WO2007102316A1 - 光ピックアップ装置、対物光学素子及び光情報記録再生装置 - Google Patents

光ピックアップ装置、対物光学素子及び光情報記録再生装置 Download PDF

Info

Publication number
WO2007102316A1
WO2007102316A1 PCT/JP2007/053168 JP2007053168W WO2007102316A1 WO 2007102316 A1 WO2007102316 A1 WO 2007102316A1 JP 2007053168 W JP2007053168 W JP 2007053168W WO 2007102316 A1 WO2007102316 A1 WO 2007102316A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical element
wavelength
light
objective optical
Prior art date
Application number
PCT/JP2007/053168
Other languages
English (en)
French (fr)
Inventor
Kentarou Nakamura
Eiji Nomura
Nobuyoshi Mori
Kohei Ota
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2008503772A priority Critical patent/JP5019273B2/ja
Priority to EP07714668A priority patent/EP1993093A4/en
Publication of WO2007102316A1 publication Critical patent/WO2007102316A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4238Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in optical recording or readout devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4283Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major temperature dependent properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • Optical pickup device objective optical element, and optical information recording / reproducing device
  • the present invention performs information recording and Z or playback to be compatible with different types of optical discs.
  • the present invention relates to an optical pickup device, an objective optical element, and an optical information recording / reproducing device.
  • laser light sources used as light sources for reproducing information recorded on optical discs and recording information on optical discs have become shorter, for example Laser light sources with wavelengths of 400 to 420 nm are being put into practical use, such as blue-violet semiconductor lasers and blue SHG lasers that convert the wavelength of infrared semiconductor lasers using the second harmonic.
  • Blue-violet laser light sources 15 to 20 GB of information can be recorded on an optical disk with a diameter of 12 cm when using an objective optical element with the same numerical aperture (NA) as a DVD (digital versatile disk).
  • NA numerical aperture
  • 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
  • an optical disk and a magneto-optical disk using a blue-violet laser light source are collectively referred to as a “high-density optical disk”.
  • the protective layer is designed to be thinner than in DVDs (0.1 mm compared to 0.6 mm for DVD) to reduce the amount of coma due to skew.
  • an optical disc player Z recorder optical information recording / reproducing device
  • DVDs and CDs compact discs that record a wide variety of information are sold! Given the reality, it is not possible to record information on high-density optical discs. In the same way, it is possible to record and playback information appropriately for DVDs and CDs.
  • the optical pickup device mounted on the optical disk player Z recorder for high-density optical disks is suitable for maintaining compatibility with both high-density optical disks, DVDs, and even CDs. It is desirable to have the ability to record information and play it back.
  • optical systems for high-density optical discs and DVDs can be used.
  • a method of selectively switching information with the optical system for CDs according to the recording density of the optical disk to be played back can be considered, but since multiple optical systems are required, it is disadvantageous for miniaturization and cost. Will increase.
  • an optical system for high-density optical discs and an optical system for DVDs and CDs are also used in compatible optical pickup devices. It is preferable to reduce the number of optical components constituting the optical pickup device as much as possible. It is most advantageous to simplify the configuration and reduce the cost of the optical pickup device by sharing the objective optical element disposed facing the optical disk. In order to obtain a common objective optical element for a plurality of types of optical disks having different recording Z reproduction wavelengths, it is necessary to form an optical path difference providing structure having wavelength dependency of spherical aberration in the objective optical system. .
  • Patent Document 1 includes a diffractive structure as an optical path difference providing structure, and an objective optical system that can be used in common for high-density optical discs and conventional DVDs and CDs, and this objective optical system.
  • An optical pickup device is described.
  • the objective optical element used in the optical pickup device described in Patent Document 1 described above for recording and Z or reproducing information in a manner compatible with three different optical discs is an optical pickup.
  • the amount of light used for recording and Z or playback may be insufficient, or when tracking CD, unnecessary light may adversely affect the tracking sensor, and CD tracking may be performed.
  • CD tracking may be performed.
  • Patent Document 1 European Published Patent No. 1304689
  • the present invention takes the above-mentioned problems into consideration and achieves at least one of the following objects.
  • an optical pickup device, an objective optical element, and an optical information recording / reproducing apparatus that can realize the simplification of the configuration and the cost reduction, the objective optical element, and the optical information recording / reproducing apparatus.
  • an optical pickup device, an objective optical element, and an optical information recording / reproducing device that can maintain tracking accuracy are provided.
  • An object of the present invention is to provide an optical information recording / reproducing apparatus.
  • an object of the present invention is to provide an optical pickup device, an objective optical element, and an optical information recording / reproducing device that are easy to manufacture without using a very fine structure, while enabling desired optical performance to be obtained. .
  • An optical pickup device includes a first light source that emits a first light beam, a second light source that emits a second light beam, a third light source that emits a third light beam, an objective optical element,
  • the optical surface of the objective optical element has at least two regions of a central region and a peripheral region around the central region, the central region has a first optical path difference providing structure, and the peripheral region is A second optical path difference providing structure is provided.
  • the objective optical element condenses the first light flux passing through the central region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light flux passing through the central area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • the third light flux passing through the central area is The information on the third optical disk is focused on the recording surface so that information can be recorded and Z or reproduced.
  • the objective optical element converts the first light flux passing through the peripheral region of the objective optical element to the first optical element.
  • the optical pickup device has a wavelength dependency of spherical aberration that corrects a change in spherical aberration due to a change in refractive index due to a temperature change of the objective optical element by a change in wavelength of the first wavelength due to a temperature change.
  • FIG. 1 is a diagram showing an example of an objective optical element OBJ according to the present invention in which an optical axis direction force is also seen.
  • FIG. 2 is a cross-sectional view schematically showing examples (a) to (d) of several forces of the optical path difference providing structure provided in the objective optical element OBJ according to the present invention.
  • FIG. 3 is a diagram schematically showing a configuration of an optical pickup device according to the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an example of an objective optical element OBJ according to the present invention.
  • FIG. 5 shows longitudinal spherical aberration diagrams (a) to (c) relating to BD, DVD, and CD of Example 1 according to the present invention.
  • FIG. 6 is longitudinal spherical aberration diagrams (a) to (c) relating to BD, DVD, and CD of Example 2 according to the present invention.
  • FIG. 7 is longitudinal spherical aberration diagrams (a) to (c) relating to BD, DVD, and CD of Example 3 according to the present invention.
  • FIG. 8 is a cross-sectional view schematically showing an optical path difference providing structure of the objective optical element according to Example 4 of the present invention.
  • FIG. 9 is longitudinal spherical aberration diagrams (a) to (c) relating to BD, DVD, and CD of Example 4 according to the present invention.
  • FIG. 10 is a diagram showing a spot shape according to the present invention.
  • FIG. 11 is longitudinal spherical aberration diagrams (a) to () regarding BD, DVD, and CD of Example 5 according to the present invention.
  • FIG. 12 is a view showing a step amount of an example of an optical path difference providing structure.
  • FIG. 13 is a diagram showing an example of a pitch width.
  • FIG. 14 is a diagram (a) to (d) for explaining the design method of the optical path difference providing structure according to the present invention.
  • FIG. 15 is a perspective view of a molded objective optical element OBJ.
  • FIG. 16 is a flowchart showing an example of a method for manufacturing an optical pickup device.
  • a second light source that emits a second light beam having a second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1);
  • a third light source that emits a third light beam having a third wavelength ⁇ 3 ( ⁇ 3> ⁇ 2);
  • the first light beam is collected on the information recording surface of a first optical disk having a protective substrate having a thickness of tl
  • the second light beam is collected on a second optical disk having a protective substrate having a thickness of t2 (tl ⁇ t2).
  • the optical pickup device condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and focuses the third light flux on the information recording surface.
  • Information is recorded and Z or reproduced by focusing on the information recording surface of the third optical disk.
  • the optical surface of the objective optical element has at least two regions of a central region and a peripheral region around the central region, the central region has a first optical path difference providing structure, and the peripheral region is a first region. It has a two optical path difference providing structure,
  • the objective optical element condenses the first light flux passing through the central region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light beam passing through the central region is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • the third light beam passing through the central region is Focusing on the information recording surface of the third optical disc so that information can be recorded and Z or reproduced
  • the objective optical element can record and Z or reproduce information on the information recording surface of the first optical disc by using the first light flux passing through the peripheral area of the objective optical element.
  • the second light flux passing through the peripheral area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc,
  • the objective optical element condenses the first light flux passing through the peripheral region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light flux passing through the peripheral area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • ⁇ SAT1 is ⁇ SA3 / ⁇ ⁇ of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (no wavelength variation), that is, at the wavelength used (no wavelength variation).
  • ⁇ SA is when recording and Z or reproducing the first optical disk at the wavelength used.
  • ⁇ SA3 / ⁇ ⁇ that is, the wavelength change rate of the third-order spherical aberration of the objective optical element at the time of recording and reading or reproducing the first optical disk at the wavelength used
  • f is the first light flux Indicates the focal length of the objective optical element.
  • ⁇ SAT2 is ⁇ SA3 / ⁇ ⁇ of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C).
  • the temperature change rate of the third-order spherical aberration of the objective optical element at the time of recording and Z or reproduction of the first optical disc at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C).
  • the optical pickup device has a coupling lens
  • the coupling lens is a plastic lens
  • Item 3 The optical pickup device according to Item 1 or 2, wherein the following equation is satisfied.
  • ⁇ SAT3 includes the coupling lens and the objective optical element at the time of recording and Z or reproduction of the first optical disc at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C).
  • ⁇ SA3 / ⁇ ⁇ of the entire optical system that is, 3 of the entire optical system when performing recording and Z or reproduction of the first optical disc at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C). Refers to the temperature change rate of the next spherical aberration.
  • the first optical path difference providing structure is a structure having at least a third basic structure, a fourth basic structure, or a seventh basic structure,
  • the third basic structure makes the 10th-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, and the sixth-order diffracted light amount of the second light beam. Is an optical path difference providing structure that makes the fifth order diffracted light quantity of the third light flux larger than any other order diffracted light quantity,
  • the fourth basic structure makes the fifth-order diffracted light amount of the first light beam that has passed through the fourth basic structure larger than any other order of diffracted light amount, and the third-order diffracted light amount of the second light beam differs from the other Is an optical path difference providing structure that makes the third order and second order diffracted light quantities of the third light flux larger than any other order diffracted light quantity, and the seventh basic structure is The second-order diffracted light amount of the first light beam that has passed through the seventh basic structure is made larger than any other order diffracted light amount, and the first-order diffracted light amount of the second light beam is made higher than any other order diffracted light amount. 4.
  • the optical surface of the objective optical element has an outermost peripheral region which is a refractive surface around the peripheral region, and has three regions.
  • the optical surface of the objective optical element has an outermost peripheral region having a third optical path difference providing structure around the peripheral region, and has three regions.
  • the third optical path difference providing structure is a structure having at least one of a third basic structure, a fourth basic structure, or a seventh basic structure,
  • the third basic structure makes the 10th-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, and the sixth-order diffracted light amount of the second light beam. Is an optical path difference providing structure that makes the fifth order diffracted light quantity of the third light flux larger than any other order diffracted light quantity,
  • the fourth basic structure makes the fifth-order diffracted light amount of the first light beam that has passed through the fourth basic structure larger than any other order of diffracted light amount, and the third-order diffracted light amount of the second light beam differs from the other Is an optical path difference providing structure that makes the third order and second order diffracted light quantities of the third light flux larger than any other order diffracted light quantity, and the seventh basic structure is The second-order diffracted light amount of the first light beam that has passed through the seventh basic structure is made larger than any other order diffracted light amount, and the first-order diffracted light amount of the second light beam is made higher than any other order diffracted light amount.
  • the optical pickup device has an optical path difference providing structure that increases the first-order diffracted light amount of the third light flux more than any other order diffracted light amount.
  • the objective optical element collects the first light flux passing through the outermost peripheral region of the objective optical element so that information can be recorded and Z or reproduced on an information recording surface of the first optical disc.
  • Item 9 The optical pickup device according to Item 7 or 8, wherein the optical pickup device emits light.
  • the first light beam is collected on the information recording surface of a first optical disk having a protective substrate having a thickness of tl
  • the second light beam is collected on a second optical disk having a protective substrate having a thickness of t2 (tl ⁇ t2).
  • the optical pickup device condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and focuses the third light flux on the information recording surface.
  • Information is recorded and Z or reproduced by focusing on the information recording surface of the third optical disk.
  • the optical surface of the objective optical element has at least two regions of a central region and a peripheral region around the central region, the central region has a first optical path difference providing structure, and the peripheral region is a first region. It has a two optical path difference providing structure,
  • the objective optical element condenses the first light flux passing through the central region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light beam passing through the central region is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • the third light beam passing through the central region is Focusing on the information recording surface of the third optical disc so that information can be recorded and Z or reproduced
  • the objective optical element condenses the first light flux passing through the peripheral region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light flux passing through the peripheral area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • An optical pickup having a wavelength dependency of spherical aberration that corrects a change in spherical aberration due to a change in refractive index accompanying a change in temperature of the objective optical element by a change in wavelength of the first wavelength accompanying a change in temperature. apparatus.
  • a first light source that emits a first light beam having a first wavelength ⁇ 1 (350 nm ⁇ ⁇ 1 ⁇ 440 nm), and An optical pickup device having an objective optical element for condensing the first light flux on the information recording surface of the first optical disk having a protective substrate having a thickness of tl (0.0750 mm ⁇ tl ⁇ 0.125 mm) Because
  • the optical pickup device performs recording and Z or reproduction of information by condensing the first light flux on the information recording surface of the first optical disc
  • ⁇ SAT1 is ⁇ SA3 / ⁇ ⁇ of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (no wavelength variation), that is, at the wavelength used (no wavelength variation).
  • ⁇ SA is when recording and Z or reproducing the first optical disk at the wavelength used.
  • ⁇ SA3 / ⁇ ⁇ that is, the wavelength change rate of the third-order spherical aberration of the objective optical element at the time of recording and reading or reproducing the first optical disk at the wavelength used
  • f is the first light flux Indicates the focal length of the objective optical element.
  • a second light source that emits a second light beam having a second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1);
  • a third light source that emits a third light beam having a third wavelength ⁇ 3 ( ⁇ 3> ⁇ 2), and having a protective substrate having a thickness of tl using the first light flux. Recording and recording or reproduction are performed, and recording and Z or reproduction of information of the second optical disk having a protective substrate with a thickness of t2 (tl ⁇ t2) is performed using the second light flux, and the third light is recorded.
  • the optical surface of the objective optical element has at least two regions, a central region and a peripheral region around the central region, and the central region has a first optical path difference providing structure. And the peripheral region has a second optical path difference providing structure,
  • the objective optical element is the first light passing through the central region of the objective optical element.
  • the bundle is condensed on the information recording surface of the first optical disc so that information can be recorded and Z or reproduced, and the second light flux passing through the central region is reflected on the information recording surface of the second optical disc.
  • the third light flux that passes through the central area is collected so that information can be recorded, Z, or reproduced, and the third light flux is collected on the information recording surface of the third optical disc so that information can be recorded, Z, or reproduced.
  • the objective optical element condenses the first light flux passing through the peripheral region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light flux passing through the peripheral area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • An objective optical element characterized by satisfying the following formula (1).
  • ⁇ SAT1 is ⁇ SA3 / ⁇ ⁇ of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (no wavelength variation), that is, at the wavelength used (no wavelength variation).
  • ⁇ SA is when recording and Z or reproducing the first optical disk at the wavelength used.
  • ⁇ SA3 / ⁇ ⁇ that is, the wavelength change rate of the third-order spherical aberration of the objective optical element at the time of recording and reading or reproducing the first optical disk at the wavelength used
  • f is the first light flux Indicates the focal length of the objective optical element.
  • ⁇ SAT2 is ⁇ SA3 / ⁇ ⁇ of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C).
  • the temperature change rate of the third-order spherical aberration of the objective optical element at the time of recording and Z or reproduction of the first optical disc at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C).
  • the optical pickup device has a coupling lens,
  • the coupling lens is a plastic lens;
  • Item 15 The objective optical element according to Item 15 or 16, wherein the following conditional expression is satisfied. 0 ⁇ ⁇ SAT3 / f (WFE ⁇ rms / (° C-mm)) ⁇ + 0. 00091
  • ⁇ SAT3 includes the coupling lens and the objective optical element at the time of recording and Z or reproduction of the first optical disc at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C).
  • ⁇ SA3 / ⁇ ⁇ of the entire optical system that is, 3 of the entire optical system when performing recording and Z or reproduction of the first optical disc at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C). Refers to the temperature change rate of the next spherical aberration.
  • the first optical path difference providing structure is a structure having at least a third basic structure, a fourth basic structure, or a seventh basic structure,
  • the third basic structure makes the 10th-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, and the sixth-order diffracted light amount of the second light beam. Is an optical path difference providing structure that makes the fifth order diffracted light quantity of the third light flux larger than any other order diffracted light quantity,
  • the fourth basic structure makes the fifth-order diffracted light amount of the first light beam that has passed through the fourth basic structure larger than any other order of diffracted light amount, and the third-order diffracted light amount of the second light beam differs from the other
  • Is an optical path difference providing structure that makes the third order and second order diffracted light quantities of the third light flux larger than any other order diffracted light quantity, and the seventh basic structure is The second-order diffracted light amount of the first light beam that has passed through the seventh basic structure is made larger than any other order diffracted light amount, and the first-order diffracted light amount of the second light beam is made higher than any other order diffracted light amount.
  • Item 18 The optical path difference providing structure according to any one of Items 15 to 17, wherein the first-order diffracted light amount of the third light flux is made larger than any other order diffracted light amount. Objective optical element.
  • the second optical path difference providing structure is a structure having at least one of the third basic structure, the fourth basic structure, or the seventh basic structure. Objective optical element.
  • the optical surface of the objective optical element has an outermost peripheral region which is a refractive surface around the peripheral region, and has three regions.
  • the optical surface of the objective optical element has an outermost peripheral region having a third optical path difference providing structure around the peripheral region, and has three regions.
  • the objective optical element according to any one of the above.
  • the third optical path difference providing structure is a structure having at least one of a third basic structure, a fourth basic structure, or a seventh basic structure,
  • the third basic structure makes the 10th-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, and the sixth-order diffracted light amount of the second light beam. Is an optical path difference providing structure that makes the fifth order diffracted light quantity of the third light flux larger than any other order diffracted light quantity,
  • the fourth basic structure makes the fifth-order diffracted light amount of the first light beam that has passed through the fourth basic structure larger than any other order of diffracted light amount, and the third-order diffracted light amount of the second light beam differs from the other Is an optical path difference providing structure that makes the third order and second order diffracted light quantities of the third light flux larger than any other order diffracted light quantity, and the seventh basic structure is The second-order diffracted light amount of the first light beam that has passed through the seventh basic structure is made larger than any other order diffracted light amount, and the first-order diffracted light amount of the second light beam is made higher than any other order diffracted light amount. 22.
  • the objective optical element can record and Z or reproduce information on the information recording surface of the first optical disc by using the first light flux that passes through the outermost peripheral region of the objective optical element.
  • Item 22 The objective optical element according to Item 21 or 22, wherein the objective optical element is condensed.
  • Item 24 In any one of Items 15 to 23, an image-side numerical aperture (NA) of the objective optical element with respect to the first light flux is 0.8 or more and 0.9 or less. The objective optical element described.
  • the objective optical element is a plastic lens.
  • Item 25 The objective optical element according to Item 1.
  • a second light source that emits a second light beam having a second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1);
  • a third light source that emits a third light beam having a third wavelength ⁇ 3 ( ⁇ 3> ⁇ 2), and having a protective substrate having a thickness of tl using the first light flux. Recording and recording or reproduction are performed, and recording and Z or reproduction of information of the second optical disk having a protective substrate with a thickness of t2 (tl ⁇ t2) is performed using the second light flux, and the third light is recorded.
  • the optical surface of the objective optical element has at least two regions, a central region and a peripheral region around the central region, and the central region has a first optical path difference providing structure. And the peripheral region has a second optical path difference providing structure,
  • the objective optical element condenses the first light flux passing through the central region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light beam passing through the central region is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • the third light beam passing through the central region is Focusing on the information recording surface of the third optical disc so that information can be recorded and Z or reproduced
  • the objective optical element condenses the first light flux passing through the peripheral region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light flux passing through the peripheral area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • Objective optics characterized by having a wavelength dependence of spherical aberration that corrects a change in spherical aberration due to a refractive index change accompanying a temperature change of the objective optical element by a wavelength change of the first wavelength accompanying a temperature change. element.
  • a first light source that emits a first light beam having a first wavelength ⁇ 1 (350 nm ⁇ ⁇ l ⁇ 440 nm), and condensing the first light beam on the information recording surface of the first optical disc.
  • ⁇ 1 350 nm ⁇ ⁇ l ⁇ 440 nm
  • the objective optical element condenses the first light flux on an information recording surface of a first optical disc having a protective substrate having a thickness of tl (0.0750 mm ⁇ tl ⁇ 0.125 mm),
  • ⁇ SAT1 is ⁇ SA3 / ⁇ ⁇ of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (no wavelength variation), that is, at the wavelength used (no wavelength variation).
  • the temperature change rate of the third-order spherical aberration of the objective optical element at the time of recording and wrinkling or reproducing the first optical disk, and ⁇ SA is
  • ⁇ SA3 / ⁇ ⁇ at the time of recording and Z or reproduction of the first optical disk at the use wavelength that is, the third-order spherical surface of the objective optical element at the time of recording, reading or reproduction of the first optical disk at the use wavelength
  • f is the focal length of the objective optical element in the first light flux.
  • a third light source that emits a third light beam of ( ⁇ 3> ⁇ 2) and the first light beam are condensed on an information recording surface of a first optical disk having a protective substrate with a thickness of tl, and the second light beam is collected.
  • the light beam is condensed on the information recording surface of the second optical disk having a protective substrate with a thickness of t2 (tl ⁇ t2), and the third light beam is condensed with a third substrate having a protective substrate with a thickness of t3 (t2 ⁇ t3).
  • An optical pick-up that records and Z or reproduces information by condensing on the information recording surface and condensing the third light flux on the information recording surface of the third optical disc.
  • An optical information recording medium reproducing apparatus having a flop device,
  • the optical surface of the objective optical element has at least two regions of a central region and a peripheral region around the central region, the central region has a first optical path difference providing structure, and the peripheral region is a first region. It has a two optical path difference providing structure,
  • the objective optical element is the first light passing through the central region of the objective optical element.
  • the bundle is condensed on the information recording surface of the first optical disc so that information can be recorded and Z or reproduced, and the second light flux passing through the central region is reflected on the information recording surface of the second optical disc.
  • the third light flux that passes through the central area is collected so that information can be recorded, Z, or reproduced, and the third light flux is collected on the information recording surface of the third optical disc so that information can be recorded, Z, or reproduced.
  • the objective optical element condenses the first light flux passing through the peripheral region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light flux passing through the peripheral area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • the objective optical element condenses the first light flux passing through the peripheral region of the objective optical element so that information can be recorded and Z or reproduced on the information recording surface of the first optical disc
  • the second light flux passing through the peripheral area is condensed so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc
  • ⁇ SAT1 is ⁇ SA3 / ⁇ ⁇ of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (no wavelength variation), that is, at the wavelength used (no wavelength variation).
  • ⁇ SA is when recording and Z or reproducing the first optical disk at the wavelength used.
  • ⁇ SA3 / ⁇ ⁇ that is, the wavelength change rate of the third-order spherical aberration of the objective optical element at the time of recording and reading or reproducing the first optical disk at the wavelength used
  • f is the first light flux Indicates the focal length of the objective optical element.
  • the optical pickup device has at least three light sources: a first light source, a second light source, and a third light source. Further, the optical pickup device of the present invention condenses the first light beam on the information recording surface of the first optical disk, and condenses the second light beam on the information recording surface of the second optical disk, thereby providing the third light beam. Has a condensing optical system for condensing light on the information recording surface of the third optical disk. To do.
  • the optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from the information recording surface of the first optical disc, the second optical disc, or the third optical disc.
  • the first optical disc has a protective substrate having a thickness of tl and an information recording surface.
  • the second optical disk has a protective substrate having a thickness t2 (tl ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disk is preferably a high-density optical disk
  • the second optical disk is a DVD
  • the third optical disk is preferably a CD, but is not limited thereto.
  • the first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces! /.
  • a high-density optical disc a standard optical disc in which information is recorded and reproduced by an objective optical element of NAO. 85 and the thickness of the protective substrate is about 0.1 mm.
  • BD Blu-ray Disc
  • a high-density optical disc a standard optical disc in which information is recorded and reproduced by an objective optical element of NAO. 65 to 0.67 and the thickness of the protective substrate is about 0.6 mm
  • a high-density optical disc includes an optical disc having a protective film with a thickness of several to several tens of nanometers on the information recording surface (in this specification, the protective substrate includes the protective film), and the thickness of the protective substrate.
  • optical disks with a length of zero.
  • High-density optical disks include magneto-optical disks that use blue-violet semiconductor lasers or blue-violet SHG lasers as light sources for recording and reproducing information.
  • DVD means DVD series optical disc in which information is recorded and reproduced by an objective optical element of NAO. 60 to 0.67, and the thickness of the protective substrate is about 0.6 mm. And includes DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD—RW, DVD + R, DVD + RW, and the like.
  • a CD is a CD whose information is recorded and reproduced by an objective optical element of NA 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. It is a generic term for affiliated optical disks, and includes CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW, and the like. Note that Regarding recording density, the recording density of high-density optical discs is the highest, followed by DVD and CD.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source it is preferable to use a semiconductor laser, a silicon laser, or the like.
  • the third wave of the luminous flux 3 ⁇ 4 3 ( ⁇ 3> 2) preferably satisfies the following conditional expressions (9) and (10)!
  • the first wavelength ⁇ 1 of the first light source is preferably 350 ⁇ m or more, 440nm or less, More preferably, it is 380 nm or more and 415 nm or less
  • the second wavelength 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less.
  • the three wavelengths 3 are preferably 750 nm or more and 88 Onm or less, more preferably 760 or more and 820 nm or less.
  • At least two of the first light source, the second light source, and the third light source may be unitized.
  • Unitization refers to, for example, a case where the first light source and the second light source are fixedly housed in one package, but is not limited to this, and the two light sources are fixed so as not to be able to correct aberrations. It includes the state widely.
  • a light receiving element described later may be provided in one package.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disk enters the light receiving element, and the output signal is used to output each light.
  • a read signal of information recorded on the disc is obtained. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and moves the objective optical element for focusing and tracking based on this detection I can do it.
  • the light receiving element may also have a plurality of photodetector forces.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • the condensing optical system has an objective optical element.
  • the condensing optical system may include only the objective optical element, but the condensing optical system may include a coupling lens such as a collimator lens in addition to the objective optical element.
  • the coupling lens is a single lens or a lens group that is disposed between the objective optical element and the light source and changes the divergence angle of the light beam.
  • a collimator lens is a type of coupling lens that emits light incident on the collimator lens as parallel light.
  • the condensing optical system has an optical element such as a diffractive optical element that divides the light beam emitted from the light source power into a main light beam used for recording / reproducing information and two sub light beams used for tracking and the like. May be.
  • the objective optical element refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the emitted light beam on the information recording surface of the optical disk. .
  • the objective optical element is an optical system that is disposed at a position facing the optical disk in the optical pickup device, and has a function of collecting the light beam emitted from the light source on the information recording surface of the optical disk.
  • the objective optical element may be composed of two or more lenses and optical elements, or may be a single objective lens only! /, But is preferably a single objective lens.
  • the objective optical element may be a glass lens or a plastic lens, or may be a lens or an hybrid lens in which an optical path difference providing structure or the like is provided on the glass lens with a photocurable resin. ,.
  • the objective optical element When the objective optical element has a plurality of lenses, a glass lens and a plastic lens may be mixed and used. versus When the object optical element has a plurality of lenses, it may be a combination of a flat plate optical element having an optical path difference providing structure and an aspherical lens (having an optical path difference providing structure or not). .
  • the objective optical element preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the objective optical element is a glass lens
  • a glass material having a glass transition point Tg force of 00 ° C or less molding at a relatively low temperature becomes possible, so the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective optical element is a glass lens, the weight increases and a burden is imposed on the actuator that drives the objective optical element. Therefore, when the objective optical element is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 3.0 or less, more preferably 2.8 or less.
  • the refractive index at a temperature of 25 ° C with respect to a wavelength of 405 nm is preferred among cyclic olefin-based materials preferably using a cyclic olefin-based resin material.
  • the refractive index change rate dNZdT (° C _1 ) for a wavelength of 405 nm with a temperature change in the temperature range of 1.54 to 1.60 and in the temperature range of 5 ° C to 70 ° C is 20 X 10_ 5 to - 5 X 10 _5 (more preferably, 10 X 10_ 5 to - 8 X 10 "5).
  • a ⁇ material is in the range of addition, the objective optical element and the plastic lens In this case, it is preferable to use a plastic lens as the coupling lens.
  • Asamal resin is a resin material in which particles having a diameter of 30 nm or less are dispersed in a base resin.
  • the particles have a refractive index change rate opposite to a refractive index change rate accompanying a temperature change of the resin serving as a base material.
  • Assumal resin is a resin material in which particles having a diameter of 30 nm or less are dispersed in a base resin.
  • the particles have a refractive index change rate opposite to a refractive index change rate accompanying a temperature change of the resin serving as a base material.
  • the refractive index of the resin material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is also known to prevent the refractive index from changing by causing these properties to work together to cancel each other.
  • a material of the objective optical element according to the present invention a material in which inorganic particles of 30 nanometers or less, preferably 20 nanometers or less, more preferably 10 to 15 nanometers are dispersed in a base resin is used. By using this, it is possible to provide an objective optical element that has no or very low refractive index dependency.
  • niobium oxide (Nb 2 O 3) fine particles are dispersed in acrylic resin.
  • Base material niobium oxide (Nb 2 O 3) fine particles are dispersed in acrylic resin.
  • the ratio of the coconut oil is 80, and the ratio of niobium oxide is about 20, and these are uniformly mixed.
  • the fine particles have a problem that they tend to aggregate, but the necessary dispersion state can be generated by a technique such as applying a charge to the particle surface and dispersing.
  • the mixing and dispersion of the base resin and particles be performed in-line during the injection molding of the objective optical element.
  • the mixture is not cooled and solidified until it is formed into an objective optical element.
  • the volume ratio can be appropriately increased or decreased in order to control the rate of change of the refractive index with respect to the temperature, and a plurality of types of nano-sized inorganic particles can be blended and dispersed.
  • the ratio is 80:20, ie 4: 1 in the above example, but from 90:10 (9: 1) to 60:40
  • the fine particles are preferably inorganic, and more preferably acidic. And it is preferable that the acid state is saturated and the acid is not oxidized any more.
  • the resin used as the base material is a resin as described in JP-A-2004-144951, JP-A-2004-144954, JP-A-2004-144953, etc. Is preferably used as appropriate.
  • the inorganic fine particles dispersed in the thermoplastic resin are not particularly limited, and the rate of change in refractive index with temperature of the thermoplastic resin composition obtained (hereinafter referred to as I dnZdT I) is small.
  • Any inorganic fine particles that can achieve the object of the invention can be selected. Specifically, oxide fine particles, metal salt fine particles, semiconductor fine particles, and the like are preferably used, and from these, absorption, light emission, fluorescence, etc. do not occur in the wavelength region used as an optical element, and those are appropriately selected. Preferred to use.
  • the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K :, Ca, Sc, Ti, V, Cr. , Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir,
  • a metal oxide that is one or more metals selected from the group consisting of Tl, Pb, Bi, and rare earth metal force can be used.
  • rare earth oxides can also be used as the oxide fine particles used in the present invention, and specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, acid praseodymium, acid nickel neodymium, acid oxide. Examples thereof include samarium oxide, pyrium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, yttrium oxide, ytterbium oxide, and lutetium oxide.
  • the metal salt fine particles include carbonates, phosphates and sulfates, and specifically include calcium carbonate and aluminum phosphate.
  • the semiconductor fine particles in the present invention mean fine particles having a semiconductor crystal composition
  • Specific examples of the semiconductor crystal composition include carbon, silicon, germanium, tin and other periodic group 14 elements, phosphorus (black phosphorus) and other periodic group 15 elements, selenium, A simple substance of Group 16 element of periodic table such as tellurium, a compound consisting of multiple elements of Group 14 element of periodic table such as silicon carbide (SiC), tin (IV) (SnO), tin sulfide ( ⁇ , IV) (Sn (lD Sn (lV) S), sulfur
  • nTe lead sulfide
  • lead sulfide
  • lead selenide
  • lead telluride
  • lead telluride
  • BN Boron nitride
  • BP phosphorous boron
  • BAs boron arsenide
  • AlAs aluminum nitride
  • A1N phosphorous aluminum
  • AlSb aluminum antimonide
  • GaN gallium phosphide
  • GaP gallium arsenide
  • GaAs gallium antimonide
  • GaN gallium phosphide
  • GaP gallium arsenide
  • GaAs gallium antimonide
  • GaN gallium phosphide
  • InN indium phosphide
  • InP indium arsenide
  • InSb and other compounds of group 13 elements of the periodic table and group 15 elements of the periodic table (or group V compound semiconductors), aluminum sulfate (Al S), aluminum selenide (Al Se), sulfur
  • titanium oxide TiO, TiO, TiO, TiO, etc.
  • Periodic Group 16 element compound magnesium sulfide (MgS), Periodic Table 2 element such as magnesium selenide (MgSe) and Periodic Table Compounds with group 16 elements, cadmium oxide ( ⁇ ) chromium ( ⁇ ) (CdCr 2 O 3), cadmium selenide ( ⁇ ) chromium ( ⁇ ) (
  • dnZdT of thermoplastic rosin has a negative value. In other words, the refractive index decreases with increasing temperature. Therefore, in order to efficiently reduce I dn / dT I of the thermoplastic resin composition, it is preferable to disperse fine particles having a large dnZdT. When using fine particles having the same sign as dnZ dT of thermoplastic resin, it is preferable that the absolute value of dnZdT of the fine particles is smaller than dnZdT of thermoplastic resin as a base material.
  • fine particles having dnZdT of the opposite sign to dnZdT of the thermoplastic resin as a base material that is, fine particles having a positive value of dnZdT are preferably used.
  • the dnZdT of the fine particles to be dispersed can be appropriately selected depending on the value of the dnZdT of the thermoplastic resin used as a base material, but is generally a thermoplastic preferably used for an optical element.
  • the dnZdT of the fine particles is preferably larger than ⁇ 20 ⁇ 10 6, and more preferably larger than 10 ⁇ 10 6.
  • fine particles having a large dn / dT for example, gallium nitride, zinc sulfide, zinc oxide, lithium niobate, lithium tantalate and the like are preferably used.
  • the difference in refractive index between the thermoplastic resin used as the base material and the fine particles is small.
  • the difference in refractive index between the thermoplastic resin and the dispersed fine particles is small, and that it is difficult to cause scattering when light is transmitted.
  • the difference in refractive index between the thermoplastic resin and the dispersed fine particles is small, We discovered that even when large particles are used, the degree of light scattering is small.
  • the difference in refractive index between the thermoplastic resin and the dispersed fine particles is preferably in the range of 0 to 0.3, and more preferably in the range of 0 to 0.15.
  • the refractive index of a thermoplastic resin preferably used as an optical material is often about 1.4 to 1.6.
  • the material dispersed in these thermoplastic resins include silica (oxidized). (Carbon), calcium carbonate, aluminum phosphate, aluminum oxide, magnesium oxide, aluminum / magnesium oxide, etc. are preferably used.
  • the dn ZdT of the thermoplastic resin composition can be effectively reduced by dispersing the fine particles with a relatively low refractive index.
  • the details of the reason why I dnZdT I of the thermoplastic resin composition in which fine particles having a low refractive index are dispersed are small, the temperature change of the volume fraction of the inorganic fine particles in the resin composition is not improved. It is considered that the lower the refractive index, the smaller the I dn / dT I of the resin composition works.
  • fine particles having a relatively low refractive index for example, silica (acidic silicon), calcium carbonate, and aluminum phosphate are preferably used.
  • thermoplastic resin composition It is difficult to simultaneously improve the dnZdT reduction effect, light transmittance, desired refractive index, etc. of the thermoplastic resin composition, and the fine particles dispersed in the thermoplastic resin are thermoplastic resin.
  • the size of the dnZdT of the microparticles itself, the difference between the dnZdT of the microparticles and the dnZdT of the thermoplastic resin as the base material, the refractive index of the microparticles, etc. should be selected as appropriate. Can do.
  • compatibility with the thermoplastic resin as the base material that is, heat resistance. It is preferable to appropriately select and use fine particles that do not easily cause dispersibility and scattering with respect to plastic resin.
  • silica is preferably used as fine particles that reduce I dn / dT I while maintaining light transmission.
  • the fine particles one kind of inorganic fine particles may be used, or a plurality of kinds of inorganic fine particles may be used in combination. By using a plurality of types of fine particles having different properties, the required properties can be improved more efficiently.
  • the inorganic fine particles according to the present invention preferably have an average particle diameter of 1 nm or more and 30 nm or less, more preferably 1 nm or more and 20 nm or less, and further preferably 1 nm or more and lOnm or less. If the average particle size is less than lnm, it is difficult to disperse the inorganic fine particles and the desired performance may not be obtained. Therefore, the average particle size is preferably lnm or more. If it exceeds the upper limit, the resulting thermoplastic material composition may become turbid and the transparency may be lowered, and the light transmittance may be less than 70%. Therefore, the average particle size is preferably 30 ⁇ m or less.
  • the average particle diameter here refers to the volume average value of the diameter (sphere equivalent particle diameter) when each particle is converted to a sphere having the same volume.
  • the shape of the inorganic fine particles is not particularly limited, but spherical fine particles are preferably used.
  • the minimum particle diameter minimum distance between the tangent lines when drawing two tangent lines that touch the outer circumference of the fine particle
  • Z maximum diameter the corresponding value when drawing two tangent lines that touch the outer circumference of the fine particle
  • the maximum value of the distance between tangents is 0.5 to 1.0. Force S is preferable, and 0.7 to 1.0 is still more preferable.
  • the particle size distribution is not particularly limited, but in order to achieve the effect more efficiently, a particle having a relatively narrow distribution is preferable to one having a wide distribution. Used.
  • At least one optical surface of the objective optical element has a central region and a peripheral region around the central region. More preferably, at least one optical surface of the objective optical element has an outermost peripheral region around the peripheral region. By providing the outermost peripheral area, recording and Z or playback on high NA optical discs is more suitable. It is possible to perform it gracefully.
  • the central region is preferably a region including the optical axis of the objective optical element, but may be a region not including the optical axis.
  • the central region, the peripheral region, and the most peripheral region are preferably provided on the same optical surface. As shown in FIG.
  • the central region CN, the peripheral region MD, and the most peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • a first optical path difference providing structure is provided in the central area of the objective optical element, and a second optical path difference providing structure is provided in the peripheral area.
  • the outermost peripheral region may be a refractive surface, or the third optical path difference providing structure may be provided in the outermost peripheral region.
  • the central region, the peripheral region, and the outermost peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective optical element, more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is provided in a region of 70% or more of the area of the peripheral region of the objective optical element, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the peripheral region.
  • the third optical path difference providing structure is preferably provided in an area of 70% or more of the area of the outermost peripheral area of the objective optical element, more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the outermost peripheral region.
  • the optical path difference providing structure in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and Z or phase difference to the incident beam.
  • the optical path difference added by the optical path difference providing structure may be an integral multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with an aperiodic interval in the direction perpendicular to the optical axis.
  • the optical path difference providing structure preferably has a plurality of concentric annular zones around the optical axis.
  • the optical path difference providing structure has various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis). It can be.
  • the most common cross-sectional shape of the optical path difference providing structure is a case where the cross-sectional shape including the optical axis of the optical path difference providing structure is a sawtooth shape as shown in FIG. 2 (a).
  • Fig. 2 (a) shows the case where the optical path difference providing structure is provided on a planar optical element, and the cross section looks like a staircase, but the same optical path difference providing structure is provided on the aspherical lens surface.
  • the sawtooth cross-sectional shape referred to in this specification includes a step-like cross-sectional shape. It is also possible to obtain a binary optical path difference providing structure as shown in Fig. 2 (b) by superimposing serrated optical path difference providing structures with different step directions.
  • the first optical path difference providing structure and the second optical path difference providing structure of the present specification have a structure in which the cross-sectional shapes are superposed with different serrated optical path difference providing structures, and the serrated optical path difference providing structure is A structure in which a serrated optical path difference providing structure is further superimposed on a binary structure optical path difference providing structure formed by superimposing may be used.
  • Fig. 2 (c) shows a structure in which a sawtooth structure and a binary structure are superimposed
  • Figure 2 (d) shows a structure in which a fine sawtooth structure and a rough sawtooth structure are superimposed.
  • the first optical path difference providing structure provided in the central region of the objective optical element and the second optical path difference providing structure provided in the peripheral region of the objective optical element are provided on different optical surfaces of the objective optical element. However, they are preferably provided on the same optical surface. By providing them on the same optical surface, it is possible to reduce the eccentricity error during manufacturing, which is preferable. Further, the first optical path difference providing structure and the second optical path difference providing structure are preferably provided on the light source side surface of the objective optical element rather than the optical disk side surface of the objective optical element.
  • the objective optical element collects the first light flux, the second light flux, and the third light flux that pass through the central region where the first optical path difference providing structure of the objective optical element is provided so as to form a condensed spot.
  • the objective optical element can record and Z or reproduce information on the information recording surface of the first optical disc by using the first light beam passing through the central region where the first optical path difference providing structure of the objective optical element is provided. Condensate like so.
  • the objective optical element can record and Z or reproduce information on the information recording surface of the second optical disc by using the second light flux that passes through the central region where the first optical path difference providing structure of the objective optical element is provided. Condensate like so.
  • the objective optical element records information on the information recording surface of the third optical disc and performs Z or re-transmission of the third light flux that passes through the central region where the first optical path difference providing structure of the objective optical element is provided. It concentrates so that it can be raw.
  • the first optical path difference providing structure includes the first light flux passing through the first optical path difference providing structure and the second optical flux.
  • the first optical path difference providing structure has a thickness tl of the protective substrate of the first optical disc and a protective substrate of the third optical disc with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration that occurs due to the difference from the thickness t3 and the spherical aberration that occurs due to the difference in wavelength between Z or the first and third beams.
  • the third light flux that has passed through the first optical path difference providing structure of the objective optical element forms a first best focus in which the spot diameter of the spot formed by the third light flux is the smallest and a third light flux.
  • a second best focus is formed in which the spot diameter of the spot becomes smaller than the first best focus.
  • the best focus here refers to the point where the beam waist is minimized within a certain defocus range.
  • the third light flux has at least two point forces at which the beam waist is minimized within a certain defocus range. It exists.
  • the diffracted light having the maximum light amount forms the first best focus
  • the diffracted light having the second largest light amount forms the second best focus.
  • the effect of the present invention becomes more remarkable when the difference between the diffraction efficiency of the diffracted light forming the first best focus and the diffraction efficiency of the diffracted light forming the second best focus is 20% or less.
  • the spot formed by the third light beam in the first best focus is used for recording and / or reproduction of the third optical disc, and the spot formed by the third light beam in the second best focus is 3 It is preferable not to be used for recording and / or reproduction of the optical disk.
  • the spot formed by the third light beam in the first best focus is not used for recording and Z or reproduction of the third optical disk, and This is not to deny that the spot formed by the three beams is used for recording and Z or reproduction of the third optical disk.
  • the first optical path difference providing structure is provided on the light source side surface of the objective optical element. If this is the case, the second best focus is closer to the objective optical element than the first best focus.
  • f [mm] refers to the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus
  • L [mm] is between the first best focus and the second best focus. Refers to the distance.
  • L is preferably 0.18 mm or more and 0.63 mm or less.
  • f is preferably 1.8 mm or more and 3. Omm or less.
  • the objective optical element condenses the first light flux and the second light flux that pass through the peripheral region where the second optical path difference providing structure of the objective optical element is provided so as to form a condensing spot, respectively. .
  • the objective optical element performs recording and Z or reproduction of information on the information recording surface of the first optical disc by using the first light beam passing through the peripheral area where the second optical path difference providing structure of the objective optical element is provided. Concentrate as much as possible.
  • the objective optical element records and Z or reproduces information on the information recording surface of the second optical disk by using the second light flux that passes through the peripheral area provided with the second optical path difference providing structure of the objective optical element. Concentrate so that you can.
  • the second optical path difference providing structure has the first light flux passing through the second optical path difference providing structure and the first optical flux.
  • the spherical aberration caused by the difference between the thickness tl of the protective substrate of the first optical disk and the thickness t2 of the protective substrate of the second optical disk, and the difference between the wavelength of Z or the first and second beams According It is preferable to correct the spherical aberration that occurs.
  • the third light flux that has passed through the peripheral region is not used for recording and Z or reproduction of the third optical disc.
  • the third luminous flux passing through the peripheral region It is preferable not to contribute to the formation of a focused spot on the information recording surface of the third optical disk. That is, it is preferable that the third light flux that passes through the peripheral region provided with the second optical path difference providing structure of the objective optical element forms a flare on the information recording surface of the third optical disc.
  • the light amount is increased in the order from the optical axis side (or the center of the spot) to the outside.
  • Spot center force is used for recording and Z or reproduction of information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording and Z or reproduction of information on the optical disc.
  • this spot periphery is called flare. That is, the third light flux that has passed through the second optical path difference providing structure provided in the peripheral region of the objective optical element forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the condensing spot or spot of the third light beam here is a spot in the first best focus.
  • the spot formed on the information recording surface of the second optical disc has a spot central portion, a spot intermediate portion, and a spot peripheral portion.
  • the second optical path difference providing structure is a filter that is generated by slight fluctuations in the wavelength of the first light source or the second light source with respect to the first light flux and the second light flux that have passed through the second optical path difference providing structure. It is preferable to correct erotic chromaticism (chromatic spherical aberration).
  • a slight change in wavelength means a change within ⁇ 10 nm.
  • the second optical path difference providing structure compensates for the variation in spherical aberration of the first light beam that has passed through the peripheral region, so that the first optical disk has an information recording surface.
  • the amount of change in the wavefront aberration at 0 is at least 0.0 OlO lrms and not more than 0.095 ⁇ lrms.
  • the second optical path difference providing structure compensates for the variation in spherical aberration of the second light beam that has passed through the peripheral region, so that the second optical disk has an information recording surface.
  • the amount of change be 0.002 rms or more and 0.03 ⁇ 2 rms or less.
  • the objective optical element When the objective optical element has the outermost peripheral area, the objective optical element records and Z or reproduces information on the information recording surface of the first optical disc by using the first light flux passing through the outermost peripheral area of the objective optical element. Concentrate so that you can. Further, it is preferable that the spherical aberration of the first light flux that has passed through the outermost peripheral region is corrected during recording and Z or reproduction of the first optical disk.
  • the second light flux that has passed through the most peripheral area is not used for recording and Z or reproduction of the second optical disc
  • the third light flux that has passed through the most peripheral area is the third light flux. Examples include those not used for optical disk recording and Z or reproduction. It is preferable that the second light flux and the third light flux that have passed through the outermost peripheral region do not contribute to the formation of a focused spot on the information recording surfaces of the second optical disc and the third optical disc, respectively. That is, when the objective optical element has the outermost peripheral region, the third light flux passing through the outermost peripheral region of the objective optical element preferably forms a flare on the information recording surface of the third optical disc.
  • the third light flux that has passed through the outermost peripheral region of the objective optical element preferably forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the second light flux passing through the outermost peripheral area of the objective optical element preferably forms a flare on the information recording surface of the second optical disc.
  • the third optical path difference providing structure has a slight variation in the wavelength of the first light source with respect to the first light flux that has passed through the third optical path difference providing structure.
  • it may be possible to correct the glaze chromaticity (chromatic spherical aberration) caused by A slight change in wavelength means a change within ⁇ 10 nm.
  • the third optical path difference providing structure compensates for the variation in the spherical aberration of the first light flux that has passed through the most peripheral region, and the information recording on the first optical disc It is preferable that the amount of change of the wavefront aberration on the surface is not less than 0.30 ⁇ lrms and not more than 0.095 ⁇ lrms.
  • the first optical path difference providing structure may have a configuration in which a sawtooth diffractive structure and a binary structure are superimposed.
  • the second optical path difference providing structure may be a structure in which a sawtooth diffractive structure and a rougher (large pitch! /) Sawtooth diffractive structure are superimposed!
  • the sawtooth diffractive structure in the case of the second optical path difference providing structure, a diffractive structure that is not rough (small pitch)
  • an optical path difference corresponding to an even multiple of the first wavelength ⁇ 1 of the first light flux may be imparted to the first light flux, so that the phase of the wavefront of the first light flux does not change.
  • the third wavelength ⁇ 3 of the third light beam is a wavelength that is almost an even multiple of the first wavelength of the first light beam
  • an optical path difference that is an integer multiple is given to the third light beam.
  • no change occurs in the phase of the wavefront of the third light flux.
  • the even multiple equivalent means a range of (2 ⁇ -0. 1) ⁇ ⁇ 1 or more and (2 ⁇ + 0.1) X ⁇ 1 or less, where ⁇ is a natural number.
  • the first optical path difference providing structure may be a structure in which at least the first basic structure and the second basic structure are overlapped.
  • the second-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than the diffracted light amount of the other orders, and the first-order diffracted light amount of the second light beam is increased. It is an optical path difference providing structure that is larger than any other order of diffracted light and makes the first-order diffracted light of the third light beam larger than any other order of diffracted light.
  • the first foundation structure emits the first and third light fluxes that have passed through the first foundation structure in a state where the wave fronts are substantially aligned, and the second light flux that has passed through the first foundation structure does not have a uniform wave front.
  • the optical path difference providing structure be emitted at
  • the first basic structure is preferably an optical path difference providing structure in which the diffraction angle of the second light beam that has passed through the first basic structure is different from the diffraction angles of the first light beam and the third light beam.
  • the level difference in the optical axis direction of the first basic structure gives an optical path difference of approximately two wavelengths of the first wavelength to the first light flux, and approximately 1.2 wavelengths of the second wavelength to the second light flux. It is preferable that the difference in level be such that an optical path difference of about one wavelength of the third wavelength is given to the third light flux.
  • the second basic structure is a diffraction of the 0th-order (transmitted light) of the first light flux that has passed through the second basic structure. Make the amount of light larger than any other order of diffracted light, make the second light beam's 0th order (transmitted light) diffracted light amount larger than any other order of diffracted light amount, and make the third light beam ⁇ 1st order diffracted light amount Is an optical path difference providing structure that makes the light quantity larger than any other order of diffracted light quantity.
  • the first and second light fluxes that have passed through the second foundation structure are emitted in a state where the wave fronts are substantially aligned, and the third light flux that has passed through the first foundation structure is in a state where the wave fronts are not aligned.
  • the optical path difference providing structure is emitted at The second basic structure is preferably an optical path difference providing structure that makes the diffraction angle of the third light beam passing through the second basic structure different from the diffraction angles of the first light beam and the second light beam.
  • the step difference in the optical axis direction of the second basic structure gives an optical path difference of about 5 wavelengths of the first wavelength to the first light flux and about 3 wavelengths of the second wavelength to the second light flux.
  • the difference in level be such that an optical path difference corresponding to approximately 2.5 wavelengths of the third wavelength is given to the third light flux.
  • the shape of the second basic structure is preferably a binary shape as shown in FIG. 2 (b), for example.
  • the second optical path difference providing structure is preferably a structure having at least one of the first basic structure, the fifth basic structure, and the sixth basic structure.
  • the second optical path providing structure is preferably not a structure in which two or more of the first basic structure, the fifth basic structure, and the sixth basic structure are overlapped.
  • the second optical path difference providing structure has at least the first basic structure, it has the same basic structure as the first optical path difference providing structure, which is preferable because it facilitates design.
  • the first-order diffracted light quantity of the first light flux that has passed through the fifth basic structure is made larger than the diffracted light quantity of the other major orders, and the first-order diffracted light quantity of the second light flux is increased. It is an optical path difference providing structure that is larger than any other order of diffracted light and makes the first-order diffracted light of the third light beam larger than any other order of diffracted light. Further, the step difference in the optical axis direction of the fifth basic structure gives an optical path difference of about one wavelength of the first wavelength to the first light flux, and about 0.6 of the second wavelength to the second light flux. It is preferable that the amount of step be such that an optical path difference corresponding to the wavelength is given and an optical path difference equivalent to about 0.5 wavelength of the third wavelength is given to the third light flux.
  • the third-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than the diffracted light amount of the other important orders, and the second-order diffracted light amount of the second light beam is increased. It is larger than any other order of diffracted light, and the second-order diffracted light of the third beam is diffracted by any other order.
  • This is an optical path difference providing structure that is larger than the amount of light.
  • the step difference in the optical axis direction of the sixth basic structure gives an optical path difference of approximately three wavelengths of the first wavelength to the first light flux, and approximately 1.9 of the second wavelength to the second light flux. It is preferable that the amount of the step be such that an optical path difference corresponding to the wavelength is given and an optical path difference equivalent to about 1.6 wavelengths of the third wavelength is given to the third light flux.
  • the first optical path difference providing structure is preferably a triple overlapping structure in which three types of basic structures are overlapped. More specifically, in addition to the first basic structure and the second basic structure, a triple overlapping structure in which the third basic structure, the fourth basic structure, or the seventh basic structure is overlapped is preferable. More preferably, in addition to the first basic structure and the second basic structure, the third basic structure is superposed.
  • the 10th-order diffracted light quantity of the first light flux that has passed through the third basic structure is made larger than the diffracted light quantity of other orders, and the 6th-order diffracted light of the second light flux
  • the amount of light is made larger than the other orders of diffracted light
  • the fifth-order diffracted light of the third light beam is made larger than any other order of diffracted light.
  • the difference in the optical axis direction of the third basic structure gives an optical path difference of about 10 wavelengths of the first wavelength to the first light flux, and an optical path of about 6 wavelengths of the second wavelength to the second light flux.
  • the amount of the step be such that a difference is given and an optical path difference corresponding to approximately five wavelengths of the third wavelength is given to the third light flux.
  • the fourth basic structure makes the fifth-order diffracted light amount of the first light beam that has passed through the fourth basic structure larger than any other order diffracted light amount, and the third-order diffracted light amount of the second light beam becomes any other It is an optical path difference providing structure that is larger than the diffracted light amount of the order and makes the third and second order diffracted light amounts of the third light flux larger than any other order diffracted light amount.
  • the third-order diffracted light amount is slightly larger than the second-order diffracted light amount.
  • the level difference in the optical axis direction of the fourth basic structure gives an optical path difference of about 5 wavelengths of the first wavelength to the first light flux, and an optical path of about 3 wavelengths of the second wavelength to the second light flux. It is preferable that the level difference is such that a difference is given and an optical path difference corresponding to approximately 2.5 wavelengths of the third wavelength is given to the third light flux.
  • the seventh basic structure makes the second-order diffracted light amount of the first light beam that has passed through the seventh basic structure larger than any other order diffracted light amount, and the first-order diffracted light amount of the second light beam becomes any other order
  • the level difference in the optical axis direction of the seven basic structures gives an optical path difference of approximately two wavelengths of the first wavelength to the first light flux, and an optical path of approximately 1.2 wavelengths of the second wavelength to the second light flux.
  • the amount of the step be such that it gives a difference and gives the optical path difference of about one wavelength of the third wavelength to the third luminous flux.
  • the third, fourth and seventh foundation structures have a function to make spherical aberration under when the temperature rises and the wavelengths of the first, second and third light sources increase. As a result, it is possible to compensate for the over-spherical aberration that accompanies a decrease in the refractive index of the plastic when the temperature rises, and it is possible to obtain good spherical aberration.
  • the fourth and seventh foundation structures can reduce the depth of the step.
  • the 3rd, 4th and 7th foundation structures are provided on the base aspherical surface (base surface) different from the 1st, 2nd, 5th and 6th foundation structures. It is preferable that The 3rd, 4th and 7th foundation structures were incident on the 3rd, 4th and 7th foundation structures as much as possible while giving the optical path difference described above to the incident light beam. It is preferably provided on the mother aspherical surface (base surface) set so as not to affect the direction of the light beam.
  • the third basic structure, the fourth basic structure, and the seventh basic structure enter the inside of the optical element as they move away from the optical axis in the direction orthogonal to the optical axis, and at a certain point, It is preferable that the structure be directed toward the outside of the optical element as it moves away from the axis. (In other words, it is preferable to have a structure that becomes deeper and becomes shallower at a certain point.)
  • the second optical path difference providing structure includes a third basic structure, a first basic structure, a fifth basic structure, or a sixth basic structure, It is preferable to have a structure in which any one of the fourth foundation structure and the seventh foundation structure is superposed. Preferably, the first basic structure and the fourth basic structure are superposed.
  • the objective optical element when the objective optical element is a plastic lens, it is preferable that the objective optical element has an outermost peripheral region having a third optical path difference providing structure.
  • the third optical path difference providing structure is preferably a structure having at least one of the third basic structure, the fourth basic structure, and the seventh basic structure.
  • a structure having a fourth basic structure is preferable.
  • the first optical path difference providing structure is A triple superposition structure with three types of basic structures superimposed, a second optical path difference providing structure with a double superposition structure with two basic structures superimposed, and a third optical path difference providing structure with a kind of basic
  • An embodiment having only a structure is preferably one of the embodiments.
  • the first optical path difference providing structure is a structure in which only the first basic structure and the second basic structure are overlapped. Preferably there is.
  • the second optical path difference providing structure is any of the first basic structure, the fifth basic structure, and the sixth basic structure.
  • a structure in which any one of the third basic structure and the fourth basic structure is superposed is preferable.
  • the first basic structure and the fourth basic structure are overlapped.
  • the objective optical element is a glass lens or a lens made of assimilar resin, it is preferable to have an outermost peripheral region which is a refractive surface.
  • the first optical path difference providing structure is a concentric annular zone structure having a step, and the step amount of the first optical path difference providing structure is dA, dB , dC, dD, it is preferable to have at least two kinds of steps.
  • the above formula (17) is preferably the following formula (17) ′.
  • formula (17) is more preferably the following formula (17) ".
  • the above formula (18) is preferably the following formula (18 ′).
  • formula (18) is more preferably the following formula (18 ′ ′).
  • the above formula (19) is preferably the following formula (19) ′.
  • formula (19) is more preferably the following formula (19) ".
  • the above formula (20) is preferably the following formula (20 ′).
  • formula (20) is more preferably the following formula (20) ′′.
  • represents the design wavelength m) of the first beam.
  • B'UO Represents any value between 390 m) and 0.4 10 m).
  • n represents the refractive index of the optical element at the wavelength ⁇ .
  • ⁇ ′ represents the refractive index of the optical element at the wavelength ⁇ B ′.
  • ⁇ ⁇ may be considered to be the same as the wavelength m) of the first light source mounted on the optical pickup device, that is, the used wavelength when the design wavelength is not weak.
  • XB'ltO. 390 (111) or more and 0.405 (/ zm) or less is preferable. More preferably, it is an arbitrary value of ⁇ , «0.390 m) or more and 0.400 m) or less.
  • the level difference means the length of the level difference in the optical path difference providing structure in the optical axis direction.
  • the step amount is the length of each of dl, d2, d3, and d4.
  • the level difference of the first optical path difference providing structure has at least two types of level difference among the following dA, dB, dC, and dD” means that all the level differences of the first optical path difference providing structure are The step amount of at least one step x in the inside satisfies one of the dA, dB, dC, and dD forces, and the step amount of at least one other step y is one of dA, dB, dC, and dD. Satisfy what is different from step X.
  • all the steps of the first optical path difference providing structure have no step amount other than dA, dB, dC, and dD. Further, from the viewpoint of facilitating the manufacture of the mold and improving the transferability of the mold, it is preferable that the level difference of the level difference is not too large. Therefore, it is more preferable that all the steps of the first optical path providing structure have no step amount other than dC and dD.
  • the optical element when designing the optical element according to the present invention, it is conceivable to design by the following method.
  • the basic structure which is an optical path difference providing structure having an annular structure
  • another basic structure having an annular structure in which the diffraction order that maximizes the diffracted light rate for a certain light beam is different is designed.
  • This is a method of designing the first optical path difference providing structure or the second optical path difference providing structure by superimposing these two basic structures (may be 3 or more! /,).
  • an annular zone with a small pitch width may occur. For example, when a basic structure as shown in FIG. 14 (a) and a basic structure as shown in FIG.
  • the pitch width means the width of the ring zone structure in the direction perpendicular to the optical axis of the optical element.
  • the pitch width means the lengths of wl, w2, w3, and w4.
  • the pitch width means the lengths of w5, w6, w7, w8, and w9.
  • the pitch width of the step is not too small. Therefore, it is necessary to superimpose multiple foundation structures. If an annular zone with a pitch width of 5 ⁇ m or less is generated when the basic optical path difference providing structure is designed, the annular zone with a pitch width of 5 / zm or less is removed, and the final optical path is removed. It is preferable to obtain a difference providing structure. If the annular zone with a pitch width of 5 m or less is convex, it should be removed by shaving the annular zone.If the annular zone with a pitch width of 5 m or less is concave, fill the annular zone. Remove it.
  • At least the pitch width of the first optical path difference providing structure is larger than 5 m.
  • all pitch widths of the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are larger than 5 ⁇ m.
  • the level difference is too large!
  • the present inventor discovered the following. If the step difference of the ring zone with the difference providing structure is higher than the reference value obtained by superimposing multiple foundation structures, the step difference of the ring zone is 10 ⁇ ⁇ ⁇ / ( ⁇ -1) (m) By making it as low as possible, it is possible to reduce the amount of step that is too large without affecting the optical performance.
  • the reference value is preferably a force 10 ⁇ ⁇ ⁇ / ( ⁇ -1) m) that can set an arbitrary value.
  • the value of (step height Z pitch width) is 1 or less in all the zones of the first optical path difference providing structure. It is preferable that it is 0.8, more preferably 0.8 or less. More preferably, the value of (step height Z pitch width) is preferably 1 or less in all annular zones of all optical path difference providing structures, more preferably 0.8 or less. .
  • NA1 is preferably 0.8 or more and 0.9 or less, or preferably 0.55 or more and 0.7 or less.
  • NA1 is preferably 0.85 and NA2 is more than 0.55 and less than 0.7.
  • NA2 is preferably 0.60.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the boundary between the central region and the peripheral region of the objective optical element is formed in a portion corresponding to ⁇ 3.
  • the boundary between the peripheral area and the most peripheral area of the objective optical element is 0.9 ⁇ ⁇ 2 or more and 1.2 ⁇ ⁇ 2 or less (more preferably, 0.95 ⁇ ⁇ 2 or more, 1. 15 • It is preferably formed in a portion corresponding to the range of ⁇ 2 or less.
  • the boundary between the peripheral region and the most peripheral region of the objective optical element is formed in a portion corresponding to ⁇ 2.
  • the outer boundary of the outermost circumference of the objective optical element is 0.9 / ⁇ 1 or more when using the first light flux, 1. 2 NA1 or less (more preferably ⁇ , 0.95 ⁇ ⁇ 1 or more, 1. 15 ⁇ NA1 or less) is preferable. More preferably, the outermost outer boundary of the objective optical element is formed in a portion corresponding to NA1.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous part is 0.9 ⁇ ⁇ 3 or more and 1.2 ⁇ ⁇ 3 or less (more preferably 0.95 ⁇ ⁇ 3 or more, 1.15 ⁇ ⁇ 3 or less) when the third light flux is used. It is preferable to exist in the range.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuity is in the range of 0.9 ⁇ ⁇ 2 or more and 1.2 ⁇ ⁇ 2 or less (more preferably, 0.95 ⁇ ⁇ 2 or more, 1.1 ⁇ ⁇ 2 or less) when the second light flux is used. It is preferable that it exists in.
  • the absolute value of longitudinal spherical aberration is preferably 0.03 m or more, and in NA3, the absolute value of longitudinal spherical aberration is preferably 0.02 m or less. More preferably, in NA2, the absolute value of longitudinal spherical aberration is 0.08 ⁇ m or more, and in NA3, the absolute value of longitudinal spherical aberration is 0.01 ⁇ m or less.
  • NA1 when the second light flux that has passed through the objective optical element is condensed on the information recording surface of the second optical disc, NA1 has an absolute value of longitudinal spherical aberration of 0.03 m or more, and NA In 2, it is preferable that the absolute value of longitudinal spherical aberration is 0.005 ⁇ m or less.
  • the diffraction efficiency for each wavelength in the central region can be appropriately set according to the use of the optical pickup device.
  • the first luminous flux is emphasized in the diffraction efficiency of the central region and Z or the peripheral region. Is preferably set.
  • the diffraction efficiency in the center region is emphasized, and the second and third light beams are emphasized. It is preferable to set the diffraction efficiency of the surrounding area with emphasis on the second light flux.
  • r? 11 represents the diffraction efficiency of the first light flux in the central region
  • r? 21 represents the diffraction efficiency of the first light flux in the peripheral region. If the diffraction efficiency of the central region is focused on the light fluxes of the second and third wavelengths, the diffraction efficiency of the first light flux of the central region is low, but the numerical aperture of the first optical disk is the same as that of the third optical disk. When the numerical aperture is large, the reduction in diffraction efficiency in the central region does not have a significant effect when considering the entire effective diameter of the first beam.
  • the transmittance of an objective optical element that has the same focal length, lens thickness, and numerical aperture, is formed of the same material, and does not have the first and second optical path difference providing structures. Measure separately for the area and surrounding area. At this time, the transmittance of the central region is measured by blocking the light beam incident on the peripheral region, and the transmittance of the peripheral region is measured by blocking the light beam incident on the central region.
  • the light utilization efficiency of any two of the first to third light fluxes is 80% or more, and the light utilization efficiency of the remaining one light flux is 30% or more and 80% or less.
  • the light utilization efficiency of the remaining one light beam may be 40% or more and 70% or less. In this case, it is preferable that the light beam having a light use efficiency of 30% or more and 80% or less (or 40% or more and 70% or less) is the third light beam.
  • the light use efficiency referred to here is an objective optical element in which the first optical path difference providing structure and the second optical path difference providing structure are formed (the third optical path difference providing structure may be formed! ! ⁇ )
  • A be the amount of light in the Airy disc of the focused spot formed on the information recording surface of the optical disc, and it will be made of the same material, with the same focal length, axial thickness and numerical aperture.
  • a first optical path difference providing structure, a second optical path difference providing structure, and a third optical path difference providing structure are formed on the information recording surface of the optical information recording medium by the objective optical element.
  • the difference between the light amount of the diffracted light beam having the maximum light amount and the light amount of the diffracted light beam having the next largest light amount that is, If the difference between the amount of diffracted light that forms the first best focus and the amount of diffracted light that forms the second best focus is 0% or more and 20% or less, the tracking characteristics of the third optical disc are particularly good. Although it is difficult to keep good, the form according to the present invention makes it possible to improve the tracking characteristics even in such a situation.
  • the first light beam, the second light beam, and the third light beam may be incident on the objective optical element as parallel light, or may be incident on the objective optical element as divergent light or convergent light.
  • the magnification ml of the objective optical element when the first light beam is incident on the objective optical element satisfies the following formula (2).
  • the magnification ml of the objective optical element when the first light beam enters the objective optical element may satisfy the following formula (2 ′). preferable.
  • the magnification m2 of the objective optical element when is incident on the objective optical element preferably satisfies the following formula (3).
  • the magnification m2 of the objective optical element when the second light flux is incident on the object optical element satisfies the following formula (3 ′). Is preferred.
  • the magnification m3 of the third light beam incident on the objective optical element satisfies the following formula (4).
  • the present invention makes it possible to obtain good tracking characteristics, and there are three different types. It is possible to appropriately perform recording and Z or reproduction on the optical disc.
  • the magnification m3 of the objective optical element when the third light beam is incident on the object optical element preferably satisfies the following formula (5): .
  • the objective optical element is a single plastic lens
  • the temperature characteristics when recording and / or reproducing the first optical disk are improved. In order to satisfy such characteristics, it is preferable to satisfy the following conditional expressions (12) and (13).
  • ⁇ SAT1 is the wavelength used (in this case, there is no wavelength variation with temperature change) ⁇ SA3 / ⁇ of the objective optical element when performing recording and Z or reproduction of the first optical disc T
  • the wavelength used refers to the wavelength of a light source used in an optical pickup device having an objective optical element.
  • the wavelength used is a wavelength in the range of 400 nm or more and 415 nm or less, and the wavelength at which recording and Z or reproduction of the first optical disk can be performed via the objective optical element.
  • ⁇ SAT1 of the objective optical element and ⁇ SAT2 and ⁇ SAT3 described later may be obtained using 405 nm as the wavelength used. That is, ⁇ SAT1 refers to the temperature change rate (temperature characteristic) of the third-order spherical aberration of the objective optical element when performing recording and reproduction or reproduction of the first optical disk at the used wavelength (no wavelength variation). WFE indicates that third-order spherical aberration is expressed by wavefront aberration. Further, ⁇ SA represents ⁇ SA3 / ⁇ ⁇ when performing recording and Z or reproduction of the first optical disk at the used wavelength under a condition where the environmental temperature is constant.
  • ⁇ SA indicates the wavelength change rate (wavelength characteristic) of the third-order spherical aberration of the objective optical element when recording and reading or reproducing the first optical disk at the used wavelength under a constant environment temperature.
  • the ambient temperature is preferably room temperature.
  • the room temperature is 10 ° C or more and 40 ° C or less, and preferably 25 ° C.
  • f indicates the focal length of the objective optical element at the wavelength used for the first light beam (preferably 405 nm).
  • conditional expression (12 ′ ′) is satisfied.
  • conditional expression (12 ′ ′′) is satisfied.
  • conditional expression (13 ′) is satisfied, and more preferably, the following conditional expression (13 ′′) is satisfied.
  • conditional expression (13 ′ ′′) is satisfied, and more preferably, the following conditional expression (13 ′ ′′) is satisfied.
  • the objective optical element has the wavelength dependency of the spherical aberration so that the change of the spherical aberration due to the refractive index change accompanying the temperature change of the objective optical element is corrected by the wavelength change of the first wavelength accompanying the temperature change.
  • the following conditional expression (14) is satisfied.
  • ⁇ SAT2 is ⁇ SA3 / of the objective optical element at the time of recording and Z or reproduction of the first optical disk at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C) (preferably 405 nm).
  • represents ⁇ . That is, ⁇ SAT2 is the temperature change rate of the third-order spherical aberration of the objective optical element during recording and Z or reproduction of the first optical disk at the wavelength used (wavelength change accompanying temperature change is 0.05 nm / ° C). (Temperature characteristics).
  • conditional expression (14 ') is satisfied.
  • conditional expression (14 ′ ′) is satisfied.
  • the condensing optical system of the optical pickup device has a coupling lens such as a collimator lens.
  • the coupling lens is a plastic lens, it is preferable that the following conditional expression (15) is satisfied.
  • ⁇ SAT3 is a coupling lens and objective optical element for recording and / or reproducing the first optical disk at the wavelength used (wavelength variation with temperature change is 0.05 nm / ° C) (preferably 405 nm).
  • ⁇ SAT3 is the temperature change rate of the third-order spherical aberration of the entire optical system during recording and Z or reproduction of the first optical disk at the wavelength used (wavelength variation with temperature change is 0.05 nm Z ° C) (temperature Characteristic) Point to.
  • an objective optical element having excellent temperature characteristics can be obtained by making the wavelength characteristics not so good.
  • the wavelength characteristics in light of the variation in the oscillation wavelength of the light source, select a light source whose oscillation wavelength is suitable for the objective optical element, that is, select a light source whose oscillation wavelength is close to the reference wavelength. The adverse effects of can be suppressed. Therefore, a low-cost and simple optical pickup device can be provided by combining the objective optical element as described above with a light source with carefully selected oscillation characteristics.
  • the optical pickup device manufacturing method divides the objective optical elements having excellent temperature characteristics as described above into a plurality of groups according to the specifications of the optical path difference providing structure. It is preferable to have a step of selecting an objective optical element of any group according to the oscillation characteristics of the light source to be combined, and a step of combining the light source and the selected objective optical element.
  • Multiple objective optical elements with different optical path difference providing specifications, such as a group of objective optical elements and an objective optical element group having an optical path difference providing structure suitable for a light source whose oscillation wavelength is shifted to the minus side with respect to the reference wavelength Prepare by dividing into groups, measure the oscillation wavelength of the light source to be used, select the objective optical element lens from the optimal group and combine it, and properly record information and change Z or Z Can provide an optical pickup device capable of reproducing.
  • the specifications of the optical path difference providing structure are different” means that, for example, the design wavelength of the diffractive structure is made different, but is not limited thereto.
  • the “oscillation characteristic” includes an actual measurement value and variation of the oscillation wavelength.
  • ⁇ SA3 (rms) is the condensing optics including the objective optical element of the optical pickup device at the wavelength when the light source oscillates at the reference temperature and reference output in each optical pickup device in the shipment lot of the optical pickup device.
  • This represents the standard deviation of the third-order spherical aberration SA3 of the system (from the light source to the information recording surface).
  • ⁇ ⁇ (nm) represents the standard deviation of the oscillation wavelength at the reference temperature and reference output of the light source included in the shipping port of the optical pickup device.
  • ⁇ SA3 ⁇ ( ⁇ rms / nm) is included in the shipment lot of the optical pickup device.
  • the objective optical element has the temperature characteristic correction structure to satisfy the conditional expressions (12) to (15).
  • the first optical path difference providing structure is a structure having at least the third basic structure, the fourth basic structure, or the seventh basic structure, it is complicated to satisfy the conditional expressions (12) to (15) above. This is preferable because it can be realized without designing the optical element.
  • the second optical path difference providing structure is a structure having at least one of the third basic structure, the fourth basic structure, and the seventh basic structure
  • the above conditional expressions (12), (12 ′) , (13), (1 3,), (13,), (14), (14,), (15), (15 ') can be satisfied without designing complex optical elements This is preferable because it can be performed.
  • the objective optical element has an outermost peripheral region having a third optical path difference providing structure around the peripheral region, and the third optical path difference providing structure is at least a third basic structure, a fourth basic structure, or a seventh basic structure. Even if the structure has any one of the above, the above conditional expressions (12), (12,), (13), (13,), (13,), (14) , (14 '), (15), (15') are preferred because they can be realized without designing complex optical elements!
  • the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.20 mm or more and 1.5 mm or less. Preferably, it is 0.3 mm or more and 1.00 mm or less.
  • the WD of the objective optical element when using the second optical disk is 0.4 mm or more and 0.7 mm or less.
  • the WD of the objective optical element when using the first optical disk is 0.4 mm or more and 0.9 mm or less (in the case of tl ⁇ t2, 0.6 mm or more and 0.9 mm or less are preferable). Is preferred.
  • the entrance pupil diameter of the objective optical element is ⁇ 2.8 mm or more when using the first optical disc, ⁇ 4.
  • An optical information recording / reproducing apparatus includes an optical disk drive device having the above-described optical pickup device.
  • the optical disk drive apparatus equipped in the optical information recording / reproducing apparatus will be described.
  • the optical disk drive apparatus is equipped with an optical information recording / reproducing apparatus main body optical disk containing an optical pickup apparatus and the like. There are a method in which only a tray that can be held in a state is taken out, and a method in which an optical pickup device is housed and taken out to the outside.
  • An optical information recording / reproducing apparatus using each of the above-described methods is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing, etc., a drive source of an optical pickup device such as a seek motor that moves the optical pickup device toward the inner periphery or outer periphery of the optical disc together with the knowing, and the housing of the optical pickup device within the optical disc.
  • Peripheral ridges are a transfer means of an optical pickup device having a guide rail and the like for guiding toward the outer periphery, and a spindle motor for rotating the optical disk.
  • the former method can be held with an optical disk mounted in addition to these components.
  • a tray and a loading mechanism for sliding the tray are provided.
  • the latter method does not have a tray and a loading mechanism, and each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside. It is preferable.
  • a simple and low-cost configuration is used for three different types of optical disks (for example, a high-density optical disk using a blue-violet laser light source and three optical disks of DVD and CD).
  • Information recording and Z or reproduction can be appropriately performed with two objective optical elements. Even in the case of using an infinite optical system for all three different optical discs, it is possible to maintain tracking accuracy, particularly when performing recording and Z or playback of the third optical disc. It is possible to provide an optical pickup device, an objective optical element, and an optical information recording / reproducing device.
  • the present invention provides an optical pick-up device, objective optical element, and optical information recording / reproducing apparatus capable of appropriately performing information recording and Z or reproduction with respect to three different types of optical disks with a single objective optical element. It becomes possible. Furthermore, even if a plastic lens is used as the objective optical element, an optical pickup device, an objective optical element, and an optical pickup device that can improve the temperature characteristics and appropriately perform information recording and Z or reproduction on three types of discs. It is possible to provide an optical information recording / reproducing apparatus.
  • FIG. 3 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the first optical disk is BD
  • the second optical disk is DVD
  • the third optical disk is CD.
  • the present invention is not limited to the present embodiment.
  • the optical pick-up device PU1 is a laser beam with a wavelength of 405 nm that is emitted when recording information Z to the objective optical element OBJ, stop ST, collimating lens CL polarized light dichroic prism PPS, BD and reproducing (first)
  • a first semiconductor laser LD1 (first light source) that emits a light beam
  • a first light receiving element PD1 that receives a reflected light beam from the information recording surface RL1 of the BD, a laser module LM, and the like.
  • the laser module LM includes a second semiconductor laser EP1 (second light source) that emits a laser beam (second beam) having a wavelength of 658 nm, which is emitted when information is recorded and reproduced on a DVD. Recording of information on a CD Z Reflected from the third semiconductor laser EP2 (third light source) that emits a 785 nm laser beam (third beam) when performing Z reproduction, and the DVD information recording surface RL2 It has a second light receiving element DS 1 that receives the light beam, a third light receiving element DS 2 that receives the reflected light beam from the information recording surface RL 3 of the CD, and a prism PS.
  • second semiconductor laser EP1 second light source
  • the central region CN including the optical axis on the aspherical optical surface on the light source side, and the peripheral region disposed around the central region CN It is formed concentrically around the MD, the outermost peripheral region OT arranged around it, and the optical axis.
  • the ratio of the area of the central area, the peripheral area, and the most peripheral area in FIGS. 1 and 4 is accurately expressed.
  • the reflected light flux modulated by the information pits on the information recording surface RL1 is transmitted again through the objective optical element OBJ and the aperture stop ST, and then converted from circularly polarized light to linearly polarized light by a 1Z4 wavelength plate (not shown).
  • the light is converged by CL, passes through the polarization dichroic prism PPS, and then converges on the light receiving surface of the first light receiving element PD1.
  • the information recorded on the BD can be read by using the output signal of the first light receiving element PD1 and forcing the objective optical element OBJ to be tracked by the biaxial actuator AC.
  • the light collected by the central area and the peripheral area of the objective optical element OBJ (the light beam passing through the most peripheral area is flared and
  • the luminous flux (forming the pot periphery) becomes a spot formed on the information recording surface RL2 of the DVD via the protective substrate PL2 having a thickness of 0.6 mm, and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is again transmitted through the objective optical element OBJ and the aperture stop ST, and then converted from circularly polarized light to linearly polarized light by a 1Z4 wavelength plate (not shown).
  • a 1Z4 wavelength plate (not shown).
  • the polarization dichroic prism PPS After being reflected by CL, it is reflected twice in the prism and then converges on the second light receiving element DS1.
  • the information recorded on the DVD can be read using the output signal of the second light receiving element DS1.
  • the light beam condensed by the central region of the objective optical element OBJ (the light beam that has passed through the peripheral region and the most peripheral region is flared to form a spot peripheral part) is a protective substrate having a thickness of 1.2 mm. A spot is formed on the information recording surface RL3 of the CD via the PL3.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 is again transmitted through the objective optical element OBJ and the aperture stop ST, and then converted from circularly polarized light to linearly polarized light by a 1Z4 wavelength plate (not shown).
  • the light beam is converged by CL and reflected by the polarization dichroic prism PPS. After that, it is reflected twice in the prism and then converges on the third light receiving element DS2.
  • the information recorded on the CD can be read using the output signal of the third light receiving element DS2.
  • the first optical path difference providing structure in the central region and the second optical path difference providing structure in the peripheral region are Due to the difference in the thickness of the protective substrate between BD and DVD and the difference in wavelength between the first and second beams
  • the spherical aberration of the second light flux generated in this way is corrected appropriately, and the outermost peripheral area flare the second light flux on the DVD information recording surface. Recording and Z or playback.
  • the first optical path difference providing structure in the central region has the thickness of the protective substrate of BD and CD.
  • the spherical aberration of the third light beam generated due to the difference and the wavelength difference between the first light beam and the third light beam is appropriately corrected, and the second optical path difference providing structure in the peripheral region and the third peripheral light beam are CD Since the flare is formed on the information recording surface, information can be appropriately recorded and Z or reproduced on a CD having a protective substrate thickness t3.
  • the first optical path difference providing structure in the central area separates the condensing spot of the necessary light of the third light beam used for recording and reproduction from the condensing spot of the unnecessary light of the third light beam by an appropriate distance, thereby The tracking characteristics when using a CD are also improved.
  • the second optical path difference providing structure in the peripheral region allows the spherochromatism when the wavelength shifts from the reference wavelength force due to a manufacturing error of the laser with respect to the first luminous flux and the second luminous flux. (Color sphere surface aberration) can be corrected.
  • the objective optical element is a single glass lens.
  • a first optical path difference providing structure is formed on the entire surface of the central region CN of the optical surface of the objective optical element.
  • a second optical path difference providing structure is formed on the entire surface of the peripheral area MD of the optical surface.
  • the most peripheral area OT of the optical surface is an aspherical refractive surface.
  • the first optical path difference providing structure is a structure in which the first basic structure and the second basic structure are superimposed, and the sawtooth diffraction structure and the binary structure are provided. The shape is superimposed.
  • the cross-sectional shape is as shown in FIG.
  • the first basic structure which is a sawtooth diffractive structure, makes the amount of second-order diffracted light of the first light beam larger than the amount of diffracted light of any other order (including 0th-order, ie, transmitted light)
  • the amount of the first-order diffracted light of the second light beam is made larger than the amount of diffracted light of other orders (including 0th order, that is, transmitted light), and the amount of the first-order diffracted light of the third light beam is changed to other It is designed to be larger than the diffracted light quantity of the appropriate order (including the 0th order, that is, the transmitted light).
  • the second basis is also a binary structure
  • the structure is a so-called wavelength-selective diffractive structure, where the amount of 0th-order diffracted light (transmitted light) of the first light beam is larger than the amount of light of any other order diffracted light, and the 0th-order diffraction of the second light beam
  • the amount of light (transmitted light) is set to be larger than the amount of diffracted light of any other order, and the amount of ⁇ 1st order diffracted light of the third light flux is changed to other orders (0th order, ie transmitted light It is designed to be larger than the amount of diffracted light.
  • the step is located on the optical axis side in the region on the optical axis side of the central region.
  • the sawtooth structure and the binary structure are superimposed, and in the peripheral area side of the central area, the sawtooth structure and the binary structure with the steps facing away from the optical axis side are formed. Between them, there is a transition area necessary for switching the direction of the step of the sawtooth structure.
  • This transition region is a region corresponding to a point that becomes an extreme value of the optical path difference function when the optical path difference added to the transmitted wavefront by the diffractive structure is expressed by the optical path difference function. If the optical path difference function has an extreme point, the inclination of the optical path difference function becomes small, so that the annular zone pitch can be widened, and the decrease in transmittance due to the shape error of the diffractive structure can be suppressed.
  • the second optical path difference providing structure is a structure in which the first basic structure and the fourth basic structure are overlapped, and a serrated diffractive structure and a rougher serrated diffractive structure are provided. The shape is superimposed. In the finer serrated diffractive structure, the step is opposite to the optical axis side, and in the rougher serrated diffractive structure, the step is directed to the optical axis side.
  • the cross-sectional shape is as shown in FIG. 2 (d).
  • the first basic structure which is a sawtooth diffractive structure, makes the amount of the second-order diffracted light of the first light beam larger than the amount of diffracted light of any other order (including 0th order, ie, transmitted light),
  • the amount of the first-order diffracted light of the two beams is made larger than the amount of diffracted light of any other order (including 0th order or transmitted light), and the amount of the first-order diffracted light of the third beam is set to any other order It is designed to be larger than the amount of diffracted light (including 0th order, that is, transmitted light).
  • the fourth basic structure which is a rough sawtooth diffractive structure, makes the light amount of the fifth-order diffracted light of the first light beam larger than the light amount of any other order diffracted light, and the third-order diffraction of the second light beam. Designed to make the amount of light larger than any other order of diffracted light, and to make the third and second order diffracted light of the third light beam larger than any other order of diffracted light Yes.
  • Fig. 2 (c) and Fig. 2 (d) it is shown for easy understanding. The shape of the surface is exaggerated.
  • Tables 1 to 18 show lens data.
  • a power of 10 for example, 2.5 X 10-3
  • E for example, 2.5E-3
  • the optical surface of the objective optical element is formed as an aspherical surface that is axisymmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Equation (1).
  • X (h) is the axis in the optical axis direction (the light traveling direction is positive)
  • is the conic coefficient
  • A2i is the aspheric coefficient
  • h is the height of the optical axis force.
  • optical path length given to the light flux of each wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient shown in the table for the optical path difference function of equation (2).
  • is the wavelength of the incident light beam
  • is the design wavelength (blazed ⁇ wavelength)
  • dor is the diffraction order
  • C 2i is the coefficient of the optical path difference function
  • Tables 1 to 3 below show the lens data of Example 1.
  • 5 (a), 5 (b) and 5 (c) show longitudinal spherical aberration diagrams of Example 1.
  • FIG. In the longitudinal spherical aberration diagram 1.0 on the vertical axis represents NA0.85 or ⁇ 3.74 mm for BD, and slightly larger than NA0.60 for DVD, or ⁇ 2. Represents a value slightly greater than 68 mm, and CD represents a value slightly greater than NA 0.45 or slightly greater than ⁇ 2.18 mm.
  • Tables 4 to 6 below show lens data of Example 2.
  • 6 (a), 6 (b) and 6 (c) show longitudinal spherical aberration diagrams of Example 2.
  • FIG. 1.0 on the vertical axis of the longitudinal spherical aberration diagram is BD NAO.85 or ⁇ 3.74 mm
  • DVD is slightly larger than NAO.60, or slightly larger than ⁇ 2.68 mm
  • CD is NA 0.
  • NA1 0.85 NA2 0.60 NA 3 0.45
  • FIGS. 7 (a), 7 (b) and 7 (c) show longitudinal spherical aberration diagrams of Example 2.
  • FIG. 1.0 on the vertical axis of the longitudinal spherical aberration diagram is BD NAO.85 or ⁇ 3.74 mm
  • DVD is slightly larger than NAO.60, or slightly larger than ⁇ 2.68 mm
  • CD is NA 0.
  • the objective optical element is a single-lens polyolefin plastic lens.
  • a first optical path difference providing structure is formed on the entire surface of the central region CN of the optical surface of the objective optical element.
  • a second optical path difference providing structure is formed on the entire surface of the peripheral area MD of the optical surface.
  • a third optical path difference providing structure is provided on the entire surface of the outermost peripheral region OT of the optical surface.
  • the first optical path difference providing structure is a structure in which the third basic structure is superimposed in addition to the first basic structure and the second basic structure, and has two types of sawtooth shapes. Diffraction structure The structure and the binary structure are superimposed. The cross-sectional shape is shown as a portion indicated as CN in FIG.
  • the third basic structure which is a sawtooth diffractive structure, makes the amount of the 10th-order diffracted light of the first light beam larger than the amount of diffracted light of any other order (including 0th order, that is, transmitted light)
  • the light intensity of the 6th-order diffracted light of the second light flux is made larger than the light quantity of other orders (including 0th order, that is, transmitted light), and the light intensity of the 5th-order diffracted light of the third light flux
  • it is designed to be larger than the diffracted light quantity of the appropriate order (including the 0th order, that is, including the transmitted light).
  • the level difference in the optical axis direction of the first basic structure gives an optical path difference of approximately two wavelengths of the first wavelength to the first light flux, and approximately 1.2 wavelengths of the second wavelength to the second light flux.
  • the difference in level is such that an optical path difference is provided, and an optical path difference corresponding to approximately one third wavelength is applied to the third light flux.
  • the level difference in the optical axis direction of the second basic structure gives an optical path difference of about 5 wavelengths of the first wavelength to the first light flux, and an optical path of about 3 wavelengths of the second wavelength to the second light flux.
  • the difference in level is such that a difference in optical path difference of approximately 2.5 wavelengths of the third wavelength is given to the third light flux.
  • the step difference in the optical axis direction of the third basic structure gives an optical path difference of about 10 wavelengths of the first wavelength to the first light flux, and an optical path difference of about 6 wavelengths of the second wavelength to the second light flux. And a step difference that gives an optical path difference of about 5 wavelengths of the third wavelength to the third light flux.
  • the third basic structure is different from the first basic structure and the second basic structure in the base aspheric surface.
  • the second optical path difference providing structure is a structure in which the first basic structure and the fourth basic structure are superimposed as shown as MD in FIG. The structure is superimposed.
  • the level difference in the optical axis direction of the fourth basic structure gives an optical path difference of about 5 wavelengths of the first wavelength to the first light flux, and an optical path of about 3 wavelengths of the second wavelength to the second light flux.
  • the difference in level is such that a difference in optical path difference of approximately 2.5 wavelengths of the third wavelength is given to the third light flux.
  • the fourth foundation structure is different from the first foundation structure in the base aspheric surface.
  • the third basic structure in the first optical path difference providing structure and the fourth basic structure in the second optical path difference providing structure are provided continuously.
  • the depth of the third basic structure in the first optical path difference providing structure increases as the optical axis force increases. From the boundary between the first optical path difference providing structure and the second optical path difference providing structure, this time, The fourth basic structure in the optical path difference providing structure has a structure in which the depth gradually decreases as the optical axis force increases. [0192]
  • the third optical path difference providing structure is a structure having only the fourth basic structure as shown as OT in Fig. 8, and only one type of sawtooth diffraction structure is provided.
  • the fourth basic structure in the third optical path difference providing structure enters the inside of the optical element as it moves away from the optical axis in the direction perpendicular to the optical axis, and the optical axis force increases as the distance from the optical element increases. It is not a structure that tends to the outside of the element
  • FIGS. 9 (a), 9 (b), and 9 (c) show longitudinal spherical aberration diagrams of Example 4.
  • All annular zones in the first optical path difference providing structure of Example 4 have a step amount of 3.62 m to 4.23 ⁇ m and a step amount force of 2.22 ⁇ m to 2.56 ⁇ m. Divided into gnolepe. Note that ⁇ ⁇ is 405 nm. ⁇ B ′ is an arbitrary value from 390 nm to 400 nm. Therefore, the step heights of all the annular zones in the first optical path difference providing structure of Example 4 satisfy either the deviation of dC and dD. Further, the pitch width of all the annular zones in the first optical path difference providing structure is included in the range of 5.3 111 to 110 111. In addition, the value of (step difference Z pitch width) of all annular zones in the first optical path difference providing structure is 0.8 or less.
  • ⁇ SAT1 is +0.0033 WFE rms / ° C
  • ⁇ SAT2 is +0.0019 WFE rmsZ.
  • f of the objective optical element at the first wavelength is 2.2 mm
  • ⁇ SATlZf is +0.0015 WFE rmsZ (° C′mm)
  • ⁇ SAT2Zf is +0.0009 WFE ⁇ rms / (° C-mm).
  • ⁇ SA is 0.03 irmsZnm
  • SSA / f is ⁇ 0.0136 rms / (nm′mm).
  • the wavelength used is 405 nm
  • the ambient temperature in the wavelength characteristics is 25 ° C.
  • the collimator lens CL is made of the same material as the objective optical element (polyolefin-based plastic).
  • the lens data for the collimator lens is shown in Table 14 below.
  • the objective optical element is a single-lens polyolefin plastic lens.
  • a first optical path difference providing structure is formed on the entire surface of the central region CN of the optical surface of the objective optical element.
  • the second optical path difference is given to the entire area MD around the optical surface.
  • a structure is formed.
  • a third optical path difference providing structure is provided on the entire outermost region ⁇ of the optical surface.
  • the cross-sectional shape is similar to that shown in FIG.
  • the first optical path difference providing structure is a structure in which the third basic structure is superimposed in addition to the first basic structure and the second basic structure, and has two types of sawtooth shapes.
  • the diffractive structure and binary structure are superimposed on each other.
  • the second optical path difference providing structure is a structure in which the first basic structure and the fourth basic structure are superimposed, and has a shape in which two types of sawtooth diffraction structures are superimposed. Yes.
  • the third optical path difference providing structure is a structure having only the fourth basic structure, and has a shape having only one kind of sawtooth diffraction structure.
  • FIG. 1.0 on the vertical axis of the longitudinal spherical aberration diagram represents NA0.85 or ⁇ 3.74 mm for BD, slightly larger than NA0.6 for DVD, or slightly less than ⁇ 2.71 mm Represents a large value.
  • NA 0.45 a value slightly larger than NA 0.45 or a value slightly larger than ⁇ 2.24 mm.
  • S SAT1 is +0.00308 WFE rms / ° C
  • ⁇ SAT2 is +0.00176 WFE rms / ° C.
  • f of the objective optical element at the first wavelength is 2.20 mm
  • ⁇ SATlZf is +0.004 WFE + rms / (° C′mm).
  • ⁇ SAT2Zf is + 0.0008WFE ⁇ rms / (° C mm).
  • ⁇ SA is 0.002618 ⁇ rms / nm "Cfc, 3 3 /; [f 0.0119 rms / (nm'mm). The wavelength used is 405 nm, and the ambient temperature in the wavelength characteristics is 25 ° C.
  • ⁇ SAT3 is +0 000198WFE rmsZ.
  • C and ⁇ SAT3Zf is +0.0000 WFE ⁇ rms Z (° C * mm).
  • An objective optical element having an optical path providing structure that optimizes spherical aberration when the design wavelength is set to 403 nm is designed, a second mold corresponding to the objective optical element is created, and the objective is molded by the second mold.
  • the optical element is the second group.
  • An objective optical element having an optical path difference providing structure that optimizes spherical aberration when the design wavelength is set to 404 nm is designed, and a third mold corresponding to the objective optical element is created and molded using the third mold.
  • the objective optical element is the third group.
  • An objective optical element that has an optical path difference providing structure that optimizes spherical aberration when the design wavelength is 405 nm is designed, a fourth mold is created according to the objective optical element, and the objective is molded with the fourth mold.
  • the element is the fourth group.
  • an objective optical element having an optical path difference providing structure that optimizes spherical aberration is designed, and a fifth mold corresponding to the objective optical element is created and molded using the fifth mold.
  • the objective optical element is the 5th loop.
  • An objective optical element having an optical path difference providing structure that optimizes the spherical aberration when the design wavelength is set to 407 nm is designed, a sixth mold is created according to the objective optical element, and the objective is molded by the sixth mold.
  • the optical elements are group 6.
  • An objective optical element that has an optical path difference providing structure that optimizes spherical aberration when the design wavelength is set to 408 nm creates a seventh mold corresponding to the objective optical element, and molds the objective using the seventh mold. 7th glue element And In the present embodiment, the objective optical element is mounted according to the specifications of the optical path difference providing structure.
  • Power divided into 7 groups Not limited to this, it may be divided into 3 or 5 groups.
  • FIG. 15 is a perspective view of the molded objective lens OBJ.
  • a convex or concave identification mark M is formed on the annular flange F disposed around the optical surface OP of the objective optical element OBJ. This can be simultaneously formed at the time of forming the objective optical element OBJ by forming a corresponding concave or convex portion on the flange transfer surface of a mold (not shown).
  • the number of identification marks M when the number of identification marks M is 1, it indicates that the objective lens belongs to the first group, and when the number of identification marks M is 2, the objective lens belongs to the second group.
  • the number of identification marks M is 3, it indicates that the objective lens belongs to the third group, and so on.
  • the grouping method is not limited to the above, and different identification marks may be given to, for example, a grouped objective lens tray, a cartridge, or a box for packing it.
  • FIG. 16 is a flow chart showing a method of manufacturing an optical pickup device that works well with the present embodiment.
  • step S101 in FIG. 16 the oscillation wavelength ⁇ 1 of an arbitrary blue-violet semiconductor laser is measured.
  • step S103 an objective optical element in the nth group is selected. Furthermore, in step S104, the optical pickup apparatus is completed by assembling the measured blue-violet semiconductor laser and the parts including the selected objective optical element.

Abstract

 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再生を行 える光ピックアップ装置、対物光学素子及び光情報記録再生装置に関する。本発明に係る光ピックアップ装置は、第一光源と、第二光源と、第三光源と、対物光学素子と、を有する。前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少なくとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺領域は第二光路差付与構造を有する。前記対物光学素子は、前記対物光学素子の前記中央領域および前記周辺領域を通過する光束を、それぞれ、所定の光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光する。また、前記光ピックアップ装置は、前記対物光学素子の温度変化に伴う球面収差の変化を、温度変化に伴う前記第一光源から射出された光束の波長の波長変化により補正するような球面収差の波長依存性を有する。

Description

光ピックアップ装置、対物光学素子及び光情報記録再生装置 技術分野
[oooi] 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び Z又は再 生を行
える光ピックアップ装置、対物光学素子及び光情報記録再生装置に関する。
背景技術
[0002] 近年、光ピックアップ装置にお!、て、光ディスクに記録された情報の再生や、光ディ スクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、 例えば、青紫色半導体レーザや、第 2高調波を利用して赤外半導体レーザの波長変 換を行う青色 SHGレーザ等、波長 400〜420nmのレーザ光源が実用化されつつあ る。これら青紫色レーザ光源を使用すると、 DVD (デジタルバーサタイルディスク)と 同じ開口数 (NA)の対物光学素子を使用する場合で、直径 12cmの光ディスクに対 して、 15〜20GBの情報の記録が可能となり、対物光学素子の NAを 0. 85にまで高 めた場合には、直径 12cmの光ディスクに対して、 23〜25GBの情報の記録が可能 となる。以下、本明細書では、青紫色レーザ光源を使用する光ディスク及び光磁気 ディスクを総称して「高密度光ディスク」 t ヽぅ。
[0003] 尚、 NAO. 85の対物光学素子を使用する高密度光ディスクでは、光ディスクの傾き
(スキュー)に起因して発生するコマ収差が増大するため、 DVDにおける場合よりも 保護層を薄く設計し (DVDの 0. 6mmに対して、 0. 1mm)、スキューによるコマ収差 量を低減しているものがある。ところで、力かるタイプの高密度光ディスクに対して適 切に情報の記録 Z再生ができると言うだけでは、光ディスクプレーヤ Zレコーダ (光 情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、 多種多様な情報を記録した DVDや CD (コンパクトディスク)が販売されて!、る現実を ふまえると、高密度光ディスクに対して情報の記録 Z再生ができるだけでは足らず、 例えばユーザが所有している DVDや CDに対しても同様に適切に情報の記録 Z再 生ができるようにすることが、高密度光ディスク用の光ディスクプレーヤ Zレコーダとし ての商品価値を高めることに通じるのである。このような背景から、高密度光ディスク 用の光ディスクプレーヤ Zレコーダに搭載される光ピックアップ装置は、高密度光デ イスクと DVD、更には CDとの何れに対しても互換性を維持しながら適切に情報を記 録 Z再生できる性能を有することが望まれる。
[0004] 高密度光ディスクと DVD、更には CDとの何れに対しても互換性を維持しながら適 切に情報を記録 Z再生できるようにする方法として、高密度光ディスク用の光学系と DVDや CD用の光学系とを情報を記録 Z再生する光ディスクの記録密度に応じて選 択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に 不利であり、またコストが増大する。
[0005] 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性 を有する光ピックアップ装置においても、高密度光ディスク用の光学系と DVDや CD 用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減 らすのが好ましい。そして、光ディスクに対向して配置される対物光学素子を共通化 することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記 録 Z再生波長が互いに異なる複数種類の光ディスクに対して共通な対物光学素子 を得るためには、球面収差の波長依存性を有する光路差付与構造を対物光学系に 形成する必要がある。
[0006] 特許文献 1には、光路差付与構造としての回折構造を有し、高密度光ディスクと従 来の DVD及び CDに対して共通に使用可能な対物光学系、及びこの対物光学系を 搭載した光ピックアップ装置が記載されて 、る。
[0007] 然るに、上記の特許文献 1に記載された、 3つの異なる光ディスクに対して互換可 能に情報の記録及び Z又は再生を行う光ピックアップ装置に使用している対物光学 素子は、光ピックアップ装置の設計仕様によっては、記録及び Z又は再生に用いら れる光量が不足する恐れがある力、又は、 CDのトラッキングを行う際にトラッキング用 のセンサに不要光が悪影響を及ぼし、 CDのトラッキングを正確に行うことが困難にな る場合があるという問題がある。特に、 3つの異なる光ディスクの全てにおいて、無限 系の光学系を用いる場合、即ち、対物光学素子に平行光束を入射させる場合、上述 の問題が顕著であった。 特許文献 1:ヨーロッパ公開特許第 1304689号
発明の開示
[0008] 本発明は、上述の問題を考慮したものであり、少なくとも以下の目的の一つを達成 するものである。まず、対物光学素子として単玉のレンズを用いたとしても、高密度光 ディスクと DVDと CD等の、記録密度が異なる 3種類のディスクに対して情報の記録 及び Z又は再生を適切に行うことができる光ピックアップ装置、対物光学素子及び光 情報記録再生装置であって、その構成の簡素化、低コスト化を実現可能な光ピックァ ップ装置、対物光学素子及び光情報記録再生装置を提供することを目的とする。カロ えて、 3つの異なる光ディスクの全てに対して、無限系の光学系を用いる場合であつ ても、トラッキングの正確性を保つことができる光ピックアップ装置、対物光学素子及 び光情報記録再生装置を提供することを目的とする。さらに、対物光学素子として、 プラスチックレンズを用いたとしても、温度特性を良好にし、 3種類のディスクに対して 情報の記録及び Z又は再生を適切に行うことができる光ピックアップ装置、対物光学 素子及び光情報記録再生装置を提供することを目的とする。加えて、所望の光学性 能を得る事を可能にしながらも、非常に細かい構造を用いることなく製造しやすい光 ピックアップ装置、対物光学素子及び光情報記録再生装置を提供する事を目的とす る。
[0009] 本発明に係る光ピックアップ装置は、第一光束を射出する第一光源と、第二光束を 射出する第二光源と、第三光束を射出する第三光源と、対物光学素子と、を有する。 前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少な くとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺領 域は第二光路差付与構造を有する。前記対物光学素子は、前記対物光学素子の前 記中央領域を通過する前記第一光束を、前記第 1光ディスクの情報記録面上に情報 の記録及び Z又は再生ができるように集光し、前記中央領域を通過する前記第二光 束を、前記第 2光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第三光束を、前記第 3光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光する。また、前記対物光 学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光束を、前記第 l光ディスクの情報記録面上に情報の記録及び Z又は再生ができるように集光し、前 記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報記録面上に情報 の記録及び Z又は再生ができるように集光する。また、前記光ピックアップ装置は、 前記対物光学素子の温度変化に伴う屈折率変化による球面収差の変化を、温度変 化に伴う前記第一波長の波長変化により補正するような球面収差の波長依存性を有 する。
図面の簡単な説明
[図 1]本発明に係る対物光学素子 OBJの一例を、光軸方向力も見た図である。
[図 2]本発明に係る対物光学素子 OBJに設けられる光路差付与構造の幾つ力の例( a)〜 (d)を模式的に示す断面図である。
[図 3]本発明に係る光ピックアップ装置の構成を概略的に示す図である。
[図 4]本発明に係る対物光学素子 OBJの一例を模式的に示す断面図である。
[図 5]本発明に係る実施例 1の BD, DVD, CDに関する縦球面収差図(a)〜(c)であ る。
[図 6]本発明に係る実施例 2の BD, DVD, CDに関する縦球面収差図(a)〜(c)であ る。
[図 7]本発明に係る実施例 3の BD, DVD, CDに関する縦球面収差図(a)〜(c)であ る。
[図 8]本発明に係る実施例 4の対物光学素子の光路差付与構造を模式的に示す断 面図である。
[図 9]本発明に係る実施例 4の BD、 DVD, CDに関する縦球面収差図(a)〜(c)であ る。
[図 10]本発明に係るスポットの形状を示した図である。
[図 11]本発明に係る実施例 5の BD、 DVD, CDに関する縦球面収差図(a)〜( で ある。
[図 12]光路差付与構造の一例の段差量を示す図である。
[図 13]ピッチ幅の一例を示す図である。
[図 14]本発明に係る光路差付与構造の設計方法を説明するための図 (a)〜 (d)であ る。
[図 15]成形された対物光学素子 OBJの斜視図である。
[図 16]光ピックアップ装置の製造方法の一例を示すフローチャート図である。
発明を実施するための最良の形態
以下、本発明の好ましい形態を説明する。
(項 1) 第一波長 λ ΐの第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、
第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、
前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面上に集 光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情 報記録面上に集光させ、前記第三光束を厚さが t3 (t2<t3)の保護基板を有する第 3光ディスクの情報記録面上に集光させるための対物光学素子と、を有する光ピック アップ装置であって、
前記光ピックアップ装置は、前記第一光束を前記第 1光ディスクの情報記録面上に 集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第 三光束を前記第 3光ディスクの情報記録面上に集光させることによって情報の記録 及び Z又は再生を行い、
前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少 なくとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺 領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
下記の式を満たすことを特徴とする光ピックアップ装置。
[0012] + 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
- 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
(項 2) 下記の式を満たすことを特徴とする項 1に記載の光ピックアップ装置。
[0013] 0≤ δ SAT2/f (WFE λ rms/ (°C - mm) )≤ + 0. 00136
但し、 δ SAT2は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の δ SA3 / δ Τ、即ち、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における前記 第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の 3次球面収差 の温度変化率を指す。
(項 3) 前記光ピックアップ装置は、カップリングレンズを有し、
前記カップリングレンズは、プラスチックレンズであり、
下記の式を満たすことを特徴とする項 1又は項 2に記載の光ピックアップ装置。
[0014] 0≤ δ SAT3/f (WFE λ rms/ (°C - mm) )≤ + 0. 00091 但し、 δ SAT3は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記カップリングレンズと前記 対物光学素子を含んだ光学系全体の δ SA3/ δ Τ、即ち、使用波長 (温度変化に 伴う波長変動が 0. 05nm/°C)における前記第 1光ディスクの記録及び Z又は再生 を行う際の前記光学系全体の 3次球面収差の温度変化率を指す。
(項 4) 前記第一光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又は 第七基礎構造を有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 項 1乃至項 3のいずれか 1項に記載の光ピックアップ装置。
(項 5) 前記第二光路差付与構造は、少なくとも前記第三基礎構造、第四基礎構造 又は第七基礎構造のいずれか一つを有する構造であることを特徴とする項 4に記載 の光ピックアップ装置。
(項 6) 前記対物光学素子の光学面は、前記周辺領域の周りに屈折面である最周 辺領域を有し、三つの領域を有することを特徴とする項 1乃至項 5のいずれか 1項に 記載の光ピックアップ装置。
(項 7) 前記対物光学素子の光学面は、前記周辺領域の周りに、第三光路差付与 構造を有する最周辺領域を有し、三つの領域を有することを特徴とする項 1乃至項 5 の、、ずれか 1項に記載の光ピックアップ装置。
(項 8) 前記第三光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又は 第七基礎構造のいずれか一つを有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 項 7に記載の光ピックアップ装置。
(項 9)前記対物光学素子は、前記対物光学素子の前記最周辺領域を通過する前記 第一光束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生が できるように集光することを特徴とする項 7又は項 8に記載の光ピックアップ装置。
(項 10) 前記第一光束に対する前記対物光学素子の像側開口数 (NA)が 0. 8以 上、 0. 9以下であることを特徴とする項 1乃至項 9のいずれ力 1項に記載の光ピックァ ップ装置。
(項 11) 前記対物光学素子は、単玉レンズであることを特徴とする項 1乃至項 10の V、ずれか 1項に記載の光ピックアップ装置
(項 12) 前記対物光学素子は、プラスチックレンズであることを特徴とする項 7乃至 項 11の 、ずれか 1項に記載の光ピックアップ装置。
(項 13) 第一波長 λ ΐの第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、 第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、
前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面上に集 光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情 報記録面上に集光させ、前記第三光束を厚さが t3 (t2<t3)の保護基板を有する第 3光ディスクの情報記録面上に集光させるための対物光学素子と、を有する光ピック アップ装置であって、
前記光ピックアップ装置は、前記第一光束を前記第 1光ディスクの情報記録面上に 集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第 三光束を前記第 3光ディスクの情報記録面上に集光させることによって情報の記録 及び Z又は再生を行い、
前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少 なくとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺 領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子の温度変化に伴う屈折率変化による球面収差の変化を、温度 変化に伴う前記第一波長の波長変化により補正するような球面収差の波長依存性を 有することを特徴とする光ピックアップ装置。
(項 14) 第一波長 λ 1 (350nm≤ λ 1≤440nm)の第一光束を射出する第一光源 と、 前記第一光束を厚さが tl (0. 0750mm≤tl≤0. 125mm)の保護基板を有する 第 1光ディスクの情報記録面上に集光させるための対物光学素子と、を有する光ピッ クアップ装置であって、
前記光ピックアップ装置は、前記第一光束を前記第 1光ディスクの情報記録面上に 集光させることによって情報の記録及び Z又は再生を行い、
下記の式を満たすことを特徴とする光ピックアップ装置。
+ 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
- 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
(項 15) 第一波長 λ ΐの第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、
第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源とを有し、前記第一光 束を用いて厚さが tlの保護基板を有する第 1光ディスクの情報の記録及び Ζ又は再 生を行 ヽ、前記第二光束を用いて厚さが t2 (tl≤t2)の保護基板を有する第 2光ディ スクの情報の記録及び Z又は再生を行い、前記第三光束を用いて厚さが t3 (t2< t3 )の保護基板を有する第 3光ディスクの情報の記録及び Z又は再生を行う光ピックァ ップ装置において用いられる対物光学素子であって、
前記対物光学素子の光学面は、前記対物光学素子の光学面は、中央領域と前記 中央領域の周りの周辺領域の少なくとも二つの領域を有し、前記中央領域は第一光 路差付与構造を有し、前記周辺領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
下記の式(1)を満たすことを特徴とする対物光学素子。
[0017] + 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
- 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
(項 16) 以下の条件式を満たすことを特徴とする項 15に記載の対物光学素子。
[0018] 0≤ δ SAT2/f (WFE λ rms/ (°C - mm) )≤ + 0. 00136
但し、 δ SAT2は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の δ SA3 / δ Τ、即ち、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における前記 第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の 3次球面収差 の温度変化率を指す。
(項 17) 前記光ピックアップ装置は、カップリングレンズを有し、 前記カップリングレンズは、プラスチックレンズであり、
以下の条件式を満たすことを特徴とする項 15又は項 16に記載の対物光学素子。 0≤ δ SAT3/f (WFE λ rms/ (°C - mm) )≤ + 0. 00091
但し、 δ SAT3は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記カップリングレンズと前記 対物光学素子を含んだ光学系全体の δ SA3/ δ Τ、即ち、使用波長 (温度変化に 伴う波長変動が 0. 05nm/°C)における前記第 1光ディスクの記録及び Z又は再生 を行う際の前記光学系全体の 3次球面収差の温度変化率を指す。
(項 18) 前記第一光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又 は第七基礎構造を有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 項 15乃至項 17のいずれか 1項に記載の対物光学素子。
(項 19) 前記第二光路差付与構造は、少なくとも前記第三基礎構造、第四基礎構 造又は第七基礎構造のいずれか一つを有する構造であることを特徴とする項 18に 記載の対物光学素子。
(項 20) 前記対物光学素子の光学面は、前記周辺領域の周りに屈折面である最周 辺領域を有し、三つの領域を有することを特徴とする項 15乃至項 19のいずれか 1項 に記載の対物光学素子。
(項 21) 前記対物光学素子の光学面は、前記周辺領域の周りに、第三光路差付与 構造を有する最周辺領域を有し、三つの領域を有することを特徴とする項 15乃至項 19のいずれか 1項に記載の対物光学素子。
(項 22) 前記第三光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又 は第七基礎構造のいずれか一つを有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 項 21に記載の対物光学素子。
(項 23) 前記対物光学素子は、前記対物光学素子の前記最周辺領域を通過する 前記第一光束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再 生ができるように集光することを特徴とする項 21又は項 22に記載の対物光学素子。 (項 24) 前記第一光束に対する前記対物光学素子の像側開口数 (NA)が 0. 8以 上、 0. 9以下であることを特徴とする項 15乃至項 23のいずれか 1項に記載の対物光 学素子。
(項 25) 前記対物光学素子は、単玉レンズであることを特徴とする項 15乃至項 24 の!、ずれか 1項に記載の対物光学素子。
(項 26) 前記対物光学素子は、プラスチックレンズであることを特徴とする項 21乃至 項 25の ヽずれか 1項に記載の対物光学素子。
(項 27) 第一波長 λ ΐの第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、
第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源とを有し、前記第一光 束を用いて厚さが tlの保護基板を有する第 1光ディスクの情報の記録及び Ζ又は再 生を行 ヽ、前記第二光束を用いて厚さが t2 (tl≤t2)の保護基板を有する第 2光ディ スクの情報の記録及び Z又は再生を行い、前記第三光束を用いて厚さが t3 (t2<t3 )の保護基板を有する第 3光ディスクの情報の記録及び Z又は再生を行う光ピックァ ップ装置において用いられる対物光学素子であって、
前記対物光学素子の光学面は、前記対物光学素子の光学面は、中央領域と前記 中央領域の周りの周辺領域の少なくとも二つの領域を有し、前記中央領域は第一光 路差付与構造を有し、前記周辺領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子の温度変化に伴う屈折率変化による球面収差の変化を、温度 変化に伴う前記第一波長の波長変化により補正するような球面収差の波長依存性を 有することを特徴とする対物光学素子。
(項 28) 第一波長 λ 1 (350nm≤ λ l≤440nm)の第一光束を射出する第一光源 を有し、前記第一光束を前記第 1光ディスクの情報記録面上に集光させることによつ て情報の記録及び Z又は再生を行う光ピックアップ装置にぉ ヽて用いられる対物光 学素子であって、
前記対物光学素子は、前記第一光束を厚さが tl (0. 0750mm≤tl≤0. 125mm )の保護基板を有する第 1光ディスクの情報記録面上に集光させ、
下記の式を満たすことを特徴とする対物光学素子。
+ 0. 00045≤ δ SAT 1 /ί ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、
使用波長における前記第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長における前記第 1光ディスクの記録及び Ζ又は再生を行う際の 前記対物光学素子の 3次球面収差の波長変化率を指し、 fは、前記第一光束におけ る前記対物光学素子の焦点距離を指す。
(項 29) 第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1 )の第二光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出 する第三光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情 報記録面上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護 基板を有する第 3光ディスクの情報記録面上に集光させるための対物光学素子と、 を有し、前記第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二 光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光 ディスクの情報記録面上に集光させることによって情報の記録及び Z又は再生を行 う光ピックアップ装置を有する光情報記録媒体再生装置であって、
前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少 なくとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺 領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
下記の式を満たすことを特徴とする光情報記録再生装置。
+ 0. 00045≤ δ SAT 1 /ί ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
- 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
本発明に係る光ピックアップ装置は、第一光源、第二光源、第三光源の少なくとも 3 つの光源を有する。さらに、本発明の光ピックアップ装置は、第一光束を第 1光デイス クの情報記録面上に集光させ、第二光束を第 2光ディスクの情報記録面上に集光さ せ、第三光束を第 3光ディスクの情報記録面上に集光させるための集光光学系を有 する。また、本発明の光ピックアップ装置は、第 1光ディスク、第 2光ディスク又は第 3 光ディスクの情報記録面からの反射光束を受光する受光素子を有する。
[0021] 第 1光ディスクは、厚さが tlの保護基板と情報記録面とを有する。第 2光ディスクは 厚さが t2 (tl≤t2)の保護基板と情報記録面とを有する。第 3光ディスクは、厚さが t3 (t2<t3)の保護基板と情報記録面とを有する。第 1光ディスクが高密度光ディスクで あり、第 2光ディスクが、 DVDであり、第 3光ディスクが CDであることが好ましいが、こ れに限られるものではない。また、 tl <t2である場合は、 tl =t2である場合に比して 、単玉の対物光学素子によって 3つの異なる光ディスクの記録及び Z又は再生を行 いつつ、第 3光ディスクの記録再生時のトラッキング特性を良好にすることはより困難 であるが、本発明の形態はそれを可能とする。なお、第 1光ディスク、第 2光ディスク 又は第 3光ディスクは、複数の情報記録面を有する複数層の光ディスクでもよ!/、。
[0022] 本明細書においては、高密度光ディスクの例としては、 NAO. 85の対物光学素子 により情報の記録 Z再生が行われ、保護基板の厚さが 0. 1mm程度である規格の光 ディスク(例えば、 BD:ブルーレイディスク(Blu— ray Disc) )が挙げられる。また、 他の高密度光ディスクの例としては、 NAO. 65乃至 0. 67の対物光学素子により情 報の記録 Z再生が行われ、保護基板の厚さが 0. 6mm程度である規格の光ディスク (例えば、 HD DVD :単に HDともいう)が挙げられる。また、高密度光ディスクには、 情報記録面上に数〜数十 nm程度の厚さの保護膜 (本明細書では、保護基板は保 護膜も含むものとする)を有する光ディスクや、保護基板の厚さが 0の光ディスクも含 まれる。また、高密度光ディスクには、情報の記録 Z再生用の光源として、青紫色半 導体レーザや青紫色 SHGレーザが用いられる光磁気ディスクも含まれるものとする。 更に、本明細書においては、 DVDとは、 NAO. 60〜0. 67程度の対物光学素子に より情報の記録 Z再生が行われ、保護基板の厚さが 0. 6mm程度である DVD系列 光ディスクの総称であり、 DVD-ROM, DVD-Video, DVD-Audio, DVD-R AM、 DVD-R, DVD— RW、 DVD+R、 DVD+RW等を含む。また、本明細書に おいては、 CDとは、 NA0. 45〜0. 51程度の対物光学素子により情報の記録 Z再 生が行われ、保護基板の厚さが 1. 2mm程度である CD系列光ディスクの総称であり 、 CD-ROM, CD -Audio, CD -Video, CD-R, CD— RW等を含む。尚、記 録密度については、高密度光ディスクの記録密度が最も高ぐ次いで DVD、 CDの 順に低くなる。
[0023] なお、保護基板の厚さ tl、 t2、 t3に関しては、以下の条件式 (6)、(7)、(8)を満た すことが好ましいが、これに限られない。
[0024] 0. 0750mm≤tl≤0. 125mm 又は 0. 5mm≤tl≤0. 7mm (6)
0. 5mm≤t2≤0. 7mm (7)
1. Omm≤t3≤l . 3mm (8)
本明細書において、第一光源、第二光源、第三光源は、好ましくはレーザ光源であ る。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出 来る。第一光源から出射される第一光束の第一波長 λ 1、第二光源から出射される 第二光束の第二波長 λ 2 ( λ 2 > λ 1)、第三光源から出射される第三光束の第三波 ¾ 3 ( λ 3 > 2)は以下の条件式(9)、 (10)を満たすことが好まし!/、。
[0025] 1. 5 Χ λ 1 < λ 2< 1. 7 Χ λ 1 (9)
1. 9 Χ λ 1 < λ 3< 2. I X λ ΐ (10)
また、第 1光ディスク、第 2光ディスク、第 3光ディスクとして、それぞれ、 BDまたは Η D、 DVD及び CDが用いられる場合、第一光源の第一波長 λ 1は好ましくは、 350η m以上、 440nm以下、より好ましくは、 380nm以上、 415nm以下であって、第二光 源の第二波長え 2は好ましくは 570nm以上、 680nm以下、より好ましくは 630nm以 上、 670nm以下であって、第三光源の第三波長え 3は好ましくは、 750nm以上、 88 Onm以下、より好ましくは、 760應以上、 820nm以下で
ある。
[0026] また、第一光源、第二光源、第三光源のうち少なくとも 2つの光源をユニット化しても よい。ユニット化とは、例えば第一光源と第二光源とが 1パッケージに固定収納されて いるようなものをいうが、これに限られず、 2つの光源が収差補正不能なように固定さ れている状態を広く含むものである。また、光源に加えて、後述する受光素子を 1パッ ケージィ匕してもよい。
[0027] 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光デイス クの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光 ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポット の形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、 この検出に基づいて、合焦、トラッキングのために対物光学素子を移動させることが 出来る。受光素子は、複数の光検出器力もなつていてもよい。受光素子は、メインの 光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いら れるメイン光を受光する光検出器の両脇に 2つのサブの光検出器を設け、当該 2つ のサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子と してもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい 集光光学系は、対物光学素子を有する。集光光学系は、対物光学素子のみを有し ていても良いが、集光光学系は、対物光学素子の他にコリメータレンズ等のカツプリ ングレンズを有していてもよい。カップリングレンズとは、対物光学素子と光源の間に 配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータレン ズは、カップリングレンズの一種で、コリメータレンズに入射した光を平行光にして出 射するレンズである。更に集光光学系は、光源力も射出された光束を、情報の記録 再生に用いられるメイン光束と、トラッキング等に用いられる二つのサブ光束とに分割 する回折光学素子などの光学素子を有していてもよい。本明細書において、対物光 学素子とは、光ピックアップ装置において光ディスクに対向する位置に配置され、光 源力 射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系 を指す。好ましくは、対物光学素子とは、光ピックアップ装置において光ディスクに対 向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集 光する機能を有する光学系であって、更に、ァクチユエータにより少なくとも光軸方向 に一体的に変異可能とされた光学系を指す。対物光学素子は、二つ以上の複数の レンズ及び光学素子から構成されて 、てもよ 、し、単玉の対物レンズのみでもよ!/、が 、好ましくは単玉の対物レンズである。また、対物光学素子は、ガラスレンズであって もプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性榭脂などで光路 差付与構造などを設けたノ、イブリツドレンズであってもよ 、。対物光学素子が複数の レンズを有する場合は、ガラスレンズとプラスチックレンズを混合して用いてもよい。対 物光学素子が複数のレンズを有する場合、光路差付与構造を有する平板光学素子 と非球面レンズ (光路差付与構造を有して 、ても 、なくてもょ ヽ)の組み合わせであつ てもよい。また、対物光学素子は、屈折面が非球面であることが好ましい。また、対物 光学素子は、光路差付与構造が設けられるベース面が非球面であることが好まし 、
[0029] また、対物光学素子をガラスレンズとする場合は、ガラス転移点 Tg力 00°C以下で あるガラス材料を使用することが好ま ヽ。ガラス転移点 Tg力 00°C以下であるガラ ス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を 延ばすことが出来る。このようなガラス転移点 Tgが低いガラス材料としては、例えば( 株)住田光学ガラス製の K— PG325や、 K— PG375 (共に製品名)がある。
[0030] ところで、ガラスレンズは一般的に榭脂レンズよりも比重が大きいため、対物光学素 子をガラスレンズとすると、重量が大きくなり対物光学素子を駆動するァクチユエータ に負担がかかる。そのため、対物光学素子をガラスレンズとする場合には、比重が小 さいガラス材料を使用するのが好ましい。具体的には、比重が 3. 0以下であるのが好 ましぐ 2. 8以下であるのがより好ましい。
[0031] また、対物光学素子をプラスチックレンズとする場合は、環状ォレフィン系の榭脂材 料を使用するのが好ましぐ環状ォレフィン系の中でも、波長 405nmに対する温度 2 5°Cでの屈折率が 1. 54乃至 1. 60の範囲内であって、 5°Cから 70°Cの温度範囲 内での温度変化に伴う波長 405nmに対する屈折率変化率 dNZdT (°C_1)が— 20 X 10_5乃至— 5 X 10_5(より好ましくは、 10 X 10_5乃至— 8 X 10"5)の範囲内で ある榭脂材料を使用するのがより好ましい。また、対物光学素子をプラスチックレンズ とする場合、カップリングレンズもプラスチックレンズとすることが好ま 、。
[0032] 或いは、本発明の対物光学素子に適した榭脂材料として、上記環状ォレフィン系 以外にも「アサ一マル榭脂」がある。アサ一マル樹脂とは、母材となる樹脂に、直径が 30nm以下の粒子を分散させた榭脂材料である。ここで、前記粒子は、母材となる榭 脂の温度変化に伴う屈折率変化率と逆符号の屈折率変化率を有する。一般に、透 明な榭脂材料に微粉末を混合させると、光の散乱が生じ、透過率が低下するため、 光学材料として使用することは困難であつたが、微粉末を透過光束の波長より小さい 大きさにすることにより、散乱が事実上発生しないようにできることがわ力 てきた。
[0033] 榭脂材料は、温度が上昇することにより、屈折率が低下してしまうが、無機粒子は温 度が上昇すると屈折率が上昇する。そこでこれらの性質をあわせて打ち消しあうよう に作用させることにより、屈折率変化が生じないようにすることも知られている。本発 明に係る対物光学素子の材料として、母材となる樹脂に 30ナノメートル以下、好まし くは 20ナノメートル以下、さらに好ましくは 10〜 15ナノメートルの無機粒子を分散さ せた材料を利用することで、屈折率の温度依存性が無いか、あるいはきわめて低い 対物光学素子を提供できる。
[0034] たとえば、アクリル榭脂に、酸化ニオブ (Nb O )の微粒子を分散させて 、る。母材
2 5
となる榭脂は、体積比で 80、酸ィ匕ニオブは 20程度の割合であり、これらを均一に混 合する。微粒子は凝集しやすいという問題があるが、粒子表面に電荷を与えて分散 させる等の技術により、必要な分散状態を生じさせることが出来る。
[0035] 後述するように、母材となる樹脂と粒子との混合'分散は、対物光学素子の射出成 形時にインラインで行うことが好ましい。いいかえると、混合 '分散した後は、対物光学 素子に成形される迄、冷却 ·固化されないことが好ましい。
[0036] なお、この体積比率は、屈折率の温度に対する変化の割合をコントロールするため に、適宜増減できるし、複数種類のナノサイズ無機粒子をブレンドして分散させること も可能である。
[0037] 比率では、上記の例では 80 : 20、すなわち 4 : 1であるが、 90 : 10 (9 : 1)から 60 :40
(3: 2)までの間で適宜調整可能である。 9: 1よりも少な 、と温度変化抑制の効果が 小さくなり、逆に 3 : 2を越えると榭脂の成形性に問題が生じるために好ましくない。
[0038] 微粒子は無機物であることが好ましぐさらに酸ィ匕物であることが好ましい。そして酸 化状態が飽和して 、て、それ以上酸化しな 、酸ィ匕物であることが好ま 、。
[0039] 無機物であることは、高分子有機化合物である母材となる樹脂との反応を低く抑え られるために好ましぐまた酸ィ匕物であることによって、使用に伴う劣化を防ぐことが出 来る。特に高温化や、レーザ光を照射されるという過酷な条件において、酸化が促進 されやすくなるが、このような無機酸ィ匕物の微粒子であれば、酸化による劣化を防ぐ ことが出来る。 [0040] また、その他の要因による樹脂の酸ィ匕を防止するために、酸化防止剤を添加するこ とも勿論可能である。
[0041] ちなみに、母材となる榭脂としては、 日本公開特許公報の特開 2004— 144951号 、特開 2004— 144954号、及び特開 2004— 144953号等に記載されているような 榭脂が適宜好ましく用いられる。
[0042] 熱可塑性榭脂中に分散される無機微粒子としては特に限定はなぐ得られる熱可 塑性榭脂組成物の温度による屈折率の変化率 (以後、 I dnZdT Iとする)が小さい という本発明の目的の達成を可能とする無機微粒子の中から任意に選択することが できる。具体的には酸化物微粒子、金属塩微粒子、半導体微粒子などが好ましく用 いられ、この中から、光学素子として使用する波長領域において吸収、発光、蛍光等 が生じな!/、ものを適宜選択して使用することが好ま 、。
[0043] 本発明にお ヽて用いられる酸ィ匕物微粒子としては、金属酸化物を構成する金属が 、 Li、 Na、 Mg、 Al、 Si、 K:、 Ca、 Sc、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Rb、 S r、 Y、 Nb、 Zr、 Mo、 Ag、 Cd、 In、 Sn、 Sb、 Cs、 Ba、 La、 Ta、 Hf、 W、 Ir、 Tl、 Pb、 Bi及び希土類金属力 なる群より選ばれる 1種または 2種以上の金属である金属酸 化物を用いることができ、具体的には、例えば、酸化珪素、酸化チタン、酸化亜鉛、 酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、 酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化インジゥ ム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、 ニオブ酸カリウム、タンタル酸リチウム、アルミニウム 'マグネシウム酸化物(MgAl O
2 4
)等が挙げられる。また、本発明において用いられる酸化物微粒子として希土類酸化 物を用いることもでき、具体的には酸化スカンジウム、酸化イットリウム、酸ィ匕ランタン、 酸化セリウム、酸ィ匕プラセオジム、酸ィ匕ネオジム、酸ィ匕サマリウム、酸化ユウ口ピウム、 酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビ ゥム、酸ィ匕ツリウム、酸化イッテルビウム、酸化ルテチウム等も挙げられる。金属塩微 粒子としては、炭酸塩、リン酸塩、硫酸塩などが挙げられ、具体的には炭酸カルシゥ ム、リン酸アルミニウム等が挙げられる。
[0044] また、本発明における半導体微粒子とは、半導体結晶組成の微粒子を意味し、該 半導体結晶組成の具体的な組成例としては、炭素、ケィ素、ゲルマニウム、錫等の周 期表第 14族元素の単体、リン (黒リン)等の周期表第 15族元素の単体、セレン、テル ル等の周期表第 16族元素の単体、炭化ケィ素 (SiC)等の複数の周期表第 14族元 素からなる化合物、酸化錫 (IV) (SnO )、硫化錫 (Π, IV) (Sn (lD Sn (lV) S )、硫
2 3 化錫 (IV) (SnS )、硫化錫 (II) (SnS)、セレンィ匕錫 (II) (SnSe)、テルルイ匕錫 (II) (S
2
nTe)、硫化鉛 (Π) (PbS)、セレン化鉛 (Π) (PbSe)、テルル化鉛 (Π) (PbTe)等の周 期表第 14族元素と周期表第 16族元素との化合物、窒化ホウ素 (BN)、リンィ匕ホウ素 (BP)、砒化ホウ素(BAs)、窒化アルミニウム (A1N)、リンィ匕アルミニウム (A1P)、砒 化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リ ン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化イン ジゥム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジ ゥム (InSb)等の周期表第 13族元素と周期表第 15族元素との化合物 (あるいは ΠΙ— V族化合物半導体)、硫ィ匕アルミニウム (Al S )、セレン化アルミニウム (Al Se )、硫
2 3 2 3 化ガリウム(Ga S )、セレン化ガリウム(Ga Se;)、テルル化ガリウム(Ga Te;)、酸ィ匕
2 3 2 3 2 3 インジウム(In O )、硫化インジウム(In S )、セレン化インジウム(In Se )、テルル化
2 3 2 3 2 3 インジウム (In Te )等の周期表第 13族元素と周期表第 16族元素との化合物、塩ィ匕
2 3
タリウム (I) (T1C1)、臭化タリウム (I) (TlBr)、ヨウ化タリウム (I) (T1I)等の周期表第 13 族元素と周期表第 17族元素との化合物、酸ィ匕亜鉛 (ZnO)、硫ィ匕亜鉛 (ZnS)、セレ ン化亜鉛 (ZnSe)、テルル化亜鉛 (ZnTe)、酸化カドミウム(CdO)、硫ィ匕カドミウム(C dS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀 (HgS)、セ レンィ匕水銀 (HgSe)、テルルイ匕水銀 (HgTe)等の周期表第 12族元素と周期表第 16 族元素との化合物(あるいは Π— VI族化合物半導体)、硫化砒素 (III) (As S )、セレ
2 3 ン化砒素(ΠΙ) (As Se )、テルル化砒素(ΠΙ) (As Te )、硫化アンチモン (ΠΙ) (Sb
2 3 2 3 2
S )、セレン化アンチモン(ΙΠ) (Sb Se )、テルル化アンチモン(ΠΙ) (Sb Te )、硫化
3 2 3 2 3 ビスマス(ΠΙ) (Bi S )、セレン化ビスマス(ΠΙ) (Bi Se )、テルル化ビスマス(ΠΙ) (Bi
2 3 2 3 2
Te )等の周期表第 15族元素と周期表第 16族元素との化合物、酸化銅 (I) (Cu O)
3 2
、セレン化銅 (I) (Cu Se)等の周期表第 11族元素と周期表第 16族元素との化合物
2
、塩化銅 (I) (CuCl)、臭化銅 (I) (CuBr)、ヨウ化銅 (I) (Cul)、塩ィ匕銀 (AgCl)、臭 化銀 (AgBr)等の周期表第 11族元素と周期表第 17族元素との化合物、酸ィ匕ニッケ ル (Π) (NiO)等の周期表第 10族元素と周期表第 16族元素との化合物、酸化コバル ト (Π) (CoO)、硫化コバルト (Π) (CoS)等の周期表第 9族元素と周期表第 16族元素 との化合物、四酸化三鉄 (Fe O )、硫化鉄 (Π) (FeS)等の周期表第 8族元素と周期
3 4
表第 16族元素との化合物、酸化マンガン (II) (MnO)等の周期表第 7族元素と周期 表第 16族元素との化合物、硫ィ匕モリブデン (IV) (MoS )、酸化タングステン (IV) (
2
WO )等の周期表第 6族元素と周期表第 16族元素との化合物、酸化バナジウム (II)
2
(VO)、酸ィ匕バナジウム (IV) (VO )、酸ィ匕タンタル (V) (Ta O )等の周期表第 5族
2 2 5
元素と周期表第 16族元素との化合物、酸ィ匕チタン (TiO、 Ti O、 Ti O、 Ti O等)
2 2 5 2 3 5 9 等の周期表第 4族元素と周期表第 16族元素との化合物、硫化マグネシウム (MgS) 、セレン化マグネシウム (MgSe)等の周期表第 2族元素と周期表第 16族元素との化 合物、酸化カドミウム(Π)クロム(ΠΙ) (CdCr O )、セレン化カドミウム(Π)クロム(ΠΙ) (
2 4
CdCr Se )、硫化銅(II)クロム(III) (CuCr S )、セレン化水銀(II)クロム(III) (HgC
2 4 2 4
r Se )等のカルコゲンスピネル類、ノリウムチタネート(BaTiO )等が挙げられる。な
2 4 3
お、 G. Schmidt ; Adv. Mater., 4巻, 494頁(1991)【こ報告されて!/ヽる(BN) (
75
BF ) F や、 D. Fenskeら; Angew. Chem. Int. Ed. Engl., 29巻, 1452頁(1
2 15 15
990)に報告されている Cu Se7 (トリェチルホスフィン) のように構造の確定され
146 3 22
ている半導体クラスターも同様に例示される。
一般的に熱可塑性榭脂の dnZdTは負の値を持つ。即ち温度の上昇に伴い屈折 率が小さくなる。従って、熱可塑性榭脂組成物の I dn/dT Iを効率的に小さくする 為には、 dnZdTが大きい微粒子を分散させることが好ましい。熱可塑性榭脂の dnZ dTと同符号の値を持つ微粒子を用いる場合には、微粒子の dnZdTの絶対値が、 母材となる熱可塑性榭脂の dnZdTよりも小さいことが好ましい。更に、母材となる熱 可塑性榭脂の dnZdTと逆符号の dnZdTを有する微粒子、即ち、正の値の dnZdT を有する微粒子が好ましく用いられる。このような微粒子を熱可塑性榭脂に分散させ ることで、少ない量で効果的に熱可塑性榭脂組成物の I dnZdT Iを小さくすること ができる。分散される微粒子の dnZdTは、母材となる熱可塑性榭脂の dnZdTの値 により適宜選択することができるが、一般的に光学素子に好ましく用いられる熱可塑 性榭脂に微粒子を分散させる場合は、微粒子の dnZdTが— 20 X 10 6よりも大き いこと力 子ましく、 10 X 10 6よりも大きいことが更に好ましい。 dn/dTが大きい 微粒子として、好ましくは、例えば、窒化ガリウム、硫化亜鉛、酸化亜鉛、ニオブ酸リ チウム、タンタル酸リチウムなどが用いられる。
[0046] 一方、熱可塑性榭脂に微粒子を分散させる際には、母材となる熱可塑性榭脂と微 粒子の屈折率の差が小さいことが望ましい。発明者らの検討の結果、熱可塑性榭脂 と分散される微粒子の屈折率の差が小さ 、と、光を透過させた場合に散乱を起こし 難いということがわ力つた。熱可塑性榭脂に微粒子を分散させる際、粒子が大きい程 、光を透過させた時の散乱を起こしやすくなるが、熱可塑性榭脂と分散される微粒子 の屈折率の差が小さいと、比較的大きな微粒子を用いても光の散乱が発生する度合 いが小さいことを発見した。熱可塑性榭脂と分散される微粒子の屈折率の差は、 0〜 0. 3の範囲であることが好ましぐ更に 0〜0. 15の範囲であることが好ましい。
[0047] 光学材料として好ましく用いられる熱可塑性榭脂の屈折率は、 1. 4〜1. 6程度で ある場合が多ぐこれらの熱可塑性榭脂に分散させる材料としては、例えばシリカ(酸 化ケィ素)、炭酸カルシウム、リン酸アルミニウム、酸ィ匕アルミニウム、酸化マグネシゥ ム、アルミニウム ·マグネシウム酸ィ匕物などが好ましく用いられる。
[0048] また、比較的屈折率の低!、微粒子を分散させることで、熱可塑性榭脂組成物の dn ZdTを効果的に小さくすることができることがわ力つた。屈折率が低い微粒子を分散 した熱可塑性榭脂組成物の I dnZdT Iが小さくなる理由について、詳細はわかつ ていないものの、榭脂組成物における無機微粒子の体積分率の温度変化が、微粒 子の屈折率が低いほど、榭脂組成物の I dn/dT Iを小さくする方向に働くのでは ないかと考えられる。比較的屈折率が低い微粒子としては、例えばシリカ(酸ィ匕ケィ 素)、炭酸カルシウム、リン酸アルミニウムが好ましく用いられる。
[0049] 熱可塑性榭脂組成物の dnZdTの低減効果、光透過性、所望の屈折率等を全て 同時に向上させることは困難であり、熱可塑性榭脂に分散させる微粒子は、熱可塑 性榭脂組成物に求める特性に応じて、微粒子自体の dnZdTの大きさ、微粒子の dn ZdTと母材となる熱可塑性榭脂の dnZdTとの差、及び微粒子の屈折率等を考慮し て適宜選択することができる。更に、母材となる熱可塑性榭脂との相性、即ち、熱可 塑性榭脂に対する分散性、散乱を引き起こし難い微粒子を適宜選択して用いること は、光透過性を維持する上で好ましい。
[0050] 例えば、光学素子に好ましく用いられる環状ォレフィンポリマーを母材として用いる 場合、光透過性を維持しながら I dn/dT Iを小さくする微粒子としては、シリカが好 ましく用いられる。
[0051] 上記の微粒子は、 1種類の無機微粒子を用いてもよぐまた複数種類の無機微粒 子を併用してもよい。異なる性質を有する複数種類の微粒子を用いることで、必要と される特'性を更〖こ効率よく向上させることちできる。
[0052] また、本発明に係る無機微粒子は、平均粒子径が lnm以上、 30nm以下が好まし く、 lnm以上、 20nm以下がより好ましぐさらに好ましくは lnm以上、 lOnm以下で ある。平均粒子径が lnm未満の場合、無機微粒子の分散が困難になり所望の性能 が得られない恐れがあることから、平均粒子径は lnm以上であることが好ましぐまた 平均粒子径が 30nmを超えると、得られる熱可塑性材料組成物が濁るなどして透明 性が低下し、光線透過率が 70%未満となる恐れがあることから、平均粒子径は 30η m以下であることが好ましい。ここでいう平均粒子径は各粒子を同体積の球に換算し た時の直径 (球換算粒径)の体積平均値を言う。
[0053] さらに、無機微粒子の形状は、特に限定されるものではないが、球状の微粒子が好 適に用いられる。具体的には、粒子の最小径 (微粒子の外周に接する 2本の接線を 引く場合における当該接線間の距離の最小値) Z最大径 (微粒子の外周に接する 2 本の接線を引く場合における当該接線間の距離の最大値)が 0. 5〜1. 0であること 力 S好ましく、 0. 7〜1. 0であることが更に好ましい。
[0054] また、粒子径の分布に関しても特に制限されるものではないが、効果をより効率よく 発現させるためには、広範な分布を有するものよりも、比較的狭い分布を持つものが 好適に用いられる。
[0055] 対物光学素子について、以下に記載する。対物光学素子の少なくとも一つの光学 面が、中央領域と、中央領域の周りの周辺領域とを有する。更に好ましくは、対物光 学素子の少なくとも一つの光学面が、周辺領域の周りに最周辺領域を有する。最周 辺領域を設けることにより、高 NAの光ディスクに対する記録及び Z又は再生をより適 切に行うことが可能となる。中央領域は、対物光学素子の光軸を含む領域であること が好ましいが、含まない領域であってもよい。中央領域、周辺領域、及び最周辺領域 は同一の光学面上に設けられていることが好ましい。図 1に示されるように、中央領域 CN、周辺領域 MD、最周辺領域 OTは、同一の光学面上に、光軸を中心とする同心 円状に設けられていることが好ましい。また、対物光学素子の中央領域には第一光 路差付与構造が設けられ、周辺領域には第二光路差付与構造が設けられている。 最周辺領域を有する場合、最周辺領域は屈折面であってもよいし、最周辺領域に第 三光路差付与構造が設けられていてもよい。中央領域、周辺領域、最周辺領域はそ れぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。
[0056] 第一光路差付与構造は、対物光学素子の中央領域の面積の 70%以上の領域に 設けられていることが好ましぐ 90%以上がより好ましい。より好ましくは、第一光路差 付与構造が、中央領域の全面に設けられていることである。第二光路差付与構造は 、対物光学素子の周辺領域の面積の 70%以上の領域に設けられて 、ることが好ま しぐ 90%以上がより好ましい。より好ましくは、第二光路差付与構造が、周辺領域の 全面に設けられていることである。第三光路差付与構造は、対物光学素子の最周辺 領域の面積の 70%以上の領域に設けられていることが好ましぐ 90%以上がより好 ましい。より好ましくは、第三光路差付与構造が、最周辺領域の全面に設けられてい ることである。
[0057] なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する 構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含 まれる。また、位相差付与構造には回折構造が含まれる。光路差付与構造は、段差 を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び Z又は 位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長 の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、 光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非 周期的な間隔をもって配置されていてもよい。
[0058] 光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ま しい。また、光路差付与構造は、様々な断面形状 (光軸を含む面での断面形状)をと り得る。最も一般的な光路差付与構造の断面形状としては、図 2 (a)に記載されるよう な、光路差付与構造の光軸を含む断面形状が鋸歯状である場合である。平面の光 学素子に光路差付与構造を設けた場合に断面が階段状に見えるものも、非球面レ ンズ面等に同様の光路差付与構造を設けた場合は、図 2 (a)のような鋸歯状の断面 形状と捉えることができる。従って、本明細書でいう鋸歯状の断面形状には、階段状 の断面形状も含まれるものとする。また、段差の向きの異なる鋸歯状の光路差付与構 造を重畳することによって、図 2 (b)に示すようなバイナリ構造の光路差付与構造を得 ることも可能である。本明細書の第一光路差付与構造及び第二光路差付与構造は、 その断面形状を異なる鋸歯状の光路差付与構造を重畳した構造としてもょ 、し、鋸 歯状の光路差付与構造を重畳してできるバイナリ構造の光路差付与構造に、さらに 鋸歯状の光路差付与構造を重畳した構造としてもよい。例えば、図 2 (c)は鋸歯状の 構造とバイナリ構造を重畳した構造であり、図 2 (d)は細かい鋸歯状の構造と荒い鋸 歯状の構造を重畳した構造である。
[0059] また、対物光学素子の中央領域に設けられる第一光路差付与構造と、対物光学素 子の周辺領域に設けられる第二光路差付与構造は、対物光学素子の異なる光学面 に設けられていてもよいが、同一の光学面に設けられることが好ましい。同一の光学 面に設けられることにより、製造時の偏芯誤差を少なくすることが可能となるため好ま しい。また、第一光路差付与構造及び第二光路差付与構造は、対物光学素子の光 ディスク側の面よりも、対物光学素子の光源側の面に設けられることが好ましい。
[0060] 対物光学素子は、対物光学素子の第一光路差付与構造が設けられた中央領域を 通過する第一光束、第二光束及び第三光束を、それぞれ集光スポットを形成するよう に集光する。好ましくは、対物光学素子は、対物光学素子の第一光路差付与構造が 設けられた中央領域を通過する第一光束を、第 1光ディスクの情報記録面上に情報 の記録及び Z又は再生ができるように集光する。また、対物光学素子は、対物光学 素子の第一光路差付与構造が設けられた中央領域を通過する第二光束を、第 2光 ディスクの情報記録面上に情報の記録及び Z又は再生ができるように集光する。さら に、対物光学素子は、対物光学素子の第一光路差付与構造が設けられた中央領域 を通過する第三光束を、第 3光ディスクの情報記録面上に情報の記録及び Z又は再 生ができるように集光する。また、第 1光ディスクの保護基板の厚さ tlと第 2光ディスク の保護基板の厚さ t2が異なる場合、第一光路差付与構造は、第一光路差付与構造 を通過する第一光束及び第二光束に対して、第 1光ディスクの保護基板の厚さ tlと 第 2光ディスクの保護基板の厚さ t2の違いにより発生する球面収差及び Z又は第一 光束と第二光束の波長の違いにより発生する球面収差を補正することが好ましい。さ らに、第一光路差付与構造は、第一光路差付与構造を通過した第一光束及び第三 光束に対して、第 1光ディスクの保護基板の厚さ tlと第 3光ディスクの保護基板の厚 さ t3との違いにより発生する球面収差及び Z又は第一光束と第三光束の波長の違 Vヽにより発生する球面収差を補正することが好ま 、。
[0061] また、対物光学素子の第一光路差付与構造を通過した第三光束によって、第三光 束が形成するスポットのスポット径が最も小さくなる第一ベストフォーカスと、第三光束 が形成するスポットのスポット径が第一ベストフォーカスの次に小さくなる第二べストフ オーカスとが形成される。なお、ここでいうベストフォーカスとは、ビームウェストが、あ るデフォーカスの範囲で極小となる点を指すものとする。つまり、第三光束によって、 第一べストフォーカス及び第二ベストフォーカスが形成されると 、うことは、第三光束 において、或るデフォーカスの範囲でビームウェストが極小となる点力 少なくとも 2点 存在するということである。なお、第一光路差付与構造を通過した第三光束において 、光量が最大となる回折光が第一べストフォーカスを形成し、光量が次に大きな回折 光が第二べストフォーカスを形成することが好ましい。また、第一べストフォーカスを 形成する回折光の回折効率と、第二ベストフォーカスを形成する回折光の回折効率 の差が 20%以下である場合に、本発明の効果がより顕著となる。
[0062] 尚、第一ベストフォーカスにぉ 、て第三光束が形成するスポットが、第 3光ディスク の記録及び/又は再生に用いられ、第二ベストフォーカスにおいて第三光束が形成 するスポットは、第 3光ディスクの記録及び/又は再生に用いられないことが好ましい 力 第一ベストフォーカスにおいて第三光束が形成するスポットが、第 3光ディスクの 記録及び Z又は再生に用いられず、第二ベストフォーカスにおいて第三光束が形成 するスポットが、第 3光ディスクの記録及び Z又は再生に用いられるような態様を否定 するものではない。なお、第一光路差付与構造が、対物光学素子の光源側の面に設 けられている場合、第二ベストフォーカスの方が、第一ベストフォーカスに比して対物 光学素子に近 1、方が好ま 、。
[0063] さらに、第一ベストフォーカスと第二ベストフォーカスは、下記の式(1)を満たす。
[0064] 0. 05≤L/f≤0. 35 (1)
但し、 f [mm]は第一光路差付与構造を通過し、第一べストフォーカスを形成する第 三光束の焦点距離を指し、 L[mm]は第一ベストフォーカスと第二ベストフォーカスの 間の距離を指す。
[0065] なお、下記の式(1 ' )を満たすことがより好ま 、。
[0066] 0. 10≤L/f≤0. 25 (1,)
更に好ましくは、下記の式(1 ' ' )を満たすことである。
[0067] 0. l l≤L/f≤0. 24 (1 " )
また、 Lは、 0. 18mm以上、 0. 63mm以下であることが好ましい。さらに、 fは、 1. 8 mm以上、 3. Omm以下であることが好ましい。
[0068] 上記構成により、第 3光ディスクの記録及び Z又は再生時に、第三光束のうち第 3 光ディスクの記録及び Z又は再生時に用いられない不要光がトラッキング用の受光 素子に悪影響を及ぼすことを防ぐことが可能となり、第 3光ディスクの記録及び Z又 は再生時に良好なトラッキング性能を維持することが可能となる。
[0069] また、対物光学素子は、対物光学素子の第二光路差付与構造が設けられた周辺 領域を通過する第一光束及び第二光束を、それぞれ集光スポットを形成するように 集光する。好ましくは、対物光学素子は、対物光学素子の第二光路差付与構造が設 けられた周辺領域を通過する第一光束を、第 1光ディスクの情報記録面上に情報の 記録及び Z又は再生ができるように集光する。また、対物光学素子は、対物光学素 子の第二光路差付与構造が設けられた周辺領域を通過する第二光束を、第 2光ディ スクの情報記録面上に情報の記録及び Z又は再生ができるように集光する。また、 第 1光ディスクの保護基板の厚さ tlと第 2光ディスクの保護基板の厚さ t2が異なる場 合、第二光路差付与構造は、第二光路差付与構造を通過する第一光束及び第二光 束に対して、第 1光ディスクの保護基板の厚さ tlと第 2光ディスクの保護基板の厚さ t 2の違いにより発生する球面収差及び Z又は第一光束と第二光束の波長の違いによ り発生する球面収差を補正することが好ま ヽ。
[0070] また、好ま U、態様として、周辺領域を通過した第三光束は、第 3光ディスクの記録 及び Z又は再生に用いられない態様が挙げられる。周辺領域を通過した第三光束 力 第 3光ディスクの情報記録面上で集光スポットの形成に寄与しないようにすること が好ましい。つまり、対物光学素子の第二光路差付与構造が設けられた周辺領域を 通過する第三光束は、第 3光ディスクの情報記録面上でフレアを形成することが好ま しい。図 10に示すように、対物光学素子を通過した第三光束が第 3光ディスクの情報 記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向か う順番で、光量密度が高いスポット中心部 SCN、光量密度がスポット中心部より低い スポット中間部 SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低 、 スポット周辺部 SOTを有する。スポット中心部力 光ディスクの情報の記録及び Z又 は再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録 及び Z又は再生には用いられない。上記において、このスポット周辺部をフレアと言 つている。つまり、対物光学素子の周辺領域に設けられた第二光路差付与構造を通 過した第三光束は、第 3光ディスクの情報記録面上でスポット周辺部を形成する。な お、ここでいう第三光束の集光スポット又はスポットは、第一ベストフォーカスにおける スポットであることが好ましい。また、対物光学素子を通過した第二光束においても、 第 2光ディスクの情報記録面上で形成するスポットが、スポット中心部、スポット中間 部、スポット周辺部を有することが好ましい。
[0071] また、第二光路差付与構造は、第二光路差付与構造を通過した第一光束及び第 二光束に対して、第一光源又は第二光源の波長の僅かな変動によって発生するスフ エロクロマテイズム (色球面収差)を補正することが好まし 、。波長の僅かな変動とは、 ± 10nm以内の変動を指す。例えば、第一光束が波長 λ 1より ± 5nm変化した際に 、第二光路差付与構造によって、周辺領域を通過した第一光束の球面収差の変動 を補償し、第 1光ディスクの情報記録面上での波面収差の変化量が 0. OlO l lrms 以上、 0. 095 λ lrms以下となるようにすることが好ましい。また、第二光束が波長え 2より ± 5nm変化した際に、第二光路差付与構造によって、周辺領域を通過した第 二光束の球面収差の変動を補償し、第 2光ディスクの情報記録面上での波面収差の 変化量が 0. 002 2rms以上、 0. 03 λ 2rms以下となるようにすることが好ましい。こ れにより、光源であるレーザの波長の製造誤差や個体差による波長のノ ラつきに起 因する収差を補正することができる。
[0072] 対物光学素子が最周辺領域を有する場合、対物光学素子は、対物光学素子の最 周辺領域を通過する第一光束を、第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるように集光する。また、最周辺領域を通過した第一光束におい て、第 1光ディスクの記録及び Z又は再生時にその球面収差が補正されていることが 好ましい。
[0073] また、好ま U、態様として、最周辺領域を通過した第二光束は、第 2光ディスクの記 録及び Z又は再生に用いられず、最周辺領域を通過した第三光束は、第 3光デイス クの記録及び Z又は再生に用いられない態様が挙げられる。最周辺領域を通過した 第二光束及び第三光束が、それぞれ第 2光ディスク及び第 3光ディスクの情報記録 面上での集光スポットの形成に寄与しないようにすることが好ましい。つまり、対物光 学素子が最周辺領域を有する場合、対物光学素子の最周辺領域を通過する第三光 束は、第 3光ディスクの情報記録面上でフレアを形成することが好ましい。言い換える と、対物光学素子の最周辺領域を通過した第三光束は、第 3光ディスクの情報記録 面上でスポット周辺部を形成することが好ましい。また、対物光学素子が最周辺領域 を有する場合、対物光学素子の最周辺領域を通過する第二光束は、第 2光ディスク の情報記録面上でフレアを形成することが好ましい。言い換えると、対物光学素子の 最周辺領域を通過した第二光束は、第 2光ディスクの情報記録面上でスポット周辺 部を形成することが好まし 、。
[0074] 最周辺領域が第三光路差付与構造を有する場合、第三光路差付与構造が、第三 光路差付与構造を通過した第一光束に対して、第一光源の波長の僅かな変動によ つて発生するスフヱ口クロマテイズム(色球面収差)を補正するようにしてもょ 、。波長 の僅かな変動とは、 ± 10nm以内の変動を指す。例えば、第一光束が波長 λ 1より士 5nm変化した際に、第三光路差付与構造によって、最周辺領域を通過した第一光 束の球面収差の変動を補償し、第 1光ディスクの情報記録面上での波面収差の変化 量が 0. ΟΙΟ λ lrms以上、 0. 095 λ lrms以下となるようにすることが好ましい。 [0075] なお、第一光路差付与構造は、鋸歯状の回折構造とバイナリ構造を重畳してなる 構成であってもよい。また、第二光路差付与構造は、鋸歯状の回折構造と、より荒い ( ピッチの大き!/、)鋸歯状の回折構造を重畳してなる構成であってもよ!、。第一光路差 付与構造又は第二光路差付与構造が当該重畳構造の場合、当該鋸歯状の回折構 造 (第二光路差付与構造の場合、荒くない (ピッチの小さい)方の回折構造)につい ては、第一光束の第一波長 λ 1の偶数倍相当の光路差を第一光束に付与するように し、それにより第一光束は波面の位相に変化を生じないようにしてもよい。更に、第三 光束の第三波長 λ 3が、第一光束の第一波長のほぼ偶数倍の波長であるときは、整 数倍の光路差を第三光束に付与されることになり、同様に第三光束の波面の位相に 変化を生じないことになる。この様な構成により、第一光束と第三光束は、当該回折 構造によって集光に影響を及ぼされることがないという利点がある。なお、偶数倍相 当とは、 ηを自然数とした場合、 (2η-0. 1) Χ λ 1以上、(2η+0. 1) X λ 1以下の 範囲を言う。
[0076] なお、第一光路差付与構造は、少なくとも第一基礎構造と第二基礎構造とを重ね 合わせた構造としてもよい。
[0077] 第一基礎構造は、第一基礎構造を通過した第一光束の 2次の回折光量を他のい 力なる次数の回折光量よりも大きくし、第二光束の 1次の回折光量を他のいかなる次 数の回折光量よりも大きくし、第三光束の 1次の回折光量を他のいかなる次数の回折 光量よりも大きくする光路差付与構造である。第一基礎構造は、第一基礎構造を通 過した第一光束及び第三光束を、波面が略そろった状態で射出し、第一基礎構造を 通過した第二光束を、波面がそろわない状態で射出する光路差付与構造であること が好ましい。また、第一基礎構造は、第一基礎構造を通過した第二光束の回折角を 、第一光束及び第三光束の回折角と異ならせる光路差付与構造であることが好まし い。また、第一基礎構造の光軸方向の段差量は、第 1光束に対して第 1波長の略 2 波長分の光路差を与え、第 2光束に対して第 2波長の略 1. 2波長分の光路差を与え 、第 3光束に対して第 3波長の略 1波長分の光路差を与えるような段差量である事が 好ましい。
[0078] また、第二基礎構造は、第二基礎構造を通過した第一光束の 0次 (透過光)の回折 光量を他のいかなる次数の回折光量よりも大きくし、第二光束の 0次 (透過光)の回折 光量を他のいかなる次数の回折光量よりも大きくし、第三光束の ± 1次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造である。第二基礎構 造は、第二基礎構造を通過した第一光束及び第二光束を、波面が略そろった状態 で射出し、第-基礎構造を通過した第三光束を、波面がそろわない状態で射出する 光路差付与構造であることが好ましい。また、第二基礎構造は、第二基礎構造を通 過した第三光束の回折角を、第一光束及び第二光束の回折角と異ならせる光路差 付与構造であることが好ましい。また、第二基礎構造の光軸方向の段差量は、第 1光 束に対して第 1波長の略 5波長分の光路差を与え、第 2光束に対して第 2波長の略 3 波長分の光路差を与え、第 3光束に対して第 3波長の略 2. 5波長分の光路差を与え るような段差量である事が好ましい。さらに、第二基礎構造の形状は、例えば図 2 (b) に示すようなバイナリ状の形状である事が好ましい。
[0079] また、第二光路差付与構造は、少なくとも第一基礎構造、第五基礎構造又は第六 基礎構造のいずれか一つを有する構造であることが好ましい。なお、第二光路差付 与構造は、第一基礎構造、第五基礎構造及び第六基礎構造のうち 2つ以上を重畳 させる構成ではないことが好ましい。第二光路差付与構造が、少なくとも第一基礎構 造を有する場合、第一光路差付与構造と同一の基礎構造を有するので、設計を行 いやすくなるため、好ましい。
[0080] 第五基礎構造は、第五基礎構造を通過した第一光束の 1次の回折光量を他のい 力なる次数の回折光量よりも大きくし、第二光束の 1次の回折光量を他のいかなる次 数の回折光量よりも大きくし、第三光束の 1次の回折光量を他のいかなる次数の回折 光量よりも大きくする光路差付与構造である。また、第五基礎構造の光軸方向の段 差量は、第 1光束に対して第 1波長の略 1波長分の光路差を与え、第 2光束に対して 第 2波長の略 0. 6波長分の光路差を与え、第 3光束に対して第 3波長の略 0. 5波長 分の光路差を与えるような段差量である事が好まし 、。
[0081] 第六基礎構造は、第六基礎構造を通過した第一光束の 3次の回折光量を他のい 力なる次数の回折光量よりも大きくし、第二光束の 2次の回折光量を他のいかなる次 数の回折光量よりも大きくし、第三光束の 2次の回折光量を他のいかなる次数の回折 光量よりも大きくする光路差付与構造である。また、第六基礎構造の光軸方向の段 差量は、第 1光束に対して第 1波長の略 3波長分の光路差を与え、第 2光束に対して 第 2波長の略 1. 9波長分の光路差を与え、第 3光束に対して第 3波長の略 1. 6波長 分の光路差を与えるような段差量である事が好まし 、。
[0082] 対物光学素子が、プラスチックレンズである場合、第一光路差付与構造は、三種類 の基礎構造を重ね合わせた三重の重畳構造とすることが好ましい。より具体的には、 第一基礎構造と第二基礎構造とに加えて、第三基礎構造、第四基礎構造、又は第 七基礎構造を重ね合わせた、三重の重畳構造とすることが好ましい。更に好ましくは 、第一基礎構造と第二基礎構造に加えて、第三基礎構造を重ね合わせた構造であ る。
[0083] なお、第三基礎構造は、第三基礎構造を通過した第一光束の 10次の回折光量を 他の 、かなる次数の回折光量よりも大きくし、第二光束の 6次の回折光量を他の 、か なる次数の回折光量よりも大きくし、第三光束の 5次の回折光量を他のいかなる次数 の回折光量よりも大きくする光路差付与構造である。第三基礎構造の光軸方向の段 差量は、第 1光束に対して第 1波長の略 10波長分の光路差を与え、第 2光束に対し て第 2波長の略 6波長分の光路差を与え、第 3光束に対して第 3波長の略 5波長分の 光路差を与えるような段差量である事が好ましい。また、第四基礎構造は、第四基礎 構造を通過した第一光束の 5次の回折光量を他のいかなる次数の回折光量よりも大 きくし、第二光束の 3次の回折光量を他のいかなる次数の回折光量よりも大きくし、第 三光束の 3次及び 2次の回折光量を他のいかなる次数の回折光量よりも大きくする光 路差付与構造である。なお、第三光束において 3次の回折光量の方が、 2次の回折 光量よりも若干大きいことが好ましい。第四基礎構造の光軸方向の段差量は、第 1光 束に対して第 1波長の略 5波長分の光路差を与え、第 2光束に対して第 2波長の略 3 波長分の光路差を与え、第 3光束に対して第 3波長の略 2. 5波長分の光路差を与え るような段差量である事が好ましい。第七基礎構造は、第七基礎構造を通過した第 一光束の 2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第二光束の 1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第三光束の 1次の回 折光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造である。第 七基礎構造の光軸方向の段差量は、第 1光束に対して第 1波長の略 2波長分の光路 差を与え、第 2光束に対して第 2波長の略 1. 2波長分の光路差を与え、第 3光束に 対して第 3波長の略 1波長分の光路差を与えるような段差量である事が好ま U、。ま た、第三基礎構造、第四基礎構造及び第七基礎構造は、温度が上昇し、第一光源、 第二光源及び第三光源の波長が伸びた際に、球面収差をアンダーにする機能を有 しており、これによつて、温度上昇時のプラスチックの屈折率低下に伴う、球面収差の オーバーを補償することが出来、良好な球面収差を得ることが可能となる。なお、第 三基礎構造に比べて、第四基礎構造や第七基礎構造の方が、段差の深さを浅くす ることが出来る。また、第三基礎構造、第四基礎構造及び第七基礎構造は、第一基 礎構造、第二基礎構造、第五基礎構造及び第六基礎構造と異なる母非球面 (ベー ス面)に設けられていることが好ましい。第三基礎構造、第四基礎構造及び第七基礎 構造は、入射した光束に対して上述した光路差を与えつつ、第三基礎構造、第四基 礎構造及び第七基礎構造が、できるだけ入射した光束の向きに影響を与えないよう に設定された母非球面 (ベース面)に設けられている事が好ましい。更には、第三基 礎構造、第四基礎構造及び第七基礎構造は、光軸と直交する方向に光軸から離れ るにつれて、光学素子の内側に入り込んでいき、あるところを境に、光軸から離れる につれて、光学素子の外側へと向力うような構造である事が好ましい。(つまり、段々 深くなつていき、あるところを境に浅くなる構造である事が好ましい。 )
また、対物光学素子が、プラスチックレンズである場合、第二光路差付与構造は、 第一基礎構造、第五基礎構造又は第六基礎構造のいずれか一つに加えて、第三基 礎構造、第四基礎構造又は第七基礎構造のいずれか一つを重畳させた構造とする ことが好ましい。好ましくは、第一基礎構造と第四基礎構造を重ね合わせた構造とす ることである。
[0084] さらに、対物光学素子がプラスチックレンズである場合、第三光路差付与構造を有 する最周辺領域を有することが好ましい。この場合、第三光路差付与構造は、少なく とも第三基礎構造、第四基礎構造又は第七基礎構造の ヽずれか一つを有する構造 であることが好ましい。好ましくは、第四基礎構造を有する構造である。
[0085] 従って、対物光学素子がプラスチックレンズである場合、第一光路差付与構造は、 三種類の基礎構造を重ね合わせた三重の重畳構造とし、第二光路差付与構造は、 二種類の基礎構造を重ね合わせた二重の重畳構造とし、第三光路差付与構造は、 一種の基礎構造のみを有する態様が、好ま 、態様の一つである。
[0086] 次に、対物光学素子が、ガラスレンズやアサ一マル榭脂からなるレンズである場合 、第一光路差付与構造は、第一基礎構造と第二基礎構造のみを重ね合わせた構造 であることが好ましい。
[0087] また、対物光学素子が、ガラスレンズやアサ一マル榭脂からなるレンズである場合、 第二光路差付与構造は、第一基礎構造、第五基礎構造又は第六基礎構造のいず れか一つに加えて、第三基礎構造又は第四基礎構造のいずれか一つを重畳させた 構造とすることが好ましい。好ましくは、第一基礎構造と第四基礎構造を重ね合わせ た構造とすることである。
[0088] さらに、対物光学素子がガラスレンズやアサ一マル榭脂からなるレンズである場合、 屈折面である最周辺領域を有することが好ま 、。
[0089] また、対物光学素子がプラスチックレンズである場合、第一光路差付与構造は段差 を有する同心円状の輪帯構造であり、第一光路差付与構造の段差量は、以下の dA , dB, dC, dDのうち、少なくとも 2種類の段差量を有することが好ましい。
[0090] 0.9·{15λΒ/(η-1)— 2λΒ'/(η'-1)}<άΑ(^πι)<1.5·{15λΒ/(η
1) 2λΒ,Ζ(η,一 1)} (17)
0.9·{5λΒ/(η-1)+2λΒ'/(η'-1)}<άΒ(^πι)<1.5·{5λΒ/(η-1)
Figure imgf000039_0001
0.9·5λΒ/(η-1)<άΟ(^πι)<1.5·5λΒ/(η-1) (19)
Figure imgf000039_0002
尚、上記式(17)は、下の式(17)'であることが好ましい。
[0091] 0.95·{15λΒ/(η-1)— 2λΒ'/(η'-1)}<άΑ(^πι)<1.4·{15λΒ/(η
1) 2λΒ,Ζ(η,一 1)} (17,)
また、上記式(17)は、下の式(17) "であることがさらに好ましい。
[0092] 1.0·{15λΒ/(η-1)— 2λΒ'/(η'-1)}≤άΑ(^πι)<1.3·{15λΒ/(η 1) 2λΒ,Ζ(η,一 1)} (17")
尚、上記式(18)は、下の式(18' )であることが好ましい。
[0093] 0. 95·{5λΒ/(η-1)+2λΒ'/(η'-1)}<άΒ(^πι)<1.4·{5λΒ/(η- 1)+2λΒ'/(η'-1)} (18,)
また、上記式(18)は、下の式(18' ')であることがさらに好ましい。
[0094] 1.0·{5λΒ/(η-1)+2λΒ'/(η'-1)}≤άΒ(^πι)<1.4·{5λΒ/(η-1)
Figure imgf000040_0001
尚、上記式(19)は、下の式(19)'であることが好ましい。
[0095] 0. 95·5λΒ/(η-1)<άΟ(^πι)<1.4·5λΒ/(η-1) (19,)
また、上記式(19)は、下の式(19) "であることがさらに好ましい。
[0096]
Figure imgf000040_0002
3·5λΒ/(η-1) (19")
尚、上記式(20)は、下の式(20' )であることが好ましい。
[0097] 0. 95·{5λΒ/(η-1)— 2λΒ'/(η'-1)}<άϋ(^πι)<1.4·{5λΒ/(η- 1)— 2λΒ'/(η'-1)} (20,)
また、上記式(20)は、下の式(20) ''であることがさらに好ましい。
[0098] 3·{5λΒ/(η-1)
Figure imgf000040_0003
但し、 λΒは第一光束の設計波長 m)を表す。 B'UO. 390 m)以上、 0.4 10 m)以下の任意の値を表す。 nは波長 λ Βにおける光学素子の屈折率を表す。 η'は波長 λ B'における光学素子の屈折率を表す。
[0099] なお、便宜上、 λ Βは、設計波長がわ力もない場合、光ピックアップ装置に搭載され ている第一光源の波長 m)、即ち、使用波長と同一であるとみなしてもよい。また、 XB'ltO. 390( 111)以上、0.405 (/zm)以下の任意の値であることが好ましい。 更に好ましくは、 λΒ,«0. 390 m)以上、 0.400 m)以下の任意の値である。
[0100] 尚、段差量とは、光路差付与構造の段差の光軸方向の長さをいう。例えば光路差 付与構造が図 12で示すような構造である場合、段差量とは、 dl、 d2、 d3、 d4のそれ ぞれの長さをいう。「第一光路差付与構造の段差量は、以下の dA, dB, dC, dDのう ち、少なくとも 2種類の段差量を有する」とは、第一光路差付与構造の全ての段差の 中の少なくとも 1つの段差 xの段差量が dA、 dB、 dC、 dDのいずれ力 1つを満たし、 少なくとも他の一つの段差 yの段差量が dA、 dB、 dC、 dDのいずれかであって、段差 Xとは異なるものを満たして 、ることを 、う。
[0101] 第一光路差付与構造の全ての段差にお!、て、 dA、 dB、 dC、 dD以外の段差量は 有さないことが好ましい。また、金型の製造を容易にしたり、金型の転写性を良好に する観点から、段差の段差量は大きすぎない方が好ましい。従って、第一光路差付 与構造の全ての段差にぉ 、て、 dCと dD以外の段差量は有さな 、ことが更に好まし い。
[0102] また、本発明に係る光学素子を設計する場合、以下のような方法で設計する事が 考えられる。まず輪帯状の構造を有する光路差付与構造である基礎構造を設計する 。次に、当該基礎構造とは、或る光束に対して回折光率が最大となる回折次数が異 なる輪帯状の構造を有する別の基礎構造を設計する。そして、これらの 2つ(3っ以 上であってもよ!/、)の基礎構造を重ねあわせ、第一光路差付与構造又は第二光路差 付与構造を設計する方法である。この様な方法で設計する場合、ピッチ幅が小さな 輪帯が発生する可能性がある。例えば、図 14 (a)に示すような基礎構造と図 14 (b) に示すような基礎構造とを重ね合わせると、図 14 (c)のような光路差付与構造が得ら れる。しかしながら、図 14 (c)で Waとして示されているようにピッチ幅が小さい輪帯が 発生してしまうことになる。尚、ピッチ幅とは、輪帯構造の、光学素子の光軸と直交方 向の幅をいう。例えば、光路差付与構造が図 12で示すような構造である場合、ピッチ 幅とは、 wl、 w2、 w3、 w4のそれぞれの長さをいう。また、光路差付与構造が図 13 で示すような構造である場合、ピッチ幅とは、 w5、 w6、 w7、 w8、 w9のそれぞれの長 さをいう。
[0103] 本発明者は、鋭意研究の結果、この Waが 5 μ m以下の輪帯であれば、この輪帯を 削ったり、埋めてしまっても、光学性能に大きな影響を及ぼさないことを見出した。つ まり、図 14 (c)において、 Waが 5 m以下である場合、図 14 (d)に示すように、この 小さなピッチ幅の輪帯を削っても、光学性能に大きな影響を及ぼすことはない。
[0104] また、金型の製造を容易にしたり、金型の転写性を良好にする観点からは、段差の ピッチ幅は小さすぎない方が好ましい。従って、複数の基礎構造を重ねあわせて基 礎となる光路差付与構造を設計した際に、ピッチ幅が 5 μ m以下の輪帯が発生する 場合、そのようなピッチ幅が 5 /z m以下の輪帯を除去して、最終的な光路差付与構造 を得る事が好ましい。ピッチ幅が 5 m以下の輪帯が凸状である場合は、輪帯を削る 事により除去すればよぐピッチ幅が 5 m以下の輪帯が凹状である場合は、輪帯を 埋める事により除去すればよい。
[0105] 従って、少なくとも第一光路差付与構造のピッチ幅は全て 5 mより大きい事が好ま しい。好ましくは、第一光路差付与構造、第二光路差付与構造及び第三光路差付与 構造の全てのピッチ幅が 5 μ mより大きい事である。
[0106] また、前述したように、段差量は大きすぎな!/、方が好ま U、。本発明者は、鋭意研 究の結果、以下の事を発見した。基礎構造を複数重ね合わせて得た基礎となる光路 差付与構造のある輪帯の段差量が基準の値より高い場合、輪帯の段差量を 10· λ Β / (η- 1) ( m)だけ低くすることにより、光学性能に影響を及ぼすことなぐ大きす ぎる段差量を減らすことが可能となる。なお、基準の値としては、任意の値を設定する 事ができる力 10· λ Β/ (η- 1) m)を基準値とする事が好ましい。
[0107] また、細長 、輪帯が少な 、方が製造上好ま 、と 、う観点から、第一光路差付与 構造の全ての輪帯において、(段差量 Zピッチ幅)の値が、 1以下である事が好ましく 、更に好ましくは 0. 8以下である事である。更に好ましくは、全ての光路差付与構造 の全ての輪帯において、(段差量 Zピッチ幅)の値が、 1以下である事が好ましぐ更 に好ましくは 0. 8以下である事である。
[0108] 第 1光ディスクに対して情報を再生及び Z又は記録するために必要な対物光学素 子の像側開口数を NA1とし、第 2光ディスクに対して情報を再生及び Z又は記録す るために必要な対物光学素子の像側開口数を NA2 (NA1≥NA2)とし、第 3光ディ スクに対して情報を再生及び Z又は記録するために必要な対物光学素子の像側開 口数を NA3 (NA2>NA3)とする。 NA1は、 0. 8以上、 0. 9以下であることか、又は 、 0. 55以上、 0. 7以下であることが好ましい。特に NA1は 0. 85であることが好まし NA2は、 0. 55以上、 0. 7以下であること力 子まし!/、。特に NA2は 0. 60であるこ とが好ましい。また、 NA3は、 0. 4以上、 0. 55以下であることが好ましい。特に NA3 は 0. 45又は 0. 53であることが好ましい。 [0109] 対物光学素子の中央領域と周辺領域の境界は、第三光束の使用時にお!、て、 0.
9 ·ΝΑ3以上、 1. 2·ΝΑ3以下(より好ましくは、 0. 95 ·ΝΑ3以上、 1. 15 ·ΝΑ3以下 )の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物光学 素子の中央領域と周辺領域の境界が、 ΝΑ3に相当する部分に形成されていることで ある。また、対物光学素子の周辺領域と最周辺領域の境界は、第二光束の使用時に おいて、 0. 9 ·ΝΑ2以上、 1. 2·ΝΑ2以下(より好ましくは、 0. 95 ·ΝΑ2以上、 1. 15 •ΝΑ2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは 、対物光学素子の周辺領域と最周辺領域の境界が、 ΝΑ2に相当する部分に形成さ れていることである。対物光学素子の最外周の外側の境界は、第一光束の使用時に お!/、て、 0. 9 ·ΝΑ1以上、 1. 2NA1以下(より好ましく ίま、 0. 95 ·ΝΑ1以上、 1. 15 · NA1以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、 対物光学素子の最外周の外側の境界が、 NA1に相当する部分に形成されているこ とである。
[0110] 対物光学素子を通過した第三光束を第 3光ディスクの情報記録面上に集光する場 合に、球面収差が少なくとも 1箇所の不連続部を有することが好ましい。その場合、不 連続部は、第三光束の使用時において、 0. 9 ·ΝΑ3以上、 1. 2·ΝΑ3以下 (より好ま しくは、 0. 95 ·ΝΑ3以上、 1. 15 ·ΝΑ3以下)の範囲に存在することが好ましい。また 、対物光学素子を通過した第二光束を第 2光ディスクの情報記録面上に集光する場 合にも、球面収差が少なくとも一箇所の不連続部を有することが好ましい。その場合 、不連続部は、第二光束の使用時において、 0. 9 ·ΝΑ2以上、 1. 2·ΝΑ2以下 (より 好ましくは、 0. 95 ·ΝΑ2以上、 1. 1 ·ΝΑ2以下)の範囲に存在することが好ましい。
[0111] また、球面収差が連続していて、不連続部を有さない場合であって、対物光学素子 を通過した第三光束を第 3光ディスクの情報記録面上に集光する場合に、 ΝΑ2では 、縦球面収差の絶対値が 0. 03 m以上であって、 NA3では縦球面収差の絶対値 が 0. 02 m以下であることが好ましい。より好ましくは、 NA2では、縦球面収差の絶 対値が 0. 08 μ m以上であって、 NA3では縦球面収差の絶対値が 0. 01 μ m以下 である。また、対物光学素子を通過した第二光束を第 2光ディスクの情報記録面上に 集光する場合に、 NA1では、縦球面収差の絶対値が 0. 03 m以上であって、 NA 2では縦球面収差の絶対値が 0. 005 μ m以下であることが好ましい。
[0112] また、回折効率は回折構造の輪帯深さに依存するので、光ピックアップ装置の用途 に応じて、中央領域の各波長に対する回折効率を適宜設定可能である。例えば、第 1光ディスクに対して記録及び再生を行い、第二、第三光ディスクに対して再生のみ 行う光ピックアップ装置の場合には、中央領域及び Z又は周辺領域の回折効率を第 一光束を重視して設定するのが好ましい。一方、第 1光ディスクに対して再生のみを 行い、第二、第三光ディスクに対して記録及び再生を行う光ピックアップ装置の場合 には、中央領域の回折効率を、第二、第三光束を重視して設定し、周辺領域の回折 効率を第二光束を重視して設定するのが好まし 、。
[0113] 何れの場合でも、下記条件式(11)を満たすようにすることで、各領域の面積加重 平均により計算される第一光束の回折効率を高く確保することが可能となる。
[0114] 7? 11≤ 7? 21 (11)
但し、 r? 11は中央領域における第一光束の回折効率を表し、 r? 21は周辺領域にお ける第一光束の回折効率を表す。なお、中央領域の回折効率を第二、第三波長の 光束重視とした場合には、中央領域の第一光束の回折効率は低くなるが、第 1光デ イスクの開口数が第 3光ディスクの開口数に比べて大きい場合は、第一光束の有効 径全体で考えると中央領域の回折効率低下はそれほど大きな影響を与えない。
[0115] なお、本明細書における回折効率は、以下のように定義することができる。
[0116] (1)同一の焦点距離、レンズ厚さ、開口数を有し、同一の材料で形成され、第一及 び第二光路差付与構造が形成されない対物光学素子の透過率を、中央領域、周辺 領域に分けて測定する。この際、中央領域の透過率は、周辺領域に入射する光束を 遮断して測定し、周辺領域の透過率は中央領域に入射する光束を遮断して測定す る。
[0117] (2)第一及び第二光路差付与構造を有する対物光学素子の透過率を、中央領域 と周辺領域に分けて測定する。
[0118] (3)上記(2)の結果を(1)の結果で割った値を各領域の回折効率とする。
[0119] また、第一光束乃至第三光束の何れか二つの光束の光利用効率が 80%以上であ つて、残りの一つの光束の光利用効率を 30%以上、 80%以下にするようにしてもよ い。残りの一つの光束の光利用効率を 40%以上、 70%以下にするようにしてもよい 。この場合、光利用効率を 30%以上、 80%以下 (または 40%以上、 70%以下)とす る光束は、第三光束であることが好ましい。
[0120] なお、ここでいう光利用効率とは、第一光路差付与構造及び第二光路差付与構造 が形成された対物光学素子 (第三光路差付与構造が形成されて!ヽてもよ!ヽ)により光 ディスクの情報記録面上に形成された集光スポットのエアリーディスク内の光量を Aと し、同一の材料から形成され、且つ、同一の焦点距離、軸上厚さ、開口数、波面収差 を有し、第一光路差付与構造、第二光路差付与構造及び第三光路差付与構造が形 成されない対物光学素子により、光情報記録媒体の情報記録面上に形成された集 光スポットのエアリーディスク内の光量を Bとしたとき、 AZBにより算出するものとする 。なお、ここでいうエアリーディスクとは、集光スポットの光軸を中心とする半径 r,の円 をいう。 r' =0. 61 · λ ΖΝΑで表される。
[0121] また、第一光路差付与構造を通過した第三光束において、最大の光量となる回折 次数の回折光の光量と、次に大きな光量となる回折次数の回折光の光量の差、即ち 、第一べストフォーカスを形成する回折光の光量と、第二べストフォーカスを形成する 回折光の光量の差が、 0%以上、 20%以下である場合、特に第 3光ディスクにおける トラッキング特性を良好に保つことが困難であるが、本発明に係る形態は、そのような 状況においても、トラッキング特性を良好にすることを可能とする。
[0122] 第一光束、第二光束及び第三光束は、平行光として対物光学素子に入射してもよ いし、発散光若しくは収束光として対物光学素子に入射してもよい。好ましくは、第一 光束が対物光学素子に入射する時の、対物光学素子の倍率 mlが、下記の式 (2)を 満たすことである。
[0123] -0. 02<ml<0. 02 (2)
一方で、第一光束を発散光として対物光学素子に入射する場合、第 1光束が対物 光学素子へ入射する時の、対物光学素子の倍率 mlが、下記の式 (2' )を満たすこと が好ましい。
[0124] 0. 10<ml<0. 00 (2,)
また、第二光束を平行光又は略平行光として対物光学素子に入射させる場合、第 二光束
が対物光学素子へ入射する時の、対物光学素子の倍率 m2が、下記の式 (3)を満た すことが好ましい。
[0125] -0. 02<m2< 0. 02 (3)
一方で、第二光束を発散光として対物光学素子に入射させる場合、第二光束が対 物光学素子へ入射するときの対物光学素子の倍率 m2が、下記の式 (3 ' )を満たすこ とが好ましい。
[0126] 0. 10<m2< 0. 00 (3,)
また、第三光束を平行光又は略平行光として対物光学素子に入射させる場合、第 三光束の対物光学素子への入射光束の倍率 m3が、下記の式 (4)を満たすことが好 ましい。第三光束が平行光である場合、トラッキングにおいて問題が発生しやすくな るが、本発明は第三光束が平行光であっても、良好なトラッキング特性を得ることを可 能とし、 3つの異なる光ディスクに対して記録及び Z又は再生を適切に行う事を可能 とする。
[0127] -0. 02<m3< 0. 02 (4)
一方で、第三光束を発散光として対物光学素子に入射させる場合、第三光束が対 物光学素子へ入射する時の対物光学素子の倍率 m3が、下記の式 (5)を満たすこと が好ましい。
[0128] 0. 10<m3< 0. 00 (5)
また、対物光学素子を単玉のプラスチックレンズとする場合、波長特性を多少犠牲 にしても、温度特性を良好にすることが好ましい。特に、波長特性と温度特性で良好 なバランスを保つことが好ましい。さら〖こ好ましくは、第 1光ディスクの記録及び/又は 再生を行う際の温度特性を良好にすることである。この様な特性を満たすために、下 記の条件式( 12)及び( 13)を満たすことが好ま 、。
[0129] +0. 00045≤ δ SATl/f (WFE l rms/ (°C -mm) )≤ +0. 0027 (12)
0. 045≤ δ S Α λ /f (WFE λ rms/ (nm - mm) )≤ —0. 0045 (13) 但し、 δ SAT1は、使用波長(この場合、温度変化に伴う波長変動がないとする)に おける第 1光ディスクの記録及び Z又は再生を行う際の対物光学素子の δ SA3/ δ Tを表す。使用波長とは、対物光学素子を有する光ピックアップ装置で用いられてい る光源の波長をいう。好ましくは、使用波長は、 400nm以上、 415nm以下の範囲の 波長であって、対物光学素子を介して、第 1光ディスクの記録及び Z又は再生を行う ことができる波長である。使用波長を上述のように設定できない場合は、 405nmを使 用波長として、対物光学素子の δ SAT1及び後述する δ SAT2、 δ SAT3を求めて もよい。即ち、 δ SAT1は、使用波長(波長変動なし)における第 1光ディスクの記録 及び Ζ又は再生を行う際の対物光学素子の 3次球面収差の温度変化率 (温度特性) を指す。なお、 WFEは、 3次球面収差が波面収差で表現されていることを示している 。また、 δ SA は、環境温度一定の状況下で、使用波長における第 1光ディスクの 記録及び Z又は再生を行う際の δ SA3/ δ λを表す。即ち、 δ SA は、環境温度 一定の状況下で、使用波長における第 1光ディスクの記録及び Ζ又は再生を行う際 の対物光学素子の 3次球面収差の波長変化率 (波長特性)を指す。尚、環境温度は 室温である事が好ましい。室温とは、 10°C以上、 40°C以下であり、好ましくは、 25°C である。 fは、第一光束の使用波長 (好ましくは 405nm)における対物光学素子の焦 点距離を指す。
[0130] より好ましくは、下記の条件式(12' )を満たすことである。
[0131] +0. 00091≤ 6 SATl/f(WFElrms/(°C-mm))≤+0. 0018 (12 ,)
さらに好ましくは、下記の条件式(12' ')を満たすことである。
[0132] +0. 0013≤ δ SAT 1 /ί (WFE λ rms/ (°C · mm) )≤ + 0. 0016
(12")
好ましくは、下記の条件式(12' '')を満たすことである。
[0133] I δ SAT1 I (WFElrms/°C)≤ 0. 002 (12,,,)
また、好ましくは、下記の条件式(13' )を満たすことであり、更に好ましくは下記の 条件式(13")を満たすことである。
[0134] —0. 032 ≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ —0. 0091 (13, )
— 0. 015 ≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ -0. 011(13") また、好ましくは、下記の条件式(13' '')を満たすことであり、更に好ましくは下記 の条件式(13' ' '')を満たすことである。
[0135] 0. 01≤ I δ SAX I (WFElrms/nmXO. 1 (13,,,)
0. 02≤ I δ SAX I (WFElrms/nmXO. 1 (13,,,,)
更に言えば、対物光学素子の温度変化に伴う屈折率変化による球面収差の変化 を、温度変化に伴う第一波長の波長変化により補正するような球面収差の波長依存 性を対物光学素子が有することが好ましい。好ましくは、以下の条件式(14)を満た すことである。
[0136] 0≤ δ SAT2/f (WFE λ rms/ (°C - mm) )≤ + 0. 00136
(14)
但し、 δ SAT2は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C) (好ましく は 405nm)における第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学 素子の δ SA3/ δ Τを表す。即ち、 δ SAT2は、使用波長(温度変化に伴う波長変 動が 0. 05nm/°C)における第 1光ディスクの記録及び Z又は再生を行う際の対物 光学素子の 3次球面収差の温度変化率 (温度特性)を指す。
[0137] より好ましくは、下記の条件式(14' )を満たすことである。
[0138] 0≤ 6 SAT2/f(WFElrms/(°C-mm))≤+0. 00093 (14,)
さらに好ましくは、下記の条件式(14' ')を満たすことである。
+ 0. 0007≤ δ SAT2/f (WFE λ rms/ (°C - mm) )≤ + 0. 0009(14") また、光ピックアップ装置の集光光学系がコリメータレンズ等のカップリングレンズを 有し、そのカップリングレンズがプラスチックレンズである場合、以下の条件式(15)を 満たすことが好ましい。
[0139] 0≤ 6 SAT3/f(WFElrms/(°C-mm))≤+0. 00091 (15)
但し、 δ SAT3は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C) (好ましく は 405nm)における第 1光ディスクの記録及び/又は再生を行う際のカップリングレ ンズと対物光学素子を含んだ光学系全体の δ SA3/ δ Τを表す。即ち、 δ SAT3は 、使用波長(温度変化に伴う波長変動が 0.05nmZ°C)における第 1光ディスクの記 録及び Z又は再生を行う際の光学系全体の 3次球面収差の温度変化率 (温度特性) を指す。
[0140] より好ましくは、下記の条件式(15' )を満たすことである。
[0141] 0≤ 6 SAT3/f (WFE l rms/ (°C -mm) )≤+0. 00045 (15' )
より好ましくは、下記の条件式(15' ' )を満たすことである。
[0142] +0. 00005≤ 6 SAT3/f (WFE l rms/ (°C -mm) )≤+0. 0003 (15
,,)
上述に記載したように、波長特性をそれ程良好にしないことにより、温度特性に優 れている対物光学素子を得ることができる。波長特性に関しては、光源の発振波長 のバラツキを鑑みて、発振波長が対物光学素子に適した光源を選定する、即ち、発 振波長が基準波長に近い光源を選定することで、ある程度波長のバラツキの悪影響 を抑えることが出来る。そこで、上述のような対物光学素子を、発振特性が厳選され た光源と組み合わせることで、低コスト且つシンプルな光ピックアップ装置を提供する ことが出来る。また、設計波長の互いに異なる上述の対物光学素子を予め複数種類 用意することもできるので、光源の発振波長のノラツキに対応させて、その光源と、 適切な設計波長の対物光学素子を組み合わせれば、低コスト且つシンプルな光ピッ クアップ装置を提供することが出来るようになる。
[0143] より具体的には、光ピックアップ装置の製造方法が、上述のような温度特性に優れ ている対物光学素子を、光路差付与構造の仕様に応じて複数のグループに分ける ステップと、使用しょうとする光源の発振特性に応じて、いずれかのグループの対物 光学素子を選定するステップと、光源と、選定された対物光学素子とを組み合わせる ステップを有する事が好まし 、。
[0144] 例えば、発振波長が基準波長に対しプラス側にずれた光源に好適な光路差付与 構造を有する対物光学素子のグループ、発振波長が基準波長に近い光源に好適な 光路差付与構造を有する対物光学素子のグループ、発振波長が基準波長に対しマ ィナス側にずれた光源に好適な光路差付与構造を有する対物光学素子のグループ など、光路差付与構造の仕様を変えた対物光学素子を複数グループに分けて用意 し、使用する光源の発振波長を測定して、それに最適なグループから対物光学素子 レンズを選定し組み合わせる事で、温度変化が生じても適切に情報の記録及び Z又 は再生を行える光ピックアップ装置を提供することが出来る。また、これらのグループ ごとに、対物光学素子に異なる識別マークが施されていることが好ましい。尚、「光路 差付与構造の仕様が異なる」とは、例えば回折構造の設計波長を異ならせることを言 うが、それに限られない。又、「発振特性」とは発振波長の実測値やバラツキを含む。
[0145] また、上述のような光ピックアップ装置の製造方法を適用する場合、製造された光ピ ックアップ装置の出荷ロットを検査したときに、下記の条件式(16)を満たすことが好ま しい。
[0146] a SA3≤ σ λ - 8 A3 X (16)
all
但し、 σ SA3 ( rms)は、光ピックアップ装置の出荷ロットにおいて、それぞれの光 ピックアップ装置で光源が基準温度、基準出力で発振したときの波長における光ピッ クアップ装置の対物光学素子を含む集光光学系(光源から情報記録面まで)の 3次 球面収差 SA3の標準偏差を表す。また、 σ λ (nm)は、光ピックアップ装置の出荷口 ットに含まれる、光源の基準温度、基準出力での発振波長の標準偏差を表す。また、 δ SA3 λ ( λ rms/nm)は、光ピックアップ装置の出荷ロットに含まれる、対物光学
all
素子を含む集光光学系(光源から情報記録面まで)の 3次球面収差の波長依存性を 表す。
[0147] ここで、対物光学素子の説明に話を戻す。対物光学素子が、温度特性補正構造を 有することにより、上記の条件式( 12)乃至( 15)を満たすようにすることが好ま 、。 例えば、第一光路差付与構造が、少なくとも第三基礎構造、第四基礎構造又は第七 基礎構造を有する構造である場合、上記の条件式(12)乃至(15)を満たすことが、 複雑な光学素子の設計を行なうことなく実現することができるため好ましい。また、第 二光路差付与構造が、少なくとも第三基礎構造、第四基礎構造又は第七基礎構造 のいずれか一つを有する構造である場合も、上記の条件式(12)、(12' )、(13)、 (1 3,)、 (13,,)、 (14)、 (14,)、 (15)、 (15 ' )を満たすことが、複雑な光学素子の設計 を行うことなく実現することができるため好ましい。また、対物光学素子が、周辺領域 の周りに、第三光路差付与構造を有する最周辺領域を有し、第三光路差付与構造 力 少なくとも第三基礎構造、第四基礎構造又は第七基礎構造のいずれか一つを有 する構造である場合も、上記の条件式 (12)、 (12,)、 (13)、 (13,)、 (13,,)、 (14) 、(14' )、(15)、(15' )を満たすことが、複雑な光学素子の設計を行うことなく実現す ることができるため好まし!/、。
[0148] また、第一光束に対する対物光学素子の像側開口数 (ΝΑ)が 0. 8以上、 0. 9以下 である場合に、上記条件式(12)、 (12,)、 (13)、 (13,)、 (13,,)、 (14)、 (14,)、 ( 15)、(15' )を満たした際の効果がより顕著となる。
[0149] また、第 3光ディスクを用いる際の対物光学素子のワーキングディスタンス (WD)は 、 0. 20mm以上、 1. 5mm以下であることが好ましい。好ましくは、 0. 3mm以上、 1 . 00mm以下である。次に、第 2光ディスクを用いる際の対物光学素子の WDは、 0. 4mm以上、 0. 7mm以下であることが好ましい。さらに、第 1光ディスクを用いる際の 対物光学素子の WDは、 0. 4mm以上、 0. 9mm以下(tl <t2である場合は、 0. 6m m以上、 0. 9mm以下が好ましい)であることが好ましい。
[0150] 対物光学素子の入射瞳径は、第 1光ディスクを用いる際に、 φ 2. 8mm以上、 φ 4.
5mm以下であることが好まし!/、。
[0151] 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディ スクドライブ装置を有する。
[0152] ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明す ると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録 再生装置本体力 光ディスクを搭載した状態で保持可能なトレイのみが外部に取り 出される方式と、光ピックアップ装置等が収納されて 、る光ディスクドライブ装置本体 ごと、外部に取り出される方式とがある。
[0153] 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備さ れて 、るがこれに限られるものではな 、。ハウジング等に収納された光ピックアップ装 置、光ピックアップ装置をノヽウジングごと光ディスクの内周あるいは外周に向けて移動 させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジン グを光ディスクの内周ある ヽは外周に向けてガイドするガイドレールなどを有した光ピ ックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等で ある。
[0154] 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可 能なトレイおよびトレィを摺動させるためのローデイング機構等が設けられ、後者の方 式にはトレイおよびローデイング機構がなく、各構成部材が外部に引き出し可能なシ ヤーシに相当するドロワ一に設けられていることが好ましい。
[0155] 本発明によれば、簡単且つ低コストの構成で、異なる 3種の光ディスク(例えば、青 紫色レーザ光源を使用する高密度光ディスクと DVDと CDの 3つの光ディスク)に対 して、一つの対物光学素子で情報の記録及び Z又は再生を適切に行うことができる 。カロえて、 3つの異なる光ディスクの全てにおいて、無限系の光学系を用いる場合で あっても、トラッキング、特に第 3光ディスクの記録及び Z又は再生を行う際のトラツキ ングの正確性を保つことができる光ピックアップ装置、対物光学素子および光情報記 録再生装置を提供することが可能となる。さらに、単玉の対物光学素子で、異なる 3 種の光ディスクに対して、情報の記録及び Z又は再生を適切に行うことができる光ピ ックアップ装置、対物光学素子および光情報記録再生装置を提供することが可能に なる。さらに、対物光学素子として、プラスチックレンズを用いたとしても、温度特性を 良好にし、 3種類のディスクに対して情報の記録及び Z又は再生を適切に行うことが できる光ピックアップ装置、対物光学素子及び光情報記録再生装置を提供すること が可能になる。
実施例
[0156] 以下、本発明の実施の形態を図面を参照して説明する。図 3は、異なる光ディスク である BDと DVDと CDに対して適切に情報の記録及び/又は再生を行うことができ る本実施の形態の光ピックアップ装置 PU1の構成を概略的に示す図である。かかる 光ピックアップ装置 PU1は、光情報記録再生装置に搭載できる。ここでは、第 1光デ イスクを BDとし、第 2光ディスクを DVDとし、第 3光ディスクを CDとする。なお、本発 明は、本実施の形態に限られるものではない。
[0157] 光ピックアップ装置 PU1は、対物光学素子 OBJ、絞り ST、コリメートレンズ CL偏光 ダイクロイツクプリズム PPS、BDに対して情報の記録 Z再生を行う場合に発光され波 長 405nmのレーザ光束 (第一光束)を射出する第一半導体レーザ LD1 (第一光源) と、 BDの情報記録面 RL1からの反射光束を受光する第一の受光素子 PD1と、レー ザモジュール LM等を有する。 [0158] また、レーザモジュール LMは、 DVDに対して情報の記録 Z再生を行う場合に発 光され波長 658nmのレーザ光束 (第二光束)を射出する第二半導体レーザ EP1 (第 二光源)と、 CDに対して情報の記録 Z再生を行う場合に発光され 785nmのレーザ 光束 (第三光束)を射出する第三半導体レーザ EP2 (第三光源)と、 DVDの情報記 録面 RL2からの反射光束を受光する第二の受光素子 DS 1と、 CDの情報記録面 RL 3からの反射光束を受光する第三の受光素子 DS2と、プリズム PSと、を有している。
[0159] 図 1及び図 4に示されるように、本実施の形態の対物光学素子 OBJにおいて、光源 側の非球面光学面に光軸を含む中央領域 CNと、その周囲に配置された周辺領域 MDと、更にその周囲に配置された最周辺領域 OTと力 光軸を中心とする同心円状 に形成されている。なお、図 1及び図 4の中央領域、周辺領域、最周辺領域の面積な どの比率は正確には表されて 、な 、。
[0160] 青紫色半導体レーザ LD1から射出された第一光束( λ l =405nm)の発散光束は 、偏光ダイクロイツクプリズム PPSを透過し、コリメートレンズ CLにより平行光束とされ た後、図示しない 1Z4波長板により直線偏光から円偏光に変換され、絞り STにより その光束径が規制され、対物光学素子 OBJによって厚さ 0. 0875mmの保護基板 P L 1を介して、 BDの情報記録面 RL 1上に形成されるスポットとなる。
[0161] 情報記録面 RL1上で情報ピットにより変調された反射光束は、再び対物光学素子 OBJ、絞り STを透過した後、図示しない 1Z4波長板により円偏光から直線偏光に変 換され、コリメートレンズ CLにより収斂光束とされ、偏光ダイクロイツクプリズム PPSを 透過した後、第一の受光素子 PD1の受光面上に収束する。そして、第一の受光素 子 PD1の出力信号を用いて、 2軸ァクチユエータ ACにより対物光学素子 OBJをフォ 一力シングゃトラッキングさせることで、 BDに記録された情報を読み取ることができる
[0162] 赤色半導体レーザ EP1から射出された第二光束(λ 2 = 658nm)の発散光束は、 プリズム PSで反射された後、偏光ダイクロイツクプリズム PPSにより反射され、コリメ一 トレンズ CLにより平行光束とされた後、図示しない 1Z4波長板により直線偏光から 円偏光に変換され、対物光学素子 OBJに入射する。ここで、対物光学素子 OBJの中 央領域と周辺領域により集光された (最周辺領域を通過した光束はフレア化され、ス ポット周辺部を形成する)光束は、厚さ 0. 6mmの保護基板 PL2を介して、 DVDの情 報記録面 RL2に形成されるスポットとなり、スポット中心部を形成する。
[0163] 情報記録面 RL2上で情報ピットにより変調された反射光束は、再び対物光学素子 OBJ、絞り STを透過した後、図示しない 1Z4波長板により円偏光から直線偏光に変 換され、コリメートレンズ CLにより収斂光束とされ、偏光ダイクロイツクプリズム PPSに より反射された後、その後、プリズム内で 2回反射された後、第二の受光素子 DS1に 収束する。そして、第二の受光素子 DS1の出力信号を用いて DVDに記録された情 報を読み取ることができる。
[0164] 赤外半導体レーザ EP2から射出された第三光束(λ 3 = 785nm)の発散光束は、 プリズム PSで反射された後、偏光ダイクロイツクプリズム PPSにより反射され、コリメ一 トレンズ CLにより平行光束とされた後、図示しない 1Z4波長板により直線偏光から 円偏光に変換され、対物光学素子 OJTに入射する。ここで、対物光学素子 OBJの中 央領域により集光された (周辺領域及び最周辺領域を通過した光束はフレア化され 、スポット周辺部を形成する)光束は、厚さ 1. 2mmの保護基板 PL3を介して、 CDの 情報記録面 RL3上に形成されるスポットとなる。
[0165] 情報記録面 RL3上で情報ピットにより変調された反射光束は、再び対物光学素子 OBJ、絞り STを透過した後、図示しない 1Z4波長板により円偏光から直線偏光に変 換され、コリメートレンズ CLにより収斂光束とされ、偏光ダイクロイツクプリズム PPSに より反射された後、その後、プリズム内で 2回反射された後、第三の受光素子 DS2に 収束する。そして、第三の受光素子 DS2の出力信号を用いて CDに記録された情報 を読み取ることができる。
[0166] 青紫色半導体レーザ LD1から出射された第一光束が平行光束で対物光学素子 O BJに入射したときに、中央領域の第一光路差付与構造、周辺領域の第二光路差付 与構造及び最周辺領域は、第一光束の球面収差を適正に補正し、保護基板の厚さ t 1の BDに対して適切に情報の記録及び Z又は再生を行うことができる。又、赤色半 導体レーザ EP1から出射された第二光束が平行光束で対物光学素子 OBJに入射し たときに、中央領域の第一光路差付与構造、周辺領域の第二光路差付与構造は、 B Dと DVDの保護基板の厚さの差異及び第一光束と第二光束の波長の差異に起因し て発生する第二光束の球面収差を適正に補正し、最周辺領域は第二光束を DVD の情報記録面上でフレアとするため、保護基板の厚さ t2の DVDに対して適切に情 報の記録及び Z又は再生を行うことができる。又、赤外半導体レーザ EP2から出射さ れた第三光束が平行光束で対物光学素子 OBJに入射したときに、中央領域の第一 光路差付与構造は、 BDと CDの保護基板の厚さの差異及び第一光束と第三光束の 波長の差異に起因して発生する第三光束の球面収差を適正に補正し、周辺領域の 第二光路差付与構造及び最周辺領域は第三光束を CDの情報記録面上でフレアと するため、保護基板の厚さ t3の CDに対して適切に情報の記録及び Z又は再生を行 うことができる。また、中央領域の第一光路差付与構造は、記録再生に用いられる第 三光束の必要光の集光スポットと、第三光束の不要光の集光スポットとを適正な距離 だけ離し、それにより、 CDを用いた際のトラッキング特性も良好にする。力!]えて、周辺 領域の第二光路差付与構造は、第一光束及び第二光束に対して、レーザの製造誤 差等の理由によって波長が基準波長力 ずれた際に、スフエロクロマテイズム (色球 面収差)を補正することができる。
[0167] <実施例 1〜3 >
次に、上述の実施の形態に用いることができる実施例について説明する。以下の 実施例 1〜3において、対物光学素子は、単玉のガラスレンズである。対物光学素子 の光学面の中央領域 CNの全面には、第一光路差付与構造が形成されている。光 学面の周辺領域 MDの全面には、第二光路差付与構造が形成されている。光学面 の最周辺領域 OTは、非球面の屈折面である。
[0168] また、実施例 1〜3において、第一光路差付与構造は、第一基礎構造と第二基礎 構造とが重畳された構造となっており、鋸歯状の回折構造とバイナリ構造とが重畳さ れた形状となっている。断面形状は、図 2 (c)で示されているような形状である。鋸歯 状の回折構造である第一基礎構造は、第 1光束の 2次の回折光の光量を他のいかな る次数 (0次即ち透過光も含む)の回折光の光量よりも大きくし、第 2光束の 1次の回 折光の光量を他の 、かなる次数 (0次即ち透過光も含む)の回折光の光量よりも大き くし、第 3光束の 1次の回折光の光量を他の 、かなる次数 (0次即ち透過光も含む)の 回折光量よりも大きくするように設計されている。また、バイナリ構造である第二基礎 構造は、所謂、波長選択回折構造であり、第 1光束の 0次の回折光 (透過光)の光量 を他のいかなる次数の回折光の光量よりも大きくし、第 2光束の 0次の回折光 (透過 光)の光量を他の 、かなる次数の回折光の光量よりも大きくし、第 3光束の ± 1次の回 折光の光量を他の ヽかなる次数 (0次即ち透過光も含む)の回折光量よりも大きくす るように設計されている。
[0169] また、実施例 1〜3において、第一光路差付与構造は、図 2 (c)に示すように、中央 領域の光軸側の領域にぉ 、ては、段差が光軸側を向 、て 、る鋸歯状の構造とバイ ナリ構造が重畳されており、中央領域の周辺領域側の領域においては、段差が光軸 側とは逆を向いている鋸歯状の構造とバイナリ構造が重畳されており、その間には、 鋸歯状の構造の段差の向きを切り替えるために必要な遷移領域が設けられて ヽる。 この遷移領域は、回折構造により透過波面に付加される光路差を光路差関数で表 現した時、光路差関数の極値となる点に相当する領域である。なお、光路差関数が 極値となる点を持つと、光路差関数の傾きが小さくなるので、輪帯ピッチを広げること が可能となり、回折構造の形状誤差による透過率低下を抑制できる。
[0170] 実施例 1〜3において、第二光路差付与構造は、第一基礎構造と第四基礎構造を 重畳した構造となっており、鋸歯状の回折構造とより荒い鋸歯状の回折構造とが重 畳された形状となっている。なお、細かい方の鋸歯状の回折構造では段差が光軸側 とは反対を向 、ており、荒 、方の鋸歯状の回折構造では段差が光軸側を向 、て 、る 。断面形状は、図 2 (d)で示されているような形状である。鋸歯状の回折構造である 第一基礎構造は、第 1光束の 2次の回折光の光量を他のいかなる次数 (0次即ち透 過光も含む)の回折光の光量よりも大きくし、第 2光束の 1次の回折光の光量を他の いかなる次数 (0次即ち透過光も含む)の回折光の光量よりも大きくし、第 3光束の 1 次の回折光の光量を他のいかなる次数 (0次即ち透過光も含む)の回折光量よりも大 きくするように設計されている。また、荒い鋸歯状の回折構造である第四基礎構造は 、第 1光束の 5次の回折光の光量を他のいかなる次数の回折光の光量よりも大きくし 、第 2光束の 3次の回折光の光量を他のいかなる次数の回折光の光量よりも大きくし 、第 3光束の 3次及び 2次の回折光の光量を他のいかなる次数の回折光量よりも大き くするように設計されている。なお、図 2 (c)及び図 2 (d)では、理解しやすいように断 面の形状が誇張して描かれて 、る。
[0171] 表 1〜表 18にレンズデータを示す。なお、これ以降において、 10のべき乗数(例え ば、 2. 5 X 10— 3)を、 E (例えば、 2. 5E— 3)を用いて表すものとする。
[0172] 対物光学素子の光学面は、それぞれ数 1式に、表に示す係数を代入した数式で規 定される、光軸の周りに軸対称な非球面に形成されて 、る。
[0173] [数 1]
Figure imgf000057_0001
[0174] ここで、 X (h)は光軸方向の軸 (光の進行方向を正とする)、 κは円錐係数、 A2iは 非球面係数、 hは光軸力 の高さである。
[0175] また、回折構造により各波長の光束に対して与えられる光路長は、数 2式の光路差 関数に、表に示す係数を代入した数式で規定される。
[0176] [数 2]
Figure imgf000057_0002
[0177] 尚、 λは入射光束の波長、 λ Βは設計波長(ブレーズィ匕波長)、 dorは回折次数、 C 2iは光路差関数の係数である。
<実施例 1 >
以下の表 1〜3に、実施例 1のレンズデータを示す。また、図 5 (a)、 5 (b)及び 5 (c) において、実施例 1の縦球面収差図を示す。縦球面収差図の縦軸の 1. 0は、 BD〖こ おいては、 NA0. 85または Φ 3. 74mmを表し、 DVDにおいては、 NA0. 60より僅 かに大きな値、または、 Φ 2. 68mmより僅かに大きな値を表し、 CDにおいては、 NA 0. 45より僅かに大きな値、または、 Φ 2. 18mmより僅かに大きな値を表す。なお、実 施 ί列 1にお!/ヽて、 L = 0. 28mmである。した力 ^つて、 L/f = 0. 28/2. 42 = 0. 116 である。
Figure imgf000058_0001
単玉回折レンズ実施例 レンズデータ
対物レンズの焦点距離 f 1 = 2.20mm f 2 = 2.28mm f 3 = 2.42mm
開口数 Ml : 0,85 NA2 : 0.60 NA 3 : 0.45
倍率 m l : 0 m 2 : 0 m 3 : 0
Figure imgf000058_0002
0178 OVAϊεϊ 9 Ζ9:/£1
Figure imgf000059_0001
〕fi〔 w∞ΐοο
Figure imgf000060_0001
<実施例 2>
以下の表 4〜6に、実施例 2のレンズデータを示す。また、図 6(a)、 6(b)及び 6(c) において、実施例 2の縦球面収差図を示す。縦球面収差図の縦軸の 1.0は、 BDに おいては、 NAO. 85または Φ 3. 74mmを表し、 DVDにおいては、 NAO. 60より僅 かに大きな値、または、 Φ 2. 68mmより僅かに大きな値を表し、 CDにおいては、 NA 0. 45より僅かに大きな値、または、 Φ 2. 12mmより僅かに大きな値を表す。なお、実 施 f列 2にお!/ヽて、 L = 0. 16mmである。した力 ^つて、 L/f =0. 16/2. 36 = 0. 068 である。
[表 4]
単玉回折レンズ実施例 レンズデ一タ
対物レンズの焦点距離 f 1 = 2.20 f 2 = 2.28 f 3 = 2.36mm
開口数 NA1 : 0.85 NA2 0.60 NA 3 0.45
倍率 m l : 0 m 2 0 m 3 0 第 i面 ri di(405nm) ni (405nm) di(658nra) ni (658nm) di(785nm) ni(785nra)
0 oo oo oo
1(絞り径) 0.0(^3.74mm) 0.0( 02.68mm) 0.0(02.12mm)
2 1.5810 2.430 1.605 2.430 1.586 2.430 1.582
2- 1 1.5825
2— 2 1.5820
2-3 1.5809
1.5808
2-5 1.5811
2— 6 1.5316
3 -4.7543 0.79 0.54 0.26
4 oo 0.0875 1.620 0.600 1.577 1.200 1.571
5 oo
Figure imgf000063_0001
Figure imgf000063_0002
Figure imgf000064_0001
<実施例 3〉
以下の表 7〜9に、実施例 3のレンズデータを示す。また、図 7(a)、 7(b)及び 7(c) において、実施例 2の縦球面収差図を示す。縦球面収差図の縦軸の 1.0は、 BDに おいては、 NAO. 85または Φ 3. 74mmを表し、 DVDにおいては、 NAO. 60より僅 かに大きな値、または、 Φ 2. 68mmより僅かに大きな値を表し、 CDにおいては、 NA 0. 45より僅かに大きな値、または、 Φ 2. 17mmより僅かに大きな値を表す。なお、実 施 f列 3にお!/ヽて、 L = 0. 28mmである。した力 ^つて、 L/f =0. 28/2. 43 = 0. 115 である。
[表 7]
Figure imgf000066_0001
単玉回折レンズ実施例 レンズデ一タ
対物レンズの焦点距離 f 1 = 2.20 f 2 = 2.28 f 3 = 2.43mni 開口数 Ml : 0.85 NA2 : 0.60 NA3 : 0.45 倍率 m l : 0 m 2 : 0 m 3 0
Figure imgf000066_0002
Figure imgf000067_0001
Figure imgf000068_0001
[0189] <実施例 4>
以下の実施例 4においては、対物光学素子は、単玉のポリオレフイン系のプラスチ ックレンズである。対物光学素子の光学面の中央領域 CNの全面には、第一光路差 付与構造が形成されている。光学面の周辺領域 MDの全面には、第二光路差付与 構造が形成されている。光学面の最周辺領域 OTの全面には、第三光路差付与構 造が設けられている。
[0190] また、実施例 4において、第一光路差付与構造は、第一基礎構造、第二基礎構造 に加えて、第三基礎構造が重畳された構造となっており、二種類の鋸歯状の回折構 造とバイナリ構造とが重畳された形状となっている。断面形状は、図 8において CNと 示されている部分として示されている。鋸歯状の回折構造である第三基礎構造は、 第 1光束の 10次の回折光の光量を他の 、かなる次数 (0次即ち透過光も含む)の回 折光の光量よりも大きくし、第 2光束の 6次の回折光の光量を他の 、かなる次数 (0次 即ち透過光も含む)の回折光の光量よりも大きくし、第 3光束の 5次の回折光の光量 を他の 、かなる次数 (0次即ち透過光も含む)の回折光量よりも大きくするように設計 されている。第一基礎構造の光軸方向の段差量は、第 1光束に対して第 1波長の略 2波長分の光路差を与え、第 2光束に対して第 2波長の略 1. 2波長分の光路差を与 え、第 3光束に対して第 3波長の略 1波長分の光路差を与えるような段差量である。 第二基礎構造の光軸方向の段差量は、第 1光束に対して第 1波長の略 5波長分の光 路差を与え、第 2光束に対して第 2波長の略 3波長分の光路差を与え、第 3光束に対 して第 3波長の略 2. 5波長分の光路差を与えるような段差量である。第三基礎構造 の光軸方向の段差量は、第 1光束に対して第 1波長の略 10波長分の光路差を与え、 第 2光束に対して第 2波長の略 6波長分の光路差を与え、第 3光束に対して第 3波長 の略 5波長分の光路差を与えるような段差量である。尚、第三基礎構造は、第一基礎 構造及び第二基礎構造とは基準となる母非球面が異なる。
実施例 4において、第二光路差付与構造は、図 8の MDとして示されているように、 第一基礎構造と第四基礎構造を重畳した構造となっており、二種類の鋸歯状の回折 構造が重畳された形状となっている。第四基礎構造の光軸方向の段差量は、第 1光 束に対して第 1波長の略 5波長分の光路差を与え、第 2光束に対して第 2波長の略 3 波長分の光路差を与え、第 3光束に対して第 3波長の略 2. 5波長分の光路差を与え るような段差量である。尚、第四基礎構造は、第一基礎構造とは基準となる母非球面 が異なる。また、第一光路差付与構造における第三基礎構造と第二光路差付与構 造における第四基礎構造は連続して設けられている。第一光路差付与構造における 第三基礎構造は、光軸力も離れるに従ってその深さが深くなつていき、第一光路差 付与構造と第二光路差付与構造との境から、今度は、第二光路差付与構造におけ る第四基礎構造は、光軸力 離れるに従って、その深さが浅くなつていく構造となつ ている。 [0192] 実施例 4において、第三光路差付与構造は、図 8の OTとして示されているように、 第四基礎構造のみを有する構造となっており、一種類の鋸歯状の回折構造のみを 有する形状となっている。第三光路差付与構造における第四基礎構造は、光軸と直 交する方向に光軸から離れるにつれて、光学素子の内側に入り込んでいき、あるとこ ろを境に、光軸力 離れるにつれて、光学素子の外側へと向力うような構造ではない
[0193] 以下の表 10〜13に、実施例 4のレンズデータを示す。また、図 9 (a)、 9 (b)、 9 (c) において、実施例 4の縦球面収差図を示す。縦球面収差図の縦軸の 1. 0は、 BD〖こ お ヽて ίま、 NAO. 85また ίま Φ 3. 74mmを表し、 DVDにお!/ヽて ίま、 NAO. 6より僅力 に大きな値、または、 2. 70mmより僅かに大きな値を表し、 CDにおいては、 NAO. 4 5より僅かに大きな値または、 Φ 2. 37mmより僅かに大きな値を表す。なお、実施例 4にお!/ヽて、 L = 0. 60mmである。した力 ^つて、 L/f =0. 60/2. 53 = 0. 237であ る。
[0194] 実施例 4の第一光路差付与構造における全ての輪帯は、段差量が 3. 62 m〜4 . 23 μ mのグノレープと、段差量力 2. 22 μ m〜2. 56 μ mのグノレープに分けられる。 尚、 λ Βは 405nmである。 λ B'は 390nm〜400nmの任意の値とする。従って、実 施例 4の第一光路差付与構造における全ての輪帯の段差量が、 dCと dDの 、ずれか を満たすことになる。また、第一光路差付与構造における全ての輪帯のピッチ幅は、 5. 3 111〜110 111の範囲に含まれる。また、第一光路差付与構造における全ての 輪帯の(段差量 Zピッチ幅)の値は、 0. 8以下である。
[0195] [表 10]
Ss〔I190 単玉回折レンズ実施例 レンズデータ
対物レンズの焦点距離 f 1 = 2.20mm f 2 = 2.28匪 f 3 = 2.53誦 開口数 NA1 : 0.85 NA2 : 0.60 NA3 : 0.45 倍率 m l : 0 m 2 : 0 m 3 : 0
Figure imgf000071_0001
¾:-712019
Figure imgf000072_0001
/ β 9ϊεϊ/-00ί/vdZsso/-osfcl> 89.
Figure imgf000073_0001
Figure imgf000074_0001
[0199] また、実施例 4の対物光学素子の温度特性については、 δ SAT1は、 +0.0033 WFE rms/°Cであり、 δ SAT2は、 +0.0019WFE rmsZ。Cである。また、第 一波長における対物光学素子の fが 2.2mmであるので、 δ SATlZfは、 +0.001 5WFE rmsZ(°C'mm)である。 δ SAT2Zfは、 +0.0009WFE λ rms/ (°C - m m)である。また、実施例 4の対物光学素子の波長特性については、 δ SAえが、 0 .03 irmsZnmであり、 SSA /fが、—0.0136え rms/(nm'mm)である。尚 、使用波長は 405nmであり、波長特性における環境温度 25°Cである。
[0200] さらに、コリメータレンズ CLとして、対物光学素子と同じ材料 (ポリオレフイン系のプ ラスチック)で作られた単玉のコリメータレンズ CLを用いて、実施例 4の対物光学素子 を糸且み合わせて用 、た場合、 S SAT3iま、 +0. 0004WFE rms/°Cであり、 δ S AT3Zfは、 +0. 0002WFE rmsZ(°C'mm)である。コリメータレンズのレンズデ ータを以下の表 14に示す。
[0201] [表 14]
Figure imgf000075_0001
[0202] <実施例 5>
以下の実施例 5においては、対物光学素子は、単玉のポリオレフイン系のプラスチ ックレンズである。対物光学素子の光学面の中央領域 CNの全面には、第一光路差 付与構造が形成されている。光学面の周辺領域 MDの全面には、第二光路差付与 構造が形成されている。光学面の最周辺領域 οτの全面には、第三光路差付与構 造が設けられている。断面形状は、図 8に近い形状となる。
[0203] また、実施例 5において、第一光路差付与構造は、第一基礎構造、第二基礎構造 に加えて、第三基礎構造が重畳された構造となっており、二種類の鋸歯状の回折構 造とバイナリ構造とが重畳された形状となって 、る。
[0204] 実施例 5において、第二光路差付与構造は、第一基礎構造と第四基礎構造を重畳 した構造となっており、二種類の鋸歯状の回折構造が重畳された形状となっている。
[0205] 実施例 5において、第三光路差付与構造は、第四基礎構造のみを有する構造とな つており、一種類の鋸歯状の回折構造のみを有する形状となっている。
[0206] 以下の表 15〜18に、実施例 5のレンズデータを示す。また、図 11 (a)、 11 (b) , 11
(c)において、実施例 5の縦球面収差図を示す。縦球面収差図の縦軸の 1. 0は、 B Dにおいては、 NA0. 85または Φ 3. 74mmを表し、 DVDにおいては、 NA0. 6より 僅かに大きな値、または、 Φ 2. 71mmより僅かに大きな値を表し、 CDにおいては、 NA0. 45より僅かに大きな値、または、 Φ 2. 24mmより僅かに大きな値を表す。なお 、実施 ί列 5にお!/ヽて、 L = 0. 38mmである。した力 ^つて、 L/f=0. 38/2. 45 = 0. 155である。
[0207] [表 15]
¾〕〕〔〔160802 単玉回折レンズ実施例 レンズデータ
対物レンズの焦点距離 f 1 = 2.20mm f 2 = 2.29mm f 3 = 2.45mm 開口数 Ml : 0.85 NA2 : 0.60 NA3 : 0.45 倍率 ml : 0 m 2 : 0 m 3 : 0
Figure imgf000077_0001
091702
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000079_0002
Figure imgf000080_0001
また、実施例 5の対物光学素子の温度特性については、 S SAT1は、 +0. 00308 WFE rms/°Cであり、 δ SAT2は、 +0. 00176WFE rms/°Cである。また、第 一波長における対物光学素子の fが 2. 20mmであるので、 δ SATlZfは、 +0. 00 14WFEえ rms/(°C'mm)である。 δ SAT2Zfは、 +0. 0008WFE λ rms/ (°C · mm)である。また、実施例 5の対物光学素子の波長特性については、 δ SAえが、 0. 02618 ^ rms/nm"Cfc 、 3 3 /;[カ 0. 0119 rms/ (nm'mm)で ある。尚、使用波長は 405nmであり、波長特性における環境温度は 25°Cである。
[0212] さらに、コリメータレンズ CLとして、実施例 4で用いたものと同じ単玉のコリメータレン ズ CLを用いて、実施例 5の対物光学素子を組み合わせて用いた場合、 δ SAT3は 、 +0. 000198WFE rmsZ。Cであり、 δ SAT3Zfは、 +0. 00009WFE λ rms Z(°C *mm)である。
[0213] 次に、実施例 4や 5及びそれに類似の対物光学素子を用いて、光ピックアップ装置 を製造する方法の一例を以下に説明する。ここでは、最も発振波長のバラツキが大き い青紫色半導体レーザ LD1について対物光学素子の最適化を考える。まず、青紫 色半導体レーザ LD1の基準波長が 405nmであるとしたときに、設計波長を 402nm とした場合に球面収差が最適となる光路差付与構造を有する対物光学素子を設計し 、それに応じた第 1の金型を作成して、第 1の金型により成形した対物光学素子を第 1グループとする。設計波長を 403nmとした場合に球面収差が最適となる光路差付 与構造を有する対物光学素子を設計し、それに応じた第 2の金型を作成して、第 2の 金型により成形した対物光学素子を第 2グループとする。設計波長を 404nmとした 場合に球面収差が最適となる光路差付与構造を有する対物光学素子を設計し、そ れに応じた第 3の金型を作成して、第 3の金型により成形した対物光学素子を第 3グ ループとする。設計波長を 405nmとした場合に球面収差が最適となる光路差付与 構造を有する対物光学素子を設計し、それに応じた第 4の金型を作成して、第 4の金 型により成形した対物光学素子を第 4グループとする。設計波長を 406nmとした場 合に球面収差が最適となる光路差付与構造を有する対物光学素子を設計し、それ に応じた第 5の金型を作成して、第 5の金型により成形した対物光学素子を第 5ダル ープとする。設計波長を 407nmとした場合に球面収差が最適となる光路差付与構 造を有する対物光学素子を設計し、それに応じた第 6の金型を作成して、第 6の金型 により成形した対物光学素子を第 6グループとする。設計波長を 408nmとした場合 に球面収差が最適となる光路差付与構造を有する対物光学素子を設計し、それに 応じた第 7の金型を作成して、第 7の金型により成形した対物光学素子を第 7グルー プとする。尚、本実施の形態では、光路差付与構造の仕様に応じて対物光学素子を
7グループに分けた力 これに限らず例えば 3、 5グループなどに分けても良い。
[0214] 図 15は、成形された対物レンズ OBJの斜視図である。図 15に示すように、対物光 学素子 OBJにおける光学面 OPの周囲に配置された環状のフランジ Fには、凸部又 は凹部状の識別マーク Mが形成されている。これは、金型 (不図示)のフランジ転写 面に、対応する凹部又は凸部を形成しておくことで、対物光学素子 OBJの成形時に 同時に転写形成できる。本実施の形態では、識別マーク Mの数が 1つの場合、第 1 グループに属する対物レンズであることを示し、識別マーク Mの数が 2つの場合、第 2 グループに属する対物レンズであることを示し、識別マーク Mの数が 3つの場合、第 3 グループに属する対物レンズであることを示し、以下同様とする。尚、グループの分 け方としては、以上に限らず、例えばグループ分けされた対物レンズのトレイ、カート リッジ、或いはそれを梱包する箱などに、異なる識別マークを付与しても良い。
[0215] 図 16は、本実施の形態に力かる光ピックアップ装置の製造方法を示すフローチヤ ート図である。まず、図 16のステップ S101で、任意の青紫色半導体レーザの発振波 長 λ 1を測定する。次に、ステップ S102で、測定した発振波長 λ 1力 01. 5nm以 上 402. 5nm未満なら n= lとし、測定した発振波長 λ ΐが 402. 5nm以上 403. 5n m未満なら n= 2とし、測定した発振波長 λ ΐが 403. 5nm以上 404. 5nm未満なら n = 3とし、測定した発振波長 λ ΐが 404. 5nm以上 405. 5nm未満なら n=4とし、測 定した発振波長 λ ΐが 405. 5nm以上 406. 5nm未満なら n= 5とし、測定した発振 波長 λ ΐ力 06. 5nm以上 407. 5nm未満なら n=6とし、測定した発振波長 λ 1が 4 07. 5nm以上 408. 5nm未満なら n= 7とする。尚、青紫色半導体レーザの発振波 長 λ ΐ力 401. 5nm未満或いは 408. 5nm以上であった場合、許容公差範囲外の 製品として別のものと置換すればよい。
[0216] 続くステップ S103で、第 nグループ内の対物光学素子を選択する。更に、ステップ S104で、測定した青紫色半導体レーザと、選択した対物光学素子を含む部品を組 み立てることで、光ピックアップ装置が完成する。
[0217] 本発明は、明細書に記載の実施例に限定されるものではなぐ他の実施例'変形例 を含むことは、本明細書に記載された実施例や思想力 本分野の当業者にとって明 らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明 の範囲は後述するクレームによって示されて 、る。

Claims

請求の範囲
第一波長 λ 1の第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、
第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、
前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面上に集 光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情 報記録面上に集光させ、前記第三光束を厚さが t3 (t2<t3)の保護基板を有する第 3光ディスクの情報記録面上に集光させるための対物光学素子と、を有する光ピック アップ装置であって、
前記光ピックアップ装置は、前記第一光束を前記第 1光ディスクの情報記録面上に 集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第 三光束を前記第 3光ディスクの情報記録面上に集光させることによって情報の記録 及び Z又は再生を行い、
前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少 なくとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺 領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
下記の式を満たすことを特徴とする光ピックアップ装置。
+ 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027 - 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
[2] 下記の式を満たすことを特徴とする請求の範囲第 1項に記載の光ピックアップ装置
0≤ δ SAT2/f (WFE λ rms/ (°C - mm) )≤ + 0. 00136
但し、 δ SAT2は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の δ SA3 / δ Τ、即ち、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における前記 第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の 3次球面収差 の温度変化率を指す。
[3] 前記光ピックアップ装置は、カップリングレンズを有し、
前記カップリングレンズは、プラスチックレンズであり、
下記の式を満たすことを特徴とする請求の範囲第 1項又は第 2項に記載の光ピック アップ装置。
0≤ δ SAT3/f (WFE λ rms/ (°C - mm) )≤ + 0. 00091
但し、 δ SAT3は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記カップリングレンズと前記 対物光学素子を含んだ光学系全体の δ SA3/ δ Τ、即ち、使用波長 (温度変化に 伴う波長変動が 0. 05nm/°C)における前記第 1光ディスクの記録及び Z又は再生 を行う際の前記光学系全体の 3次球面収差の温度変化率を指す。
[4] 前記第一光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又は第七基 礎構造を有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の光ピックアップ装置。
[5] 前記第二光路差付与構造は、少なくとも前記第三基礎構造、第四基礎構造又は第 七基礎構造のいずれか一つを有する構造であることを特徴とする請求の範囲第 4項 に記載の光ピックアップ装置。
[6] 前記対物光学素子の光学面は、前記周辺領域の周りに屈折面である最周辺領域 を有し、三つの領域を有することを特徴とする請求の範囲第 1項乃至第 5項のいずれ 力 1項に記載の光ピックアップ装置。
[7] 前記対物光学素子の光学面は、前記周辺領域の周りに、第三光路差付与構造を 有する最周辺領域を有し、三つの領域を有することを特徴とする請求の範囲第 1項 乃至第 5項のいずれか 1項に記載の光ピックアップ装置。
[8] 前記第三光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又は第七基 礎構造の!/ヽずれか一つを有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 請求の範囲第 7項に記載の光ピックアップ装置。
[9] 前記対物光学素子は、前記対物光学素子の前記最周辺領域を通過する前記第一 光束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができる ように集光することを特徴とする請求の範囲第 7項又は第 8項に記載の光ピックアップ 装置。
[10] 前記第一光束に対する前記対物光学素子の像側開口数 (NA)が 0. 8以上、 0. 9 以下であることを特徴とする請求の範囲第 1項乃至第 9項のいずれ力 1項に記載の 光ピックアップ装置。
[11] 前記対物光学素子は、単玉レンズであることを特徴とする請求の範囲第 1項乃至第
10項のいずれ力 1項に記載の光ピックアップ装置。
[12] 前記対物光学素子は、プラスチックレンズであることを特徴とする請求の範囲第 7項 乃至第 11項の!/、ずれか 1項に記載の光ピックアップ装置。
[13] 第一波長 λ 1の第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、
第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、 前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面上に集 光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情 報記録面上に集光させ、前記第三光束を厚さが t3 (t2<t3)の保護基板を有する第 3光ディスクの情報記録面上に集光させるための対物光学素子と、を有する光ピック アップ装置であって、
前記光ピックアップ装置は、前記第一光束を前記第 1光ディスクの情報記録面上に 集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第 三光束を前記第 3光ディスクの情報記録面上に集光させることによって情報の記録 及び Z又は再生を行い、
前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少 なくとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺 領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子の温度変化に伴う屈折率変化による球面収差の変化を、温度 変化に伴う前記第一波長の波長変化により補正するような球面収差の波長依存性を 有することを特徴とする光ピックアップ装置。
第一波長 λ l (350nm≤ λ l≤440nm)の第一光束を射出する第一光源と、 前記第一光束を厚さが tl (0. 0750mm≤tl≤0. 125mm)の保護基板を有する 第 1光ディスクの情報記録面上に集光させるための対物光学素子と、を有する光ピッ クアップ装置であって、
前記光ピックアップ装置は、前記第一光束を前記第 1光ディスクの情報記録面上に 集光させることによって情報の記録及び Z又は再生を行い、
下記の式を満たすことを特徴とする光ピックアップ装置。
+ 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
- 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
第一波長 λ 1の第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、
第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源とを有し、前記第一光 束を用いて厚さが tlの保護基板を有する第 1光ディスクの情報の記録及び Ζ又は再 生を行 ヽ、前記第二光束を用いて厚さが t2 (tl≤t2)の保護基板を有する第 2光ディ スクの情報の記録及び Z又は再生を行い、前記第三光束を用いて厚さが t3 (t2< t3 )の保護基板を有する第 3光ディスクの情報の記録及び Z又は再生を行う光ピックァ ップ装置において用いられる対物光学素子であって、
前記対物光学素子の光学面は、前記対物光学素子の光学面は、中央領域と前記 中央領域の周りの周辺領域の少なくとも二つの領域を有し、前記中央領域は第一光 路差付与構造を有し、前記周辺領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
下記の式(1)を満たすことを特徴とする対物光学素子。
+ 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027 - 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
[16] 以下の条件式を満たすことを特徴とする請求の範囲第 15項に記載の対物光学素 子。
0≤ δ SAT2/f (WFE λ rms/ (°C - mm) )≤ + 0. 00136
但し、 δ SAT2は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の δ SA3 / δ Τ、即ち、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における前記 第 1光ディスクの記録及び Z又は再生を行う際の前記対物光学素子の 3次球面収差 の温度変化率を指す。
[17] 前記光ピックアップ装置は、カップリングレンズを有し、
前記カップリングレンズは、プラスチックレンズであり、 以下の条件式を満たすことを特徴とする請求の範囲第 15項又は第 16項に記載の 対物光学素子。
0≤ δ SAT3/f (WFE λ rms/ (°C - mm) )≤ + 0. 00091
但し、 δ SAT3は、使用波長(温度変化に伴う波長変動が 0. 05nm/°C)における 前記第 1光ディスクの記録及び Z又は再生を行う際の前記カップリングレンズと前記 対物光学素子を含んだ光学系全体の δ SA3/ δ Τ、即ち、使用波長 (温度変化に 伴う波長変動が 0. 05nm/°C)における前記第 1光ディスクの記録及び Z又は再生 を行う際の前記光学系全体の 3次球面収差の温度変化率を指す。
[18] 前記第一光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又は第七基 礎構造を有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 請求の範囲第 15項乃至第 17項のいずれか 1項に記載の対物光学素子。
[19] 前記第二光路差付与構造は、少なくとも前記第三基礎構造、第四基礎構造又は第 七基礎構造のいずれか一つを有する構造であることを特徴とする請求の範囲第 18 項に記載の対物光学素子。
[20] 前記対物光学素子の光学面は、前記周辺領域の周りに屈折面である最周辺領域 を有し、三つの領域を有することを特徴とする請求の範囲第 15項乃至第 19項のい ずれか 1項に記載の対物光学素子。
[21] 前記対物光学素子の光学面は、前記周辺領域の周りに、第三光路差付与構造を 有する最周辺領域を有し、三つの領域を有することを特徴とする請求の範囲第 15項 乃至第 19項のいずれか 1項に記載の対物光学素子。
[22] 前記第三光路差付与構造は、少なくとも第三基礎構造、第四基礎構造又は第七基 礎構造の!/ヽずれか一つを有する構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の 10次の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 5次の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、
前記第四基礎構造は、前記第四基礎構造を通過した前記第一光束の 5次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 3次及び 2次の回折 光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり、 前記第七基礎構造は、前記第七基礎構造を通過した前記第一光束の 2次の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 1次の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第三光束の 1次の回折光量を他 のいかなる次数の回折光量よりも大きくする光路差付与構造であることを特徴とする 請求の範囲第 21項に記載の対物光学素子。
[23] 前記対物光学素子は、前記対物光学素子の前記最周辺領域を通過する前記第一 光束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができる ように集光することを特徴とする請求の範囲第 21項又は第 22項に記載の対物光学 素子。
[24] 前記第一光束に対する前記対物光学素子の像側開口数 (NA)が 0. 8以上、 0. 9 以下であることを特徴とする請求の範囲第 15項乃至第 23項のいずれか 1項に記載 の対物光学素子。
[25] 前記対物光学素子は、単玉レンズであることを特徴とする請求の範囲第 15項乃至 第 24項の 、ずれか 1項に記載の対物光学素子。 [26] 前記対物光学素子は、プラスチックレンズであることを特徴とする請求の範囲第 21 項乃至第 25項のいずれか 1項に記載の対物光学素子。
[27] 第一波長 λ 1の第一光束を射出する第一光源と、
第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、
第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源とを有し、前記第一光 束を用いて厚さが tlの保護基板を有する第 1光ディスクの情報の記録及び Ζ又は再 生を行 ヽ、前記第二光束を用いて厚さが t2 (tl≤t2)の保護基板を有する第 2光ディ スクの情報の記録及び Z又は再生を行い、前記第三光束を用いて厚さが t3 (t2<t3 )の保護基板を有する第 3光ディスクの情報の記録及び Z又は再生を行う光ピックァ ップ装置において用いられる対物光学素子であって、
前記対物光学素子の光学面は、前記対物光学素子の光学面は、中央領域と前記 中央領域の周りの周辺領域の少なくとも二つの領域を有し、前記中央領域は第一光 路差付与構造を有し、前記周辺領域は第二光路差付与構造を有し、
前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子の温度変化に伴う屈折率変化による球面収差の変化を、温度 変化に伴う前記第一波長の波長変化により補正するような球面収差の波長依存性を 有することを特徴とする対物光学素子。
[28] 第一波長 λ 1 (350nm≤ λ l≤440nm)の第一光束を射出する第一光源を有し、 前記第一光束を前記第 1光ディスクの情報記録面上に集光させることによって情報 の記録及び z又は再生を行う光ピックアップ装置において用いられる対物光学素子 であって、
前記対物光学素子は、前記第一光束を厚さが tl (0. 0750mm≤tl≤0. 125mm )の保護基板を有する第 1光ディスクの情報記録面上に集光させ、
下記の式を満たすことを特徴とする対物光学素子。
+ 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
- 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、
使用波長における前記第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長における前記第 1光ディスクの記録及び Ζ又は再生を行う際の 前記対物光学素子の 3次球面収差の波長変化率を指し、 fは、前記第一光束におけ る前記対物光学素子の焦点距離を指す。
第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第 二光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第 三光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録 面上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディ スクの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護基板を 有する第 3光ディスクの情報記録面上に集光させるための対物光学素子と、を有し、 前記第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前 記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの 情報記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピック アップ装置を有する光情報記録媒体再生装置であって、
前記対物光学素子の光学面は、中央領域と前記中央領域の周りの周辺領域の少 なくとも二つの領域を有し、前記中央領域は第一光路差付与構造を有し、前記周辺 領域は第二光路差付与構造を有し、 前記対物光学素子は、前記対物光学素子の前記中央領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記中央領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、前記中央領域を通 過する前記第三光束を、前記第 3光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
前記対物光学素子は、前記対物光学素子の前記周辺領域を通過する前記第一光 束を、前記第 1光ディスクの情報記録面上に情報の記録及び Z又は再生ができるよ うに集光し、前記周辺領域を通過する前記第二光束を、前記第 2光ディスクの情報 記録面上に情報の記録及び Z又は再生ができるように集光し、
下記の式を満たすことを特徴とする光情報記録再生装置。
+ 0. 00045≤ δ S AT 1 /f ( WFE λ rms/ (°C · mm) )≤ + 0. 0027
- 0. 045≤ δ S A λ /f (WFE λ rms/ (nm - mm) )≤ - 0. 0045
但し、 δ SAT1は、使用波長(波長変動なし)における前記第 1光ディスクの記録及 び Z又は再生を行う際の前記対物光学素子の δ SA3/ δ Τ、即ち、使用波長 (波長 変動なし)における前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物 光学素子の 3次球面収差の温度変化率を指し、 δ SA は、使用波長における前記 第 1光ディスクの記録及び Z又は再生を行う際の δ SA3/ δ λ、即ち、使用波長に おける前記第 1光ディスクの記録及び Ζ又は再生を行う際の前記対物光学素子の 3 次球面収差の波長変化率を指し、 fは、前記第一光束における前記対物光学素子の 焦点距離を指す。
PCT/JP2007/053168 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置 WO2007102316A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008503772A JP5019273B2 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置
EP07714668A EP1993093A4 (en) 2006-03-07 2007-02-21 OPTICAL READ DEVICE, OPTICAL OBJECTIVE ELEMENT, AND OPTICAL DATA RECORDING AND READING DEVICE

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-060968 2006-03-07
JP2006060968 2006-03-07
JP2006-070701 2006-03-15
JP2006070701 2006-03-15
JP2006-123471 2006-04-27
JP2006123471 2006-04-27
JP2006-166148 2006-06-15
JP2006166148 2006-06-15

Publications (1)

Publication Number Publication Date
WO2007102316A1 true WO2007102316A1 (ja) 2007-09-13

Family

ID=38474757

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2007/053167 WO2007102315A1 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置
PCT/JP2007/053169 WO2007102317A1 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置
PCT/JP2007/053168 WO2007102316A1 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置
PCT/JP2007/053170 WO2007102318A1 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2007/053167 WO2007102315A1 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置
PCT/JP2007/053169 WO2007102317A1 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053170 WO2007102318A1 (ja) 2006-03-07 2007-02-21 光ピックアップ装置、対物光学素子及び光情報記録再生装置

Country Status (7)

Country Link
US (6) US7672211B2 (ja)
EP (4) EP1990801B1 (ja)
JP (4) JP5013129B2 (ja)
KR (4) KR20080110999A (ja)
CN (2) CN102176314A (ja)
TW (4) TW200741687A (ja)
WO (4) WO2007102315A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102315A1 (ja) 2006-03-07 2007-09-13 Konica Minolta Opto, Inc. 光ピックアップ装置、対物光学素子及び光情報記録再生装置
WO2008007553A1 (fr) * 2006-07-14 2008-01-17 Konica Minolta Opto, Inc. Dispositif de lecture optique, élément optique à objectif et dispositif de reproduction/enregistrement d'informations optique
JP5408549B2 (ja) * 2007-09-27 2014-02-05 コニカミノルタ株式会社 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2009047989A1 (ja) * 2007-10-11 2009-04-16 Konica Minolta Opto, Inc. 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
CN101828225B (zh) * 2007-10-18 2012-03-28 柯尼卡美能达精密光学株式会社 光拾取装置、光拾取装置用物镜光学元件及光信息记录再生装置
JP2009110591A (ja) * 2007-10-30 2009-05-21 Konica Minolta Opto Inc 対物レンズ及び光ピックアップ装置
JPWO2009057415A1 (ja) * 2007-10-30 2011-03-10 コニカミノルタオプト株式会社 対物レンズ及び光ピックアップ装置
JP2009157992A (ja) * 2007-12-26 2009-07-16 Konica Minolta Opto Inc 光ピックアップ装置及び対物光学素子
JPWO2009116385A1 (ja) 2008-03-18 2011-07-21 コニカミノルタオプト株式会社 対物レンズ及び光ピックアップ装置
JPWO2009122896A1 (ja) * 2008-04-01 2011-07-28 コニカミノルタオプト株式会社 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
JP2010080040A (ja) * 2008-04-10 2010-04-08 Hitachi Maxell Ltd 光ピックアップ対物レンズ、光ピックアップ装置及び光ディスク装置
WO2009154072A1 (ja) 2008-06-20 2009-12-23 コニカミノルタオプト株式会社 対物レンズ、光ピックアップ装置及び光ディスクドライブ装置
JP2010055732A (ja) * 2008-07-30 2010-03-11 Konica Minolta Opto Inc 対物光学素子及び光ピックアップ装置
JP2010055683A (ja) * 2008-08-28 2010-03-11 Konica Minolta Opto Inc 対物光学素子及び光ピックアップ装置
JP4775422B2 (ja) * 2008-08-28 2011-09-21 ソニー株式会社 集光光学デバイス、光ピックアップ及び光ディスク装置
EP2367171A4 (en) 2008-12-17 2012-10-03 Konica Minolta Opto Inc LENS OPTICAL ELEMENT AND OPTICAL READ DEVICE
CN101882447B (zh) * 2009-05-07 2015-04-01 柯尼卡美能达精密光学株式会社 物镜、光拾取装置及光信息记录再生装置
JP2011096350A (ja) * 2009-09-29 2011-05-12 Konica Minolta Opto Inc 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2011040135A1 (ja) 2009-09-30 2011-04-07 コニカミノルタオプト株式会社 金型の加工方法、金型、対物レンズ及び光ピックアップ装置
JP2011081868A (ja) * 2009-10-07 2011-04-21 Sanyo Electric Co Ltd 対物レンズ、及び光ピックアップ装置
EP2530674A4 (en) * 2010-01-27 2017-05-10 Panasonic Intellectual Property Management Co., Ltd. Compound objective lens, optical head device, optical information device and information processing device
JP2011210314A (ja) * 2010-03-30 2011-10-20 Konica Minolta Opto Inc 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2011227979A (ja) * 2010-04-02 2011-11-10 Sony Corp 光学ピックアップ、光学ドライブ装置、光照射方法
WO2012063847A1 (ja) * 2010-11-10 2012-05-18 コニカミノルタオプト株式会社 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2012119017A (ja) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 対物レンズおよびそれを用いた光ピックアップ装置
JP2012160224A (ja) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd 対物レンズおよびそれを用いた光ピックアップ装置、対物レンズの製造方法
WO2013047202A1 (ja) * 2011-09-30 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 対物レンズ及び光ピックアップ装置
US9245572B2 (en) * 2012-11-21 2016-01-26 Oracle International Corporation Optical tape pick up unit with holographic optical element
CN111740092B (zh) * 2020-07-24 2021-08-17 广州大学 一种异质结构材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195769A (ja) * 1999-01-22 2001-07-19 Konica Corp 光ピックアップ装置、この光ピックアップ装置を備えた記録再生装置、光学素子、情報の記録再生方法、光学系、レンズ、光ディスク用回折光学系、再生装置及び光ピックアップ装置用対物レンズ
JP2005038585A (ja) * 2003-06-30 2005-02-10 Konica Minolta Opto Inc 光ピックアップ装置、集光光学系及び光学素子
JP2005209321A (ja) * 2003-06-18 2005-08-04 Konica Minolta Opto Inc 光ピックアップ装置用の光学素子、光ピックアップ装置用の収差補正素子、光ピックアップ装置用の集光素子、対物光学系、光ピックアップ装置、及び光情報記録再生装置
JP2005353261A (ja) * 2004-05-10 2005-12-22 Konica Minolta Opto Inc 光ピックアップ装置
JP2006024344A (ja) * 2004-06-11 2006-01-26 Nidec Nissin Corp 輪帯位相補正レンズおよび光ヘッド装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532818B2 (ja) * 1993-02-01 1996-09-11 松下電器産業株式会社 対物レンズおよび光ヘッド装置
EP1102250A3 (en) * 1999-11-17 2003-03-26 Konica Corporation Optical pickup apparatus and objective lens
TW556178B (en) * 2000-10-26 2003-10-01 Konishiroku Photo Ind Optical pickup apparatus and objective lens
JP4155030B2 (ja) * 2001-03-30 2008-09-24 ソニー株式会社 光学ピックアップ及び光ディスクドライブ装置
KR100896021B1 (ko) * 2001-04-05 2009-05-11 코닌클리케 필립스 일렉트로닉스 엔.브이. 광학주사장치
TWI239520B (en) 2001-10-12 2005-09-11 Konica Corp Objective lens, optical element, optical pick-up apparatus and optical information recording and/or reproducing apparatus equipped therewith
JP2005515579A (ja) * 2002-01-17 2005-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光走査デバイス
JP2004327003A (ja) * 2002-07-26 2004-11-18 Sharp Corp 光ピックアップ
JP4300914B2 (ja) * 2002-12-18 2009-07-22 コニカミノルタホールディングス株式会社 光ピックアップ装置及び光学素子
US7577077B2 (en) * 2002-09-05 2009-08-18 Konica Corporation Optical pickup apparatus and optical element
JP2004144954A (ja) 2002-10-23 2004-05-20 Konica Minolta Holdings Inc プラスチック製光学素子及び光ピックアップ装置
JP2004144951A (ja) 2002-10-23 2004-05-20 Konica Minolta Holdings Inc プラスチック製光学素子及び光ピックアップ装置
JP2004144953A (ja) 2002-10-23 2004-05-20 Konica Minolta Holdings Inc プラスチック製光学素子及び光ピックアップ装置
JP3966303B2 (ja) * 2003-04-24 2007-08-29 コニカミノルタオプト株式会社 回折光学素子及びそれを用いた光ピックアップ装置
SG110178A1 (en) * 2003-09-30 2005-04-28 Konica Minolta Opto Inc Optical pick-up system, optical pick-up device, and optical information recording and/or reproducing apparatus
WO2005091279A1 (ja) * 2004-03-19 2005-09-29 Konica Minolta Opto, Inc. 光ピックアップ装置用の対物光学系、光ピックアップ装置及び光情報記録再生装置
DE602005003811T2 (de) * 2004-03-24 2008-12-04 Koninklijke Philips Electronics N.V. Scanning-einrichtung für einen optischen aufzeichnungsträger
JP4329608B2 (ja) * 2004-04-23 2009-09-09 コニカミノルタオプト株式会社 対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP4370619B2 (ja) * 2004-05-07 2009-11-25 コニカミノルタオプト株式会社 光学素子、光ピックアップ装置及びドライブ装置
TW200540857A (en) * 2004-05-10 2005-12-16 Konica Minolta Opto Inc Optical pickup apparatus
JP4385902B2 (ja) * 2004-07-23 2009-12-16 コニカミノルタオプト株式会社 対物光学素子及び光ピックアップ装置
WO2007102315A1 (ja) 2006-03-07 2007-09-13 Konica Minolta Opto, Inc. 光ピックアップ装置、対物光学素子及び光情報記録再生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195769A (ja) * 1999-01-22 2001-07-19 Konica Corp 光ピックアップ装置、この光ピックアップ装置を備えた記録再生装置、光学素子、情報の記録再生方法、光学系、レンズ、光ディスク用回折光学系、再生装置及び光ピックアップ装置用対物レンズ
JP2005209321A (ja) * 2003-06-18 2005-08-04 Konica Minolta Opto Inc 光ピックアップ装置用の光学素子、光ピックアップ装置用の収差補正素子、光ピックアップ装置用の集光素子、対物光学系、光ピックアップ装置、及び光情報記録再生装置
JP2005038585A (ja) * 2003-06-30 2005-02-10 Konica Minolta Opto Inc 光ピックアップ装置、集光光学系及び光学素子
JP2005353261A (ja) * 2004-05-10 2005-12-22 Konica Minolta Opto Inc 光ピックアップ装置
JP2006024344A (ja) * 2004-06-11 2006-01-26 Nidec Nissin Corp 輪帯位相補正レンズおよび光ヘッド装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1993093A4 *

Also Published As

Publication number Publication date
TW200809826A (en) 2008-02-16
JP5019273B2 (ja) 2012-09-05
EP2001020A4 (en) 2009-04-29
EP1993094A1 (en) 2008-11-19
EP1993093A4 (en) 2009-04-22
JPWO2007102317A1 (ja) 2009-07-23
EP1993094A4 (en) 2009-05-06
US7843793B2 (en) 2010-11-30
WO2007102317A1 (ja) 2007-09-13
US20100284262A1 (en) 2010-11-11
US7656770B2 (en) 2010-02-02
US8169878B2 (en) 2012-05-01
EP1990801B1 (en) 2011-12-14
JPWO2007102315A1 (ja) 2009-07-23
KR20080098644A (ko) 2008-11-11
US7672211B2 (en) 2010-03-02
KR20080110999A (ko) 2008-12-22
EP2001020A2 (en) 2008-12-10
TW200739569A (en) 2007-10-16
JP4033239B2 (ja) 2008-01-16
CN102005219A (zh) 2011-04-06
WO2007102315A1 (ja) 2007-09-13
US7672212B2 (en) 2010-03-02
TW200741687A (en) 2007-11-01
EP2001020A9 (en) 2009-03-11
US20070211607A1 (en) 2007-09-13
US20070211606A1 (en) 2007-09-13
JPWO2007102316A1 (ja) 2009-07-23
JP4033240B2 (ja) 2008-01-16
KR20080104290A (ko) 2008-12-02
EP1990801A4 (en) 2009-04-29
EP1990801A1 (en) 2008-11-12
JPWO2007102318A1 (ja) 2009-12-24
CN102176314A (zh) 2011-09-07
TWI409811B (zh) 2013-09-21
US7948857B2 (en) 2011-05-24
CN102005219B (zh) 2012-11-07
US20070211608A1 (en) 2007-09-13
US20070211609A1 (en) 2007-09-13
KR101314940B1 (ko) 2013-10-04
JP5013129B2 (ja) 2012-08-29
EP1993093A1 (en) 2008-11-19
US20110194396A1 (en) 2011-08-11
KR20080098643A (ko) 2008-11-11
TW200809834A (en) 2008-02-16
WO2007102318A1 (ja) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5019273B2 (ja) 光ピックアップ装置、対物光学素子及び光情報記録再生装置
JP4093287B2 (ja) 光ピックアップ装置、対物光学素子及び光情報記録再生装置
JP4321589B2 (ja) 対物レンズ、光ピックアップ装置及び光ディスクドライブ装置
JPWO2005117001A1 (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
JP3957003B2 (ja) 光ピックアップ装置及び、対物光学ユニット及び対物光学系の設計方法
JP5003428B2 (ja) 光ピックアップ装置及び対物光学素子
CN101105956A (zh) 光拾取装置、对物光学元件和光信息记录重放装置
JP2009059407A (ja) 光ピックアップ装置及び光ピックアップ装置の対物レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008503772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087021582

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007714668

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE