択されることが好ましい。マル チギャップ層の厚みは、反射領域における光路長と透過領域における光路長とを等 しくするために、透過領域における液晶層の厚み(以下「セル厚」ともいう。)の略 1Z 2であることが好ましい。
なお、本発明の表示装置は、いわゆるフロントライトを装備していてもよぐ反射表示 の際に、周囲の光とともにフロントライトを併用するものであってもよい。
[0023] 本発明の表示装置では、上記画素は、白色の反射表示に用いられる複数色のフィ ルタのうち、少なくとも一色のフィルタの反射領域に、常用光源 D を用いて測定され
65
た上記フィルタの可視透過スペクトルの少なくともピーク波長の光を減光する膜が配 置される。これ〖こよれば、白色の反射表示に用いられる複数色のフィルタのうち、少 なくとも一色のフィルタの反射領域では、該フィルタを透過した光のうちの該フィルタ の可視透過スペクトルの少なくともピーク波長に相当する波長の光力 減光膜を通過 する際に減光されることから、該フィルタを透過する光の量や色味を調整することが できる。したがって、該フィルタの分光特性に応じた減光膜を該フィルタの反射領域 に配置することにより、反射表示のホワイトバランスを適正化することができる。また、 透過表示のホワイトバランスにつ ヽては、バックライトの光源の色温度や透過領域に おけるセル厚等を調整することにより、適正化することができることから、透過表示と 反射表示との間のホワイトバランスの差異を低減することができる。
[0024] 本発明の目的を達成するべぐ減光されるフィルタは、白色の反射表示に用いられる 複数色のフィルタのうち、減光膜を配置しなければ表示装置が白色の反射表示を行 つたときに白色が帯びる色味と同じ色相のフィルタを含むことが好ましい。例えば、表 示装置が画素内に設けられた黄色のフィルタ及び緑色のフィルタ等を用いて白色の 反射表示を行った場合に、白色が黄色味を帯びるときは、減光膜は、少なくとも黄色 のフィルタの反射領域に配置されることが好ましぐ白色が緑色味を帯びるときは、減 光膜は、少なくとも緑色のフィルタの反射領域に配置されることが好ましい。なお、減 光膜は、該白色が帯びる色味と同一の色相のフィルタの反射領域に配置される場合 にお 、て、該色味と異なる色相のフィルタの反射領域にも配置されてもよ!、。
[0025] 本明細書において、常用光源 D とは、標準の光 D を近似的に実現する光源をい
65 65
い、例えばキセノンランプ等が用いられる。可視透過スペクトルとは、 400〜700nm の可視全波長域にわたる透過スペクトルをいう。ピーク波長とは、可視透過スペクトル において、光透過率が最大を示す波長をいう。減光とは、光のエネルギーに損失 (減 衰)がおこる現象をいい、通常は、フィルタの媒質の吸収、又は、吸収及び散乱によ るちのをさす。
[0026] 上記減光膜の光透過率は、減光膜が無彩色の膜の場合には、 0. 1%以上 90%以 下であることが好ましぐ減光膜が青色の膜の場合には、透過光の主波長が減光膜 によって大きく変化しな 、ようにするために、減光されるフィルタとの可視透過スぺタト ルの重なりが小さいものが好ましぐ光透過率は、 50%以上であることが好ましい。
[0027] 上記減光膜は、少なくとも一色のフィルタの反射領域の少なくとも一部に配置されて いればよいが、通常は、少なくとも一色のフィルタの反射領域の全体に配置されてい る。少なくとも一色のフィルタの反射領域の一部に配置される場合には、減光膜は少 なくとも一色のフィルタの反射領域に配置されている限り、その配置場所は、特に限 定されない。また、減光膜とフィルタとの重なり順序は特に限定されない。すなわち、 表示装置の観察面の法線方向における減光膜とフィルタとの位置関係は、減光膜及 びフィルタが反射部材よりも観察面側である限り、特に限定されず、減光膜は、フィル タよりも観察面側に配置されてもよぐフィルタよりも背面側に配置されてもよい。また 、減光膜とフィルタとは、接していてもよぐ接していなくてもよい。
[0028] 本発明の表示装置は、上述した構成を有するものである限り、その他の構成要素を 有していても有さなくてもよぐ特に限定されるものではない。なお、本発明の表示装 置は、白色の反射表示を行う際に、画素内の全てのフィルタを用いてもよぐ画素内 の全てのフィルタを用いなくてもよい。また、本発明の表示装置は、白色の透過表示 を行う際にも、画素内の全てのフィルタを用いてもよぐ画素内の全てのフィルタを用 いなくてもよい。更に、白色の反射表示に用いられる複数色のフィルタと、白色の透 過表示に用いられる複数色のフィルタとは、同一の組み合わせであってもよぐ異な る組み合わせであってもよ 、。
[0029] 本発明の表示装置における好ましい形態について以下に詳しく説明する。
上記減光膜は、減光されるフィルタと色相が異なるものであり、上記表示装置は、常 用光源 D を用いて白色の反射表示を行うときに、減光されるフィルタの反射領域か
65
ら該フィルタと同一の色相の光を出射するものであることが好ましい。これによれば、 減光膜は入射光の色相を維持したまま、減光することができることから、反射表示の ホワイトバランスを効果的に適正化することができる。本発明の目的をより効果的に達 成するために、上記表示装置は、常用光源 D を用いて反射表示を行うときに、減光
65
されるフィルタの反射領域から、該フィルタとの主波長の差が 38nm以下の色相の光 を出射するものであることがより好ましい。
[0030] 上記表示装置は、赤フィルタ、緑フィルタ、青フィルタ及び黄フィルタが画素毎に設け られたものであることが好ましい。このように、赤、緑及び青の三原色フィルタに黄フィ ルタを加えることにより、透過表示及び反射表示の双方について、 NTSC規格比を 確保しつつ、赤、緑及び青の三原色に比べて、色再現範囲の拡大及び明るさの向 上をより効果的に実現することができる。
[0031] 上記減光膜は、黄フィルタの反射領域に設けられて 、ることが好ま 、。減光膜なし では、赤、緑、青及び黄のフィルタが画素毎に設けられた表示装置によれば、画素 内に設けられた赤、緑、青及び黄のフィルタを用いて、白色の反射表示を行ったとき 、白色が黄色味を帯びる。減光膜を用いれば、黄フィルタを透過した黄色の光が減 光されることにより、反射表示のホワイトバランスを適正化することができる。また、透 過表示のホワイトバランスは、ノ ックライトの光源の色温度やセル厚等を調整すること により、適正化することができることから、透過表示と反射表示との間のホワイトバラン スの差異を低減することができる。更に、黄フィルタの反射領域を構成する反射部材 や減光膜の光学特性を調整することによって、反射表示のホワイトバランスのみなら ず、反射表示の明るさや色再現範囲の調整も可能である。
[0032] 上記表示装置は、常用光源 D を用いて白色の反射表示を行うときに、減光される黄
65
フィルタの反射領域力 黄色の光を出射するものであることが好まし 、。これによれば 、減光膜は入射した黄色の光の色相を維持したまま、減光することができることから、 反射表示のホワイトバランスを効果的に適正化することができる。
[0033] 上記減光膜は、灰色の膜であることが好ま 、。灰色の膜は、 400〜700nmの可視 全波長域にわたって、入射光をほぼ一定の比率で減光させることができる。すなわち 、灰色の膜は、入射光の色相を維持したまま、減光することができることから、反射表 示のホワイトバランスを効果的に適正化することができる。したがって、灰色の膜を黄 フィルタの反射領域に配置することにより、反射表示の白色が黄色味を帯びるのをよ り効果的に抑制することができる。
[0034] 本明細書において、灰色の膜とは、 400〜700nmの可視全波長域にわたって、一 様な光透過率を示す膜をいい、具体的には、光を 2回通過させて得られる光透過率 力 400〜700nmの可視全波長域にわたって 0. 1%以上 90%以下となる膜であり 、所定の波長範囲の可視光を選択的に透過するフィルタとは区別される。なお、本発 明に係る灰色の膜は、光を 2回通過させて得られる光透過率が、 400〜700nmの可 視全波長域にわたって 0. 1%未満 (光学濃度 D> 3)となるものを含まないことが好ま しい。これは、灰色の膜が配置されたフィルタの反射領域においては、光が表示装置 に入射して力も外に出射されるまでに灰色の膜を 2回通過するところ、このような灰色 の膜を用いると、表示装置に入射した光が灰色の膜によって実質的に遮光され、表 示に利用されなくなる結果、充分な明るさや色再現範囲が得られなくなるおそれがあ る力らである。例えば、黄フィルタの反射領域に灰色の膜を配置した場合、黄フィルタ の反射領域に入射した周囲光は、入射して力も黄色の光として出射されるまでに、灰 色の膜を 2回通ることから、合計して所望の減光効果が得られることが好ま U、。
[0035] 上記灰色の膜は、 400〜700nmの可視全波長域にわたって、光を一回通過させて 得られる光透過率が、 0. 316%以上であることが好ましぐ光反射率が、 1%以下で あることが好ましい。灰色の膜の材質及び形成方法としては特に限定されず、遮光部 材と同様の材質及び形成方法が挙げられる。灰色の膜の光透過率を調整する方法 としては、例えば、榭脂中に分散される黒色顔料の含有量を制御する方法等が挙げ られる。灰色の膜としては、例えば、減光フィルタ (JIS C1609— 4)等も用いることが できる。 [0036] 上記灰色の膜は、全体として上述した光学特性を有する限り、単層構造であってもよ ぐ積層構造であってもよい。灰色の膜は、全体として上述した光学特性を有する限 り、異なる色のフィルタを重ね合わせてなるもの(以下「色重ね灰色の膜」ともいう。 ) 等であってもよい。
[0037] 上記灰色は、白色を暗くした色をいい、通常は、無彩色であるが、分光透過率の最 大値と最小値との差が 10% (好ましくは 5%)未満である限り、色味を帯びていてもよ ぐ例えば、青み、赤み、黄み、緑み又は紫み等を帯びていてもよい。例えば、黄フィ ルタの反射領域に配置される場合には、灰色の膜は、黄の補色である青みを帯びて いてもよい。これによつても、黄フィルタを透過した黄色の光力 色相をほとんど変化 されることなく減光されることから、反射表示の白色が黄色味を帯びるのを効果的に 抑帘 Uすることができる。
[0038] 上記減光膜は、青色の膜であることが好ましい。これによれば、黄フィルタの反射領 域に黄の補色である青色の膜を配置することにより、黄フィルタの反射領域からの透 過光を効果的に減光することができる結果、反射表示の白色が黄色味を帯びるのを より効果的に抑制することができる。
なお、上記減光膜は、シアン色の膜であってもよぐこれによつても青色の膜を配置し た場合と同様の作用効果を得ることができる。ただし、シアン色は、主波長が青色より も長波長側にあることから、シアン色の膜は、青色の膜よりも黄フィルタの可視透過ス ベクトルとの重なりが大きくなり、緑色成分の光の透過を許すおそれがある。すなわち 、シアン色の膜を用いた場合には、反射表示の白色の色温度を調節する効果は低く なることや、反射表示で黄色を表示するときの色味が黄色の色相からずれる可能性 もあることから、ホワイトバランスの適正化の観点からは、シアン色の膜よりも青色の膜 の方が好ましい。
[0039] 上記表示装置は、常用光源 D を用いて白色の反射表示を行うときに、青色の膜に
65
よって減光される黄フィルタの反射領域力 黄色の光を出射するものであることがより 好ましい。これによれば、黄フィルタを透過した黄色の光は、青色の膜によって、色相 を変化させることなぐ減光されることから、反射表示のホワイトバランスをより効果的 に適正化することができる。 [0040] 上記青色の膜は、青フィルタの材料力 なることが好ましい。これによれば、青色の膜 の材料として、フィルタの材料と異なるものを準備する必要がなくなるため、製造コスト の削減を図ることができる。なお、青色の膜は、青フィルタと膜厚が略同一であっても よい。これによれば、青色の膜を青フィルタと同一の工程で形成することができること から、製造工程の簡略ィ匕を図ることができる。
[0041] 上記灰色の膜、青色の膜及びシアン色の膜等の減光膜は、常用光源 D を用いて
65 測定された黄フィルタの可視透過スペクトルにおける分光透過率が 80%以上の波長 域 (以下「第一波長域」とも 、う。)の光を略一律に減光するものであることがより好ま しい。これによれば、黄フィルタを透過した黄色の光は、減光膜によって色相をほとん ど変化させることなく減光されることから、反射表示のホワイトバランスをより効果的に 適正化することができる。なお、本明細書において、第一波長域の光を略一律に減 光するとは、第一波長域内の任意の波長を波長 a及び b (a≠b)とすると、波長 aの光 が減光膜によって減光される量と波長 bの光が減光膜によって減光される量との差が 、 ± 20%以内である。
[0042] 上記減光膜及び減光されるフィルタは、膜厚の合計が、他の色のフィルタの膜厚と略 同一であることが好ましい。これによれば、基板表面の平坦ィ匕を図ることができるため 、表示ムラを低減することができる。基板表面の平坦性をより向上させるためには、減 光膜と減光されるフィルタとの膜厚の合計は、同一の画素内に配置された他の全て のフィルタの膜厚と略同一であることが好ましい。なお、略同一とは、完全同一の状 態のみならず、表示ムラの低減の観点から、実質的に同一の状態と同視できる範囲 内において異なるような状態をも含むものである。
[0043] 上記表示装置は、液晶表示装置であり、上記青色の膜は、黄フィルタの反射領域に おける液晶層の厚みを黄フィルタの透過領域における厚みよりも小さくするものであ ることが好ましい。上述したように、反射領域には、通常は、マルチギャップ層が設け られている。したがって、この形態によれば、黄フィルタの反射領域に配置されたマル チギャップ層を青色の膜として用いることができることから、青色の膜を別途設ける必 要がなくなる結果、製造コストの削減を図ることができる。なお、この場合、他のフィル タの反射領域におけるマルチギャップ層の色は、特に限定されな 、。 [0044] 上記減光膜は、全ての色のフィルタの反射領域に設けられて 、ることが好ま 、。こ れによれば、各反射領域から出射される光量をフィルタの色毎に制御することができ ることから、反射表示のホワイトバランスを効果的に適正化することができる。
[0045] 上記減光膜が全ての色のフィルタの反射領域に設けられている場合、上記表示装置 は、液晶表示装置であり、上記減光膜は、フィルタの反射領域における液晶層の厚 みをフィルタの透過領域における厚みよりも小さくするものであることが好まし 、。この 形態によれば、フィルタの反射領域に配置されたマルチギャップ層を減光膜として用 いることができることから、減光膜を別途設ける必要がなくなる結果、製造コストの削 減を図ることができる。
[0046] 上記減光膜が全ての色のフィルタの反射領域に設けられている場合、上記液晶表示 装置は、赤フィルタ、緑フィルタ、青フィルタ及び黄フィルタが画素毎に設けられたも のであり、上記減光膜は、青みを帯びている (青色の膜である)ことが好ましい。一般 的に、常用光源 D は、透過表示に用いられるノ ックライトよりも黄色味を帯びている
65
。したがって、この形態によれば、色温度の向上が図られ、設計によっては、反射表 示の白色の黄色味を相殺することが可能である。このような形態としては、例えば図 1 3の形態が挙げられる。図 13の形態によれば、青みを帯びた減光膜を別途設ける必 要がなくなる結果、製造コストの削減を図ることができる。また、図 13の形態によれば 、全てのフィルタの反射領域でマルチギャップ層が青みを帯びることにより、マルチギ ヤップ層を減光膜として用いることができることから、減光膜を別途設ける必要がなく なる結果、製造コストの削減を図ることができる。
[0047] 上記画素は、赤フィルタ、緑フィルタ、黄フィルタ及び青フィルタがこの順にストライプ 配列されたものであることが好ましい。これによれば、透過表示及び反射表示の双方 について、反対色の関係にある赤と緑、及び、黄と青がそれぞれ隣接配置され、また 、輝度が高い緑及び黄が画素の中央部に配置されていることから、黒地に混色により 白色の直線を表示した際の直線の色付きを低減することができる。
[0048] 上記表示装置は、液晶表示装置であることが好ましい。本発明の表示装置によれば 、色再現範囲の拡大が可能であるとともに、透過表示と反射表示との間のホワイトバ ランスの差異を低減することが可能なことから、表示品位の高 、液晶表示装置を提供 することができる。なお、液晶表示装置の表示モードとしては、例えば垂直配向(VA )モード、マルチドメイン垂直配向(MVA)モード、横電界方向(IPS)モード、ツイスト 'ネマチック (TN)モード等が挙げられる。本発明の表示装置によれば、上述した構 成を有するものである限り、表示モードに関係なぐ本発明の作用効果を得ることが できる。
発明の効果
[0049] 本発明の表示装置によれば、少なくとも一色のフィルタの反射領域に、常用光源 D
65 を用いて測定された該フィルタの可視透過スペクトルの少なくともピーク波長に相当 する波長の光を減光する膜が配置されることから、減光膜の光学特性を適切に調整 することにより、反射表示のホワイトバランスを適正化することができるとともに、透過 表示と反射表示との間のホワイトバランスの差異を低減することが可能である。
発明を実施するための最良の形態
[0050] 以下に実施形態を掲げ、本発明を更に詳細に説明するが、本発明はこれらの実施 形態のみに限定されるものではない。
[0051] 本発明の実施形態に係る表示装置は、反射透過両用型の液晶表示装置である。す なわち、本実施形態に係る表示装置によれば、観察者は、屋内等の比較的に暗い 環境下では、ノ ックライトの光を利用した透過表示を主として観察することになり、屋 外等の比較的に明るい環境下では、周囲の光を利用した反射表示を主として観察す ることになる。
[0052] 1.灰色の榭脂膜による反射表示のホワイトバランスの調整
(1)液晶表示装置の構成
(1 1)実施形態 1
図 1 (a)は、本発明の実施形態 1に係る反射透過両用型の表示装置における画素の 概略構成を示す平面図である。
本実施形態に係る表示装置は、図 1 (a)に示すように、赤、緑、黄及び青のフィルタ 1 OR、 10G、 10Y及び 10Bがこの順にストライプ配列され、各フィルタ間には、ブラック マトリクス 10BMが配置されている。本実施形態では、フィルタの配列が全ての画素 で同一であり、各画素では、フィルタ毎に反射領域 aと透過領域 bとが設けられている 。反射領域 aは、反射表示に使用される画素領域であり、透過領域 bは、透過表示に 使用される画素領域である。本実施形態では、黄フィルタ 10Yの反射領域 Yaにのみ 、灰色の榭脂膜 lOGyが選択的に配置されている。以下、本実施形態に係る表示装 置の断面構成について説明する。
[0053] 図 1 (b)は、図 1 (a)中の P— Q線における断面構成を示す模式図である。
本実施形態に係る表示装置は、図 1 (b)に示すように、対向基板 11と画素基板 12と の間に、液晶層 13を挟んだ構成を有している。
対向基板 11は、ガラス基板 21の外側 (観察面側)には、位相差板 22及び偏光板 23 を備え、ガラス基板 21の内側(背面側)には、赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 10Y、灰色の榭脂膜 10Gy、ブラックマトリクス 10BM、オーバーコー ト層 25、対向電極 26及び配向膜 27を備えている。
[0054] 位相差板 22は、自身を透過する光の偏光状態を調整するものである。偏光板 23は 、特定の偏光成分の光だけを透過させるものである。本実施形態では、位相差板 22 及び偏光板 23の配置及び構成を調整することにより、位相差板 22及び偏光板 23が 、円偏光板として機能するように設定されている。
[0055] 赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 10Yはそれぞれ、自身を透 過する光の色を選択するものである。本実施形態で用いた各フィルタの分光特性を 図 2に示す。図 2に示すように、赤、緑及び青の三原色フィルタ 10R、 10G及び 10B はそれぞれ、入射光の赤色成分、緑色成分及び青色成分を主に透過させるもので あり、黄フィルタ 10Yは、入射光の赤色成分及び緑色成分の両方の色成分を主に透 過させるものである。本実施形態では、フィルタのサイズ及び膜厚は、反射領域 aと透 過領域 bとの間で、互いにほぼ等しくなつているが、必ずしも等しくする必要はない。 ただし、フィルタのサイズ又は膜厚を変更すると、各フィルタの透過光の明るさが変化 するので、ホワイトバランスが崩れないように、設計することが好ましい。
[0056] 本実施形態では、灰色の榭脂膜 lOGyが黄フィルタ 10Yの反射領域 Yaにのみ設け られている。本実施形態で用いた灰色の榭脂膜 lOGyの分光特性を図 3に示す。図 3に示すように、灰色の榭脂膜 lOGyは、 400〜700nmの可視全波長域にわたって 、入射光をほぼ一定の比率で減光させるものである。灰色の榭脂膜 lOGyは、図 l (b )に示すように、黄フィルタ 10Y上に直接形成されている力 配置される場所は、黄フ ィルタ 10Yの反射領域 Yaである限り、特に限定されず、例えば、ガラス基板 21と黄フ ィルタ 10Yとの間や、オーバーコート層 25と対向電極 26との間等に形成されていて ちょい。
[0057] オーバーコート層 25は、赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 10 Yから液晶層 13内に汚染物が溶出するのを防ぎ、また、対向基板 11の表面の平坦 ィ匕するものである。対向電極 26は、液晶層 13を介して、画素基板 12側に設けられた 反射電極 34及び透明電極 35に対向するものであり、液晶層 13に電圧を印加して液 晶分子を駆動するのに用いられる。配向膜 27は、液晶層 13内の液晶分子の配向を 制御するものである。
[0058] 画素基板 12は、ガラス基板 31の外側(背面側)には、位相差板 32及び偏光板 33を 備え、ガラス基板 31の内側 (観察面側)には、凸部 (マルチギャップ層) 37、反射部 材としても機能する反射電極 34、透明電極 35及び配向膜 38を備えている。なお、凸 部 37及び反射電極 34は、反射領域 aに形成され、透明電極 35は、透過領域 bに形 成されている。
[0059] 位相差板 32は、位相差板 22と同様に、自身を透過する光の偏光状態を調整するも のであり、偏光板 33は、偏光板 23と同様に、特定の偏光成分の光だけを透過させる ものである。本実施形態では、位相差板 32及び偏光板 33の配置及び構成を調整す ることにより、位相差板 32及び偏光板 33が、円偏光板として機能するように設定され ている。また、この円偏光板は、対向基板 11側に配置された円偏光板と光学的に互 V、に直交するように配置されて 、る。
[0060] 凸部 37は、赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 10Yの反射領域 aのそれぞれに配置されており、反射電極 34の土台となるものである。本実施形態で は、画素基板 12側に凸部 37を設けることにより、反射領域 aにおけるセル厚が透過 領域 bにおけるセル厚よりも小さくなつている。
[0061] 反射電極 34は、光反射機能を有する電極であり、凸部 37上に設けられている。この 反射電極 34は、周囲の光を反射するとともに、液晶層 13に電圧を印加して液晶分 子を駆動するものであり、反射表示を行う際に用いられる。反射電極 34は、アルミ- ゥム (Al)等の金属から構成される。
[0062] 本実施形態では、周囲の光を反射する部材と液晶分子を駆動する電極とを反射電 極 34として一体ィ匕しているが、電極の機能を有しない反射部材を形成し、その反射 部材が配置された領域に対応して、別途電極を形成する構成であってもよい。この 場合、反射部材は、ガラス基板 31の背面側に設けられてもよいし、液晶層 13側に設 けられてもよい。なお、反射部材をガラス基板 31の背面側に設けると、光路長が長く なり、視差が生じるようなこともあることから、反射部材は、ガラス基板 31の液晶層 13 側に設けられることが好ましい。また、透明電極 35は、酸化インジウム錫 (ITO)等の 透明な導電材料からなる電極である。反射電極 34及び透明電極 35は、対向基板 11 側のフィルム毎に配置されており、フィルムの領域毎に、液晶層 13に電圧を印加して 液晶分子を駆動する。配向膜 38は、配向膜 27と同様に、液晶層 13内の液晶分子の 配向を制御するものである。
[0063] 液晶層 13には、負の誘電率異方性を有する液晶材料が充填されている。したがって 、電極間に印加された電圧がゼロ又は閾値電圧未満の場合、液晶分子は、ガラス基 板 21及び 31に対して垂直に配向している。この場合、液晶層 13は、外部に光を透 過しないことから、本実施形態に係る表示装置は、ノーマリブラックモードの表示を行 うこととなる。なお、本実施形態では、液晶材料として、屈折率異方性が 0. 0655のネ マチック液晶を用いている。
[0064] 図 4は、液晶層 13の分光透過率及び分光反射率の測定結果を示すグラフである。
本明細書において、分光反射率とは、フィルタのない場合に、表示装置に外部から 入射した光の量と、反射領域 aで反射されて反射表示光として外部に出射される光の 量との比をいう。分光透過率とは、フィルタのない場合に、バックライト 36から照射さ れる光の量と、透過領域 bを透過して透過表示光として外部に出射される光の量との 比である。
なお、画素基板 12の裏面側(背面側)には、透過表示に用いられるノ ックライト 36が 備えられている。ノ ックライト 36に用いる光源の光学特性等については、下記(2)で 述べ。。
[0065] (1 2)比較例 1 図 5 (a)は、比較例 1に係る反射透過両用型の表示装置における画素の概略構成を 示す平面図であり、(b)は、(a)中の P— Q線における断面構成を示す模式図である 本比較例に係る表示装置は、図 5 (a)及び (b)に示すように、黄フィルタ 10Yの反射 領域 Yaに、灰色の膜 lOGyを設けなカゝつたこと以外は、実施形態 1に係る構成と同じ である。
[0066] (1 3)参考例 1
図 6 (a)は、参考例 1に係る反射透過両用型の表示装置における画素の概略構成を 示す平面図であり、(b)は、(a)中の P— Q線における断面構成を示す模式図である 本参考例に係る表示装置は、図 6 (a)及び (b)に示すように、黄フィルタ 10Yの反射 領域 Yaに、ブラックマトリクス 10BMを設けたこと以外は、実施形態 1に係る構成と同 じである。
[0067] (2)透過表示及び反射表示の表示品質試験
(2— 1)色温度の算出方法
実施形態 1、比較例 1及び参考例 1に係る液晶表示装置について、ホワイトバランス に関する評価試験を行った。ホワイトバランスは、通常は色温度(白表示の色温度) で表現される。したがって、この評価試験では、液晶表示装置が白色表示を行ったと きの XYZ表色系(CIE1931標準表色系)の色度座標 (x、 y)を測定し、下記式を用 いて、色温度(相対色温度) Tを算出する方法を用いた (MaCcamy,C.S.,Correlatedc olor temperature as an explicit lunction of chromaticity coordinates, し olorRes. Appl .17, 142- 144(1992)参照。 )。
T = -437n3+ 3601n2- 6861n+ 5514. 31
式中の nは、 n= (x— 0. 3320) / (y-0. 1858)で表される。
[0068] (2- 2)透過表示のホワイトバランスの測定方法
実施形態 1、比較例 1及び参考例 1に係る液晶表示装置は、赤、緑、青及び黄の四 色フィルタ 10R、 10G、 10B及び 10Yを用いて透過表示を行うこととなるので、赤、緑 及び青の三原色フィルタ 10R、 10G及び 10Bの分光特性に合わせた光源を用いると 、ホワイトバランスが黄色側に崩れ、色温度が低くなる。したがって、透過表示のホヮ イトバランスを最適に調整するために、ノ ックライト 36の光源として図 7の光源 a;〜 γ を用い、また、分光放射計 (トプコンテタノハウス社製、商品名: SR— 3)を用いて、透 過表示での白表示時における色度座標 (x、 y)を測定した。
[0069] なお、光源 a;〜 γは、赤、緑及び青の三原色フィルタで透過表示する形態で用いら れる光源よりも、色温度の高い青みが力つた光を発するものである。図 7に示すように 、光源 Q;〜 γの発光スペクトルは、互いに異なる力 具体的には、光源 γの青みが 最も弱く(色温度が最も低く)、光源 aの青みが最も強!ヽ (色温度が最も高!ヽ)。
[0070] (2- 3)反射表示のホワイトバランスの測定方法
液晶表示装置は、反射表示を行う際、周囲の光を光源として用いる。この評価試験 では、キセノン (Xe)ランプ (常用光源 D )を反射表示の光源として、分光放射計 (ト
65
プコンテタノハウス社製、商品名: SR— 3)を用いて、白表示時における色度座標 (X 、 y)を測定した。
[0071] (2— 4)透過表示と反射表示との間のホワイトバランスの差異評価
一般的には、反射表示の白色の色温度が 5000〜10000Kであり、反射表示と透過 表示との白色の色温度の差異が 2000Κ以下であれば、透過表示及び反射表示の 両方の表示品位を良好に保つことが可能となる。上述した(2— 1)〜(2— 3)の方法 により、透過表示及び反射表示の白表示時の色温度 (相対色温度)を算出し、それら の結果を用いて、モード間の色温度差 (以下「モード間格差」という。)を算出した。結 果を表 1に示す。
[0072] [表 1]
Figure imgf000022_0001
実施形態 1によれば、灰色の榭脂膜 lOGyが黄フィルタ 10Yの反射領域 Yaに選択 的に配置されていることから、黄フィルタ 10Yの反射領域 Yaから出射される黄色の光 量が低減された結果、反射表示の白色の色温度が 5700K以上、 Y値 (?見感透過率) = 6. 7〜7. 5となり、明るさを高く維持したまま、反射表示の白色の色温度を適正範 囲にすることができ、モード間の色温度差を 2000K以下にすることができた。これに 対し、参考例 1では、ブラックマトリクス 10BM力 黄フィルタ 10 Yの反射領域 Yaに配 置されていることから、黄フィルタ 10Yの反射領域 Yaから出射される黄色の光量をゼ 口とした結果、反射表示の白色の色温度が約 6000〜9500Kとなり、反射表示の白 色の色温度を適正範囲にすることができ、モード間の色温度差を 2000Κ以下にする ことができたものの、 Υ値 (視感透過率) = 5〜7であり、明るさが低下していた。また、 比較例 1によれば、 Υ値 (視感透過率) = 13. 5〜9. 11となり、充分な明るさを得るこ とができたものの、反射表示の白色の色温度が 3800〜4900Κであり、ホワイトバラ ンスが黄色側に崩れているとともに、モード間の色温度差が 2500Κ以上となり、透過 表示と反射表示との表示品位の差が大きくなつて!/ヽた。
[0074] (2- 5)透過表示及び反射表示の色再現範囲の評価
カラーフィルタの色再現範囲は、各フィルタの色度座標(x、 y)を XYZ表色系(CIE1 931標準表色系)の xy色度図にプロットしたときに得られる多角形の面積で表される ものであり、色再現範囲の広さは、フィルタの色数及び色純度に応じて変化する。
[0075] 実施形態 1と参考例 1とは、赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 1 OYの各色の色純度が同一である。し力しながら、実施形態 1によれば、反射表示を 赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 10Yを用いて行うのに対し、 参考例 1によれば、反射表示を赤、緑及び青の三原色フィルタ 10R、 10G及び 10B を用いて行うことから、実施形態 1は、 xy色度図にプロットしたときに得られる多角形 の面積が参考例 1に比べて、大きくなる。すなわち、実施形態 1は、参考例 1に比べ て、色再現範囲の広い反射表示を行うことができる。
[0076] (3)本発明の実施形態 1に係る液晶表示装置の作用効果
本発明の実施形態 1に係る液晶表示装置は、赤、緑、青及び黄の四色フィルタ 10R 、 10G、 10B及び 10Yを用いて白色の透過表示及び反射表示を行うが、色温度の 高いバックライト 36の光源を用いることにより、透過表示のホワイトバランスを適正化 することができる。また、黄フィルタ 10Yの反射領域 Yaに灰色の膜 lOGyを配置し、 黄フィルタの反射領域 Yaから出射される黄色の光の光量を低減することにより、反射 表示の白色が黄色味を帯びるのを抑制することができる。それらの結果、透過表示と 反射表示との間のホワイトバランスの差異を低減することができ、表示品位を良好に 保つことが可能である。更に、透過表示及び反射表示を赤、緑、青及び黄の四色フィ ルタ 10R、 10G、 10B及び 10Yを用いて行うことから、色再現範囲の広い表示を行う ことができる。そして、赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 10Yや 液晶層 13のセル厚等の分光特性、及び Z又は、ノ ックライト 36の光源の色温度等を 適宜調整することにより、透過表示及び反射表示のホワイトバランスをより好適にする ことも可能である。
[0077] 2.青色の榭脂膜による反射表示のホワイトバランスの調整
(1)本発明の実施形態 2〜10に係る液晶表示装置の基本構成
図 8 (a)は、本発明の実施形態 2〜10に係る反射透過両用型の表示装置における画 素の概略構成を示す平面図であり、(b)は、(a)中の P— Q線における断面構成を示 す模式図である。
本発明の実施形態 2〜10に係る表示装置は、図 8 (a)及び (b)に示すように、灰色の 榭脂膜 lOGyの代わりに、青色の膜 10B'が、黄フィルタ 10Yの反射領域 Yaに選択 的に配置されたものであり、それ以外の構成については、実施形態 1と同様である。 本実施形態では、青色の膜 10B'は、青フィルタ 10Bと同じ材料力もなる力 青色の 成分を主に含む限り、それ以外の材料力も構成されてもよい。また、図 8 (b)では、対 向基板 11の基板面を平坦化する観点から、黄フィルタ 10Yの反射領域 Yaにおける 黄フィルタ 10Yの膜厚 (Ty)と青色の膜 ΙΟΒ'の膜厚 (Tb,)との合計 (Ty +Tb, )が、 赤、緑及び青の三原色フィルタ 10R、 10G及び 10Bの膜厚及び黄フィルタ 10Yの透 過領域 Ybにおける膜厚とほぼ同一になっている力 各フィルタ及び青色の膜 ΙΟΒ' の膜厚及び膜厚比は、これに限定されるものではない。例えば、図 9に示すように、 赤、緑、青及び黄の四色フィルタ 10R、 10G、 10B及び 10Yの膜厚を同一とし、黄フ ィルタ 10Yの反射領域 Yaに、青色の膜 10B'を積層した構成等でもよい。なお、青色 の膜 10B'を積層する方法としては特に限定されず、ハーフトーンマスクを用いて、膜 厚が異なる青色の膜 10B'と青フィルタとを同時に作製する方法や、工程数を増やし て、青色の膜 10B'と青フィルタとを別個に形成する方法等が挙げられる。
[0078] (2)青色の榭脂膜及び黄フィルタの膜厚が積層体の分光特性に与える影響 図 10は、黄フィルタ 10Yの膜厚 (Ty)及び青色の榭脂膜 10B,の膜厚 (Tb,)がともに 1. 8 mである場合の、黄フィルタ 10Y、青色の榭脂膜 10B,、及び、黄フィルタ 10 Υと青色の榭脂膜 10B,との積層体 (以下「ΥΒ '積層体」とも ヽぅ。 )の分光特性を示 す図である。
この場合、顕微分光光度計 (ォリンパス社製、商品名:OSP— SP200)を用いて、分 光透過率を測定したところ、 YB'積層体は、図 10に示すような分光特性を示した。ま た、分光放射計 (トプコンテタノハウス社製、商品名: SR— 3)を用いて色度座標を測 定したところ、 YB'積層体の透過光の色度座標は、 XYZ表色系の色度図上におい て、 (0. 155、 0. 635)で表された。ここで、 D 光源の色の xy色度点(0. 313、 0. 3
65
29)を基準の白色色度とした場合、この透過光の色は、主波長 520nmの緑色として 表される。
[0079] 図 11は、 Ty= l. 8 m、 Tb, =0. 3 μ mである場合の、黄フィルタ 10Y、青色の榭 脂膜 10B'、及び、 YB'積層体の分光特性を示す図である。
この場合、顕微分光光度計 (オリンノス社製、商品名:OSP— SP200)を用いて、 Y B'積層体の分光透過率を測定したところ、 YB'積層体は、図 11に示すような分光特 性を示した。また、分光放射計 (トプコンテタノハウス社製、商品名: SR— 3)を用いて 透過光の色度座標を測定したところ、 YB'積層体の色度座標は、 XYZ表色系の色 度図上において、(0. 457、 0. 520)で表された。ここで、 D 光源の色の xy色度点(
65
0. 313、 0. 329)を基準の白色色度とした場合、透過光の色は、主波長 573nmの 黄色として表される。
[0080] したがって、青色の膜 10B'の膜厚及び分光スペクトルを調整することにより、黄フィ ルタ 10Yの反射領域 Ya力ゝらの透過光の特性を調整することができ、場合によっては 、透過光の色相を変化させることなぐ黄色の光を出射させることができる。例えば図 11に示すように、青色の榭脂膜 10B,の可視透過スペクトル力 黄フィルタ 10Yの可 視透過スペクトルとほとんど重ならな 、ように色設計した場合には、 YB'積層体は、 黄フィルタ 10Yの透過スペクトルを一定の割合で減光することができるため、透過光 の主波長が黄色の主波長域力 大きくずれることはな 、。
[0081] (3)透過表示及び反射表示の表示品質試験 表 2の左部分は、 Ty及び Tb'が様々な値の YB'積層体の主波長及び視感透過率 Y を示す。主波長は、光源としてキセノン (Xe)ランプ(常用光源 D )を用い、また、分
65
光放射計(トプコンテタノハウス社製、商品名: SR— 3)を用いて、積層体の透過光の 色度座標 (X, y)を測定し、該色度座標 (X, y)を XYZ表色系の色度図上にプロットす ることにより、算出したものである。また、視感透過率 Yは、顕微分光光度計 (ォリンパ ス社製、商品名:OSP— SP200)を用いて分光透過率を測定し、 XYZを求める式を 用いて算出したものである。なお、表 2中の YB,積層体 Al、 A2、 Bl、 B3及び Elの 積層体につ 、ては、分光特性を図 12に示して 、る。
[0082] また、表 2の右部分は、図 8 (a)及び (b)の構成を有する反射透過両用型の液晶表示 装置であって、黄フィルタ 10Yの反射領域 Yaに各 YB,積層体の構造を採用したもの の、反射表示の白色の色温度及び視感透過率 Yを表す。なお、反射表示の白色の 色温度は、キセノン (Xe)ランプ (常用光源 D )を反射表示の光源として、分光放射
65
計(トプコンテタノハウス社製、商品名: SR— 3)を用いて、反射表示での白表示時に おける色度座標 (X, y)を測定し、上記式を用いて、算出したものである。また、視感 透過率 Yは、顕微分光光度計 (ォリンパス社製、商品名:OSP— SP200)を用いて分 光透過率を測定し、 XYZを求める式を用いて算出したものである。なお、赤、緑及び 青の三原色フィルタ 10R、 10G及び 10Bの膜厚は、全て 1. とし、液晶層 13の 透過領域及び反射領域におけるセル厚は、それぞれ全てのフィルタで同一とした。
[0083] [表 2]
Figure imgf000027_0001
一般的には、反射表示の白色の色温度が 5000〜10000Kであり、反射表示と透過 表示との白色の色温度の差異が 2000Κ以下であれば、透過表示及び反射表示の 両方の表示品位を良好に保つことが可能となる。実施形態 2と比較例 2との比較等力 ら分かるように、黄フィルタ 10Y上に青色の膜 10B,を積層することにより、液晶表示 装置において、反射表示の白色色温度の向上に効果がある。また、積層体 A1の構 成では、赤色成分の透過がほとんどなぐ透過光の主波長が緑色の主波長域にあつ た。これに対し、積層体 A1以外の積層体では、透過光の主波長が黄色の主波長域 である 558〜597nmの範囲内にあった。すなわち、 YB,積層体 A1以外の構成によ れば、黄フィルタ 10Yの反射領域 Ya力 の黄色の透過光について、色相をほとんど 変化させることなぐ光量のみを低減させて、出射させることができた。
[0085] (a)実施形態 2、比較例 2及び参考例 2 (Ty= l. 8 m(Al〜A3) )
実施形態 2 (A3)によれば、膜厚が小さい青色の膜 10B'が黄フィルタ 10Yの反射領 域 Yaに選択的に配置されていることから、黄フィルタの反射領域 Yaから出射される 黄色の光量が低減された結果、反射表示の白色の色温度が 6938K、白色表示の視 感透過率 Υ= 7. 8となり、反射表示の白色の色温度を適正範囲にすることができ、か つ、充分な明るさを維持することができた。これに対し、比較例 2 (Α2)によれば、反 射表示の白色の色温度が 5000Κよりも小さぐ白色表示の視感透過率 Υ= 10. 8と なり、充分な明るさが得られたものの、ホワイトバランスが黄色側に崩れていた。なお、 参考例 2 (Α1)によれば、表 2に示すように、黄フィルタの反射領域 Yaから出射される 光は、緑色を帯びること、白色表示の視感透過率 Y= 5. 94と低くなつてしまうことか ら、効果が充分でな力つた。
[0086] (b)実施形態 3〜5及び比較例 3 (Ty= l. 5 /z mの場合 (B1〜B4) )
実施形態 3〜5 (B1〜B3)によれば、黄フィルタ 10Yの膜厚 (Ty)を実施形態 2 (A3) よりも小さくすることにより、反射表示の白色色温度を適正な範囲内においてより向上 させることができた。これらに対し、比較例 3 (B4)では、比較例 2よりも反射表示の白 色色温度を向上させることができたものの、反射表示の白色の色温度は 5000Kより も小さぐ白色表示の視感透過率 Y= 10. 98となり、明るさは充分である力 ホワイト バランスが黄色側に崩れていた。
[0087] (c)実施形態 6、 7及び参考例 3 (Ty= l. 2 /z mの場合 (C1〜C3) )
実施形態 6及び 7 (C1及び C2)によれば、黄フィルタ 10Yの膜厚 (Ty)を実施形態 3 及び 4 (B1及び B2)よりも薄くすることにより、反射表示の白色の色温度を適正な範 囲内において更に向上させることができた。また、参考例 3では、黄フィルタの反射領 域 Yaに青色の膜 10B,を設けていないものの、比較例 3 (B4)よりも黄フィルタ 10Yの 膜厚 (Ty)を小さくすることにより、反射表示の白色の色温度を適正範囲にすることが できた。
[0088] (d)実施形態 8、 9及び参考例 4 (Ty=0. 9 /z mの場合 (D1〜D3) )
(e)実施形態 10及び参考例 5 (Ty=0. 6 /z mの場合 (El及び E2) )
実施形態 8及び 10 (D1及び El)によれば、黄フィルタ 10Yの膜厚 (Ty)を実施形態 6 (C1)よりも小さくすることにより、反射表示の白色の色温度を適正な範囲内におい て特に向上させることができた。また、実施形態 9 (D2)によっても、同様の作用効果 を奏することができた。更に、参考例 4及び 5 (D3及び E2)によれば、黄フィルタ 10Y の反射領域 Yaに青色の膜 10B'を設けて 、な 、ものの、参考例 3 (C3)よりも黄フィ ルタ 10Yの膜厚 (Ty)を小さくすることにより、反射表示の白色の色温度をより向上さ せることができた。
[0089] 3.本発明の実施形態 1〜10に係る表示装置の変形例
本発明の実施形態に係る表示装置は、暗い環境下ではバックライトの光を利用した 透過表示が支配的となる一方、明るい環境下では周囲の光を利用した反射表示が 支配的となるものである。し力しながら、これに限らず、周囲の光の強さに応じて、透 過表示及び反射表示のいずれか一方を選択し、選択した表示モード毎に、液晶の 駆動方法を切り替えるように構成してもよ!/ヽ。
[0090] また、本発明の実施形態に係る表示装置は、黄フィルタの反射領域に灰色の榭脂膜 又は青色の榭脂膜を別途設けたものである力 例えば、黄フィルタの材料に予め灰 色又は青色の榭脂膜に含まれる黒色又は青色の成分 (吸収媒質)を適量混合したも のを用いて黄フィルタを設けた形態もまた、本発明の実施形態に係る表示装置と同 様の作用効果を得るものとして挙げられる。このような黄フィルタは、黄フィルタに灰 色や青色の膜を積層した形態と同様の分光特性を示す力 である。
[0091] 更に、本発明の実施形態に係る表示装置は、反射透過両用型の液晶表示装置であ るが、これに限らず、他の方式の表示装置として構成することもできる。すなわち、本 表示装置は、反射表示と透過表示との双方で、多色のカラーフィルタ部を介して表 示を行うタイプの表示装置であれば、どのような方式の表示装置にも適用できる。例 えば、自発光ディスプレイとよばれる有機 ELディスプレイ等でも、例えば、液晶表示 装置とのハイブリッドにする等して、透過領域と反射領域とで異なるフィルタを用いて 表示を行う場合には、本表示装置の構成を応用することが可能である。
[0092] なお、本願は、 2006年 3月 20曰〖こ出願された曰本国特許出願 2006— 077733号 を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するも のである。該出願の内容は、その全体が本願中に参照として組み込まれている。
[0093] 本願明細書における「以上」及び「以下」は、当該数値を含むものである。すなわち、 「以上」とは、当該数値及び当該数値以上を意味するものである。「以下」とは、当該 数値及び当該数値以下を意味するものである。
図面の簡単な説明
[0094] [図 1] (a)は、本発明の実施形態 1に係る反射透過両用型の表示装置における画素 の概略構成を示す平面図であり、(b)は、(a)中の P— Q線における断面構成を示す 模式図である。
[図 2]本発明の実施形態で用いた赤、緑、青及び黄の四色フィルタの分光特性を示 す図である。
[図 3]本発明の実施形態で用いた灰色の膜の分光特性を示す図である。
[図 4]液晶層 13の分光透過率及び分光反射率の測定結果を示すグラフである。
[図 5] (a)は、比較例 1に係る反射透過両用型の表示装置における画素の概略構成 を示す平面図であり、(b)は、(a)中の P— Q線における断面構成を示す模式図であ る。
[図 6] (a)は、参考例 1に係る反射透過両用型の表示装置における画素の概略構成 を示す平面図であり、(b)は、(a)中の P— Q線における断面構成を示す模式図であ る。
[図 7]バックライト 36の光源 α〜 γの発光スペクトルを示す図である。
[図 8] (a)は、本発明の実施形態 2〜10、比較例 2、 3及び参考例 2〜4に係る反射透 過両用型の表示装置における画素の概略構成を示す平面図であり、(b)は、(a)中 の P— Q線における断面構成を示す模式図である。
[図 9]図 8に示す反射透過両用型の表示装置の変形例を示す断面模式図である。 [図 10]黄フィルタの膜厚及び青色の榭脂膜の膜厚がともに 1.8 μ mである場合の、 黄フィルタ、青色の榭脂膜、及び、黄フィルタと青色の榭脂膜との積層体の分光特性 を示す図である。
[図 11]黄フィルタの膜厚 1.8^πι,青色の榭脂膜の膜厚が 0.3 mである場合の、 黄フィルタ、青色の榭脂膜、及び、黄フィルタと青色の榭脂膜との積層体の分光特性 を示す図である。
[図 12]表 2中の YB,積層体 Al、 A2、 Bl、 B3及び Elの積層体の分光特性を示す図 である。
[図 13]本発明に係る表示装置における画素の断面構成の一例を示す模式図である 符号の説明
1 OR:赤フィルタ
10G:緑フィルタ
10B:青フィルタ
10Y:黄フィルタ
10BM:ブラックマトリクス
lOGy:灰色の榭脂膜
10B,:青色の榭脂膜
11:対向基板
12:画素基板
13:液晶層
21:ガラス基板
22:位相差板
23:偏光板
25:ォーノ一コート層
26:対向電極
27:配向膜
31:ガラス基板 32:位相差板
33:偏光板
34:反射電極
35:透明電極
36:バックライト
37:凸部(マノレチギャップ層)
37b:青みを帯びた凸部
38:配向膜
a:反射領域
b:透過領域
Ra:赤フィルタの反射領域 Rb:赤フィルタの透過領域 Ga:緑フィルタの反射領域 Gb:緑フィルタの透過領域 Ba:青フィルタの反射領域 Bb:青フィルタの透過領域 Ya:黄フィルタの反射領域 Yb:黄フィルタの透過領域 Ty:黄フィルタの膜厚
Tb':青色の榭脂膜の膜厚

Claims

請求の範囲
[1] 三色以上のフィルタが画素毎に設けられ、ノ ックライトの光を透過させて画像を表示 する透過領域と、周囲の光を反射して画像を表示する反射領域とをフィルタ毎に備 える反射透過両用型の表示装置であって、
該画素は、白色の反射表示に用いられる複数色のフィルタのうち、少なくとも一色の フィルタの反射領域に、常用光源 D を用いて測定された該フィルタの可視透過スぺ
65
タトルの少なくともピーク波長の光を減光する膜が配置されることを特徴とする表示装 置。
[2] 前記減光膜は、減光されるフィルタと色相が異なるものであり、
前記表示装置は、常用光源 D を用いて白色の反射表示を行うときに、減光されるフ
65
ィルタの反射領域力 該フィルタと同一の色相の光を出射するものであることを特徴と する請求項 1記載の表示装置。
[3] 前記表示装置は、赤フィルタ、緑フィルタ、青フィルタ及び黄フィルタが画素毎に設け られたものであることを特徴とする請求項 1記載の表示装置。
[4] 前記減光膜は、黄フィルタの反射領域に設けられていることを特徴とする請求項 3記 載の表示装置。
[5] 前記表示装置は、常用光源 D を用いて白色の反射表示を行うときに、減光される黄
65
フィルタの反射領域力 黄色の光を出射するものであることを特徴とする請求項 4記 載の表示装置。
[6] 前記減光膜は、灰色の膜であることを特徴とする請求項 1記載の表示装置。
[7] 前記減光膜は、青色の膜であることを特徴とする請求項 4記載の表示装置。
[8] 前記青色の膜は、青フィルタの材料力 なることを特徴とする請求項 7記載の表示装 置。
[9] 前記減光膜及び減光されるフィルタは、膜厚の合計が、他のフィルタの膜厚と略同一 であることを特徴とする請求項 1記載の表示装置。
[10] 前記表示装置は、液晶表示装置であり、
前記青色の膜は、黄フィルタの反射領域における液晶層の厚みを黄フィルタの透過 領域における厚みよりも小さくするものであることを特徴とする請求項 7記載の表示装 置。
[11] 前記減光膜は、全ての色のフィルタの反射領域に設けられて 、ることを特徴とする請 求項 1記載の表示装置。
[12] 前記表示装置は、液晶表示装置であり、
前記減光膜は、フィルタの反射領域における液晶層の厚みを該フィルタの透過領域 における厚みよりも小さくするものであることを特徴とする請求項 11記載の表示装置
[13] 前記液晶表示装置は、赤フィルタ、緑フィルタ、青フィルタ及び黄フィルタが画素毎に 設けられたものであり、
前記減光膜は、青みを帯びて 、ることを特徴とする請求項 11記載の表示装置。
[14] 前記表示装置は、液晶表示装置であることを特徴とする請求項 1記載の表示装置。
PCT/JP2006/326273 2006-03-20 2006-12-28 表示装置 WO2007108195A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008506170A JPWO2007108195A1 (ja) 2006-03-20 2006-12-28 表示装置
US12/280,729 US7990499B2 (en) 2006-03-20 2006-12-28 Display device
CN2006800535594A CN101390001B (zh) 2006-03-20 2006-12-28 显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-077733 2006-03-20
JP2006077733 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108195A1 true WO2007108195A1 (ja) 2007-09-27

Family

ID=38522232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326273 WO2007108195A1 (ja) 2006-03-20 2006-12-28 表示装置

Country Status (4)

Country Link
US (1) US7990499B2 (ja)
JP (1) JPWO2007108195A1 (ja)
CN (1) CN101390001B (ja)
WO (1) WO2007108195A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256819A (ja) * 2007-04-03 2008-10-23 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2008268703A (ja) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2009075260A (ja) * 2007-09-19 2009-04-09 Dainippon Printing Co Ltd 半透過型液晶表示装置用カラーフィルタ
WO2012077565A1 (ja) * 2010-12-08 2012-06-14 シャープ株式会社 液晶表示装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650578B2 (ja) * 2009-03-26 2011-03-16 カシオ計算機株式会社 液晶表示装置
CN102428313A (zh) * 2009-06-03 2012-04-25 夏普株式会社 照明装置、显示装置以及电视接收装置
TWI514027B (zh) * 2010-08-03 2015-12-21 Au Optronics Corp 液晶顯示器
JP5649990B2 (ja) * 2010-12-09 2015-01-07 シャープ株式会社 カラーフィルタ、固体撮像素子、液晶表示装置および電子情報機器
JP5995407B2 (ja) * 2011-04-01 2016-09-21 山本光学株式会社 色ムラを改善した偏光光学物品
CN102768378A (zh) * 2011-05-10 2012-11-07 京东方科技集团股份有限公司 一种彩色滤光片及其制造方法
CN102707510B (zh) * 2011-05-19 2014-12-17 京东方科技集团股份有限公司 彩膜基板、显示面板、显示器及彩膜基板的制作方法
CN102944952A (zh) * 2012-11-13 2013-02-27 京东方科技集团股份有限公司 一种彩膜基板及其制作方法和显示面板
JP6331275B2 (ja) * 2013-06-28 2018-05-30 大日本印刷株式会社 カラーフィルタ形成基板および有機el表示装置
US10388705B2 (en) * 2014-05-27 2019-08-20 Lg Display Co., Ltd. Display panel and method for manufacturing thereof
TWI579489B (zh) * 2014-11-27 2017-04-21 林伯剛 黃色背光系統及黃色背光方法
CN104680945B (zh) * 2015-03-23 2018-05-29 京东方科技集团股份有限公司 像素排列方法、像素渲染方法及图像显示装置
CN106094319B (zh) * 2016-06-17 2019-08-16 京东方科技集团股份有限公司 一种显示基板和显示装置
TWI724060B (zh) * 2016-08-17 2021-04-11 日商半導體能源研究所股份有限公司 顯示裝置、電子裝置以及攜帶資訊終端
CN109870844B (zh) * 2019-03-18 2020-08-25 天津大学 一种基于补色光的节能显示方法
CN112929620B (zh) * 2021-02-20 2022-11-01 歌尔光学科技有限公司 投影装置及其白平衡调整方法、可读存储介质
CN113571564B (zh) * 2021-07-23 2024-05-24 京东方科技集团股份有限公司 显示基板和显示装置
CN114942542B (zh) * 2022-05-19 2024-02-20 Tcl华星光电技术有限公司 显示装置
CN115657364B (zh) * 2022-10-10 2023-11-07 京东方科技集团股份有限公司 一种液晶显示面板及其制备方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412323A (ja) * 1990-05-01 1992-01-16 Fujitsu Ltd カラー液晶表示パネル
JP2003302516A (ja) * 2002-04-10 2003-10-24 Sharp Corp 表示装置
JP2005227753A (ja) * 2004-01-14 2005-08-25 Sharp Corp 液晶表示装置
JP2005309306A (ja) * 2004-04-26 2005-11-04 Seiko Epson Corp 液晶表示装置、及び電子機器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680185A (en) * 1990-11-26 1997-10-21 Seiko Epson Corporation Polymer dispersed liquid crystal (PDLC) display apparatus
US5673127A (en) * 1993-12-01 1997-09-30 Matsushita Electric Industrial Co., Ltd. Display panel and display device using a display panel
US5899550A (en) 1996-08-26 1999-05-04 Canon Kabushiki Kaisha Display device having different arrangements of larger and smaller sub-color pixels
JP2001042782A (ja) * 1999-08-03 2001-02-16 Sharp Corp 表示装置
JP4034022B2 (ja) 2000-01-25 2008-01-16 シャープ株式会社 液晶表示装置
JP3941481B2 (ja) 2000-12-22 2007-07-04 セイコーエプソン株式会社 液晶表示装置および電子機器
CN1331664C (zh) * 2001-03-15 2007-08-15 三井化学株式会社 层合体及使用该层合体的显示装置
JP2002365420A (ja) * 2001-06-04 2002-12-18 Toray Ind Inc カラーフィルターおよび液晶表示装置
JP2003098337A (ja) * 2001-06-04 2003-04-03 Toray Ind Inc カラーフィルターおよび液晶表示装置
US7268757B2 (en) 2001-06-11 2007-09-11 Genoa Color Technologies Ltd Device, system and method for color display
JP2003233063A (ja) * 2002-02-12 2003-08-22 Matsushita Electric Ind Co Ltd 液晶表示装置
JP4027164B2 (ja) * 2002-06-21 2007-12-26 株式会社日立製作所 表示装置
US6825983B2 (en) * 2002-08-06 2004-11-30 Eastman Kodak Company Optical element containing an interference fringe filter
CN1251004C (zh) 2002-09-26 2006-04-12 京瓷株式会社 半透射型彩色液晶显示装置
JP3918765B2 (ja) 2003-04-21 2007-05-23 セイコーエプソン株式会社 液晶表示装置および電子機器
US6738204B1 (en) 2003-05-16 2004-05-18 Toppoly Optoelectronics Corp. Arrangement of color elements for a color filter
JP4184189B2 (ja) * 2003-08-13 2008-11-19 株式会社 日立ディスプレイズ 発光型表示装置
TWI247921B (en) 2003-09-10 2006-01-21 Seiko Epson Corp Electrooptic device, color filter substrate, manufacturing method for electrooptic device and electronic equipment
US7123796B2 (en) * 2003-12-08 2006-10-17 University Of Cincinnati Light emissive display based on lightwave coupling
KR101072375B1 (ko) 2003-12-29 2011-10-11 엘지디스플레이 주식회사 화소별 개구율 자동제어가 가능한 액정표시장치
TWI285288B (en) 2004-04-27 2007-08-11 Au Optronics Corp Liquid crystal panel and liquid crystal display
US7573551B2 (en) * 2004-05-21 2009-08-11 Sanyo Electric Co., Ltd. Transflective liquid crystal display device and color liquid crystal display device
KR101041970B1 (ko) 2004-06-11 2011-06-16 삼성전자주식회사 액정 표시 장치
CN1731257A (zh) * 2004-08-04 2006-02-08 广辉电子股份有限公司 半穿透式液晶显示装置及形成该显示装置的方法
CN1740863A (zh) * 2004-08-26 2006-03-01 统宝光电股份有限公司 半穿透半反射液晶显示器
KR101112553B1 (ko) 2005-02-24 2012-03-13 삼성전자주식회사 4색 액정 표시 장치
WO2006109567A1 (ja) * 2005-04-05 2006-10-19 Sharp Kabushiki Kaisha 反射透過両用型の表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412323A (ja) * 1990-05-01 1992-01-16 Fujitsu Ltd カラー液晶表示パネル
JP2003302516A (ja) * 2002-04-10 2003-10-24 Sharp Corp 表示装置
JP2005227753A (ja) * 2004-01-14 2005-08-25 Sharp Corp 液晶表示装置
JP2005309306A (ja) * 2004-04-26 2005-11-04 Seiko Epson Corp 液晶表示装置、及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256819A (ja) * 2007-04-03 2008-10-23 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2008268703A (ja) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2009075260A (ja) * 2007-09-19 2009-04-09 Dainippon Printing Co Ltd 半透過型液晶表示装置用カラーフィルタ
WO2012077565A1 (ja) * 2010-12-08 2012-06-14 シャープ株式会社 液晶表示装置

Also Published As

Publication number Publication date
CN101390001B (zh) 2010-09-08
US7990499B2 (en) 2011-08-02
JPWO2007108195A1 (ja) 2009-08-06
CN101390001A (zh) 2009-03-18
US20090015770A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
WO2007108195A1 (ja) 表示装置
US7916245B2 (en) Display device
US7952662B2 (en) Transflective display device
US9812087B2 (en) Display device
JP4646977B2 (ja) カラーフィルタ基板及び表示装置
KR101220479B1 (ko) 광학 필터, 액정 패널 및 액정 표시 장치
US7903206B2 (en) Liquid crystal display device and producing method thereof with reflection and transmission display and a color filter having a color reproduction range
KR20150020504A (ko) 표시 장치 및 전자 기기
US20060209004A1 (en) LCD device having a homogeneous LC layer
US6654082B1 (en) Liquid crystal display element and color display device having particular transflector
WO2011040370A1 (ja) 液晶表示装置
JP2003302516A (ja) 表示装置
JP4531458B2 (ja) 液晶表示装置および液晶表示装置の製造方法
JP2003139939A (ja) 液晶表示装置用カラーフィルタ
JP2001033772A (ja) 液晶表示素子、液晶表示素子の製造方法およびカラー表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06843651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506170

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12280729

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680053559.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843651

Country of ref document: EP

Kind code of ref document: A1