WO2013047202A1 - 対物レンズ及び光ピックアップ装置 - Google Patents

対物レンズ及び光ピックアップ装置 Download PDF

Info

Publication number
WO2013047202A1
WO2013047202A1 PCT/JP2012/073309 JP2012073309W WO2013047202A1 WO 2013047202 A1 WO2013047202 A1 WO 2013047202A1 JP 2012073309 W JP2012073309 W JP 2012073309W WO 2013047202 A1 WO2013047202 A1 WO 2013047202A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
information recording
spherical aberration
light
optical
Prior art date
Application number
PCT/JP2012/073309
Other languages
English (en)
French (fr)
Inventor
立山清乃
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013047202A1 publication Critical patent/WO2013047202A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an optical pickup device and an objective lens capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
  • the material is changed from a glass material to a plastic material.
  • the plastic objective lens has a problem that aberration caused by a change in refractive index accompanying a temperature change is larger than that of a glass objective lens.
  • this change in refractive index differs by an order of magnitude between plastic materials and glass materials.
  • SA3 represents the third-order spherical aberration component of the wavefront aberration as an rms value.
  • the coefficient k is a positive value. Further, when a single lens formed of a resin material is used as an objective lens, the coefficient k is a larger positive value.
  • the movement space of the spherical aberration correction element is limited, and thus not all the generated spherical aberration can be corrected.
  • Such a space restriction is particularly severe in a thin optical pickup device called a slim type.
  • the third-order spherical aberration caused by the temperature change is provided with a diffractive structure in the objective lens as shown in Patent Document 1, for example, or in Patent Document 2.
  • correction can be performed by providing a diffractive structure on the correction element side.
  • a diffractive structure has a function of correcting third-order spherical aberration caused by a temperature change due to the wavelength dependence of the diffractive structure, utilizing the fact that the wavelength of the light source changes according to the environmental temperature change.
  • a function is called a temperature characteristic correction function.
  • Interlayer crosstalk occurs when information is recorded / reproduced to / from a multi-layer optical disk using a plastic objective lens provided with a diffraction structure having a temperature correction function. Focused on the problem. Interlayer crosstalk is a phenomenon in which reflected light from an information recording surface other than the information recording surface where information is recorded / reproduced is mixed with the original signal light, resulting in a recording / reproduction error. become.
  • the present invention has been made in consideration of the above-mentioned problems, and is used for recording / reproducing information with respect to an optical disc having three or more information recording surfaces, and a diffractive structure having a temperature characteristic correcting function. It is an object of the present invention to provide an objective lens and an optical pickup device that can effectively suppress interlayer crosstalk even if provided.
  • the objective lens according to claim 1 includes a light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 415 nm), a spherical aberration correction element, and an objective lens, and the spherical aberration correction element is arranged in the optical axis direction.
  • the wavelength emitted from the light source is selected by selecting one of the information recording surfaces in the optical disc having three or more information recording surfaces in the thickness direction that are different from each other in distance (transparent substrate thickness) from the light incident surface.
  • An objective lens used in an optical pickup device that records and / or reproduces information by condensing a light beam of ⁇ 1 on the selected information recording surface by the objective lens,
  • ⁇ tmax [ mm] t1-t2 and satisfy the following equation: 0.03 ⁇ ⁇ tmax ⁇ 0.055
  • NA image-side numerical aperture
  • the value multiplied by is negative ( ⁇ 0)
  • the objective lens has a diffractive structure, and diffracted light generated when a light beam from the light source is incident on the diffractive structure (this is called main diffracted light) is condensed on one of the information recording surfaces. Recording and / or playback of information,
  • the diffractive structure is characterized in that the step is directed in the optical axis direction.
  • the objective lens is provided with a diffractive structure.
  • the amount of change in third-order spherical aberration per unit wavelength ⁇ SA3 W [ ⁇ rms / nm] with respect to changes in light source wavelength and the amount of change in third-order spherical aberration per unit temperature with respect to changes in environmental temperature
  • ⁇ SA3 T [ ⁇ rms / ° C.] negative ( ⁇ 0)
  • the moving distance of the spherical aberration correcting element can be reduced.
  • a temperature characteristic correcting diffractive structure on the spherical aberration correction element side, a multilayer optical disk having three or more information recording surfaces increases the maximum convergence (or divergence) magnification. This is not preferable because coma aberration may occur due to tracking during correction.
  • the present inventor has found that one of the causes of interlayer crosstalk that occurs when the objective lens is provided with a diffractive structure for correcting the temperature characteristic is the different-order diffracted light. For example, even if it is a diffractive structure that generates main diffracted light with high diffraction efficiency, the design value is actually the size of a minute step due to manufacturing errors, etc., and the oscillation wavelength of the semiconductor laser that is the light source As a result, the diffraction efficiency of the main diffracted light decreases, and instead, the diffraction efficiency of a diffracted light of a different order from the main diffracted light (this is referred to as a different order diffracted light) increases.
  • the main diffracted light is condensed on the nth information recording surface among the plurality of information recording surfaces of the optical disc, for example, the different order diffracted light is condensed on the information recording surface other than the nth. If this happens, the reflected light may be detected by a photodetector, and interlayer crosstalk may occur. Such a problem is not likely to occur in the conventional two-layer type BD having two information recording surfaces because the number of layers is small and the reflected light intensity is small.
  • FIG. 6 is a longitudinal spherical aberration diagram on the first information recording surface when different-order diffracted light (diffracted light of a different order from the main diffracted light) is condensed on the second, third, and fourth information recording surfaces. From this figure, when the different-order diffracted light approaches any longitudinal aberration shape, the reflected light from the information recording surface may be detected as signal light.
  • FIG. 6 shows longitudinal spherical aberration diagrams on the third information recording surface when the light is condensed on the second and fourth information recording surfaces.
  • FIG. 6 is a longitudinal spherical aberration diagram on the fourth information recording surface when the light is condensed on the information recording surface 3.
  • FIG. 1 (e) which is a combination of FIGS. 1 (a) to 1 (d)
  • the present inventor shows that the different-order diffracted light generated closer to the main diffracted light (the transparent substrate is thinner) is
  • the different-order diffracted light generated on the far side from the main diffracted light (the side on which the transparent substrate is thick) changes the aberration toward the under side as it moves away from the optical axis.
  • the present inventors have found that when recording / reproducing a recording surface, there is a possibility that light is condensed on an information recording surface having a thicker transparent substrate.
  • the diffractive structure corrects the spherical aberration at the time of temperature change by the diffractive structure, in other words, the diffractive structure has an effect that the spherical aberration becomes under as the wavelength becomes longer. It was found that they were classified into the three types of FIGS. 2 (a), (b) and (c). For example, in the case of the objective lens OBJ shown in FIG. 2A, since all regions have negative diffractive power, all the steps ST of the diffractive structure are directed to the side opposite to the optical axis OA (outside in the radial direction).
  • the non-aberration main diffracted light has a different diffracted light generated on the near side (thin side where the transparent substrate is thin), the aberration changes to the over side as the distance from the optical axis increases. Since the aberration of the different order diffracted light generated on the farther side (thick side of the transparent substrate) changes to the under side as it moves away from the optical axis, the longitudinal aberration diagram of the different order diffracted light is shown in FIG. This increases the possibility that interlayer crosstalk will occur.
  • the step ST of the diffractive structure close to the optical axis OA becomes the optical axis OA.
  • the step ST of the diffractive structure far from the optical axis OA is directed to the optical axis OA side (radial inner side).
  • the non-aberration main diffracted light has a different diffracted light generated on the near side (thin side where the transparent substrate is thin), the aberration changes to the over side as the distance from the optical axis increases.
  • the different-order diffracted light generated on the farther side (thick side of the transparent substrate) changes in aberration toward the under side as it moves away from the optical axis.
  • the shape approaches 1 (e) the possibility of interlayer crosstalk increases.
  • the objective lens OBJ shown in FIG. 2C since it has a positive diffraction power in all regions (however, the paraxial diffraction power includes 0), all the steps ST of the diffraction structure have the optical axis OA. It faces the side (diameter inside).
  • the non-aberration main diffracted light which is generated on the near side (thin side where the thickness of the transparent substrate is thin), changes in the aberration to the under side as the distance from the optical axis increases.
  • the aberrations of the different-order diffracted light generated on the farther side (the side on which the transparent substrate is thicker) change to the over side as the distance from the optical axis increases.
  • the different-order diffracted light has spherical aberration with respect to the surface other than the information recording surface to be recorded / reproduced, and the intensity is weakened even if the different-order diffracted light is reflected by the surface other than the information recording surface. It was found that crosstalk can be reduced.
  • the objective lens according to claim 2 is the objective lens according to claim 1, wherein in the objective lens, a change amount of the third-order spherical aberration per unit wavelength with respect to a change of the light source wavelength is ⁇ SA3 W [ ⁇ rms / nm], The following formula is satisfied when the focal length is f [mm]. ⁇ 0.016 ⁇ ⁇ SA3 W /f ⁇ 0.002 (2)
  • FIG. 3 shows a value ⁇ SA3 W / f obtained by dividing the amount of change ⁇ SA3 W [ ⁇ rms / nm] of the third-order spherical aberration when the light source wavelength is changed by 1 nm by the focal length f [mm], and the horizontal axis is the environment.
  • 3 is a graph showing a change amount ⁇ SA3 TW [ ⁇ rms / ° C.] of third-order spherical aberration in consideration of a wavelength variation of a light source when a temperature changes by 1 ° C.
  • the light source wavelength changes by 0.05 nm when the environmental temperature changes by 1 ° C.
  • the focal length f of the objective lens was changed to 0.87 mm, 1.2 mm, 1.5 mm, and 2.0 mm and plotted on the graph.
  • the third-order spherical aberration caused by the change in the ambient temperature is canceled out by the third-order spherical aberration caused by the change in the light source wavelength.
  • ⁇ SA3 TW is generally in the range of ⁇ 0.0013 ⁇ rms to +0.0013 ⁇ rms, spherical aberration correction is not necessary, so it is not necessary to move the spherical aberration correction element for temperature characteristic correction. There is no need to provide a temperature sensor, and the optical pickup device can be reduced in size and cost.
  • ⁇ SA3 W / f is preferably ⁇ 0.016 or more. This is because, as ⁇ SA3 W / f becomes smaller in the negative direction, the diffraction power becomes larger and the pitch of the diffraction structure becomes smaller.
  • ⁇ SA3 W / f is preferably ⁇ 0.002 or less. Since the aberration at the time of temperature change that originally occurs on the refracting surface becomes smaller as the focal length becomes shorter (Equation 5), ⁇ SA3 TW is ⁇ 0 even if the objective lens with a focal length of 0.8 mm or less is not corrected by diffraction. .0013 ⁇ rms ⁇ + 0.0013 ⁇ rms is achieved.
  • the temperature correction effect by the diffraction power is enhanced by setting it to ⁇ 0.002 ⁇ rms or less, and
  • the different-order diffracted light has a large spherical aberration with respect to the other information recording surface (in other words, a large flare occurs on the other information recording surface). Therefore, the reflected light from the other information recording surface is condensed on the information recording surface at a position different from the main diffracted light, and a good reproduction / recording signal can be obtained.
  • the objective lens according to the first or second aspect of the present invention wherein the paraxial diffraction power by the diffractive structure in the objective lens is P [mm ⁇ 1 ] and the focal length is f [mm].
  • the refractive index of the transparent substrate of the optical disk at the light source wavelength is nt
  • the following expression is satisfied.
  • FIG. 4 is a longitudinal spherical aberration diagram in a state where main diffracted light at least near the optical axis has a diffraction order of m 0 (where m 0 is a non-zero integer) is condensed without aberration on a certain information recording surface. It is. If such and size of microscopic steps due to manufacturing errors, such as an oscillation wavelength of the semiconductor laser as a light source is shifted from the design value, adjacent to m 0 (m 0 +1) Next, or (m 0 -1) order light The intensity of the different-order diffracted light becomes higher.
  • FIG. 5 is a graph showing the paraxial diffraction power P [mm ⁇ 1 ] of the objective lens on the horizontal axis and the distance L [nm] on the vertical axis, plotted with the focal length f [mm] changed.
  • the distance L is proportional to the paraxial diffraction power P regardless of the focal length f.
  • FIG. 6 is a graph showing the focal length f [mm] of the objective lens on the horizontal axis and the distance L [nm] on the vertical axis, and plotted while changing the paraxial diffraction power P [mm ⁇ 1 ]. ing. According to FIG. 6, regardless of the paraxial diffraction power P [mm ⁇ 1 ], as the focal length f increases, the distance L also increases, and a focal length of 0.87 mm to 2 suitable for a thin optical pickup device. At .00 mm, it can be seen that there is no problem with the linear approximation.
  • the paraxial condensing position of the light condensed at the position farthest from the main light in the composite diagram (e) of FIG. 1 is the maximum substrate thickness with the refractive index of the transparent substrate thickness being nt and the maximum substrate thickness difference ⁇ tmax. It is represented by the air equivalent length ⁇ tmax / nt of the difference.
  • the reflected light from another information recording surface may be collected on the sensor at a position different from the main light, in other words, the adjacent allo-light is the farthest from the main light. It is only necessary to collect light farther than the light collected at the position.
  • L / m 0 ⁇ ⁇ tmax / nt (3 ′) Can be expressed as
  • the objective lens described in claim 4 is characterized in that, in the invention described in claim 3, when the longitudinal chromatic aberration of the objective lens alone is ⁇ fB [ ⁇ m / nm], the following expression is satisfied. ⁇ 0.3 ⁇ ⁇ fB ⁇ 0 (4)
  • the axial chromatic aberration here refers to the amount of change in the optical axis direction position of the paraxial ray when the wavelength of light incident on the objective lens changes by +1 nm.
  • FIG. 7 is a graph showing the relationship between the longitudinal chromatic aberration ⁇ fB [ ⁇ m / nm] and the focal length f [mm] of the objective lens for each paraxial diffraction power P [mm ⁇ 1 ].
  • the range of the preferred paraxial diffraction power P in the case of the diffraction order m 0 of 3 to 5 at the focal length in Table 1 is superimposed on this figure, the optimum axial chromatic aberration ⁇ fB is obtained, but when the mode hopping occurs
  • the absolute value of ⁇ fB is desirably 0.3 or less so that good characteristics can be obtained even during recording by suppressing the deviation of the condensing position.
  • the diffraction pitch is increased, the workability is improved, and the interlayer crosstalk can be reduced by improving the processing accuracy.
  • the objective lens according to claim 5 is the invention according to any one of claims 1 to 4, wherein an inner region formed around an optical axis within the effective diameter of the objective lens, and an outer side of the inner region.
  • a first diffractive structure is formed in the inner region
  • a second diffractive structure is formed in the outer region, and a light beam from the light source is incident
  • m1 order diffracted light generated in the first diffractive structure is condensed on the selected information recording surface
  • m2 order diffracted light generated in the second diffractive structure is collected on the selected information recording surface.
  • the information is recorded and / or reproduced by detecting the reflected light from the selected information recording surface with a photodetector, and
  • Features are examples of the objective lens according to claim 5 a photodetector
  • the longitudinal spherical aberration characteristic of the different-order diffracted light becomes as shown by a solid line in FIG. 8, that is, the spherical aberration in the outer region is more on the over side than the spherical aberration in the inner region. Since the shift is performed, the different-order diffracted light in the peripheral region to which the spot contributes can be separated further, and the different-order diffracted light is largely flared with respect to other information recording surfaces, so that interlayer crosstalk can be further suppressed.
  • An objective lens according to a sixth aspect is the invention according to any one of the first to fourth aspects, wherein an inner region formed around an optical axis within the effective diameter of the objective lens, and an outer side of the inner region.
  • a first diffractive structure is formed in the inner region
  • a second diffractive structure is formed in the outer region
  • a light beam from the light source is incident
  • m1 order diffracted light generated in the first diffractive structure is condensed on the selected information recording surface
  • m2 order diffracted light generated in the second diffractive structure is collected on the selected information recording surface.
  • the information is recorded and / or reproduced by detecting the reflected light from the selected information recording surface with a photodetector, and
  • Features are examples of the first to fourth aspects, wherein an inner region formed around an optical axis within the effective diameter of the objective lens, and an outer side of the inner region.
  • a first diffractive structure is formed in the inner region
  • the pitch of the diffractive structure in the outer region can be widened, thereby increasing the manufacturability of the objective lens.
  • the objective lens described in claim 7 is the objective lens according to any one of claims 1 to 6, wherein the diffractive structure is a periodic annular zone-shaped step structure having a longest distance in the optical axis direction. Is directed in the direction of the optical axis.
  • the diffractive structure includes a brace type diffractive structure and a staircase type diffractive structure, both of which are periodic ring-shaped step structures, and the sign of the diffraction power depends on the direction of the step having the longest distance in the optical axis direction. Therefore, by facing the direction of the optical axis, the paraxial diffraction power becomes positive, and interlayer crosstalk can be reduced.
  • An optical pickup device includes the objective lens according to any one of the first to seventh aspects.
  • an optical pickup device wherein the spherical aberration generated in the objective lens due to the difference in thickness of the transparent substrate of the information recording surface is moved in the optical axis direction.
  • the spherical aberration correction element is arranged at the same number of fixed positions as the number of the information recording surfaces during the pickup operation.
  • Spherical aberration at the time of temperature change is corrected by the diffractive structure of the objective lens, and chromatic spherical aberration caused by deviation between the design wavelength and the actual wavelength due to individual differences in light source is corrected during pickup operation if it is removed during assembly of the pickup.
  • the only requirement is spherical aberration due to the difference in substrate thickness.
  • the arrangement of the spherical aberration correcting elements for correcting this is set to the same number of fixed positions as the number of information recording surfaces, whereby the configuration of the actuator is simplified and an inexpensive and small pickup can be obtained.
  • the optical pickup device includes the first light source, but may further include a second light source and a third light source. Furthermore, the optical pickup device according to the present invention has a condensing optical system (sometimes simply referred to as an optical system) that condenses the first light flux on the information recording surface of the first optical disc. May also be used for condensing the second light flux on the information recording surface of the second optical disc and condensing the third light flux on the information recording surface of the third optical disc. In addition, the optical pickup device of the present invention has a light receiving element that receives a reflected light beam from the information recording surface of the first optical disk, but receives a reflected light beam from the information recording surface of the second optical disk or the third optical disk. You may have.
  • a condensing optical system (sometimes simply referred to as an optical system) that condenses the first light flux on the information recording surface of the first optical disc. May also be used for condensing the second light flux on the information recording surface of the second optical disc and condensing the
  • the first optical disc has a protective substrate having a thickness of tB and an information recording surface.
  • the second optical disc has a protective substrate having a thickness tD (tB ⁇ tD) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness of tC (tD ⁇ tC) and an information recording surface.
  • the first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disk has three or more information recording surfaces.
  • the second optical disc or the third optical disc may also be a multi-layer optical disc having a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the protective substrate has a thickness of about 1.2 mm.
  • CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the optical disc (first optical disc) has three or more information recording surfaces. At this time, when the maximum distance is t2 and the minimum distance is t1 from the incident side surface of the optical disc to any one of the information recording surfaces, it is preferable that the following expression is satisfied. 0.040 [mm] ⁇ t1 (11) t2 ⁇ 0.110 [mm] (12) 0.03 [mm] ⁇ t2-t1 ⁇ 0.55 [mm] (1)
  • the first light source is preferably a laser light source.
  • a laser light source As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the first wavelength ⁇ 1 of the first light beam emitted from the first light source is shorter than the second wavelength ⁇ 2 of the second light beam emitted from the second light source, and the second wavelength ⁇ 2 is the third wavelength emitted from the third light source. It is shorter than the third wavelength ⁇ 3 of the light beam.
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • a diffraction grating for separating the beam emitted from the light source into a plurality of beams (main light and sub light) is disposed between the light source and the spherical aberration correction element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has an objective lens.
  • the condensing optical system preferably has a spherical aberration correction element such as a collimator, for example, a coupling lens, in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the coupling lens may be a single lens, or may be composed of a plurality of lens groups such as a combination of positive and negative lenses, but is preferably a single lens.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is preferably a single lens.
  • the objective lens is a plastic lens.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the plastic forming the objective lens is preferably an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material.
  • the resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C. ⁇ 1 ) is -20 ⁇ 10 ⁇ 5 to ⁇ 5 ⁇ 10 ⁇ 5 (more preferably ⁇ 10 ⁇ 10 ⁇ 5 to ⁇ 8 ⁇ 10 ⁇ 5 ). It is more preferable to use a certain resin material.
  • the coupling lens is preferably a plastic lens.
  • a first preferred example is a polymer block [A] containing a repeating unit [1] represented by the following formula (1), a repeating unit [1] represented by the following formula (1) and the following formula ( 2) and / or polymer block [B] containing the repeating unit [3] represented by the following formula (3), and the repeating unit in the block [A] It consists of a block copolymer in which the relationship between the molar fraction a (mol%) of [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is a resin composition.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ⁇ 20 alkoxy groups or halogen groups.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • the second preferred example is obtained by addition polymerization of a monomer composition comprising at least an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (4).
  • Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (5) ).
  • R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the following additives may be added.
  • Stabilizer It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate
  • 2 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like
  • JP-A Nos. 63-179953 and 1-168643 JP-A Nos. 63-179953 and 1-168643.
  • Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-but
  • the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl).
  • Phenyl) phosphite tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
  • hydrophilic group of the surfactant examples include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group.
  • the surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
  • examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene
  • examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like.
  • amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • the addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • Plasticizer The plasticizer is added as necessary to adjust the melt index of the copolymer.
  • Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisode
  • cycloolefin resins are preferably used.
  • ZEONEX manufactured by Nippon Zeon, APEL manufactured by Mitsui Chemicals, TOPAS ADVANCED, TOPAS manufactured by POLYMERS, and ARTON manufactured by JSR are preferable. Take as an example.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • the focal length f of the objective lens with respect to the light flux having the wavelength ⁇ 1 is less than 1.75 mm. Preferably, it is 0.8 mm or more and less than 1.75 mm.
  • the objective lens has an optical path difference providing structure.
  • the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape, as shown in FIGS. 9 (a) and 9 (b).
  • the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 9 (a))
  • the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit).
  • V level means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the optical path difference providing structure illustrated in FIG. 9C is referred to as a five-level step structure
  • the optical path difference providing structure illustrated in FIG. 9D is referred to as a two-level step structure (also referred to as a binary structure).
  • a two-level staircase structure is described below.
  • a plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis,
  • the light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed.
  • the surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
  • the length of one staircase unit in the direction perpendicular to the optical axis is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2.
  • a large step amount B1 and a small step amount B2 exist.
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • unit shape is repeated periodically as used herein naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated.
  • the same serrated shape may be repeated, and as shown in FIG. 9 (b), the serrated shape gradually increases as it moves away from the optical axis.
  • a shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area
  • mold structure is provided in the meantime.
  • the optical path difference providing structure has a staircase structure
  • the longest step in the optical axis direction indicates B1.
  • the optical path difference providing structure is preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disc side.
  • the optical path difference providing structure is preferably provided on the optical surface with the smaller absolute value of the radius of curvature of the objective lens.
  • the optical path difference providing structure can take various shapes.
  • the optical path difference providing structure of the present invention that is, the diffractive structure, has a state as shown in FIG. 10, “the step is directed toward the optical axis”. To tell.
  • a third-order spherical aberration change amount DerutaSA3 W with respect to a change in the wavelength of light source the value obtained by multiplying the third-order spherical aberration change amount DerutaSA3 T to changes in environmental temperature is negative ( ⁇ 0) preferred.
  • the spherical aberration resulting from the environmental temperature change can be corrected.
  • spherical aberration at the time of temperature change is corrected by superimposing a plurality of diffractive structures so that compatibility and axial chromatic aberration can be performed together. In this case, the effect of correcting the spherical aberration at the time of temperature change is corrected.
  • the structure of the present invention may be provided in a diffractive structure with respect to changes in the light source wavelength. Whether the diffractive structure has the effect of correcting the spherical aberration at the time of temperature change can be determined with the diffractive structure for by third-order spherical aberration change amount DerutaSA3 W sign change in the light source wavelength. This is because in the normal positive refracting lens changes to positive is DerutaSA3 the temperature rises, 3 the diffractive structure according to the third-order spherical aberration change amount DerutaSA3 W with respect to a change in wavelength of the light source at the time of temperature change if it is negative order This is because it is possible to correct spherical aberration.
  • NA1 is preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the objective lens satisfies the following conditional expression (13). 0.9 ⁇ d / f ⁇ 1.35 (13)
  • d [mm] represents the axial thickness of the objective lens
  • f [mm] represents the focal length of the objective lens in the first light flux. More preferably, the following conditional expression (13 ′) is satisfied. 0.9 ⁇ d / f ⁇ 1.2 (13 ′)
  • conditional expressions (13) and (13) By satisfying 13 ′), it is possible to suppress the generation of astigmatism and decentration coma.
  • the optical pickup device is any one of the optical discs having three or more information recording surfaces in the thickness direction that are different in distance (transparent substrate thickness) from the light beam incident surface by displacing the coupling lens in the optical axis direction.
  • the information recording surface is selected, and the light beam of wavelength ⁇ 1 emitted from the light source is condensed on the information recording surface selected by the objective lens, thereby recording and / or reproducing information.
  • the magnification of the first light flux is changed by moving the coupling lens in the optical axis direction so as to correspond to each layer of three or more information recording surfaces of the first optical disc. It is preferable that the maximum value and the minimum value of the imaging magnification m1 of the objective lens when the first light beam is incident on the objective lens are included in the range of the following formula (14). -1/50 ⁇ m1 ⁇ 1/50 (14) More preferably, it is included in the following formula (14 ′). -1/80 ⁇ m1 ⁇ 1/60 (14 ')
  • the optical pickup device preferably has a diaphragm between the objective lens and the coupling lens for limiting the diameter of the light beam incident on the objective lens.
  • the diaphragm is preferably provided in the immediate vicinity of the objective lens.
  • the aperture diameter of the aperture is preferably 3 mm or less.
  • the objective lens itself may have a diaphragm function without having a diaphragm separate from the objective lens.
  • the effective diameter of the optical surface on the light source side of the objective lens is preferably 3.0 mm or less.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • the present invention is preferably used for an optical disc drive apparatus having a thickness of less than 15 mm, such as a slim type optical disc drive apparatus.
  • FIG. 6 is a longitudinal spherical aberration diagram of the different-order diffracted light focused on the main light and another information recording surface
  • (b) is a second spherical aberration diagram.
  • the longitudinal spherical aberration diagram on the information recording surface (t 62 ⁇ m)
  • (d) is the fourth information recording surface
  • (t (E) is a longitudinal spherical aberration diagram combining (a) to (d).
  • FIG. 1 It is a figure which shows the relationship between the direction of the level
  • the vertical axis shows the amount of change ⁇ SA3 W [ ⁇ rms / nm] of the third-order spherical aberration per unit wavelength with respect to the change of the light source wavelength, the value ⁇ SA3 W / f divided by the focal length f [mm], and the horizontal axis shows the environmental temperature.
  • FIG. 3 is a graph showing a change amount ⁇ SA3 TW [ ⁇ rms / ° C.] of the third-order spherical aberration per unit temperature in consideration of the wavelength variation of the light source at the time of change. It is a longitudinal spherical aberration diagram of the different order diffracted light.
  • the horizontal axis represents the diffraction power P [mm -1 ] of the objective lens, and the vertical axis represents the distance L [nm].
  • It is a graph showing the focal length f [mm] of the objective lens on the horizontal axis and the distance L [nm] on the vertical axis.
  • FIG. 3 is a longitudinal spherical aberration diagram of Example 1.
  • FIG. 6 is a longitudinal spherical aberration diagram of Example 2.
  • FIG. 6 is a longitudinal spherical aberration diagram of Example 3.
  • FIG. 6 is a longitudinal spherical aberration diagram of Example 4.
  • FIG. 6 is a longitudinal spherical aberration diagram of Example 5.
  • FIG. 6 is a longitudinal spherical aberration diagram of Example 6.
  • FIG. 11 shows information recording appropriately on a BD that is an optical disc having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in order of increasing distance from the light beam incident surface of the optical disc) in the thickness direction.
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction.
  • the value of ⁇ tmax is 0.030 to 0.055 mm.
  • the optical pickup device PU1 is a slim type optical pickup device (the outline is schematically shown by a dotted line).
  • the present invention is not limited to the present embodiment. For example, FIG.
  • the objective lens OBJ is used for BD / DVD / CD compatibility, or a DVD / CD objective lens is separately provided, so that the BD / DVD is used.
  • An optical pickup device compatible with CD can be used.
  • a multi-beam type optical pickup device that inserts a diffraction grating between the light source and the coupling lens to generate, for example, three beams may be used.
  • a multi-beam optical pickup device is described in Japanese Patent Laid-Open No. 2000-187880.
  • the optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or the tangential direction of the optical disc, the ⁇ / 4 wavelength plate QWP, Raising mirror MR, coupling CL having positive lens L2 having positive refractive power and negative lens L3 having negative refractive power, uniaxial actuator AC1 for moving only positive lens L2 in the optical axis direction, polarizing prism PBS, 405 nm And a light receiving element PD that receives reflected light beams from the information recording surfaces RL1 to RL3 of the semiconductor laser LD, the sensor lens SL, and the BD.
  • the coupling lens CL is disposed between the polarizing prism PBS and the ⁇ / 4 wavelength plate QWP.
  • the semiconductor laser LD is arranged in the order of the negative lens L3 and the positive lens L2.
  • the semiconductor laser LD may be arranged in the order of the positive lens L2 and the negative lens L3.
  • the negative lens L3 is movable in the optical axis direction, and the positive lens L2 is fixed to the optical pickup device.
  • the spherical aberration generated in the objective lens due to the difference in the thickness of the transparent substrate on the information recording surface can be corrected by moving the coupling lens CL as a spherical aberration correcting element in the optical axis direction.
  • the coupling lens CL operates as an optical pickup device. Sometimes, it is arranged at the same number of fixed positions (here, three) as the number of information recording surfaces.
  • NA image-side numerical aperture
  • the objective lens OBJ has a diffractive structure, and the main diffracted light generated when the light beam from the semiconductor laser LD is incident on the diffractive structure is condensed on one of the information recording surfaces RL1 to RL3, thereby recording information. Reproduction is performed, and the step of the diffractive structure faces the optical axis direction.
  • the positive lens L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is raised to the rising mirror MR. , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
  • the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
  • the spot is formed on the third information recording surface RL3 by the OBJ through the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • ri represents the radius of curvature [mm] of each surface
  • di represents the distance between each surface [mm]
  • ni represents the refractive index of each surface at the wavelength ⁇ 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E-03
  • the optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
  • the wavelength ⁇ 1 is represented as ⁇ .
  • X (h) is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conical coefficient
  • a i is an aspheric coefficient
  • h is a height from the optical axis
  • r is a paraxial curvature. Radius.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient shown in the table into the optical path difference function of Formula 2.
  • wavelength used
  • m diffraction order
  • h distance in the direction perpendicular to the optical axis from the optical axis.
  • the pitch P (h) ⁇ B / ( ⁇ (2i ⁇ C 2i ⁇ h 2i-1 )).
  • Example 1 Table 2 shows lens data of Example 1, and FIG. 12 is a longitudinal spherical aberration diagram of the objective lens according to Example 1.
  • the third-order diffracted light is condensed on the information recording surface of the BD and information is recorded / reproduced.
  • the steps of all the diffractive structures are directed to the optical axis side.
  • Example 2 Table 3 shows lens data of Example 2, and FIG. 13 is a longitudinal spherical aberration diagram of the objective lens according to Example 2.
  • the fourth-order diffracted light is condensed on the information recording surface of the BD and information is recorded / reproduced.
  • the steps of all the diffractive structures are directed to the optical axis side.
  • Example 3 Table 4 shows lens data of Example 3, and FIG. 14 is a longitudinal spherical aberration diagram of the objective lens according to Example 3.
  • the fifth-order diffracted light is condensed on the information recording surface of the BD to record / reproduce information, and all the steps of the diffractive structure face the optical axis side.
  • Example 4 Table 5 shows lens data of Example 4, and FIG. 15 is a longitudinal spherical aberration diagram of the objective lens according to Example 4.
  • the fifth-order diffracted light is condensed on the information recording surface of the BD and information is recorded / reproduced, and the steps of all the diffractive structures are directed to the optical axis side.
  • Example 5 Table 6 shows lens data of Example 5
  • FIG. 16 is a longitudinal spherical aberration diagram of the objective lens according to Example 5.
  • the optical surface within the effective diameter is divided into the inner region and the outer region, and the fourth-order diffracted light generated in the first diffractive structure in the inner region and the third diffractive structure generated in the second diffractive structure in the outer region.
  • Information is recorded / reproduced by condensing the next diffracted light on the information recording surface of the BD, and all the steps of the diffractive structure face the optical axis side.
  • Example 6 Table 7 shows lens data of Example 6, and FIG. 17 is a longitudinal spherical aberration diagram of the objective lens according to Example 6.
  • the optical surface within the effective diameter is divided into the inner region and the outer region, and the third-order diffracted light generated in the first diffractive structure in the inner region and the fourth diffracted light in the second region in the outer region are generated.
  • Information is recorded / reproduced by condensing the next diffracted light on the information recording surface of the BD, and all the steps of the diffractive structure face the optical axis side.
  • Table 8 shows the values of the formulas according to the claims.
  • OBJ Objective lens PU1 Optical pickup device LD Blue-violet semiconductor laser AC1 1-axis actuator AC2 3-axis actuator BS Polarizing beam splitter PBS Polarizing prism CL Coupling lens MR Rising mirror L2 Positive lens group L3 Negative lens group QWP ⁇ / 4 wavelength plate PL1 ⁇ PL3 Protection substrate RL1 ⁇ RL3 Information recording surface SL Sensor lens

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

 3つ以上の情報記録面を有する光ディスクに対して情報の記録/再生のために用いられ、温特補正機能を有する回折構造を設けていても、層間クロストークを有効に抑制できる対物レンズ及び光ピックアップ装置を提供する。対物レンズOBJは、像側開口数(NA)が0.8以上、0.90未満のプラスチック製の単玉レンズであり、設計基板厚t[mm](但し、t1≦t≦t2)、且つ倍率=0で球面収差が補正されるように設計されており、更に、光源波長の変化に対する単位波長あたりの3次球面収差の変化量ΔSA3W[λrms/nm]と、環境温度の変化に対する単位温度あたりの3次球面収差の変化量ΔSA3T[λrms/℃]を掛け合わせた値は負(<0)である。対物レンズOBJは回折構造を有し、半導体レーザLDからの光束が回折構造に入射したときに発生するメイン回折光が情報記録面RL1~RL3のいずれかに集光することにより、情報の記録及び/または再生を行うようになっており、回折構造は段差が光軸方向を向いている。

Description

対物レンズ及び光ピックアップ装置
 本発明は、厚さ方向に3つ以上の情報記録面を有する光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置及び対物レンズに関する。
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。
 ところで、従来のBDは1層もしくは2層の情報記録面を有しているものが多いが、1枚のBDに、より大きなデータを保存したいという市場の要求から、3層以上の情報記録面を有するBDについても実用化を目指して研究が進んでおり、一部製品化されている。
しかるに、情報の記録/再生を行う際の光束のNAが0.85と大きいため、複数の情報記録面を有するBDでは、一の情報記録面に対して最小の球面収差を付与するようにすると、基板厚さが異なる他の情報記録面においては球面収差が増大し、適切に情報の記録/再生を行えなくなるという問題がある。かかる球面収差の問題は情報記録面の数が多くなるほど(すなわち、表面からの距離が最も小さい情報記録面と表面からの距離が最も大きい情報記録面との間隔が大きくなるほど)顕在化する。
 一方、対物レンズのコスト低減を図るべく、素材をガラス材料からプラスチック材料に変更することも行われている。しかしながら、プラスチック性の対物レンズでは、温度変化に伴う屈折率の変化によって発生する収差が、ガラス製の対物レンズより大きくなるという問題がある。一般的には、この屈折率の変化はプラスチック材料とガラス材料とで一桁以上異なっている。ここで、基準設計温度と実際の使用環境との温度差を△Tとしたとき、この温度差△Tによって変化する収差は主に3次球面収差である。波面収差の3次球面収差成分をrms値で表したものをSA3とし、ここでは球面収差が正の場合(オーバー)をSA3>0、負(アンダー)の場合をSA3<0と符号を定義する。温度変化ΔT[℃]によって変化する3次球面収差ΔSA3[λrms]は、対物レンズの光情報記録媒体側(像側)開口数NA、焦点距離f、結像倍率M、比例係数k、光の波長λを用いて、
 ΔSA3/ΔT=k・f(1-M)4(NA)4/λ    (5)
と表すことができ、これが温度変化1℃あたりの3次球面収差変化量ΔSA3Tである。尚、プラスチック材料から形成された対物レンズが正の屈折力を有する場合、温度が上昇すると3次の球面収差がよりオーバーになる。すなわち、上式(5)において、係数kは正の値となる。また、樹脂材料から形成された単レンズを対物レンズとした場合、係数kはより大きな正の値となる。
 特に、BD用のプラスチック製の対物レンズでは、NAが0.8以上とDVD等に比して大きくなるため、(5)式に従い温度変化に起因して発生する3次球面収差が大きくなりがちである。
 このような問題に対し、光源と対物レンズとの間に配置した球面収差補正素子としてのカップリングレンズやビームエキスパンダなどを光軸方向に移動させることで、対物レンズの入射倍率を変更し、複数の情報記録面間の透明基板厚差による球面収差や、温度変化に起因して発生する3次球面収差を補正する技術が知られている。
 しかしながら、光ピックアップ装置のコンパクト化の要求下では、球面収差補正素子の移動スペースは制限されるため、発生した球面収差を全て補正できるとは限らない。かかるスペースの制約は、特にスリムタイプといわれる薄型の光ピックアップ装置において厳しいといえる。
 かかる問題に対し、温度変化に起因して発生する3次球面収差については、例えば特許文献1に示されているように、対物レンズに回折構造を設けたり、或いは特許文献2に示されているように、補正素子側に回折構造を設けたりして補正することもできる。かかる回折構造は、環境温度変化に応じて光源波長が変化することを利用して、回折構造の波長依存性により、温度変化に起因して発生する3次球面収差を補正する機能を有する。このような機能を温特補正機能という。これにより、球面収差補正素子の移動スペースを小さくできる。
特開2009-283122号公報 特開2005-18949号公報
 ここで、本発明者は、温特補正機能を有する回折構造を設けたプラスチック製の対物レンズを用いて多層の光ディスクに対して情報の記録/再生を行う際に、層間クロストークが発生するという問題に着目した。層間クロストークとは、情報の記録/再生を行うとする情報記録面以外の情報記録面からの反射光が、本来の信号光に混じってしまう現象であり、これにより記録/再生エラーを生じることになる。
 本発明は、上述の問題を考慮してなされたものであり、3つ以上の情報記録面を有する光ディスクに対して情報の記録/再生のために用いられ、温特補正機能を有する回折構造を設けていても、層間クロストークを有効に抑制できる対物レンズ及び光ピックアップ装置を提供することを目的とする。
 請求項1に記載の対物レンズは、波長λ1(390nm<λ1<415nm)の光束を出射する光源と、球面収差補正素子と、対物レンズとを有し、前記球面収差補正素子を光軸方向に変位させることによって、光束入射面からの距離(透明基板厚)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクにおけるいずれかの情報記録面を選択し、前記光源から出射された波長λ1の光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行う光ピックアップ装置に使用される対物レンズであって、
 前記光ディスクにおいて、光束入射面側に最も近い情報記録面の透明基板厚をt1[mm],光束入射面側から最も遠い情報記録面の透明基板厚をt2[mm]としたときに、Δtmax[mm]=t1-t2として、以下の式を満たし、
 0.03≦Δtmax≦0.055   (1)
 前記対物レンズは、像側開口数(NA)が0.8以上、0.90未満のプラスチック製の単玉レンズであり、設計基板厚t[mm](但し、t1≦t≦t2)、且つ倍率=0で球面収差が補正されるように設計されており、
 更に、光源波長の変化に対する単位波長あたりの3次球面収差の変化量ΔSA3W[λrms/nm]と、環境温度の変化に対する単位温度あたりの3次球面収差の変化量ΔSA3T[λrms/℃]を掛け合わせた値は負(<0)であり、
 前記対物レンズは回折構造を有し、前記光源からの光束が前記回折構造に入射したときに発生する回折光(これをメイン回折光という)が前記情報記録面のいずれかに集光することにより、情報の記録及び/または再生を行うようになっており、
 前記回折構造は、段差が光軸方向を向いていることを特徴とする。
 まず、前提として、本発明では対物レンズに回折構造を設けている。回折の波長依存性を利用し,光源波長の変化に対する単位波長あたりの3次球面収差の変化量ΔSA3W[λrms/nm]と、環境温度の変化に対する単位温度あたりの3次球面収差の変化量ΔSA3T[λrms/℃]を掛け合わせた値は負(<0)であるようにすることで、温度変化時の球面収差を波長変化により低減することが可能となるのである。これにより球面収差補正素子により補正すべき球面収差を小さくできるため,球面収差補正素子の移動距離を減らすことができる。尚、球面収差補正素子側に温特補正用回折構造を設けることも可能であるが,情報記録面を3つ以上有する多層の光ディスクでは、最大収束(又は発散)倍率が大きくなるため,温特補正時のトラッキングによりコマ収差が発生する恐れがあるから、好ましくない。
 本発明者は、対物レンズに温特補正用回折構造を設けた場合に発生する層間クロストークの原因の一つが、異次回折光にあることを見出した。例えば設計上、高い回折効率を有するメイン回折光を生じさせる回折構造であっても、実際には、製造誤差などにより微細な段差の寸法等や、光源となる半導体レーザの発振波長などが設計値からシフトし、その結果、メイン回折光の回折効率が低下し、その代わりメイン回折光とは異なる次数の回折光(これを異次回折光という)の回折効率が増大してしまう。ここで、光ディスクの複数の情報記録面のうちn番目の情報記録面に、メイン回折光を集光していた場合において、例えば異次回折光が、n番目以外の情報記録面に集光してしまうと、その反射光を光検出器で検出してしまい、層間クロストークが発生する恐れがある。かかる問題は、情報記録面が2つである従来の2層タイプのBDでは、層数が少なく反射光強度が小さいため、発生しにくいという実情がある。
 より具体的に図面を参照して説明すると、光ディスクの情報記録面が4つあり、その透明基板厚さtがそれぞれ、53μm、62μm、75μm、100μmであったとする。各情報記録面への集光は、球面収差補正素子を光軸方向に移動させることで、対物レンズへの入射倍率を変更することで行うものとする。ここで、図1(a)は、対物レンズの回折構造から発生したメイン回折光が、最も光入射側に近いt=53μmの第1の情報記録面に対して無収差で集光し、同時に異次回折光(メイン回折光とは異なる次数の回折光)が第2、3、4の情報記録面に集光した場合の、第1の情報記録面上の縦球面収差図を表している。この図より、異次回折光がいずれかの縦収差形状に近づくと、その情報記録面からの反射光が信号光として検出される恐れがある。
 同様に、図1(b)は、対物レンズの回折構造から発生したメイン回折光が、t=62μmの第2の情報記録面に対して無収差で集光し、同時に異次回折光が第1、3、4の情報記録面に集光した場合の、第2の情報記録面上の縦球面収差図を表している。又、図1(c)は、対物レンズの回折構造から発生したメイン回折光が、t=75μmの第3の情報記録面に対して無収差で集光し、同時に異次回折光が第1、2、4の情報記録面に集光した場合の、第3の情報記録面上の縦球面収差図を表している。図1(d)は、対物レンズの回折構造から発生したメイン回折光が、t=100μmの第4の情報記録面に対して無収差で集光し、同時に異次回折光が第1、2、3の情報記録面に集光した場合の、第4の情報記録面上の縦球面収差図を表している。
 ここで本発明者は、図1(a)~(d)を合成した図1(e)より、メイン回折光より近側(透明基板厚さが薄い側)に発生する異次回折光は、光軸から離れるに連れて収差がオーバー側へと変化すると、第1~4のいずれかの情報記録面を記録・再生する際に、それより透明基板厚さが薄い情報記録面に集光する可能性があることを見出した。一方、メイン回折光より遠側(透明基板厚さが厚い側)に発生する異次回折光は、光軸から離れるに連れて収差がアンダー側へと変化すると、第1~4のいずれかの情報記録面を記録・再生する際に、それより透明基板厚さが厚い情報記録面に集光する可能性があることを見出した。
 一方、回折構造により温度変化時の球面収差を補正する、言い換えると、回折構造は波長が長くなると球面収差がアンダーとなる作用を有することから、回折形状と異次回折光の縦球面収差図は、図2(a)(b)(c)の3つに分類されることが判った。例えば、図2(a)に示す対物レンズOBJの場合、全領域で負の回折パワーを有するため、回折構造の全ての段差STが光軸OAと反対側(径方向外側)を向いている。その場合、無収差のメイン回折光に対して、近側(透明基板厚さが薄い側)に発生する異次回折光は、光軸から離れるに連れて収差がオーバー側へ変化し、メイン回折光より遠側(透明基板厚さが厚い側)に発生する異次回折光は、光軸から離れるに連れて収差がアンダー側へと変化するため、異次回折光の縦収差図は図1(e)の形状に近づき、層間クロストークが生じる可能性が高まる。
 同様に、図2(b)に示す対物レンズOBJの場合、回折パワーが光軸から周辺に向かうにつれ、負から正へと変化するため、光軸OAに近い回折構造の段差STが光軸OAと反対側(径方向外側)を向き、光軸OAから遠い回折構造の段差STが光軸OA側(径方向内側)を向いている。その場合、無収差のメイン回折光に対して、近側(透明基板厚さが薄い側)に発生する異次回折光は、光軸から離れるに連れて収差がオーバー側へ変化し、メイン回折光より遠側(透明基板厚さが厚い側)に発生する異次回折光は、光軸から離れるに連れて収差がアンダー側へと変化するため、この場合も、異次回折光の縦収差図は図1(e)の形状に近づき、層間クロストークが生じる可能性が高まる。
 これに対し、図2(c)に示す対物レンズOBJの場合、全領域で正の回折パワーを有する(但し近軸回折パワーは0を含む)ため、回折構造の全ての段差STが光軸OA側(径方向内側)を向いている。その場合、無収差のメイン回折光に対して、近側(透明基板厚さが薄い側)に発生する異次回折光は、光軸から離れるに連れて収差がアンダー側へ変化し、メイン回折光より遠側(透明基板厚さが厚い側)に発生する異次回折光は、光軸から離れるに連れて収差がオーバー側へと変化する。つまり、異次回折光は記録・再生する情報記録面以外の面に対して球面収差を持つことになり、情報記録面以外の面で異次回折光が反射しても強度が弱くなり、結果、層間クロストークを低減できることがわかった。
 請求項2に記載の対物レンズは、請求項1に記載の発明において、前記対物レンズにおいて、光源波長の変化に対する単位波長あたりの3次球面収差の変化量をΔSA3W[λrms/nm]とし、焦点距離をf[mm]としたときに、以下の式を満たすことを特徴とする。
-0.016≦ΔSA3W/f≦-0.002   (2)
 図3は、縦軸に、光源波長の1nm変化時における3次球面収差の変化量ΔSA3W[λrms/nm]を焦点距離f[mm]で除した値ΔSA3W/f、横軸に、環境温度が1℃変化したときの光源の波長変動を考慮した3次球面収差の変化量ΔSA3TW[λrms/℃]をとって示すグラフである。ここでは環境温度が1℃変化した場合光源波長は0.05nm変化すると仮定している。又、対物レンズの焦点距離fを0.87mm、1.2mm、1.5mm、2.0mmと変化させてグラフ上にプロットした。本発明では、光源波長の変化に起因して生じる3次球面収差で、環境温度の変化に起因して生じる3次球面収差をキャンセルするため、両者は比例関係にある。ここで、ΔSA3TWは一般的に-0.0013λrms~+0.0013λrmsの範囲であれば球面収差補正が不要となるため、温特補正の為に球面収差補正素子を移動させる必要がなくなり、別個に温度センサを設ける必要もなく光ピックアップ装置の小型化・低コスト化を図ることができる。そのためにはΔSA3W/fは、-0.016以上が好ましい。これは、ΔSA3W/fが負の方向に小さくなるに従い回折パワーが大きくなり回折構造のピッチが小さくなるため、下限以上にすることで製造容易性が確保できるからである。
 また、ΔSA3W/fは、-0.002以下が好ましい。元々屈折面で発生する温度変化時の収差は、焦点距離が短くなると小さくなるため(式5)、焦点距離が0.8mm以下の対物レンズでは、回折で補正しなくてもΔSA3TWは-0.0013λrms~+0.0013λrmsが達成される。従って実質温度補正が必要で、且つスリムPUに適した焦点距離0.8~2.0mmの対物レンズを考慮すると、-0.002λrms以下にすることで、回折パワーによる温度補正効果が高まり、且つ異次回折光が他情報記録面に対して大きな球面収差を有する(言い換えると他情報記録面上で大きなフレアとなる)。よって他情報記録面からの反射光は情報記録面上においてメイン回折光とは別の位置に集光し、良好な再生・記録信号を得ることができる。
 請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、前記対物レンズにおける前記回折構造による近軸回折パワーをP[mm―1]とし、焦点距離をf[mm]とし、光源波長における前記光ディスクの透明基板の屈折率をntとしたときに、以下の式を満たすことを特徴とする。
(60.2f-45.4)P/0.02m0≧Δtmax/nt   (3)
但し、m0は最も光軸に近い輪帯の回折次数
 図4は、少なくとも光軸付近の回折次数がm0(但し、m0は0でない整数)次であるメイン回折光が、ある情報記録面に無収差で集光する状態における、縦球面収差図である。製造誤差などにより微細な段差の寸法等や、光源となる半導体レーザの発振波長などが設計値からシフトした場合、m0に隣接する(m0+1)次、又は(m0-1)次光の異次回折光の強度が高くなる。その発生位置は、m0次光(メイン光)と0次回折光(透過光)との軸上の距離をLとして、L/m0で表される。ここでLは、図5、図6より、直線近似により、
L=(60.2f-45.4)P/0.02   (6)
で求められる。
 図5は、横軸に対物レンズの近軸回折パワーP[mm―1]をとり、縦軸に距離L[nm]をとって示すグラフであり、焦点距離f[mm]を変えてプロットしたものであるが、これにより、焦点距離fに関わらず、距離Lは近軸回折パワーPに比例することが分かる。
 図6は、横軸に対物レンズの焦点距離f[mm]をとり、縦軸に距離L[nm]をとって示すグラフであり、近軸回折パワーP[mm―1]を変えてプロットしている。図6によれば、近軸回折パワーP[mm―1]に関わらず、焦点距離fが増大すれば、距離Lも増大しており、薄型光ピックアップ装置に適した焦点距離0.87mm~2.00mmでは、凡そ直線近似で問題ないことが分かる。
 一方、図1の合成図(e)の最もメイン光から遠い位置に集光する光の、近軸集光位置は、透明基板厚の屈折率をnt、最大基板厚差Δtmaxとして、最大基板厚差の空気換算長Δtmax/ntで表される。層間クロストークを一層低減するには、別の情報記録面からの反射光がセンサー上でメイン光と異なる位置に集光ればよい、言い換えると、隣接する異次光が、最もメイン光から遠い位置に集光する光よりも更に遠くに集光すればよいことになり、
 L/m0≧Δtmax/nt   (3’)
で表すことができる。
 (3’)式に(6)式を代入することにより、以下の式を得る。
(60.2f-45.4)P/0.02m0≧Δtmax/nt   (3)
 請求項4に記載の対物レンズは、請求項3に記載の発明において、対物レンズ単体の軸上色収差をΔfB[μm/nm]としたときに、以下の式を満たすことを特徴とする。
-0.3≦ΔfB≦0   (4)
 ここでいう軸上色収差とは、対物レンズへの入射光波長が+1nm変化した場合の、近軸光線における光軸方向位置変化量を指す。光ディスクを4層のBDとして、Δtmax=0.03[mm]、nt=1.62を仮定すると、(3)式より、以下の式を得る。
 P≧0.37×(60.2f-45.4)   (7)
 焦点距離f=0.87mm、1.20mm、1.50mm、2.00mmにおいて、回折次数m0=1~7について、近軸回折パワーPを計算すると、表1のようになる。これより、焦点距離と回折次数を選択すれば、層間クロストークを低減できる近軸回折パワーPの最小値が得られる。回折次数は任意に選択できるが、高次になるほど温度や波長変動の際に効率低下が大きくなり、低次になるほど回折ピッチが小さくなることから加工性が低下するため、回折次数m0は3~5が好ましい。
Figure JPOXMLDOC01-appb-T000001
 一方、図7は、軸上色収差ΔfB[μm/nm]と、対物レンズの焦点距離f[mm]の関係を近軸回折パワーP[mm―1]毎にグラフ化したものである。この図に、表1の焦点距離における、回折次数m0が3~5の場合の好ましい近軸回折パワーPの範囲を重ねると、最適な軸上色収差ΔfBが求められるが、モードホッピング発生時の集光位置ずれを抑えることで記録時にも良好な特性が得られるよう、ΔfBの絶対値は0.3以下が望ましい。更に、(4)式の上限以下にすることで回折ピッチが大きくなり加工性が向上し、加えて加工精度向上により層間クロストークを低減できる。
 請求項5に記載の対物レンズは、請求項1~4のいずれかに記載の発明において、前記対物レンズの有効径内において、光軸の周囲に形成された内側領域と、前記内側領域の外側に形成された外側領域とを有し、前記内側領域には第1の回折構造が形成され、前記外側領域には第2の回折構造が形成されており、前記光源からの光束が入射したときに、前記第1の回折構造で発生するm1次回折光が、選択された情報記録面に集光し、前記第2の回折構造で発生するm2次回折光が、前記選択された情報記録面に集光し、前記選択された情報記録面からの反射光を光検出器で検出することにより、情報の記録及び/又は再生を行うようになっており、|m1|>|m2|であることを特徴とする。
 |m1|>|m2|とすることで、異次回折光の縦球面収差特性は、図8に実線で示すようになり、即ち内側領域の球面収差よりも、外側領域の球面収差がオーバー側にシフトするので、スポットの寄与する周辺領域の異次回折光を、より遠くに離すことができ、他の情報記録面に対して異次回折光が大きくフレア化するため、層間クロストークを一層抑制できる。
 請求項6に記載の対物レンズは、請求項1~4のいずれかに記載の発明において、前記対物レンズの有効径内において、光軸の周囲に形成された内側領域と、前記内側領域の外側に形成された外側領域とを有し、前記内側領域には第1の回折構造が形成され、前記外側領域には第2の回折構造が形成されており、前記光源からの光束が入射したときに、前記第1の回折構造で発生するm1次回折光が、選択された情報記録面に集光し、前記第2の回折構造で発生するm2次回折光が、前記選択された情報記録面に集光し、前記選択された情報記録面からの反射光を光検出器で検出することにより、情報の記録及び/又は再生を行うようになっており、|m1|<|m2|であることを特徴とする。
 |m1|<|m2|とすることで、外側領域の回折構造のピッチを広くでき、これにより対物レンズの製造容易性が高まる。
 請求項7に記載の対物レンズは、請求項1~6のいずれかに記載の発明において、前記回折構造は、周期的な輪帯状の段差構造であって、最も光軸方向の距離が長い段差が光軸の方向を向いていることを特徴とする。
 回折構造には、ブレース型回折構造と、階段型回折構造があるが、いずれも周期的な輪帯状の段差構造であって、最も光軸方向の距離が長い段差の向きにより回折パワーの符号が決まるため、光軸の方向を向いていることで、近軸の回折パワーが正となり、層間クロストークを低減できる。
 請求項8に記載の光ピックアップ装置は、請求項1~7のいずれかに記載の前記対物レンズを有することを特徴とする。
 請求項9に記載の光ピックアップ装置は、請求項8に記載の発明において、前記情報記録面の透明基板厚の差により対物レンズで発生する球面収差を、光軸方向に移動する球面収差補正素子により補正する光ピックアップ装置であって、球面収差補正素子はピックアップ動作時に前記情報記録面の数と同じ数の固定位置に配置されることを特徴とする。
 対物レンズの回折構造により温度変化時の球面収差が補正され、光源の個体差による設計波長と実際の波長とのズレが要因で発生する色球面収差はピックアップの組み立て時に取り除くと、ピックアップ動作時に補正が必要なのは、基板厚さの違いによる球面収差のみとなる。これを補正する球面収差補正素子の配置を情報記録面の数と同じ数の固定位置にすることでアクチュエータの構成が簡素となり、安価且つ小型のピックアップを得ることができる。
 本発明に係る光ピックアップ装置は、第1光源を有するが、更に第2光源、第3光源を有していても良い。さらに、本発明にかかる光ピックアップ装置は、第1光束を第1光ディスクの情報記録面上に集光させる集光光学系(単に光学系と称する場合もある)を有するが、かかる集光光学系は、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光させるために兼用されても良い。また、本発明の光ピックアップ装置は、第1光ディスクの情報記録面からの反射光束を受光する受光素子を有するが、第2光ディスク又は第3光ディスクの情報記録面からの反射光束を受光する受光素子を有していても良い。
 第1光ディスクは、厚さがtBの保護基板と情報記録面とを有する。第2光ディスクは厚さがtD(tB<tD)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがtC(tD<tC)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。なお、第1光ディスクは3つ以上の情報記録面を有する。第2光ディスク又は第3光ディスクも、複数の情報記録面を有する複数層の光ディスクでもよい。
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層又はそれ以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。
 なお、保護基板の厚さtB、tD、tCに関しては、以下の条件式(8)、(9)、(10)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
  0.040[mm] ≦ tB ≦ 0.110[mm]   (8)
  0.5[mm] ≦ tD ≦ 0.7[mm]    (9)
  1.0[mm] ≦ tC ≦ 1.3[mm]    (10)
 前述のように、光ディスク(第1光ディスク)は3つ以上の情報記録面を有する。このとき、光ディスクの入射側表面からいずれかの情報記録面までのうち、最大の距離をt2とし、最小の距離をt1としたときに、以下の式を満たすと好ましい。
 0.040[mm]≦t1   (11)
 t2≦0.110[mm]   (12)
 0.03[mm]≦t2-t1≦0.55[mm]   (1)
 本明細書において、第1光源は、好ましくはレーザ光源である。更に第2光源、第3光源を有する場合も、レーザ光源を用いると好ましい。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1は、第2光源から出射される第2光束の第2波長λ2より短く、第2波長λ2は、第3光源から出射される第3光束の第3波長λ3より短い。
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。この場合、光源から出射されたビームを複数のビーム(メイン光とサブ光)に分離するための回折格子を、光源と球面収差補正素子の間に配置することが好ましい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。
 集光光学系は、対物レンズを有する。集光光学系は、対物レンズの他にコリメータ等の球面収差補正素子、例えばカップリングレンズを有していることが好ましい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。カップリングレンズは単玉レンズであってもよいし、正負のレンズの組み合わせの様な複数のレンズ群から構成されていても良いが、好ましくは単玉レンズである。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のレンズであることが好ましい。また、対物レンズは、プラスチックレンズである。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。
 また、対物レンズを形成するプラスチックは、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料であることが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.54乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃ -1) が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。
 脂環式炭化水素系重合体の好ましい例を幾つか、以下に示す。
 第1の好ましい例は、下記式(1)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(2)で表される繰り返し単位〔2〕または/および下記式(3)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなる樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
 (式中、R1は水素原子、または炭素数1~20のアルキル基を表し、R2-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。)
Figure JPOXMLDOC01-appb-C000003
 (式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000004
  (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。)
 次に、第2の好ましい例は、少なくとも炭素原子数2~20のα-オレフィンと下記一般式(4)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(A)と、炭素原子数2~20のα-オレフィンと下記一般式(5)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(B)とを含む樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
 〔式中、nは0または1であり、mは0または1以上の整数であり、qは0または1であり、R1~R18、Ra及びRbは、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R15~R18は互いに結合して単環または多環を形成していてもよく、括弧内の単環または多環が二重結合を有していてもよく、またR15とR16と、またはR17とR18とでアルキリデン基を形成していてもよい。〕
Figure JPOXMLDOC01-appb-C000006
 〔式中、R19~R26はそれぞれ独立に水素原子、ハロゲン原子または炭化水素基である。〕
 樹脂材料に更なる性能を付加するために、以下のような添加剤を添加してもよい。
(安定剤)
 フェノール系安定剤、ヒンダードアミン系安定剤、リン系安定剤及びイオウ系安定剤から選ばれた少なくとも1種の安定剤を添加することが好ましい。これらの安定剤を適宜選択し添加することで、例えば、405nmといった短波長の光を継続的に照射した場合の白濁や、屈折率の変動等の光学特性変動をより高度に抑制することができる。
 好ましいフェノール系安定剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2′-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニルプロピオネート))メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート))]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。
 また、好ましいヒンダードアミン系安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。
 また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。
 また、好ましいイオウ系安定剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3′-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ)-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。
 これらの各安定剤の配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式炭化水素系共重合体100質量部に対して通常0.01~2質量部、好ましくは0.01~1質量部であることが好ましい。
(界面活性剤)
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで、樹脂組成物の白濁を防止することが可能となる。
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基などが挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的に炭素数6以上のアルキル基、炭素数6以上のアルキル基を有するシリル基、炭素数6以上のフルオロアルキル基などが挙げられる。ここで、炭素数6以上のアルキル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデセニル、ドデシル、トリデシル、テトラデシル、ミリスチル、ステアリル、ラウリル、パルミチル、シクロヘキシルなどが挙げられる。芳香環としてはフェニル基などが挙げられる。この界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。
 このような界面活性剤としては、より具体的には、例えば、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、などが挙げられる。これらのうちでも、ヒドロキシアルキル基を有するアミン化合物またはアミド化合物が好ましく用いられる。本発明では、これら化合物を2種以上組合わせて用いてもよい。
 界面活性剤は、温度、湿度の変動に伴なう成形物の白濁を効果的に抑え、成形物の光透過率を高く維持するという観点から、脂環式炭化水素系重合体100質量部に対して0.01~10質量部添加されることが好ましい。界面活性剤の添加量は脂環式炭化水素系重合体100質量部に対して0.05~5質量部とすることがより好ましく、0.3~3質量部とすることが更に好ましい。
(可塑剤)
 可塑剤は共重合体のメルトインデックスを調節するため、必要に応じて添加される。
 可塑剤としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ビス(2-ブトキシエチル)、アゼライン酸ビス(2-エチルヘキシル)、ジプロピレングリコールジベンゾエート、クエン酸トリ-n-ブチル、クエン酸トリ-n-ブチルアセチル、エポキシ化大豆油、2-エチルヘキシルエポキシ化トール油、塩素化パラフィン、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、リン酸-t-ブチルフェニル、リン酸トリ-2-エチルヘキシルジフェニル、フタル酸ジブチル、フタル酸ジイソヘキシル、フタル酸ジヘプチル、フタル酸ジノニル、フタル酸ジウンデシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジトリデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル、セバシン酸ジ-2-エチルヘキシル、トリメリット酸トリ-2-エチルヘキシル、Santicizer 278、Paraplex G40、Drapex 334F、Plastolein 9720、Mesamoll、DNODP-610、HB-40等の公知のものが適用可能である。可塑剤の選定及び添加量の決定は、共重合体の透過性や環境変化に対する耐性を損なわないことを条件に適宜行なわれる。
 これらの樹脂としては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。
 また、対物レンズの波長λ1の光束に関する焦点距離fは1.75mm未満である。好ましくは、0.8mm以上、1.75mm未満である。
 対物レンズは光路差付与構造を有している。本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造は、一般に、様々な断面形状(光軸を含む面での断面形状) をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。
 ブレーズ型構造とは、図9(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。尚、図9の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図9(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量Bという。(図9(a)参照)
 また、階段型構造とは、図9(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Vレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有することになる。
 例えば、図9(c)に示す光路差付与構造を、5レベルの階段型構造といい、図9(d)に示す光路差付与構造を、2レベルの階段型構造(バイナリ構造ともいう)という。2レベルの階段型構造について、以下に説明する。光軸を中心とした同心円状の複数の輪帯を含み、対物レンズの光軸を含む複数の輪帯の断面の形状は、光軸に平行に延在する複数の段差面Pa、Pbと、隣接する段差面Pa、Pbの光源側端同士を連結する光源側テラス面Pcと、隣接する段差面Pa、Pbの光ディスク側端同士を連結する光ディスク側テラス面Pdとから形成され、光源側テラス面Pcと光ディスク側テラス面Pdとは、光軸に交差する方向に沿って交互に配置される。
 また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという。(図9(c)、(d)参照)また、階段の光軸に平行方向の段差の長さを段差量B1,B2という。3レベル以上の階段型構造の場合、大段差量B1と小段差量B2とが存在することになる。(図9(c)参照)
 尚、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図9(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図9(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げ、輪帯数を減らすことが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。
 光路差付与構造が、階段型構造を有する場合、図9(c)で示されるような5レベルの階段単位が、繰り返されるような形状等があり得る。さらに、光軸から離れる方向に進むに従って、徐々に階段単位のピッチが長くなっていく形状や、徐々に階段単位のピッチが短くなっていく形状であってもよい。この場合、光軸方向に最も長い段差とは、B1を指す。
 また、光路差付与構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。別の言い方では、光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。
 以上のように、光路差付与構造は様々な形状を取り得るが、本発明の光路差付与構造、つまり回折構造は、「段差が光軸側を向いている」、図10のような状態を言う。
 更に、光源波長の変化に対する3次球面収差の変化量ΔSA3Wと、環境温度の変化に対する3次球面収差の変化量ΔSA3Tを掛け合わせた値は負(<0)であると好ましい。これにより、環境温度変化に起因した球面収差を補正できる。また、互換や軸上色収差も併せて行えるよう、複数の回折構造を重畳することにより温度変化時の球面収差を補正する場合があるが、その際は温度変化時の球面収差を補正する効果を有する光源波長の変化に対する回折構造において、本発明の構成を備えていれば良い。回折構造が温度変化時の球面収差を補正する効果を有しているかどうかは、光源波長の変化に対するその回折構造による3次球面収差の変化量ΔSA3Wの符号でもって判断できる。これは、通常正の屈折レンズでは温度が上昇するとΔSA3は正に変化するため、光源波長の変化に対するその回折構造による3次球面収差の変化量ΔSA3Wが負であれば温度変化時の3次球面収差を補正することが可能だからである。
 次に、対物レンズの開口数について説明する。
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクを用いる場合、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクを用いる場合、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.8以上、0.9以下であることが好ましい。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。
 また、対物レンズは、以下の条件式(13)を満たす。
 0.9<d/f<1.35   (13)
 但し、d[mm]は、対物レンズの軸上厚を表し、f[mm]は、第1光束における対物レンズの焦点距離を表す。
 より好ましくは、以下の条件式(13‘)を満たすことである。
 0.9<d/f<1.2   (13‘)
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、条件式(13)や(13‘)を満たすことにより非点収差や偏心コマ収差の発生を抑制することが可能となる。
 また、光ピックアップ装置は、カップリングレンズを光軸方向に変位させることによって、光束入射面からの距離(透明基板厚)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクにおけるいずれかの情報記録面を選択し、光源から出射された波長λ1の光束を対物レンズにより選択された情報記録面に集光することによって、情報の記録及び/または再生を行う。
 第1光束について、第1光ディスクの3つ以上の情報記録面の各層に対応するためにカップリングレンズを光軸方向に移動することにより、倍率は変化する。第1光束が対物レンズに入射する時の対物レンズの結像倍率m1の最大値と最小値が、下記の式(14)の範囲内に含まれることが好ましい。
 -1/50<m1<1/50   (14)
 より好ましくは、以下の式(14‘)に含まれることである。
 -1/80<m1<1/60   (14‘)
 更に、光ピックアップ装置は、対物レンズとカップリングレンズの間に、対物レンズに入射する光束の径を制限する絞りを有することが好ましい。絞りは、対物レンズのすぐ近くに設けられることが好ましい。また、絞りの絞り径は3mm以下であることが好ましい。尚、対物レンズと別体の絞りを有さなくても、対物レンズ自身に絞りの機能を持たせても良い。対物レンズの光源側光学面の有効径が3.0mm以下であることが好ましい。
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。
 尚、本発明は、スリムタイプの光ディスクドライブ装置のような厚さが15mm未満の光ディスクドライブ装置に用いられることが好ましい。
 本発明によれば、3つ以上の情報記録面を有する光ディスクに対して情報の記録/再生のために用いられ、温特補正機能を有する回折構造を設けていても、層間クロストークを有効に抑制できる対物レンズ及び光ピックアップ装置を提供することができる。
メイン光と他の情報記録面に集光する異次回折光の縦球面収差図で、(a)は第1の情報記録面(t=53μm)上の縦球面収差図、(b)は第2の情報記録面(t=62μm)上の縦球面収差図、(c)は第3の情報記録面(t=75μm)上の縦球面収差図、(d)は第4の情報記録面(t=100μm)上の縦球面収差図、(e)は(a)~(d)を合成した縦球面収差図である。 (a)~(c)に示す回折構造の段差の向きと、異次回折光の縦球面収差特性との関係を示す図である。 縦軸に、光源波長の変化に対する単位波長あたりの3次球面収差の変化量ΔSA3W [λrms/nm]と、焦点距離f[mm]で除した値ΔSA3W/f、横軸に、環境温度の変化時の光源の波長変動を考慮した単位温度あたりの3次球面収差の変化量ΔSA3TW[λrms/℃]をとって示すグラフである。 異次回折光の縦球面収差図である。 横軸に対物レンズの回折パワーP[mm―1]をとり、縦軸に距離L[nm]をとって示すグラフである。 横軸に対物レンズの焦点距離f[mm]をとり、縦軸に距離L[nm]をとって示すグラフである。 縦軸に軸上色収差ΔfB/nm[μm/nm]をとり、横軸に対物レンズの焦点距離f[mm]ととって示すグラフである。 対物レンズの光学面を2領域に分けたときの異次回折光の縦球面収差図である。 回折構造の例を示す拡大断面図であり、(a)、(b)はブレーズ型構造の例を示し、(c)、(d)は階段型構造の例を示す。 全ての段差が光軸の方向を向いている状態を示す図である。 BD専用の光ピックアップ装置PU1の構成を概略的に示す図である。 実施例1の縦球面収差図である。 実施例2の縦球面収差図である。 実施例3の縦球面収差図である。 実施例4の縦球面収差図である。 実施例5の縦球面収差図である。 実施例6の縦球面収差図である。
 以下、本発明の実施の形態を、図面を参照して説明する。図11は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。本実施形態において、Δtmaxの値は、0.030~0.055mmである。かかる光ピックアップ装置PU1は、スリムタイプの光ピックアップ装置(点線で外形を概略的に示す)である。なお、本発明は、本実施の形態に限られるものではない。例えば、図11ではBD専用の光ピックアップ装置を示しているが、対物レンズOBJをBD/DVD/CD互換用としたり、或いはDVD/CD用の対物レンズを別個に配置することで、BD/DVD/CD互換用の光ピックアップ装置とすることもできる。また、3つの情報記録面ではなく、4つの情報記録面としてもよい。更に、光源とカップリングレンズとの間に回折格子を挿入し、例えば3ビームを発生させるマルチビーム式の光ピックアップ装置としても良い。マルチビーム式の光ピックアップ装置については、特開2000-187880号公報に記載されている。
 光ピックアップ装置PU1は、対物レンズOBJ、対物レンズOBJをフォーカシング方向及びトラッキング方向に移動させ、光ディスクのラジアル方向、及び/または、タンジェンシャル方向に傾ける3軸アクチュエータAC2、λ/4波長板QWP、立ち上げミラーMR、正の屈折力を有する正レンズL2と負の屈折力を有する負レンズL3とを有するカップリングCL、正レンズL2のみ光軸方向に移動させる1軸アクチュエータAC1、偏光プリズムPBS、405nmのレーザ光束(光束)を射出する半導体レーザLD、センサ用レンズSL、BDの情報記録面RL1~RL3からの反射光束を受光する受光素子PDを有する。
 本実施の形態においては、カップリングレンズCLは、偏光プリズムPBSとλ/4波長板QWPとの間に配置されている。半導体レーザLDから、負レンズL3、正レンズL2の順で配置されているが、半導体レーザLDから、正レンズL2、負レンズL3の順で配置しても良い。又、負レンズL3が光軸方向に移動可能となっており、正レンズL2は光ピックアップ装置に固定されている。情報記録面の透明基板厚の差により対物レンズで発生する球面収差を、球面収差補正素子としてのカップリングレンズCLを光軸方向に移動することにより補正でき、カップリングレンズCLは光ピックアップ装置動作時に情報記録面の数と同じ数の固定位置(ここでは3カ所)に配置される。
 ここで、対物レンズOBJは、像側開口数(NA)が0.8以上、0.90未満のプラスチック製の単玉レンズであり、設計基板厚t[mm](但し、t1≦t≦t2)、且つ倍率=0で球面収差が補正されるように設計されており、更に、光源波長の変化に対する単位波長あたりの3次球面収差の変化量ΔSA3W[λrms/nm]と、環境温度の変化に対する単位温度あたりの3次球面収差の変化量ΔSA3T[λrms/℃]を掛け合わせた値は負(<0)である。対物レンズOBJは回折構造を有し、半導体レーザLDからの光束が回折構造に入射したときに発生するメイン回折光が情報記録面RL1~RL3のいずれかに集光することにより、情報の記録及び/または再生を行うようになっており、回折構造は、段差が光軸方向を向いている。
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い収束光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの透明基板PL1を介して、実線で示すように第1の情報記録面RL1上に形成されるスポットとなる。
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して略平行光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の透明基板PL2を介して、一点鎖線で示すように第2の情報記録面RL2上に形成されるスポットとなる。
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い発散光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の透明基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。
<実施例>
 次に、上述の実施の形態に用いることができる対物レンズの実施例を、以下に説明する。以下の表中のriは各面の曲率半径[mm]、diは各面間距離[mm]、niは波長λ1における各面の屈折率を表している。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-03)を用いて表すものとする。対物レンズの光学面は、それぞれ数1式に表1に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。尚、ここでは波長λ1を、λとして表すものとする。
Figure JPOXMLDOC01-appb-M000007
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。
 又、回折構造を有する実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。
[数2]
Φ(h)=Σ(C2i2i×λ×m/λB)
 ここで、λ:使用波長、m:回折次数、λB:製造波長、h:光軸から光軸垂直方向の距離である。また、ピッチP(h)=λB/(Σ(2i×C2i×h2i-1))とする。
また、回折近軸パワーPは下記に定義される。
P=-2×C2×λ×m/λB
(実施例1)
 表2に実施例1のレンズデータを示す又、図12に、実施例1にかかる対物レンズの縦球面収差図を示す。本実施例は、3次回折光をBDの情報記録面に集光して情報の記録/再生を行うものであり、全ての回折構造は段差が光軸側を向いている。
Figure JPOXMLDOC01-appb-T000008
(実施例2)
 表3に実施例2のレンズデータを示す又、図13に、実施例2にかかる対物レンズの縦球面収差図を示す。本実施例は、4次回折光をBDの情報記録面に集光して情報の記録/再生を行うものであり、全ての回折構造は段差が光軸側を向いている。
Figure JPOXMLDOC01-appb-T000009
(実施例3)
 表4に実施例3のレンズデータを示す又、図14に、実施例3にかかる対物レンズの縦球面収差図を示す。本実施例は、5次回折光をBDの情報記録面に集光して情報の記録/再生を行うものであり、回折構造の全ての段差が光軸側を向いている。
Figure JPOXMLDOC01-appb-T000010
(実施例4)
 表5に実施例4のレンズデータを示す又、図15に、実施例4にかかる対物レンズの縦球面収差図を示す。本実施例は、5次回折光をBDの情報記録面に集光して情報の記録/再生を行うものであり、全ての回折構造は段差が光軸側を向いている。
Figure JPOXMLDOC01-appb-T000011
(実施例5)
 表6に実施例5のレンズデータを示す又、図16に、実施例5にかかる対物レンズの縦球面収差図を示す。本実施例は、有効径内の光学面が内側領域と外側領域と分かれており、内側領域の第1の回折構造で発生した4次回折光と、外側領域の第2の回折構造で発生した3次回折光を、BDの情報記録面に集光して情報の記録/再生を行うものであり、回折構造の全ての段差が光軸側を向いている。
Figure JPOXMLDOC01-appb-T000012
(実施例6)
 表7に実施例6のレンズデータを示す又、図17に、実施例6にかかる対物レンズの縦球面収差図を示す。本実施例は、有効径内の光学面が内側領域と外側領域と分かれており、内側領域の第1の回折構造で発生した3次回折光と、外側領域の第2の回折構造で発生した4次回折光を、BDの情報記録面に集光して情報の記録/再生を行うものであり、回折構造の全ての段差が光軸側を向いている。
Figure JPOXMLDOC01-appb-T000013
 表8に請求項にかかる式の値を示す。
Figure JPOXMLDOC01-appb-T000014
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。
OBJ     対物レンズ
PU1     光ピックアップ装置
LD      青紫色半導体レーザ
AC1     1軸アクチュエータ
AC2     3軸アクチュエータ
BS      偏光ビームスプリッタ
PBS     偏光プリズム
CL      カップリングレンズ
MR      立ち上げミラー
L2      正レンズ群
L3      負レンズ群
QWP     λ/4波長板
PL1~PL3 保護基板
RL1~RL3 情報記録面
SL      センサ用レンズ

Claims (9)

  1.  波長λ1(390nm<λ1<415nm)の光束を出射する光源と、球面収差補正素子と、対物レンズとを有し、前記球面収差補正素子を光軸方向に変位させることによって、光束入射面からの距離(透明基板厚)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクにおけるいずれかの情報記録面を選択し、前記光源から出射された波長λ1の光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行う光ピックアップ装置に使用される対物レンズであって、
     前記光ディスクにおいて、光束入射面側に最も近い情報記録面の透明基板厚をt1[mm],光束入射面側から最も遠い情報記録面の透明基板厚をt2[mm]としたときに、Δtmax[mm]=t1-t2として、以下の式を満たし、
     0.03≦Δtmax≦0.055   (1)
     前記対物レンズは、像側開口数(NA)が0.8以上、0.90未満のプラスチック製の単玉レンズであり、設計基板厚t[mm](但し、t1≦t≦t2)、且つ倍率=0で球面収差が補正されるように設計されており、
     更に、光源波長の変化に対する単位波長あたりの3次球面収差の変化量ΔSA3W[λrms/nm]と、環境温度の変化に対する単位温度あたりの3次球面収差の変化量ΔSA3T[λrms/℃]を掛け合わせた値は負(<0)であり、
     前記対物レンズは回折構造を有し、前記光源からの光束が前記回折構造に入射したときに発生する回折光が前記情報記録面のいずれかに集光することにより、情報の記録及び/または再生を行うようになっており、
     前記回折構造は、段差が光軸方向を向いていることを特徴とする対物レンズ。
  2.  前記対物レンズにおいて、光源波長の変化に対する単位波長あたりの3次球面収差の変化量ΔSA3W [λrms/nm]、焦点距離をf[mm]としたときに、以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
     -0.016≦ΔSA3W/f≦-0.002   (2)
  3.  前記対物レンズにおける前記回折構造による近軸回折パワーをP[mm―1]、焦点距離をf[mm]とし、光源波長における前記光ディスクの透明基板の屈折率をntとしたときに、以下の式を満たすことを特徴とする請求項1又は2に記載の対物レンズ。
    (60.2f-45.4)P/0.02m0≧Δtmax/nt   (3)
    但し、m0は最も光軸に近い輪帯の回折次数。
  4.  対物レンズ単体の軸上色収差をΔfB[μm/nm]としたときに、以下の式を満たすことを特徴とする請求項3に記載の対物レンズ。
     -0.3≦ΔfB≦0   (4)
  5.  前記対物レンズの有効径内において、光軸の周囲に形成された内側領域と、前記内側領域の外側に形成された外側領域とを有し、前記内側領域には第1の回折構造が形成され、前記外側領域には第2の回折構造が形成されており、前記光源からの光束が入射したときに、前記第1の回折構造で発生するm1次回折光が、選択された情報記録面に集光し、前記第2の回折構造で発生するm2次回折光が、前記選択された情報記録面に集光し、前記選択された情報記録面からの反射光を光検出器で検出することにより、情報の記録及び/又は再生を行うようになっており、|m1|>|m2|であることを特徴とする請求項1~4のいずれかに記載の対物レンズ。
  6.  前記対物レンズの有効径内において、光軸の周囲に形成された内側領域と、前記内側領域の外側に形成された外側領域とを有し、前記内側領域には第1の回折構造が形成され、前記外側領域には第2の回折構造が形成されており、前記光源からの光束が入射したときに、前記第1の回折構造で発生するm1次回折光が、選択された情報記録面に集光し、前記第2の回折構造で発生するm2次回折光が、前記選択された情報記録面に集光し、前記選択された情報記録面からの反射光を光検出器で検出することにより、情報の記録及び/又は再生を行うようになっており、|m1|<|m2|であることを特徴とする請求項1~4のいずれかに記載の対物レンズ。
  7.  前記回折構造は、周期的な輪帯状の段差構造であって、最も光軸方向の距離が長い段差が光軸の方向を向いていることを特徴とする請求項1~6のいずれかに記載の対物レンズ。
  8.  請求項1~7のいずれかに記載の前記対物レンズを有することを特徴とする光ピックアップ装置。
  9.  前記情報記録面の透明基板厚の差により対物レンズで発生する球面収差を、光軸方向に移動する球面収差補正素子により補正する光ピックアップ装置において、
     球面収差補正素子はピックアップ動作時に前記情報記録面の数と同じ数の固定位置に配置されることを特徴とする請求項8に記載の光ピックアップ装置。
PCT/JP2012/073309 2011-09-30 2012-09-12 対物レンズ及び光ピックアップ装置 WO2013047202A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011217258 2011-09-30
JP2011-217258 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047202A1 true WO2013047202A1 (ja) 2013-04-04

Family

ID=47995236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073309 WO2013047202A1 (ja) 2011-09-30 2012-09-12 対物レンズ及び光ピックアップ装置

Country Status (1)

Country Link
WO (1) WO2013047202A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531505A (zh) * 2019-10-29 2019-12-03 江西联创电子有限公司 红外光学成像镜头及成像设备
CN113767433A (zh) * 2020-04-03 2021-12-07 松下知识产权经营株式会社 物镜、光头装置、光信息装置、光盘系统以及物镜的检查方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004326868A (ja) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc 対物光学素子及び光ピックアップ装置
WO2007102318A1 (ja) * 2006-03-07 2007-09-13 Konica Minolta Opto, Inc. 光ピックアップ装置、対物光学素子及び光情報記録再生装置
WO2011077647A1 (ja) * 2009-12-24 2011-06-30 パナソニック株式会社 光学ヘッド、光ディスク装置、情報処理装置及び対物レンズ
WO2011114895A1 (ja) * 2010-03-16 2011-09-22 コニカミノルタオプト株式会社 対物レンズ、光ピックアップ装置及び光情報記録再生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004326868A (ja) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc 対物光学素子及び光ピックアップ装置
WO2007102318A1 (ja) * 2006-03-07 2007-09-13 Konica Minolta Opto, Inc. 光ピックアップ装置、対物光学素子及び光情報記録再生装置
WO2011077647A1 (ja) * 2009-12-24 2011-06-30 パナソニック株式会社 光学ヘッド、光ディスク装置、情報処理装置及び対物レンズ
WO2011114895A1 (ja) * 2010-03-16 2011-09-22 コニカミノルタオプト株式会社 対物レンズ、光ピックアップ装置及び光情報記録再生装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531505A (zh) * 2019-10-29 2019-12-03 江西联创电子有限公司 红外光学成像镜头及成像设备
CN110531505B (zh) * 2019-10-29 2020-02-28 江西联创电子有限公司 红外光学成像镜头及成像设备
CN113767433A (zh) * 2020-04-03 2021-12-07 松下知识产权经营株式会社 物镜、光头装置、光信息装置、光盘系统以及物镜的检查方法
CN113767433B (zh) * 2020-04-03 2023-04-07 松下知识产权经营株式会社 物镜、光头装置、光信息装置、光盘系统以及物镜的检查方法

Similar Documents

Publication Publication Date Title
WO2010128654A1 (ja) 対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2013047202A1 (ja) 対物レンズ及び光ピックアップ装置
WO2011132691A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2011136096A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP6065347B2 (ja) 対物レンズ及び光ピックアップ装置
JP5152439B2 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2013005672A1 (ja) 光ピックアップ装置
WO2012036052A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP5835320B2 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP5585879B2 (ja) 光ピックアップ装置及び光情報記録再生装置
JP5229657B2 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP5713280B2 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP5093634B2 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
JP5963120B2 (ja) 対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2013027622A1 (ja) 対物レンズ及び光ピックアップ装置
WO2013084558A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2013121615A1 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2011065276A1 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2013114662A1 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2012090852A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2012133364A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2013168692A1 (ja) 対物レンズ及び光ピックアップ装置
WO2012133363A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2011078022A1 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2011132696A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP