WO2007107228A1 - Procédé de transmission d'information relatif au fonctionnement d'un moteur à combustion interne - Google Patents

Procédé de transmission d'information relatif au fonctionnement d'un moteur à combustion interne Download PDF

Info

Publication number
WO2007107228A1
WO2007107228A1 PCT/EP2007/001810 EP2007001810W WO2007107228A1 WO 2007107228 A1 WO2007107228 A1 WO 2007107228A1 EP 2007001810 W EP2007001810 W EP 2007001810W WO 2007107228 A1 WO2007107228 A1 WO 2007107228A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
angular position
frequency
crankshaft
transmitting
Prior art date
Application number
PCT/EP2007/001810
Other languages
English (en)
Inventor
Philippe Avian
Jeremy Blanc
Frédéric Galtier
Willem Teulings
Original Assignee
Continental Automotive France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France filed Critical Continental Automotive France
Priority to MX2008011991A priority Critical patent/MX2008011991A/es
Priority to JP2009500724A priority patent/JP2009530533A/ja
Priority to US12/279,847 priority patent/US7930929B2/en
Priority to CN2007800098205A priority patent/CN101405499B/zh
Publication of WO2007107228A1 publication Critical patent/WO2007107228A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/087Safety, indicating, or supervising devices determining top dead centre or ignition-timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • F02D2041/285Interface circuits between sensors and control unit the sensor having a signal processing unit external to the engine control unit

Definitions

  • the present invention relates to the operation of internal combustion engines.
  • the invention relates, according to one of its first aspects, to an information transmission method for monitoring the operation of an internal combustion engine, comprising the steps of:
  • the current internal combustion engines are equipped with an engine control unit (ECU for "Engine Control Unit” in English), a crankshaft and a device for knowing the angular position of the crankshaft when the engine is running.
  • ECU Engine Control Unit
  • the engine control device allows in particular to regulate injection and ignition (for a spark ignition engine) in each cylinder when the engine is running.
  • Knowing the angular position of the crankshaft then makes it possible to determine the position of the pistons in the respective cylinders and to know the state of the cycle of the four-stroke engine (intake, compression, combustion, exhaust).
  • a usual way to measure the angular position of the crankshaft is to provide said crankshaft, integral with the movement of the pistons, a target provided with marks (mechanical, optical, magnetic ...) passing in front of a sensor element (sensor) associated.
  • This type of position sensor is said to be “incremental” in that it does not give the absolute position, but allows the ECU to determine it by incrementing a counter at each marker passage. The ECU can then extract the absolute position of the crankshaft by counting the number of marks seen with respect to a reference mark.
  • crankshaft For reasons of combustion management, especially in order to reduce engine pollution, fuel consumption and start-up time, it is now necessary to know the position of the crankshaft with an accuracy of less than 2 °, and , even at very low speeds or zero or even negative speeds of the crankshaft (negative speeds which correspond to a reversal of the direction of rotation of the engine during a stall phase for example).
  • a target mounted on a crankshaft includes 60 identical and equidistant teeth, which allows a resolution of 6 °. To achieve said desired accuracy of the order of 2 °, it is not possible to increase the number of teeth, because of mechanical stresses.
  • calculation algorithms implanted in the engine control device which, from the data from the crankshaft position sensor, make it possible to achieve this resolution of about 2 ° by interpolation methods, but these algorithms do not work when the rotation speed of the crankshaft approaches zero or when it becomes negative.
  • a misfire is a combustion phase of the engine cycle in which the combustion has been poorly or not performed and which may result in pollution to the exhaust or damage to the catalytic converter.
  • the detection of the presence of misfires can be carried out by monitoring very precisely the speed of rotation of the crankshaft and its disturbances. Indeed, a misfire will generate a transient variation in the speed of rotation of the crankshaft, but this phenomenon is very damped by the inertial masses of said crankshaft. Also, it is necessary to have a sensor with a very good resolution in order to be able to detect and measure these small variations in speed of rotation.
  • the problems that the invention aims to solve are therefore to be able to both obtain a resolution of less than 2 ° on the absolute angular position of the crankshaft position sensor, and to be able to detect misfires. These objectives must be attained for a range of engine rotational speeds ranging from a few hundred revolutions per minute in opposite directions to more than 10,000 revolutions per minute in the forward direction, without excluding the case of a speed of rotation. zero rotation.
  • the method according to the invention comprises the following steps:
  • the frequency f2 is defined at least by the time taken by the crankshaft to reach, from an angular position corresponding to the beginning of a segment, an angular position corresponding to the end of said segment and by the number of bits N2 to be transmitted.
  • the measuring step is performed by a single absolute position sensor measuring the angular position over at least N2 bits, the step of transmitting the angular position encoded on a data stream containing N1 bits being performed truncation of the data stream containing N2 bits.
  • reaching threshold value (s) triggers the transmission of the N2 bit angular position information.
  • the data streams respectively containing N1 and N2 bits are transmitted on two separate channels.
  • the data streams respectively containing N1 and N2 bits are transmitted on a single channel by means of a multiplexing method.
  • the method according to the invention further comprises the steps of: - measuring the time to reach, from an angular position corresponding to the beginning of a segment, an angular position corresponding to the end of said segment,
  • the invention also relates to a device for monitoring the operation of an internal combustion engine, comprising an absolute crankshaft position sensor configured to: - Measure the angular position of a crankshaft, and
  • the crank position sensor performs the angular position measurement over at least N2 bits and encodes the angular position information on a data stream containing N2 bits, the sensor being further provided with truncation means for encoding the angular position information on a data stream containing N1 bits and N2 bits (if the measurement is digitized over N2 bits).
  • Each bit stream is preferably transmitted on a respective channel.
  • the senor is provided with at least one output capable of transmitting the data streams comprising N1 bits and the residue of the truncated N2 bits.
  • the senor is provided with two channels capable of respectively transmitting data streams comprising N1 bits and data streams comprising N2 bits.
  • the method and the device according to the invention are advantageously implemented in motor vehicles equipped with so-called 'Stop & Go' systems in which, when the vehicle is stationary for short periods, the engine does not turn but the engine control device remains powered.
  • the position of the Crankshaft is also available even after longer shutdown phases, during which the engine control device is no longer powered. Thanks to this property, an optimal start can be realized even after an unlimited duration stop (cold start or "CoId Start”).
  • the solution according to the invention concerns both two-stroke internal combustion engines and four-stroke internal combustion engines, but only the four-stroke engines are here described.
  • a very fine position information capable of detecting misfires, can be communicated by an absolute position sensor to an engine control device with a reading capacity of a reduced flow rate.
  • the single figure is a symbolic representation of the Measuring frequencies of the angular position for a crankshaft revolution on a 6-cylinder engine.
  • the problems relating to the random nature of the noise mentioned above are solved for the measurement of the position with a resolution of less than 2 °, by using a digital output of the absolute angular position sensor.
  • a second characteristic of the invention relating to the transmission of a more accurate crankshaft position information, that is to say with a high resolution, for the detection of misfires, and the problem related to the flow rate necessary to transmit this data (this rate not being compatible with the reading capacity of the inputs of the current engine control devices), is explained further.
  • the four engine cycle times correspond to two crankshaft revolutions, ie 720 °.
  • the absolute angular position of the crankshaft is directly available within the sensor, and no longer determined by the engine control device.
  • the direction of rotation of a motor can be reversed.
  • a bidirectional incremental sensor could then be employed as long as the duration of the next stop phase is not greater than a few minutes.
  • such bidirectional sensors make it possible to have angular position information at within the calculator which is valid only during the power supply period of the engine control device. Indeed, in an engine control device associated with such a sensor, the angular position information is stored in a volatile memory of the engine control device that empties when the engine is cut, that is to say when the engine control device is no longer powered by the vehicle battery.
  • the absolute position sensor is preferably implanted in a dedicated integrated circuit (ASIC, for "Application Specific Integrated Circuit") making it possible to detect and transmit to the engine control device ECU the position information. angular absolute of the crankshaft.
  • ASIC Application Specific Integrated Circuit
  • angular position information more accurate than that transmitted during the remainder of the segment is transmitted for the purpose of detecting possible misfires.
  • the measurement frequency f2 thus corresponds to a measurement by value angle RES.
  • the engine speed REG expressed in rpm is REGI expressed in 7sec.
  • the maximum reading speed of the digital inputs of the current ECUs is of the order of 500 kBaud.
  • This rate is incompatible with the continuous transmission of a resolution to detect a misfire, corresponding to an angular resolution of the order of 0.02 °.
  • the transmission of binary data at a rate greater than 500 kBaud through a long connection has risks of electromagnetic interference with other devices of the vehicle.
  • the detection of misfire (s) according to the invention is synchronized with the ignition and consists of being performed by the detection and comparison of segment times.
  • a misfire implies a temporary variation in the speed of rotation of the crankshaft.
  • a segment is an angular region of the crankshaft. More precisely, a segment is an angular period.
  • Segment time is the travel time of the segment.
  • the segment is defined by the angle between two reference positions of two successive cylinders in the firing order. This angular region corresponds to a specific movement of the pistons in their respective cylinders.
  • a piston travels a path through two characteristic points: the top dead center (TDC) and the bottom dead center (TDC). These two characteristic points can advantageously serve as reference points for the definition of the segments.
  • TDC top dead center
  • TDC bottom dead center
  • These two characteristic points can advantageously serve as reference points for the definition of the segments.
  • the time between two successive high dead points of two successive pistons in the ignition order may for example define a segment time.
  • segment time during which the crankshaft passes through this angular region depends inter alia on the energy converted during the combustion phase. A misfire therefore increases the segment time.
  • the transmission of high-resolution measurements can be performed only once per segment, ie all 720 / C °.
  • the frequency f2 for transmitting the high resolution angular position information (N2 bits) therefore corresponds in this embodiment to sending the angular position information at the beginning of each segment only.
  • each absolute position measurement performed is continuously compared with reference values, corresponding to the SEG degrees of spacing of the start and end positions of the segments.
  • crank position sensor measures the angular position of the crankshaft on at least N2 bits but transmits this information only on N1 bits most of the time, the difference between N2 and N1 being made by truncation.
  • a particular trigger value is associated, for example in the mentioned ASIC, a particular angular position, corresponding to the beginning or the end of a segment (0 °, 120 °, 240 ° in the single figure).
  • the senor When the sensor reaches a corresponding trigger value at the beginning or end of a segment, it transmits the N2 bit encoded angular position signal.
  • the senor transmits again the angular position signal coded on N1 bits.
  • the engine control device comprises a model of the normal behavior of the engine, that is to say without misfires.
  • the model comprises at least one reference value which, for a given segment, is equal to the segment time of said segment without misfires. The measurement of the segment time is compared with this reference value, and the difference between these two values is compared with a threshold value. If the difference is greater than or equal to the threshold value, the engine control device considers that a misfire has occurred and generates for example a signal for this purpose.
  • the reference value for a given segment time is the segment time of that segment at the previous crank turn.
  • the threshold value depends on the rotational speed of the engine, and the variations in the speed of rotation of the crankshaft due to changes in the engine speed (acceleration or braking of the vehicle by its driver) and which could disturb the measurement are corrected by a specific algorithm.
  • the solution according to the invention is based on a 360 ° absolute crank position sensor provided with an interface configured to deliver an entirely digital output signal.
  • the crank position sensor is provided with two output channels from which each channel outputs a digital signal.
  • the first channel is used to transmit a first signal corresponding to the information relating to the angular position of the crankshaft at low resolution (N1 bits).
  • the angular position of the crankshaft at low resolution (N1 bits) is transmitted at a frequency f1.
  • the second channel is used to transmit a second signal corresponding to a misfire information, i.e., the angular position of the high resolution crankshaft (N2 bits).
  • the measurement of the angular position of the crankshaft performed on at least N2 bits is transmitted on N2 bits at a frequency f2.
  • the two signals are transmitted on the same channel by a multiplexing method.
  • the transmission rate i.e. the rate
  • the transmission rate is fixed.
  • a resolution of less than 2 °, ie 1, 4 °, can be encoded on 8 bits (N1). Therefore, the minimum flow required to transmit this information to a REG regime of 10,000 revolutions per minute is 342 kBaud.
  • the low resolution angular position signal is thus sent every 24 ⁇ s approximately (1/324 * 8), represented by the solid lines f1 of the single figure.
  • the 14-bit high resolution angular position signal (N2) may be transmitted every 120 ° for a six-cylinder engine, represented by the dashed lines f2 of the single figure.
  • bit rates supported by the current management devices are of the order of 500 kBaud, it is therefore possible to add additional information to the binary word of N1 bits and corresponding, where appropriate, to the remainder of the necessary N2 bits. Because of this configuration, since high-resolution angular position information needs to be transmitted only at the beginning of the segments, if a N2-bit data stream can not be fully transmitted in the space of time allocated to the transmission of N1 bits, because of the flow of the engine control device, the remaining bits can be transmitted on at least one train of N1 bits following in the time of the segment in question.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Procédé de transmission d'information permettant de surveiller le fonctionnement d'un moteur à combustion interne, comprenant les étapes consistant à : - Mesurer la position angulaire d'un vilebrequin au moyen d'un capteur de position absolue muni d'une sortie numérique, et - Transmettre à une fréquence (f1) vers un dispositif de contrôle moteur l'information de position angulaire mesurée, codée sur un train de données contenant (N1) bits, Le procédé étant caractérisé en ce qu'il comprend en outre une étape consistant à : Transmettre à une fréquence (f2) l'information de position angulaire mesurée, et codée sur un train de données contenant (N2) bits, le nombre (N2) de bits étant supérieur au nombre (N1), la fréquence (f2) étant inférieure ou égale à la fréquence (f 1). Le codage sur (N1) bits permet de transmettre une information de position angulaire à basse résolution, tandis que le codage sur (N2) bits permet de transmettre une information haute résolution, susceptible de détecter des ratés d'allumage.

Description

Procédé de transmission d'information relatif au fonctionnement d'un moteur à combustion interne
La présente invention concerne le fonctionnement des moteurs à combustion interne.
Plus précisément, l'invention concerne, selon un de ses premiers aspects, un procédé de transmission d'information permettant de surveiller le fonctionnement d'un moteur à combustion interne, comprenant les étapes consistant à :
- Mesurer la position angulaire d'un vilebrequin, et
- Transmettre à une fréquence f1 vers un dispositif de contrôle moteur l'information de position angulaire mesurée, codée sur un train de données contenant N1 bits. Les moteurs à combustion interne actuels sont équipés d'un dispositif de contrôle moteur (ECU pour "Engine Control Unit" en anglais), d'un vilebrequin et d'un dispositif permettant de connaître la position angulaire du vilebrequin lorsque le moteur tourne.
Le dispositif de contrôle moteur permet notamment de réguler l'injection et l'allumage (pour un moteur à allumage commandé) dans chaque cylindre lorsque le moteur tourne.
La connaissance de la position angulaire du vilebrequin permet alors de déterminer la position des pistons dans les cylindres respectifs et de connaître l'état du cycle du moteur à quatre temps (admission, compression, combustion, échappement).
Un moyen usuel pour réaliser la mesure de la position angulaire du vilebrequin est de munir ledit vilebrequin, solidaire du mouvement des pistons, d'une cible munie de repères (mécaniques, optiques, magnétiques...) passant devant un élément détecteur (capteur) associé. Ce type de capteur de position est dit "incrémental" en ce qu'il ne donne pas la position absolue, mais permet à l'ECU de la déterminer en incrémentant un compteur à chaque passage de repère. L'ECU peut alors extraire la position absolue de vilebrequin en comptant le nombre de repères vus par rapport à un repère de référence.
Pour des raisons de gestion de la combustion, notamment dans le but de diminuer la pollution du moteur, la consommation de carburant et le temps de démarrage, il est désormais nécessaire de connaître la position du vilebrequin avec une précision inférieure à 2 °, et ce, même à des vitesses très faibles ou nulles, voire à des vitesses négatives de l'arbre de vilebrequin (vitesses négatives qui correspondent à une inversion du sens de rotation du moteur lors d'une phase de calage par exemple).
A l'heure actuelle, une cible montée sur un vilebrequin comprend 60 dents identiques et équidistantes, ce qui permet une résolution de 6 °. Pour atteindre ladite précision recherchée de l'ordre de 2 °, il n'est pas possible d'augmenter le nombre de dents, à cause de contraintes mécaniques. II existe cependant des algorithmes de calcul, implantés dans le dispositif de contrôle moteur qui, à partir des données issues du capteur de position du vilebrequin, permettent d'aboutir à cette résolution d'environ 2 ° par des méthodes d'interpolation, mais ces algorithmes ne fonctionnent pas lorsque la vitesse de rotation du vilebrequin s'approche de zéro ou lorsqu'elle devient négative.
Par ailleurs, certaines contraintes, comme par exemple en matière de consommation de carburant ou d'émission de polluants, amènent à devoir connaître et gérer de plus en plus d'événements et d'informations au niveau du dispositif de contrôle moteur, notamment en termes de détection de ratés d'allumage. Un raté d'allumage est une phase de combustion du cycle du moteur dans laquelle la combustion a été mal ou non réalisée et dont il peut résulter une pollution à l'échappement, voire l'endommagement du pot catalytique.
La détection de la présence de ratés d'allumage peut être effectuée en surveillant très précisément la vitesse de rotation du vilebrequin et ses perturbations. En effet, un raté d'allumage va générer une variation passagère de la vitesse de rotation du vilebrequin, mais ce phénomène est très amorti par les masses inertielles dudit vilebrequin. Aussi faut-il posséder un capteur possédant une très bonne résolution afin de pouvoir détecter et mesurer ces faibles variations de vitesse de rotation.
Or, pour une vitesse de rotation donnée, plus un capteur possède une bonne résolution, plus le nombre d'informations à envoyer est élevé, ce qui induit un débit de transmission des informations élevé. Or les dispositifs de contrôle moteur ont une vitesse de lecture des informations limitée qui est alors dépassée par le débit qu'une résolution adéquate exige.
En outre, le codage de la position absolue sur 360° par un signal analogique classique devient problématique car le bruit, inhérent à l'utilisation d'une sortie analogique, génère une grande incertitude sur la position réelle du vilebrequin au niveau du dispositif de contrôle moteur.
A titre d'exemple, si la sortie analogique du capteur varie de 4 V pour une variation angulaire de 360 °, un bruit de 10 mV crête à crête sur cette sortie représente une incertitude de 0.9 ° sur la position.
La nature aléatoire du bruit rend donc impossible la détection des ratés d'allumage, et entache également d'une erreur importante la mesure de la position angulaire du vilebrequin pour la gestion de l'injection qui nécessite une précision inférieure à 2 °. Un filtrage éventuel de ce signal analogique permettrait de réduire l'influence de ce bruit, mais il introduirait un retard important entre la mesure angulaire par le capteur et la réception complète de cette mesure par le dispositif de contrôle moteur (ECU), retard incompatible avec des mesures précises à des hautes vitesses de rotation.
Les problèmes que vise à résoudre l'invention sont donc de pouvoir à la fois obtenir une résolution inférieure à 2 ° sur la position angulaire absolue du capteur de position du vilebrequin, et de pouvoir détecter les ratés d'allumage. Ces objectifs doivent être atteints pour une gamme de vitesses de rotation du moteur s'étendant de quelques centaines de tours par minute en sens inverse jusqu'à plus de 10 000 tours par minute en sens avant, sans exclure le cas d'une vitesse de rotation nulle.
Avec cet objectif en vue, le procédé selon l'invention, comprend les étapes suivantes:
Mesure de la position angulaire du vilebrequin sur au moins N2 bits au moyen d'un capteur de position absolue muni d'une sortie numérique, et - Transmission à une fréquence f1 vers un dispositif de contrôle moteur de l'information de position angulaire mesurée, codée sur un train de données contenant N 1 bits, le procédé étant caractéristique et ce qu'il comporte en outre l'étape consistant à transmettre à une fréquence f2 l'information de position angulaire mesurée, et codée sur un train de données contenant N2 bits, le nombre N2 de bits étant supérieur au nombre N1 , la fréquence f2 étant inférieure ou égale à la fréquence f1. Dans un mode de réalisation, la fréquence f2 est définie au moins par le temps mis par le vilebrequin pour atteindre, à partir d'une position angulaire correspondant au début d'un segment, une position angulaire correspondant à la fin dudit segment et par le nombre de bits N2 à transmettre.
De préférence, l'étape de mesure est réalisée par un seul capteur de position absolue effectuant la mesure de la position angulaire sur au moins N2 bits, l'étape de transmission de la position angulaire codée sur un train de données contenant N1 bits étant réalisée par troncature du train de données contenant N2 bits.
Dans un mode de réalisation, l'atteinte de valeur(s) seuil(s) déclenche la transmission de l'information de position angulaire de N2 bits. Dans un mode de réalisation, les trains de données contenant respectivement N1 et N2 bits sont transmis sur deux canaux distincts.
A titre d'alternative, les trains de données contenant respectivement N1 et N2 bits sont transmis sur un seul canal au moyen d'un procédé de multiplexage.
Dans le mode de réalisation préféré, le procédé selon l'invention comprend en outre les étapes consistant à : - Mesurer le temps pour atteindre, à partir d'une position angulaire correspondant au début d'un segment, une position angulaire correspondant à la fin dudit segment,
- Mesurer l'écart entre cette valeur de temps et une valeur de référence, et - Générer un signal synonyme de raté d'allumage si cet écart est supérieur à une valeur seuil.
L'invention concerne également un dispositif de surveillance du fonctionnement d'un moteur à combustion interne, comprenant un capteur de position absolue de vilebrequin configuré pour : - Mesurer la position angulaire d'un vilebrequin, et
- Transmettre à une fréquence f1 vers un dispositif de contrôle moteur l'information de position angulaire mesurée, codée sur un train de données contenant N1 bits.
Ce dispositif est caractérisé en ce que le capteur de position de vilebrequin est également configuré pour :
- Transmettre à une fréquence f2 l'information de position angulaire mesurée, et codée sur un train de données contenant N2 bits, le nombre N2 de bits étant supérieur au nombre N1 , la fréquence f2 étant inférieure ou égale à la fréquence f 1. Dans un mode de réalisation, le capteur de position de vilebrequin effectue la mesure de position angulaire sur au moins N2 bits et code l'information de position angulaire sur un train de données contenant N2 bits, le capteur étant en outre muni de moyens de troncature pour coder l'information de position angulaire sur un train de données contenant N1 bits et N2 bits (si la mesure est numérisée sur N2 bits). Chaque train de bits est émis de préférence sur un canal respectif.
Dans un mode de réalisation dans lequel les deux canaux sont multiplexes, le capteur est muni d'au moins une sortie susceptible de transmettre les trains de données comprenant N1 bits et le résidu des N2 bits tronqués.
A titre d'alternative, le capteur est muni de deux canaux susceptibles de transmettre respectivement les trains de données comprenant N1 bits et les trains de données comprenant N2 bits.
Le procédé et le dispositif selon l'invention sont avantageusement mis en œuvre dans les véhicules automobiles équipés des systèmes dits 'Stop & Go' dans lesquels, lorsque le véhicule est à l'arrêt pour des courtes durées, le moteur ne tourne pas mais le dispositif de contrôle moteur reste alimenté.
Et grâce à la propriété « absolue » de la mesure (dès sa mise sous tension, le capteur fournit une information sur la position angulaire du vilebrequin), la position du vilebrequin est en outre disponible même après des phases d'arrêt plus longues, pendant lesquelles le dispositif de contrôle moteur n'est plus alimenté. Grâce à cette propriété, un démarrage optimal peut être réalisé même après un arrêt de durée illimitée (démarrage à froid ou « CoId Start »). La solution selon l'invention concerne autant les moteurs à combustion interne à deux temps que les moteurs à combustion interne à quatre temps, mais seuls les moteurs à quatre temps sont ici décrits.
Grâce à la solution de l'invention, une information de position très fine, apte à détecter des ratés d'allumage, peut être communiquée par un capteur de position absolue à un dispositif de contrôle moteur avec une capacité de lecture d'un débit réduit.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence à la figure unique annexée dans laquelle : la figure unique est une représentation symbolique des fréquences de mesure de la position angulaire pour un tour de vilebrequin sur un moteur 6 cylindres.
Selon une première caractéristique de l'invention on résout les problèmes relatifs à la nature aléatoire du bruit mentionnée ci-avant, pour la mesure de la position avec une résolution inférieure à 2 °, en employant une sortie numérique du capteur de position angulaire absolue. Une seconde caractéristique de l'invention, relative à la transmission d'une information de position du vilebrequin plus précise, c'est-à-dire avec une grande résolution, pour la détection des ratés d'allumage, et au problème lié au débit nécessaire à la transmission de ces données (ce débit n'étant pas compatible avec la capacité de lecture des entrées des dispositifs de contrôle moteur actuels), est expliquée plus avant. Pour un moteur à quatre temps, les quatre temps du cycle moteur correspondent à deux tours de vilebrequin, soit 720 °. Il existe donc une incertitude de 360 ° sur la position angulaire du vilebrequin (les pistons se présentent exactement dans la même position, mais le temps du cycle n'est pas le même) qui peut être levée au moyen d'un capteur de position placé sur un arbre à cames, l'arbre à cames n'effectuant qu'une seule rotation durant les quatre temps d'un cycle moteur.
En conditions d'utilisation, lorsque le moteur tourne, la position angulaire absolue du vilebrequin est directement disponible au sein du capteur, et non plus déterminée par le dispositif de contrôle moteur. Toutefois, en phase de calage, le sens de rotation d'un moteur peut s'inverser. Un capteur incrémental bidirectionnel pourrait alors être employé tant que la durée de la phase d'arrêt qui suit n'est pas supérieure à quelques minutes. Cependant, de tels capteurs bidirectionnels permettent d'avoir une information de position angulaire au sein du calculateur qui n'est valide que pendant la période d'alimentation du dispositif de contrôle moteur. En effet, dans un dispositif de contrôle moteur associé à un tel capteur, l'information de position angulaire est stockée dans une mémoire volatile du dispositif de contrôle moteur qui se vide lorsque le moteur est coupé, c'est-à-dire lorsque le dispositif de contrôle moteur n'est plus alimenté par la batterie du véhicule.
Ainsi, à chaque démarrage à froid, c'est-à-dire après chaque période d'arrêt prolongée, une mise sous tension du capteur incrémental bidirectionnel et du dispositif de contrôle moteur est effectuée et la position angulaire absolue est indisponible. De plus, la résolution d'un capteur incrémental n'est que de 6 °, au lieu des 2 ° attendus. En revanche, selon l'invention, le capteur de position absolue est implanté de préférence dans un circuit intégré dédié (ASIC, pour « Application Spécifie Integrated Circuit ») permettant de détecter et transmettre vers le dispositif de contrôle moteur ECU l'information de position angulaire absolue du vilebrequin.
Comme décrit ultérieurement, au moins une fois par segment, une information de position angulaire plus précise que celle transmise durant le reste du segment est transmise dans le but de détecter d'éventuels ratés d'allumage.
Codage : Résolution / Nombre de bits.
Pour obtenir une résolution angulaire RES (en degrés0) sur un tour (360 °), il est nécessaire de coder l'information sur M niveaux tels que M = 360 / RES ; c'est-à-dire sur N bits, avec N le plus proche entier naturel tel que 2 N >= M.
La fréquence f2 de mesure correspond donc à une mesure par angle de valeur RES.
A titre d'exemple, pour une résolution RES = 0,022 °,
On détermine M = 360 / 0,022 Soit M = 16 363,64
Or 2 14 = 16 384, donc N = 14.
Ainsi, pour obtenir une résolution de 0,022 °, il faut mesurer et coder l'information de mesure sur au moins 14 bits.
En revanche, pour obtenir une résolution angulaire inférieure à 2 °, il ne faut coder l'information de mesure que sur N >= 8 bits.
Calcul du débit nécessaire. Le régime moteur REG exprimé en tr/min est REGI exprimé en 7sec.
Ainsi REGI = (360 ° / 60 sec) * REG Soit REGI = 6 * REG Le temps mis pour tourner d'un angle égal à la résolution angulaire RES est donc
T = RES / REGI.
Soit t = RES / 6 * REG.
Aussi le débit D de communication (en Baud) doit donc être : D = N / 1 Soit : D = 6 * REG * N / RES
C'est-à-dire qu'avec les valeurs suivantes :
REG = 10 000 tr/mn
N = 14 bits
RES = 0,022 °
Le débit D permettant la mesure continue à la résolution RES doit être
D = 6 * 10 000 * 14 / 0,022 = 42 MBaud
De cette manière, on peut calculer le débit D et le nombre de bits N nécessaires au codage d'une mesure angulaire d'une résolution donnée RES à un régime moteur REG donné. Des exemples de tels calculs sont illustrés dans le tableau 1 ci-dessous, avec un régime moteur d'un véhicule automobile actuel au maximum d'environ 10 000 tr/mn.
Figure imgf000009_0001
TABLEAU 1
Or la vitesse de lecture maximum des entrées numériques des ECU actuels est égale de l'ordre de 500 kBaud. Ce débit est incompatible avec la transmission en continu d'une résolution permettant de détecter un raté d'allumage, correspondant à une résolution angulaire de l'ordre de 0,02 °. De plus, la transmission de données binaires à un débit supérieur à 500 kBaud au travers d'une connectique longue comporte des risques d'interférence électromagnétique avec d'autres dispositifs du véhicule. La détection de raté(s) d'allumage selon l'invention est synchronisée avec l'allumage et consiste à être réalisée par la détection et la comparaison des temps de segments. Un raté d'allumage implique en effet une variation temporaire de la vitesse de rotation du vilebrequin. Un segment est une région angulaire du vilebrequin. Plus précisément, un segment est une période angulaire. Le temps de segment est le temps de parcours du segment. Le segment est défini par l'angle qui sépare deux positions de référence de deux cylindres successifs dans l'ordre d'allumage. Cette région angulaire correspond à un mouvement spécifique des pistons dans leurs cylindres respectifs. Dans un cylindre, un piston parcourt un trajet passant par deux points caractéristiques : le point mort haut (PMH) et le point mort bas (PMB). Ces deux points caractéristiques peuvent avantageusement servir de points de référence pour la définition des segments. A cet effet, le temps qui sépare deux points morts hauts successifs de deux pistons successifs dans l'ordre d'allumage peut par exemple définir un temps de segment.
Le temps de segment durant lequel le vilebrequin traverse cette région angulaire dépend entre autres de l'énergie convertie lors de la phase de combustion. Un raté d'allumage vient par conséquent augmenter le temps de segment.
Pour un moteur multicylindres avec des segments répartis de manière régulière, la valeur en degrés du segment est SEG = 720 / C avec C étant le nombre de cylindres. Soit SEG = 180 ° pour un moteur à quatre cylindres, SEG = 120° pour un moteur à six cylindres, etc.
Selon l'invention, la transmission des mesures à haute résolution (N2 bits) peut n'être effectuée qu'une fois par segment, soit tous les 720 / C °. La fréquence f2 de transmission de l'information de position angulaire à haute résolution (N2 bits) correspond donc dans ce mode de réalisation à envoyer l'information de position angulaire au début de chaque segment seulement.
Dans le but de détecter un raté d'allumage, on peut comparer les temps de segment non pas de tous les segments successifs les uns par rapport aux autres, mais pour un même segment entre deux ou plusieurs tours successifs, à chaque tour de vilebrequin. A cet effet, chaque mesure de position absolue effectuée est comparée en permanence avec des valeurs de référence, correspondant au SEG degrés d'espacement des positions de début et de fin des segments.
En fait, le capteur de position vilebrequin effectue la mesure de la position angulaire du vilebrequin sur N2 bits au moins mais ne transmet cette information que sur N1 bits la plupart du temps, la différence entre N2 et N1 étant réalisée par troncature. A une valeur déclencheur particulière est associée, par exemple dans le circuit ASIC mentionné, une position angulaire particulière, correspondante au début ou à la fin d'un segment (0 °, 120 °, 240 ° sur la figure unique).
Lorsque le capteur atteint une valeur déclencheur correspondante au début ou à la fin d'un segment, il transmet le signal de position angulaire codée sur N2 bits.
Pour les autres valeurs angulaires le capteur transmet à nouveau le signal de position angulaire codée sur N1 bits.
Selon l'invention, le dispositif de contrôle moteur comprend un modèle du comportement normal du moteur, c'est-à-dire sans ratés d'allumage. Typiquement, le modèle comprend au moins une valeur de référence qui, pour un segment donné, est égale au temps de segment dudit segment sans ratés d'allumage. La mesure du temps de segment est comparée à cette valeur de référence, et l'écart entre ces deux valeurs est comparé à une valeur seuil. Si l'écart est supérieur ou égal à la valeur seuil, le dispositif de contrôle moteur considère qu'un raté d'allumage a eu lieu et génère par exemple un signal à cet effet.
Par exemple, la valeur de référence pour un temps de segment donné est le temps de segment de ce segment au tour de vilebrequin précédent.
En référence à la figure unique, il s'agit de comparer le temps de segment SEG1 au tour T avec le temps de segment SEG1 au tour T-1 , et de même pour les segments SEG2 et SEG3.
De préférence, la valeur seuil dépend de la vitesse de rotation du moteur, et les variations de la vitesse de rotation du vilebrequin dues aux modifications du régime moteur (accélération ou freinage du véhicule par son conducteur) et qui pourraient perturber la mesure sont corrigées par un algorithme spécifique. La solution selon l'invention se base sur un capteur de position vilebrequin absolue, sur 360 °, muni d'une interface configurée pour délivrer un signal de sortie entièrement numérique.
Dans un mode de réalisation, le capteur de position vilebrequin est muni de deux canaux de sortie dont chaque canal émet un signal numérique. Le premier canal est utilisé pour transmettre un premier signal correspondant à l'information relative à la position angulaire du vilebrequin à basse résolution (N1 bits). La position angulaire du vilebrequin à basse résolution (N1 bits) est transmise à une fréquence f1.
Le deuxième canal est utilisé pour transmettre un deuxième signal correspondant à une information relative aux ratés d'allumage, c'est-à-dire à la position angulaire du vilebrequin à haute résolution (N2 bits). La mesure de la position angulaire du vilebrequin effectuée sur au moins N2 bits est transmise sur N2 bits à une fréquence f2. A titre d'alternative, les deux signaux sont transmis sur un même canal par un procédé de multiplexage.
De préférence, le taux de transmission, c'est-à-dire le débit, est fixe.
Par exemple, comme vu précédemment au tableau 1 , une résolution inférieure à 2 °, soit 1 ,4 °, peut être codée sur 8 bits (N1). Par conséquent, le débit minimal nécessaire permettant de transmettre cette information à un régime REG de 10 000 tours par minute est de 342 kBaud. Le signal de position angulaire basse résolution est donc envoyé tous les 24 μs environ (1 / 324 * 8), représenté par les traits pleins f1 de la figure unique.
Le signal de position angulaire haute résolution codée sur 14 bits (N2) peut être transmis tous les 120 ° pour un moteur six cylindres, représenté par les traits pointillés f2 de la figure unique.
Les débits supportés par les dispositifs de gestion actuels étant de l'ordre de 500 kBaud, il est donc possible d'ajouter des informations supplémentaires au mot binaire de N1 bits et correspondant le cas échéant au reliquat des N2 bits nécessaires. Grâce à cette configuration, puisqu'une information de position angulaire à haute résolution n'a besoin d'être transmise qu'au début des segments, si un train de données de N2 bits ne peut pas être entièrement transmis dans l'espace de temps alloué à la transmission des N1 bits, à cause du débit du dispositif de contrôle moteur, les bits restants peuvent être transmis sur au moins un train de N1 bits suivant dans le temps du segment considéré.
Le type de capteur de position absolue utilisé et doté d'une grande résolution nécessite un calibrage « in situ » en raison des incertitudes de positionnement induites lors du montage dudit capteur sur le moteur à combustion interne.

Claims

REVENDICATIONS
1. Procédé de transmission d'information permettant de surveiller le fonctionnement d'un moteur à combustion interne, comprenant les étapes consistant à :
- Mesurer la position angulaire d'un vilebrequin au moyen d'un capteur de position absolue muni d'une sortie numérique, et - Transmettre à une fréquence f1 vers un dispositif de contrôle moteur l'information de position angulaire mesurée, codée sur un train de données contenant N1 bits, caractérisé en ce qu'il comprend en outre une étape consistant à :
- Transmettre à une fréquence f2 l'information de position angulaire mesurée, et codée sur un train de données contenant N2 bits, le nombre
N2 de bits étant supérieur au nombre N1 , la fréquence f2 étant inférieure ou égale à la fréquence f1.
2. Procédé selon la revendication 1 , dans lequel la fréquence f2 est définie au moins par le temps mis par le vilebrequin pour atteindre, à partir d'une position angulaire correspondant au début d'un segment, une position angulaire correspondant à la fin dudit segment et par le nombre de bits N2 à transmettre.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de mesure est réalisée par un seul capteur de position de vilebrequin effectuant la mesure de position angulaire sur au moins N2 bits, l'étape de transmission de la position angulaire codée sur un train de données contenant N1 bits étant réalisée par troncature du train de données contenant N2 bits.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'atteinte de valeur(s) seuil(s) déclenche la transmission de l'information de position angulaire de N2 bits.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel les trains de données contenant N1 et N2 bits sont transmis sur deux canaux distincts, ou sur un seul canal au moyen d'un procédé de multiplexage.
6. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre les étapes consistant à : - Mesurer le temps pour atteindre, d'une position angulaire correspondant au début d'un segment, une position angulaire correspondant à la fin dudit segment,
- Mesurer l'écart entre cette valeur de temps et une valeur de référence, et
- Générer un signal synonyme de raté d'allumage si cet écart est supérieur à une valeur seuil.
7. Dispositif de surveillance du fonctionnement d'un moteur à combustion interne, comprenant un capteur de position absolue de vilebrequin configuré pour :
- Mesurer la position angulaire d'un vilebrequin, et
- Transmettre, via une sortie numérique, à une fréquence f1 vers un dispositif de contrôle moteur l'information de position angulaire mesurée, codée sur un train de données contenant N1 bits, caractérisé en ce que le capteur de position de vilebrequin est également configuré pour :
- Transmettre à une fréquence f2 l'information de position angulaire mesurée, et codée sur un train de données contenant N2 bits, le nombre
N2 de bits étant supérieur au nombre N1 , la fréquence f2 étant inférieure ou égale à la fréquence f 1.
8. Dispositif selon la revendication 7, dans lequel le capteur de position absolue de vilebrequin effectue la mesure de position angulaire sur au moins N2 bits, le capteur étant en outre muni de moyens de troncature pour coder l'information de position angulaire sur un train de données contenant N1 bits et N2 bits, si la mesure est numérisée sur plus de N2 bits.
9. Dispositif selon l'une quelconque des revendications 7 et 8, dans lequel le capteur est muni d'au moins une sortie susceptible de transmettre les trains de données comprenant N1 bits et le résidu des N2 bits tronqués, ou de deux sorties susceptibles de transmettre respectivement les trains de données comprenant N1 bits et les trains de données comprenant N2 bits.
PCT/EP2007/001810 2006-03-20 2007-03-02 Procédé de transmission d'information relatif au fonctionnement d'un moteur à combustion interne WO2007107228A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2008011991A MX2008011991A (es) 2006-03-20 2007-03-02 Metodo de transmision de informacion relacionada con la operacion de un motor de combustion interna.
JP2009500724A JP2009530533A (ja) 2006-03-20 2007-03-02 内燃機関の動作に関する情報を伝送する方法
US12/279,847 US7930929B2 (en) 2006-03-20 2007-03-02 Method of transmitting information relating to the operation of an internal combustion engine
CN2007800098205A CN101405499B (zh) 2006-03-20 2007-03-02 传输关于内燃机操作的信息的方法和相关设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0602409 2006-03-20
FR0602409A FR2898640B1 (fr) 2006-03-20 2006-03-20 Procede de transmission d'information relatif au fonctionnement d'un moteur a combustion interne

Publications (1)

Publication Number Publication Date
WO2007107228A1 true WO2007107228A1 (fr) 2007-09-27

Family

ID=37440878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/001810 WO2007107228A1 (fr) 2006-03-20 2007-03-02 Procédé de transmission d'information relatif au fonctionnement d'un moteur à combustion interne

Country Status (7)

Country Link
US (1) US7930929B2 (fr)
JP (1) JP2009530533A (fr)
KR (1) KR20090005006A (fr)
CN (1) CN101405499B (fr)
FR (1) FR2898640B1 (fr)
MX (1) MX2008011991A (fr)
WO (1) WO2007107228A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168359A1 (fr) 2011-06-10 2012-12-13 Chiesi Farmaceutici S.P.A. Composés ayant une activité antagoniste d'un récepteur muscarinique et agoniste d'un récepteur bêta2 adrénergique
WO2014086924A1 (fr) 2012-12-06 2014-06-12 Chiesi Farmaceutici S.P.A. Composés ayant une activité antagoniste du récepteur muscarinique et agoniste du récepteur bêta2 adrénergique
WO2014086927A1 (fr) 2012-12-06 2014-06-12 Chiesi Farmaceutici S.P.A. Composés ayant une activité antagoniste du récepteur muscarinique et agoniste du récepteur bêta2 adrénergique
WO2016128456A1 (fr) 2015-02-12 2016-08-18 Chiesi Farmaceutici S.P.A. Composés présentant une activité d'antagonistes de récepteur muscarinique et d'agonistes de récepteur bêta 2 adrénergique
WO2016193241A1 (fr) 2015-06-01 2016-12-08 Chiesi Farmaceutici S.P.A. Composés ayant une activité d'antagoniste des récepteurs muscariniques et d'agoniste des récepteur adrénergiques bêta 2
WO2017093208A1 (fr) 2015-12-03 2017-06-08 Chiesi Farmaceutici S.P.A. Composés ayant une activité d'antagoniste des récepteurs muscariniques et d'agoniste des récepteurs adrénergiques bêta2

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7814780B2 (en) * 2007-04-09 2010-10-19 Bg Soflex Llc Engine position tracking for internal combustion engines
US8725385B2 (en) * 2010-02-25 2014-05-13 GM Global Technology Operations LLC High-accuracy IMEP computational technique using a low-resolution encoder and an indirect integration process
DE102010010805B4 (de) * 2010-03-09 2021-08-12 Sew-Eurodrive Gmbh & Co Kg Verfahren zur Verbesserung von bereit gestellten Signalwerten, Vorrichtung zur Durchführung eines Verfahrens und Verwendung einer Extrapolation
KR101558789B1 (ko) * 2014-07-07 2015-10-07 현대자동차주식회사 우선순위저장방식 이알엠 방법 및 이를 적용한 이알엠 제어기
JP6621483B2 (ja) 2015-04-14 2019-12-18 ウッドワード, インコーポレーテッドWoodward, Inc. 可変分解能サンプリングによる燃焼圧力フィードバックエンジン制御
US10934965B2 (en) 2019-04-05 2021-03-02 Woodward, Inc. Auto-ignition control in a combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131497A1 (de) * 1991-09-21 1993-03-25 Vdo Schindling Verfahren zur ermittlung der winkelstellung der kurbelwelle einer brennkraftmaschine
WO2001040643A1 (fr) * 1999-11-30 2001-06-07 Siemens Aktiengesellschaft Dispositif de commande et procede de commande pour moteur a combustion interne, et unite de commande d'elements de reglage d'un moteur a combustion interne
DE10123292A1 (de) * 2001-05-13 2002-11-14 Anton Rodi Sensorsystem
DE10124017A1 (de) * 2001-05-17 2002-11-21 Bosch Gmbh Robert Verfahren und Vorrichtung zur Drehwinkelerfassung eines sich drehenden Elements

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1012401B (de) * 1953-03-18 1957-07-18 Licentia Gmbh Spannvorrichtung an Widerstands-Schweissmaschinen fuer ringfoermige Werkstuecke
US5570016A (en) * 1994-06-01 1996-10-29 General Motors Corporation Method and apparatus for detecting crankshaft angular position
JP3986603B2 (ja) 1996-02-02 2007-10-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 燃焼ミスファイヤの検出方法
US6041647A (en) * 1996-05-28 2000-03-28 Toyota Jidosha Kabushiki Kaisha Crank angle detecting apparatus for internal combustion engine
DE19962153B4 (de) * 1999-12-22 2006-02-23 Robert Bosch Gmbh Verfahren zur Erfassung der Winkellage rotierender Maschinenteile
JP2002089426A (ja) 2000-09-18 2002-03-27 Ngk Spark Plug Co Ltd 内燃機関の失火検出装置
FR2855874B1 (fr) 2003-06-06 2005-08-05 Siemens Vdo Automotive Capteur de position angulaire absolue sur 360° d'un organe rotatif
FR2863049B1 (fr) 2003-12-02 2006-01-13 Siemens Vdo Automotive Dispositif pour determiner la position angulaire et la vitesse de rotation d'un organe rotatif
FR2865501B1 (fr) * 2004-01-23 2006-03-10 Siemens Vdo Automotive Dispositif pour determiner la position d'un moteur a combustion interne
FR2871880B1 (fr) 2004-06-18 2006-08-11 Siemens Vdo Automotive Sas Dispositif et un procede pour determiner la position d'un moteur
US7184876B2 (en) 2004-06-18 2007-02-27 Siemens Vdo Automotive Device and process for determining the position of an engine
US7104119B1 (en) * 2005-03-08 2006-09-12 Delphi Technologies, Inc. Method and apparatus for determining rotary position
JP4626564B2 (ja) * 2006-05-10 2011-02-09 株式会社デンソー 内燃機関の制御装置
US7606655B2 (en) * 2006-09-29 2009-10-20 Delphi Technologies, Inc. Cylinder-pressure-based electronic engine controller and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131497A1 (de) * 1991-09-21 1993-03-25 Vdo Schindling Verfahren zur ermittlung der winkelstellung der kurbelwelle einer brennkraftmaschine
WO2001040643A1 (fr) * 1999-11-30 2001-06-07 Siemens Aktiengesellschaft Dispositif de commande et procede de commande pour moteur a combustion interne, et unite de commande d'elements de reglage d'un moteur a combustion interne
DE10123292A1 (de) * 2001-05-13 2002-11-14 Anton Rodi Sensorsystem
DE10124017A1 (de) * 2001-05-17 2002-11-21 Bosch Gmbh Robert Verfahren und Vorrichtung zur Drehwinkelerfassung eines sich drehenden Elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168359A1 (fr) 2011-06-10 2012-12-13 Chiesi Farmaceutici S.P.A. Composés ayant une activité antagoniste d'un récepteur muscarinique et agoniste d'un récepteur bêta2 adrénergique
WO2014086924A1 (fr) 2012-12-06 2014-06-12 Chiesi Farmaceutici S.P.A. Composés ayant une activité antagoniste du récepteur muscarinique et agoniste du récepteur bêta2 adrénergique
WO2014086927A1 (fr) 2012-12-06 2014-06-12 Chiesi Farmaceutici S.P.A. Composés ayant une activité antagoniste du récepteur muscarinique et agoniste du récepteur bêta2 adrénergique
EP3345904A1 (fr) 2012-12-06 2018-07-11 Chiesi Farmaceutici S.p.a. Composés dotés de l'antagoniste de récepteur muscarinique et activité d'agoniste de récepteur adrénergique bêta2
WO2016128456A1 (fr) 2015-02-12 2016-08-18 Chiesi Farmaceutici S.P.A. Composés présentant une activité d'antagonistes de récepteur muscarinique et d'agonistes de récepteur bêta 2 adrénergique
WO2016193241A1 (fr) 2015-06-01 2016-12-08 Chiesi Farmaceutici S.P.A. Composés ayant une activité d'antagoniste des récepteurs muscariniques et d'agoniste des récepteur adrénergiques bêta 2
WO2017093208A1 (fr) 2015-12-03 2017-06-08 Chiesi Farmaceutici S.P.A. Composés ayant une activité d'antagoniste des récepteurs muscariniques et d'agoniste des récepteurs adrénergiques bêta2

Also Published As

Publication number Publication date
CN101405499A (zh) 2009-04-08
CN101405499B (zh) 2012-01-11
MX2008011991A (es) 2008-12-18
FR2898640B1 (fr) 2008-04-25
US7930929B2 (en) 2011-04-26
US20090217744A1 (en) 2009-09-03
KR20090005006A (ko) 2009-01-12
FR2898640A1 (fr) 2007-09-21
JP2009530533A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
WO2007107228A1 (fr) Procédé de transmission d'information relatif au fonctionnement d'un moteur à combustion interne
EP2128410B1 (fr) Méthode de détection du cliquetis dans un moteur à allumage commande
FR2868157A1 (fr) Procede et dispositif pour determiner la position angulaire de rotation d'un arbre
FR2735182A1 (fr) Procede de detection de la vitesse de rotation notamment pour la detection des rates de combustion d'un moteur a combustion interne
WO1996036803A1 (fr) Procede de reconnaissance de la phase des cylindres d'un moteur multicylindres a combustion interne a cycle a quatre temps
WO2016165829A1 (fr) Procede et dispositif de detection de rotation inverse d'un moteur a combustion interne
FR3021739A1 (fr) Procede d'adaptation d'un seuil de detection d'un capteur de vilebrequin pour vehicule automobile
FR2780448A1 (fr) Dispositif et procede de gestion de moteur
FR2664652A1 (fr) Systeme d'injection de carburant pour un moteur a combustion interne, notamment pour une pompe a carburant commandee par une vanne electromagnetique.
EP2232035B1 (fr) Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne
FR3084154A1 (fr) Determination de la position angulaire d'une cible dentee solidaire en rotation d'un arbre d'un moteur a combustion interne
WO2007147484A1 (fr) Procede de detection de rate d'allumage et dispositif correspondant
FR2978542A1 (fr) Procede de determination d'une information representative de la position d'une dent reelle d'une cible dentee solidaire en rotation d'un arbre d'un moteur a combustion interne et dispositif associe
WO2010100357A1 (fr) Procédé d'estimation de la position d'arrêt d'un moteur a combustion
FR2827954A1 (fr) Procede de correction du signal d'un capteur de position d'arbre a cames
FR3072124A1 (fr) Procede et systeme de detection du sens de rotation d'un moteur de vehicule
FR2993358A1 (fr) Procede de mesure de la pression a l'interieur d'un cylindre d'un moteur a combustion interne
FR2734326A1 (fr) Procede de detection des rates a l'allumage d'un moteur a combustion interne a plusieurs cylindres
WO2008050033A2 (fr) Procede de recalage d'injecteurs d'un moteur et vehicule automobile le mettant en oeuvre
WO2010100358A1 (fr) Procede de validation de la position d'arret d'un moteur a combustion
FR2801640A1 (fr) Procede de protection d'un catalyseur equipant l'echappement d'un vehicule automobile
FR3084114A1 (fr) Procede de controle de combustion dans un moteur
EP2158393B1 (fr) Procede et dispositif de commande d'injections d'un moteur, vehicule automobile muni du dispositif
FR3112214A1 (fr) Capteur de détection de dents sur une cible pour véhicule automobile
WO2023094326A1 (fr) Procédé de détermination d'une position angulaire d'une cible dentée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07723005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6577/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780009820.5

Country of ref document: CN

Ref document number: MX/a/2008/011991

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009500724

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12279847

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087025542

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07723005

Country of ref document: EP

Kind code of ref document: A1