WO2007105335A1 - 火炉内への気体噴出ポート - Google Patents

火炉内への気体噴出ポート Download PDF

Info

Publication number
WO2007105335A1
WO2007105335A1 PCT/JP2006/322040 JP2006322040W WO2007105335A1 WO 2007105335 A1 WO2007105335 A1 WO 2007105335A1 JP 2006322040 W JP2006322040 W JP 2006322040W WO 2007105335 A1 WO2007105335 A1 WO 2007105335A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow
furnace
air
wall
Prior art date
Application number
PCT/JP2006/322040
Other languages
English (en)
French (fr)
Inventor
Yusuke Ochi
Akira Baba
Kouji Kuramashi
Hirofumi Okazaki
Masayuki Taniguchi
Original Assignee
Babcock-Hitachi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock-Hitachi Kabushiki Kaisha filed Critical Babcock-Hitachi Kabushiki Kaisha
Priority to EP06822958A priority Critical patent/EP1995517A1/en
Priority to CA002645680A priority patent/CA2645680A1/en
Priority to US12/224,983 priority patent/US20090087805A1/en
Priority to JP2008504973A priority patent/JPWO2007105335A1/ja
Publication of WO2007105335A1 publication Critical patent/WO2007105335A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Definitions

  • the present invention relates to a port for ejecting gas into a furnace such as a boiler, and more particularly to a gas ejection port into a furnace such as a boiler suitable for preventing ash adhesion at the opening of the furnace. Background technology.
  • Each furnace wall such as a boiler, is provided with various types of pouches that eject gas such as air and combustion exhaust gas into the furnace.
  • a burner that ejects fuel and combustion air as a combustion device, and an after-air port for introducing two-stage combustion air (also called AAP, over-one air port, or OFA) Etc.
  • the gas ejection port as used in the present specification is not limited to the after-air port ⁇ ⁇ ⁇ ⁇ as long as the gas is ejected into the furnace.
  • a port for a burner the expanded tubular wall surface opened to the furnace provided with the port is referred to as a slot wall or a throat expanded tube portion (furnace wall surface portion where the diameter of the opening portion gradually increases toward the furnace outlet side).
  • the gas jet flow reaches the center of the furnace, and the gas jet flow from the outer periphery of the port rod toward the central axis is strengthened and thrown so as to promote gas mixing near the furnace wall.
  • Patent Documents 1 and 2 below disclose an invention of an after-apart for charging the two-stage combustion air accompanied by the contracted flow into a furnace.
  • the gas ejection port suitable for forming a contracted flow of such a gas jet near the opening of the port, ash adheres and melts on the throat wall of the furnace, and the cleaning force is massive.
  • the function and performance of the port may be hindered by the fact that the massive cleansing force peels off from the wall surface.
  • Patent Document 3 As a technology to prevent ash from adhering and melting to the throat wall opened in the furnace and growing the clinching force into a lump, the pulverized coal panner prevents the adhesion of the clinching force to the throat wall.
  • Patent Document 4 Bernas' Rotor Wall
  • Patent Document 5 Over-Airport
  • 'two-stage combustion technique is used as a low NO x combustion technique that keeps the nitrogen oxide (NO x) concentration in the combustion exhaust gas low.
  • AA P after-air port
  • FIG. 13 shows a drawing of a conventional swivel A A P.
  • a A P shown in FIG. 13 the primary air 9 passes through the primary nozzle 1 and is supplied to the furnace 3 4.
  • a secondary nozzle 2 is provided on the outer periphery of the primary nozzle 1 to supply secondary air 10. It is necessary to properly arrange the AAP with the above structure in the furnace 34, but because of the limited number of AAP installed, the combination of air and unburned gas in the vicinity of the AAP and in the center of the furnace 34
  • the secondary nozzle 2 is provided with a swirler 7 for the purpose of strengthening, and the swirler 7 is used for the combination of air and unburned gas in the furnace 3 4 near the AAP. Is used, and a structure in which air and unburned gas are mixed by a strong air jet reaching the center of the furnace 34 from the primary nozzle 1 is used (Patent Document 6).
  • the swirling secondary air flow using the swirler 7 does not sufficiently spread the swirling air flow, and in the region along the inner wall 3 4 a of the furnace 34, the mixing of unburned gas and combustion air is not sufficient There is.
  • a tertiary having a current drift that can supply combustion air in the direction along the inner wall 3 4 a of the furnace 3 4 to the outer peripheral portion of the secondary nozzle 2 having the swirler 7.
  • the applicant has proposed an AAP with a tertiary nozzle for air (Patent Document 7).
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 6 — 1 3 2 8 1 1 Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 6-1. 3 2 7 9 8
  • Patent Document 3 Japanese Utility Model Publication No. 6-6 9 0 9
  • Patent Document 4 Japanese Patent No. 3 6 6 8 9 8 9
  • Patent Document 5 Japanese Patent Laid-Open No. 10-0 1 2 2 5 4 6
  • Patent Document 6 Japanese Patent Application Laid-Open No. 6 2-1 3 8 6 0 7
  • Patent Document 7 Japanese Patent Laid-Open No. 9-1 1 2 8 1 6 Disclosure of Invention
  • the problem of the present invention is that the ash adheres and melts on the wall surface of the furnace throat pipe expansion section without causing an increase in cost, regardless of conditions such as the flow rate of the ejected gas.
  • air is used as a gas to prevent mass growth, the combustion air and unburned gas in the vicinity of the furnace wall are stably mixed, and the combustion air enters the center of the furnace.
  • the aim is to provide a gas ejection port that can be reliably reached and reduce the NOX concentration in the combustion gas.
  • the invention according to claim 1 is provided on a furnace wall of a fire, and has a velocity component flowing toward a central axis of a gas flow perpendicular to the furnace wall and a velocity component flowing along the central axis, A flow path for contraction flow formed obliquely from the upstream side of the flow toward the central axis, and a gas flow path formed in the furnace wall opening 'part on the downstream side of the flow path for contraction flow A throat expansion section that sequentially expands in the direction of gas flow, and a flow path for contraction flow generation for guiding the gas flowing through the flow path for contraction flow to flow along the wall surface of the pipe expansion section.
  • the gas induced in the cylinder having the configuration of the invention according to claim 1 effectively flows in the vicinity of the wall surface of the throat pipe expansion portion, and the negative pressure in the vicinity of the wall surface of the pipe expansion portion can be removed. Since the gas flowing along the outer peripheral side wall surface of the flow channel (nozzle partition wall constituting the flow channel) can be effectively guided to the wall surface side of the throat expanded portion, the throat expanded portion due to ash entrainment and its vicinity Ashes are unlikely to form on the walls of the wall. Furthermore, in the past, instead of using a ruber, an outlet for ejecting a cooling body such as air was separately provided in the gas ejection port. In contrast, in the invention according to claim 1, the louver is provided. By using it, the pressure loss of the gas jet flow can be reduced, the structure is simplified, and there is no need to install an ash adhesion suppression seal air regulator. It can be reduced. .
  • the gas flow ejected from the flow path for contracted flow generation according to the first aspect of the invention becomes a gas flow that accelerates gas mixing reaching the center of the furnace and gas mixing in the vicinity of the furnace wall. Therefore, when the gas ejection port is used as an AAP for a two-stage combustion panner, a highly reliable fuel capable of low NO x and low CO combustion can be burned.
  • the front end portion of the gas flow upstream side of the rubbing bar is a surface extending from the outer peripheral side wall surface of the contracted flow generation flow passage in the central axis direction or the extended surface.
  • the furnace interior according to claim 1 which is located on the upstream side of the gas flow, and has a pipe expansion portion that is sequentially expanded in the gas flow direction along the wall surface of the pipe expansion portion in the gas flow downstream portion of the louver. This is a gas ejection port.
  • the tip of the louver on the upstream side of the gas flow has a surface where the outer peripheral side wall surface of the contracted flow generation channel extends in the direction of the central axis, or the gas flow flows more than the extended surface. Since it is located on the upstream side, the gas guided to the louver effectively flows in the vicinity of the wall surface of the slot expansion section, and the negative pressure in the vicinity of the wall surface of the expansion section can be removed. Therefore, since the gas flowing along the outer peripheral side wall surface (the nozzle partition wall constituting the flow channel) of the contracted flow generation channel can be effectively guided to the wall surface side of the throat pipe expansion part, Ashes are unlikely to form on the wall surface near the expanded pipe due to the above.
  • the invention according to claim 3 includes a mechanism for changing a ratio of a velocity component flowing along the central axis direction and a velocity component flowing toward the central axis direction of the air flow flowing through the contracted flow generation flow path.
  • a gas ejection port into the furnace according to claim 1 or 2. by changing the ratio of the velocity component flowing along the central axis direction and the velocity component flowing toward the central axis direction, the gas ejection after the merging of the respective velocity components in the furnace
  • the flow direction can be adjusted, and when the gas is air, the unburned gas region with insufficient air that is unevenly distributed in the furnace and the combustion air can be suitably mixed to reduce unburned fuel.
  • the mixed state of the gas after merging can be adjusted by adjusting the swirl strength of the two velocity components.
  • the self-contained invention is capable of adjusting an opening degree of the contraction flow generation channel that starts to open from the outer peripheral wall surface so that gas flows along the outer peripheral side wall surface of the contraction flow generation channel. This is a gas ejection port into the furnace as described in claim 3 with a damper.
  • the outer wall surface side of the flow path for contracted flow generation is adjusted.
  • the damper starts to open, the flow rate of the gas flowing through the contracted flow generation flow path is reduced (the damper is close to the closed state), but the reduced flow generation flow path is close to the portion near the slot expansion section. Since air flows, gas is induced to the louver, and ash adhesion to the throat expansion portion can be prevented. .
  • the invention as set forth in claim 5 is characterized in that a swirling member for swirling gas is provided between the louver and the wall surface of the slot expanding portion. Is.
  • the rubber bar may be divided into a plurality of parts in the circumferential direction of the gas ejection port.
  • the gas flowing between the louver and the wall surface of the slot expansion portion can be ejected into the furnace while being swirled by the revolving member.
  • a part of the contracted flow easily flows from the contracted flow generation flow path, and the gas flow that seals the inner wall surface of the furnace effectively flows in the vicinity of the wall surface of the slot expanding portion. Since the negative pressure in the vicinity of the wall surface can be removed, the expansion of the slot by ash entrainment Ash adhesion in the vicinity of the furnace wall surface of the pipe part can be prevented.
  • the invention according to claim 6 is that the length of the throat expansion portion formed at the downstream end of the louver in the gas flow direction is 1 Z 2 or less of the wall length of the throat expansion tube ⁇ in the gas flow direction.
  • the length of the slot formed at the downstream end of the louver in the gas flow direction of the expanded pipe portion is equal to 1 Z 2 of the wall length of the expanded pipe portion in the gas flow direction. If it is as follows, ash is less likely to adhere to the exposed surface (the surface between the e and f parts in Fig. 12) of the expanded portion of the louver.
  • the invention according to claim 7 is characterized in that the flow path for contracted flow generation is a tertiary nozzle, a primary nozzle through which gas flows along the central axis inside the tertiary nozzle, and a secondary outside the primary and slurries.
  • the gas ejection port is used as an AAP installed on the furnace wall downstream of the two-stage combustion burner, there is no ash adhesion on the furnace wall, and the reliability is high. It can be used to burn fuels that can burn low NO x and low CO.
  • FIG. 1 is a schematic view of a boiler in which the after-airport or the panner of the present invention is used.
  • FIG. 2 is a schematic cross-sectional view of an after air bag of Example 1 of the present invention.
  • FIG. 3 is a perspective view in which a part of the after-apart of the first embodiment is omitted.
  • FIG. 4 is a view of the air port viewed from inside the furnace of the first embodiment.
  • FIG. 5 is a flow velocity distribution diagram of the air flow at the A A P outlet portion performed using the A A P model of FIG.
  • FIG. 6 is a flow velocity distribution diagram of the air flow at the A A P outlet portion performed using the A A P model of FIG.
  • FIG. 7 is a flow velocity distribution diagram of the air flow at the AAP outlet part, which was performed using the AAP model of Fig. 2.
  • FIG. 8 is a schematic cross-sectional view of an after air port according to the second embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of an after air porcelain in which a rubber bar of a comparative example for comparison with the second embodiment of the present invention is arranged along the furnace slot widened portion.
  • FIG. 10 is a schematic cross-sectional view of an after air port in which a comparative bar for comparison with Example 2 of the present invention is arranged in a tertiary nozzle.
  • FIG. 11 is a schematic cross-sectional view of an after air port according to the third embodiment of the present invention.
  • FIG. 1'2 is a schematic cross-sectional view of a partial after-air port for explaining the dimensional relationship when the rubber bar and the throat expansion portion of the third embodiment of the present invention are arranged in the after-air port. .
  • FIG. 13 is a schematic cross-sectional view of an after air bag of Example 4 of the present invention.
  • Fig. ⁇ 4 is a longitudinal sectional view of the AAP structure of the prior art.
  • Fig. 15 is a longitudinal sectional view of a conventional AAP structure. Best Mode for Carrying Out the Invention
  • a plurality of burners 30 are arranged opposite to a pair of opposed furnace walls of a boiler furnace 34, and an after-air port 31 is arranged above the burner installation location.
  • An air-fuel mixture less than the stoichiometric air ratio (for example, 0.8) from the Pana 30 is injected into the flame region inside the furnace 34, and an incomplete combustion region (not shown) is formed in the furnace.
  • the after-air port 3 1 promotes combustion by supplying insufficient air to the combustible gas in the incomplete combustion region.
  • the fuel supplied to PANA 30 is supplied to PANA 30 from the pulverized coal supply line 33 by pulverizing the coal in the ban force 29 using a mill 35.
  • the total amount of air for coal combustion is controlled by the air supply system, and the amount of air is distributed to the Pana 30 and the After Air Port 31.
  • the air supplied from the prober 36 is branched into the air supply line 3 7 a on the side of the parner 30 and the air supply line 3 7 b on the side of the abuter air port 3 1, respectively. a, 3 9 b lead to PANA 30 and after air port ⁇ 31. Air flow to line 3 7 a and line 3 7 b
  • the distribution is adjusted by the damper 40 0 a on the side of the PANA 30 and the damper 40 0 b on the side of the after-airport 31 1.
  • the output of the blower 36 is controlled so that the total air flow rate becomes a value that specifies the oxygen concentration of the exhaust gas.
  • Air below the theoretical air ratio is supplied from the air supply line 3 7 a to the PANA 30, and the pulverized coal is conveyed by air from the pulverized coal supply line 33.
  • the air-fuel mixture jetted from the Pana 30 into the furnace 3 4. is less than the amount of air required for complete combustion, resulting in incomplete combustion. At this time, NOx can be reduced. Since the fuel does not burn completely, a flow of combustible gas is formed downstream of the PANA 30.
  • the air that has entered the air box 3 9 b of the after-air port 3 1 through the air supply line 3 7 b is distributed to the primary nozzle 1, the secondary nozzle 2, and the tertiary nozzle 3 of the air port 3 1 described later. It is supplied to the flow of combustible gas in the furnace (incomplete combustion area). This air is mixed with the flow of combustible gas and burned completely to become combustion gas, which is converted into combustion gas in the furnace 3 4 and steamed to water in the heat exchanger 4 2 installed in the furnace 3 4 After the steam is heated and steam is generated, it flows to the outlet of the furnace 34. Also, a boiler water pipe (not shown) is arranged on the boiler furnace wall surface, and is heated by combustion of fuel in the furnace 34 to generate steam.
  • FIG. 2 is a cross-sectional view of the port 3 1 according to the present embodiment (cross-sectional view taken along the line AA ′ of FIG. 4),
  • FIG. 3 is a perspective view with a part thereof omitted, and
  • FIG. 4 is a port view from the furnace 3 4 side. 3 Each figure showing 1 is shown.
  • the port 3 1 is arranged in the wind box 39 b, and its air nozzle mechanism has a primary nozzle 1 and a secondary nozzle that blows out swirling air along the outer periphery of the primary nozzle 1 as secondary air 1 0. It has a nozzle 2 and a tertiary nozzle 3 that blows out air flowing from the outside of the primary nozzle 1 toward the central axis C of the port ⁇ 3 1 as tertiary air 1 1.
  • the primary nozzle 1, the secondary nozzle 2, and the tertiary nozzle 3 have a coaxial nozzle structure.
  • the primary nozzle 1 is in the center, the secondary nozzle 2 is outside, and the tertiary nozzle 3 is outside. Is arranged.
  • the primary nozzle 1 has a straight tubular shape, has an air outlet 1A (Fig. 3) at the front end, and an air intake 1B at the rear end.
  • the primary damper 5 adjusts the primary air flow rate by adjusting the opening area of the air intake 1B.
  • Primary nozzle 1 ejects straight-flowing air parallel to the central axis C of port ⁇ 3 1 as primary air 5.
  • the opening area of the air intake 1 B is adjusted to the primary damper 5 on the outer periphery of the primary nozzle 1 according to the adjustment lever 1 5 connected to the primary damper 5 and provided with a handle on the outside of the wind box 39 b. It can be changed by
  • the secondary nozzle 2 has an annular air inlet 2B (Fig. 3) on the rear end side, and has a tubular secondary air between the inner periphery of the secondary nozzle 2 and the outer periphery of the primary nozzle 1.
  • a passage is formed
  • the secondary air 10 flowing in from the air inlet 2 B is given a swirling force by the secondary air register (deflecting plate) 7, and the secondary nozzle outlet is accompanied by a swirling flow along the outer periphery of the primary nozzle 1. (Front end) 2 Spout from A.
  • the opening area of the air inlet 2 B of the secondary nozzle 2 is connected to the cylindrical secondary damper 6 and the secondary damper 6 is connected to the windbox 3 9 b by the adjusting lever 1 6 with a handle on the outer side. Slided in the direction of the center axis C of port 3 1
  • the secondary air flow rate is adjusted accordingly.
  • the multiple secondary air registers 7 are operated by operating the register drive 1 3 and the secondary air intake 2 so that the deflection angle can be changed in the same way via the support shaft 7a by a cooperative mechanism (not shown). Attached to B, secondary air intake 2 Multiple in the circumferential direction of B
  • the turning force applied to 20 can be changed.
  • the tertiary nozzle 3 has a conical front wall 3 0 1 and a conical rear wall 3 0 2 disposed opposite to the front wall 3 0 1, and the front wall 3 0 1 and the rear wall 3 0 2 A conical air flow path of the tertiary nozzle 3 is formed between them.
  • the air inlet 3B (Fig. 3) of the tertiary nozzle 3 has a ring shape, and the opening area is connected to the cylindrical tertiary damper 8 and is outside the wind box 39b.
  • Adjustment lever 17 equipped with a handle 25 can be changed by sliding the third damper 8 along the central axis C direction of the rod 3 1, thereby adjusting the tertiary air flow rate.
  • the front wall 3 0 1 and the rear wall 3 0 2 are joined via a plurality of connecting plates 4 arranged in the air intake port 3B.
  • the outlet 3 A of the tertiary nozzle 3 is connected to the tip of the secondary nozzle 2, and the tertiary air 1 1 and the secondary air 10 join together to form an air flow 1 2. It is formed so as to be ejected into the furnace 3 4.
  • the secondary air 10 flowing into the secondary nozzle 2 flows into the furnace 34 in a direction parallel to the central axis C of the port 3 1, and the swirl force is further generated by the secondary air register 7. Given and ejected into the furnace 3 4.
  • the tertiary nozzle 3 has an inward inclination toward the central axis C direction of the port 31. Therefore, the tertiary air flowing into the tertiary nozzle 3.
  • the air 1 1 is in the central axis C direction of the port 31. This is a structure suitable for forming a constricted flow concentrated on the surface.
  • the unburned gas region that is unevenly distributed in the furnace 34 and the combustion air can be suitably mixed to reduce unburned fuel.
  • the mixing state can be adjusted by the strength of the swirling of the secondary air 10.
  • Primary damper 5 Secondary damper 6 and tertiary damper 8 are used to adjust the air flow ratio of primary air 9, secondary air ⁇ 0 and tertiary air 11 of port 3 1.
  • Some fuels contain ash, such as coal, heavy oil, etc., but when using such fuels, increase the flow rate of tertiary air 1 1 and 'port air flow 1 2 When concentrated in the direction of the central axis C of 3 1, so-called contracted flow, the turbulence around the contracted flow increases, and the surrounding combustion gas is easily accompanied by the contracted flow.
  • the ash melted in the combustion gas 25 is also entrained and may adhere to the vicinity of the water pipe 23 at the outlet of the porridge 31 to produce an ash adhesion layer 18. This state is schematically shown in the cross-sectional view of the pouch 31 in FIG.
  • FIGs. 5 to 7 show the flow velocity distribution (actual measurement data) at the outlet of Po ⁇ 31.
  • the vertical axis shows the distance from the central axis C of the AAP, with C as the origin.
  • the horizontal axis shows the distance from the AAP in the furnace 3 4 to 0 to 5 Shown in the range of 0 0 O mm.
  • the color of the flow velocity distribution chart is 25 to 30 m / s for brown, 20 to 25 m / s for red, 15 to 20 m / s for pink, 10 to yellow: L 5 mZ s
  • the dark blue color is 5 to: L 0 m / s, the blue color is 0 to 5 m / s, the dark blue color is -5 to Om / s, and the dark blue color is 10 to 5. m / s. 'Note that the minus sign of dark blue and dark blue represents the reverse flow area.
  • the AAP model used was a full-scale machine (AAP of the size applicable to a 100 MW MW boiler), and the air flow was also tested in the same way as the actual machine.
  • Figure 6 shows the case where the primary air 9 is 0%, the secondary swirling flow of the secondary air 10 is 70%, and the tertiary air 11 is 30%.
  • Fig. 7 shows the case where primary air 9 is 0%, secondary air 10 is 63% of the strong swirling flow, and tertiary air 11 is 37%. 6 and 7, there is little difference in the spread of the air jet in the furnace 34, and there is a difference in the flow velocity distribution in the central part of the furnace 34.
  • the lower side of Figs. 5 to 7 corresponds to the central axis C of A A P.
  • the air flow 1 2 (the confluence of secondary air 10 + tertiary air 1 1) peeled off from the furnace throw wall 2 6 and was reduced in flow. Indicates the situation. Therefore, the ash adhesion layer 18 shown in Fig. 14 is formed on the furnace throat wall 26. It is.
  • a rubar 3 2 is installed along the furnace throat wall 26 from the outlet of the tertiary nozzle 3, and the outlet force of the rubar 3 2 and the tertiary nozzle 3 is set.
  • the space between the furnace throat wall 2 6 and the furnace throat wall 2 6 is provided with an interval in which a partial flow 1 1 ′ of the tertiary air 1 1 flows. Because of this structure, the partial flow 1 1 ′ of the tertiary air 1 1 flows so as to seal the surface of the throat wall 2 6, so that the combustion ash accompanying the contracted flow of the tertiary air 1 1 throat wall 2 Adhering to the surface of 6 can be minimized.
  • FIG. 2 shows the situation where the ash 'adhesion layer 18 is formed on the inclined portion of the furnace throw wall 26, but ash removal in this region is impossible in this embodiment.
  • ash adhesion in this area does not affect the performance of A A P and does not affect boiler performance, so it can be ignored.
  • the ash adhesion layer 18 shown in Fig. 14 must be removed because it has an impact on the A A P performance because it peels and falls into the A A P when the boiler stops. .. '' (Example 2).
  • FIG. 8 shows a cross-sectional view of the port 3 1 of the second embodiment.
  • FIGS. 9 and 10 are schematic diagrams of the port 31 of the comparative example shown for comparison with the port 31 of the embodiment 2 shown in FIG. .
  • the primary nozzle 1 ', the secondary nozzle 2 and the tertiary nozzle 3 are shown as concentric primary air, secondary air and tertiary air, respectively. However, at least the flow from the outer peripheral side of the tertiary nozzle 3 in the present embodiment toward the port central axis C is strengthened to pass through the port opening (slow wall 2 6) of the furnace 3 4. Jet force Any structure suitable for forming a so-called contracted flow may be used. That is, the primary nozzle 1 and the secondary nozzle 2 are not essential for forming a so-called contracted flow.
  • the air flowing through the primary nozzle 1 that is the central air nozzle of the port 3 1 forms a straight flow
  • the secondary nozzle 2 has a secondary air register 7 having a swirling function at the inlet, and the secondary nozzle 2 furnace.
  • the main part including the end on the 4 side (secondary nozzle outlet) is a straight pipe centered on the port center axis C. Accordingly, in FIG. 8, the radius D a of the pipe inlet end of the secondary nozzle 2 is equal to the radius D b of the pipe outlet end.
  • the tertiary nozzle 3 forms a jet flow having an inclination angle of 30 ° to 70 ° with respect to the port center axis C, thereby obtaining a contraction effect. It is said.
  • the contracted flow effect means that the entrained gas 20 of the surrounding gas in the furnace 34 is generated in the vicinity of the inlet wall 26 where the gas flow path formed at the opening of the furnace wall is expanded. It is an effect. ,
  • the air flow rate of the tertiary nozzle 3 can be adjusted by operating the adjustment lever 1 7 from the outside of the wind box 3 9 b by operating the damper 8 provided at the air inlet 3 B of the tertiary nozzle 3 and removing the air from the tertiary nozzle 3. 3 Adjust the opening of B. .
  • the throat part 26 of the furnace wall on the outlet side of the tertiary nozzle 3 (the side going into the furnace 34) has a diameter downstream from the central axis C of the port 31 toward the downstream side of the gas flow. It is expanding.
  • the tertiary damper 8 When the tertiary damper 8 is fully closed, the swirling flow from the expanded throat wall 26 and the secondary nozzle 2 forms an air flow that expands in the radial direction of the port center axis C. Also, in order to prevent ash from adhering to the expanded throat wall 2 6 on the outlet side of the tertiary nozzle 3, a part of the flow 1 1 ′ of the tertiary air 1 1 is thrown in the outer circumferential direction of the wall 2 6.
  • a ring-shaped louver 3 2 is provided that expands as the cross-sectional area goes to the furnace 3 4 side.
  • the upstream end of the gas bar 3 2 (the inlet side of the air nozzle 3) is on the extension line E of the outer wall of the tertiary nozzle 3 or on the upstream side of the gas flow (on the air line) It is provided so that it is located on the nozzle inlet side; the direction away from the inside of the furnace.
  • the port ⁇ 3 1 of this embodiment shown in FIG. 8 is parallel to the furnace wall surface of the expanded wall 1 6 on the outlet side of the tertiary nozzle 3 (the side going into the furnace 3 4).
  • the throat wall A ring-shaped bar 3 2 whose cross-sectional area increases toward the side closer to the inside of the furnace 6 of 26 is provided.
  • FIG. 9 and FIG. 10 show a cross-sectional view of the port 3 1 having the same configuration as FIG. 8, but the configuration different from the port 3 1 in FIG. Gas flow
  • the tip on the upstream side is provided so that it is located on the downstream side of the gas flow downstream of the extension line E of the outer partition wall of the tertiary nozzle 3, and in FIG. 10 all the louvers 3 2 "are from the third nozzle 3.
  • This pouch is provided so as to be located in a contracted flow toward the central axis C.
  • the upstream end of the gas flow upstream of the louver 3 2 of this embodiment shown in FIG. 8 is provided so as to block a part of the tertiary nozzle 3, so that the tertiary air 1 1 flowing through the tertiary nozzle 3 is reduced.
  • the upstream end of the louver 3 2 becomes an obstacle to the flow, and dynamic pressure is generated by the tertiary air 1 1 on the outer periphery side (slow wall 2 6 side) of the louver 3 2.
  • a partial flow 1 1 ′ of tertiary air 1 1 flows between the throat wall 2 6 and the expanded throat wall 2 6.
  • the flow 1 1 ′ which becomes the seal air flowing between the rubber bar 3 2 and the inlet wall 2 6, is induced in the furnace 3 4 by being guided by the rubber 3 2.
  • Flows in the vicinity of the furnace 6 • Entrained gas flow inside the furnace wall (wall seal air flow) 2 0 effectively flows along the inner wall of the furnace 3 4 near the throat wall 2 6 of the port 3 1, Slow ⁇ Wall 2 6 The negative pressure near the wall surface can be removed.
  • the radius (D g) of the gas flow downstream side (furnace side) of the louver 3 2 is the minimum radius (D s) of the expanded tubular throat wall 26 of the tertiary nozzle 3 (hereinafter referred to as “slow”).
  • the diameter is sometimes referred to as “diameter.” Refer to Fig. 12), less than 1 times, particularly preferably less than 0.95 times.
  • louver 3 2 may be divided in the circumferential direction so that the louver 3 2 can be easily taken out of the furnace 3 4 without being integrated.
  • the length of the plane whose diameter increases toward the downstream side of the gas flow of the louver 3 2 (the length of the line connecting the e part (circumferential direction) and the heel part (circumferential direction) in FIG.
  • the length of the line connecting the 10h part (circumferential direction) and the i part (circumferential direction) in Fig. 12 It is desirable that the value be 1 or 2 or less. This applies not only to the present embodiment but also to the present invention as a whole.
  • the spreading angle of the gas bar 3 2 in the gas flow direction is equal to or larger than the spreading angle of the expanded tubular wall 26 of the port 31, it is effective for preventing ash adhesion. It is possible to induce air volume.
  • the damper 8 at the inlet of the tertiary nozzle 3 is arranged on the side away from the furnace 3 4 at the inlet of the nozzle 3, and when the air intake 3B of the tertiary nozzle 3 is closed by the damper 8. It is desirable to slide the damper 8 in a direction approaching the furnace 3 4. This is because even when the air flow rate when the inlet of the nozzle 3 is closed is reduced (the damper 8 is close to the closed state), the expanded throat wall 20 of the pipe 3 1 in the tertiary nozzle 3 20 This is because air flows in a portion close to 26, so that air is guided to louver 3 2 and ash adhesion to the expanded tubular slot wall 26 can be prevented.
  • the damper 8 is shown in the form of a cylindrical member that slides substantially parallel to the port center axis C.
  • a plurality of butterfly-shaped valves or flaps whose rotation axis is the port ⁇ 3 1 It may be arranged in a line in the circumferential direction at a position parallel to the central axis C. This is not limited to the present embodiment but is a configuration example that can be applied to the following embodiments.
  • the port 3 1 has a triple structure. However, the port 3 1 does not have the primary nozzle 1 or the secondary nozzle 2 and is composed only of the tertiary nozzle 3 having a contracted flow structure. The above effect can be obtained even with 3 1. In other embodiments, the point 3 1 may be composed only of the tertiary nozzle 3.
  • an air nozzle such as the secondary nozzle 2 is provided inside the tertiary nozzle 3 shown in FIG. 8, the end of the partition wall constituting the secondary nozzle 2 on the downstream side of the gas flow (point of Fig. I?
  • the configuration of the present embodiment allows the throat wall 2 under any operating conditions of the port 31.
  • the louver 3 2 is supported by a fixing rib 2 7 (see FIG. 11) on the outer flow path wall of the tertiary nozzle 3 constituting the contracted flow.
  • a fixing rib 2 7 see FIG. 11
  • the thermal expansion is different in each part of the furnace 3 4, so that the wall surface of the furnace 3 4 that forms the outer periphery of the outermost air nozzle (the tertiary nozzle 3 in the case of FIG. 8)
  • the distance from Po ⁇ center axis C varies depending on the operating load.
  • FIG. 11 is a schematic diagram of a port 31 showing the third embodiment. In the configuration shown in FIG. 11, the same parts as those shown in FIG. .
  • the expanded tubular throat wall 26 of the port 31 has a parallel portion 26 a parallel to the center axis C with a constant flow path cross-sectional area.
  • the cylinder 3 2 is also provided with a cylindrical portion 3 2 a along the parallel portion 2 6 a.
  • Fig. 12 (a) is an enlarged view of the port 31 first outlet portion of Fig. 11.
  • the tip of the louver 32 on the upstream side of the gas flow is the tertiary nozzle that forms the contracted flow.
  • the outer peripheral side wall surface of 3 (front wall) is located on the extension line E of 301 and on the upstream side of the gas flow (in the direction away from the furnace) from the extension line E.
  • the radius D g of the furnace 3 of the ruby 3 3 is less than one half of the half wall D s of the slot wall 26 so that the ruby 3 2 can be inserted from the side of the wind box 3 9 and b.
  • the radius D s of the parallel portion 2 6 a of the expanded tubular throat wall 2 6 is made larger than the radius D g of the maximum diameter portion of the louver 3 2 (radius D g ⁇ radius D s).
  • the radius D s of the parallel part 2 6 a of the pipe 26 2 is less than 0.95 times larger than the radius D g of the largest diameter part of the bar 3 2 (D s ⁇ 0.95 D. g) is desirable.
  • the radius D p of the parallel portion 3 2 a of the louver 3 2 is 20% or less of the radius D s of the parallel portion 2 6 a of the throat wall 26 (1.0 0 D s> D p ⁇ 0.8 D s
  • the length D p is the radius of the cylindrical portion 3 2 a of the louver 3 2 (part parallel to the port center axis C), and the divergence angle of the louver 3 2 If the angle is equal to or larger than the spreading angle of the low ridge wall 26, it is possible to induce an effective amount of air for preventing ash adhesion to the throat wall 26.
  • the radius Dp with respect to the radius Ds is reduced by about 10% (1.0 D s> D p ⁇ 0.9 D s) I hope that.
  • the air jet for the original combustion control reaches the center of the furnace 3 4, while the vicinity of the furnace wall Facilitate gas mixing This is because the purpose of the contraction flow formation is hindered.
  • the air jet flow from the outer periphery of port 3 1 toward the central axis C is strengthened to pass through the throat part 26, and the air jet is concentrated on the central axis C of the port ⁇ 31 while the throat part is concentrated. It is not desirable that the flow that entrains the gas in the furnace 3 4 around 2 6 cannot be maintained. '
  • Figure 12 (a) shows the port radius D a (point a; radius at the introduction of the secondary nozzle 2) and D b (point b; secondary nozzle 2)
  • D a point a; radius at the introduction of the secondary nozzle 2
  • D b point b; secondary nozzle 2
  • the radius of the slow ⁇ wall 26 the radius of the parallel portion of the throw Dwall 26
  • the radius D s of the throat wall 2 6 is larger or smaller than the radius D a of 2 and the radius D b.
  • the length of the plane of the louver 3 2 whose diameter increases toward the downstream side of the gas flow (the length of the line connecting e 3 ⁇ 4 (circumferential direction) and f part (circumferential direction) in FIG. 12) is In order to prevent ash from adhering to the flat surface, the gas flow in the surface surrounded by the wall length of the slot wall 26 in the gas flow direction (Fig. 12 h part (circumferential direction) and heel part (circumferential direction ')) The length in the direction) should be 1 or 2 or less.
  • FIG. 13 is a schematic diagram of a part 31 showing the fourth embodiment. In the configuration shown in FIG. 13, the same parts as those shown in FIG.
  • a parallel portion 2 6 a parallel to the central axis C having a constant flow path cross-sectional area is provided on the slow trough wall 26 and the cylindrical portion 3 is provided on the louver 3 2.
  • 2 Set a Have A swirler 2 2 for inducing a flow velocity component in the circumferential direction of the throat wall 2 6 is provided between the parallel portion 2 6 a and the cylindrical portion 3 2 a of the cylinder 3 2.
  • the projected area of the surface perpendicular to the port center axis C as seen from the furnace side of the rubber bar 32 can be reduced, and the amount of radiant heat received from the flame can be reduced. For this reason, the temperature of the louver 32 can be reduced, and heat loss such as thermal deformation and corrosion in a high temperature field is unlikely to occur.
  • the ring-shaped louver 3 2 having an enlarged cross-sectional area for guiding the gas flow in the direction of the throat wall 26 6 is provided at the tip of the swirler 22 2 on the downstream side of the gas flow, ash is involved. Can prevent ash adhesion near the nozzle. '.. Industrial applicability
  • the present invention is not limited to boiler furnaces, but can be applied to the furnace wall surfaces of combustion equipment where ash produced by combustion of coal or the like tends to adhere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

火炉34内への気体噴出ポート31の三次ノズル3は、気体流れがポート31の外周側から中心軸Cに向かう速度成分と中心軸C沿いに火炉内に向かう速度成分を持つように気体流れの上流側から中心軸Cに向かって斜めに形成された縮流生成用流路と該縮流生成用流路の出口部に設けた火炉壁開口部で気体流路が拡大する拡管状のスロート壁26の壁面に沿って気体が流れるように導くために設けられたルーバ32とを有する。こうして、ポートから噴出させる気体の流量等の条件によらず、装置構成の複雑化や、コストの増加を招くことなく、火炉のスロート拡管部の壁面に灰が付着溶融してクリンカが塊状に成長するのを防止可能な気体噴出ポートを提供することができる。

Description

明 細 書 火炉内への気体噴出ポー 卜
技術分野 - '
本発明は、 ボイラなどの火炉内へ気体を噴出させるポー トに係わり、 特に火炉 開口部の灰付着を防止するのに好適なボイラなどの火炉内への気体噴出ポー 卜に 関する。 背景技術 .
ボイラな.どの火炉壁には、 空気や燃焼排ガス等の気体を炉内に噴出させる各種 のポー 卜が設けられている。 例えば、 燃焼装置と して燃料ど燃焼用空気とを噴出 ざせるパーナや、二段燃焼用空気を投入するためのアフターエアポー ト (A A P、 オーバ一エアポー ト、 または O F Aとも称される。) 等が該当する。 このよ うに本 明細書でいう気体噴出ポー トは、 気体を火炉内に噴出させるポー トであれば、 ァ フタ一エアポー 卜に限らず、 燃焼排ガスの投入用ポ一 ト、.燃料を燃焼させるため のバ一ナ用のポー トなどをいう。 また、 該ポートが設けられる火炉に開口 した拡 管状の壁面をス ロー ト壁又はスロート拡管部 (火炉出口側に向けて開口部の径が 順次大きくなる火炉壁面部分) ということにずる。
このようなポー トにおいて、 気体噴流を火炉中央部まで到達させつつ、 火炉壁 近傍の気体混合を促進するように、 ポー卜の外周側から中心軸方向に向けた気体 噴流の流れを強めてスロー ト壁を通過させ、 該噴流がポートの中心軸に集中しつ つスロート壁の周辺の気体を巻き込むような流れ、 いわゆる縮流を形成するのに 適した構造を採用したものがある。
下記特許文献 1及び 2には、 前記縮流を伴う二段燃焼用空気を火炉に投入する ためのアフターェアポ一トの発明が開示されている。
このよ うな気体噴流の縮流をポ一ト開口部付近に形成するのに適した気体噴出 ポー トの構造において、 火炉のスロー ト壁には灰が付着溶融してク リ ン力が塊状 に成長し、 また塊状ク リ ン力が該壁面から剥離脱落することにより、 ポー トの機 能 -性能を阻害する可能性がある。
また、 火炉に開口 したスロー ト壁に灰が付着溶融してク リン力が塊状に成長す ることを防止する技術と して、 スロー ト壁におけるク リ ン力の付着を防止する微 粉炭パーナ (特許文献 3 )、 バーナス 'ロー ト壁 (特許文献 4)、 オーバエアポート (特許文献 5 ) 等の発明がある。 , ,
また、'従来の燃焼排ガス中の窒素酸化物 (NO x ) 濃度を低く抑える低 NO X 燃焼技術と して、 二段燃焼技法が用いられているが、 本発明者らはパーナで還元 燃焼された燃焼ガスを完全燃焼させるための不足分の燃焼用空気を供給するァフ タ一エアポート (AA P) の開発を実施してきた。
従来の AA Pの開発は、 火炉内におけるパーナ燃焼域からの未燃焼ガスのすり. 抜けを防止することができる構造にすることを主目的にするものであった。 図 1 3に従来型の旋回型 A A Pの^造図を示す。 、
図 1 3に示す A A Pは、 一次空気 9がー次ノズル 1 を通って火炉 3 4に供給さ れる。一次ノズル 1の外周には二次ノズル 2.を設けて二次空気 1 0が供給される。 上記構造の A A Pを火炉 3 4へ適正に配置することが必要であるが、 AA Pの 設置台数に限界があることから A A Pの近傍と火炉 3 4の中央部分における空気 と未燃焼ガスとの 合を強化する目的で、 前記二次ノズル 2には旋回器 7を設け た構造を採,用し、 A A P近傍の火炉 3 4での空気と未燃焼ガスとの^合用には前 記旋回器 7によって得られる旋回二次空気流を使用し、 さらに一次ノズル 1から 火炉 3 4の中央部に達する強い空気噴流により空気と未燃焼ガスとを混合させる 構造を採用している (特許文献 6 )。
また、旋回器 7を用いる旋回二次空気流では旋回空気流の拡がりが十分でなく、 火炉 3 4の内壁 3 4 aに沿った領域では未燃焼ガスと燃焼用空気との混合が十分 でない場合がある。 このような問題点に対処する方法と して、 旋回器 7を有する 二次ノズル 2の外周部に火炉 3 4の内壁 3 4 aに沿った方向に燃焼用空気を供給 できる偏流器を有する三次空気用の三次ノズルを備えた A A Pを本出願人は提案 している (特許文献 7 )。
特許文献 1 特開 2 0 0 6 — 1 3 2 8 1 1号公報 特許文献 2 特開 2 0 0 6 - 1. 3 2 7 9 8号公報
特許文献 3 実開平 6 - 6 9 0 9号公報
特許文献 4 特許第 3 6 6 8 9 8 9号号公報
特許文献 5 特開平 1 0 - 1 2 2 5 4 6号公報
特許文献 6 特開昭 6 2 - 1 3 8 6 0 7号公報
特許文献 7 特開平 9 - 1 1 2 8 1 6号公報 発明の開示
前記したポー 卜の外周側から中心軸方向に向けて集中させる空気などの気体噴 流、 いわゆる縮流の効果を強めていく と、 該ポー卜の開口部近傍の火炉内におい て縮流は周囲の気体を強力に巻き込むため、 特に石炭焚ボイラでは気体に同伴さ れた燃焼灰がスロート拡管部の壁面に接触する機会が増大する。 従来技術では、 前記気体噴流の縮流の効果を強めた場合に、 特にパーナ用ポ^ "トの火炉スロート 壁で灰付着 * ク リン力の成長を防止する効果が十分ではなかった。
特許文献 4に記載の発明では、 経時的なスロー 卜部の壁面への灰の部分付尊め 抑制などのための高圧のァス ビレート用の噴出空気を用いるため、 装置構成が複 雑化したり、 コス トや重量の増加につながる可能性がある。 また、 特許文献 3に 記載の発明'では、 パーナ用ポー トの火炉スロー ト壁の外周側から中心軸方向へ向 かう気体流れを強めて縮流効果を強くすると、 スロート拡管部の壁面での灰付着 防止効果が弱まる可能性がある。
さらに、 特許文献 5に記載の発明においても、 エアポー トの外周側からポート 中心軸方向へ向けた気体流れを強めて縮流効果を強くすると、 火炉のスロート壁 での灰付着防止効果が弱まる可能性がある。
また、 所定の空気比を保っために、 火炉のスロー ト壁での灰付着防止用の空気 などの気体流量を絞らなければならない場合にも同様に灰付着防止効果が十分に 得られない可能性がある。
また、 前記特許文献 6等に開示された従来型 A A Pでは、 強い空気噴流で貫通 力を維持したまま、 旋回空気流で A A P周囲の未燃焼ガスを同伴することが難し かった。 また、 前記特許文献 7等に開示された旋回型 A A Pに替わる簡易構造を有する A A Pでは火炉 3 4の内壁 3 4 aに沿った領域の未燃焼ガスのすり抜けの防止と 炉壁面への灰付着を防止できるが、 火炉 3 4の中央部分へ到達する燃焼用空気噴 流が不足気味になり、 未燃焼ガスと空気との急速な混合が行われないおそれがあ る。 ,
本発明の課題は、 噴出気体の流量等の条件によらず、 装置構成の複雑化ゃコス 卜の増加を招く ことなく、 火炉スロー ト拡管部の壁面に灰が付着溶融してク リン 力が塊状に成長することを防止し、 気体と して空気を用いる場合には、 火炉壁近 傍における燃焼用空気と未燃焼ガスとが安定的に混合し、 炉内中央部へ燃焼用空 気が確実に到達し、 燃焼ガス中の N O X濃度の低減を図ることができる気体噴出 ポートを提供することである。 上記課饈は次の解決手段により解決される。 、
請求項 1記載の発明は、 火^の炉壁に設けられ、 該炉壁に垂直な気体流れの中 心軸に向って流れる速度成分と前記中心軸に沿って流れる速度成分を有し、 体 流れの上流側から前記中心軸に向かって斜めに形成された縮流生成用流路と、 前 記縮流生成用流路の後流側の火炉壁開口'部に形成された気体流路が気体流れ方向 に順次に拡大するスロート拡管部と、 前記縮流生成用流路を流れる気体を前記ス 口一ト拡管.部の壁面に沿って流れるように誘導するために縮流生成用流路に設け られたルーバ (案内板) とを備えた火^内への気体噴出ポートである。
請求項 1記載の発明の構成からなるル一バに誘導された気体がスロー ト拡管部 の壁面近傍に効果的に流れ、前記拡管部の壁面近傍の負庄を除去できることから、 前記縮流生成用流路の外周側壁面 (該流路を構成するノズル隔壁) に沿って流れ てきた気体を効果的にスロート拡管部の壁面側へ誘導できるため、 灰の巻き込み によるスロー ト拡管部及びその近傍の壁面における灰付着が生じ難くなる。 さら に、 従来はル一バを用いる代わりに空気等の冷却体を噴出する噴出口を気体噴出 ポー トに別途に設けていたが、 これに比べて、 請求項 1記載の発明では、 ルーバ を用いることで気体噴出流の圧力損失を低減できるとともに構造が簡素化され、 灰付着抑制シール空気用調整器を設置する必要もなく、 重量低減および鉄鋼材の 削減ができる。 .
また、 請求項 1記載の発明の縮流生成用流路から噴出する気体の流れは、 火炉 内の中央部まで到達する気体の流れと火炉壁の近傍の気体混合を加速する気体の 流れとなるので、 該気体噴出ポートをニ段燃焼用パーナの A A Pと して使用する と、 信頼性の高い、 低 N O x、 低 C 0燃焼が可能な燃料の燃焼ができる。
請求項 2記載の発明は、 前記ル一バの気体流れ上流側の先端部は、,前記縮流生 成用流路の外周側壁面を前記中心軸方向へ延長した面または該延長した面より も 気体流れ上流側に位置し、 前記ルーバの気体流れ下流側部分には、 前記ス ロー 卜 拡管部の壁面に沿うように気体流れ方向に順次拡大した拡管部を有する請求項 1 記載の火炉内への気体噴出ポートである。
ところで、 本発明の縮流生成用流路を流れる気体噴流が気体噴出ポートの中心. 軸に向かって流れる、 いわゆる縮流を比較的強めた場合、 該ポー トが設置される 火炉のポー ト開口部に設けられるス ロート拡管部の壁面近傍は負圧となって、 前 記スロー ト拡管部の壁面に灰が付着しやすくなる。 こ こで、 気体の前記縮流を強 めた場合とは、 例えば、 火炉壁面に設置される前記ポートの気体流れの上流側に おける気体流路が縮流生成用流路のみからなる場合、 あるいは、 他の流路がある 場合に縮流生成用流路の流量比が 3 0 %以上であるような場合、 火炉壁のスロ一 ト部の半径 (図 1 Όの長さ D s ) が縮流生成用流路の内周側下流端 (図 1 0の部 位 b ) における半径 (図 1 0の長さ D b ) の 1 . 1倍以下である場合、 又は縮流 生成用流路のポー ト中心軸に対する傾斜角度が 3 0 ° 〜 7 0 ° である場合等をい う。 .
請求項 2記載の発明によれば、 ルーバの気体流れ上流側の先端部は、 縮流生成 用流路の外周側壁面を前記中心軸方向へ延長した面または該延長した面より も気 体流れ上流側に位置しているので、 ルーバに誘導された気体がス ロー ト拡管部の 壁面近傍に効果的に流れ、前記拡管部の壁面近傍の負圧を除去できる。そのため、 前記縮流生成用流路の外周側壁面 (該流路を構成するノ ズル隔壁) に沿って流れ てきた気体を効果的にスロー ト拡管部の壁面側へ誘導できるため、 灰の巻き込み によるス ロー ト拡管部の近傍の壁面における灰付着が生じにく くなる。
このように請求項 2記載の発明によれば、請求項 1記載の発明の効果に加えて、 ルーバに気体が誘導され、 ス ロー ト拡管部への灰付着をさらに防止することがで きる。 ■
請求項 3記載の発明は、 前記縮流生成用流路を流れる空気流の前記中心軸方向 に沿って流れる速度成分と前記中心軸方向に向かって流れる速度成分の比率を変 える機構を備えた請求項 1または 2記載の火炉内への気体噴出ポートである。 請求項 3記載の発明によれば、 中心軸方向に沿って流れる速度成分と前記中心 軸方向に向かって流れる速度成分の比率を変えることで、 火炉内での各速度成分 の合流後の気体噴出流の方向を調整することができ、 気体が空気である場合は、 火炉内に偏在する空気不足の未燃ガス領域と燃焼用空気とが好適に混合して燃料 の未燃分を低減できる。 さらに、 前記二つの速度成分の旋回強さを調整すること で合流後の気体の混合状態を調整可能である。
請求項 4 己載の発明は、 前記縮流生成用流路の外周側壁面に沿って気体が流れ るように前記外周壁面側から開き始める前記縮流生成用流路、の開度を調整可能な ダンバを設けた請汆項 3に記載の火炉内への気体噴出ポー トである。
請求項 4記載の発明によれば、 ダンバで縮流生成用流路を閉じた状態から開く 方向に動かして該流路の開度を調整する場合に縮流生成用流路の外周壁面側から ダンバを開き始めると、, 縮流生成用流路を流れる気体流量を絞った状態 (ダンバ が閉に近い'状態) でも縮流生成用流路のうちで、 前記ス ロート拡管部に近い部分 に空気が流れるため、 ルーバに気体が誘導され、 前記スロート拡管部への灰付着 を防止することができる。 .
請求項 5記載の発明は、 前記ルーバと前記ス ロー ト拡管部の壁面との間に気体 を旋回させる旋回部材を設けた請求項 1ないし 4のいずれかに記載の火炉内への 気体噴出ポー トである。 なお、 熱伸び差を吸収するためにル一バを気体噴出ポー 卜の周方向に複数個に分割して設けても良い。
請求項 5記載の発明によれば、 ルーバとス ロー ト拡管部の壁面との間を流れる 気体を旋回部材で旋回させながら火炉内へ噴出できるので、 ルーバとス ロー ト拡 管部の壁面との間に縮流生成用流路から縮流の一部が流れ込み易くなり、 火炉の 内壁面をシールする気体流がス ロー ト拡管部の壁面近傍に効果的に流れ、 前記ス ロート拡管部の壁面近傍の負圧を除去できるため灰の巻き込みによるスロ一ト拡 管部の火炉壁面近傍における灰付着を防ぐことができる。
請求項 6記載の発明は、 前記ルーバの下流側端部に形成されるスロート拡管部 の気体流れ方向の長さが、 前記スロー ト拡管^の気体流れ方向の壁面長さの 1 Z 2以下である請求項 1ないし 5のいずれかに記載の火炉内への気体噴出ポー 卜で ある。
請求項 6記載の発明によれば、 前記ルーバの下流側端部に形成されるス ロー 卜 拡管部の気体流れ方向の長さが、 該拡管部の気体流れ方向の壁面長さの 1 Z 2以 下であると、 前記ルーバの拡管部の内側への露出面 (図 1 2の e部と f 部の間の 面) に灰が付着しにく くなる。
請求項 7記載の発明は、 前記縮流生成用流路は三次ノズルと し、 該三次ノズル より内側に、 前記中心軸に沿ってそれぞれ気体が流れる一次ノズル及び該一次, ズルの外側に二次ノズルを設けた請求項 1〜 6のいずれかに記載の火炉内への気 体噴出ポー 卜である。 '
請求項 7記載の発明によれば、 気体噴出ポー トをニ段燃焼用パーナの下流部の 火炉壁に設置する A A Pと して使用すれば火炉壁に灰付着がなく、信頼性の高.い、 低 N O x、 低 C O燃焼が可能な燃料の燃焼に利用できる。 図面の簡単な説明
図 1は、 本発明のアフターエアポー トまたはパーナが使用されるボイラの概略 図である。
図 2は、 本発明の実施例 1のアフターエアポー卜の概略断面図である。
図 3は、 実施例 1 のアフターェアポ一トの一部を省略した斜視図である。
図 4は、 実施例 1 の火炉内からエアポートを見た図である。
図 5は、 図 2の A A Pモデルを使用して行った A A P出口部分における空気流 の流速分布図である。
図 6は、 図 2の A A Pモデルを使用して行った A A P出口部分における空気流 の流速分布図である。
図 7は、 図 2 の A A Pモデルを使用して行った A A P出口部分における空気流 の流速分布図である。 図 8は、 本発明の実施例 2のアフターエアポートの概略断面図である。
図 9は、 本発明の実施例 2 と対比させるための比較例のル一バを火炉ス ロ一 卜 拡管部に沿って配置したアフターエアポー 卜の概略断面図である。
図 1 0は、 本発明の実施例 2 と対比させるための比較例のル一バを三次ノズル に配置したアフターエアポートの概略断面図である。
図 1 1は、 本発明の実施例 3のアフターエアポートの概略断面図である。
図 1 '2は、 本発明の実施例 3のル一バとスロー ト拡管部とをアフターエアポー ト内に配置した場合の寸法関係を説明する一部アフターエアポー トの概略断面図 である。
図 1 3は、 本発明の実施例 4のアフターエアポー卜の概略断面図である。
図 Γ 4は、 従来技術の A A P構造の縦断面図である。
図 1 5は、 従来技術の A A P構造の縦断面図である。 発明を'実施するための最良の形態
.以下、図面を用いて、本発明のエアポート及びその使用方法について説明する。 まず、 本発明のアフターエアポー トを用いる二段燃焼方式のボイラについて図 1のボイラの全体構造を用いて説明する。
ボイラの火炉 3 4の一対の対向する炉壁に複数のバ一ナ 3 0が対向配置され、 バ一ナ設置場所の上方にアフターエアポー ト 3 1が対向配置される。 パーナ 3 0 から理論空気比以下 (例えば 0 . 8 ) .の混合気を火炉 3 4の内部の火炎領域に噴 射し、 炉内に不完全燃焼領域 (図示せず) を形成する。 アフターエアポー ト 3 1 は不完全燃焼領域の可燃ガスに燃焼不足分の空気を供給し、 燃焼を促進する。 本実施例ではパーナ 3 0に供給される燃料は、 バン力 2 9内の石炭をミル 3 5 で粉砕して微粉と して微粉炭供給ライン 3 3からパーナ 3 0に供給される。また、 石炭燃焼用の全空気量は、 空気供給系により管理され、 その空気量はパーナ 3 0 とアフターエアポー 卜 3 1に分配される。 具体的にはプロァ 3 6から供給された 空気は、 パーナ 3 0側の空気供給ライン 3 7 a とアブターエアポート 3 1側の空 気供給ライン 3 7 b とに分岐し、 それぞれ風箱 3 9 a 、 3 9 bからパーナ 3 0と アフターエアポー 卜 3 1に導かれる。 ライン 3 7 a とライン 3 7 bへの空気流量 の配分はパーナ 3 0側のダンバ 4 0 a とァフタ一エアポー 卜 3 1側のダンバ 4 0 bにより調整される。 ブロア 3 6の出力は全空気流量が排ガスの酸素濃度を指定 した値となるように制御される。
パーナ 3 0には空気供給ライン 3 7 aから理論空気比以下の空気が供給され、 かつ微粉炭供給ライン 3 3から微粉炭が気流搬送される。 パーナ 3 0から火炉 3 4.の内部に噴出する混合気は完全燃焼に必要な空気量より も少ないために不完全 燃焼となり、 この時に N O Xを還元することができる。 燃料が不^全燃焼するの で、 パーナ 3 0の下流に可燃ガスの流れが形成される。
空気供給ライン 3 7 bを経てアフターエアポー ト 3 1 の風箱 3 9 bに入った空 気は、 後述するエアポー ト 3 1 の一次ノズル 1、 二次ノズル 2及び三次ノズル 3 に分配されて炉内の可燃ガスの流れ (不完全燃焼領域) に供給される。 この空気 は可燃ガスの流れと混合して完全燃焼して燃焼ガスとなり火炉 3 4内に設置され た過熱器、 蒸発器、 節炭器、 再熱器などの熱交換器 4 2で水へ 蒸気を加熱して蒸 気を生成させた後、 火炉 3 4の出口に流れる。 また、 ボイラ火炉壁面にはボイ.ラ 水管 (図示せず) が配置され、 火炉 3 4内の燃料の燃焼により熱せられて蒸気を 生成する。
(実施例 1 )
― 次に上 Eボイラ火炉 3 4に適用されるアフターエアポー ト (以下、 「ポー 卜」 又 は 「A A P」 という。) 3 1の態様を以下の実施例により説明する。
図 2は本実施例によるポ一ト 3 1 の断面図 (図 4の A— A ' 線断面図)、 図 3は その一部を省略した斜視図、 図 4は火炉 3 4側からポー ト 3 1 を見た図をそれぞ れ示す。
ポー ト 3 1は風箱 3 9 b内に配置され、その空気ノズル機構は一次ノズル 1 と、 一次ノズル 1の外周に沿った旋回流の空気を二次空気 1 0 と して噴き出す二次ノ ズル 2 と、 一次ノズル 1の外側からポー 卜 3 1の中心軸 Cに向けた流れの空気を 三次空気 1 1 と して吹き出す三次ノズル 3 とを有する。
一次ノズル 1、 二次ノズル 2及び三次ノズル 3は同軸のノズル構造であり、 中 心部に一次ノズル 1、 その外側に二次ノズル 2、 さらにその外側に三次ノズル 3 を配置している。 一次ノ ズル 1はス ト レー トな管状をなし、 前端に空気噴き出し 口 1 A (図 3 ) を有し、 後端に空気取り入れ口 1 Bを有する。 一次ダンバ 5は空 気取り入れ口 1 Bの開口面積を調整することで一次空気流量を調整する。 一次ノ ズル 1はポー 卜 3 1の中心軸 Cに平行な直進流の空気を一次空気 9ど して噴き出 5 す。 空気取り入れ口 1 Bの開口面積は、 一次ダンバ 5に連結して風箱 3 9 bの外 側に取っ手を備えた調整レバ一 1 5.により、 一次ダンバ 5を一次ノズル 1の外周 上でスライ ドさせることにより変えられる。
二次ノ ズル 2は、 その後端側に環状の空気取り入れ口 2 B (図 3 ) を有し、 二 次ノ ズル 2の内周と一次ノ ズル 1の外周との間に管状の二次空気通路が形成され
10 る。 空気取り入れ口 2 Bから流入する二次空気 1 0は、 二次空気レジスタ (偏向 板) 7により旋回力が与えられ、 一次ノ ズル 1 の外周に沿った旋回流を伴って二 次ノ ズル出口 (前端) 2 Aから噴き出す。 二次ノ ズル 2 の空気取り入れ口 2 Bの 開口面積は、 円筒状の二次ダンバ 6に連結して風箱 3 9 bの'外側に取っ手を備え た調整レバー 1 6により二次ダンバ 6をポート 3 1の中心軸 C方向にスライ ドさ
15 せることにより変えることができ、 それによつて二次空気流量が調整される。 複 数の二次空気レジスタ 7は、 レジスタ ドライブ 1 3を操作して図示しない連携機 構により支軸 7 aを介してその偏向角を同じように変えることができるように二 次空気取り入れ口 2 Bに取付けられ、 二次空気取り入れ口 2 Bの円周方向に複数
■ 配置される.。 二次空気レジスタ 7 の偏向角を変えることによって、 二次空気 1 0
20 に付与される旋回力を変えることができる。
三次ノズル 3は、 円錐形の前壁 3 0 1 と該前壁 3 0 1に対向配置される円錐形 の後壁 3 0 2 とを有し、 この前壁 3 0 1 と後壁 3 0 2 との間に三次ノズル 3の円 錐形の空気流路が形成される。 三次ノズル 3の空気取り入れ口 3 B (図 3 ) は環 状をなし、 その開口面積は、 円筒状の三次ダンバ 8に連結して風箱 3 9 bの外側
25 に取っ手を備えた調整レバー 1 7により三次ダンバ 8をポ一 卜 3 1の中心軸 C方 向に沿ってスライ ドさせることにより変えることができ、 それによつて三次空気 流量が調整される。 前壁 3 0 1 と後壁 3 0 2は、 空気取り入れ口 3 Bに配置した 複数の連結板 4を介して接合される。 三次ノ ズル 3の出口 3 Aは、 二次ノ ズル 2 の先端に接続され、 三次空気 1 1 と二次空気 1 0が合流して空気流 1 2と して火 炉 3 4の内部に噴出するように形成されている。
ここで; 二次ノズル 2に流入した二次空気 1 0は、 ポー ト 3 1の中心軸 Cに平 行な方向に火炉 3 4内に向かって流れ、 さらに二次空気レジスタ 7により旋回力 を与えられて火炉 3 4内に噴出する。 一方、 三次ノズル 3はポー ト 3 1の中心軸 C方向に向かって内向きの傾きを持っているため、 三次ノズル 3に流入する三次 空.気 1 1はポー ト 3 1 の中心軸 C方向に集中する縮流を形成するのに好適な構造 である。' 二次空気 1 0と三次空気 1 1 の流量比を変化させることで、 二次空気 1 0と三次空気 1 1の合流後の空気流 1 2の噴出方向を調整することができる。 たとえば、 三次空気 1 1 の流量を 0とすれば、 二次空気 1 0と三次空気 1 1 の 合流後の空気流 1 2の内向きの速度成分 (空気流 1 2の中心に向かう速度成分) は 0となる。 また、 二次空気 1 0の流量を 0とすれば、 空気流 1 2は三次空気 1 · 1が占めるため内向きの速度成分が増して三次ノズル 3の傾斜方向(斜め内向き) に噴出する。 空気流 1 2の噴出方向を調整することにより、 、火炉 3 4内に偏在す る空気不足め未燃ガス領域と燃焼用空気とが好適に混合して燃料の未燃分を低減 できる。 さちに、 二次空気 1 0の旋回の強さによっても、 混合状態を調整可能で ある。
ポー ト 3 1 の一次空気 9、 二次空気 Γ 0及び三次空気 1 1 の空気流量比を調整 するために、 一次ダンバ 5、 二次ダンバ 6及び三次ダンバ 8が使用される。
' 石炭、 重.油などのように燃料中に灰を含むものがあるが、 このような燃料を用 いる場合には、 三次空気 1 1の流量を増加し、 '空気流 1 2をポー ト 3 1 の中心軸 C方向に集中させ、 いわゆる縮流にすると、 該縮流の周囲の乱れが大きくなり、 周囲の燃焼ガスを縮流が同伴し易くなるため、 火炉 3 4内を上昇する高温の燃焼 ガス 2 5中で溶融した灰も同伴され、 ポー 卜 3 1の出口の水管 2 3付近に付着し て灰付着層 1 8を生成することがある。 この状態を図 1 4のポー 卜 3 1の断面図 に模式的に示す。
前記灰付着層 1 8が成長してク リ ン力を形成すると、 空気流動を妨げたり、 ク リンカの落下による水管 2 3の損傷を生じたりする可能性がある。 このような場 合は、ポート 3 1 の出口部分における、灰付着ポテンシャルの低減が必要である。 前記灰付着のメ力二ズムと防止策を、 それぞれ図 5〜図 7に示す。 図 5〜図 7には、 ポー 卜 3 1の出口の流速分布 (実計測データ) を示す。 縦軸 に A A Pの中心軸 Cからの距離を Cを原点と して— 1 0 0〜 2 3 0 0 mmの範囲 で示し、 横軸に火炉 3 4内の AA Pからの距離を 0〜 5 0 0 O mmの範囲で示し ている。 流速分布図の色は、 茶色は 2 5〜 3 0 m/ s、 赤色は 2 0〜 2 5 m/ s 、 桃色は 1 5〜 2 0 m/ s、 黄色は 1 0〜: L 5 mZ s、 緣色は 5〜 : L 0 m/ s、 青 色は 0〜 5 m/ s、 紺色は— 5〜 O.m/ s、 濃紺色は— 1 0 · 5. m/ s を示し ている。'なお、 紺色と濃紺色のマイナス符号は逆流域を表す。 また、 使用した A A Pモデルは、 実機大 ( 1 0 0 0 MWボイラへ適用するサイズの AA P) であり、 空気流量も実機相当で試験を実施した。 ただし、空気温度は常温であることから、 流速の絶対値は低くなつている。 設定条件は、 三次空気 1 1の縮流流量は一定と して二次空気 1 0の旋回空気と一次空気 9の流量を変えて流れ計測を実施した。 図 5は、 旋回が無い直進一次空気 9が全体の 1 4 %で流入し、 二次空気 1 0が 6 2 %、 三次空気 1 1が 2 4 °/0でそれぞれ流入した場合の火炉 3 4の流速分布図 であり、 火炉 3 4の中心部分には逆流領域の形成が少ないことが分かる。
図 6は、 一次空気 9が 0 %で、 二次空気 1 0の弱い旋回流が 7 0 %で、 三次空 気 1 1が 3 0 %の場合である。 また、 図 7は、 一次空気 9が 0 %で、 二次空気 1 0が強い旋回流の 6 3 %で、 三次空気 1 1が 3 7 %の場合である。 図 6 と図 7に は火炉 3 4内での空気噴流の広がりには差異が少なく、 火炉 3 4内の中央部分の 流速分布に.差が見られる。 なお、 図 5〜図 7の下辺は A A Pの中心軸 Cに対応し ている。
図 5〜図 7の高速空気噴流の広がりに着目 してみると、 計測位置が A A Pの先 端部分から少し離れているため分かりづらいが、 火炉スロート壁 2 6の出口の広 がり部分に沿っておらず、 いずれの噴流も縮流の影響が見られる。 すなわち、 空 気噴流は、 図 2に示す火炉スロート壁 2 6から剥離しているため、 微小な領域で はあるが、 逆流が発生し、 この流れに同伴される灰の粒子が壁に付着成長するポ テンシャルを有している。
こ う して図 1 4に示す従来技術の A A Pのよ うに、 空気流 1 2 (二次空気 1 0 +三次空気 1 1 の合流) が火炉スロー 卜壁 2 6から剥離して縮流化した状況を示 している。 このため、 図 1 4に示す灰付着層 1 8が火炉スロー ト壁 2 6に形成さ れる。
そこで、 本実施^では図 2に示すように、 三次ノズル 3の出口から火炉スロー ト壁 2 6に沿うル一バ 3 2を設置して、 該ル一バ 3 2 と三次ノズル 3の出口力、ら 火炉スロー ト壁 2 6 との間に三次空気 1 1の一部の流れ 1 1 ' が流れる間隔を設 けた。 この構造によって、 三次空気 1 1の一部の流れ 1 1 ' がスロー ト壁 2 6の 表面をシールするように流れるため、 三次空気 1 1の縮流に同伴される燃焼灰が スロー ト壁 2 6の表面に付着するのを最小限度に抑えることができる。
図 2には灰'付着層 1 8が火炉スロー 卜壁 2 6の傾斜部分に形成された状況を図 示しているが、 この領域の灰除去は本実施例では不可能である。 しかしながら、 この領域の灰付着は、 A A Pの性能に影響せず、 またボイラ性能にも影響しない ので、 無視してかまわない。 しかし、 図 1 4に示す灰付着層 1 8は、 ボイラ停止 時に A A P内部へ剥離脱落するので、 A A P性能に影響があるので除去しなけれ ばならない。 .. ' ' (実施例 2 ) .
図 8は実施例 2 のポート 3 1 の断面図を示す。 また、. 図 9、 図 1 0は図 8に示 す実施例 2のポート 3 1 と対比するために示した比較例のポート 3 1の概略図で ある。 .
― 図 8に示,すポート 3 1 と して、 同心状に一次空気、 二次空気、 三次空気をそれ ぞれ流す一次ノ ズル 1 '、 二次ノ ズル 2及び三次ソズル 3を示しているが、 少なく とも本実施例における三次ノズル 3の外周側からポ一 ト中心軸 Cの方向に向けた 流れを強めて火炉 3 4 のポー ト開口部 (スロー 卜壁 2 6 ) を通過させ、 空気噴流 力 いわゆる縮流を形成するのに適した構造を採るものであれば良い。 即ち、 い わゆる縮流の形成には、 一次ノズル 1及び二次ノズル 2は必須ではない。
ポー ト 3 1 の中心空気ノズルである一次ノズル 1を流れる空気は直進流を形成 し、 二次ノズル 2の入口部には旋回機能を有する二次空気レジスタ 7を備え、 二 次ノズル 2の火炉 3 4側の端部 (二次ノズル出口) を含めて主要部はポー ト中心 軸 Cを中心とする直管である。 従って、 図 8で二次ノ ズル 2の管入口端部の半径 D aは該管出口端部の半径 D b と等しい。 さらに三次ノズル 3は一次ノズル 1及び二次ノズル 2と異なり、 ポー ト中心軸 Cに対して 3 0 ° 〜7 0 ° の傾斜角度を有する噴出流を形成し、 縮流効果が得ら れる構成と している。
前記縮流効果とは、 火炉壁のポー 卜開口部に形成された気体流路が拡大するス 口一 卜壁 2 6の近傍において火炉 3 4内の周囲ガスの強い同伴ガス 2 0が発生す る.効果である。 ,
一次ノズル 1の空気流量の調整は一次ノズル 1の空気取り入れ口 1 Bに設けた ダンバ 5を風箱 3 9 bの外側から調整レバー 1 5を操作して一次ノズル 1の空気 取り入れ口 1 Bの開度を調整して行い、 二次ノズル 2の空気流量の調整は二次ノ ズル 2の空気取り入れ口 2 Bに設けたダンバ 6を風箱 3 9 bの外側から調整レバ 一 1 6を操作して二次ノズル 2 の空気取り入れ口 2 Bの開度を調整して行い、 同 時に二次ノズル 2の空気取り入れ口 2 Bに設けたレジスタ 7を二次空気レジスタ ドライブ 1 3で回転させることにより、 空気旋回強度の調整'を行う。 また、 三次 ノズル 3の空気流量の調整は三次ノズル 3の空気取り入れ口 3 Bに設けたダンバ 8を風箱 3 9 bの外側から調整レバー 1 7を操作して三次ノズル 3の空気取り入 れロ 3 Bの開度を調整して行う。 .
三次ノ ズル 3の出口部側 (火炉 3 4内へ向かう側) の火炉壁のスロート部 2 6 は、 気体流れ下流側に向けて順次ポー ト 3 1の中心軸 Cに対して径が下流側ほど 拡大している。 また、 三次ダンバ 8の全閉時には拡管状のスロー ト壁 2 6 と二次 ノズル 2からの旋回流がポート中心軸 Cの半径方向に拡がる空気流を形成する。 また、 三次ノズル 3の出口部側の拡管状のスロート壁 2 6への灰付着を防止す るために、 三次空気 1 1の一部の流れ 1 1 ' をスロー 卜壁 2 6の外周方向に誘導 する、 断面積が火炉 3 4側に行くに従って拡大するリ ング状のルーバ 3 2を設け ている。 ル一バ 3 2の気体流れ上流側 (空気ノ ズル 3の入口側) の先端は三次ノ ズル 3の外周側隔壁の延長線 E上または該延長線 E上より も気体流れ上流側 (空 気ノズル入口側 ; 炉内から離れた方向) に位置するように設けている。
本実施例の特徴について、 図 9、 図 1 0 との対比で説明する。
図 8に示す本実施例のポー 卜 3 1は三次ノズル 3の出口部側 (火炉 3 4内へ向 かう側) の拡管状のス口一 卜壁 2 6の火炉壁面と平行になるように該スロー ト壁 2 6の火炉 3 4の内部に近い側に向けて断面積が拡大する リ ング状のル一バ 3 2 を設けている。
一方、 図 9及び図 1 0には図 8 とほぼ同」の構成からなるポート 3 1 の断面図 を示すが、 図 8のポート 3 1 と異なる構成は、 図 9ではルーバ 3 2 ' 'の気体流れ 上流側の先端が三次ノズル 3の外周側隔壁の延長線 Eより気体流れ下流側に位置 するように設けられ、 図 1 0ではルーバ 3 2 " が全て三次ノ ズル 3.からの気体流 れのポー 卜中心軸 Cに向かう縮流内に位置するように設けられていることであ る。
上記図 8に示す本実施例のルーバ 3 2の気体流れ上流側端部は三次ノズル 3の 一部を塞ぐように突き出して設けられているので、 三次ノズル 3を流れる三次空 気 1 1 の縮流に対してル一バ 3 2 の上流側先端部が障害物となり、 ルーバ 3 2 の' 外周側 (スロー 卜壁 2 6側) には三次空気 1 1 により動圧が発生し、 ルーバ 3 2 と拡管状のスロー ト壁 2 6 の間を三次空気 1 1 の一部の流れ 1 1 ' が流れる。 こ のル一バ 3 2 とス 口一 ト壁 2 6 の間を流れるシール空気となる流れ 1 1 ' は、 ル —バ 3 2により誘導されるこ とで、 火炉 3 4内でスロー 卜壁 2 6 の近傍を流れる •火炉壁面内側の同伴ガス流 (壁面シール空気流れ) 2 0がポー ト 3 1 のスロート 壁 2 6の近傍の火炉 3 4の内側璧面に沿って効果的に流れ、 スロー 卜壁 2 6の壁 面近傍の負圧を除去できる。
• 一方、 図 9、 図 1 0で示す構成では、 ル一バ 3 2 '、 3 2 " と三次ノズル 3との 配置関係から火炉開口部であるスロー .ト壁 2 6付近に生じる三次空気 1 1 の一部 の流れ 1 1 ' の影響を受けて火炉 3 4の側壁面付近の同伴ガス流 2 0が循環流と なるために、 火炉 3 4 のス 口一 卜壁 2 6に灰付着層 1 8ができる。
このように、 図 8に示す本実施例の構成では、 図 9、 図 1 0で示す構成で懸念 される灰の巻き込みによる三次ノズル 3の出口の拡管状のスロー ト壁 2 6を構成 する壁面への灰付着が生じにく くなる。
また、 前記ルーバ 3 2の気体流れ下流側 (火炉側) の先端の半径 (D g ) は三 次ノ ズル 3の拡管状のスロート壁 2 6の最小半径 (D s ) (以下、 「ス ロー ト径」 ということがある。 図 1 2参照) の 1倍未満、 特に望ましくは 0 . 9 5倍未満と する。 ルーバ 3 2の気体流れ下流側 (火炉側) の先端の半径を前記拡管状のス ロー 卜 壁 2 6の半径の 1悟未満とすることで、ルーバ 3 2がー体物(分割出来ない構成) であっても、 火炉 3 4の外側からルーバ 3 2を設置すること又は火炉 3 4の外側 に引き抜く ことが容易になる。 また、 製作公差を考慮し 0 . 9 5倍未満と した方 5 力 さらに容易となる。 なお、 ルーバ 3 2は一体物と しないで火炉 3 4 の外側に 取り出し易くなるように周方向に分割可能な構成にしても良い。 ,
但し、'ルーバ 3 2の気体流れ下流側に向かうほど径が拡大する平面の長さ (図 1 2の e部 (周方向) と 〖部 (周方向) を結ぶ線の長さ) は、 該平面に灰が付着 しにくいように、 拡管状のスロー 卜壁 2 6の気体流れ方向の壁面長さ (図 1 2の 10 h部 (周方向) と i部 (周方向) を結ぶ線の長さ) の 1ノ 2以下とすることが望 ましい。 このことは、 本実施例に限らず、 本発明全般において該当する。
また、 前記ル一バ 3 2の気体流れ方向の広がり角度がポー ト 3 1の拡管状のス - ロー ト壁 2 6 の広がり角度と.同じ角度以上になれば、 灰付着防止に効果的な空気 量を誘導することが可能である。
15 さらに三次ノズル 3の入口部のダンバ 8は、 前記ノ ズル 3の入口部の火炉 3 4 から離れた側に配置しておき、 ダンバ 8で三次ノズル 3の空気取り入れ口 3 Bを 閉じるときに、 ダンバ 8を火炉 3 4に近づける方向にスライ ドさせることが望ま しい。 これは前記ノ ズル 3の入口部を閉じたときの空気流量を絞った状態 (ダン パ 8が閉に.近い状態) でも、 三次ノズル 3内のポ一 卜 3 1の拡管状のスロート壁 20 2 6に近い部分に空気が流れるため、 ルーバ 3 2に空気が誘導され、 拡管状のス ロート壁 2 6への灰付着を防止することができるからである。
なお、 ダンバ 8は、 円筒状の部材がポー ト中心軸 Cと略平行にスライ ドする形 式のものを図示したが、 複数のバタフラィ状のバルブまたはフラップをその回転 軸がポー 卜 3 1 の中心軸 Cに平行な位置にある周方向に並ぶように配置してもよ 25 レ、。 このことは本実施例に限らず、以下の各実施例にも適用できる構成例である。
図 8に示す本実施例では、 ポー ト 3 1は 3重構造と したが、 一次ノ ズル 1や二 次ノズル 2を持たず、 縮流構造である三次ノズル 3のみで構成されるポ一 卜 3 1 であっても上記の効果を得られる。 なお、 他の実施例においても三次ノズル 3の みで構成されるポ一卜 3 1 と しても良い。 図 8に示す三次ノズル 3の内側に二次ノズル 2などの空気ノズルを設ける場合 には、 二次ノ ズル 2を構成する隔壁の気体流れ下流側の端部 (図 I ? ( a ) の点 b ) を含む仮想の気体直進用の円筒のなす線 F (図 1 2 ( a ) の点 bを含むポー 卜中心軸 Cに平行な線) に対して、 前 Ϊ己端部 (図 1 2 ( a ) の点 b ) ' とルーバ 3 2の気体流れ土流側端部 (図 1 2 ( a ) の点 c ) とを結ぶ線 Gのなす角度 6が 1 5.度より小さい角度の範囲内に前記ルーバ 3 2 の上流側端部 (図 1 2 ( a ) の点 c ) が配置されるように設けることが望ましい (図 1 2 ( a ) 参^ )。
これは、 三次ノズル 3の入口部にあるダンバ 8を全閉と し、 前記二次ノズル 2 から空気を流した場合、 二次ノズル 2から噴出する空気はポー ト 3 1 の内部で広 がりながら噴出するが、 該噴出流の広がり角が、 通常 1 5度程度であるためであ る。 このため、 ルーバ 3 2 の上流側端部を前記線 Fと線 Gで挟まれる領域内に設 置することで、 二次空気に旋回がかかってない場合にも、 ルーバ 3 2 の外周側流 路を気体が流れ、 スロー 卜壁.2 6 の壁面近傍において気体流れを外周方向に誘導 することができる。 すなわち、 従来の空気等の冷却体を噴出する噴出口を別途に 設けたこと'を特徴とするものに比べて、 本実施例の構成ではポート 3 1のいかな る運転条件においてもスロート壁 2 6又はその近傍の壁面に灰が付着することを 防止できるとともにポー ト 3 1から火炉 3 4に供給する気^の供給時の圧力損失 を低減でき、 ポー ト 3 1 の構造が簡素化され、 灰付着抑制シール空気用調整器を 設置する必要もなくなり'、 全体と して火炉 3 4の付属物の重量低減および鉄鋼材 の削減ができる。
また、 前記ルーバ 3 2は前記縮流を構成する三次ノズル 3 の外側流路壁により 固定用リブ 2 7 (図 1 1参照) で支持した構造とする。 通常、 ボイラ火炉 3 4で は熱膨張が火炉 3 4の各部位で相違することにより、 最外周空気ノ ズル (図 8 の 場合は三次ノズル 3 ) の外周部を形成する火炉 3 4の壁面とポー 卜中心軸 Cとの 距離が運転負荷により変化する。 ルーバ 3 2などをポート 3 1 の内部から固定す ることで、 ポート 3 1の拡管状のスロー 卜壁 2 6 とルーバ 3 2の間隔を一定に保 つことができる。
(実施例 3 ) 図 1 1は本実施例 3を示すポ一 ト 3 1の概略図である。 図 1 1に示す構成で図 8に示す構成と同一部分は同一符号を付してその説明は省略する。 .
本実施例では、 ポー ト 3 1の拡管状のスロート壁 2 6に流路断面積が一定の中 心軸 Cに平行な平行部 2 6 aを有している。 さらにル一バ 3 2にも平行部 2 6 a に沿った円筒部 3 2 aを設けている。 また、 ルーバ 3 2 と拡管状のスロー ト壁 2 6.の間に三次ノズル 3からの縮流の.一部が流れ込み、 火炉 3 4のス口,一ト壁 2 6 の表面をシールする三次空気 1 1の一部の流れ 1 1 ' がス ロー 卜壁 2 6の壁面近 傍に効果的に流れ、 スロー ト壁 2 6の壁面近傍の負圧を除去できることから、 灰 の巻き込みによるスロート壁 2 6の近傍における灰付着が生じにく くなる。 図 1 2 ( a ) は図 1 1のポー ト 3 1め出口部の拡大図であり、 ルーバ 3 2の気 体流れ上流側の先端部 (点 c ) は前記縮流を形成する三次ノ ズル 3の外周側壁面 (前壁) 3 0 1の延長線 E上または延長線 E上より も気体流れ上流側 (炉内から 離れた方向) に位置するように設けている。 また、 風箱 3 9、b側からル一バ 3 2 を挿入できるようにル一バ 3 2の火炉 3 4側先端の半径 D gはス ロート壁 2 6の 半译 D sの 1倍未満とする。 より詳細には、 ルーバ 3 2の最大径部分の半径 D g より拡管状のス ロー 卜壁 2 6の平行部 2 6 aの半径 D sを大きくする (半径 D g <半径 D s )。実際には製作公差を考慮してル一バ 3 2の最大径部分の半径 D gよ り拡管状のス ロー ト壁 2 6の平行部 2 6 aの半径 D sを 0. 9 5倍未満 (D s < 0. 9 5 D. g ) とすることが望ましい。
前記ルーバ 3 2の平行部 3 2 aの半径 D pがスロー ト壁 2 6の平行部 2 6 aの 半径 D sの 2 0%以下 ( 1. 0 D s〉D p≥ 0. 8 D s ; ただし長さ D pはルー バ 3 2の円筒部 3 2 a (ポー ト中心軸 Cに平行な部分) の半径である) になり、 また前記ルーバ 3 2の広がり角度をポート 3 1のス ロー 卜壁 2 6の広がり角度と 同じ角度以上にすれば、 スロー ト壁 2 6への灰付着防止に効果的な空気量を誘導 することが可能である。 しかし、 三次ノズル 3を流れる気体による縮流効果の持 続性を考えると、 半径 D sに対する半径 D pは 1 0 %程度 ( 1. 0 D s〉D p≥ 0. 9 D s ) 小さくすることが望ましレ、。 即ち、 火炉 3 4のスロート壁 2 6への 灰付着防止のためにあまり大量の空気を割り当てると、 本来の燃焼制御用の空気 噴流を火炉 3 4内の中央部まで到達させつつ、 火炉壁近傍の気体混合を促進する という縮流形成の目的が阻害されるためである。 ポー ト 3 1の外周側から中心軸 Cの方向に向けた空気噴流の流れを強めてスロー ト部 2 6を通過させ、 空気噴流 がポー 卜 3 1の中心軸 Cに集中しつつスロー ト部 2 6の周辺の火炉 3 4内の気体 を巻き込むような流れが維持できなくなるのは望ましくない。 '
なお、 図 1 2 ( a ) は、 ポー トの半径 D a (点 a ; 二次ノ ズル 2 の導入部にお け.る半径) 及び D b (点 b ; 二次ノ ズル 2を構成する隔壁の気体流れ下流側の端 部) とスロー 卜壁 2 6 の半径 (スロー 卜壁 2 6 の平行部の半径) D' s とがほぼ同 一である例を示しているが、 二次ノズル 2の半径 D a及び半径 D bよりスロート 壁 2 6 の半径 D sが大きい場合又は小さい場合も同様である。
例えば、 図 1 2 ( b ) に示すように、 二次ノズル 2の半径 D a及び半径 D bよ りスロー 卜壁 2 , 6の半径 D sが大きい場合も、 二次ノズル 2を構成する隔壁の気 体流れ下流側の端部 (図 1 2 ( b ) の点 b ) を含む仮想の気体直進用の円筒のな す線 F (図 1 2 ( b ) の点 bを含むポート中心軸 Cに平行な線) に対して、 前記 端部.(図 1 2 ( b ) の点 b ) とルーバ 3 2 の上流側端部 (図 1 2 の点 c ) とを.結 ぶ線 Gのなす角度 Θの絶対値が 1 5度より小さい角度の範囲内に前記ルーバ 3 2 の気体流れ上流側端部が配置されるように設けることが望ましい。 ·
但し、ルーバ 3 2は、気体流れ下流側に向かうほど径が拡大する平面の長さ (図 1 2の e ¾ (周方向) と f 部 (周方向) を結ぶ線の長さ) は、 該平面に灰が付着 しにくいように、 スロ一 ト壁 2 6の気体流れ方向の壁面長さ (図 1 2の h部 (周 方向) と 〖部 (周方向') で囲まれる面の気体流れ方向の長さ) の 1ノ 2以下とす ることが望ましい。
なお、 図 1 2 ( b ) ではスロート壁 2 6 の半径 D sはル一バ 3 2 の半径 D gよ り大きく しているので、 ルーバ 3 2を火炉壁外部に抜き取り易い。 (実施例 4 )
図 1 3は本実施例 4を示すポ一 卜 3 1の概略図である。 図 1 3に示す構成で図 2に示す構成と同一部分は同一符号を付してその説明は省略する。
本実施例では、 図 1 1 に示す構成と同様にス ロー 卜壁 2 6に流路断面積が一定 の中心軸 Cと平行な平行部 2 6 aを設け、 さらにルーバ 3 2に円筒部 3 2 aを設 けている。 前記平行部 2 6 a とル一バ 3 2 の円筒部 3 2 a の間にスロー ト壁 2 6 の周方向の流速成分を誘起させる旋回器 2 2を設けた。
これにより、 ル一バ 3 2 とス ロート壁 2 6の間に三次ノズル 3からの縮流の一 部が流れ込み、 火炉 3 4 のスロー ト壁 2 6の表面をシールする空気流 1 1 ' が拡 管状のスロー ト壁 2 6の壁面近傍に効果的に流れ、 スロー ト壁 2 6の壁面近傍の 負圧を除去できることから、 灰の巻き込みによるス ロー卜壁 2 6近傍における灰 付着が生じにく くなる。
また、 ル一バ 3 2の火炉側から見たポ一 ト中心軸 Cに直交する面の投影面積が 低減でき、 火炎から受ける放射受熱量を低減できる。 このため、 ルーバ 3 2の温 度が低減でき、 熱変形や高温場における腐食などの熱損失が生じにく くなる。 また、 前記旋回器 2 2の気体流れ下流側の先端に気体流れをスロー ト壁 2 6の' 方向に誘導する断面積の拡大するリ ング状の前記ルーバ 3 2を設けた場合も灰の 巻き込みによるノ ズル近傍における灰付着を防止できる。 ' .. 産業上の利用可能性
• 本発明はボイラの火炉に限らず、 石炭などの燃焼で生成する灰が付着し易い燃 焼装置の火炉壁面に適用可能である。

Claims

請 求 の 範 囲
1 . 火炉の炉壁に設けられ、 該炉壁に垂直な気体流れの中心軸に向って流れる 速度成分と前記中心軸に沿って流れる速度成分を有し、 気体流れの上流側から前 記中心軸に向かって斜めに形成された縮流生成用流路と、 .
前記縮流生成用流路の後流側の火炉壁開口部に形成された気体流路が気体流れ 方向に順次に拡大するスロー ト拡管部と、
前記縮流生成用流路を流れる気体を前記ス ロー ト拡管部の壁面に沿って流れる ように誘導するために縮流生成用流路に設けられたルーバと
を備え'たことを特徴とする火炉内への気体噴出ポート。
2 . 前記ル一バの気体流れ上流側の先端部は、 縮流生成用流路の外周側壁面を 前記中心軸方向へ延長した面または該延長した面より も気体流れ上流側に位置5 し、 前記ルーバの気体流れ下流側部分には、 前記スロート拡管部の壁面に沿うよ ■ うに気体流れ方向に順次拡大した拡管部を有することを特徴とする請求項 1記載 の火炉内への気体噴出ポー ト。
3 . 前言己縮流生成用流路を流れる空気流の前記中心軸方向に沿って流れる速度0 成分と前記中心軸方向に向かって流れる速度成分の比率を変える機構を備えたこ とを特徴とする請求項 1または 2記載の火炉内への気体噴出ポート。
4 . 前記縮流生成用流路の外周側壁面に沿って気体が流れるように前記外周壁 面側から開き始める前記縮流生成用流路の開度を調整可能なダンバを設けたこと5 を特徴とする請求項 3に記載の火炉内への気体噴出ポート。
5 . 前記ルーバと前記ス ロー ト拡管部の壁面との間に気体を旋回させる旋回部 材を設けたことを特徴とする請求項 1ないし 4のいずれかに記載の火炉内への気 体噴出ポート。
6 . 前記ルーバの下流側端部に形成されるス口一ト拡管部の気体流れ方向の長 さが、 前記ス口一ト拡管部の気体流れ方向の壁面長さの 1 2以下であることを 特徴とする請求項 1ないし 5のいずれかに記載の火炉内への気体噴出ポ一 ト。
7 . 前記縮流生成用流路は三次ノズルと し、 該三次ノズルより内側,に、 前記中 心軸に沿ってそれぞれ気体が流れる一次ノズル及び該一次ノズルの外側に二次ノ ズルを設けたことを特徴とする請求項 1〜 6のいずれかに記載の火炉内への気体 噴出ポー 卜。
PCT/JP2006/322040 2006-03-14 2006-10-27 火炉内への気体噴出ポート WO2007105335A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06822958A EP1995517A1 (en) 2006-03-14 2006-10-27 In-furnace gas injection port
CA002645680A CA2645680A1 (en) 2006-03-14 2006-10-27 In-furnace gas injection port
US12/224,983 US20090087805A1 (en) 2006-03-14 2006-10-27 In-Furnace Gas Injection Port
JP2008504973A JPWO2007105335A1 (ja) 2006-03-14 2006-10-27 火炉内への気体噴出ポート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-068870 2006-03-14
JP2006068870 2006-03-14

Publications (1)

Publication Number Publication Date
WO2007105335A1 true WO2007105335A1 (ja) 2007-09-20

Family

ID=38509180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322040 WO2007105335A1 (ja) 2006-03-14 2006-10-27 火炉内への気体噴出ポート

Country Status (5)

Country Link
US (1) US20090087805A1 (ja)
EP (1) EP1995517A1 (ja)
JP (1) JPWO2007105335A1 (ja)
CA (1) CA2645680A1 (ja)
WO (1) WO2007105335A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096319A1 (ja) * 2011-01-12 2012-07-19 バブコック日立株式会社 ボイラ装置
WO2015005350A1 (ja) * 2013-07-09 2015-01-15 バブコック日立株式会社 燃焼装置
WO2017126240A1 (ja) * 2016-01-20 2017-07-27 三菱日立パワーシステムズ株式会社 アフタエアポート及びこれを備えた燃焼装置
WO2018155102A1 (ja) * 2017-02-22 2018-08-30 三菱日立パワーシステムズ株式会社 燃焼装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0919964D0 (en) 2009-11-16 2009-12-30 Doosan Babcock Energy Ltd Flow control device
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196307A (ja) * 1984-10-16 1986-05-15 Hitachi Zosen Corp 微粉炭バ−ナ
JPS62138607A (ja) 1985-12-11 1987-06-22 Babcock Hitachi Kk 燃焼装置
JPH066909U (ja) 1992-06-25 1994-01-28 石川島播磨重工業株式会社 微粉炭バーナ
JPH09112816A (ja) 1995-10-11 1997-05-02 Babcock Hitachi Kk アフタエア供給装置
JPH10122546A (ja) 1996-10-14 1998-05-15 Ishikawajima Harima Heavy Ind Co Ltd オーバエアポート
JP2004190981A (ja) * 2002-12-12 2004-07-08 Babcock Hitachi Kk 燃焼装置ならびにウインドボックス
JP3668989B2 (ja) 1994-10-20 2005-07-06 石川島播磨重工業株式会社 バーナスロート部
JP2006132798A (ja) 2004-11-02 2006-05-25 Babcock Hitachi Kk 二段燃焼式ボイラ用のアフタエアノズル、および、それを用いる二段燃焼式ボイラ
JP2006132811A (ja) 2004-11-04 2006-05-25 Babcock Hitachi Kk 燃料燃焼用空気ポート、その製造方法及びボイラ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199355A (en) * 1991-08-23 1993-04-06 The Babcock & Wilcox Company Low nox short flame burner
CA2086399C (en) * 1992-01-27 2004-03-30 Joel Vatsky Split stream burner assembly
US5240409A (en) * 1992-04-10 1993-08-31 Institute Of Gas Technology Premixed fuel/air burners
DE19803879C1 (de) * 1998-01-31 1999-08-26 Mtu Muenchen Gmbh Zweistoffbrenner
EP1544540B1 (en) * 2002-09-09 2008-12-17 Babcock-Hitachi Kabushiki Kaisha Furnace wall structure
KR20050075379A (ko) * 2002-11-05 2005-07-20 바브콕-히다찌 가부시끼가이샤 배기가스 처리장치
AU2003252323A1 (en) * 2003-07-30 2005-02-15 Babcock-Hitachi Kabushiki Kaisha Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module
US7205500B2 (en) * 2004-10-13 2007-04-17 Babcock-Hitachi Kabushiki Kaisha Non-consumable electrode welding torch and welding head with the torch
AU2005229668B2 (en) * 2004-11-04 2008-03-06 Babcock-Hitachi K.K. Overfiring air port, method for manufacturing air port, boiler, boiler facility, method for operating boiler facility and method for improving boiler facility

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196307A (ja) * 1984-10-16 1986-05-15 Hitachi Zosen Corp 微粉炭バ−ナ
JPS62138607A (ja) 1985-12-11 1987-06-22 Babcock Hitachi Kk 燃焼装置
JPH066909U (ja) 1992-06-25 1994-01-28 石川島播磨重工業株式会社 微粉炭バーナ
JP3668989B2 (ja) 1994-10-20 2005-07-06 石川島播磨重工業株式会社 バーナスロート部
JPH09112816A (ja) 1995-10-11 1997-05-02 Babcock Hitachi Kk アフタエア供給装置
JPH10122546A (ja) 1996-10-14 1998-05-15 Ishikawajima Harima Heavy Ind Co Ltd オーバエアポート
JP2004190981A (ja) * 2002-12-12 2004-07-08 Babcock Hitachi Kk 燃焼装置ならびにウインドボックス
JP2006132798A (ja) 2004-11-02 2006-05-25 Babcock Hitachi Kk 二段燃焼式ボイラ用のアフタエアノズル、および、それを用いる二段燃焼式ボイラ
JP2006132811A (ja) 2004-11-04 2006-05-25 Babcock Hitachi Kk 燃料燃焼用空気ポート、その製造方法及びボイラ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096319A1 (ja) * 2011-01-12 2012-07-19 バブコック日立株式会社 ボイラ装置
JP2012145267A (ja) * 2011-01-12 2012-08-02 Babcock Hitachi Kk ボイラ装置
WO2015005350A1 (ja) * 2013-07-09 2015-01-15 バブコック日立株式会社 燃焼装置
CN105378385A (zh) * 2013-07-09 2016-03-02 三菱日立电力系统株式会社 燃烧装置
AU2014288257B2 (en) * 2013-07-09 2016-07-28 Mitsubishi Power, Ltd. Combustion device
JP6025983B2 (ja) * 2013-07-09 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼装置
JPWO2015005350A1 (ja) * 2013-07-09 2017-03-02 三菱日立パワーシステムズ株式会社 燃焼装置
CN105378385B (zh) * 2013-07-09 2017-07-21 三菱日立电力系统株式会社 燃烧装置
US10359193B2 (en) 2013-07-09 2019-07-23 Mitsubishi Hitachi Power Systems, Ltd. Combustion device
WO2017126240A1 (ja) * 2016-01-20 2017-07-27 三菱日立パワーシステムズ株式会社 アフタエアポート及びこれを備えた燃焼装置
WO2018155102A1 (ja) * 2017-02-22 2018-08-30 三菱日立パワーシステムズ株式会社 燃焼装置
CN110300871A (zh) * 2017-02-22 2019-10-01 三菱日立电力系统株式会社 燃烧装置

Also Published As

Publication number Publication date
US20090087805A1 (en) 2009-04-02
JPWO2007105335A1 (ja) 2009-07-30
CA2645680A1 (en) 2007-09-20
EP1995517A1 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
KR100755879B1 (ko) 연소용 공기포트, 오버에어포트, 애프터에어포트, 공기포트의 제조방법, 보일러, 보일러설비, 보일러설비의 운전방법 및 보일러설비의 개수방법
CA2519981C (en) Apparatus for burning pulverized solid fuels with oxygen
US5944507A (en) Oxy/oil swirl burner
JP4235218B2 (ja) 燃焼用バーナおよび該バーナを備えた燃焼装置
CN1807985B (zh) 燃料燃烧用空气口及其制造方法、锅炉及锅炉设备
JP5535522B2 (ja) 石炭焚ボイラ
KR100537700B1 (ko) 미분탄 연소 버너 및 그에 의한 연소 방법
JPS6038513A (ja) NOxの発生を抑えながら液状またはガス状の燃料を燃焼させる方法とバーナー
JP2009079794A (ja) 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法
WO2007105335A1 (ja) 火炉内への気体噴出ポート
JPH05231617A (ja) 低NOx短火炎バーナー
PL185110B1 (pl) Palnik
JP5386230B2 (ja) 燃料バーナ及び旋回燃焼ボイラ
CN207584766U (zh) 一种高效工业煤粉炉用低氮燃烧器
JP2010270990A (ja) 燃料バーナ及び旋回燃焼ボイラ
JPS636768B2 (ja)
JPH07180822A (ja) 焼却炉及び焼却炉による焼却方法
JPH11132414A (ja) 超低NOxバーナ
WO2011030501A1 (ja) 微粉炭焚きボイラ
CN111649324A (zh) 燃烧器和锅炉
JP2008075911A (ja) ガス噴出ポート
CN112833391A (zh) 燃料喷口、预热燃烧器,固体燃料燃烧系统及其燃烧控制方法
JPH11211010A (ja) 微粉炭ボイラの燃焼方法
JP4264003B2 (ja) 改良型燃焼排ガス循環を使用するバーナーシステム
JP2007232328A (ja) 二段燃焼用空気ポートとその運用方法及びボイラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822958

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2645680

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008504973

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006822958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224983

Country of ref document: US