JP2004154654A - プラズマ反応装置および方法 - Google Patents
プラズマ反応装置および方法 Download PDFInfo
- Publication number
- JP2004154654A JP2004154654A JP2002321674A JP2002321674A JP2004154654A JP 2004154654 A JP2004154654 A JP 2004154654A JP 2002321674 A JP2002321674 A JP 2002321674A JP 2002321674 A JP2002321674 A JP 2002321674A JP 2004154654 A JP2004154654 A JP 2004154654A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- plasma
- reactor
- reaction furnace
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/30—Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
Landscapes
- Treating Waste Gases (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plasma Technology (AREA)
Abstract
【課題】PFCガス、あるいはフロンガス等のHFC化合物などを、高温で無害な物質に分解するプラズマ反応装置で、大気圧下で反応させ、高温、高密度のプラズマにより効率的に分解する。
【解決手段】減圧下で反応炉3にプラズマ励起ガスとしての不活性ガスを供給(3)し、反応炉の内部に磁界を発生させ、減圧状態から徐々に圧力を上げる(21)ことで、反応炉内部の全体が輝く初期行程、反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程、および大気圧で反応炉内部のほぼ中央が球状に明るく輝く安定期行程を経て、球状に輝く安定したプラズマを維持し、その状態で被処理ガスと反応ガスを供給して、被処理ガスを分解処理する。
【選択図】 図1
【解決手段】減圧下で反応炉3にプラズマ励起ガスとしての不活性ガスを供給(3)し、反応炉の内部に磁界を発生させ、減圧状態から徐々に圧力を上げる(21)ことで、反応炉内部の全体が輝く初期行程、反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程、および大気圧で反応炉内部のほぼ中央が球状に明るく輝く安定期行程を経て、球状に輝く安定したプラズマを維持し、その状態で被処理ガスと反応ガスを供給して、被処理ガスを分解処理する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
この発明は、半導体製造装置などの酸化膜エッチング装置で使用されるPFC(Perfluorocarbon) 及び/又はHFC(Hydrofluorocompound)などの有機ハロゲンガスを、高温で無害な物質に分解する反応装置、および反応方法に関する。
【0002】
【従来の技術】
半導体製造装置である酸化膜エッチング装置で使用されるPFCガス、すなわち炭素、フッ素、および水素からなるフロンガス化合物、具体的にはCF4、C2F6、C3F8、CHF3、C5F8、及びSF6などのガスは、地球温暖化するガスであり、CO2ガスに比べて約6000倍の温暖化効果がある。しかも、寿命はCO2が約100年に対して、PFCガスは数千年から数万年と非常に長い。大気中に廃棄することなく、適切に分解処理され無害な物質に戻すことが必要とされる。
【0003】
また、冷媒などに用いられるフロンガスに代表されるPFC及び/又はHFC化合物は、地球温暖化するものであり、やはり大気中に廃棄することなく、適切に分解処理され無害な物質に戻すことが必要とされる。その他、トリクロロエチレンなど有機化合物中に臭素、塩素、フッ素を含むものも、地球環境に対して有害な化合物である。このようなガスを分解処理する方法として、従来は、大きく分けて、燃焼法、触媒法、およびプラズマ法があった。
【0004】
このうちプラズマ法は、他の二つの方法に比べ、供給するエネルギーは最も少なく、効率的である。例えば、特開平9ー276691号公報の技術がある。
この技術は、有機ハロゲン化合物ガスであるフロンガスを高温で分解して処理するもので、反応炉の内部を200〜400Torrに保ち、プラズマ励起ガスに空気とArガスを用い、プラズマトーチにPFC及び/又はHFCを供給し、発生させたプラズマによりPFC及び/又はHFCを分解・燃焼させる方法である。
【0005】
また、半導体製造装置から排出されるPFCガスを含むガスを分解する際、大気圧で行なう場合には、エッチングガスを排気するためのポンプに必要なパージガスとしての窒素とエッチングガスであるPFC及び/又はHFCガスが混合されたガスをプラズマで分解することになる。この場合には窒素ガス中のPFC濃度高める装置が必要となり、装置が煩雑になる。
【0006】
また、大気圧より低い低圧、例えば200から400Torrのプラズマを発生させてPFCガスを分解する方法も知られているが、PFCを分解した際に有毒なCOガスが発生して、その処理が煩雑になるという問題がある。
【0007】
【発明が解決しようとする課題】
しかしながら、従来のプラズマ法は、前述の通り、通常、減圧下、例えば200から400Torrで行われるものであり、大気圧(圧力は760Torr)でないため、常時差圧に耐える耐圧密閉容器として反応炉を準備しなければならない。また、減圧下でPFC及び/又はHFCを水素又は水蒸気で分解すると、COガスが発生するので、ガスの後処理設備が必要になる。
【0008】
また、得られたプラズマが高温であればあるほど、すなわちプラズマのエネルギー密度が高ければ高いほど、分解反応は促進され、分解効率がよい。したがって、そのような高温、高密度のプラズマを得ることが期待される。
【0009】
この発明は、以上の課題を解決するためになされたもので、大気圧下で反応を進行させ、高温、高密度のプラズマが得られ分解効率がよいプラズマ反応装置および方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
発明の第1の態様は、PFC及び/又はHFCを含む被処理ガスを分解する、以下の手段を有することを特徴とするプラズマ反応装置である。
(1)前記被処理ガスをプラズマの高温により分解処理するための反応炉と、
(2)前記反応炉にPFC及び/又はHFCを供給する供給手段と、
(3)前記反応炉にプラズマ励起ガスとしての不活性ガスを供給するガス供給手段と、
(4)前記反応炉に反応ガスを供給して、前記被処理ガスと反応させ、前記被処理ガスを分解処理するための反応ガス供給手段と、
(5)前記不活性ガスの放電を開始させる点火手段と、
(6)前記反応炉の内部に磁界を発生させる手段と、
(7)前記反応炉を反応炉内部の全体を発光させる初期行程、反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程、および大気圧で反応炉内部のほぼ中央が球状に明るく輝く安定期行程を経て、球状に輝く安定したプラズマを維持するプラズマ調整手段。
【0011】
発明の第2の態様は、前記被処理ガスは、PFC(「PFC及び/又はHFC」は既に第1の態様で指定ますので不要です。PFCのみを特定するためです)ガスであり、前記反応ガスは、H2ガスおよびO2ガス、またはH2O蒸気であることを特徴とするプラズマ反応装置である。
【0012】
発明の第3の態様は、前記点火手段は、反応炉外に配設された電極とアース間との間に放電を発生させる電源と、を備えていることを特徴とするプラズマ反応装置である。
【0013】
発明の第4の態様は、前記磁界を発生させる装置は、反応炉外周に備えたコイルと前記コイルに高周波を供給する電源装置と、を備えていることを特徴とするプラズマ反応装置である。
【0014】
発明の第5の態様は、前記磁界を発生させる装置は、マイクロ波発生装置であることを特徴とするプラズマ反応装置である。
【0015】
発明の第6の態様は、前記不活性ガスがアルゴンガスであることを特徴とするプラズマ反応装置である。
【0016】
発明の第7の態様は、前記不活性ガスがアルゴンである場合には、前記プラズマ調整手段は、前記反応炉内の圧力を1Torr以下から徐々に圧力を大気圧まで上昇させる圧力調整手段であることを特徴とするプラズマ反応装置である。
【0017】
発明の第8の態様は、前記不活性ガス供給手段は、大気圧下から放電を開始する場合には、不活性ガスとしてヘリウムガスガスを用い大気圧下でプラズマを点火し、プラズマが点火後において、ヘリウムガスからアルゴンガスに切り替えるガス切り替える機能を備えていることを特徴とするプラズマ反応装置である。
【0018】
発明の第9の態様は、前記反応炉は、内側の円筒状の絶縁体耐火物管と、外側の円筒状の絶縁体耐火物とからなり、該両者の中間が冷媒で冷却される構造になっていることを特徴とするプラズマ反応装置である。
【0019】
発明の第10の態様は、(1)プラズマ反応炉と、(2)前記反応炉に被処理ガスの供給手段と、前記反応炉にプラズマ安定ガスとして不活性ガスの供給手段と、前記反応炉に前記被処理ガスを分解処理するための反応ガス供給手段と、を備え、(3)前記反応炉内にプラズマを点火する手段と、(4)前記反応炉の内部に磁界を発生させる手段と、を備えたプラズマ反応装置を用い、以下の行程を備えたPFC及び/又はHFCを含む被処理ガスを分解する方法である。
(5)前記反応炉不活性ガスと反応ガスとを供給する工程と、
(6)前記不活性ガスをプラズマ状態にする点火する工程と、
(7)前記プラズマに磁界を加える工程と、
(8)反応炉内部の全体が発光する初期行程と、
(9)反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程と、
(10)大気圧で反応炉内部のほぼ中央が球状に明るく輝く安定期行程。
【0020】
発明の第11の態様は、前記不活性ガスは、アルゴンガスであることを特徴とするPFC及び/又はHFCを含む被処理ガスを分解する方法。
【0021】
発明の第12の態様は、前記被処理ガスは、PFC(「PFC及び/又はHFC」は不要です。第10で指定してあります)ガスであり、前記反応ガスは、H2ガスおよびO2ガス、またはH2O蒸気であることを特徴とするPFC及び/又はHFCを含む被処理ガスを分解する方法である。
【0022】
【発明の実施の形態】
この発明の実施の形態を、図1〜図4、図5(B)に示す。
(装置の全体概略)
この実施形態のプラズマ反応装置1は、PFC及び/又はHFCを含む被処理ガス、例えばPFCガスであるCF4を高温で反応させ分解して処理するためのものである。CF4ガスは十分に高温の雰囲気で、H2ガスやO2ガスと反応して、HFガスやCO2ガスに分解される。
【0023】
図1、図2に示すように、被処理ガスをプラズマの高温により分解処理するための概略円筒状の反応炉3に対し、その一端に、被処理ガスであるPFCとしてCF4を供給する被処理ガス供給手段5、例えば半導体製造装置に接続され、途中にポンプ、流量計等を備えた配管(図示せず)が接続されている。更に、プラズマ励起ガスとしての不活性ガス、例えばアルゴン、ヘリウム等を供給するガス供給手段7、例えばポンプ、流量計等を備えた配管、および被処理ガスと反応させる反応ガスとしてのH2ガスおよびO2ガスを供給する反応ガス供給手段9、例えば途中にポンプと流量計等を備えた配管が接続される。
【0024】
また、円筒状の反応炉3の長手方向の中央の周りには、磁界を発生させる手段として、例えば高周波コイル11が螺旋状に配置されて、マッチング回路13を介して、高周波電源15と接続され、磁力を反応炉の内部に供給し、磁界を発生させる。 磁界を発生させる手段としては、高周波に限定されず、マイクロ波でもよい。なお、マイクロ波の場合はコイルの代わりに空洞共振器を使用する。高周波電源15には、電圧調整手段17が取り付けられる。
【0025】
また、放電を最初に発生させる点火手段19が設けられる。上記点火手段は、例えば、反応炉3外に配設された金属製電極とその周辺のアースを用いる。反応炉の他端には、処理されたガスに含まれるHFガスやCO2ガスの吸収除去を行う後処理手段19が接続される。HFは各種のアルカリ剤で吸収し、CO2ガスはソダ類を利用する。この他端には、プラズマ調整手段21が設けられ、不活性ガスがアルゴンの場合には、反応炉3内の圧力を約1Torrの減圧状態から徐々に大気圧に上げることで、反応炉3内部の放電・プラズマ状態を後述する初期行程、過渡期行程、および安定期行程を経て、球状に輝く安定したプラズマに維持することができる。
【0026】
大気圧下から放電を開始する場合には、不活性ガスとしてヘリウムガスガスを用い、大気圧下でプラズマを点火し、その後はアルゴンガスに徐々に切り替えることが望ましい。この切り替え手段は不活性供給手段が行う。
【0027】
(反応炉と冷媒供給手段)
プラズマによって熱せられた各部を冷却するために、冷媒供給手段23が設けられる。図2、図3に示すように、反応炉3は、例えば、外周が円筒状の透明な耐熱性の石英管45からなる。反応炉の両端には、それぞれ石英管27、29が接続され、被処理ガスを導入し、排出する。この反応炉の両端と中央には、水等の冷媒を供給する冷媒供給手段23が接続される。
【0028】
すなわち、例えば石英管27は円柱状のブロック31に同心に貫通して固定される。この管27とブロック31との間のシールは、石英管27が貫通するブロック31の端部に、例えばリング状のフッ素系Oリング33が配置され、このOリング33が締め具35に押圧され、この締め具35を押さえる蓋体37が、円柱状のブロック31の端部に被され、ネジ39により螺合し、締め付けが行われることでシールされる。
【0029】
このブロック31の内部には冷媒、例えば水が流れる空洞41が形成され、この空洞41に連通してブロック31の側面には、一対の石英管等の水冷管43が接続される。
円筒状の絶縁管25の長手方向中央は、絶縁管25を覆う筒状の透明石英管45が設けられ、この石英管45と絶縁管25の周面との間に、冷媒が流れる間隙47が形成される。この間隙47に連通して、石英管45を外側から保持する円筒状のブロック49の側面に、石英管等の水冷管51、53が接続される。
【0030】
この石英管45と絶縁管25周面とのシールは、2箇所で行われる。第1箇所は、ブロック49の端部に、リング状のOリング55が配置され、このOリング55が締め具57に押圧され、この締め具57を押さえる蓋体59が、円柱状のブロック49の端部に被されネジ61により螺合し、締め付けが行われることで、ブロック49と絶縁管25周面とのシールがなされる。
【0031】
第2箇所は、絶縁体45と接する側のブロック49の端部に、リング状のOリング63が配置され、このOリング63が締め具65に押圧され、この締め具65を押さえる蓋体67が、円柱状のブロック49の端部に被されネジ69により螺合し、締め付けが行われることで、ブロック49と石英管45とのシールがなされる。
【0032】
以上の水冷管43、43、51が設けられる構造は、円筒状の絶縁管25の両端に対称に設けられる。 また、高周波コイル11は、内部に冷媒が流れるよう銅パイプからなる。 これら水冷管43、43、51や高周波コイル11には、冷媒供給手段23から、冷媒が供給され、循環して使用される。
【0033】
(高周波コイル)
反応炉に磁界を供給する手段として、高周波コイル11は、螺旋状に配置されて磁界を発生することからLカップリングと呼ばれ、1対となって配置される両電極間に電圧がかけられるCカップリングと区別される。望ましい周波数は1MHzから50MHz、電圧は1000から10000Voltが望ましい。
高周波コイルに替えて、例えば2.45GHzのマイクロ波発生装置を設けてもよい。
【0034】
(点火手段)
点火手段は、例えば、反応炉3の外に配置される電極73と、反応炉3のアースが対となって配置され、電極73に電圧がかけられるCカップリングとなっている。1000から10000Voltの交流電圧が望ましい。Cカップリング装置に替えてテスラ変圧器も利用できる。
【0035】
(実験条件)
実験装置:本実施形態に係る図1〜図3に示す大気圧プラズマ反応装置1
高周波電源の高周周波数:27MHZ
反応炉内圧力:1Torrから徐々に昇圧し大気圧(760Torr)に戻す
被処理ガスを処理する処理反応時の炉内圧力:大気圧(760Torr)
プラズマ励起ガス:Arガス
被処理ガス:PFCガスであるCF4
【0036】
(実験行程)
[1]反応炉3としての放電管を、調整手段21としての小型真空ポンプで約1Torrに減圧する。
【0037】
[2]不活性ガス供給手段3により、内径26mm(外径30mm)の反応炉3内にArガスを1〜2L/分、CF4を50ml/分、CF4を分解するに十分な水蒸気を供給した。
【0038】
[3]高周波コイル11により反応炉3内に高周波電力を供給すると共に、点火手段19であるCカップリング電極により、高電圧を反応炉3に供給する。
【0039】
[4]この高電圧により、ガスの電離が発生し、グロー放電が生じる。これにより反応炉3の内部の全体が青紫に輝く初期行程が得られる(図4(A))。このグロー放電では、反応炉3内の浮遊容量を通して高周波電力が供給される。反応炉3内の中性分子と、反応炉3の内壁から供給される電子とによる衝突により、更に2次電子が増加し、放電が維持される。
【0040】
[5]この状態で反応炉3内の気圧を少しずつ上げる。約30秒で1Torrから約760Torr位の速さで上げる。この速さの調節により、炉内で次のように放電状態を変化させる。
【0041】
[6]はじめ、点火手段19であるCカップリング電極から高周波電力が供給されることでグロー放電が維持された状態から、次第に圧力を上げることで、分子の平均自由行程は短くなり、電界の高い領域での放電が多くなり、炉内の輝く領域は狭くなる。すなわち、筒状の反応炉3内部のほぼ中央が、磁界に沿って縦方向に線状にほぼ白色に輝く過渡期行程が得られる(図4(B))。
【0042】
[7]このように狭くなった領域での放電が強くなると、Lカップリングからの磁界の効果が多くなり、放電エネルギーは磁界から供給され、益々その領域の温度が上昇する。これにより線状に輝く部分は明るさを増し、線状から揺らぎを生じ、竜巻状に変動して、過渡期の後期の行程が得られる(図4(C))。
【0043】
[8]さらに温度が上昇していき、グロー放電のときのような炉の内壁からの電子と中性分子との衝突による2次電子だけでなく、分子自身の温度上昇による熱電子放出も盛んになる。この熱電子による放電が維持されるようになり熱プラズマとなる。すなわち、反応炉3のほぼ中央が球状に明るく輝き、大気中での球状の熱プラズマ75が形成され、安定期行程が得られる(図4(D))。この球状プラズマ75の明るさは、肉眼でも相当に明るいことが確認され、プラズマの温度が通常のプラズマよりも相当に高いことが想像された。
【0044】
[9]安定期行程の熱プラズマへ被処理ガスが供給されると、被処理ガスは熱により分解されて、電子を放出し、さらにプラズマが維持される。この状態で、本発明の実施形態の装置の運転が行われる。
【0045】
[比較実験の実験条件]
ほぼ同様の電力、ほぼ同様の容積の反応炉を用いて比較実験を行った。
実験装置:同様な装置、但し、プラズマ発生装置としてCカップリングの装置(反応炉の外側と内側に管状の電極を配設した装置)を利用した
高周波電源の高周周波数:27MHz
被処理ガスを処理する処理反応時の炉内圧力:大気圧(760Torr)。
プラズマ励起ガス:Arガス
被処理ガス:PFCガスであるCF4ガス
【0046】
[実験結果の比較]
反応後のガスをガスクロマトグラフ(質量分析器付き)で分析し、実験結果のグラフを図5に示す。グラフの縦軸は、物質の検出強度、横軸は時間軸である。図からわかるように、比較実験では、高周波電源の電圧を徐々に上げ、500wから2000wまで変化させたが、処理後の気体中から被処理ガスであるCF4は検出され続けた(図5)。しかし、本発明の実施形態の実験では、電力を1000wまで変化させた時点で、被処理ガスであるCF4は検出されず、ほとんど完全に分解処理された(図6)。
【0047】
[結果の評価]
この実施形態の装置で得られるプラズマの明るさが、通常のプラズマよりも相当に強いことが肉眼で確認され、温度も相当に高いことが想像され、これらのことは、図5に示すように、この実施形態の装置で分解効率がとても高いことで間接的に確認された。Cカップリングで大気圧下のプラズマとの比較実験では、PFCの分解率は95.2%、使用電力は0.5KW/cm3であり、他方,本発明例では、上記分解率は99.99%、使用電力は0.12kw/cm3であった。従って、消費電力が飛躍的に向上した。
【0048】
このようなプラズマ反応装置としての好成績は、以下の原因によって起こされていることが推察できる。
すなわち、大気圧(760Torr)中でCカップリング方法によるプラズマ放電では得られない高温のプラズマ放電が得られた。即ち、反応炉3内部の全体が輝く初期行程、反応炉3内部のほぼ中央が磁界に沿って線状に輝く過渡期行程、および大気圧で反応炉3内部のほぼ中央が球状に明るく輝く安定期行程を経て、球状に輝く安定したプラズマ75を維持することによって、特殊なプラズマ状態が得られていると推察できる。
【0049】
その特殊性を生んだ一因として、Cカップリングに比べ、発生する磁場を強くできる高周波によるLカップリングを採用し、強い磁場の中に電子を閉じこめることができたことがあると推察できる。
【0050】
また、特殊性を生んだ一因として、プラズマ励起ガスとして主たるプラズマガスとしてArガスを採用すると、Heガスに比べArガスは熱伝導の面から、外部に熱を逃がしにくく、プラズマの温度を高く維持できたことがあると推察できる。
また、そのそも、大気圧下でのプラズマの実験があまりなされていなかったため、いままで特殊なプラズマ状態が発見できなかったと推察できる。
【0051】
(他の実施形態)
以上の実施形態においては、被処理ガスは、PFCガスであったが、他の実施形態においては、フロンガスも処理できる。また、高温で分解して処理することが望ましいその他の被処理ガスであっても構わない。
【0052】
また、以上の実施形態においては、点火手段はCカップリングの電極でグロー放電を起こすものであったが、他の実施形態においては、他の手段、例えばテスラーブローブも利用できる。
また、以上の実施形態においては、励起ガスはArガスとしたが、他の実施形態においては、Arガスとヘリウムガス及びアルゴンガスと酸素ガスの混合ガスも使用できることが確認されている。
【0053】
【発明の効果】
以上説明したように、これらの発明によれば、大気圧下で、球状に輝く安定したプラズマを維持できるので、大気圧下で被処理ガスの分解処理反応ができ、高温、高密度のプラズマが得られ分解効率がよい大気圧プラズマ反応装置および方法を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる大気圧プラズマ反応装置の全体図である。
【図2】図1の反応炉を示す拡大図である。
【図3】図2の要部を示す拡大図である。
【図4】図2に示す反応炉の内部のプラズマの変化を示す行程図で
(A)は、反応炉の内部の全体が青紫に輝く初期行程の図
(B)は、反応炉内部のほぼ中央が、磁界に沿って縦方向に線状に輝く過渡期の前記の行程の図、
(C)は、線状に輝く部分は明るさを増し、線状から揺らぎを生じ、竜巻状に変動する過渡期の後期の行程の図
(D)は、反応炉のほぼ中央が球状に明るく輝き、大気中での球状の熱プラズマ75が形成される安定期行程の図である。
【図5】この実施形態の効果を示すグラフ図で、比較記実験における被処理ガスCF4を分解した後に残る量を示した図である。
【図6】本発明の実施形態の効果を示すグラフ図で、この実施形態による実験における被処理ガスCF4を分解した後に残る量を示した図である。
【符号の説明】
1 大気圧プラズマ反応装置
3 反応炉
5 被処理ガス供給手段
7 不活性ガス供給手段
9 反応ガス供給手段
11 高周波コイル
13 マッチング回路
15 高周波電源
17 電圧調整手段
19 点火手段
21 調整手段
23 冷媒供給手段
25 絶縁管
27、29 石英の管
31 ブロック
33 Oリング
35 締め具
37 蓋体
39 ネジ
41 空洞
43 石英管の水冷管
45 石英管
47 冷媒が流れる間隙
49 ブロック
51、53 水冷管
55 Oリング
57 締め具
59 蓋体
61 ネジ
63 Oリング
65 締め具
67 蓋体
69 ネジ
73 電極
75 球状プラズマ
【発明の属する技術分野】
この発明は、半導体製造装置などの酸化膜エッチング装置で使用されるPFC(Perfluorocarbon) 及び/又はHFC(Hydrofluorocompound)などの有機ハロゲンガスを、高温で無害な物質に分解する反応装置、および反応方法に関する。
【0002】
【従来の技術】
半導体製造装置である酸化膜エッチング装置で使用されるPFCガス、すなわち炭素、フッ素、および水素からなるフロンガス化合物、具体的にはCF4、C2F6、C3F8、CHF3、C5F8、及びSF6などのガスは、地球温暖化するガスであり、CO2ガスに比べて約6000倍の温暖化効果がある。しかも、寿命はCO2が約100年に対して、PFCガスは数千年から数万年と非常に長い。大気中に廃棄することなく、適切に分解処理され無害な物質に戻すことが必要とされる。
【0003】
また、冷媒などに用いられるフロンガスに代表されるPFC及び/又はHFC化合物は、地球温暖化するものであり、やはり大気中に廃棄することなく、適切に分解処理され無害な物質に戻すことが必要とされる。その他、トリクロロエチレンなど有機化合物中に臭素、塩素、フッ素を含むものも、地球環境に対して有害な化合物である。このようなガスを分解処理する方法として、従来は、大きく分けて、燃焼法、触媒法、およびプラズマ法があった。
【0004】
このうちプラズマ法は、他の二つの方法に比べ、供給するエネルギーは最も少なく、効率的である。例えば、特開平9ー276691号公報の技術がある。
この技術は、有機ハロゲン化合物ガスであるフロンガスを高温で分解して処理するもので、反応炉の内部を200〜400Torrに保ち、プラズマ励起ガスに空気とArガスを用い、プラズマトーチにPFC及び/又はHFCを供給し、発生させたプラズマによりPFC及び/又はHFCを分解・燃焼させる方法である。
【0005】
また、半導体製造装置から排出されるPFCガスを含むガスを分解する際、大気圧で行なう場合には、エッチングガスを排気するためのポンプに必要なパージガスとしての窒素とエッチングガスであるPFC及び/又はHFCガスが混合されたガスをプラズマで分解することになる。この場合には窒素ガス中のPFC濃度高める装置が必要となり、装置が煩雑になる。
【0006】
また、大気圧より低い低圧、例えば200から400Torrのプラズマを発生させてPFCガスを分解する方法も知られているが、PFCを分解した際に有毒なCOガスが発生して、その処理が煩雑になるという問題がある。
【0007】
【発明が解決しようとする課題】
しかしながら、従来のプラズマ法は、前述の通り、通常、減圧下、例えば200から400Torrで行われるものであり、大気圧(圧力は760Torr)でないため、常時差圧に耐える耐圧密閉容器として反応炉を準備しなければならない。また、減圧下でPFC及び/又はHFCを水素又は水蒸気で分解すると、COガスが発生するので、ガスの後処理設備が必要になる。
【0008】
また、得られたプラズマが高温であればあるほど、すなわちプラズマのエネルギー密度が高ければ高いほど、分解反応は促進され、分解効率がよい。したがって、そのような高温、高密度のプラズマを得ることが期待される。
【0009】
この発明は、以上の課題を解決するためになされたもので、大気圧下で反応を進行させ、高温、高密度のプラズマが得られ分解効率がよいプラズマ反応装置および方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
発明の第1の態様は、PFC及び/又はHFCを含む被処理ガスを分解する、以下の手段を有することを特徴とするプラズマ反応装置である。
(1)前記被処理ガスをプラズマの高温により分解処理するための反応炉と、
(2)前記反応炉にPFC及び/又はHFCを供給する供給手段と、
(3)前記反応炉にプラズマ励起ガスとしての不活性ガスを供給するガス供給手段と、
(4)前記反応炉に反応ガスを供給して、前記被処理ガスと反応させ、前記被処理ガスを分解処理するための反応ガス供給手段と、
(5)前記不活性ガスの放電を開始させる点火手段と、
(6)前記反応炉の内部に磁界を発生させる手段と、
(7)前記反応炉を反応炉内部の全体を発光させる初期行程、反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程、および大気圧で反応炉内部のほぼ中央が球状に明るく輝く安定期行程を経て、球状に輝く安定したプラズマを維持するプラズマ調整手段。
【0011】
発明の第2の態様は、前記被処理ガスは、PFC(「PFC及び/又はHFC」は既に第1の態様で指定ますので不要です。PFCのみを特定するためです)ガスであり、前記反応ガスは、H2ガスおよびO2ガス、またはH2O蒸気であることを特徴とするプラズマ反応装置である。
【0012】
発明の第3の態様は、前記点火手段は、反応炉外に配設された電極とアース間との間に放電を発生させる電源と、を備えていることを特徴とするプラズマ反応装置である。
【0013】
発明の第4の態様は、前記磁界を発生させる装置は、反応炉外周に備えたコイルと前記コイルに高周波を供給する電源装置と、を備えていることを特徴とするプラズマ反応装置である。
【0014】
発明の第5の態様は、前記磁界を発生させる装置は、マイクロ波発生装置であることを特徴とするプラズマ反応装置である。
【0015】
発明の第6の態様は、前記不活性ガスがアルゴンガスであることを特徴とするプラズマ反応装置である。
【0016】
発明の第7の態様は、前記不活性ガスがアルゴンである場合には、前記プラズマ調整手段は、前記反応炉内の圧力を1Torr以下から徐々に圧力を大気圧まで上昇させる圧力調整手段であることを特徴とするプラズマ反応装置である。
【0017】
発明の第8の態様は、前記不活性ガス供給手段は、大気圧下から放電を開始する場合には、不活性ガスとしてヘリウムガスガスを用い大気圧下でプラズマを点火し、プラズマが点火後において、ヘリウムガスからアルゴンガスに切り替えるガス切り替える機能を備えていることを特徴とするプラズマ反応装置である。
【0018】
発明の第9の態様は、前記反応炉は、内側の円筒状の絶縁体耐火物管と、外側の円筒状の絶縁体耐火物とからなり、該両者の中間が冷媒で冷却される構造になっていることを特徴とするプラズマ反応装置である。
【0019】
発明の第10の態様は、(1)プラズマ反応炉と、(2)前記反応炉に被処理ガスの供給手段と、前記反応炉にプラズマ安定ガスとして不活性ガスの供給手段と、前記反応炉に前記被処理ガスを分解処理するための反応ガス供給手段と、を備え、(3)前記反応炉内にプラズマを点火する手段と、(4)前記反応炉の内部に磁界を発生させる手段と、を備えたプラズマ反応装置を用い、以下の行程を備えたPFC及び/又はHFCを含む被処理ガスを分解する方法である。
(5)前記反応炉不活性ガスと反応ガスとを供給する工程と、
(6)前記不活性ガスをプラズマ状態にする点火する工程と、
(7)前記プラズマに磁界を加える工程と、
(8)反応炉内部の全体が発光する初期行程と、
(9)反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程と、
(10)大気圧で反応炉内部のほぼ中央が球状に明るく輝く安定期行程。
【0020】
発明の第11の態様は、前記不活性ガスは、アルゴンガスであることを特徴とするPFC及び/又はHFCを含む被処理ガスを分解する方法。
【0021】
発明の第12の態様は、前記被処理ガスは、PFC(「PFC及び/又はHFC」は不要です。第10で指定してあります)ガスであり、前記反応ガスは、H2ガスおよびO2ガス、またはH2O蒸気であることを特徴とするPFC及び/又はHFCを含む被処理ガスを分解する方法である。
【0022】
【発明の実施の形態】
この発明の実施の形態を、図1〜図4、図5(B)に示す。
(装置の全体概略)
この実施形態のプラズマ反応装置1は、PFC及び/又はHFCを含む被処理ガス、例えばPFCガスであるCF4を高温で反応させ分解して処理するためのものである。CF4ガスは十分に高温の雰囲気で、H2ガスやO2ガスと反応して、HFガスやCO2ガスに分解される。
【0023】
図1、図2に示すように、被処理ガスをプラズマの高温により分解処理するための概略円筒状の反応炉3に対し、その一端に、被処理ガスであるPFCとしてCF4を供給する被処理ガス供給手段5、例えば半導体製造装置に接続され、途中にポンプ、流量計等を備えた配管(図示せず)が接続されている。更に、プラズマ励起ガスとしての不活性ガス、例えばアルゴン、ヘリウム等を供給するガス供給手段7、例えばポンプ、流量計等を備えた配管、および被処理ガスと反応させる反応ガスとしてのH2ガスおよびO2ガスを供給する反応ガス供給手段9、例えば途中にポンプと流量計等を備えた配管が接続される。
【0024】
また、円筒状の反応炉3の長手方向の中央の周りには、磁界を発生させる手段として、例えば高周波コイル11が螺旋状に配置されて、マッチング回路13を介して、高周波電源15と接続され、磁力を反応炉の内部に供給し、磁界を発生させる。 磁界を発生させる手段としては、高周波に限定されず、マイクロ波でもよい。なお、マイクロ波の場合はコイルの代わりに空洞共振器を使用する。高周波電源15には、電圧調整手段17が取り付けられる。
【0025】
また、放電を最初に発生させる点火手段19が設けられる。上記点火手段は、例えば、反応炉3外に配設された金属製電極とその周辺のアースを用いる。反応炉の他端には、処理されたガスに含まれるHFガスやCO2ガスの吸収除去を行う後処理手段19が接続される。HFは各種のアルカリ剤で吸収し、CO2ガスはソダ類を利用する。この他端には、プラズマ調整手段21が設けられ、不活性ガスがアルゴンの場合には、反応炉3内の圧力を約1Torrの減圧状態から徐々に大気圧に上げることで、反応炉3内部の放電・プラズマ状態を後述する初期行程、過渡期行程、および安定期行程を経て、球状に輝く安定したプラズマに維持することができる。
【0026】
大気圧下から放電を開始する場合には、不活性ガスとしてヘリウムガスガスを用い、大気圧下でプラズマを点火し、その後はアルゴンガスに徐々に切り替えることが望ましい。この切り替え手段は不活性供給手段が行う。
【0027】
(反応炉と冷媒供給手段)
プラズマによって熱せられた各部を冷却するために、冷媒供給手段23が設けられる。図2、図3に示すように、反応炉3は、例えば、外周が円筒状の透明な耐熱性の石英管45からなる。反応炉の両端には、それぞれ石英管27、29が接続され、被処理ガスを導入し、排出する。この反応炉の両端と中央には、水等の冷媒を供給する冷媒供給手段23が接続される。
【0028】
すなわち、例えば石英管27は円柱状のブロック31に同心に貫通して固定される。この管27とブロック31との間のシールは、石英管27が貫通するブロック31の端部に、例えばリング状のフッ素系Oリング33が配置され、このOリング33が締め具35に押圧され、この締め具35を押さえる蓋体37が、円柱状のブロック31の端部に被され、ネジ39により螺合し、締め付けが行われることでシールされる。
【0029】
このブロック31の内部には冷媒、例えば水が流れる空洞41が形成され、この空洞41に連通してブロック31の側面には、一対の石英管等の水冷管43が接続される。
円筒状の絶縁管25の長手方向中央は、絶縁管25を覆う筒状の透明石英管45が設けられ、この石英管45と絶縁管25の周面との間に、冷媒が流れる間隙47が形成される。この間隙47に連通して、石英管45を外側から保持する円筒状のブロック49の側面に、石英管等の水冷管51、53が接続される。
【0030】
この石英管45と絶縁管25周面とのシールは、2箇所で行われる。第1箇所は、ブロック49の端部に、リング状のOリング55が配置され、このOリング55が締め具57に押圧され、この締め具57を押さえる蓋体59が、円柱状のブロック49の端部に被されネジ61により螺合し、締め付けが行われることで、ブロック49と絶縁管25周面とのシールがなされる。
【0031】
第2箇所は、絶縁体45と接する側のブロック49の端部に、リング状のOリング63が配置され、このOリング63が締め具65に押圧され、この締め具65を押さえる蓋体67が、円柱状のブロック49の端部に被されネジ69により螺合し、締め付けが行われることで、ブロック49と石英管45とのシールがなされる。
【0032】
以上の水冷管43、43、51が設けられる構造は、円筒状の絶縁管25の両端に対称に設けられる。 また、高周波コイル11は、内部に冷媒が流れるよう銅パイプからなる。 これら水冷管43、43、51や高周波コイル11には、冷媒供給手段23から、冷媒が供給され、循環して使用される。
【0033】
(高周波コイル)
反応炉に磁界を供給する手段として、高周波コイル11は、螺旋状に配置されて磁界を発生することからLカップリングと呼ばれ、1対となって配置される両電極間に電圧がかけられるCカップリングと区別される。望ましい周波数は1MHzから50MHz、電圧は1000から10000Voltが望ましい。
高周波コイルに替えて、例えば2.45GHzのマイクロ波発生装置を設けてもよい。
【0034】
(点火手段)
点火手段は、例えば、反応炉3の外に配置される電極73と、反応炉3のアースが対となって配置され、電極73に電圧がかけられるCカップリングとなっている。1000から10000Voltの交流電圧が望ましい。Cカップリング装置に替えてテスラ変圧器も利用できる。
【0035】
(実験条件)
実験装置:本実施形態に係る図1〜図3に示す大気圧プラズマ反応装置1
高周波電源の高周周波数:27MHZ
反応炉内圧力:1Torrから徐々に昇圧し大気圧(760Torr)に戻す
被処理ガスを処理する処理反応時の炉内圧力:大気圧(760Torr)
プラズマ励起ガス:Arガス
被処理ガス:PFCガスであるCF4
【0036】
(実験行程)
[1]反応炉3としての放電管を、調整手段21としての小型真空ポンプで約1Torrに減圧する。
【0037】
[2]不活性ガス供給手段3により、内径26mm(外径30mm)の反応炉3内にArガスを1〜2L/分、CF4を50ml/分、CF4を分解するに十分な水蒸気を供給した。
【0038】
[3]高周波コイル11により反応炉3内に高周波電力を供給すると共に、点火手段19であるCカップリング電極により、高電圧を反応炉3に供給する。
【0039】
[4]この高電圧により、ガスの電離が発生し、グロー放電が生じる。これにより反応炉3の内部の全体が青紫に輝く初期行程が得られる(図4(A))。このグロー放電では、反応炉3内の浮遊容量を通して高周波電力が供給される。反応炉3内の中性分子と、反応炉3の内壁から供給される電子とによる衝突により、更に2次電子が増加し、放電が維持される。
【0040】
[5]この状態で反応炉3内の気圧を少しずつ上げる。約30秒で1Torrから約760Torr位の速さで上げる。この速さの調節により、炉内で次のように放電状態を変化させる。
【0041】
[6]はじめ、点火手段19であるCカップリング電極から高周波電力が供給されることでグロー放電が維持された状態から、次第に圧力を上げることで、分子の平均自由行程は短くなり、電界の高い領域での放電が多くなり、炉内の輝く領域は狭くなる。すなわち、筒状の反応炉3内部のほぼ中央が、磁界に沿って縦方向に線状にほぼ白色に輝く過渡期行程が得られる(図4(B))。
【0042】
[7]このように狭くなった領域での放電が強くなると、Lカップリングからの磁界の効果が多くなり、放電エネルギーは磁界から供給され、益々その領域の温度が上昇する。これにより線状に輝く部分は明るさを増し、線状から揺らぎを生じ、竜巻状に変動して、過渡期の後期の行程が得られる(図4(C))。
【0043】
[8]さらに温度が上昇していき、グロー放電のときのような炉の内壁からの電子と中性分子との衝突による2次電子だけでなく、分子自身の温度上昇による熱電子放出も盛んになる。この熱電子による放電が維持されるようになり熱プラズマとなる。すなわち、反応炉3のほぼ中央が球状に明るく輝き、大気中での球状の熱プラズマ75が形成され、安定期行程が得られる(図4(D))。この球状プラズマ75の明るさは、肉眼でも相当に明るいことが確認され、プラズマの温度が通常のプラズマよりも相当に高いことが想像された。
【0044】
[9]安定期行程の熱プラズマへ被処理ガスが供給されると、被処理ガスは熱により分解されて、電子を放出し、さらにプラズマが維持される。この状態で、本発明の実施形態の装置の運転が行われる。
【0045】
[比較実験の実験条件]
ほぼ同様の電力、ほぼ同様の容積の反応炉を用いて比較実験を行った。
実験装置:同様な装置、但し、プラズマ発生装置としてCカップリングの装置(反応炉の外側と内側に管状の電極を配設した装置)を利用した
高周波電源の高周周波数:27MHz
被処理ガスを処理する処理反応時の炉内圧力:大気圧(760Torr)。
プラズマ励起ガス:Arガス
被処理ガス:PFCガスであるCF4ガス
【0046】
[実験結果の比較]
反応後のガスをガスクロマトグラフ(質量分析器付き)で分析し、実験結果のグラフを図5に示す。グラフの縦軸は、物質の検出強度、横軸は時間軸である。図からわかるように、比較実験では、高周波電源の電圧を徐々に上げ、500wから2000wまで変化させたが、処理後の気体中から被処理ガスであるCF4は検出され続けた(図5)。しかし、本発明の実施形態の実験では、電力を1000wまで変化させた時点で、被処理ガスであるCF4は検出されず、ほとんど完全に分解処理された(図6)。
【0047】
[結果の評価]
この実施形態の装置で得られるプラズマの明るさが、通常のプラズマよりも相当に強いことが肉眼で確認され、温度も相当に高いことが想像され、これらのことは、図5に示すように、この実施形態の装置で分解効率がとても高いことで間接的に確認された。Cカップリングで大気圧下のプラズマとの比較実験では、PFCの分解率は95.2%、使用電力は0.5KW/cm3であり、他方,本発明例では、上記分解率は99.99%、使用電力は0.12kw/cm3であった。従って、消費電力が飛躍的に向上した。
【0048】
このようなプラズマ反応装置としての好成績は、以下の原因によって起こされていることが推察できる。
すなわち、大気圧(760Torr)中でCカップリング方法によるプラズマ放電では得られない高温のプラズマ放電が得られた。即ち、反応炉3内部の全体が輝く初期行程、反応炉3内部のほぼ中央が磁界に沿って線状に輝く過渡期行程、および大気圧で反応炉3内部のほぼ中央が球状に明るく輝く安定期行程を経て、球状に輝く安定したプラズマ75を維持することによって、特殊なプラズマ状態が得られていると推察できる。
【0049】
その特殊性を生んだ一因として、Cカップリングに比べ、発生する磁場を強くできる高周波によるLカップリングを採用し、強い磁場の中に電子を閉じこめることができたことがあると推察できる。
【0050】
また、特殊性を生んだ一因として、プラズマ励起ガスとして主たるプラズマガスとしてArガスを採用すると、Heガスに比べArガスは熱伝導の面から、外部に熱を逃がしにくく、プラズマの温度を高く維持できたことがあると推察できる。
また、そのそも、大気圧下でのプラズマの実験があまりなされていなかったため、いままで特殊なプラズマ状態が発見できなかったと推察できる。
【0051】
(他の実施形態)
以上の実施形態においては、被処理ガスは、PFCガスであったが、他の実施形態においては、フロンガスも処理できる。また、高温で分解して処理することが望ましいその他の被処理ガスであっても構わない。
【0052】
また、以上の実施形態においては、点火手段はCカップリングの電極でグロー放電を起こすものであったが、他の実施形態においては、他の手段、例えばテスラーブローブも利用できる。
また、以上の実施形態においては、励起ガスはArガスとしたが、他の実施形態においては、Arガスとヘリウムガス及びアルゴンガスと酸素ガスの混合ガスも使用できることが確認されている。
【0053】
【発明の効果】
以上説明したように、これらの発明によれば、大気圧下で、球状に輝く安定したプラズマを維持できるので、大気圧下で被処理ガスの分解処理反応ができ、高温、高密度のプラズマが得られ分解効率がよい大気圧プラズマ反応装置および方法を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる大気圧プラズマ反応装置の全体図である。
【図2】図1の反応炉を示す拡大図である。
【図3】図2の要部を示す拡大図である。
【図4】図2に示す反応炉の内部のプラズマの変化を示す行程図で
(A)は、反応炉の内部の全体が青紫に輝く初期行程の図
(B)は、反応炉内部のほぼ中央が、磁界に沿って縦方向に線状に輝く過渡期の前記の行程の図、
(C)は、線状に輝く部分は明るさを増し、線状から揺らぎを生じ、竜巻状に変動する過渡期の後期の行程の図
(D)は、反応炉のほぼ中央が球状に明るく輝き、大気中での球状の熱プラズマ75が形成される安定期行程の図である。
【図5】この実施形態の効果を示すグラフ図で、比較記実験における被処理ガスCF4を分解した後に残る量を示した図である。
【図6】本発明の実施形態の効果を示すグラフ図で、この実施形態による実験における被処理ガスCF4を分解した後に残る量を示した図である。
【符号の説明】
1 大気圧プラズマ反応装置
3 反応炉
5 被処理ガス供給手段
7 不活性ガス供給手段
9 反応ガス供給手段
11 高周波コイル
13 マッチング回路
15 高周波電源
17 電圧調整手段
19 点火手段
21 調整手段
23 冷媒供給手段
25 絶縁管
27、29 石英の管
31 ブロック
33 Oリング
35 締め具
37 蓋体
39 ネジ
41 空洞
43 石英管の水冷管
45 石英管
47 冷媒が流れる間隙
49 ブロック
51、53 水冷管
55 Oリング
57 締め具
59 蓋体
61 ネジ
63 Oリング
65 締め具
67 蓋体
69 ネジ
73 電極
75 球状プラズマ
Claims (12)
- 被処理ガスを分解する、以下の手段を有することを特徴とするプラズマ反応装置。
(1)前記被処理ガスとしてPFC及び/又はHFCをプラズマの高温により分解処理するための反応炉と、
(2)前記反応炉にPFC及び/又はHFCを供給する供給手段と、
(3)前記反応炉にプラズマ励起ガスとしての不活性ガスを供給するガス供給手段と、
(4)前記反応炉に反応ガスを供給して、前記被処理ガスと反応させ、前記被処理ガスを分解処理するための反応ガス供給手段と、
(5)前記不活性ガスの放電を開始させる点火手段と、
(6)前記反応炉の内部に磁界を発生させる手段と、
(7)前記反応炉を反応炉内部の全体を発光させる初期行程、反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程、および大気圧で反応炉内部のほぼ中央が球状に明るく輝く安定期行程を経て、球状に輝く安定したプラズマを維持するプラズマ調整手段。 - 前記被処理ガスは、前記反応ガスは、H2ガスおよびO2ガス、またはH2O蒸気であることを特徴とする請求項1に記載のプラズマ反応装置。
- 前記点火手段は、前記反応炉内に配設された電極とアースとの間に放電を発生させる電源と、を備えていることを特徴とする請求項1記載のプラズマ反応装置。
- 前記磁界を発生させる装置は、前記反応炉外周に備えたコイルと該コイルに高周波を供給する電源装置と、を備えていることを特徴とする請求項1記載のプラズマ反応装置。
- 前記磁界を発生させる装置は、マイクロ波発生装置であることを特徴とする請求項1記載のプラズマ反応装置。
- 前記不活性ガスがアルゴンガスであることを特徴とする請求項1記載のプラズマ反応装置。
- 前記不活性ガスがアルゴンである場合には、前記プラズマ調整手段は、前記反応炉内の圧力を約1Torrから徐々に圧力を大気圧まで上昇させて大気圧を維持する圧力調整手段であることを特徴とする請求項6記載のプラズマ反応装置。
- 前記不活性ガス供給手段は、大気圧下から放電を開始する場合には、不活性ガスとしてヘリウムガスガスを用い大気圧下でプラズマを点火し、プラズマが点火後において、ヘリウムガスからアルゴンガスに切り替えるガス切り替える機能を備えていることを特徴とする請求項1記載のプラズマ反応装置。
- 前記反応炉は、内側の円筒状の絶縁体耐火物と、外側の円筒状の絶縁体と、からなり、該両者の中間が冷媒で冷却される構造になっていることを特徴とする請求項1記載のプラズマ反応装置。
- (1)プラズマ反応炉と、(2)前記反応炉に被処理ガスを供給する手段と、前記反応炉にプラズマ安定ガスとして不活性ガスを供給する手段と、前記反応炉に前記被処理ガスを分解処理するための反応ガス供給手段と、を備え、(3)前記反応炉内にプラズマを点火する手段と、(4)前記反応炉の内部に磁界を発生させる手段と、を備えたプラズマ反応装置を用い、以下の行程を備えたPFC及び/又はHFCを含む被処理ガスを分解する方法。
(5)前記反応炉に不活性ガスと反応ガスとを前記反応炉に供給する工程と、
(6)前記反応炉内の不活性ガスをプラズマ状態にするための点火工程と、
(7)前記プラズマに磁界を加える工程と、
(8)前記反応炉内部の全体が発光する初期行程と、
(9)前記反応炉内部のほぼ中央が磁界に沿って線状に輝く過渡期行程と、
(10)前記反応炉内を大気圧下で反応炉内部のほぼ中央が球状に明るく輝く安定期行程。 - 前記不活性ガスは、アルゴンガスであることを特徴とする請求項10記載のPFC及び/又はHFCを含む被処理ガスを分解する方法。
- 前記被処理ガスは、PFCガスであり、前記反応ガスは、H2ガスおよびO2ガス、またはH2O蒸気であることを特徴とする請求項10に記載のプラズマ反応方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002321674A JP2004154654A (ja) | 2002-11-05 | 2002-11-05 | プラズマ反応装置および方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002321674A JP2004154654A (ja) | 2002-11-05 | 2002-11-05 | プラズマ反応装置および方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004154654A true JP2004154654A (ja) | 2004-06-03 |
Family
ID=32802133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002321674A Pending JP2004154654A (ja) | 2002-11-05 | 2002-11-05 | プラズマ反応装置および方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004154654A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007094416A1 (ja) * | 2006-02-17 | 2007-08-23 | Mitsubishi Heavy Industries, Ltd. | プラズマ処理装置及びプラズマ処理方法 |
WO2007105411A1 (ja) * | 2006-03-07 | 2007-09-20 | University Of The Ryukyus | プラズマ発生装置及びそれを用いたプラズマ生成方法 |
JP2007305580A (ja) * | 2006-04-21 | 2007-11-22 | New Power Plasma Co Ltd | プラズマ処理システム及びその制御方法 |
JP2008537282A (ja) * | 2005-03-11 | 2008-09-11 | パーキンエルマー・インコーポレイテッド | プラズマとその使用方法 |
JP2010240534A (ja) * | 2009-04-02 | 2010-10-28 | Clean Technology Co Ltd | 排ガス処理装置における磁場によるプラズマの制御方法及びそれを用いた排ガス処理装置 |
JP2011147902A (ja) * | 2010-01-22 | 2011-08-04 | Nishinihon Kaden Recycle Corp | 有機ハロゲン化合物の分解装置 |
CN115121095A (zh) * | 2021-03-24 | 2022-09-30 | 湖北湛澜环保科技有限公司 | 一种MRTO磁控中温等离子VOCs消解装置、系统及工艺 |
-
2002
- 2002-11-05 JP JP2002321674A patent/JP2004154654A/ja active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008537282A (ja) * | 2005-03-11 | 2008-09-11 | パーキンエルマー・インコーポレイテッド | プラズマとその使用方法 |
US8480912B2 (en) | 2006-02-17 | 2013-07-09 | Mitsubishi Heavy Industries, Ltd. | Plasma processing apparatus and plasma processing method |
JP2007220926A (ja) * | 2006-02-17 | 2007-08-30 | Mitsubishi Heavy Ind Ltd | プラズマ処理装置及びプラズマ処理方法 |
WO2007094416A1 (ja) * | 2006-02-17 | 2007-08-23 | Mitsubishi Heavy Industries, Ltd. | プラズマ処理装置及びプラズマ処理方法 |
US9011634B2 (en) | 2006-02-17 | 2015-04-21 | Mitsubishi Heavy Industries, Ltd. | Plasma processing apparatus and plasma processing method |
WO2007105411A1 (ja) * | 2006-03-07 | 2007-09-20 | University Of The Ryukyus | プラズマ発生装置及びそれを用いたプラズマ生成方法 |
JP5239021B2 (ja) * | 2006-03-07 | 2013-07-17 | 国立大学法人 琉球大学 | プラズマ発生装置及びそれを用いたプラズマ生成方法 |
US8216433B2 (en) | 2006-03-07 | 2012-07-10 | University Of The Ryukyus | Plasma generator and method of generating plasma using the same |
JP2007305580A (ja) * | 2006-04-21 | 2007-11-22 | New Power Plasma Co Ltd | プラズマ処理システム及びその制御方法 |
JP2010240534A (ja) * | 2009-04-02 | 2010-10-28 | Clean Technology Co Ltd | 排ガス処理装置における磁場によるプラズマの制御方法及びそれを用いた排ガス処理装置 |
JP2011147902A (ja) * | 2010-01-22 | 2011-08-04 | Nishinihon Kaden Recycle Corp | 有機ハロゲン化合物の分解装置 |
CN115121095A (zh) * | 2021-03-24 | 2022-09-30 | 湖北湛澜环保科技有限公司 | 一种MRTO磁控中温等离子VOCs消解装置、系统及工艺 |
CN115121095B (zh) * | 2021-03-24 | 2023-04-25 | 湖北湛澜环保科技有限公司 | 一种MRTO磁控中温等离子VOCs消解装置、系统及工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100474495C (zh) | 等离子体处理中采用微射流的低能离子产生和输运方法和装置 | |
US5838108A (en) | Method and apparatus for starting difficult to start electrodeless lamps using a field emission source | |
US6620394B2 (en) | Emission control for perfluorocompound gases by microwave plasma torch | |
JP5600394B2 (ja) | マイクロ波プラズマ反応装置 | |
Kabouzi et al. | Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure | |
CN107210178A (zh) | 用于利用自谐振设备的等离子体点火的装置和方法 | |
JP5891341B2 (ja) | プラズマ生成装置及び方法 | |
JP4414004B2 (ja) | 過フッ素化ガスおよびハイドロフルオロカーボンの処理方法および装置 | |
KR20070004634A (ko) | 플루오로화합물-함유 가스 스트림의 처리 방법 및 장치 | |
JP2007522935A5 (ja) | ||
JP5039381B2 (ja) | プラズマを形成するための装置および方法 | |
JP2004154654A (ja) | プラズマ反応装置および方法 | |
JP2004313998A (ja) | ハロゲン化物の分解装置 | |
JP2007517650A (ja) | 高周波放電によるガス処理方法 | |
JPH01183432A (ja) | 石英ガラス管の加熱方法 | |
JP2004160312A (ja) | Pfcガス分解システム及びガス分解方法 | |
KR20130048577A (ko) | 플라즈마 반응기 및 이를 이용한 가스스크러버 | |
KR100695036B1 (ko) | 고온 대용량 플라즈마 가스 스크러버 | |
Dinescu et al. | Radio frequency expanding plasmas at low, intermediate, and atmospheric pressure and their applications | |
JP3615938B2 (ja) | プラズマ生成装置 | |
EP1353359A2 (en) | Lamp bulb and electrodeless lamp therewith | |
US20240153754A1 (en) | Method of Using Refractory Metal Arc Electrodes in Sulfur-Containing Plasma Gases and Sulfur Arc Lamp Based on Same | |
JP3621946B1 (ja) | 有機ハロゲン化合物放電分解装置およびその方法 | |
KR100385157B1 (ko) | 과불화 화합물 가스의 처리 방법 및 이를 위한 장치 | |
KR101229131B1 (ko) | 가스 스트림 처리 방법 |