WO2007105411A1 - プラズマ発生装置及びそれを用いたプラズマ生成方法 - Google Patents

プラズマ発生装置及びそれを用いたプラズマ生成方法 Download PDF

Info

Publication number
WO2007105411A1
WO2007105411A1 PCT/JP2007/052893 JP2007052893W WO2007105411A1 WO 2007105411 A1 WO2007105411 A1 WO 2007105411A1 JP 2007052893 W JP2007052893 W JP 2007052893W WO 2007105411 A1 WO2007105411 A1 WO 2007105411A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
tube
slit
antenna
Prior art date
Application number
PCT/JP2007/052893
Other languages
English (en)
French (fr)
Inventor
Akira Yonesu
Original Assignee
University Of The Ryukyus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of The Ryukyus filed Critical University Of The Ryukyus
Priority to US12/224,750 priority Critical patent/US8216433B2/en
Priority to JP2008505011A priority patent/JP5239021B2/ja
Priority to CN2007800078610A priority patent/CN101395973B/zh
Priority to EP07714423.6A priority patent/EP2007175A4/en
Publication of WO2007105411A1 publication Critical patent/WO2007105411A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators

Definitions

  • the present invention relates to a plasma generator and a plasma generation method using the same, and more particularly to a plasma generator capable of generating a plasma by microwaves in the atmosphere and a plasma generation using the same. Regarding the method.
  • plasma generated at atmospheric pressure is used in various industrial fields such as welding of high melting point materials, surface cleaning in semiconductor manufacturing processes, surface modification of metal materials, etc., and generation of fine particles. Things have been done. Recently, the use of atmospheric pressure plasma has expanded rapidly, such as the use of plasma for sterilization of medical instruments.
  • Plasma generation methods at atmospheric pressure include plasma generation by arc discharge and gas heating method by a microphone mouth wave.
  • Patent Document 1 discloses that a high-frequency voltage is applied between electrodes and plasma is generated by arc discharge. In particular, it is disclosed that the tip of an injection needle is thermoformed and sterilized by the plasma. ing.
  • Patent Document 1 JP-A-6-197930
  • a problem caused by arc discharge is that electrons or ions generated between the electrodes collide with the electrodes, the electrodes themselves become high temperature, and the electrodes are worn out. Also, a part of the metal material constituting the electrodes is plasma. It can be mentioned that there is a possibility that impurities are mixed into the plasma.
  • a gas for plasma is supplied to a non-metallic pipe such as a quartz pipe, and the gas in the pipe is microwave-heated by a conductor arranged around the metallic pipe.
  • the microwave applied to the conductor forms an excitation electric field that penetrates into the pipe, the gas is heated by the excitation electric field, and so-called electrodeless discharge is possible, and there is no electrode wear and impurities. No contamination occurs.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-172044
  • FIG. 1 shows an outline of the plasma generator 100 of Patent Document 2.
  • a cavity excitation antenna 105 and an internal electromagnetic field detection loop antenna 106 are connected to the coaxial cavity 102 surrounding the quartz pipe 101.
  • an upper center conductor 103 surrounding the quartz pipe 101 is disposed on the upper side of the quartz pipe 101, and a lower center conductor 104 similarly surrounding the quartz pipe 101 is disposed on the lower side.
  • FIGS. 1 (b) and 1 (c) are sectional views of the coaxial cavity 102 in FIG. 1 (a).
  • the upper center conductor 103 is electrically connected to the inner surface of the coaxial cavity 102 at the upper end. is doing.
  • the inner conductor 121 and the outer conductor 122 are fitted in the lower center conductor 104 with a gap, so that a choke structure is formed inside the lower center conductor 104. , To suppress the emission of microwaves to the outside.
  • the lower end of the lower center conductor 104 is electrically connected to the inner surface of the coaxial cavity 102.
  • the microwave incident from the cavity excitation antenna 105 resonates within the coaxial cavity 102, and An excitation electric field 112 as shown in FIG. 1B is formed between the center conductor 103 and the lower center conductor 104. Due to the influence of the excitation electric field 112, the gas 110 passing through the quartz pipe 101 is plasmaized. This electric field distribution becomes TM mode vibration.
  • the plasma has the same function as a conductor, so the distribution of the excitation electric field is that of the coaxial cavity 102 as shown at 113 in Fig. 1 (c). It changes from the inner wall to the plasma direction in the quartz pipe 101 and becomes an electric field of a coaxial mode (TEM mode), and the gas in the quartz pipe 101 is subsequently turned into plasma by the excitation electric field 113.
  • TEM mode electric field of a coaxial mode
  • Patent Document 2 variably adjusts the microwave frequency based on the detection signal from the loop antenna 106 for detecting the internal electromagnetic field. It is also suggested that the shape of the cavity should be selected so that the impedance change is minimized.
  • the problem to be solved by the present invention is to solve the above-mentioned problems, and to improve the ignitability of the plasma which is less affected by the shape of the cavity and has less impedance change in the cavity before and after plasma ignition.
  • a plasma generation apparatus and a plasma generation method using the same are provided.
  • the invention according to claim 1 includes a non-conductive gas passage tube that introduces a gas for generating plasma and discharges it into the atmosphere, and a conductive antenna tube that surrounds the gas passage tube. Then, the antenna tube is irradiated with microwaves, and the gas in the gas flow tube is turned into plasma.
  • the antenna tube is characterized in that a slit having a predetermined length is formed along the tube axis direction of the gas flow tube.
  • the invention according to claim 2 is the plasma generator according to claim 1, wherein the slit is
  • the gas passage tube has an open end on the gas discharge side.
  • the invention according to claim 3 is the plasma generator according to claim 1, wherein the slit is
  • the invention according to claim 4 is the plasma generating device according to any one of claims 1 to 3, wherein the slit has a portion protruding to the inside of the slit. It is a feature.
  • the invention according to claim 5 is the plasma generator according to any one of claims 1 to 4, wherein the antenna tube has an end portion on a gas discharge side of the gas flow channel tube, The gas flow path pipe is bent by a direction force.
  • the invention according to claim 6 is the plasma generator according to any one of claims 1 to 5, wherein the length of the slit is set to an integral multiple of a half wavelength of the microwave to be irradiated. It is characterized by being.
  • the invention according to claim 7 is the plasma generating device according to any one of claims 1 to 6, wherein at least two slits are arranged along the periphery of the gas flow channel tube. It is characterized by that.
  • the invention according to claim 8 is the plasma generator according to any one of claims 1 to 7, wherein a plurality of the gas flow channel tubes are arranged, and the antenna tube is provided for each gas flow channel tube. It is characterized by providing.
  • the invention according to claim 9 is the plasma generator according to any one of claims 1 to 8, wherein the antenna tube penetrates the waveguide into the waveguide that propagates microwaves. It is characterized by being placed!
  • the invention according to claim 10 is the plasma generation method using the plasma generator according to any one of claims 1 to 9, wherein the pressure in the gas flow channel tube is maintained at a pressure lower than the atmospheric pressure, A plasma ignition step of igniting plasma by irradiating microwaves, and an atmospheric pressure step of setting the atmospheric pressure in the gas flow path tube to an atmospheric pressure state after the plasma ignition step.
  • the invention according to claim 11 is the plasma generation method using the plasma generation device according to any one of claims 1 to 9, wherein the first gas is supplied into the gas flow pipe, and the microwave is supplied.
  • a plasma ignition step of irradiating and igniting plasma; and after the plasma ignition step, supplying a second gas that is less likely to be plasma than the first gas together with the first gas, and converting the second gas into plasma is characterized by.
  • the invention according to claim 12 is the plasma generation method according to claim 10 or 11, wherein after the plasma is ignited in an atmospheric pressure state, the gas flow channel tube and the antenna tube are relatively moved.
  • the gas discharge side end of the gas flow channel tube is close to the slit side end of the antenna tube It is characterized by having a moving process.
  • the invention according to claim 13 is the plasma generation method according to any one of claims 10 to 12, wherein the microwave irradiated to the antenna tube is pulse-driven, and the rest period of the pulse drive is It is within the average plasma remaining period.
  • the excitation electric field is concentrated in the slit portion by the slit provided in the antenna tube, and the gas passing through the gas flow channel tube is efficiently plasmamed in the slit portion. It becomes possible.
  • the excitation electric field is always generated in the slit portion before and after the plasma ignition, and the impedance change before and after the plasma ignition can be suppressed as in the prior art.
  • the slit since the slit has an open end on the gas discharge side of the gas flow path tube, the slit of the gas flow path tube is positioned on the gas discharge side from the tip of the antenna pipe.
  • An extended plasma torch can be stably formed.
  • the slit since the slit has a portion in which a part of the slit protrudes to the inside of the slit, it is possible to further reduce the energy of the microwave necessary for the plasma to light. It becomes possible and the ignitability of plasma can be improved.
  • the antenna tube is provided at the end of the gas passage tube on the gas discharge side.
  • the length of the slit of the antenna tube is set to an integral multiple of the half wavelength of the microwave to be irradiated, a stable standing wave can be formed at the slit portion, and excitation is performed. It is possible to efficiently concentrate the electromotive field.
  • the place where the excitation electric field concentrates is the gas channel tube.
  • a plurality of places are formed around the gas, and the gas passing through the gas flow pipe can be plasmarized in more places, so that stable plasma can be generated. Gas Even when the cross-sectional shape of the channel tube is increased, more stable plasma can be generated.
  • the antenna tube is disposed through the waveguide in the waveguide that propagates the microwave, the energy of the microwave that propagates through the waveguide Can be efficiently supplied to the antenna tube, and the ignitability of the plasma can be improved.
  • the waveguide also serves as a shielding means for accommodating the antenna tube, the plasma generator can be made compact and the manufacturing cost can be reduced.
  • the pressure in the gas flow path tube is maintained at a pressure lower than the atmospheric pressure, and the microwave is irradiated to ignite the plasma.
  • Plasma ignition step and after the plasma ignition step an atmospheric pressure step for setting the atmospheric pressure in the gas flow pipe to an atmospheric pressure state, the ignitability of the plasma can be improved, and auxiliary Even when no ignition means is provided, it is possible to ignite plasma with only the antenna installed in the gas flow pipe. After plasma ignition, it is possible to stably generate and maintain plasma even at atmospheric pressure!
  • the first gas is supplied into the gas flow path tube, and the plasma is ignited by irradiating the microwave.
  • the second gas which is less likely to be converted to plasma than the first gas, is supplied together with the first gas, and the second gas is converted to plasma. This makes it possible to improve the ignitability of plasma even for various gases.
  • the gas channel tube and the antenna tube are relatively moved, and the end of the gas channel tube on the gas discharge side is connected to the antenna tube Plasma generated in the gas flow pipe because it has a moving step to bring it close to the slit end. Can be easily led out of the gas flow pipe.
  • the microwave irradiated to the antenna tube is pulse-driven and the pause period of the pulse drive is within the average plasma remaining period, the amount of plasma generated by the pulse drive is adjusted. In addition, the plasma ignition immediately after the rest period can be performed smoothly.
  • FIG. 1 is a view showing a conventional plasma generator.
  • FIG. 2 is a diagram showing an outline of a plasma generation unit of the present invention.
  • FIG. 3 is a schematic view of a plasma generator of the present invention.
  • FIG. 4 is a diagram showing a case where the plasma generator of the present invention has a plurality of plasma generation units.
  • FIG. 5 is a diagram showing a case where a plurality of plasma generators are driven using a single microwave generator in the plasma generator of the present invention.
  • FIG. 6 is a perspective view showing an example of a plasma generator of the present invention.
  • FIG. 7 is a cross-sectional view of the plasma generator of FIG. 6, and is a diagram for explaining a method of moving the antenna tube when plasma is generated.
  • FIG. 8 is a diagram for explaining a method of moving a gas flow channel when plasma is generated.
  • FIG. 9 is a diagram illustrating a method of using a metal cap when generating plasma.
  • FIG. 10 is a diagram for explaining the positional relationship between the antenna tube and the shielding means.
  • FIG. 11 is a diagram for explaining auxiliary ignition means using arc discharge.
  • FIG. 12 is a diagram illustrating auxiliary ignition means using a sub antenna tube.
  • FIG. 13 is a diagram for explaining a method of improving plasma ignitability using a plurality of types of gases.
  • FIG. 14 is a graph for explaining a method of introducing a microwave by pulse drive during plasma generation.
  • FIG. 15 is a diagram showing an outline of a plasma generation unit in which a slit is formed inside the antenna tube.
  • FIG. 16 is a diagram showing an outline of the plasma generation unit when the end of the antenna tube is bent.
  • FIG. 17 is a schematic view of a plasma generator used in Example 2.
  • FIG. 18 is a graph showing an emission spectrum distribution during plasma generation.
  • FIG. 19 is a graph showing a change in emission intensity of plasma force with respect to oxygen gas content in argon gas.
  • FIG. 20 A graph showing the change in emission intensity due to plasma with respect to the input microwave power.
  • FIG. 21 is a schematic view of a plasma generator used in Example 3.
  • FIG. 22 is a diagram showing a state of an antenna tube or a quartz tube penetrating a waveguide.
  • FIG. 23 is a diagram for explaining the difference in the shape of various slits.
  • FIG. 24 is a graph showing changes in discharge start power and minimum discharge maintenance power with respect to slit length.
  • FIG. 25 is a graph showing changes in discharge start power with respect to slit width and slit shape. Explanation of symbols
  • FIG. 2 (a) shows the structure of the plasma generator used in the plasma generator.
  • the plasma generating unit is composed of a non-conductive gas flow channel tube 1 such as a quartz tube and a conductive antenna tube 2 such as an aluminum pipe, and the conductive antenna tube is surrounded by the gas flow channel tube 1. 2 is arranged.
  • a feature of the present invention is that the slit 3 is formed in the conductive antenna tube 2. This slit portion concentrates the microwave excitation electric field irradiated to the plasma generation unit, and plasma can be generated and maintained by the electric field.
  • the length L of the slit portion is an integral multiple of a half wavelength ( ⁇ ⁇ ⁇ 2; ⁇ is an integer of 1 or more) with respect to the wavelength of the microphone mouth wave irradiated to the plasma generation unit Is set.
  • the width D of the slit portion is not particularly limited, but as the width D becomes narrower, the intensity of the excitation electric field generated in the slit portion increases and passes through the gas channel tube. Gas can be promoted to plasma, but on the other hand, the area where the excitation electric field is generated around the gas channel tube is reduced, so that the amount of gas that can be converted to plasma is reduced. After all.
  • the width D of the slit portion is preferably determined in consideration of the power intensity of the irradiated microwave and the insulating properties of the gas near the slit portion. That is, as the microwave irradiation power increases, dielectric breakdown occurs in the slit portion, and discharge occurs. Such a discharge reduces the excitation electric field formed in the gas channel tube and causes wear of the slit portion of the antenna tube. For this reason, it is necessary to increase the width D of the slit part to such an extent that dielectric breakdown does not occur in consideration of the power of the irradiated microwave.
  • the same gas as the air outside the plasma generator is usually present in the vicinity of the slit part, but the width D of the slit part is narrowed by filling with a highly insulating gas such as SF.
  • the generated plasma is a non-equilibrium plasma having an electron temperature of several tens of thousands degrees or more, but an ion temperature or a gas temperature of about several tens to several hundred degrees.
  • the generated plasma travels along the gas flow in the direction of the outlet of the glass channel tube 1 (the left direction in the figure), and in particular, when the slit having the shape shown in FIG.
  • a torch-like plasma (“plasma torch” t ⁇ ⁇ ) is emitted from the outlet of tube 1 (or the end of antenna tube 2 where the slit is formed).
  • gases such as argon, oxygen, helium, and hydrogen can be used alone or in combination, and the necessary gas is selected according to the application of the plasma.
  • a gas (first gas) that is easily plasmified is first introduced into the gas flow pipe, and after plasma ignition, a part of the first gas component is removed It is possible to replace with another type of gas (second gas), or gradually replace the first gas component with the second gas, and finally generate plasma with only the second gas. It is.
  • the characteristics of the plasma torch such as the electron temperature, gas temperature, plasma density, radical gas density, or torch length (the gas channel tube opening or antenna tube end force is the length to the plasma torch tip. Etc.) can be changed by adjusting the microwave power applied to the plasma generation unit.
  • the number of slits 3 provided in the antenna tube 2 is not limited to one as shown in Fig. 2 (a).
  • Fig. 2 (b) shows a cross-sectional view taken along arrows XX in Fig. 2 (a).
  • the antenna tube 2 is concentrically arranged with respect to the gas flow channel tube 1, and the cross-sectional shape of the antenna tube 2 is shown. Is C-shaped due to the slit 3 relationship.
  • FIGS. 2 (c) and 2 (d) are sectional views similar to FIG. 2 (b) for showing an application example of the antenna tube 2.
  • the slits 3, 3, Place multiple slits along the periphery of the gas flow pipe 1 so that the slits 3, 3, 3, 3 "are placed in 3 places as shown in Fig. 2 (d) It is possible.
  • the relationship between the width D of the slit portion and the length R of the antenna tube wall between the slits is extremely important, and the ratio RZD is 1 or more, preferably Is preferably 2 or more in order to stably concentrate the excitation electric field.
  • the antenna tube wall between the slits must function sufficiently as a ground electrode.
  • the length R between the slits, the length L of the slit portion, the thickness d (not shown) of the tube wall of the antenna tube, and the antenna tube The electrical resistivity p of the material to be formed must also be taken into consideration. These conditions also depend on the frequency V of the microwave applied to the antenna tube.
  • the shape of the slit portion it is possible to adopt a shape that increases the electric field strength at the location where the electric field concentrates in the standing wave of the excitation electric field formed in the slit.
  • the shape of the slit in the longitudinal direction is not limited to the rectangular shape shown in FIG. 2 (a), and the slit width D may be locally narrowed to form a portion where the electric field is concentrated.
  • the cross-sectional shape of the tube wall that forms the slit is not limited to a substantially U-shape as shown in FIGS. 2 (b) to 2 (d), but a tapered tip portion such as a taper shape. Electric field concentrates on The shape is preferable.
  • Fig. 2 (a) the slit having an open end at the end of the antenna tube (the end of the gas passage tube on the gas discharge side) is illustrated.
  • a slit it is possible to stably form a plasma torch extending from the tip of the antenna tube to the gas discharge side of the gas channel tube.
  • a slit 3 is formed inside the antenna tube 2 as shown in FIG.
  • a plasma torch extending outward from the antenna tube and further from the gas flow tube can be suitably used when directly irradiating the plasma, but when not directly irradiating the plasma, the gas flow channel tube is used. It is necessary to secure a sufficient distance between the tip of the antenna tube and the tip of the antenna tube, which increases the size of the apparatus and complicates the adjustment of the distance.
  • the antenna tube 2 shown in Fig. 15 it is possible to eliminate such problems.
  • the shape of an antenna tube as shown in Fig. 16 can be adopted.
  • the antenna tube in Fig. 16 (a) shows a shape that is relatively similar to that in Fig. 2 (a), but in Fig. 16 (c), which is a cross-sectional view taken along arrow XX in Fig. 16 (a).
  • the end of the antenna 2 pipe (the end of the gas flow path pipe 1 on the gas discharge side) is bent toward the gas flow path pipe 1 in a direction. Due to the bent portion 90, the plasma 4 ′ is formed inside the antenna tube 2, and the formation of a plasma torch that protrudes long from the antenna tube is suppressed.
  • FIG. 16 (b) is similar to that shown in FIG. 15, and a bent portion 90 is formed at the end of the two antenna tubes.
  • the cross-sectional view of arrow XX in FIG. 16 (b) is the same as FIG. 16 (c).
  • FIG. 3 schematically shows the basic configuration of the plasma generator according to the present invention.
  • a gas 9 having a predetermined flow rate is supplied from a gas supply source 8 such as a gas cylinder in which a gas for generating plasma is accumulated to the gas flow path pipe 1 constituting the plasma generation unit.
  • the antenna tube 2 surrounding the gas flow tube 1 is accommodated in a shield means 5 for confining microwaves, and is connected to one end side of the antenna tube 2 (the end side where the slit 3 is not formed). If the slit is inside the antenna tube as shown in FIG. 15, both ends are electrically connected to the shielding means 5.
  • the shield means means a part corresponding to the conventional cavity, and hereinafter, the expression “shield means” is used as a concept including the cavity.
  • the microwave 7 is introduced from the microwave generator 6 and the antenna tube 2 is irradiated with the microwave 7.
  • the microwave forms a standing wave and generates an excitation electric field. Due to the excitation electric field, the gas passing through the gas channel tube 1 is made into a plasma, and a plasma torch 4 is formed in which the opening force of the gas channel tube 1 is discharged.
  • the shield means 5 is not particularly limited in material and shape as long as it can confine microwaves.
  • the shield means 5 holds the plasma generation unit in the shield means, and the microphone mouth wave It is preferable to use a stainless steel container for efficiently reflecting the light.
  • the waveguide itself for propagating microwaves can also be used as a shielding means.
  • the antenna tube is configured to penetrate the waveguide, and the slit of the antenna tube is arranged in the waveguide.
  • microwave energy propagating through the waveguide can be efficiently supplied to the antenna tube, and plasma ignitability can be maintained. It becomes possible to improve the layer.
  • the waveguide also serves as a shielding means for accommodating the antenna tube, the plasma generator can be made compact and the manufacturing cost can be reduced.
  • FIG. 4 shows a configuration in which a plurality of plasma generation units are arranged in the shield means 5.
  • a gas supplied from a gas supply source 8 is branched and supplied to each gas flow channel tube 1 constituting the plasma generation unit, or each gas flow channel tube 1 is supplied to each gas flow channel tube 1. It is also possible to arrange gas supply sources correspondingly
  • shield means 5 corresponding to each plasma generation unit. This is because a single shield means surrounds all antenna tubes when multiple plasma generators are arranged discretely or when the antenna tubes of each plasma generator are arranged in different directions. In addition, it is possible to suppress the loss of microwaves and generate plasma efficiently by providing a shielding means corresponding to each plasma generation unit. Note that when the antenna tube is passed through the waveguide, the same means is used. It is also possible to arrange antenna tubes discretely in the waveguide, or to arrange strength adjustment means that amplifies and adjusts the intensity of the microwaves in the middle of the waveguide, such as between antenna tubes or branched waveguides. Is possible.
  • FIG. 6 is a perspective view showing a specific example of the plasma generator.
  • a stainless steel cylindrical container 21 is used as a shielding means, and both ends of the container 21 are sealed with lids 23 and 24 using flanges or the like.
  • a waveguide 22 for introducing a microwave is connected to a part of the container 21.
  • the container 21 accommodates a gas flow path pipe 1 and an antenna pipe 2 that constitute a plasma generator, and the gas flow path pipe 1 is disposed through the lids 23 and 24.
  • the shield plate 20 is disposed so that the slit of the antenna tube 2 is formed and is in contact with a small ridge portion.
  • the shield plate 20 is set so that the movement can be adjusted in the tube axis direction of the container 21 in order to resonate the microwave introduced into the container 21.
  • FIG. 6 shows a state in which a part of the container 21 is cut out so that the inside of the container 21 can be observed.
  • a gas introduction pipe 26 is connected to the gas flow path pipe 1, and gas is supplied to the gas flow path pipe 1 from a gas supply source (not shown).
  • a gas supply source not shown
  • the gas flow path pipe 1 and the introduction pipe 26 are configured not only to be connected within the container 21 but also to be connected outside the container 21 as illustrated in FIG. 8 or 9 described later. Is also possible.
  • a gas discharge pipe 27 is connected to the discharge port side of the gas flow channel pipe 1 through a sealing means 28 such as silicon rubber.
  • the other end of the discharge pipe 27 is connected to a vacuum pump (not shown), and is used to set the atmospheric pressure in the gas passage tube 1 to a predetermined pressure state. After the plasma is turned on, the sealing means 28 and the discharge pipe 27 are removed from the gas passage tube 1, and the pressure in the gas passage tube 1 is set to an atmospheric pressure state.
  • the sealing means 28 and the like are omitted, and as shown in FIG. 17 or FIG. 21, the discharge port side of the gas flow path pipe is the process chamber, and a vacuum pump is connected to the chamber 1 as necessary. It is also possible to variably adjust the pressure inside the chamber.
  • FIG. 7 shows a cross-sectional view taken along arrows XX in FIG.
  • the sealing means 28 and the discharge pipe 27 are connected to the gas flow pipe 1 and the inside of the gas flow pipe 1 is connected by a vacuum pump connected to the other end of the discharge pipe 27.
  • the air is discharged outside.
  • a predetermined flow rate of gas is supplied from the introduction pipe 26.
  • the pressure in the gas channel pipe 1 is lower than the atmospheric pressure (about 10 5 Pa) and the pressure (10 2 ⁇
  • a microwave is incident from the waveguide 22, and the plasma torch 4 is generated by the antenna tube 2. After the plasma ignition, it is possible to slightly move the shield plate 20 as necessary to fine-tune the resonance state of the microwave. After the plasma generation reaches a stable state, Fig. 7 (b
  • the sealing means 28 and the discharge pipe 27 are removed from the gas flow path pipe 1 so that the gas flow path pipe 1 communicates with the atmosphere.
  • the plasma torch 4 is not necessarily a gas channel tube
  • FIG. 8 shows a method for deriving the plasma torch to the outside of the gas flow channel tube 1 by moving the gas flow channel tube 1 unlike FIG.
  • Fig. 8 shows a cross-sectional view of the plasma generator as in Fig. 7, and Fig. 8 (a) maintains the interior of the gas channel tube 1 at a lower pressure than atmospheric pressure, as in Fig. 7 (a). In this way, the plasma is ignited.
  • the sealing means 28 and the discharge nozzle 27 are removed from the gas flow path pipe 1, and the inside of the gas flow path pipe 1 is brought into the atmosphere. Keep in communication. Then, as shown in FIG. 8 (c), the gas channel tube 1 is moved in the direction of arrow B, and the opening force of the gas channel tube 1 is also led out to the outside. As shown in FIG. 7 or FIG. 8, the gas flow channel pipe 1 and the antenna pipe 2 can be moved relative to each other. Derived outside the channel tube.
  • a metal cap 30 is used to guide the plasma torch 4 to the outside of the gas flow path tube 1. I will explain how to put it out.
  • FIG. 9 also shows a cross-sectional view of the plasma generator, and as shown in FIG. 9 (a), in the vicinity of the opening end of the gas passage tube 1, it is in close contact with the lid 23 or the end of the gas passage tube 1. Place the metal cap 30 to be used.
  • the discharge pipe 29 is connected to the cap 30, and the vacuum pump connected to the discharge pipe is operated in the same manner as in FIG. It is possible to maintain the inside of the gas channel pipe 1 at a pressure lower than the atmospheric pressure.
  • Microwaves are introduced from the waveguide 22 to ignite the plasma. After the plasma state is stabilized, the cap is removed as shown in FIG. 9B, and the plasma torch 4 is led out of the gas passage tube 1.
  • the cap 30 since the cap 30 may be disposed in the vicinity of the plasma torch, it is preferable that the cap 30 is made of a high melting point material such as a metal.
  • FIG. 10 is a diagram for explaining the positional relationship between the shield means 40 surrounding the plasma generation unit and the antenna tube 2.
  • the shield means 40 is formed with an opening 41 for introducing a microwave, and a wall surface 42 arranged close to the side where the opening of the slit 3 of the antenna pipe 2 is arranged, and the antenna pipe 2 It has a slit 3 and a wall surface 43 in contact with the opposite side.
  • the interval W between the wall surfaces 42 and 43 is set to a predetermined interval so that the microwave introduced as described above resonates in the shield means 40.
  • the distance S between the antenna tube 2 and the wall surface 42 is preferably set so as to maintain a distance larger than the width D of the slit, since discharge is likely to occur between the antenna tube 2 and the wall 42.
  • FIGS. 6 to 9 the method of easily realizing plasma ignition by maintaining the pressure inside the gas passage tube 1 at a lower level than the atmospheric pressure during plasma ignition has been described.
  • the present invention is not limited to these methods.
  • arc discharge means as shown in FIG. 11 and auxiliary ignition means such as microwave heating means as shown in FIG. 12 are used in combination. It is also possible.
  • Such auxiliary ignition means is Plasma ignition in atmospheric pressure can be facilitated, and exhaust pipes and vacuum pumps as described in Figs. 6 to 9 are not required. Can be simplified.
  • the arc discharge means As the arc discharge means, as shown in FIG. 11, two electrodes 50 are arranged so as to protrude into the gas flow path tube 1, and arc discharge is performed by a high voltage source 51 between them. Since the gas once discharged is easily converted into plasma by the excitation electric field formed by the antenna tube 2, it is not necessary to maintain the gas channel tube 1 at a pressure lower than the atmospheric pressure.
  • the arc discharge may be a pulsed discharge that does not need to be a continuous discharge. Naturally, the arc discharge is stopped after the plasma by the antenna tube 2 is turned on.
  • a sub-antenna pipe 2 'for auxiliary ignition is arranged upstream of the gas flow path pipe 1, and a method for plasmaizing a part of the gas prior to the plasma formation by the main antenna pipe 2 is shown. It is shown.
  • the shield means 5 and 5 ′ surrounding each antenna tube 2 and 2 ′ can be shared by a single shield means that is not provided separately. However, in order to irradiate microwaves suitable for each antenna tube, it is preferable to provide each shield means separately.
  • the slit width is narrower than that of the main antenna tube 2, and the excitation electric field is Can be configured to increase locally.
  • the microwave generator 6 for supplying the microwaves to the two antenna tubes When the microwave generator 6 for supplying the microwaves to the two antenna tubes is shared, the microwave 61 emitted from the microwave generator 6 is branched as shown in FIG. Then, the main antenna tube 2 is irradiated with one microwave 62.
  • the other microwave 63 is configured to be a microwave 64 via the microwave blocking means 60 and irradiate the sub-antenna tube 2 ′.
  • the microwave blocking means 60 guides the microwave 63 when performing auxiliary ignition, and blocks the microwave 63 when auxiliary ignition is no longer necessary.
  • the branching microwave waveguide is provided with adjusting means (not shown) for adjusting the intensity of the microwave as necessary. It is also possible to place them.
  • FIG. 13 is a diagram showing another method for improving the ignitability of plasma, and utilizes characteristics in which energy for converting to plasma differs depending on the type of gas.
  • Reference numerals 70 and 71 denote gas supply sources for supplying different types of gas. The supply of each gas is controlled by Nonreb 72, 73.
  • a gas that is easily converted to plasma and is put in the gas supply source 70 is supplied to the gas flow path pipe 1 as a gas flow 74 through the valve 72. Then, the microwave to the antenna tube 2 is irradiated to generate a plasma torch 4.
  • the valve 72 is gradually closed, and at the same time, the valve 73 is opened, and the gas supplied to the gas flow path pipe 1 is switched from the gas supply source 70 to the gas supply source 71.
  • the gas supplied from the gas supply source 71 is difficult to be converted into plasma and has characteristics, the plasma has already been generated by the gas from the gas supply source 70 and can be easily converted into plasma. Become. Of course, it is possible to continue supplying gas from the gas supply sources 70 and 71 together.
  • Examples of such a gas that can be easily converted to plasma include argon gas.
  • the plasma generation method of the present invention compensates for this drawback by pulse driving.
  • FIG. 14 is a diagram schematically showing a change in the power of the microwave generated by the microwave generator force, and shows a typical shape of the drive power waveform supplied to the microwave generator.
  • the pulse drive cycle T consists of an ON period tl and an OFF period (rest period) t2. By adjusting the pulse duty ratio tlZT, it is possible to continuously change the amount of plasma generated.
  • the rest period t2 that is the plasma extinguishing period becomes too long, it becomes difficult to re-ignite the plasma. Therefore, in order to achieve stable pulse driving, the rest period t2 is It is preferable to be within the average remaining period in which the residue remains.
  • the average remaining period of plasma means the average value of the time from when plasma is generated until it comes into contact with the surrounding gas and the plasma state disappears. The plasma density and the kinetic energy of the plasmaized gas It changes depending on one.
  • a quartz pipe (inner diameter 20 mm, outer diameter 22 mm) was used for the gas flow pipe, and an aluminum pipe (inner diameter 26 mm, outer diameter 28 mm) was used for the antenna pipe.
  • the antenna tube was formed with one slit with a width D of 5 mm and a length L of 60 mm.
  • a plasma generating unit including an antenna tube and a gas flow channel tube has an inner diameter 16 serving as a shielding means.
  • the pressure inside the gas channel tube is reduced to 10 2 Pa, argon gas with a gas flow rate of 10 (1 / min) is introduced into the gas channel tube, and a microwave with a microwave incident power of 600 W (frequency
  • the inside of the gas passage tube was opened to atmospheric pressure (10 5 Pa), and a plasma torch extending the tip force of the antenna was observed.
  • the length of the plasma torch was about 50 mm, and it was confirmed that the plasma torch illuminates stably during the period when it is supplied with microwaves.
  • the plasma generator can be roughly divided into two parts, one is a plasma production chamber and the other is a process chamber. By providing a process chamber, it is possible to radiate various objects on a radial basis.
  • the inside of the plasma generation chamber is partitioned by an aluminum shield plate, and the central axis passes through a quartz tube (inner diameter 10 mm, outer diameter 13 mm) and extends into the process chamber.
  • the quartz tube is covered with a cylindrical aluminum antenna, and the antenna has a symmetrical 60 mm long (5 mm wide) slit corresponding to a half wavelength of the microwave (see Fig. 2 (c)). Two of them are provided, one of which is microwave It is installed facing the entrance.
  • One example of the plasma generation method is that the quartz tube and the process chamber are evacuated with a rotary pump, then argon gas is flowed into the quartz tube, the gas pressure is maintained at 100 to 200 Pa, and then the microwave ( Argon gas plasma is generated by irradiating the quartz tube with a frequency of 2.45 GHz. Thereafter, when the gas pressure is increased to atmospheric pressure by operating the switch lever of the rotary pump, non-equilibrium plasma is maintained under atmospheric pressure. The plasma generated in the plasma generator is blown into the plasma process chamber along with the gas flow.
  • Figure 1 8 shows the emission spectra when plasma is generated and maintained and only argon gas is used (Fig. 18 (a)) and when mixed gas of argon gas and oxygen gas is used (Fig. 18 (b)). Shown in The measurement conditions were both argon gas flow rate 6.0 [lZmin] and oxygen gas flow rate 0.07 [lZmin] (mixing ratio about 1%) in Fig. 18 (b). The microwave power is 600W.
  • Fig. 18 (a) spectral lines (Arl) of argon atoms were observed at 763.5nm and 772.4nm, whereas in Fig. 18 (b), the spectral lines in Fig. 18 (a) were observed.
  • a very strong oxygen line (01) was observed at 777.2 nm.
  • the oxygen mixing ratio is about 1% in this device, strong emission of oxygen nuclear power is observed. This is because the dissociation of oxygen molecules proceeds efficiently, and many oxygen atoms (oxygen radicals) are present in the plasma. ) Is considered to exist.
  • the microwave incident power was 600 W
  • the argon gas flow rate was 6.0 [lZmin]
  • only the oxygen gas flow rate (oxygen content) was changed to mix the oxygen gas.
  • the ratio was varied in the range of 1-15%. From FIG. 19, it can be seen that as the oxygen concentration increases, both the emission intensities of argon and oxygen atoms rapidly decrease. In fact, it can be visually observed that the emission intensity of the whole plasma decreases by mixing oxygen gas. It was measured. This is probably because oxygen exists in the molecular state, so that the microwave energy is used not only for ionization and excitation, but also for dissociation of oxygen molecules.
  • the plasma generator consists of a stainless steel process chamber with an inner diameter of 160 mm and a length of 340 mm, and an aluminum waveguide with an inner surface of 54 mm height and 109 mm width.
  • a quartz tube with an inner diameter of 6 mm (outer diameter of 8 mm) that penetrates the waveguide is connected to the process chamber, and is covered by an antenna with an outer diameter of 12 mm and an inner diameter of 10 mm with two slits cut.
  • a cross-sectional view showing the relationship between the antenna tube and the waveguide is shown in FIG.
  • a plunger (aluminum plate) for adjusting the electric field distribution of the microwave is installed in the waveguide, and the position of the plunger can be adjusted by a plunger position adjusting rod.
  • plasma is generated by the following procedure.
  • argon gas is injected into the quartz tube at a gas flow rate of 0.4 (lZmin).
  • a microwave is injected into the waveguide, an electric field is concentrated near the slit of the antenna, and discharge is generated by the electric field, so that plasma can be generated.
  • the plasma under atmospheric pressure can be generated by gradually increasing the gas pressure to atmospheric pressure.
  • the antenna tube in Fig. 23 (a) is a double tube consisting of an outer tube and an inner tube.
  • the outer tube has the same conditions as the antenna tube described above, except that the slit length is 65 mm or more, and the inner tube is accommodated between the outer tube and the quartz tube and is relative to the outer tube. Can be moved.
  • the slit width of the outer tube was set to 5mm.
  • FIG. 24 shows the discharge characteristics with respect to the slit length (discharge start power “minimum discharge maintenance power”).
  • the discharge start voltage is the power at which the microwave discharge power is gradually increased to start the plasma discharge.
  • the minimum discharge maintenance power is the power when the plasma is extinguished by gradually lowering the microwave incident power after plasma generation in the atmospheric pressure state.
  • the plasma is generated by the excitation electric field formed in the slit portion provided in the antenna tube, the impedance change in the shielding means such as the cavity before and after plasma ignition is small.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

 プラズマ点火前後のキャビティ内のインピーダンス変化が少ない上、キャビティの形状に影響され難く、プラズマの着火性を改善したプラズマ発生装置及びそれを用いたプラズマ生成方法を提供することを目的とする。  プラズマ生成用のガス9を導入し、大気中に排出する非導電性のガス流路管1と、該ガス流路管を取り巻く導電性アンテナ管2とを有し、該アンテナ管にマイクロ波7を照射し、該ガス流動管中のガスをプラズマ化するプラズマ発生装置において、  該アンテナ管2には、ガス流動管の管軸方向に沿って所定の長さのスリット3が形成されていることを特徴とする。  好ましくは、該スリットの長さは、照射するマイクロ波の半波長の整数倍に設定されていることを特徴とする。

Description

プラズマ発生装置及びそれを用いたプラズマ生成方法
技術分野
[0001] この発明は、プラズマ発生装置及びそれを用いたプラズマ生成方法に関し、特に、 大気中にお 、てマイクロ波によるプラズマを生成することを可能とするプラズマ発生 装置及びそれを用いたプラズマ生成方法に関する。
背景技術
[0002] 従来、大気圧中で発生させたプラズマを、高融点材料の溶接、半導体製造プロセ スにおける表面洗浄、金属材料等の表面の改質、微粒子の生成など、各種の工業 分野で利用することが行われている。また最近では、医療用器具の滅菌処理にもプ ラズマが利用されるなど、大気圧プラズマの用途が急速に拡大して 、る。
[0003] 大気圧中でのプラズマの生成方法としては、アーク放電によるプラズマの生成やマ イク口波によるガスの加熱方法などがある。
特許文献 1では、電極間に高周波電圧を印加し、アーク放電によりプラズマを発生 させることが開示されており、特に、該プラズマにより、注射針先端を加熱成形すると 共に殺菌処理を行うことが開示されている。
特許文献 1:特開平 6— 197930号公報
[0004] アーク放電による問題は、電極間に発生した電子やイオンが電極に衝突し、電極 自体が高温となり、電極が損耗することであり、また、電極を構成する金属材料の一 部がプラズマ中に放出され、プラズマに不純物が混入する可能性があることが挙げら れる。
これに対し、特許文献 2に示すように、石英パイプなどの非金属パイプにプラズマ用 のガスを供給し、該金属パイプの周囲に配置した導体により、パイプ中のガスをマイ クロ波加熱する方法では、導体に印加されたマイクロ波がパイプ中に侵入する励起 電界を形成し、該励起電界によりガスが加熱され電離状態となる、所謂、無電極放電 が可能であり、電極の損耗が無く不純物の混入も生じない。
特許文献 2:特開 2004 - 172044号公報 [0005] 図 1に特許文献 2のプラズマ発生装置 100の概略を示す。石英パイプ 101を包囲 する同軸形キヤビティ 102には、キヤビティ励振用アンテナ 105と内部電磁界検出用 ループアンテナ 106が接続されている。同軸形キヤビティ 102内において、石英パイ プ 101の上部側には石英パイプ 101を取り囲む上部中心導体 103と、下部側には同 様に石英パイプ 101を取り囲む下部中心導体 104が配置されている。
[0006] 図 1 (b)及び(c)は、図 1 (a)の同軸形キヤビティ 102内の断面図を示すものであり、 上部中心導体 103は、上端において同軸形キヤビティ 102の内面と導通している。ま た、下部中心導体 104は、図 1 (b)に示すように、内側導体 121と外側導体 122とが 空隙を設けて嵌合されるため、下部中心導体 104の内部にチョーク構造が形成され 、外部にマイクロ波が放出されるのを抑制している。さらに、下部中心導体 104の下 端は同軸形キヤビティ 102の内面と導通して 、る。
[0007] 次に、プラズマ発生装置 100の動作について説明する。同軸形キヤビティ 102内は 、高さがマイクロ波の半波長の整数倍に設定されているため、キヤビティ励振用アン テナ 105から入射力されたマイクロ波は、同軸形キヤビティ 102内で共振し、上部中 心導体 103と下部中心導体 104との間に、図 1 (b)に示すような励起電界 112を形成 する。この励起電界 112の影響により、石英パイプ 101内を通過するガス 110はプラ ズマ化されることとなる。この電界分布は TMモードの振動となって 、る。
[0008] 石英ノイブ 101内のガスがプラズマ化されると、プラズマは導体と同様な働きを持 つため、励起電界の分布は図 1 (c)の 113に示すように、同軸形キヤビティ 102の内 壁から石英パイプ 101内のプラズマ方向に変化し、同軸モード (TEMモード)の電界 となり、引き続き励起電界 113により、石英パイプ 101内のガスはプラズマ化されるこ ととなる。
[0009] このプラズマ点火の前後における励起電界の分布変化は、同軸キヤビティ 102内 のインピーダンス変化をもたらし、共振周波数を変化させることとなる。この周波数変 化に対応するため、特許文献 2では、内部電磁界検出用ループアンテナ 106からの 検出信号に基づきマイクロ波周波数の可変調整を行っている。また、インピーダンス 変化が最小となるようキヤビティの形状を選定することが示唆されている。
[0010] し力しながら、特許文献 2のように、石英パイプの周囲に離間した 2つの導体を配置 し、
導体間にギャップ Gを形成する方法では、プラズマ点火前後でインピーダンスの変化 が必然的に生じ、上述したような印加するマイクロ波周波数の調整が不可欠となる。 このため、周波数調整のための機構が必要となり、装置全体が複雑化し、高コストな ものとなる。また、キヤビティ 102の形状でインピーダンスの変化を最小とする方法を 採用する場合には (なお、特許文献 2には具体的な構成は開示されていない。)、キ ャビティ 102の形状が限定される上、例えば、石英パイプを複数本配置するなど多様 な変化に柔軟に対応することが困難なものとなる。
発明の開示
発明が解決しょうとする課題
[0011] 本発明が解決しょうとする課題は、上述した問題を解消し、プラズマ点火前後のキ ャビティ内のインピーダンス変化が少ない上、キヤビティの形状に影響され難ぐブラ ズマの着火性を改善したプラズマ発生装置及びそれを用いたプラズマ生成方法を提 供することである。
課題を解決するための手段
[0012] 請求項 1に係る発明は、プラズマ生成用のガスを導入し、大気中に排出する非導電 性のガス流路管と、該ガス流路管を取り巻く導電性のアンテナ管とを有し、該アンテ ナ管にマイクロ波を照射し、該ガス流動管中のガスをプラズマ化するプラズマ発生装 ¾【こ; i l /、て、
該アンテナ管には、ガス流動管の管軸方向に沿って所定の長さのスリットが形成さ れていることを特徴とする。
[0013] 請求項 2に係る発明は、請求項 1に記載のプラズマ発生装置において、該スリットは
、該ガス流路管のガスを排出する側に開口端を有していることを特徴とする。
[0014] 請求項 3に係る発明は、請求項 1に記載のプラズマ発生装置において、該スリットは
、該アンテナ管の内部に形成されて!、ることを特徴とする。
[0015] 請求項 4に係る発明は、請求項 1乃至 3のいずれかに記載のプラズマ発生装置に おいて、該スリットは、スリットの一部力 Sスリットの内側に突出した部分を有することを特 徴とする。 [0016] 請求項 5に係る発明は、請求項 1乃至 4のいずれかに記載のプラズマ発生装置に おいて、該アンテナ管は、該ガス流路管のガスを排出する側の端部が、該ガス流路 管に向力つて折れ曲がつていることを特徴とする。
[0017] 請求項 6に係る発明は、請求項 1乃至 5のいずれかに記載のプラズマ発生装置に おいて、該スリットの長さは、照射するマイクロ波の半波長の整数倍に設定されている ことを特徴とする。
[0018] 請求項 7に係る発明は、請求項 1乃至 6のいずれかに記載のプラズマ発生装置に おいて、該スリットは該ガス流路管の周囲に沿って少なくとも 2つ以上配置されている ことを特徴とする。
[0019] 請求項 8に係る発明は、請求項 1乃至 7のいずれかに記載のプラズマ発生装置に おいて、該ガス流路管は複数本配置され、各ガス流路管毎に該アンテナ管を備える ことを特徴とする。
[0020] 請求項 9に係る発明は、請求項 1乃至 8のいずれかに記載のプラズマ発生装置に おいて、該アンテナ管は、マイクロ波を伝播する導波管内に、該導波管を貫通して配 置されて!ヽることを特徴とする。
[0021] 請求項 10に係る発明は、請求項 1乃至 9のいずれかに記載のプラズマ発生装置を 用いたプラズマ生成方法において、該ガス流路管内の気圧を大気圧より低い気圧に 保持し、マイクロ波を照射してプラズマを点火するプラズマ点火工程と、該プラズマ点 火工程の後に、該ガス流路管内の気圧を大気圧状態とする大気圧工程とを有するこ とを特徴とする。
[0022] 請求項 11に係る発明は、請求項 1乃至 9のいずれかに記載のプラズマ発生装置を 用いたプラズマ生成方法において、第 1のガスを該ガス流路管内に供給し、マイクロ 波を照射してプラズマを点火するプラズマ点火工程と、該プラズマ点火工程後に、該 第 1のガスよりプラズマ化し難い第 2のガスを、第 1のガスと共に供給し、第 2のガスを プラズマ化することを特徴とする。
[0023] 請求項 12に係る発明は、請求項 10又は 11に記載のプラズマ生成方法において、 大気圧状態でプラズマを点火した後に、該ガス流路管と該アンテナ管とを相対的に 移動し、該ガス流路管のガス排出側の端部を該アンテナ管のスリット側の端部に近接 させる移動工程を有することを特徴とする。
[0024] 請求項 13に係る発明は、請求項 10乃至 12のいずれかに記載のプラズマ生成方 法において、該アンテナ管に照射されるマイクロ波はパルス駆動され、該パルス駆動 の休止期間が、プラズマ平均残存期間以内であることを特徴とする。
発明の効果
[0025] 請求項 1に係る発明により、アンテナ管に設けたスリットにより、励起電界を該スリット 部分に集中させ、ガス流路管内を通過するガスを、該スリット部分で効率的にプラズ マ化することが可能となる。し力も、励起電界はプラズマ点火前後においても、常にス リット部分で生じており、従来のようにプラズマ点火前後におけるインピーダンスの変 ィ匕も抑制することが可能となる。
[0026] 請求項 2に係る発明により、スリットはガス流路管のガスを排出する側に開口端を有 しているため、アンテナ管の先端より、ガス流路管のガスを排出する側に延びるブラ ズマトーチを安定的に形成することが可能となる。
[0027] 請求項 3に係る発明により、スリットがアンテナ管の内部に形成されているため、アン テナ管の内部でプラズマを安定的に形成することが可能となる。
[0028] 請求項 4に係る発明により、スリットはスリットの一部がスリットの内側に突出した部分 を有しているため、プラズマが点灯するに必要なマイクロ波のエネルギーをより低くす ることが可能となり、プラズマの着火性を改善できる。
[0029] 請求項 5に係る発明により、アンテナ管は、ガス流路管のガスを排出する側の端部
1S 該ガス流路管に向力つて折れ曲がっているため、アンテナ管の内部にプラズマを 安定的に形成することが可能となる。
[0030] 請求項 6に係る発明により、アンテナ管のスリットの長さは、照射するマイクロ波の半 波長の整数倍に設定されているため、スリット部分で安定した定在波を形成でき、励 起電界を効率的に集中させることが可能となる。
[0031] 請求項 7に係る発明により、アンテナ管には上記スリットが、ガス流路管の周囲に沿 つて少なくとも 2つ以上配置されているため、励起電界が集中する場所が、ガス流路 管の周囲に複数箇所形成され、ガス流路管を通過するガスをより多くの場所でプラズ マ化することが可能となり、安定したプラズマを生成することが可能となる。また、ガス 流路管の断面形状が大型化した場合でも、より安定したプラズマを生成することがで きる。
[0032] 請求項 8に係る発明により、ガス流路管は複数本配置され、各ガス流路管毎に該ァ ンテナ管を備えるため、複数のガス流路管内に同時にプラズマを生成することが可 能となる。しかも、本発明は、スリット部分における励起電界の集中でプラズマが生成 されているため、このように複数本のガス流路管及びアンテナを配置しても、プラズマ 点火前後におけるインピーダンス変化が抑制される。
[0033] 請求項 9に係る発明により、アンテナ管は、マイクロ波を伝播する導波管内に、該導 波管を貫通して配置されて 、るため、導波管を伝播するマイクロ波のエネルギーを効 率良くアンテナ管に供給することが可能となり、プラズマの着火性を改善することが可 能となる。しかも、導波管がアンテナ管を収容するシールド手段も兼用するため、ブラ ズマ発生装置をコンパクトィ匕すると共に、製造コストを抑制することが可能となる。
[0034] 請求項 10に係る発明により、上述したプラズマ発生装置を用いたプラズマ生成方 法において、ガス流路管内の気圧を大気圧より低い気圧に保持し、マイクロ波を照射 してプラズマを点火するプラズマ点火工程と、該プラズマ点火工程の後に、該ガス流 路管内の気圧を大気圧状態とする大気圧工程とを有するため、プラズマの着火性を 良好にすることができ、仮に、補助的な着火手段を有しない場合でも、ガス流路管に 設置されたアンテナのみでプラズマを点火することが可能となる。プラズマ点火後は 、大気圧にお!ヽても安定的にプラズマを生成維持することが可能である。
[0035] 請求項 11に係る発明により、上述したプラズマ発生装置を用いたプラズマ生成方 法において、第 1のガスを該ガス流路管内に供給し、マイクロ波を照射してプラズマを 点火するプラズマ点火工程と、該プラズマ点火工程後に、該第 1のガスよりプラズマ 化し難い第 2のガスを、第 1のガスと共に供給し、第 2のガスをプラズマ化するため、プ ラズマ化し難 、第 2のガスに対しても、プラズマの着火性を改善することが可能となる
[0036] 請求項 12に係る発明により、大気圧状態でプラズマを点火した後に、ガス流路管と アンテナ管とを相対的に移動し、ガス流路管のガス排出側の端部をアンテナ管のスリ ット側の端部に近接させる移動工程を有するため、ガス流路管内に発生したプラズマ を、容易にガス流路管外に導出することが可能となる。
[0037] 請求項 13に係る発明により、アンテナ管に照射されるマイクロ波はパルス駆動され 、該パルス駆動の休止期間が、プラズマ平均残存期間以内であるため、パルス駆動 によるプラズマ発生量を調整することが可能となると共に、休止期間直後のプラズマ 点火も円滑に行うことが可能となる。
図面の簡単な説明
[0038] [図 1]従来のプラズマ発生装置を示す図である。
[図 2]本発明のプラズマ生成部の概略を示す図である。
[図 3]本発明のプラズマ発生装置の概略図である。
[図 4]本発明のプラズマ発生装置において、複数のプラズマ生成部を有する場合を 示す図である。
[図 5]本発明のプラズマ発生装置において、単一のマイクロ波発生器を用いて複数 のプラズマ生成部を駆動する場合を示す図である。
[図 6]本発明のプラズマ発生装置の一例を示す斜視図である。
[図 7]図 6のプラズマ発生装置の断面図を示し、プラズマの生成時にアンテナ管を移 動する方法を説明する図である。
[図 8]プラズマの生成時にガス流路管を移動する方法を説明する図である。
[図 9]プラズマの生成時に金属製キャップを用いる方法を説明する図である。
[図 10]アンテナ管とシールド手段との位置関係を説明する図である。
[図 11]アーク放電を用いた補助点火手段を説明する図である。
[図 12]副アンテナ管を用いた補助点火手段を説明する図である。
[図 13]複数種類のガスを使用してプラズマの点火性を改善する方法を説明する図で ある。
[図 14]プラズマの生成時にマイクロ波をパルス駆動で導入する方法を説明するグラフ である。
[図 15]スリットをアンテナ管の内部に形成したプラズマ生成部の概略を示す図である [図 16]アンテナ管の端部を折り曲げた場合のプラズマ生成部の概略を示す図である [図 17]実施例 2で使用したプラズマ発生装置の概略図である。
[図 18]プラズマの生成時の発光スペクトル分布を示すグラフである。
[図 19]アルゴンガス中の酸素ガス含有量に対するプラズマ力 の発光強度の変化を 示すグラフである。
[図 20]入力するマイクロ波電力に対するプラズマ化らの発光強度の変化を示すダラ フである。
[図 21]実施例 3で使用したプラズマ発生装置の概略図である。
[図 22]導波管を貫通するアンテナ管や石英管の様子を示す図である。
[図 23]各種スリットの形状の違いを説明する図である。
[図 24]スリット長に対する放電開始電力及び最小放電維持電力の変化を示すグラフ である。
[図 25]スリット幅及びスリット形状に対する放電開始電力の変化を示すグラフである。 符号の説明
1 ガス流路管
2 アンテナ管
2' 副アンテナ管
3 スリット
4 プラズマトーチ
4' プラズマ
5, 40 シールド手段 (キヤビティ)
6 マイクロ波発生器
7, 11, 12, 13, 14, 61, 62, 63, 64 マイクロ波
8, 70, 71 ガス供給源
9, 74 ガス
10 マイクロ波強度調整手段
20 シールド板
21 容器 22 導波管
23, 24 蓋
26 ガス導入用パイプ
27 ガス排出用パイプ
28 封止手段
30 キャップ
41 マイクロ波導入口
42, 43 シールド手段の壁面
50 アーク放電用電極
51 高圧電源
72, 73 バルブ
80 マイクロ波入射電力のパルス波形
90 折り曲げ部
発明を実施するための最良の形態
[0040] 本発明のプラズマ発生装置及びそれを用いたプラズマ生成方法について、以下に 詳細に説明する。
(プラズマ生成部)
図 2 (a)には、プラズマ発生装置に使用されるプラズマ生成部の構造を示す。ブラ ズマ生成部は、石英管などの非導電性のガス流路管 1と、アルミ製パイプなどの導電 性アンテナ管 2から構成され、該ガス流路管 1を取り巻くように該導電性アンテナ管 2 が配置されている。
[0041] 本発明の特徴は、導電性アンテナ管 2にスリット 3を形成することである。このスリット 部分により、プラズマ生成部に照射されたマイクロ波の励起電界が集中することとなり 、該電界によりプラズマが生成 '維持が可能となる。
該スリット 3の形状として、スリット部分の長さ Lは、プラズマ生成部に照射するマイク 口波の波長えに対し、半波長の整数倍 (η λ Ζ2 ;ηは 1以上の整数)となるように設定 されている。また、スリット部分の幅 Dは、特に限定されるものではないが、幅 Dが狭く なるに従い、スリット部分に発生する励起電界の強度が増加し、ガス流路管を通過す るガスのプラズマ化を促進することが可能となるが、他方、ガス流路管の周囲におけ る励起電界が発生する領域が減少することとなるため、プラズマ化できるガスの量が 減少、することにちなる。
[0042] さらに、スリット部分の幅 Dは、照射されるマイクロ波の電力強度やスリット部分近傍 の気体の絶縁性なども考慮し、決定することが好ましい。つまり、マイクロ波の照射電 力が大きくなるに従い、スリット部分で絶縁破壊が生じ、放電が発生することとなる。こ のような放電は、ガス流路管内に形成される励起電界を減少させると共に、アンテナ 管のスリット部分を損耗する原因となる。このため、照射されるマイクロ波の電力を考 慮し、スリット部分の幅 Dを、絶縁破壊が生じない程度まで広げることが必要である。 また、スリット部分近傍には、通常、プラズマ発生装置外の空気と同じ気体が存在し ているが、 SFなどの絶縁性の高い気体を充填することで、スリット部分の幅 Dを狭く
6
しても絶縁破壊を抑制することも可能である。
[0043] プラズマ生成部の動作にっ 、て説明する。
ガス流路管 1にプラズマ化するガス 9を導入し、一方向にガスを流し続ける。この状 態で、マイクロ波 7をプラズマ生成部に照射すると、アンテナ管 2のスリット部分でマイ クロ波の定在波が生成され、励起電界の集中が発生する。該励起電界は、ガス流路 管内に侵入しガスを加熱しプラズマを生成する。生成されたプラズマは、電子温度が 数万度以上の高温であるが、イオン温度又はガス温度が数十〜数百度程度の非平 衡プラズマである。生成されたプラズマはガスの流れに沿ってガラス流路管 1の出口 方向(図の左方向)に進み、特に、図 2 (a)に示した形状のスリットを用いた場合には、 流路管 1の出口(あるいはアンテナ管 2のスリットが形成された端部)よりトーチ状のプ ラズマ (「プラズマトーチ」 t ヽぅ)が放出される。
[0044] 使用されるガスは、アルゴン、酸素、ヘリウム、水素など各種気体が単独又は混合し て利用可能であり、プラズマの用途に応じて必要なガスが選択される。
また、後述するように、プラズマの着火性を改善するため、プラズマ化し易いガス( 第 1のガス)を最初にガス流路管へ導入し、プラズマ点火後、第 1のガス成分の一部 を他の種類のガス (第 2のガス)に置換したり、あるいは、第 1のガス成分を第 2のガス に徐々に置換し、最終的に第 2のガスのみでプラズマを生成することも可能である。 [0045] プラズマトーチの特性である、電子温度、ガス温度、プラズマ密度、ラジカルガスの 密度、又はトーチの長さ (ガス流路管の開口部あるいはアンテナ管の端部力もプラズ マトーチ先端までの長さ)などは、プラズマ生成部に照射するマイクロ波の電力ゃガ ス流量等を調整することにより、変化させることが可能である。
[0046] アンテナ管 2に設けられるスリット 3の数は、図 2 (a)のように一つに限られるものでは ない。図 2 (b)は、図 2 (a)の矢印 X— Xにおける断面図を示しており、ガス流路管 1に 対しアンテナ管 2は同心状に配置されており、アンテナ管 2の断面形状は、スリット 3 の関係で C字形状となる。
[0047] 図 2 (c)及び (d)は、アンテナ管 2の応用例を示すための図 2 (b)と同様の断面図で あり、図 2 (c)のようにスリット 3, 3,を 2箇所に配置したり、図 2 (d)のようにスリット 3, 3, , 3"を 3箇所に配置するように、複数のスリットをガス流路管 1の周囲に沿って配置す ることが可能である。
このように複数のスリットを形成することで、各スリットにおいて励起電界が形成でき 、ガス流路管を通過するガスをより多くの場所でプラズマ化することが可能となる。
[0048] 図 2 (c)及び (d)に示すように、スリット部分の幅 Dとスリット間のアンテナ管壁の長さ Rとの関係は、極めて重要であり、比 RZDは 1以上、好ましくは 2以上であることが励 起電界を安定的に集中させる上では好ましい。これは、スリット間のアンテナ管壁は、 接地電極として十分に機能する必要があるためである。また、マイクロ波の周波数に 対し十分に接地電極として機能するためには、スリット間の長さ R、スリット部分の長さ L、アンテナ管の管壁の厚み d (不図示)、及びアンテナ管を形成する材料の電気抵 抗率 pなども考慮する必要がある。また、これらの条件は、アンテナ管に照射される マイクロ波の周波数 Vにも依存する。
[0049] また、スリット部の形状としては、スリット内に形成される励起電界の定在波において 、電界が集中する箇所の電界強度を高めるような形状を採用することも可能である。 具体的には、スリットの長さ方向の形状については、図 2 (a)に示す長方形のものに 限らず、電界が集中する部分を形成するためスリット幅 Dを局所的に狭く構成したり、 スリットを形成する管壁の断面形状にっ 、ては、図 2 (b)乃至 (d)のように略コ字状と するものに限らず、テーパー状のように、よりテーパー状の先端部分に電界が集中す る形状が好ましい。
[0050] 上述したスリットの形状及び配置については、図 2 (a)示すように、アンテナ管の端 部 (ガス流路管のガスを排出する側の端部)に開口端を有するスリットを例示したが、 このようなスリットを使用する場合には、アンテナ管の先端より、ガス流路管のガスを排 出する側に延びるプラズマトーチを安定的に形成することが可能となる。
[0051] 他方、アンテナ管の内部にプラズマを安定的に形成するためには、図 15のように、 アンテナ管 2の内部にスリット 3を形成する。これにより、スリット 3の近傍のガス流路管 1の内部にプラズマ 4'を生成することが可能となる。アンテナ管から、さらにはガス流 路管から外部に延びるプラズマトーチは、プラズマを直接照射する場合には好適に 利用可能であるが、プラズマが直接照射されないようにする場合には、ガス流路管の 先端とアンテナ管の先端との距離を十分に確保する必要があり、装置が大型化する と共に、該距離の調整も煩雑化する。図 15のアンテナ管 2を使用することにより、この ような不具合を解消することが可能となる。
[0052] アンテナ管の内部にプラズマを形成する他の方法として、図 16に示すようなアンテ ナ管の形状を採用することも可能である。図 16 (a)のアンテナ管は、図 2 (a)のものと 比較的類似した形状を示しているが、図 16 (a)の矢印 X—Xの断面図である図 16 (c )のように、アンテナ 2管の端部 (ガス流路管 1のガスを排出する側の端部)がガス流 路管 1に向力つて折れ曲がつている。この折れ曲がり部 90により、プラズマ 4'はアン テナ管 2の内部に形成され、アンテナ管から長く突出するプラズマトーチを形成する ことが抑制される。
[0053] さらに、図 16 (b)に示すアンテナ管は、図 15のものに類似し、アンテナ 2管の端部 に折れ曲がり部 90を形成したものである。図 16 (b)の矢印 X—Xの断面図は、図 16 ( c)と同様となる。
図 15や図 16 (b)のように、スリットをアンテナ管の内部に形成したり、アンテナ管の 端部に折り曲がり部を形成することで、アンテナ管内部にプラズマを形成するだけで 無ぐプラズマの着火性を向上できることが、本発明者により確認されている。
また、図 15や図 16 (b)のスリットの形状として、図 23 (c)に示すように、スリットの一 部にスリットの内側に張り出した突出部分を設けることで、電界が集中し易い部分を 設けることができ、よりプラズマの着火性を向上することができる。
なお、以下の説明では、図 2 (a)に示された形状のスリットの例を中心に説明するが 、図 15又は図 16に示すようなスリットであっても同様に適用できることは言うまでもな い。
[0054] (プラズマ発生装置)
図 3に、本発明に係るプラズマ発生装置の基本的構成を概略図で示す。 プラズマ生成部を構成するガス流路管 1には、プラズマを生成するガスを蓄積した ガスボンベなどのガス供給源 8より所定流量のガス 9が供給される。ガス流路管 1を取 り囲むアンテナ管 2は、マイクロ波を閉じ込めるためのシールド手段 5の中に収容され ており、アンテナ管 2の一端側 (スリット 3が形成されていない方の端部側であり、図 1 5のようにアンテナ管の内部にスリットがある場合には両端部側。)は、シールド手段 5 と電気的に接続されている。シールド手段とは、従来のキヤビティに相当する部分を 意味し、以下では、キヤビティを含む概念として「シールド手段」という表現を用いる。
[0055] シールド手段 5内には、マイクロ波発生器 6よりマイクロ波 7が導入され、アンテナ管 2にマイクロ波 7が照射される。アンテナ管 2のスリット 3で、マイクロ波は定在波を形成 し、励起電界を生成する。該励起電界により、ガス流路管 1内を通過するガスはブラ ズマ化され、ガス流路管 1の開口部力 排出されるプラズマトーチ 4を形成する。
[0056] シールド手段 5は、マイクロ波を閉じ込めることが可能なものであれば、特に、材質 や形状が限定されるものではないが、プラズマ生成部をシールド手段内に保持し、マ イク口波を効率的に反射するものとしてステンレス製の容器を使用することが好ましい また、シールド手段 5内に効率的にマイクロ波を閉じ込めるためには、マイクロ波が 共振し易い形状とすることが好ましぐシールド手段を構成する一部の壁面を移動可 能とし、シールド手段内の容積や形状を可変調整可能とすることができる。
[0057] 図 21及び 22に示すように、マイクロ波を伝播させる導波管自体をシールド手段とし て兼用することも可能である。アンテナ管が導波管を貫通するよう構成し、アンテナ管 のスリットを導波管内に配置している。これにより、導波管を伝播するマイクロ波のェ ネルギーを効率良くアンテナ管に供給することが可能となり、プラズマの着火性を一 層改善することが可能となる。なお、導波管がアンテナ管を収容するシールド手段も 兼用するため、プラズマ発生装置をコンパクトィ匕すると共に、製造コストを抑制するこ とも可能となる。
[0058] 図 4は、シールド手段 5内に複数のプラズマ生成部を配置したものである。本発明 の特徴として、プラズマは、アンテナ管 2に形成されたスリット 3に生じる励起電界によ り発生するため、シールド手段 5内に複数のプラズマ生成部を配置した場合にでも、 良好にプラズマを生成 ·維持することが可能である。なお、プラズマ生成部を構成す る各ガス流路管 1には、図 4に示すように、ガス供給源 8より供給されるガスを分岐して 供給する方法や、各ガス流路管 1に対応してガス供給源を配置することも可能である
[0059] また、図 5に示すように、各プラズマ生成部に対応してシールド手段 5を個別に設け ることも可能である。これは、複数のプラズマ生成部が離散的に配置されたり、各ブラ ズマ生成部のアンテナ管が異なる向きに配置される場合などには、単一のシールド 手段で全てのアンテナ管を包囲するより、各プラズマ生成部に対応したシールド手段 を設ける方が、マイクロ波の損失を抑制し、効率的にプラズマを生成することができる なお、導波管内にアンテナ管を貫通させる場合には、同一の導波管内に離散的に アンテナ管を配置したり、アンテナ管同士の間や分岐した導波管など、導波管の途 中にマイクロ波の強度を増幅調整する強度調整手段を配置することも可能である。
[0060] 複数のシールド手段 5内にマイクロ波を供給する方法としては、個々のシールド手 段に対応したマイクロ波発生器を設けることも可能であるが、図 5に示すように、単一 のマイクロ波発生器 6からのマイクロ波 11を分岐し、分岐したマイクロ波 12, 13を各 シールド手段 5に供給するよう構成することができる。ただし、シールド手段内に供給 するマイクロ波を最適な強度とするため、少なくとも一方のマイクロ波 12を導波する導 波管の一部に、マイクロ波の強度を調整するための強度調整手段 10を介在させるこ とも可能である。なお、本発明のプラズマ発生装置において、マイクロ波発生器とシ 一ルド手段との間には、必要に応じて、アイソレータやチューナーを設置することが 可能であることは、言うまでもない。 [0061] 図 6は、プラズマ発生装置の具体例を示す斜視図である。
図 6は、シールド手段としてステンレス製の円筒容器 21を用いたものであり、容器 2 1の両端はフランジなどを利用して蓋 23, 24で封止されている。また、容器 21の一部 にはマイクロ波を導入するための導波管 22が接続されている。容器 21内には、ブラ ズマ生成部を構成するガス流路管 1とアンテナ管 2が収容され、ガス流路管 1は、蓋 2 3及び 24を貫通して配置されて 、る。またアンテナ管 2のスリットが形成されて ヽな ヽ 部分に接するようにシールド板 20が配置されている。シールド板 20は、容器 21内に 導入されるマイクロ波を共振させるために、容器 21の管軸方向に移動調整が可能な ように設定されている。図 6においては、容器 21の内部を観察できるように、容器 21 の一部を切除した様子を図示して 、る。
[0062] ガス流路管 1には、ガス導入用パイプ 26が接続され、ガス流路管 1に不図示のガス 供給源よりガスが供給される。図 6に示すように、ガス流路管 1と導入用パイプ 26とは 容器 21内で接続するだけでなぐ後述する図 8又は 9で図示するように容器 21外で 接続するように構成することも可能である。
[0063] また、ガス流路管 1の排出口側には、シリコンゴムなどの封止手段 28を介してガス 排出用パイプ 27が接続されている。排出用パイプ 27の他端は、不図示の真空ボン プに接続され、ガス流路管 1内の気圧を所定の圧力状態に設定するために使用され る。プラズマ点灯後は、封止手段 28及び排出用パイプ 27は、ガス流路管 1から取り 外され、ガス流路管 1内の圧力は大気圧状態に設定される。
[0064] また、封止手段 28などを省略し、図 17又は図 21に示すように、ガス流路管の排出 口側をプロセスチャンバ一とし、必要に応じてチャンバ一に真空ポンプを接続し、チ ヤンバー内の気圧を可変調整するよう構成することも可能である。
[0065] (プラズマ生成方法)
次に、図 6のプラズマ発生装置を用いたプラズマ生成方法について説明する。 図 7は、図 6の矢印 X—Xにおける断面図を示したものである。まず、図 7 (a)のよう に、ガス流路管 1に封止手段 28及び排出用パイプ 27を接続し、排出用パイプ 27の 他端に接続される真空ポンプによりガス流路管 1内の空気を外部に排出する。そして 、引き続き真空ポンプを動作させながら、導入用パイプ 26から所定流量のガスをガス 流路管 1に流し、ガス流路管 1内の気圧を大気圧( 105Pa程度)より低 、圧力( 102
103Pa程度。なお、マイクロ波の周波数や電力、さらにはプラズマ化するガスの種類 に応じて設定圧力は変化する。 )に保持する。
[0066] 導波管 22よりマイクロ波を入射し、アンテナ管 2により、プラズマトーチ 4を発生させ る。プラズマ点火後に、必要に応じてシールド板 20を若干移動し、マイクロ波の共振 状態を微調整することも可能である。プラズマの発生が安定状態に達した後、図 7 (b
)のように、封止手段 28及び排出用パイプ 27をガス流路管 1より取り外し、ガス流路 管 1内を大気と連通状態とする。
次に、図 7 (c)のようにアンテナ管 2を矢印 Aの方向に移動させ、プラズマトーチをガ ス流路管 1の開口部力も外部に導出させる。プラズマトーチ 4は、必ずしもガス流路管
1の外に導出する必要はないが、プラズマを使用する用途に応じては、図 7 (c)のよう にプラズマトーチを外部に導出することも可能である。
[0067] 図 8は、図 7と異なりガス流路管 1を移動させることにより、プラズマトーチをガス流路 管 1の外部に導出する方法を示したものである。
図 8は図 7と同様に、プラズマ発生装置の断面図を示しており、図 8 (a)は図 7 (a)と 同様に、ガス流路管 1の内部を大気圧より低い状態に維持してプラズマを点火した状 態を示すものである。
[0068] プラズマの発生が安定状態に達した後、図 8 (b)のように、封止手段 28及び排出用 ノイブ 27をガス流路管 1より取り外し、ガス流路管 1内を大気と連通状態とする。そし て、図 8 (c)のようにガス流路管 1を矢印 Bの方向に移動させ、プラズマトーチ 4をガス 流路管 1の開口部力も外部に導出させる。図 7又は図 8のように、ガス流路管 1とアン テナ管 2とは相互に相対的に移動させることが可能であり、必要に応じて一方又は両 方を移動させ、プラズマトーチをガス流路管の外部に導出させる。
[0069] 上述したようにプラズマトーチをガス流路管の外部に導出させるだけでなぐプラズ マトーチをガス流路管の内部に収容したり、生成したプラズマと外部気体との接触を 抑制するため、図 7及び 8のガス流路管とアンテナ管との相対的な移動方向を逆に設 定することも可能である。
[0070] 図 9には、金属製キャップ 30を用いて、プラズマトーチ 4をガス流路管 1の外部に導 出する方法にっ 、て説明する。
図 9もプラズマ発生装置の断面図を示したものであり、図 9 (a)のように、ガス流路管 1の開口端付近には、蓋 23又はガス流路管 1の端部に密着する金属製キャップ 30を 配置する。該キャップ 30には、排出用パイプ 29が接続され、キャップ 30が蓋 23等に 密着した状態で、排出用パイプに接続された真空ポンプを動作させることにより、図 7 (a)などと同様にガス流路管 1の内部を大気圧より低い気圧状態に維持することが可 能となる。
[0071] マイクロ波を導波管 22より導入し、プラズマを点火させる。プラズマの状態が安定し た後に、図 9 (b)のように、該キャップを取り外し、プラズマトーチ 4をガス流路管 1の外 部に導出させる。図 9の方法では、ガス流路管 1及びアンテナ管 2を相対的に移動さ せる必要が無ぐ可動部を極力少なく構成することができる。また、キャップ 30は、プ ラズマトーチに近接して配置される可能性があるため、金属などの高融点材料で構 成することが好ましい。
[0072] 図 10は、プラズマ生成部を取り囲むシールド手段 40とアンテナ管 2との位置関係を 説明する図である。
シールド手段 40には、マイクロ波を導入する開口 41が形成されており、また、アン テナ管 2のスリット 3の開口が配置される側に近接して配置される壁面 42と、アンテナ 管 2のスリット 3と反対側に接触する壁面 43とを有している。
[0073] 壁面 42と 43との間隔 Wは、上述したように導入されるマイクロ波がシールド手段 40 内で共振するように、所定の間隔に設定されている。
また、アンテナ管 2と壁面 42との間隔 Sは、近接させると両者の間に放電が生じや すくなるため、スリットの幅 Dよりも大きな距離を維持するよう設定することが好ましい。
[0074] (補助点火手段)
図 6乃至 9においては、プラズマの点火に際して、ガス流路管 1の内部の気圧を大 気圧より低 ヽ状態に維持することで、プラズマの点火を容易に実現する方法にっ 、 て説明したが、本発明は、これらの方法に限定されるものでは無ぐ例えば、図 11に 示すようにアーク放電手段や、図 12に示すようにマイクロ波加熱手段などの補助的 な点火手段を組み合わせて用いることも可能である。このような補助点火手段は、大 気圧中でのプラズマの点火を容易にすることが可能であり、図 6乃至 9で述べたような 排気用パイプや真空ポンプなどを不要ある 、はその役割を軽減し、プラズマ発生装 置の構成を簡便なものとすることができる。
[0075] アーク放電手段としては、図 11に示すように 2つの電極 50を、ガス流路管 1内に突 出するように配置し、両者の間に高電圧源 51によりアーク放電を行う。一度放電した ガスは、アンテナ管 2が形成する励起電界により容易にプラズマ化されるため、ガス 流路管 1内を大気圧より低い気圧状態に維持する必要が無い。また、アーク放電は 連続放電である必要は無ぐパルス状の放電であっても良い。当然、アンテナ管 2に よるプラズマが点灯した後は、アーク放電は停止される。
[0076] 図 12では、ガス流路管 1の上流側に補助点火用の副アンテナ管 2'を配置し、主ァ ンテナ管 2によるプラズマ化に先立ち、ガスの一部をプラズマ化させる方法を示すも のである。
各アンテナ管 2, 2'を取り囲むシールド手段 5, 5'は、図 12のように、個別に設ける だけでなぐ単一のシールド手段で共通化することも可能である。ただし、各アンテナ 管に適合したマイクロ波を照射させるためには、各シールド手段を別々に設けること が好ましい。
[0077] 副アンテナ管 2'では、ガス流路管内を通過するガスの一部を、プラズマ化すること が可能であれば良ぐ例えば、スリットの幅を主アンテナ管 2より狭くし、励起電界を局 所的に高めるよう構成することができる。また、ガス流路管 1の口径を副アンテナ管 2' の場所では狭くし、副アンテナ管 2'自体も主アンテナ管より狭い口径として、励起電 界を高くする工夫を施すことも可能である。
[0078] 2つのアンテナ管にマイクロ波を供給するためのマイクロ波発生器 6を共有する場 合には、図 12に示すように、マイクロ波発生器 6から出射されるマイクロ波 61を分岐 し、一方のマイクロ波 62を主アンテナ管 2に照射する。また、他方のマイクロ波 63は、 マイクロ波遮断手段 60を介してマイクロ波 64とし、副アンテナ管 2'に照射するよう構 成する。マイクロ波遮断手段 60は、補助点火を行う際には、マイクロ波 63を導波し、 補助点火が不要になるとマイクロ波 63を遮断する。また、分岐したマイクロ波の導波 管には、必要に応じて、マイクロ波の強度を調整するための調整手段 (不図示)を配 置することも可能である。
[0079] 図 13は、プラズマの点火性を改善するための他の方法を示す図であり、ガスの種 類によりプラズマ化するためのエネルギーが異なる特性を利用するものである。
70, 71は、異なる種類のガスを供給するためのガス供給源であり、各ガスの供給は 、ノ ノレブ 72, 73【こより ff¾御されて!/、る。
最初に、ガス供給源 70に入れられた、プラズマ化し易いガスを、バルブ 72を介して ガス流 74として、ガス流路管 1に供給する。そして、マイクロ波をアンテナ管 2に照射 してプラズマトーチ 4を生成する。
[0080] 次に、バルブ 72を徐々に閉塞させると同時に、バルブ 73を開放し、ガス流路管 1に 供給するガスを、ガス供給源 70からガス供給源 71に切り替える。ガス供給源 71から 供給されるガスはプラズマ化し難 、特性を有して 、ても、既にガス供給源 70からのガ スによりプラズマが発生しているため、容易にプラズマ化することが可能となる。当然 、ガス供給源 70及び 71からのガスを、共に供給し続けることも可能である。
このようなプラズマ化し易 、ガスとしては、アルゴンガスなどが挙げられる。
[0081] (プラズマのパルス駆動)
本発明のプラズマ発生装置では、プラズマ生成部のアンテナ管に供給するマイクロ 波の出力を調整することにより、発生するプラズマの量を調整することが可能である 力 スリット幅が固定されている場合には、照射されるマイクロ波の出力が一定以上で ないと、プラズマの生成 '維持が困難である。このため、プラズマの発生量を連続的に 調整することが困難となるため、本発明のプラズマの生成方法では、パルス駆動によ りこの欠点を補っている。
[0082] 図 14は、マイクロ波発生器力 発生するマイクロ波の電力変化を模式的に示すダラ フであり、マイクロ波発生器に供給される駆動電力波形の典型的な形状を示すもの である。パルス駆動の周期 Tは、 ON期間 tlと OFF期間(休止期間) t2からなり、パル スのデューティー比 tlZTを調整することにより、プラズマの発生量を連続的に変化 させることが可會 となる。
[0083] ただし、プラズマの消灯期間となる休止期間 t2は、長くなり過ぎるとプラズマの再点 火が困難となるため、安定的なパルス駆動を実現するには、該休止期間 t2を、プラズ マが残存する平均残存期間内とすることが好ましい。プラズマの平均残存期間とは、 プラズマが生成されてから、プラズマが周囲のガスと接触しプラズマ状態が消滅する までの時間の平均値を意味し、ガスの密度やプラズマ化されたガスの運動エネルギ 一などに依存して変化する。
実施例 1
[0084] 本発明に係るプラズマ発生装置を用いた実験結果について、説明する。
図 2に示すようなプラズマ生成部として、ガス流路管には石英パイプ(内径 20mm, 外径 22mm)を用い、アンテナ管にはアルミニウム製パイプ(内径 26mm,外径 28m m)を用いた。アンテナ管には、幅 Dが 5mm、長さ Lが 60mmのスリットを 1つ形成し た。
[0085] アンテナ管及びガス流路管からなるプラズマ生成部を、シールド手段となる内径 16
Omm、長さ 1500mmのチャンバ一内に配置した。
ガス流路管内を 102Paに減圧すると共に、ガス流量 10 (1/min)のアルゴンガスを ガス流路管に導入し、さらに、マイクロ波入射電力 600Wのマイクロ波 (周波数
2. 45GHz)をチャンバ一内に導入した。
[0086] プラズマ点火後に、ガス流路管内を大気圧(105Pa)に開放し、アンテナの先端力 伸びるプラズマトーチを観察した。プラズマトーチの長さは、約 50mmであり、マイクロ 波を供給して ヽる期間は、安定的に点灯して ヽることを確認した。
実施例 2
[0087] 次に、図 17に示すプラズマ発生装置を用いて実験を行った。
プラズマ発生装置は、大きく二つの部分に分けることができ、一つは、プラズマ生成 用チェンバー (Plasma Production Chamber)で、もう一つは、プロセス用チェンバー (P rocess Chamber)である。プロセスチェンバーを設けたことで、様々な対象物へのラジ カル照射が可能となっている。プラズマ生成用チェンバーの内部はアルミニウム製シ 一ルド板で仕切られ、その中心軸を、石英管 (内径 10mm、外径 13mm)が通り、プロ セス用チェンバー内へ延びている。更に石英管は、円筒状のアルミニウム製アンテナ で覆われており、アンテナにはマイクロ波の半波長に相当する長さ 60mm (幅は 5m m)のスリットが対称位置(図 2 (c)参照)に二本設けられ、その内の一本がマイクロ波 の入射口を向 ヽて設置されて ヽる。
[0088] プラズマ発生方法の一例は、石英管内及びプロセスチェンバー内をロータリーポン プで排気後、石英管内にアルゴンガスを流し、ガス圧を 100〜200Paに維持した後 、導波管を通じてマイクロ波 (周波数 2.45GHz)を石英管へ向けて照射することで、ァ ルゴンガスプラズマを生成する。その後、ロータリーポンプの切り替えレバーを操作し 、ガス圧力を大気圧まで上げると、大気圧下で非平衡プラズマが維持される。プラズ マ生成部で発生したプラズマはガス流と伴に、プラズマプロセスチェンバー内へ吹き 出す。
[0089] (プラズマの発光スペクトル観察)
プラズマを生成維持し、アルゴンガスのみを使用した場合(図 18 (a) )と、アルゴン ガスと酸素ガスの混合ガスを使用した場合 (図 18 (b) )の発光スペクトルの様子を図 1 8に示す。測定条件は、共にアルゴンガス流量 6.0 [lZmin]とし、図 18 (b)では酸素 ガス流量 0.07[lZmin] (混合比約 1%)とした。また、マイクロ波入射電力は、 600Wで ある。
[0090] 図 18 (a)では、 763.5nmと 772.4nmの位置でアルゴン原子のスペクトル線 (Arl)が観 測されたのに対し、図 18 (b)では図 18 (a)のスペクトル線に加えて、 777.2nmの位置 に酸素原子のかなり強 、スペクトル線 (01)が観測された。本装置では酸素混合比が 約 1%であるにもかかわらず酸素原子力 の強い発光が観測されており、これは、効 率良く酸素分子の解離が進み、プラズマ中に多くの酸素原子 (酸素ラジカル)が存在 しているものと考えられる。
[0091] 次に、 Arl(763.5nm)と OI(777.2nm)の発光強度について、酸素ガス混合比、および マイクロ波入射電力への各依存性を調べた。その結果を図 19 (酸素ガス混合比への 依存性)、図 20 (マイクロ波入射電力への依存性)に示す。
[0092] 酸素ガス混合比依存性につ!、て調べるため、マイクロ波入射電力を 600W、ァルゴ ンガス流量 6.0[lZmin]とし、酸素ガス流量 (酸素の含有量)のみを変化させ、酸素 ガス混合比を 1〜15%の範囲で変化させた。図 19より、酸素濃度が増加するにつれ 、アルゴン及び酸素原子の発光強度が共に急激に減少していることが分かる。実際、 プラズマ全体の発光強度が酸素ガスを混合することにより減少することが目視でも観 測された。これは、酸素が分子状態で存在するため、マイクロ波のエネルギーが電離 や励起だけではなく酸素分子の解離にも使われるためと考えられる。
[0093] 次に、プラズマ発生状態のマイクロ波入射電力への依存性について調べるため、 アルゴンガス流量 6.0[lZmin]、酸素ガス流量 0.07[lZmin] (酸素混合比約 1%)と し、マイクロ波入射電力を 300〜800Wの範囲で変化させた。図 20より、マイクロ波 入射電力を増加させた場合、アルゴン原子の発光強度は大きく変化しないのに対し て、酸素原子の発光強度はマイクロ波入射電力と共に上昇しているのが分かる。酸 素分子の解離エネルギーはアルゴン原子の電離エネルギーよりもかなり低いため、 マイクロ波入射電力の増加分がアルゴン原子ではなく酸素分子の解離によって消費 されて 、くためだと考えられる。
実施例 3
[0094] 次に、図 21に示すプラズマ発生装置を用いて実験を行った。
プラズマ発生装置は、ステンレス製の内径 160mm、長さ 340mmのプロセスチャンバ 一と、内面が高さ 54mm、幅 109mmのアルミ製の導波管によって構成されている。導 波管を貫通する、内径 6mm (外径 8mm)の石英管はプロセスチャンバ一に接続され ており、 2本のスリットが切られた外径 12mm、内径 10mmのアンテナによって覆われ ている。アンテナ管と導波管との関係を示した断面図を図 22に示す。
[0095] 導波管内には、マイクロ波の電界分布を調節するためのプランジャー (アルミ板)が 設置されており、プランジャー位置調節棒でプランジャーの位置を調節できるように なっている。
[0096] 図 21のプラズマ発生装置では、一例として、プラズマは以下の手順で生成される。
まず、プロセスチャンバ一内及び石英管内の空気をロータリーポンプで排気した後、 アルゴンガスをガス流量 0.4 (lZmin)で石英管内に注入する。次に、導波管内にマイ クロ波を投入すると、アンテナのスリット付近に電界が集中し、その電界により放電が 起き、プラズマを生成することができる。その後、ガス圧を徐々に大気圧まで上昇させ ることにより大気圧下でのプラズマを生成することができる。
[0097] 次に、スリット長の最適値を求めるために、図 23 (a)のようなスリット長を変化させる ことのできるアンテナ管を用いた。図 23 (a)のアンテナ管は、外管と内管の二重管で 構成され、外管は、上述したアンテナ管と同様の条件であり、ただし、スリット長が 65 mm以上であり、内管は、外管と石英管との間に収容され外管に対して相対的に移 動可能なものとした。なお、外管のスリット幅は 5mmに設定した。
[0098] 図 24にスリット長に対する放電特性 (放電開始電力'最小放電維持電力)を示す。こ こで、放電開始電圧とは、マイクロ波入射電力を徐々に上げ、プラズマの放電が開始 した電力のことである。また、最小放電維持電力とは、大気圧状態でプラズマ生成後 、マイクロ波入射電力を徐々に下げ、プラズマが消滅したときの電力のことである。
[0099] 図 24より、図 23 (a)のアンテナ管が 55mmのスリット長に設定されている場合にお いて、最も低い放電開始電力を持つことが分力つた。また、最小放電維持電力はほと んど変化はない。
[0100] 次に、スリット長を 53mmとして、スリットの幅(3, 4, 5mmの 3種類)とスリットの形状が 異なるアンテナ用いて、その放電特性を調べた。図 25にスリット幅及びスリットの形状 に対する放電開始電力の変化を示す。
[0101] 図 25の普通形状スリット(図 23 (b)のスリット形状)のグラフより、今回実験を行った 範囲においては、スリット幅が最も大きい 5mmの場合に、放電開始電力が最小にな つていることが分かる。また、普通形状スリットと突起形状スリット(図 23 (c) )を比較し てみると、突起形状スリットの方が、放電開始電圧が低くなつていることが分かる。な お、放電開始電力が最低となる図 25のスリット幅 5mmにおける突起形状スリットのサ ィズは、直径 5mmの穴を 2mm間隔であけた場合に相当し、対向する突起の間隔は 約 3mmとなる。
[0102] 突起による放電開始電力の低下は、突起部に電界が集中するというマイクロ波の性 質から、突起形状スリットの方がより電界が集中し、低いエネルギーでもプラズマを生 成することができたと考えられる。実施例 1や 2の装置では、放電開始電力が 500W 程度であつたのに比べ、実施例 3のように導波管にアンテナ管を貫通させた場合に おいては、かなり低い電力でプラズマを生成できることが分かる。つまり、導波管内に アンテナを設置することにより、装置の小型化と同時に、プラズマの生成効率も上げ ることがでさた。
[0103] また、大気圧プラズマを生成するためには、上述の実験例では、低気圧中(約 100 Pa)でプラズマを着火させた後、徐々に気圧を上げ、大気圧プラズマを生成していた 。これに対し、実施例 3の最適化したアンテナでは、マイクロ波入射電力 500Wにお いて、直接、大気圧下でのアルゴンガスのプラズマの着火に成功している。
産業上の利用可能性
以上説明したように、本発明では、アンテナ管に設けられたスリット部分に形成され る励起電界によりプラズマが生成されるため、プラズマ点火前後のキヤビティなどのシ 一ルド手段内のインピーダンス変化が少な 、上、シールド手段の形状に影響され難 く、プラズマの着火性を改善したプラズマ発生装置及びそれを用いたプラズマ生成 方法を提供することができる。

Claims

請求の範囲
[1] プラズマ生成用のガスを導入し、大気中に排出する非導電性のガス流路管と、該ガ ス流路管を取り巻く導電性のアンテナ管とを有し、該アンテナ管にマイクロ波を照射 し、該ガス流動管中のガスをプラズマ化するプラズマ発生装置にぉ ヽて、
該アンテナ管には、ガス流動管の管軸方向に沿って所定の長さのスリットが形成さ れて 、ることを特徴とするプラズマ発生装置。
[2] 請求項 1に記載のプラズマ発生装置にぉ 、て、該スリットは、該ガス流路管のガスを 排出する側に開口端を有していることを特徴とするプラズマ発生装置。
[3] 請求項 1に記載のプラズマ発生装置において、該スリットは、該アンテナ管の内部 に形成されて ヽることを特徴とするプラズマ発生装置。
[4] 請求項 1乃至 3のいずれかに記載のプラズマ発生装置において、該スリットは、スリ ットの一部がスリットの内側に突出した部分を有することを特徴とするプラズマ発生装 置。
[5] 請求項 1乃至 4のいずれかに記載のプラズマ発生装置において、該アンテナ管は、 該ガス流路管のガスを排出する側の端部が、該ガス流路管に向力つて折れ曲がって
V、ることを特徴とするプラズマ発生装置。
[6] 請求項 1乃至 5のいずれかに記載のプラズマ発生装置において、該スリットの長さ は、照射するマイクロ波の半波長の整数倍に設定されて 、ることを特徴とするプラズ マ発生装置。
[7] 請求項 1乃至 6のいずれかに記載のプラズマ発生装置において、該スリットは該ガ ス流路管の周囲に沿って少なくとも 2つ以上配置されていることを特徴とするプラズマ 発生装置。
[8] 請求項 1乃至 7のいずれかに記載のプラズマ発生装置において、該ガス流路管は 複数本配置され、各ガス流路管毎に該アンテナ管を備えることを特徴とするプラズマ 発生装置。
[9] 請求項 1乃至 8のいずれかに記載のプラズマ発生装置において、該アンテナ管は、 マイクロ波を伝播する導波管内に、該導波管を貫通して配置されていることを特徴と するプラズマ発生装置。
[10] 請求項 1乃至 9のいずれかに記載のプラズマ発生装置を用いたプラズマ生成方法 において、
該ガス流路管内の気圧を大気圧より低い気圧に保持し、マイクロ波を照射してブラ ズマを点火するプラズマ点火工程と、
該プラズマ点火工程の後に、該ガス流路管内の気圧を大気圧状態とする大気圧ェ 程とを有することを特徴とするプラズマ生成方法。
[11] 請求項 1乃至 9のいずれかに記載のプラズマ発生装置を用いたプラズマ生成方法 において、
第 1のガスを該ガス流路管内に供給し、マイクロ波を照射してプラズマを点火するプ ラズマ点火工程と、
該プラズマ点火工程後に、該第 1のガスよりプラズマ化し難い第 2のガスを、第 1の ガスと共に供給し、第 2のガスをプラズマ化することを特徴とするプラズマ生成方法。
[12] 請求項 10又は 11に記載のプラズマ生成方法にぉ 、て、大気圧状態でプラズマを 点火した後に、該ガス流路管と該アンテナ管とを相対的に移動し、該ガス流路管のガ ス排出側の端部を該アンテナ管のスリット側の端部に近接させる移動工程を有するこ とを特徴とするプラズマ生成方法。
[13] 請求項 10乃至 12のいずれかに記載のプラズマ生成方法において、該アンテナ管 に照射されるマイクロ波はパルス駆動され、該パルス駆動の休止期間が、プラズマ平 均残存期間以内であることを特徴とするプラズマ生成方法。
PCT/JP2007/052893 2006-03-07 2007-02-17 プラズマ発生装置及びそれを用いたプラズマ生成方法 WO2007105411A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/224,750 US8216433B2 (en) 2006-03-07 2007-02-17 Plasma generator and method of generating plasma using the same
JP2008505011A JP5239021B2 (ja) 2006-03-07 2007-02-17 プラズマ発生装置及びそれを用いたプラズマ生成方法
CN2007800078610A CN101395973B (zh) 2006-03-07 2007-02-17 等离子体发生装置以及使用它的等离子体产生方法
EP07714423.6A EP2007175A4 (en) 2006-03-07 2007-02-17 PLASMA GENERATOR AND METHOD FOR PRODUCING PLASMA THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006061673 2006-03-07
JP2006-061673 2006-03-07

Publications (1)

Publication Number Publication Date
WO2007105411A1 true WO2007105411A1 (ja) 2007-09-20

Family

ID=38509249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052893 WO2007105411A1 (ja) 2006-03-07 2007-02-17 プラズマ発生装置及びそれを用いたプラズマ生成方法

Country Status (5)

Country Link
US (1) US8216433B2 (ja)
EP (1) EP2007175A4 (ja)
JP (1) JP5239021B2 (ja)
CN (1) CN101395973B (ja)
WO (1) WO2007105411A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525534A (ja) * 2007-04-27 2010-07-22 フォルシュングスフェアブント ベルリン エー ファウ プラズマ発生器用の電極
WO2013132911A1 (ja) * 2012-03-05 2013-09-12 東京エレクトロン株式会社 スラグチューナ、それを用いたマイクロ波プラズマ源、およびマイクロ波プラズマ処理装置
JP2014524106A (ja) * 2011-06-24 2014-09-18 リカーボン,インコーポレイテッド マイクロ波共鳴空洞
JP2015076143A (ja) * 2013-10-06 2015-04-20 国立大学法人名古屋大学 プラズマ発生装置
JP2018115387A (ja) * 2016-10-04 2018-07-26 ドラカ・コムテツク・ベー・ベー プラズマ化学蒸着処理および方法を実行するための方法および装置
JP2019514168A (ja) * 2016-04-05 2019-05-30 アパン インストゥルメンツ エスピー. ゼット オー. オー.Apan Instruments Sp. Z O.O. マイクロ波周波数においてトロイダルプラズマ放電を加熱する電磁場を成形するアダプタ
WO2020197702A1 (en) * 2019-03-25 2020-10-01 Recarbon, Inc. Controlling exhaust gas pressure of a plasma reactor for plasma stability
CN111965435A (zh) * 2020-08-18 2020-11-20 北京环境特性研究所 一种高速等离子体鞘套频谱调制特性测量装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702901A (zh) * 2007-04-10 2010-05-05 株式会社21世纪造船 水下等离子体处理设备和利用其处理船只压舱水的系统和方法
US9500362B2 (en) 2010-01-21 2016-11-22 Powerdyne, Inc. Generating steam from carbonaceous material
US9023214B2 (en) * 2010-02-10 2015-05-05 Aic, Llc Method and apparatus for applying plasma particles to a liquid and use for disinfecting water
CN102238794A (zh) * 2010-04-27 2011-11-09 嘉兴江林电子科技有限公司 接触式等离子体放电笔
AU2011248179B2 (en) * 2010-05-05 2014-10-02 Perkinelmer U.S. Llc Inductive devices and low flow plasmas using them
JP5762708B2 (ja) * 2010-09-16 2015-08-12 国立大学法人名古屋大学 プラズマ生成装置、プラズマ処理装置及びプラズマ処理方法
US9174296B2 (en) * 2010-10-20 2015-11-03 Lam Research Corporation Plasma ignition and sustaining methods and apparatuses
JP5848140B2 (ja) * 2012-01-20 2016-01-27 東京エレクトロン株式会社 プラズマ処理装置
US8901820B2 (en) * 2012-01-31 2014-12-02 Varian Semiconductor Equipment Associates, Inc. Ribbon antenna for versatile operation and efficient RF power coupling
BR112015004824A2 (pt) 2012-09-05 2017-07-04 Powerdyne Inc método para produzir um fluido combustível
BR112015004836A2 (pt) 2012-09-05 2017-07-04 Powerdyne Inc método para sequestrar particulados de toxina
WO2014039706A1 (en) 2012-09-05 2014-03-13 Powerdyne, Inc. Methods for power generation from h2o, co2, o2 and a carbon feed stock
WO2014039726A1 (en) 2012-09-05 2014-03-13 Powerdyne, Inc. System for generating fuel materials using fischer-tropsch catalysts and plasma sources
KR20150053943A (ko) 2012-09-05 2015-05-19 파워다인, 인코포레이티드 고전압 전기장 방법을 사용하는 연료 생성
KR20150052226A (ko) 2012-09-05 2015-05-13 파워다인, 인코포레이티드 고전압 전기장 방법을 사용하는 연료 생성
EP2893324A4 (en) 2012-09-05 2016-05-11 Powerdyne Inc METHOD FOR FUEL GENERATION WITH ELECTRIC HIGH VOLTAGE FIELDS
US9728376B2 (en) * 2013-03-15 2017-08-08 Starfire Industries, Llc Compact high-voltage plasma source for neutron generation
US8773225B1 (en) * 2013-03-15 2014-07-08 Agilent Technologies, Inc. Waveguide-based apparatus for exciting and sustaining a plasma
US9155184B2 (en) * 2013-11-18 2015-10-06 Applied Materials, Inc. Plasma generation source employing dielectric conduit assemblies having removable interfaces and related assemblies and methods
CN106057396B (zh) * 2016-07-18 2018-06-01 上海航空机械有限公司 高温等离子气体超导电磁线圈及微波脉冲发生装置
CN108615667B (zh) * 2016-12-09 2020-04-14 韩国三重核心株式会社 提高点火性能的低压等离子体反应器
CN108322985B (zh) * 2018-02-02 2023-09-19 深圳市诚峰智造有限公司 一种等离子发生器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64699A (en) * 1987-03-06 1989-01-05 Perkin Elmer Corp:The Induced plasma generator and its method
JP2000515678A (ja) * 1997-05-28 2000-11-21 ライボルト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング プラズマ生成装置
JP2001274150A (ja) * 2000-03-24 2001-10-05 Tokyo Electron Ltd プラズマ処理装置、プラズマ生成導入部材及びスロット電極
JP2002515639A (ja) * 1998-05-12 2002-05-28 マサリコヴァ ユニヴェルツィタ プラズマ・ジェットによって物理的かつ化学的に活性の環境を形成する方法および関連するプラズマ・ジェット
JP2004158247A (ja) * 2002-11-05 2004-06-03 Sharp Corp プラズマ処理装置およびプラズマ処理方法
JP2004154654A (ja) * 2002-11-05 2004-06-03 Masuhiro Kokoma プラズマ反応装置および方法
JP2005150473A (ja) * 2003-11-17 2005-06-09 Ulvac Japan Ltd マイクロ波励起プラズマ処理装置
JP2005191018A (ja) * 2005-03-25 2005-07-14 Aet Japan:Kk マイクロ波プラズマ発生装置
JP2005238228A (ja) * 2005-02-03 2005-09-08 Mitsubishi Heavy Ind Ltd 有機ハロゲン化合物放電分解装置およびその方法
WO2005101927A1 (ja) * 2004-03-31 2005-10-27 Kurita Seisakusho Co., Ltd. プラズマ生成用電源回路、プラズマ生成装置、プラズマ処理装置及び目的物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2675561B2 (ja) * 1987-12-18 1997-11-12 株式会社日立製作所 プラズマ微量元素分折装置
US5361016A (en) * 1992-03-26 1994-11-01 General Atomics High density plasma formation using whistler mode excitation in a reduced cross-sectional area formation tube
FR2689717B1 (fr) * 1992-04-03 1994-05-13 Commissariat A Energie Atomique Dispositif d'application de micro-ondes et reacteur a plasma utilisant ce dispositif.
DE4235914A1 (de) * 1992-10-23 1994-04-28 Juergen Prof Dr Engemann Vorrichtung zur Erzeugung von Mikrowellenplasmen
JPH06197930A (ja) 1993-01-06 1994-07-19 Nippon Steel Weld Prod & Eng Co Ltd 使用済み注射針の処理方法およびその装置
JPH07130493A (ja) * 1993-11-04 1995-05-19 Mitsubishi Heavy Ind Ltd マイクロ波放電管の冷却方法及び装置
DE29623199U1 (de) * 1996-03-08 1998-04-02 Spitzl, Ralf, Dr., 53639 Königswinter Vorrichtung zur Erzeugung von leistungsfähigen Mikrowellenplasmen
BR9812701A (pt) * 1997-09-30 2000-08-22 Tetra Laval Holdings & Finance Método e aparelho para o tratamento da superfìcie interna de garrafas plásticas em um processo intensificado por plasma
JP3266076B2 (ja) * 1997-11-04 2002-03-18 日本電気株式会社 マイクロ波プラズマ処理装置及びその実施に使用する対向電極
JP2000068732A (ja) * 1998-08-26 2000-03-03 Hitachi Cable Ltd 漏洩導波管
JP2000133494A (ja) * 1998-10-23 2000-05-12 Mitsubishi Heavy Ind Ltd マイクロ波プラズマ発生装置及び方法
JP3676680B2 (ja) * 2001-01-18 2005-07-27 東京エレクトロン株式会社 プラズマ装置及びプラズマ生成方法
JP3914071B2 (ja) * 2002-03-12 2007-05-16 東京エレクトロン株式会社 プラズマ処理装置
JP3839395B2 (ja) 2002-11-22 2006-11-01 株式会社エーイーティー マイクロ波プラズマ発生装置
JP2007268252A (ja) * 2006-03-07 2007-10-18 Univ Of Ryukyus 滅菌装置及びそれを用いた滅菌方法
US8084368B2 (en) * 2006-11-09 2011-12-27 Ulvac, Inc. Method of forming barrier film
KR101181389B1 (ko) * 2007-02-27 2012-09-19 가부시키가이샤 알박 반도체 소자의 제조 방법 및 반도체 소자의 제조 장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64699A (en) * 1987-03-06 1989-01-05 Perkin Elmer Corp:The Induced plasma generator and its method
JP2000515678A (ja) * 1997-05-28 2000-11-21 ライボルト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング プラズマ生成装置
JP2002515639A (ja) * 1998-05-12 2002-05-28 マサリコヴァ ユニヴェルツィタ プラズマ・ジェットによって物理的かつ化学的に活性の環境を形成する方法および関連するプラズマ・ジェット
JP2001274150A (ja) * 2000-03-24 2001-10-05 Tokyo Electron Ltd プラズマ処理装置、プラズマ生成導入部材及びスロット電極
JP2004158247A (ja) * 2002-11-05 2004-06-03 Sharp Corp プラズマ処理装置およびプラズマ処理方法
JP2004154654A (ja) * 2002-11-05 2004-06-03 Masuhiro Kokoma プラズマ反応装置および方法
JP2005150473A (ja) * 2003-11-17 2005-06-09 Ulvac Japan Ltd マイクロ波励起プラズマ処理装置
WO2005101927A1 (ja) * 2004-03-31 2005-10-27 Kurita Seisakusho Co., Ltd. プラズマ生成用電源回路、プラズマ生成装置、プラズマ処理装置及び目的物
JP2005238228A (ja) * 2005-02-03 2005-09-08 Mitsubishi Heavy Ind Ltd 有機ハロゲン化合物放電分解装置およびその方法
JP2005191018A (ja) * 2005-03-25 2005-07-14 Aet Japan:Kk マイクロ波プラズマ発生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2007175A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525534A (ja) * 2007-04-27 2010-07-22 フォルシュングスフェアブント ベルリン エー ファウ プラズマ発生器用の電極
JP2014524106A (ja) * 2011-06-24 2014-09-18 リカーボン,インコーポレイテッド マイクロ波共鳴空洞
WO2013132911A1 (ja) * 2012-03-05 2013-09-12 東京エレクトロン株式会社 スラグチューナ、それを用いたマイクロ波プラズマ源、およびマイクロ波プラズマ処理装置
JP2013186939A (ja) * 2012-03-05 2013-09-19 Tokyo Electron Ltd スラグチューナ、それを用いたマイクロ波プラズマ源、およびマイクロ波プラズマ処理装置
JP2015076143A (ja) * 2013-10-06 2015-04-20 国立大学法人名古屋大学 プラズマ発生装置
JP2019514168A (ja) * 2016-04-05 2019-05-30 アパン インストゥルメンツ エスピー. ゼット オー. オー.Apan Instruments Sp. Z O.O. マイクロ波周波数においてトロイダルプラズマ放電を加熱する電磁場を成形するアダプタ
AU2017246939B2 (en) * 2016-04-05 2022-05-12 Apan Instruments SP. Z O.O. An adapter shaping electromagnetic field, which heats toroidal plasma discharge at microwave frequency
JP2018115387A (ja) * 2016-10-04 2018-07-26 ドラカ・コムテツク・ベー・ベー プラズマ化学蒸着処理および方法を実行するための方法および装置
JP7075196B2 (ja) 2016-10-04 2022-05-25 ドラカ・コムテツク・ベー・ベー プラズマ化学蒸着処理および方法を実行するための方法および装置
WO2020197702A1 (en) * 2019-03-25 2020-10-01 Recarbon, Inc. Controlling exhaust gas pressure of a plasma reactor for plasma stability
CN111965435A (zh) * 2020-08-18 2020-11-20 北京环境特性研究所 一种高速等离子体鞘套频谱调制特性测量装置

Also Published As

Publication number Publication date
EP2007175A9 (en) 2009-07-15
JPWO2007105411A1 (ja) 2009-07-30
US20090260972A1 (en) 2009-10-22
JP5239021B2 (ja) 2013-07-17
CN101395973B (zh) 2013-03-13
EP2007175A4 (en) 2014-05-14
CN101395973A (zh) 2009-03-25
EP2007175A2 (en) 2008-12-24
US8216433B2 (en) 2012-07-10

Similar Documents

Publication Publication Date Title
JP5239021B2 (ja) プラズマ発生装置及びそれを用いたプラズマ生成方法
CN107801286B (zh) 一种基于介质阻挡放电预电离的微波等离子体激发系统
KR100291152B1 (ko) 플라즈마발생장치
US4883570A (en) Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves
JP6272298B2 (ja) マイクロ波プラズマ生成装置およびこれを作動させる方法
US6558635B2 (en) Microwave gas decomposition reactor
JP2007268252A (ja) 滅菌装置及びそれを用いた滅菌方法
KR20040005851A (ko) 플라즈마에 의한 가스 처리용 장치
CN101346032A (zh) 大气压微波等离子体发生装置
JP2007207475A (ja) 携帯型大気圧プラズマ発生装置
Kaeppelin et al. Different operational regimes in a helicon plasma source
RU2171554C2 (ru) Способ генерации плазмы и устройство для его осуществления
Hong et al. Generation of high-power torch plasma by a 915-MHz microwave system
KR101032836B1 (ko) 직류 펄스형 대기압 글로우 플라즈마 발생장치
Narendra et al. Microstripline applicators for creating microplasma discharges with microwave energy
EP3934389A1 (en) Plasma source apparatus
JPH02151021A (ja) プラズマ加工堆積装置
JP5026169B2 (ja) プラズマ処理装置
Takahashi et al. 3P4-6 Effect of superposing ultrasonic wave on microwave plasma under water
US12075553B1 (en) Microwave plasma torch and method of use thereof
CN111837220B (zh) 气体成分的监视方法及其装置、以及使用了其的处理装置
JP2023130168A (ja) 成膜装置
Wiley activated nitrogen 107 adhesion of protective lacquers (to surfaces) 145 afterglow (decaying plasma) 81, 82 (Fig. 3.5, Fig. 3.6), 100, 105, 110
JP2022190830A (ja) プラズマ生成装置
Verreycken et al. Time resolved optical emission spectroscopy of a pulsed CO2 microwave discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714423

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008505011

Country of ref document: JP

Ref document number: 200780007861.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007714423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224750

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)