WO2007102212A1 - 抵抗変化型記憶素子の製造方法 - Google Patents

抵抗変化型記憶素子の製造方法 Download PDF

Info

Publication number
WO2007102212A1
WO2007102212A1 PCT/JP2006/304492 JP2006304492W WO2007102212A1 WO 2007102212 A1 WO2007102212 A1 WO 2007102212A1 JP 2006304492 W JP2006304492 W JP 2006304492W WO 2007102212 A1 WO2007102212 A1 WO 2007102212A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance state
film
metal oxide
resistance change
manufacturing
Prior art date
Application number
PCT/JP2006/304492
Other languages
English (en)
French (fr)
Inventor
Hiroyasu Kawano
Keiji Shono
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008503708A priority Critical patent/JPWO2007102212A1/ja
Priority to PCT/JP2006/304492 priority patent/WO2007102212A1/ja
Publication of WO2007102212A1 publication Critical patent/WO2007102212A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • H10N70/043Modification of the switching material, e.g. post-treatment, doping by implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/066Patterning of the switching material by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8418Electrodes adapted for focusing electric field or current, e.g. tip-shaped
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays

Definitions

  • the present invention relates to a resistance change type storage element that selectively switches between a high resistance state and a low resistance state by switching between a high resistance state and a low resistance state in which current flows more easily than the high resistance state in accordance with an applied voltage. It relates to the manufacturing method.
  • R—RAM Resistance RA
  • Patent Document 1 has been proposed (see, for example, Patent Document 1 and Non-Patent Documents 1 and 2).
  • This R-RAM includes a resistance change type memory film that switches between a high resistance state and a 1 ⁇ low resistance state in which a current flows more easily than the high resistance state according to an applied voltage. It is a nonvolatile memory element that selectively holds a low resistance state.
  • R-RAM has the potential to surpass existing non-volatile memory elements, such as high speed, large capacity, and low power consumption, and is expected to have future potential.
  • Patent Document 1 Japanese Patent Publication No. 11 510317
  • Non-patent document 1 A. Beck et al., Appl. Phys. Lett. Vol. 77, p. 139 (2001)
  • Non-patent document 2 Nikkei Microdevices Journal, No. 238, p. 42 (2005)
  • CER electric field induced giant resistance change
  • the metal oxide film that is the source of the resistance change memory film sandwiched between the electrodes corresponds to the withstand voltage of the metal oxide film.
  • a forming process that applies a high voltage to perform a kind of dielectric breakdown process is required.
  • a resistance change type memory film that selectively holds a high resistance state and a low resistance state according to the applied voltage is formed.
  • a conducting path is formed in the film thickness direction (between electrodes) by such forming treatment, and the above-mentioned CER phenomenon mechanism acts on the formed conducting path!
  • FIG. 1 is a cross-sectional view showing an example of a conventional resistance change type memory element.
  • the resistance change storage element la is provided with a resistance change storage film 3 between the first conductor film 5 and the second conductor film 2.
  • This resistance change type memory film 3 is originally an insulating metal oxide film, but the metal film is formed between the first conductor film 5 and the second conductor film 2 by the forming process power source 6.
  • the conductive path 4 that selectively holds the high resistance state and the low resistance state according to the applied voltage becomes a metal oxide. Formed in the film.
  • the metal oxide film becomes the resistance change type memory film 3 that selectively holds the high resistance state and the low resistance state according to the applied voltage.
  • FIG. 2 is a schematic diagram showing an example of a nonvolatile memory device employing a resistance change type memory element.
  • the nonvolatile storage device 10 includes resistance change storage elements 10-1, 10-2, 10-3, 1
  • the resistance change storage element 10-1 shown in FIG. 2 is provided with a conduction path 10a, and the resistance change storage element 10-2 is provided with three conduction paths 10b, 10c, and 10d to change resistance.
  • the type memory element 10-3 is provided with a conduction path 10f, and the resistance change type memory element 10-4 is provided with a conduction path 10e.
  • the present invention provides a method for manufacturing a plurality of resistance change type memory elements of the same type.
  • Another object of the present invention is to provide a method of manufacturing a resistance change type storage element that can suppress variations in resistance values between the resistance change type storage elements.
  • a first manufacturing method among the manufacturing methods of the resistance change type memory element of the present invention that achieves the above-mentioned object is as follows.
  • the controlled partial area of each of the metal oxide films is irradiated with an electromagnetic wave or an electron beam, so that the partial area can be set according to the applied voltage.
  • electromagnetic waves or electron beams are controlled in each metal oxide film. Irradiation is performed on the partial region, and the partial region is reformed into a conduction path without performing a forming process similar to the conventional dielectric breakdown.
  • a second manufacturing method of the resistance change type memory element manufacturing method of the present invention that achieves the above object is as follows.
  • the applied voltage it switches between a high resistance state and a low resistance state in which current flows more easily than the high resistance state, and manufactures a resistance change type memory element that selectively holds the high resistance state and the low resistance state.
  • a resistance change type memory element that selectively holds the high resistance state and the low resistance state.
  • a part of the region is made to have a high resistance state and a low resistance according to the applied voltage.
  • the second conductive film having electromagnetic wave permeability is provided on the metal oxide film, whereby each of the metal oxide films is controlled via the second conductive film. Irradiate electromagnetic waves to a part of the area. Then, an appropriate voltage is applied to irradiate a part of the region with electromagnetic waves and perform a forming process, and the part of the region selectively conducts a high resistance state and a low resistance state according to the applied voltage. Reform to the road.
  • the shape of the conduction path In other words, a plurality of resistance change type memory elements having the same size are manufactured. In addition, the problem that the number of conductive paths of each resistance change type memory element is different as a result of the forming process is solved.
  • a third manufacturing method among the manufacturing methods of the resistance change type storage element of the present invention that achieves the above-described object is as follows.
  • the partial region is selectively switched between a high resistance state and a low resistance state according to the applied voltage. And a step of modifying the conductive path to be held.
  • this third manufacturing method first, an electromagnetic wave or an electron beam is irradiated to each controlled partial region of each of the metal oxide films, and the metal atoms and oxygen atoms are bonded to the partial regions.
  • the controlled partial region of each metal oxide film is changed to a region where a conductive path can be easily formed. For this reason, the controlled partial region is reformed into a conduction path by applying a voltage.
  • a plurality of resistance change type memory elements having the same shape and size of the conductive path are manufactured as in the manufacturing method described above. Also forming As a result of the processing, the problem that the number of conductive paths of each resistance change type memory element is different is also solved.
  • the fourth manufacturing method of the resistance change type storage element of the present invention that achieves the above-mentioned object is as follows.
  • an ion beam is implanted into each controlled partial region of each of the metal oxide films, thereby increasing the partial region according to the applied voltage. Modifying the conductive path to selectively maintain a resistance state and a low resistance state;
  • an ion beam is implanted into a controlled partial region of each metal oxide film, and a part of the ion beam is injected. The region is reformed to a conduction path that selectively holds a high resistance state and a low resistance state according to the applied voltage.
  • a fifth manufacturing method of the resistance change type storage elements of the present invention that achieves the above-described object is as follows.
  • the applied voltage it switches between a high resistance state and a low resistance state in which current flows more easily than the high resistance state, and manufactures a resistance variable memory element that selectively holds the high resistance state and the low resistance state.
  • a resistance variable memory element that selectively holds the high resistance state and the low resistance state.
  • a through hole is formed in a controlled partial region of each insulating film, and a high resistance state and a low resistance state are formed in the through hole according to the applied voltage after manufacturing. Since the metal oxide which acts as a conductive path to be selectively held is filled, by applying a voltage between the first conductor film and the second conductor film, The metal oxide in the through hole is transformed into a conduction path.
  • the applied voltage it switches between a high resistance state and a low resistance state in which current flows more easily than the high resistance state, and manufactures a resistance change type memory element that selectively holds the high resistance state and the low resistance state.
  • a resistance change type memory element that selectively holds the high resistance state and the low resistance state.
  • a hole having a depth halfway in the thickness direction of the metal oxide film is formed in each controlled partial region of the metal oxide film.
  • the metal oxide in the partial region is changed between a high resistance state and a low resistance state according to the applied voltage. And a step of modifying the conductive path to selectively hold.
  • a hole having a depth halfway in the thickness direction of the metal oxide film is formed in a controlled partial region of each metal oxide film, and the second conductor When forming the film, the hole is filled with the same conductor as the second conductor film. For this reason, in the sixth manufacturing method, when the forming process is performed, the electric field between the tip of the second conductor film and the first conductor film is strengthened, and a conduction path is formed at a portion where the electric field is strong. It is formed.
  • FIG. 1 is a cross-sectional view showing an example of a conventional resistance change memory element.
  • FIG. 2 is a schematic view showing an example of a nonvolatile memory device employing a resistance change type memory element.
  • FIG. 3 is a graph showing a current-voltage characteristic of a resistance change memory element using a bipolar resistance change memory film.
  • FIG. 4 is a graph showing a current-voltage characteristic of a resistance change memory element using a unipolar resistance change memory film.
  • FIG. 5 is a graph showing current-voltage characteristics for explaining the forming process of the resistance change storage element using the same unipolar resistance change storage film as in FIG. 3.
  • FIG. 6 is a process diagram of a first manufacturing method among the manufacturing methods of a resistance variable memory element according to the present invention.
  • FIG. 7 is a flowchart showing processing in each step of the first manufacturing method shown in FIG. 6.
  • FIG. 8 is a schematic view of a non-volatile memory device including a plurality of resistance change type memory elements of the same type manufactured by the first manufacturing method.
  • FIG. 9 is a schematic diagram of a memory cell of a nonvolatile memory device employing a resistance change type memory element manufactured by a first manufacturing method.
  • FIG. 10 is a circuit diagram showing an example of a memory cell array in which the memory cells shown in FIG. 9 are arranged in a cross-point structure.
  • FIG. 11 is a process diagram of a second manufacturing method of the resistance variable memory elements manufacturing method according to the present invention.
  • FIG. 12 is a flowchart showing a process in each step of the second manufacturing method shown in FIG. 11.
  • FIG. 13 is a process diagram of a third manufacturing method of the resistance variable memory elements manufacturing method of the present invention.
  • FIG. 14 is a flowchart showing processing in each step of the third manufacturing method shown in FIG. The
  • FIG. 15 is a process diagram of a fourth manufacturing method of the manufacturing methods of the resistance variable memory element according to the present invention.
  • FIG. 16 is a flowchart showing processing in each step of the fourth manufacturing method shown in FIG. 15.
  • FIG. 17 is a process diagram of a fifth manufacturing method of the resistance variable memory elements manufacturing method of the present invention.
  • FIG. 18 is a flowchart showing a process in each step of the fifth manufacturing method shown in FIG. 17.
  • FIG. 19 is a process diagram of a sixth manufacturing method of the resistance variable memory elements manufacturing method of the present invention.
  • FIG. 20 is a flowchart showing processes in respective steps of the sixth manufacturing method shown in FIG. 19.
  • FIG. 3 is a graph showing current-voltage characteristics of a resistance change type storage element using a bipolar resistance change type memory film
  • FIG. 4 is a graph showing resistance change using a unipolar resistance change type memory film
  • 3 is a graph showing current-voltage characteristics of a type memory element.
  • the resistance change type storage element is formed by sandwiching a resistance change type storage film that switches between a high resistance state and a low resistance state in accordance with an applied voltage between a pair of electrodes.
  • Many of these resistance change-type storage films are oxide films containing transition metals, and are roughly classified into two types based on the difference in electrical characteristics.
  • One resistance change type memory film is a type that uses voltages of different polarities in order to change the resistance state between a high resistance state and a low resistance state.
  • oxide materials include SrTiO, SrZrO, or giant magnets doped with a small amount of impurities such as chromium (Cr).
  • bipolar resistance change type memory film Three The above-described resistance change type memory film is referred to as a bipolar resistance change type memory film.
  • the other resistance change type memory film is a type that uses a voltage having the same polarity in order to change the resistance state between a high resistance state and a low resistance state.
  • the oxide material for example, a single transition metal oxide such as NiO or TiO is used.
  • a resistance change memory film that requires a voltage having the same polarity to rewrite the resistance state is referred to as a unipolar resistance change memory film.
  • FIG. 3 is a graph showing a current-voltage characteristic of a resistance change type storage element using a bipolar resistance change type storage film, which is described in Non-Patent Document 1.
  • This graph shows current vs. voltage using Cr-doped SrZrO, a typical bipolar resistance change memory film.
  • the applied voltage As the applied voltage is gradually increased from 0V to a negative voltage, the flowing current changes along the curve a in the direction of the arrow, and its absolute value gradually increases.
  • the applied negative voltage further increases and exceeds about 0.5 V, the resistance change memory element switches from the high resistance state to the low resistance state.
  • the absolute value of the current increases abruptly, and the current-voltage characteristic transitions from point A to point B.
  • the operation of changing the resistance change type storage element from the high resistance state to the low resistance state is referred to as “set”.
  • Each resistance state is stable in a range of about ⁇ 0.5V, and is maintained even when the power is turned off. That is, in the high resistance state, if the applied voltage is lower than the absolute value of the voltage at point A, the current-voltage characteristic changes linearly along the curves a and d, and the high resistance state is maintained. Similarly, in the low resistance state, if the applied voltage is lower than the absolute value of the voltage at point C, the current-voltage characteristics change linearly along curves b and c, and the low resistance state is maintained. .
  • the resistance change type storage element using the bipolar resistance change type storage film has voltages of different polarities in order to change the resistance state between the high resistance state and the low resistance state. To be applied.
  • FIG. 4 is a diagram showing current-voltage characteristics of a resistance change memory element using a unipolar resistance change memory film. This graph shows the case where TiO, which is a typical unipolar resistance change memory film, is used.
  • the current changes along the curve a in the direction of the arrow, and its absolute value gradually increases.
  • the resistance change memory element switches (sets) from the high resistance state to the low resistance state.
  • the absolute value of the current increases rapidly, and the current-voltage characteristic changes from point A force to point B.
  • the current value at point B is constant at about 20 mA because the current is limited to prevent destruction of the device due to a sudden increase in current.
  • Each resistance state is stable below a voltage required for setting and resetting. That is, in FIG. 4, both states are stable at about 1. OV or less, and are maintained even when the power is turned off. That is, in the low resistance state, if the applied voltage is lower than the voltage at the point C, the current-voltage characteristic is maintained along the curve c.
  • the resistance change type storage element using the unipolar resistance change type storage film applies a voltage having the same polarity in order to change the resistance state between the high resistance state and the low resistance state. To do.
  • FIG. 5 is a current-voltage characteristic illustrating the forming process of the resistance change storage element using the same unipolar resistance change storage film as in FIG.
  • the resistance is high and the forming voltage is as high as about 8V.
  • the resistance change type storage element has a current-voltage characteristic as shown in FIG. 4 so that the low resistance state and the high resistance state can be reversibly changed. Become.
  • FIG. 6 is a process diagram of the first manufacturing method among the manufacturing methods of the resistance change type memory element of the present invention.
  • FIG. 7 is a flowchart showing processing in each step of the first manufacturing method shown in FIG. [0073]
  • a first conductive film 11 made of Pt is laminated on a semiconductor substrate (not shown) by a vacuum film formation method typified by sputtering (step S100).
  • a Si wafer with a thermal oxide film was used as the material of the semiconductor substrate.
  • the material of the semiconductor substrate is not limited to a Si wafer with a thermal oxide film.
  • GGG gadolinium 'gallium' non-magnetic garnet
  • YIG yttrium 'iron'
  • An oxide substrate such as a magnetic garnet can be used.
  • the semiconductor is not limited to a semiconductor substrate made of the above oxide, but also has a fluoride power such as CaF, BaF, MgF, and LiF.
  • a substrate can be used.
  • the first conductor film is not limited to Pt.
  • Pt For example, Au, Pd, Ru, SrRuO (S
  • RO YBa Cu 2 O
  • YBCO YBa Cu 2 O
  • a metal oxide film 12 is laminated on the first conductor film 11 (step S101).
  • the metal oxide film 12 is formed by introducing an (Ar + O 2) mixed gas using an oxide target or a metal target.
  • the metal oxide film is an oxygen-deficient insulating metal oxide or an insulating metal oxide containing a transition metal that easily changes in valence.
  • Ni oxide, Co oxide, Fe oxide, Si oxide, A1 oxide, Ti oxide, Ce oxide, Hf oxide, Zr oxide, Nb oxide, Mg oxide, Y An oxide, Cr oxide, Zn oxide, or Cu oxide can be used.
  • Ni oxide was used as the metal oxide film.
  • each controlled partial region of the metal oxide film is irradiated with an electromagnetic wave or an electron beam, and the partial region is brought into a high resistance state according to the applied voltage.
  • the conductive path 12b is selectively modified to maintain the low resistance state (FIG. 6 (b), step S102).
  • the metal oxide film 12 functions as a resistance change type memory film 12a.
  • the bond energy between the metal atom and the oxygen atom is about 4 to 6 eV.
  • the bond energy between the metal atom and the oxygen atom is about 6-8 eV. Degree. Therefore, it can be seen that the energy required for oxygen atoms to desorb from the metal oxide film may be about 4 eV or more.
  • the energy required for dissociating oxygen nuclear electrons in the crystal of the metal oxide film is about 3 eV or more.
  • an electromagnetic wave having the following energy level Lines are preferred.
  • 335 496 keV may be used at 037 nm and a calo speed voltage of 100 200 kV.
  • the resistance change memory film 12a is paired with the first conductor film 11 on the resistance change memory film 12a.
  • a second conductor film 13 to which a voltage is applied is laminated by a vacuum film forming method (step S103).
  • Pt is used as the second conductor film 13, but is not limited to Pt.
  • Au is used as the second conductor film 13, but is not limited to Pt.
  • Au is used as the second conductor film 13, but is not limited to Pt.
  • Au is used as the second conductor film 13, but is not limited to Pt.
  • Au is used as the second conductor film 13, but is not limited to Pt.
  • Au is used as the second conductor film 13, but is not limited to Pt.
  • Au is used as the second conductor film 13
  • a plurality of resistance change storage elements lb are manufactured simultaneously or sequentially by the above-described steps.
  • FIG. 8 is a schematic view of a nonvolatile memory device including a plurality of the same type of resistance change type memory elements manufactured by the first manufacturing method.
  • This nonvolatile memory device is provided with a memory array in which a plurality of resistance change type memory elements are arranged in the row direction and the column direction! /
  • This memory array has wiring, and one of the wirings consisting of word lines and bit lines, which will be described later, is arranged in a row direction, and the other is arranged in a lattice shape by arranging a plurality of wirings in the column direction. . Then, a resistance change type storage element is arranged at each lattice point where the word line and the bit line intersect to constitute a memory array.
  • the word line is electrically connected to one of the electrodes of the resistance change memory element
  • the bit line is electrically connected to the other electrode.
  • a structure having a mechanism in which a resistance change type memory element is arranged as described above and a voltage is applied between electrodes is referred to as a cross-point type.
  • FIG. 8 (a) shows a part of the memory array 14a, 14b, 15a, 15b of the nonvolatile memory device 16 taken out.
  • This nonvolatile memory device 16 is provided at the intersection of the four resistance change memory elements 16-1, 16-2, 16-3, and 16-4 force memory arrays manufactured by the first manufacturing method described above.
  • Figure 8 (b) is a schematic diagram of a non-volatile memory device in which a conduction path is explicitly drawn.
  • Fig. 8 (b) shows one resistance for each of the four resistance change memory elements 16-1, 16-2, 16-3, 16-4.
  • the paths 16a, 16b, 16c and 6d are formed, and the shape and size of each conduction path are the same.
  • the number of conductive paths for each resistance change type memory element is the same.
  • FIG. 9 is a schematic diagram of a memory cell of a nonvolatile memory device that employs the resistance change type memory element manufactured by the first manufacturing method.
  • a memory cell 100 of the nonvolatile memory device shown in FIG. 9 includes a resistance change storage element 1 and a cell selection transistor 101.
  • the resistance change type storage element 1 has one end connected to the wire BL and the other end connected to the drain terminal 101 a of the cell selection transistor 101.
  • the drain terminal 101b of the cell selection transistor 101 is connected to the source line SL, and the cell
  • the gate terminal 101c of the selection transistor 101 is connected to the word line WL.
  • FIG. 10 is a circuit diagram showing an example of a memory cell array in which the memory cells shown in FIG. 9 are arranged in a cross point structure. A plurality of memory cells are formed adjacent to each other in the column direction (vertical direction in the drawing) and the row direction (horizontal direction in the drawing).
  • a plurality of word lines WL1, WL1—, WL2, WL2_... Are arranged in the column direction, and the memory cells arranged in the column direction share a common signal line.
  • source lines SL1, SL2,... are arranged in the column direction, and share a common signal line with the memory cells arranged in the column direction.
  • the word line WL1— is a word line to which an inverted signal of the word line WL1 is output
  • the word line WL2— is a word line to which an inverted signal of the word line WL2 is output, and so on. It is.
  • a plurality of bit lines BL1, BL2, BL3, BL4- ⁇ ⁇ ⁇ are arranged in the row direction (horizontal direction in the drawing), and the memory cells arranged in the row direction share a common signal line. .
  • the memory cell to be rewritten is a memory memory 100 connected to the word line WL1 and the bit line BL1 surrounded by a dotted square shown in FIG.
  • a predetermined voltage is applied to the word line WL1, and the cell selection transistor 101 is turned on.
  • the source line SL1 is connected to a reference potential, for example, OV that is a ground potential.
  • a bias voltage that is the same as or slightly larger than the voltage required to set the resistance change storage element 1 is applied to the bit line BL1.
  • a bias voltage of about 1.5 V is applied.
  • a current path toward the source line SL 1 is formed through the bit line BL1, the resistance change type storage element 1, and the cell selection transistor 101, and applied.
  • the bias voltage depends on the resistance value R of the resistance change storage element 1 and the cell selection transistor 10.
  • the resistance value R of the resistance change storage element 1 is equal to the channel of the cell selection transistor 101.
  • the bias voltage is sufficiently large compared to the channel resistance R.
  • the resistance change type storage element 1 changes from the high resistance state to the low resistance state.
  • the memory cell to be rewritten is the memory cell 100 connected to the word line WL1 and the bit line BL1.
  • a predetermined voltage is applied to the word line WL1, and the cell selection transistor 101 is turned on.
  • the source line SL1 is connected to a reference potential, for example, OV that is a ground potential.
  • a bias voltage that is the same as or slightly larger than the voltage required to reset the resistance change storage element 1 is applied to the bit line BL1.
  • a bias voltage of about 0.8 V is applied.
  • a current path toward the source line SL 1 is formed via the bit line BL1, the resistance change type storage element 1, and the cell selection transistor 101, and the applied noise voltage is a resistance change type.
  • the channel resistance R of the cell selection transistor 101 is the resistance variable storage element 1
  • Most of the applied noise voltage is a resistance change type.
  • the resistance change storage element 1 changes from the low resistance state to the high resistance state.
  • the channel resistance R of the cell selection transistor 101 is the resistance change type memory.
  • the memory cell 100 to be read is a memory sensor 100 connected to the word line WL 1 and the bit line BL 1.
  • a predetermined voltage is applied to the word line WL1, and the cell selection transistor 101 is turned on.
  • the source line SL1 is connected to a reference potential, for example, OV that is a ground potential.
  • a predetermined bias voltage is applied to the bit line BL1. This bias voltage is set so that the resistance change type memory element 1 is not set or reset by the applied voltage even when it is in the shifted resistance state.
  • each of the resistance change type storage elements is manufactured while a plurality of the same type of resistance change type storage elements are manufactured. Variations in resistance values between them are suppressed.
  • FIG. 11 is a process diagram of a second manufacturing method of the manufacturing methods of the resistance change type storage element of the present invention.
  • Fig. 12 is a flowchart showing processing in each step of the second manufacturing method shown in Fig. 11.
  • the difference between the first manufacturing method of the resistance change type memory element manufacturing method of the present invention and the second manufacturing method of the resistance change type memory element manufacturing method of the present invention is the second difference.
  • the manufacturing method of this method is that a part of each controlled region of the metal oxide film is irradiated with an electromagnetic wave and a voltage is applied between the electrodes to modify the part of the region into a conduction path.
  • a first conductor film 21 is laminated on a semiconductor substrate (not shown) by a vacuum film formation method typified by sputtering (step S200).
  • a metal oxide film 22 is deposited on the first conductor film 21 by a vacuum film formation method (step S 201).
  • Step S202 a second conductive film 23 having electromagnetic wave permeability is laminated on the metal oxide film 22 by a vacuum film formation method
  • a controlled partial region of the metal oxide film 22 is irradiated with electromagnetic waves, and forming is performed between the first conductor film 21 and the second conductor film 23.
  • a voltage from the processing power supply 24 is applied to reform a part of the region into a conduction path 22b (FIG. 11 (c), step S203).
  • the metal oxide film 22 functions as a resistance change type memory film 22a.
  • a plurality of resistance change storage elements lc are manufactured simultaneously or sequentially by the above process.
  • an electromagnetic wave or an electron beam is irradiated to each controlled partial region of each metal oxide film, and bonded to the partial region to bond the metal atom and the oxygen atom. It is characterized by changing a part of the region into a region where a conduction path is easily formed by weakening the force.
  • FIG. 13 shows the third manufacturing method of the resistance-change memory element manufacturing method according to the present invention. It is a diagram.
  • Fig. 14 is a flow chart showing processing in each step of the third manufacturing method shown in Fig. 13.
  • a first conductor film 31 is deposited on a semiconductor substrate (not shown) by a vacuum film formation method typified by sputtering (step S300).
  • a metal oxide film 32 is stacked on the first conductor film 31 by a vacuum film forming method (step S301).
  • step S302 the controlled partial region 35 of each metal oxide film 32 is irradiated with electromagnetic waves and coupled to the partial region. Decrease the bonding force between metal atoms and oxygen atoms (step S302).
  • the second conductor film 33 is laminated on the metal oxide film 32 by a vacuum film forming method (step S303).
  • a voltage is applied between the first conductor film 31 and the second conductor film 32 by the forming process power supply 34, and the partial region 35 is increased in accordance with the applied voltage.
  • the conductive path 35a that selectively maintains the resistance state and the low resistance state is reformed (step S304).
  • the metal oxide film 32 functions as a resistance change type memory film 32a, and the resistance change type memory element Id is manufactured.
  • the electromagnetic wave is used in the third manufacturing method, an electron beam may be used as in the first manufacturing method. Further, when irradiating an electromagnetic wave whose directivity is difficult to obtain, the conduction path 35a is formed by irradiating it through a light shielding mask as in FIG. 6 (b ').
  • an ion beam is irradiated to each controlled region of each metal oxide film instead of electromagnetic waves or electron beams, and the partial region is modified to a conductive path.
  • FIG. 15 shows the fourth manufacturing method of the resistance-change memory element manufacturing method according to the present invention. It is a diagram
  • FIG. 16 is a flow chart showing processing in each step of the fourth manufacturing method shown in FIG.
  • a first conductor film 41 is laminated on a semiconductor substrate by a vacuum film formation method represented by sputtering (step S400).
  • a metal oxide film 42 is laminated on the first conductor film 41 by a vacuum film forming method (step S401).
  • an ion beam is implanted into a controlled partial region of the metal oxide film 42, and the partial region is modified into a conduction path 42b (step S402).
  • the metal oxide film 42 acts as a resistance change memory film 42a.
  • a light-shielding mask 43 it is preferable to use a light-shielding mask 43 in order to remove the influence of beam expansion when the ion beam is irradiated. By using a focused ion beam, ions may be implanted without going through a light shielding mask.
  • the incident energy of the implanted ions is preferably 10 to: LOOOkeV, and the ion implantation depth is preferably about 10 to: LOOOnm.
  • the ion acceleration voltage is preferably 100 kV
  • the ion current is 1. OmA
  • the implantation time is 2. Osec.
  • the ion acceleration voltage is preferably 60 kV
  • the ion current is 2. OmA
  • the implantation time is 1. Osec.
  • step S403 the second conductive film 43 is laminated on the metal oxide film 42 by a vacuum film forming method (step S403), and the resistance change storage element le is manufactured.
  • the fifth manufacturing method first, through holes are formed in a controlled partial region of each insulating film by reactive ion etching. Subsequently, a conductive path that selectively holds the high resistance state and the low resistance state in accordance with the applied voltage after manufacture in the through hole. It is characterized in that a metal oxide acting as a filler is filled, and a voltage for performing a forming process is applied between the electrodes, and a part of the region is modified into a conduction path.
  • FIG. 17 is a flowchart of the fifth manufacturing method among the methods of manufacturing the resistance change memory element of the present invention.
  • FIG. 18 is a flow chart showing processing in each step of the fifth manufacturing method shown in FIG.
  • a first conductor film 51 is laminated on a substrate (not shown) by a vacuum film formation method typified by sputtering (step S500).
  • an insulating film 52 is laminated on the first conductor film 51 by a vacuum film forming method (step S501).
  • SiO was used as the insulator film, but it is not limited to SiO. Al O, MgO, or
  • An insulator film such as ZrO may be used.
  • a through hole is formed in a partial region of the insulating film 52 by using reactive ion etching (FIG. 17B). Note that through holes may be formed using a focused ion beam instead of reactive ion etching.
  • the metal oxide 53 acting as a conduction path for selectively holding the high resistance state and the low resistance state in accordance with the applied voltage is filled in the through hole after manufacture (step S50).
  • the metal oxide is not limited to the force Ni oxide using Ni oxide, but Co oxide, Fe oxide, Si oxide, A1 oxide, Ti oxide, Ce An oxide, Hf oxide, Zr oxide, Nb oxide, Mg oxide, Y oxide, Cr oxide, Zn oxide, Cu oxide, or the like can be used.
  • the second conductor film 54 is laminated on the insulating film 52 and the metal oxide 53 by a vacuum film forming method (step S504).
  • a voltage is applied between the first conductor film 51 and the second conductor film 54 by the forming process power source 55 to conduct the metal oxide 53 in the through hole.
  • the road is reformed to 53a (Step S505).
  • the metal oxide 53 and the insulating film 52 act as the resistance change memory film 52a, and the resistance change memory element If is manufactured.
  • a plurality of resistance change storage elements If are manufactured simultaneously or sequentially through the above-described steps. Therefore, during the manufacture of a plurality of resistance change type storage elements If of the same type, variations in resistance values among the resistance change type storage elements can be suppressed.
  • a hole having a depth halfway in the thickness direction of the metal oxide film is formed in a controlled partial region of each metal oxide film, and the second conductor film is formed in the hole. It is characterized by changing the intensity distribution of the applied voltage between the first conductor film and the second conductor film by filling in.
  • FIG. 19 is a flowchart of the sixth manufacturing method among the methods of manufacturing the resistance change memory element of the present invention.
  • FIG. 20 is a flowchart showing processes in respective steps of the sixth manufacturing method shown in FIG.
  • a first conductor film 61 is laminated on a semiconductor substrate (not shown) by a vacuum film formation method typified by sputtering (step S600).
  • a metal oxide film 62 is laminated on the first conductor film 61 by a vacuum film forming method (step S601).
  • a hole having a depth halfway in the thickness direction of the metal oxide film 62 is formed in a controlled partial region of the metal oxide film 62 by reactive ion etching.
  • FIG. 19 (b), step S602 A focused ion beam may be used instead of reactive ion etching.
  • a voltage is applied to the metal oxide film 62 including the inside of the hole by being paired with the first conductor film 61 by a vacuum film forming method.
  • a second conductor film 63 is stacked (FIG. 19 (c), step S603).
  • the tip 63a of the second conductor film and The electric field between the first conductor film 61 becomes stronger.
  • the metal oxide in the partial region is modified into a conduction path 65 that selectively maintains a high resistance state and a low resistance state according to the applied voltage (FIG. 19 (d), step). S604).
  • the metal oxide 62 becomes the resistance change memory film 62a.
  • the resistance change memory element lg is manufactured.
  • a plurality of resistance change type memory elements lg are manufactured simultaneously or sequentially. Therefore, during the manufacture of a plurality of resistance change type memory elements lg of the same type, variations in resistance values among the resistance change type memory elements can be suppressed.
  • a device has been devised to suppress variation in resistance value between each resistance change type storage element while manufacturing a plurality of resistance change type storage elements of the same type.
  • a method for manufacturing a resistance change memory element is provided.
  • the resistance change type storage element obtained by the method of manufacturing a resistance change type storage element of the present invention is:
  • the present invention is not limited to use as a nonvolatile memory element that selectively holds a high resistance state and a low resistance state.
  • a nonvolatile memory element that selectively holds a high resistance state and a low resistance state.
  • an electronic circuit or an electric circuit is created by associating a high resistance state and a low resistance state with binary data. It can also be used as a switch element to select an address that is a combination of binary data used in the circuit.

Abstract

  同一種類の抵抗変化型記憶素子を複数製造する間、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる抵抗変化型記憶素子の製造方法を提供する。上記目的を達成する本発明の抵抗変化型記憶素子の製造方法は、基板上に第1の導電体膜11を積層する工程と、第1の導電体膜11上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜12を積層する工程と、同一種類の抵抗変化型記憶素子を製造している間、上記金属酸化膜12それぞれの制御された一部領域に電磁波もしくは電子線を照射し、その一部領域を、印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質する工程と、上記金属酸化膜12上に、上記第1の導電体膜11と対になることでその金属酸化膜に電圧を印加する第2の導電体膜13を積層する工程とを有することを特徴とする。

Description

明 細 書
抵抗変化型記憶素子の製造方法
技術分野
[0001] 本発明は、印加電圧に応じて高抵抗状態と高抵抗状態よりも電流が流れやすい低 抵抗状態とが切り替わり高抵抗状態と低抵抗状態とを選択的に保持する抵抗変化型 記憶素子の製造方法に関する。
背景技術
[0002] 従来より、電源を切っても記憶内容を保持することができる不揮発性記憶素子の研 究開発が盛んに行われて 、る。
[0003] 最近、次世代型の新たな不揮発性記憶素子として、 R— RAM (Resistance RA
M)と呼ばれる抵抗変化型記憶素子が提案されている (例えば、特許文献 1、非特許 文献 1、 2参照)。
[0004] この R— RAMは、印加電圧に応じて、高抵抗状態と、その高抵抗状態よりも電流が 流れやす 1ゝ低抵抗状態とに切り替わる抵抗変化型記憶膜を備え、高抵抗状態と低 抵抗状態とを選択的に保持する不揮発性記憶素子である。
[0005] R— RAMは、高速性、大容量性、低消費電力性など、既存の不揮発性記憶素子 を凌ぐ可能性を秘めており、将来性が期待されている。
特許文献 1 :特表平 11 510317号公報
非特許文献 1 :A. Beck et al. , Appl. Phys. Lett. Vol. 77, p. 139 (2001) 非特許文献 2 :日経マイクロデバイス誌、第 238号、 42頁(2005年)
[0006] 上述した抵抗変化型記憶素子の研究開発によれば、抵抗変化型記憶素子のデバ イス性能を決める重要な因子として電界誘起性の巨大抵抗変化(CER: Colossal e lectro— resistance)が挙げられている。そして、抵抗変化型記憶素子における高 抵抗状態の電気抵抗率と低抵抗状態の電気抵抗率との比(以下、 CER値と称する) が大き 、ほど、抵抗変化型記憶素子のデバイス性能が高まると言われて 、る。
[0007] この CER現象の発現機構はまだ十分には解明されておらず、諸説が唱えられてい る。例えば、抵抗変化型記憶膜に電圧を印加する電極膜とその抵抗変化型記憶膜と の異種材料が接合することにより、接合界面において、電子の流れを不連続にする 領域 (ショットキー障壁や電子トラップ領域)が形成されることが CER現象の発現機構 であると言われている。
[0008] ここで、抵抗変化型記憶素子をデバイスとして機能させるためには、電極間に挟ま れた抵抗変化型記憶膜のもとになる金属酸化膜にその金属酸化膜の絶縁耐圧に相 当するような高い電圧を印加して一種の絶縁破壊処理を施すフォーミング処理が必 要となる。このフォーミング処理を施すことにより、印加電圧に応じて高抵抗状態と低 抵抗状態とを選択的に保持する抵抗変化型記憶膜が形成される。このようなフォーミ ング処理にて膜厚方向(電極間)に伝導路を形成し、この形成された伝導路におい て上述の CER現象のメカニズムが作用して!/、る。
[0009] 図 1は、従来の抵抗変化型記憶素子の一例を示す断面図である。
[0010] 図 1に示すように、この抵抗変化型記憶素子 laには、第 1の導電体膜 5および第 2 の導電体膜 2との間に抵抗変化型記憶膜 3が設けられている。この抵抗変化型記憶 膜 3は、もともとは絶縁性の金属酸ィ匕膜であるが、フォーミング処理用電源 6により第 1 の導電体膜 5および第 2の導電体膜 2との間にその金属酸ィ匕膜の絶縁耐圧に相当す るような高い電圧が印加されると、一例として、印加電圧に応じて高抵抗状態と低抵 抗状態とを選択的に保持する伝導路 4が金属酸化膜に形成される。この伝導路 4が 形成されることにより、金属酸化膜は、印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜 3になる。
[0011] 図 2は、抵抗変化型記憶素子を採用した不揮発性記憶装置の一例を示す模式図 である。
[0012] この不揮発性記憶装置 10には、抵抗変化型記憶素子 10— 1、 10—2、 10—3、 1
0—4が設けられている。
[0013] 図 2に示す抵抗変化型記憶素子 10— 1には伝導路 10aが設けられ、抵抗変化型 記憶素子 10— 2には 3本の伝導路 10b、 10c、 10dが設けられ、抵抗変化型記憶素 子 10—3には伝導路 10fが設けられ、抵抗変化型記憶素子 10— 4には伝導路 10e が設けられている。
[0014] 従来、フォーミング処理を施した場合、電気的絶縁性の最も弱!、部分が絶縁破壊 を起こしやすいため、通常、 1つの抵抗変化型記憶素子に 1本の伝導路が金属酸ィ匕 膜に形成される。ここで、伝導路が形成される位置は、電気的絶縁性の最も弱い部 分に依存して定まる。このため、フォーミング処理を施した場合、伝導路の形状ゃ大 きさは、各抵抗変化型記憶素子ごとに異なる。また、フォーミング処理の結果、まれな 場合として、抵抗変化型記憶素子の伝導路が複数発生してしまうことがある。
[0015] すなわち、従来のフォーミング処理では、伝導路が形成される位置だけでなく伝導 路の形状や大きさを制御して製造することが困難であるため、各抵抗変化型記憶素 子間の抵抗値がばらつきやすいという問題がある。
[0016] 本発明は、上記事情に鑑み、同一種類の抵抗変化型記憶素子を複数製造する間
、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる抵抗変化型記憶素子 の製造方法を提供することを目的とする。
発明の開示
[0017] 上記目的を達成する本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製 造方法は、
印加電圧に応じて高抵抗状態とその高抵抗状態よりも電流が流れやすい低抵抗状 態とに切り替わりその高抵抗状態とその低抵抗状態とを選択的に保持する抵抗変化 型記憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
上記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、上記金属酸化膜それぞれの 制御された一部領域に電磁波もしくは電子線を照射することにより、その一部領域を 、印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質 する工程と、
上記金属酸化膜上に、上記第 1の導電体膜と対になることでその金属酸ィ匕膜に電 圧を印加する第 2の導電体膜を積層する工程とを有することを特徴とする。
[0018] この第 1の製造方法では、電磁波もしくは電子線を金属酸ィ匕膜それぞれの制御さ れた一部領域に照射し、従来の絶縁破壊に類似したフォーミング処理を施すことなく 、その一部領域を伝導路に改質する。
[0019] そのため、この第 1の製造方法では、伝導路の形状や大きさが揃った抵抗変化型 記憶素子が複数製造される。また、フォーミング処理の結果、それぞれの抵抗変化型 記憶素子の伝導路の本数が異なって発生しまうという問題も解消する。
[0020] したがって、同一種類の抵抗変化型記憶素子を複数製造する間、各抵抗変化型 記憶素子間の抵抗値のばらつきが抑えられる。
[0021] また、上記目的を達成する本発明の抵抗変化型記憶素子の製造方法うちの第 2の 製造方法は、
印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやすい低抵抗状 態とに切り替わりその高抵抗状態とその低抵抗状態とを選択的に保持する抵抗変化 型記憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
上記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
上記金属酸化膜上に電磁波透過性を有する第 2の導電体膜を積層する工程と、 同一種類の抵抗変化型記憶素子を製造して 、る間、上記金属酸化膜それぞれの 制御された一部領域に電磁波を照射するとともに上記第 1の導電体膜と上記第 2の 導電体膜との間に電圧を印加することにより、その一部領域を、印加電圧に応じて高 抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質する工程とを有すること を特徴とする。
[0022] この第 2の製造方法では、金属酸化膜上に電磁波透過性を有する第 2の導電体膜 を備えることにより、第 2の導電体膜を介して上記金属酸ィ匕膜それぞれの制御された 一部領域に電磁波を照射する。そして、その一部領域に電磁波を照射するとともにフ ォーミング処理を施す適正な電圧を印加し、その一部領域を、印加電圧に応じて高 抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質する。
[0023] そのため、この第 2の製造方法によっても、第 1の製造方法と同様、伝導路の形状 や大きさが揃った抵抗変化型記憶素子が複数製造される。また、フォーミング処理の 結果、それぞれの抵抗変化型記憶素子の伝導路の本数が異なって発生しまうという 問題も解消する。
[0024] したがって、この第 2の製造方法によっても、同一種類の抵抗変化型記憶素子を複 数製造する間、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる。
[0025] また、上記目的を達成する本発明の抵抗変化型記憶素子の製造方法のうちの第 3 の製造方法は、
印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやすい低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
上記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、上記金属酸化膜それぞれの 制御された一部領域に電磁波もしくは電子線を照射することにより、その一部領域に 結合している金属原子と酸素原子との結合力を弱める工程と、
その金属酸化膜上に第 2の導電体膜を積層する工程と、
上記第 1の導電体膜と上記第 2の導電体膜との間に電圧を印加することにより、上 記一部領域を、印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する 伝導路に改質する工程とを有することを特徴とする。
[0026] この第 3の製造方法では、まず、電磁波もしくは電子線を上記金属酸化膜それぞれ の制御された一部領域に照射し、その一部領域に結合して 、る金属原子と酸素原子 との結合力を弱めることにより、上記金属酸ィヒ膜それぞれの制御された一部領域を 伝導路のできやすい領域に変える。このため、電圧の印加によりその制御された一 部領域が伝導路に改質される。
[0027] このように、この第 3の製造方法によっても、既に上述した製造方法と同様、伝導路 の形状や大きさが揃った抵抗変化型記憶素子が複数製造される。また、フォーミング 処理の結果、それぞれの抵抗変化型記憶素子の伝導路の本数が異なって発生しま うという問題も解消する。
[0028] したがって、この第 3の製造方法によっても、同一種類の抵抗変化型記憶素子を複 数製造する間、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる。
[0029] また、上記目的を達成する本発明の抵抗変化型記憶素子のうちの第 4の製造方法 は、
印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやすい低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
上記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、上記金属酸化膜それぞれの 制御された一部領域にイオンビームを注入することにより、その一部領域を、印加電 圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質する工程 と、
上記金属酸化膜上に、上記第 1の導電体膜と対になることでその金属酸ィ匕膜に電 圧を印加する第 2の導電体膜を積層する工程とを有することを特徴とする。
[0030] この第 4の製造方法では、同一種類の抵抗変化型記憶素子を製造している間、金 属酸ィ匕膜それぞれの制御された一部領域にイオンビームを注入し、その一部領域を 、印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質 する。
[0031] そのため、この第 4の製造方法によっても、既に上述した製造方法と同様、伝導路 の形状や大きさが揃った抵抗変化型記憶素子が複数製造される。また、フォーミング 処理の結果、それぞれの抵抗変化型記憶素子の伝導路の本数が異なって発生しま うという問題も解消する。
[0032] したがって、この第 4の製造方法によっても、同一種類の抵抗変化型記憶素子を複 数製造する間、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる。
[0033] また、上記目的を達成する本発明の抵抗変化型記憶素子のうちの第 5の製造方法 は、
印加電圧に応じて高抵抗状態とその高抵抗状態よりも電流が流れやすい低抵抗状 態とに切り替わりその高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型 記憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
上記第 1の導電体膜上に、絶縁膜を積層する工程と、
同一種類の抵抗変化型記憶素子を製造して 、る間、前記絶縁膜それぞれの制御 された一部領域に貫通孔を形成する工程と、
上記貫通孔に、製造後には印加電圧に応じて高抵抗状態と低抵抗状態とを選択 的に保持する伝導路として作用する金属酸化物を充填する工程と、
上記絶縁膜および上記金属酸化物に第 2の導電体膜を積層する工程と、 上記第 1の導電体膜と上記第 2の導電体膜との間に電圧を印加することにより、上 記貫通孔内の金属酸化物を、印加電圧に応じて高抵抗状態と低抵抗状態とを選択 的に保持する伝導路に改質する工程とを有することを特徴とする。
[0034] この第 5の製造方法では、絶縁膜それぞれの制御された一部領域に貫通孔を形成 し、その貫通孔に、製造後には印加電圧に応じて高抵抗状態と低抵抗状態とを選択 的に保持する伝導路として作用する金属酸ィ匕物を充填しているので、上記第 1の導 電体膜と上記第 2の導電体膜との間に電圧を印加することにより、上記貫通孔内の 金属酸化物が伝導路に改質する。
[0035] そのため、この第 5の製造方法によっても、既に上述した製造方法と同様、伝導路 の形状や大きさが揃った抵抗変化型記憶素子が複数製造される。また、フォーミング 処理の結果、それぞれの抵抗変化型記憶素子の伝導路の本数が異なって発生しま うという問題も解消する。
[0036] したがって、この第 5の製造方法によっても、同一種類の抵抗変化型記憶素子を複 数製造する間、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる。
[0037] また、上記目的を達成する本発明の抵抗変化型記憶素子のうちの第 6の製造方法 は、
印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやすい低抵抗状 態とに切り替わりその高抵抗状態とその低抵抗状態とを選択的に保持する抵抗変化 型記憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
上記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、上記金属酸化膜それぞれの 制御された一部領域に、その金属酸ィ匕膜の厚み方向の途中までの深さの穴を形成 する工程と、
上記穴の内部を含む上記金属酸化膜上に、上記第 1の導電体膜と対になることで その金属酸化膜に電圧を印加する第 2の導電体膜を積層する工程と、
上記第 1の導電体膜と上記第 2の導電体膜との間に電圧を印加することにより、上 記一部領域の金属酸化物を、印加電圧に応じて高抵抗状態と低抵抗状態とを選択 的に保持する伝導路に改質する工程とを有することを特徴とする。
[0038] この第 6の製造方法では、金属酸ィ匕膜それぞれの制御された一部領域にその金属 酸ィ匕膜の厚み方向の途中までの深さの穴を掘り、第 2の導電体膜を形成する際にそ の穴にもその第 2の導電体膜と同じ導電体を埋める。このため、この第 6の製造方法 では、フォーミング処理を施すときに第 2の導電体膜の先端部と第 1の導電体膜との 間の電界が強まり、その電界の強い箇所に伝導路が形成される。
[0039] そのため、この第 6の製造方法によっても、既に上述した製造方法と同様、伝導路 の形状や大きさが揃った抵抗変化型記憶素子が複数製造される。また、フォーミング 処理の結果、それぞれの抵抗変化型記憶素子の伝導路の本数が異なって発生しま うという問題も解消する。
[0040] したがって、この第 6の製造方法によっても、同一種類の抵抗変化型記憶素子を複 数製造する間、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる。
[0041] 以上、説明したように、同一種類の抵抗変化型記憶素子を複数製造する間、各抵 抗変化型記憶素子間の抵抗値のばらつきが抑えられる。
図面の簡単な説明
[図 1]従来の抵抗変化型記憶素子の一例を示す断面図である。
[図 2]抵抗変化型記憶素子を採用した不揮発性記憶装置の一例を示す模式図であ る。
[図 3]双極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子の電流一電圧特性を 示すグラフである。
[図 4]単極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子の電流一電圧特性を 示すグラフである。
[図 5]図 3の場合と同じ単極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子のフ ォーミング処理を説明する電流一電圧特性を示すグラフである。
[図 6]本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法の工程図で ある。
[図 7]図 6に示す第 1の製造方法の各工程における処理を示すフローチャートである
[図 8]第 1の製造方法によって製造された同一種類の抵抗変化型記憶素子を複数備 えた不揮発性記憶装置の模式図である。
[図 9]第 1の製造方法によって製造された抵抗変化型記憶素子を採用した不揮発性 記憶装置のメモリセルの概要図である。
[図 10]図 9に示すメモリセルをクロスポイント構造に配置したメモリセルアレイの一例を 示す回路図である。
[図 11]本発明の抵抗変化型記憶素子の製造方法のうちの第 2の製造方法の工程図 である。
[図 12]図 11に示す第 2の製造方法の各工程における処理を示すフローチャートであ る。
[図 13]本発明の抵抗変化型記憶素子の製造方法のうちの第 3の製造方法の工程図 である。
[図 14]図 13に示す第 3の製造方法の各工程における処理を示すフローチャートであ る。
[図 15]本発明の抵抗変化型記憶素子の製造方法のうちの第 4の製造方法の工程図 である。
[図 16]図 15に示す第 4の製造方法の各工程における処理を示すフローチャートであ る。
[図 17]本発明の抵抗変化型記憶素子の製造方法のうちの第 5の製造方法の工程図 である。
[図 18]図 17に示す第 5の製造方法の各工程における処理を示すフローチャートであ る。
[図 19]本発明の抵抗変化型記憶素子の製造方法のうちの第 6の製造方法の工程図 である。
[図 20]図 19に示す第 6の製造方法の各工程における処理を示すフローチャートであ る。
発明を実施するための最良の形態
[0043] 以下、本発明の実施の形態について説明する。
[0044] まず、現在知られて ヽる、抵抗変化型記憶素子の動作原理につ!ヽて述べる。
[0045] 図 3は、双極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子の電流一電圧特 性を示すグラフであり、図 4は、単極性抵抗変化型記憶膜を用いた抵抗変化型記憶 素子の電流一電圧特性を示すグラフである。
[0046] 抵抗変化型記憶素子は、印加電圧に応じて高抵抗状態と低抵抗状態とが切り替わ る抵抗変化型記憶膜が一対の電極間に狭持されたものである。この抵抗変化型記 憶膜は、その多くが遷移金属を含む酸化物材料の膜であり、電気的特性の違いから 大きく 2つに分類される。
[0047] 一方の抵抗変化型記憶膜は、高抵抗状態と低抵抗状態との間で抵抗状態を変化 させるために互いに異なる極性の電圧を用いるタイプである。酸ィ匕物材料としては、 クロム(Cr)等の不純物を微量にドープした SrTiOや、 SrZrO、あるいは超巨大磁
3 3
気抵抗(CMR: Colossal Magneto - Resistance)を示す Pr― Ca MnOや La
1 x x 3 1
― Ca MnO等が用いられる。以下、抵抗状態の書き換えに極性の異なる電圧を要
3 する上述の抵抗変化型記憶膜を双極性抵抗変化型記憶膜と呼ぶ。
[0048] 他方の抵抗変化型記憶膜は、高抵抗状態と低抵抗状態との間で抵抗状態を変化 させるために極性の同じ電圧を用いるタイプである。酸ィ匕物材料としては、例えば、 N iOや TiOのような単一の遷移金属の酸ィ匕物等が用いられる。以下、抵抗状態の書 き換えに極性が同じ電圧を要する抵抗変化型記憶膜を単極性抵抗変化型記憶膜と 呼ぶ。
[0049] ここで、図 3は、双極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子の電流一 電圧特性を示すグラフであり、非特許文献 1に記載されたものである。このグラフは、 典型的な双極性抵抗変化型記憶膜である Crドープの SrZrOを用いた電流一電圧
3
特性を示している。
[0050] 初期状態にお!、て、抵抗変化型記憶素子は高抵抗状態である場合を考える。
[0051] 印加電圧を 0Vの状態から徐々に負電圧に増加していくと、流れる電流は曲線 aに 沿って、矢印の方向に変化し、その絶対値は徐々に増加する。印加する負電圧が更 に大きくなり、約 0. 5Vを超えると、抵抗変化型記憶素子が高抵抗状態から低抵抗状 態へスィッチする。これに伴い、電流の絶対値が急激に増加し、電流一電圧特性は 点 A力 点 Bに遷移する。なお、以下の説明では、抵抗変化型記憶素子を高抵抗状 態から低抵抗状態へ変化する動作を「セット」と呼ぶ。
[0052] 点 Bの状態から徐々に負電圧を減少していくと、電流は曲線 bに沿って矢印の方向 に変化し、その絶対値は徐々に減少する。印加電圧が 0Vに戻ると、電流も OAとなる
[0053] 印加電圧を 0Vの状態から徐々に正電圧に増加していくと、電流値は曲線 cに沿つ て矢印の方向に変化し、その絶対値は徐々に増加する。印加する正電圧が更に大 きくなり、約 0. 5Vを超えると、抵抗変化型記憶素子が低抵抗状態から高抵抗状態へ スィッチする。これに伴い、電流の絶対値が急激に減少し、電流一電圧特性は点 C から点 Dに遷移する。
[0054] なお、以下の説明では、抵抗変化型記憶素子を低抵抗状態から高抵抗状態へ変 化する動作を「リセット」と呼ぶ。
[0055] 点 Dの状態から徐々に正電圧を減少していくと、電流は曲線 dに沿って矢印の方向 に変化し、その絶対値は徐々に減少する。印加電圧が OVに戻ると、電流も OAとなる
[0056] それぞれの抵抗状態は、約 ±0. 5Vの範囲で安定であり、電源を切っても保たれる 。すなわち、高抵抗状態では、印加電圧が点 Aの電圧の絶対値よりも低ければ、電 流一電圧特性は曲線 a、 dに沿って線形的に変化し、高抵抗状態が維持される。同 様に、低抵抗状態では、印加電圧が点 Cの電圧の絶対値よりも低ければ、電流ー電 圧特性は曲線 b、 cに沿って線形的に変化し、低抵抗状態が維持される。
[0057] このように、双極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子は、高抵抗状 態と低抵抗状態との間で抵抗状態を変化させるために、互いに異なる極性の電圧を 印加するものである。
[0058] 一方、図 4は、単極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子の電流一 電圧特性を示す図である。このグラフは、典型的な単極性抵抗変化型記憶膜である TiOを用いた場合である。
[0059] 初期状態で、抵抗変化型記憶素子は高抵抗状態である場合を考える。
[0060] 印加電圧を 0Vから徐々に増加していくと、電流は曲線 aに沿って、矢印の方向に 変化し、その絶対値は徐々に増加する。印加する正電圧が更に大きくなり、約 1. 3V を超えると、抵抗変化型記憶素子が高抵抗状態から低抵抗状態へスィッチ (セット) する。これに伴い、電流の絶対値が急激に増加し、電流一電圧特性は点 A力ゝら点 B に遷移する。なお、図 4において、点 Bにおける電流値が約 20mAで一定になってい るのは、急激な電流の増加による素子の破壊を防止するために電流制限を施して ヽ るためである。
[0061] 点 Bの状態から徐々に電圧を減少していくと、電流は曲線 bに沿って矢印の方向に 変化し、その絶対値は徐々に減少する。印加電圧が 0Vに戻ると、電流も OAとなる。
[0062] 印加電圧を OVから再度徐々に増加していくと、電流は曲線 cに沿って矢印の方向 に変化し、その絶対値は徐々に増加する。印加する正電圧が更に大きくなりなり約 1 . 2Vを超えると、抵抗変化型記憶素子が低抵抗状態から高抵抗状態にスィッチ (リセ ット)する。これに伴い電流の絶対値が急激に減少し、電流一電圧特性は点 Cから点 Dに遷移する。 [0063] 点 Dの状態から徐々に電圧を減少していくと、電流は曲線 dに沿って矢印の方向に 変化し、その絶対値は徐々に減少する。印加電圧が OVに戻ると、電流も OAとなる。
[0064] それぞれの抵抗状態は、セット、リセットに必要な電圧以下で安定である。すなわち 、図 4においては約 1. OV以下で両状態ともに安定であり、電源を切っても保たれる。 すなわち、低抵抗状態では、印加電圧が点 Cの電圧よりも低ければ、電流一電圧特 性は曲線 cに沿って、低抵抗状態が維持される。
[0065] このように、単極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子は、高抵抗状 態と低抵抗状態との間で抵抗状態を変化させるために、極性の同じ電圧を印加する ものである。
[0066] なお、上記材料を用いて抵抗変化型記憶素子を形成する場合、抵抗変化型記憶 素子形成直後の初期状態では図 3及び図 4に示すような特性は得られず、抵抗変化 型記憶膜を高抵抗状態と低抵抗状態との間で可逆的に変化しうる状態にするために は、上述したフォーミング処理が必要となる。
[0067] 図 5は、図 4の場合と同じ単極性抵抗変化型記憶膜を用いた抵抗変化型記憶素子 のフォーミング処理を説明する電流一電圧特性である。
[0068] 抵抗変化型記憶素子の形成直後の初期状態では、図 5に示すように、高抵抗であ りかつフォーミング電圧は 8V程度と非常に高くなつている。
[0069] 初期状態においてこのフォーミング電圧よりも高い電圧を印加すると、図 5に示すよ うに、抵抗変化型記憶素子に流れる電流値が急激に増加し、すなわち抵抗変化型 記憶素子のフォーミングが行われる。このフォーミングを行うことにより、抵抗変化型 記憶素子は、図 4に示すような電流一電圧特性を示すようになり、低抵抗状態と高抵 抗状態とを可逆的に変化することができるようになる。
[0070] 次に、本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法につい て説明する。
[0071] 図 6は、本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法の工程 図である。
[0072] また、図 7は、図 6に示す第 1の製造方法の各工程における処理を示すフローチヤ ートである。 [0073] まず、第 1の工程として、半導体基板上 (不図示)に Ptからなる第 1の導電体膜 11を スパッタリングに代表される真空製膜法により積層させる (ステップ S100)。
[0074] ここで、半導体基板の材料として、熱酸ィ匕膜付 Siウェハを使用した。半導体基板の 材料としては、熱酸化膜付 Siウェハに限られず、例えば、 MgO、 Al O (サファイア)、
2 3
TiO、 Cr O (ルビー;)、 NiO、 CoO、 MnO、 ZnO、 ZrO、 SrTiO、 SrZrO、 LaAl
2 2 3 2 3 3
O、 GGG (ガドリニウム 'ガリウム '非磁性ガーネット)、もしくは YIG (イットリウム '鉄'
3
磁性ガーネット)などの酸ィ匕物の基板を用いることができる。また、上記の酸化物から なる半道体基板に限られず、 CaF、 BaF、 MgF、 LiFなどの弗化物力もなる半道体
2 2 2
基板を用いることができる。
[0075] また、第 1の導電体膜としては、 Ptに限られず、例えば、 Au、 Pd、 Ru、 SrRuO (S
3
RO)、もしくは YBa Cu O (YBCO)などを用いることができる。
2 3 7
[0076] 続いて、第 2の工程として、図 6 (a)に示すように、金属酸ィ匕膜 12を第 1の導電体膜 11上に積層する (ステップ S101)。なお、金属酸ィ匕膜 12の積層には、酸化物ターゲ ットあるいは金属ターゲットを用いて (Ar+O )混合ガスを導入して製膜する。
2
[0077] ここで、金属酸化膜としては、酸素欠損型の絶縁性金属酸化物、もしくは価数変動 し易い遷移金属を含む絶縁性金属酸ィ匕物などである。具体的には、 Ni酸化物、 Co 酸化物、 Fe酸化物、 Si酸化物、 A1酸化物、 Ti酸化物、 Ce酸化物、 Hf酸化物、 Zr酸 化物、 Nb酸化物、 Mg酸化物、 Y酸化物、 Cr酸化物、 Zn酸化物、もしくは Cu酸化物 などを用いることができる。第 1の製造方法では、金属酸化膜として、 Ni酸化物を使 用した。
[0078] 続 ヽて、第 3の工程として、金属酸化膜のそれぞれの制御された一部領域に電磁 波もしくは電子線を照射し、その一部領域を、印加電圧に応じて高抵抗状態と低抵 抗状態とを選択的に保持する伝導路 12bに改質する(図 6 (b)、ステップ S102)。そ の結果、金属酸化膜 12は、抵抗変化型記憶膜 12aとして作用するようになる。
[0079] ここで、照射する電磁波もしくは電子線のエネルギーについて説明する。
[0080] 金属酸化膜が共有結合性の金属酸化物結晶である場合、金属原子と酸素原子と の結合エネルギーは、 4〜6eV程度である。また、金属酸化膜がイオン結合性の金 属酸化物結晶である場合、金属原子と酸素原子との結合エネルギーは、 6〜8eV程 度である。したがって、金属酸化膜から酸素原子が離脱するのに必要なエネルギー は、 4eV程度以上でよいことがわかる。
[0081] また、金属酸ィ匕膜の結晶中の酸素原子力 電子が解離するのに必要なエネルギー は、 3eV程度以上である。
[0082] したがって、金属酸化膜の制御された一部領域に電磁波もしくは電子線を照射し、 その一部領域を伝導路に改質するためには、例えば、以下のエネルギーレベルの電 磁波ゃ電子線が好ましい。
[0083] 電磁波のうちのレーザとしては、 He— Cdレーザ(325nm= 3. 8eV 442nm= 2.
8eV) KrFエキシマレーザ(284nm=4. 4eV) ArFエキシマレーザ(193nm=6
. 4eV)、 Xeエキシマランプ(172nm= 7. 2eV)、もしくは F2エキシマレーザ(152η m=8. 2eV)などが挙げられる。
[0084] また、水銀ランプ力 発せられる電磁波としては、低圧水銀ランプ(185nm=6. 7e
V 254nm=4. 9eV)や高圧水銀ランプ(254nm=4. 9eV 313nm=4. OeV 3
65nm= 3. 4eV 405nm= 3. leV 436nm= 2. 8eV)などが挙げられる。
[0085] また、メタルハライドランプ(200 450nm= 2. 8 6. 2eV)を用いてもよい。
[0086] また、 X線(0. 154184nm (Cu-K a ) =8. OkeV)や電子線(0. 0025 0. 0
037nm、カロ速電圧 100 200kVで、 335 496keV)を用いてもよい。
[0087] なお、指向性が得られにくい電磁波を金属酸ィ匕膜 12に照射する場合には、図 6 (b
' )に示すように、電磁波を遮光マスク 17を介して金属酸化膜に照射することにより、 金属酸化膜 12の一部領域は伝導路に改質される。
[0088] 続いて、第 4の工程として、図 6 (c)に示すように、抵抗変化型記憶膜 12a上に、第 1 の導電体膜 11と対になることで抵抗変化型記憶膜 12aに電圧を印加する第 2の導電 体膜 13を真空製膜法により積層させる (ステップ S103)。
[0089] ここで、第 2の導電体膜 13として、 Ptを使用したが、 Ptに限定されず、例えば、 Au
Pd Ru Ag Cu Al Ti Ta、もしくは Wなどを用いることができる。
[0090] 以上の工程により抵抗変化型記憶素子 lbを同時に又は順次に複数製造される。
[0091] 次に、第 1の製造方法によって製造された同一種類の抵抗変化型記憶素子を複数 備えた不揮発性記憶装置について説明する。 [0092] 図 8は、第 1の製造方法によって製造された同一種類の抵抗変化型記憶素子を複 数備えた不揮発性記憶装置の模式図である。
[0093] この不揮発性記憶装置には、抵抗変化型記憶素子を行方向及び列方向に複数配 列して 、るメモリアレイが備えられて!/、る。
[0094] このメモリアレイは配線を有し、後述するワード線とビット線とからなる配線の一方が 行方向に複数配線され、他方が列方向に複数配列されることにより格子状になって いる。そして、ワード線とビット線が交差する各格子点の位置に抵抗変化型記憶素子 が配置されることによりメモリアレイを構成する。ここでワード線は、抵抗変化型記憶素 子の電極のうちの一方と電気的に接続され、ビット線は、他方の電極と電気的に接続 されて ヽる。抵抗変化型記憶素子を上記のように配置して電極間に電圧を印加する 仕組みを備えた構造をクロスポイント型と称する。
[0095] 図 8 (a)は、不揮発性記憶装置 16のメモリアレイの一部 14a、 14b、 15a、 15bを取 り出して描いている。この不揮発性記憶装置 16には、上述した第 1の製造方法により 製造された 4つの抵抗変化型記憶素子 16—1、 16—2、 16—3、 16— 4力メモリァレ ィの交差点に設けられている。図 8 (b)は、伝導路を明示的に描いた不揮発性記憶 装置の模式図である。
[0096] 従来例(図 2)と比較して、図 8 (b)には、 4つの抵抗変化型記憶素子 16— 1、 16— 2、 16—3、 16— 4それぞれに 1本の伝導路 16a、 16b、 16c、 6dが形成しており、各 々の伝導路の形状や大きさが同様である。また、各抵抗変化型記憶素子ごとの伝導 路の本数も一致している。
[0097] 次に、上述した第 1の製造方法によって製造された抵抗変化型記憶素子の一実施 形態の動作について説明する。
[0098] 図 9は、第 1の製造方法によって製造された抵抗変化型記憶素子を採用した不揮 発性記憶装置のメモリセルの概要図である。
[0099] 図 9に示す不揮発性記憶装置のメモリセル 100は、抵抗変化型記憶素子 1とセル 選択トランジスタ 101とを有している。抵抗変化型記憶素子 1は、その一端力 、ット線 BLに接続され、他端がセル選択トランジスタ 101のドレイン端子 101 aに接続されて いる。セル選択トランジスタ 101のドレイン端子 101bはソース線 SLに接続され、セル 選択トランジスタ 101のゲート端子 101cはワード線 WLに接続されている。
[0100] 図 10は、図 9に示すメモリセルをクロスポイント構造に配置したメモリセルアレイの一 例を示す回路図である。複数のメモリセルが列方向(図面縦方向)及び行方向(図面 横方向)に隣接して形成されている。
[0101] 列方向には、複数のワード線 WL1、 WL1—、 WL2、 WL2_- · ·が配されており、 列方向に並ぶメモリセルは、共通の信号線を共有している。また、列方向には、ソー ス線 SL1、 SL2、 · · ·が配され、列方向に並ぶメモリセルに共通の信号線を共有して いる。
[0102] ここで、ワード線 WL1—は、ワード線 WL1の反転信号が出力されるワード線であり 、ワード線 WL2—はワード線 WL2の反転信号が出力されるワード線であり、以下同 様である。
[0103] なお、ソース線 SLは、ワード線 WL2本に 1本づっ設けられている。
[0104] 行方向(図面横方向)には、複数のビット線 BL1、 BL2、 BL3、 BL4- · ·が配されて おり、行方向に並ぶメモリセルは共通の信号線を共有して 、る。
[0105] 次に、本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法によって 製造された抵抗変化型記憶素子の一実施形態を採用した不揮発性記憶装置 1—1 の動作を説明する。
[0106] はじめに、高抵抗状態力 低抵抗状態への書き換え動作、すなわちセットの動作に ついて説明する。ここで、説明をわかりやすくするため、書き換え対象のメモリセルは 、図 10に示す点線の四角で囲った、ワード線 WL1およびビット線 BL1に接続された メモリセノレ 100である。
[0107] まず、ワード線 WL1に所定の電圧を印加し、セル選択トランジスタ 101をオン状態 にする。ソース線 SL1は、基準電位、例えば、接地電位である OVに接続する。
[0108] 次いで、ビット線 BL1に、抵抗変化型記憶素子 1をセットするに要する電圧と同じあ るいはこれよりやや大きいバイアス電圧を印加する。例えば、図 4の実線で示す特性 を有する抵抗変化型記憶素子の場合、約 1. 5 V程度のバイアス電圧を印加する。
[0109] ノィァス電圧を印加することにより、ビット線 BL1、抵抗変化型記憶素子 1およびセ ル選択トランジスタ 101を介してソース線 SL 1へ向かう電流経路が形成され、印加し たバイアス電圧は、抵抗変化型記憶素子 1の抵抗値 R及びセル選択トランジスタ 10
H
1のチャネル抵抗 R に応じてそれぞれ分配される。
CS
[0110] このとき、抵抗変化型記憶素子 1の抵抗値 Rは、セル選択トランジスタ 101のチヤ
H
ネル抵抗 R に比べて十分に大きいため、バイアス電圧のほとんどは抵抗変化型記
CS
憶素子 1に印加される。これにより、抵抗変化型記憶素子 1は、高抵抗状態から低抵 抗状態に変化する。
[0111] 次いで、ビット線 BL1に印加するバイアス電圧をゼロに戻した後、ワード線 WL1に 印加する電圧をオフにし、セットの動作を完了する。
[0112] 次に、低抵抗状態から高抵抗状態への書き換え動作、すなわちリセットの動作につ いて説明する。書き換え対象のメモリセルは、ワード線 WL1及びビット線 BL1に接続 されたメモリセル 100である。
[0113] まず、ワード線 WL1に所定の電圧を印加し、セル選択トランジスタ 101をオン状態 にする。ソース線 SL1は、基準電位、例えば接地電位である OVに接続する。
[0114] 次いで、ビット線 BL1に、抵抗変化型記憶素子 1をリセットするに要する電圧と同じ 或いはこれよりやや大きいバイアス電圧を印加する。例えば、図 4の実線で示す特性 を有する抵抗変化型記憶素子の場合、約 0. 8V程度のバイアス電圧を印加する。
[0115] ノィァス電圧を印加することにより、ビット線 BL1、抵抗変化型記憶素子 1及びセル 選択トランジスタ 101を介してソース線 SL 1へ向かう電流経路が形成され、印加した ノィァス電圧は、抵抗変化型記憶素子 1の抵抗値 R及びセル選択トランジスタ 101 し
のチャネル抵抗 R に応じてそれぞれに分配される。
CS
[0116] このとき、セル選択トランジスタ 101のチャネル抵抗 R は、抵抗変化型記憶素子 1
CS
の抵抗値 Rよりも十分に小さいため、印加したノィァス電圧のほとんどは抵抗変化型 し
記憶素子 1に印加される。これにより、抵抗変化型記憶素子 1は、低抵抗状態から高 抵抗状態に変化する。
[0117] リセット過程では、抵抗変化型記憶素子 1が高抵抗状態に切り換わった瞬間、ほぼ 全バイアス電圧が抵抗変化型記憶素子 iに配分されるため、このノィァス電圧によつ て抵抗変化型記憶素子 1が再度セットされることを防止する必要がある。このために は、ビット線 BL1に印加するノィァス電圧は、セットに要する電圧よりも小さくしなけれ ばならない。
[0118] リセット過程では、セル選択トランジスタ 101のチャネル抵抗 R が抵抗変化型記憶
CS
素子 1の抵抗値 Rよりも十分に小さくなるように、これらトランジスタのゲート電圧を調 し
整するとともに、ビット線 BL1に印加するバイアス電圧を、リセットに必要な電圧以上、 セットに必要な電圧未満に設定する。
[0119] 次いで、ビット線 BL1に印加するバイアス電圧をゼロに戻した後、ワード線 WL1に 印加する電圧をオフにし、リセットの動作を完了する。
[0120] 次に、図 10に示す不揮発性記憶装置 1—1の読み出し方法について説明する。読 み出し対象のメモリセル 100は、ワード線 WL 1及びビット線 BL 1に接続されたメモリ セノレ 100である。
[0121] まず、ワード線 WL1に所定の電圧を印加し、セル選択トランジスタ 101をオン状態 にする。ソース線 SL1は、基準電位、例えば接地電位である OVに接続する。
[0122] 次 、で、ビット線 BL1に、所定のバイアス電圧を印加する。このバイアス電圧は、抵 抗変化型記憶素子 1が!、ずれの抵抗状態にあるときも印加電圧によってセットやリセ ットが生じな 、ように設定する。
[0123] ビット線 BL1にこのようなバイアス電圧を印加すると、ビット線 BL1には抵抗変化型 記憶素子 1の抵抗値に応じた電流が流れる。したがって、ビット線 BL1に流れるこの 電流値を検出することにより、抵抗変化型記憶素子 1がどのような抵抗状態にあるか を読み出せる。
[0124] 以上より、本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法によ れば、同一種類の抵抗変化型記憶素子を複数製造する間、各抵抗変化型記憶素子 間の抵抗値のばらつきが抑えられる。
[0125] 以上で、本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法の説 明を終了し、次に、本発明の抵抗変化型記憶素子の製造方法のうちの第 2の製造方 法について説明する。
[0126] なお、本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法と本発明 の抵抗変化型記憶素子の製造方法のうちの第 2の製造方法とでは、製造工程がー 部異なるが、それ以外は同様の工程を有するため、相違点について主に説明する。 [0127] 図 11は、本発明の抵抗変化型記憶素子の製造方法のうちの第 2の製造方法のェ 程図である。
[0128] また、図 12は、図 11に示す第 2の製造方法の各工程における処理を示すフローチ ヤートである。
[0129] 本発明の抵抗変化型記憶素子の製造方法のうちの第 1の製造方法と本発明の抵 抗変化型記憶素子の製造方法のうちの第 2の製造方法との相違は、第 2の製造方法 力 金属酸化膜それぞれの制御された一部領域に電磁波を照射するとともに電極間 に電圧を印加して、その一部領域を伝導路に改質して 、る点である。
[0130] まず、第 1の工程として、半導体基板上 (不図示)に第 1の導電体膜 21をスパッタリ ングに代表される真空製膜法により積層させる (ステップ S200)。
[0131] 次に、第 2の工程として、図 11 (a)に示すように、金属酸化膜 22を第 1の導電体膜 2 1上に真空製膜法により積層する (ステップ S 201)。
[0132] 次に、第 3の工程として、図 11 (b)に示すように、電磁波透過性を有する第 2の導電 体膜 23を金属酸ィ匕膜 22に真空製膜法により積層させる (ステップ S202)。
[0133] 続 、て、第 4の工程として、金属酸化膜 22の制御された一部領域に電磁波を照射 するとともに第 1の導電体膜 21と第 2の導電体膜 23との間にフォーミング処理用電源 24による電圧を印加して、その一部領域を伝導路 22bに改質する(図 11 (c)、ステツ プ S203)。その結果、金属酸化膜 22は、抵抗変化型記憶膜 22aとして作用するよう になる。
[0134] 以上の工程により抵抗変化型記憶素子 lcを同時に又は順次に複数製造される。
[0135] したがって、同一種類の抵抗変化型記憶素子 lcを複数製造する間、各抵抗変化 型記憶素子間の抵抗値のばらつきが抑えられる。
[0136] 次に、本発明の抵抗変化型記憶素子の製造方法のうちの第 3の製造方法につい て説明する。第 3の製造方法では、まず、電磁波もしくは電子線を金属酸化膜それぞ れの制御された一部領域に照射し、その一部領域に結合して 、る金属原子と酸素原 子との結合力を弱めることにより、その一部領域を伝導路のできやすい領域に変える ことを特徴としている。
[0137] 図 13は、本発明の抵抗変化型記憶素子の製造方法のうちの第 3の製造方法のェ 程図である。
[0138] また、図 14は、図 13に示す第 3の製造方法の各工程における処理を示すフローチ ヤートである。
[0139] まず、第 1の工程として、半導体基板上 (不図示)に第 1の導電体膜 31をスパッタリ ングに代表される真空製膜法により積層させる (ステップ S300)。
[0140] 次に、第 2の工程として、図 13 (a)に示すように金属酸化膜 32を真空製膜法により 第 1の導電体膜 31上に積層する (ステップ S301)。
[0141] 続いて、第 3の工程として、図 13 (b)に示すように金属酸化膜 32それぞれの制御さ れた一部領域 35に電磁波を照射し、その一部領域に結合している金属原子と酸素 原子との結合力を弱める (ステップ S302)。
[0142] 続いて、第 4の工程として、図 13 (c)に示すように第 2の導電体膜 33を金属酸化膜 32に真空製膜法により積層させる (ステップ S303)。
[0143] 最後に、第 1の導電体膜 31と第 2の導電体膜 32との間にフォーミング処理用電源 3 4による電圧を印加して、一部領域 35を、印加電圧に応じて高抵抗状態と低抵抗状 態とを選択的に保持する伝導路 35aに改質する (ステップ S304)。その結果、金属 酸ィ匕膜 32は、抵抗変化型記憶膜 32aとして作用するようになり、抵抗変化型記憶素 子 Idが製造される。
[0144] なお、上記第 3の製造方法では、電磁波を用いたが、第 1の製造方法と同様に電子 線を用いてもよい。また、指向性が得られにくい電磁波を照射するときには、図 6 (b' ) と同様に遮光マスクを介して照射することで伝導路 35aを形成する。
[0145] 以上の工程により抵抗変化型記憶素子 Idを同時に又は順次に複数製造される。し たがって、同一種類の抵抗変化型記憶素子 Idを複数製造する間、各抵抗変化型記 憶素子間の抵抗値のばらつきが抑えられる。
[0146] 次に、本発明の抵抗変化型記憶素子の製造方法のうちの第 4の製造方法につい て説明する。第 4の製造方法では、まず、電磁波もしくは電子線の代わりにイオンビ ームを金属酸化膜それぞれの制御された一部領域に照射し、その一部領域を伝導 路に改質することを特徴として 、る。
[0147] 図 15は、本発明の抵抗変化型記憶素子の製造方法のうちの第 4の製造方法のェ 程図である
また、図 16は、図 15に示す第 4の製造方法の各工程における処理を示すフローチ ヤートである。
[0148] まず、第 1の工程として、半導体基板上に第 1の導電体膜 41をスパッタリングに代 表される真空製膜法により積層させる (ステップ S400)。
[0149] 次に、第 2の工程として、図 15 (a)に示すように金属酸化膜 42を真空製膜法により 第 1の導電体膜 41上に積層する (ステップ S401 )。
[0150] その次に、第 3の工程として、金属酸ィ匕膜 42の制御された一部領域にイオンビーム を注入し、その一部領域を伝導路 42bに改質する (ステップ S402)。その結果、金属 酸ィ匕膜 42は、抵抗変化型記憶膜 42aとして作用するようになる。なお、図 15 (b)に示 すように、イオンビームを照射時にビームの拡がりの影響を取り除くために、遮光マス ク 43を用いることが好ましい。なお、集束イオンビームを採用することにより、遮光マ スクを介さずにイオンを注入してもよ 、。
[0151] ここで、注入イオンの入射エネルギーは、 10〜: LOOOkeVであり、イオンの注入深さ は、 10〜: LOOOnm程度であることが好ましい。
[0152] また。注入するイオン種が Pt、 Au、もしくは Agの場合には、イオン加速電圧は 100 kV、イオン電流は 1. OmA、注入時間は 2. Osecであることが好ましい。
[0153] また、注入するイオン種が Niもしくは Cuの場合には、イオン加速電圧は 60kV、ィ オン電流は 2. OmA、注入時間は 1. Osecであることが好ましい。
[0154] 続いて、第 4の工程として、金属酸化膜 42に第 2の導電体膜 43を真空成膜法によ り積層して (ステップ S403)、抵抗変化型記憶素子 leを製造する。
[0155] 以上の工程により抵抗変化型記憶素子 leを同時に又は順次に複数製造される。し たがって、同一種類の抵抗変化型記憶素子 leを複数製造する間、各抵抗変化型記 憶素子間の抵抗値のばらつきが抑えられる。
[0156] 次に、本発明の抵抗変化型記憶素子の製造方法のうちの第 5の製造方法につい て説明する。この第 5の製造方法では、まず、反応性イオンエッチングにより、絶縁膜 それぞれの制御された一部領域に貫通孔を形成する。続いて、その貫通孔に、製造 後には印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路と して作用する金属酸化物を充填し、電極間にフォーミング処理を行うための電圧を印 カロしてその一部領域を伝導路に改質することを特徴としている。
[0157] 図 17は、本発明の抵抗変化型記憶素子の製造方法のうちの第 5の製造方法のェ 程図である
また、図 18は、図 17に示す第 5の製造方法の各工程における処理を示すフローチ ヤートである。
[0158] まず、第 1の工程として、基板上 (不図示)に第 1の導電体膜 51をスパッタリングに 代表される真空製膜法により積層させる (ステップ S500)。
[0159] 次に、第 2の工程として、図 17 (a)に示すように絶縁膜 52を真空製膜法により第 1 の導電体膜 51上に積層する (ステップ S501)。
[0160] ここで、絶縁体膜として SiOを用いたが、 SiOに限られず、 Al O、 MgO、もしくは
2 2 2 3
ZrOなどの絶縁体膜を用いてもよい。
2
[0161] その次に、第 3の工程として、反応性イオンエッチングを用いて絶縁膜 52の一部領 域に貫通孔を形成する(図 17 (b) )。なお、反応性イオンエッチングの代わりに集束ィ オンビームを用いて貫通孔を形成してもよ 、。
[0162] 続いて、その貫通孔に、製造後には印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する伝導路として作用する金属酸化物 53を充填する (ステップ S50
3)。
[0163] ここでは、金属酸ィ匕物として、 Ni酸ィ匕物を用いた力 Ni酸化物に限られず、 Co酸 化物、 Fe酸化物、 Si酸化物、 A1酸化物、 Ti酸化物、 Ce酸化物、 Hf酸化物、 Zr酸ィ匕 物、 Nb酸化物、 Mg酸化物、 Y酸化物、 Cr酸化物、 Zn酸化物、もしくは Cu酸化物な どを用いることができる。
[0164] 続いて、絶縁膜 52および金属酸ィ匕物 53に第 2の導電体膜 54を真空製膜法により 積層する (ステップ S504)。
[0165] 最後に、第 1の導電体膜 51と第 2の導電体膜 54との間にフォーミング処理用電源 5 5による電圧を印加して、貫通孔内の金属酸ィ匕物 53を伝導路 53aに改質する (ステツ プ S505)。その結果、金属酸ィ匕物 53および絶縁膜 52は、抵抗変化型記憶膜 52aと して作用するようになり、抵抗変化型記憶素子 Ifが製造される。 [0166] 以上の工程により抵抗変化型記憶素子 Ifを同時に又は順次に複数製造される。し たがって、同一種類の抵抗変化型記憶素子 Ifを複数製造する間、各抵抗変化型記 憶素子間の抵抗値のばらつきが抑えられる。
[0167] 次に、本発明の抵抗変化型記憶素子の製造方法のうちの第 6の製造方法につい て説明する。この第 6の製造方法では、金属酸化膜それぞれの制御された一部領域 にその金属酸ィ匕膜の厚み方向の途中までの深さの穴を形成し、その穴に第 2の導電 体膜を埋めることにより、第 1の導電体膜と第 2の導電体膜との間のおける印加電圧 の強度分布を変えることを特徴として 、る。
[0168] 図 19は、本発明の抵抗変化型記憶素子の製造方法のうちの第 6の製造方法のェ 程図である。
[0169] また、図 20は、図 19に示す第 6の製造方法の各工程における処理を示すフローチ ヤートである。
[0170] まず、第 1の工程として、半導体基板上 (不図示)に第 1の導電体膜 61をスパッタリ ングに代表される真空製膜法により積層させる (ステップ S600)。
[0171] 次に、第 2の工程として、図 19 (a)に示すように金属酸化膜 62を真空製膜法により 第 1の導電体膜 61上に積層する (ステップ S601)。
[0172] その次に、第 3の工程として、反応性イオンエッチングにより、金属酸化膜 62の制御 された一部領域に、その金属酸ィ匕膜 62の厚み方向の途中までの深さの穴を形成す る(図 19 (b)、ステップ S602)。なお、反応性イオンエッチングの代わりに集束イオン ビームを用いてもよい。
[0173] 続いて、真空製膜法により、穴の内部を含む金属酸ィ匕膜 62に、第 1の導電体膜 61 と対になることでその金属酸ィ匕膜 62に電圧を印加する第 2の導電体膜 63を積層する (図 19 (c)、ステップ S603)。
[0174] 続いて、第 1の導電体膜 61と第 2の導電体膜 63との間にフォーミング処理用電源 6 4による電圧を印加することにより、第 2の導電体膜の先端部 63aと第 1の導電体膜 6 1との間の電界が強くなる。そのため、上記一部領域の金属酸ィ匕物は、印加電圧に 応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路 65に改質される(図 1 9 (d)、ステップ S604)。その結果、金属酸化物 62は、抵抗変化型記憶膜 62aとして 作用するようになり、抵抗変化型記憶素子 lgが製造される。
以上の工程により抵抗変化型記憶素子 lgを同時に又は順次に複数製造される。し たがって、同一種類の抵抗変化型記憶素子 lgを複数製造する間、各抵抗変化型記 憶素子間の抵抗値のばらつきが抑えられる。
[0175] 以上説明したように、本発明によれば、同一種類の抵抗変化型記憶素子を複数製 造する間、各抵抗変化型記憶素子間の抵抗値のばらつきが抑えられる工夫が施さ れた抵抗変化型記憶素子の製造方法が提供される。
[0176] なお、本発明の抵抗変化型記憶素子の製造方法によって得られる抵抗変化型記 憶素子は、
高抵抗状態と低抵抗状態とを選択的に保持する不揮発性記憶素子として利用する だけに限られず、例えば、高抵抗状態と低抵抗状態とを 2値データに対応づけて、電 子回路や電気回路に用いられる 2値データの組み合わせ力 なるアドレスを選択す るスィッチ素子として用いてもょ 、。

Claims

請求の範囲
[1] 印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやす!ヽ低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
前記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、前記金属酸化膜それぞれの 制御された一部領域に電磁波もしくは電子線を照射することにより、該一部領域を、 印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質す る工程と、
前記金属酸化膜上に、前記第 1の導電体膜と対になることで該金属酸化膜に電圧 を印加する第 2の導電体膜を積層する工程とを有することを特徴とする抵抗変化型 記憶素子の製造方法。
[2] 印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやす!/ヽ低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
前記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
前記金属酸化膜上に電磁波透過性を有する第 2の導電体膜を積層する工程と、 同一種類の抵抗変化型記憶素子を製造して 、る間、前記金属酸化膜それぞれの 制御された一部領域に電磁波を照射するとともに前記第 1の導電体膜と前記第 2の 導電体膜との間に電圧を印加することにより、該一部領域を、印加電圧に応じて高抵 抗状態と低抵抗状態とを選択的に保持する伝導路に改質する工程とを有することを 特徴とする抵抗変化型記憶素子の製造方法。
[3] 印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやす!/ヽ低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
前記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、前記金属酸化膜それぞれの 制御された一部領域に電磁波もしくは電子線を照射することにより、該一部領域に結 合している金属原子と酸素原子との結合力を弱める工程と、
該金属酸化膜上に第 2の導電体膜を積層する工程と、
前記第 1の導電体膜と前記第 2の導電体膜との間に電圧を印加することにより、前 記一部領域を、印加電圧に応じて高抵抗状態と低抵抗状態とを選択的に保持する 伝導路に改質する工程とを有することを特徴とする抵抗変化型記憶素子の製造方法
[4] 印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやす!/ヽ低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
前記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、前記金属酸化膜それぞれの 制御された一部領域にイオンビームを注入することにより、該一部領域を、印加電圧 に応じて高抵抗状態と低抵抗状態とを選択的に保持する伝導路に改質する工程と、 前記金属酸化膜上に、前記第 1の導電体膜と対になることで該金属酸化膜に電圧 を印加する第 2の導電体膜を積層する工程とを有することを特徴とする抵抗変化型 記憶素子の製造方法。
[5] 印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやす!/ヽ低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
前記第 1の導電体膜上に、絶縁膜を積層する工程と、
同一種類の抵抗変化型記憶素子を製造して 、る間、前記絶縁膜それぞれの制御 された一部領域に貫通孔を形成する工程と、
前記貫通孔に、製造後には印加電圧に応じて高抵抗状態と低抵抗状態とを選択 的に保持する伝導路として作用する金属酸化物を充填する工程と、
前記絶縁膜および前記金属酸化物に第 2の導電体膜を積層する工程と、 前記第 1の導電体膜と前記第 2の導電体膜との間に電圧を印加することにより、前 記貫通孔内の金属酸化物を、印加電圧に応じて高抵抗状態と低抵抗状態とを選択 的に保持する伝導路に改質する工程とを有することを特徴とする抵抗変化型記憶素 子の製造方法。
[6] 印加電圧に応じて高抵抗状態と該高抵抗状態よりも電流が流れやす!/ヽ低抵抗状 態とに切り替わり該高抵抗状態と該低抵抗状態とを選択的に保持する抵抗変化型記 憶素子を製造する抵抗変化型記憶素子の製造方法において、
基板上に第 1の導電体膜を積層する工程と、
前記第 1の導電体膜上に、製造後に印加電圧に応じて高抵抗状態と低抵抗状態と を選択的に保持する抵抗変化型記憶膜として作用する金属酸化膜を積層する工程 と、
同一種類の抵抗変化型記憶素子を製造して 、る間、前記金属酸化膜それぞれの 制御された一部領域に、該金属酸ィ匕膜の厚み方向の途中までの深さの穴を形成す る工程と、
前記穴の内部を含む前記金属酸ィ匕膜上に、前記第 1の導電体膜と対になることで 該金属酸化膜に電圧を印加する第 2の導電体膜を積層する工程と、
前記第 1の導電体膜と前記第 2の導電体膜との間に電圧を印加することにより、前 記一部領域の金属酸化物を、印加電圧に応じて高抵抗状態と低抵抗状態とを選択 的に保持する伝導路に改質する工程とを有することを特徴とする抵抗変化型記憶素 子の製造方法。
PCT/JP2006/304492 2006-03-08 2006-03-08 抵抗変化型記憶素子の製造方法 WO2007102212A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008503708A JPWO2007102212A1 (ja) 2006-03-08 2006-03-08 抵抗変化型記憶素子の製造方法
PCT/JP2006/304492 WO2007102212A1 (ja) 2006-03-08 2006-03-08 抵抗変化型記憶素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304492 WO2007102212A1 (ja) 2006-03-08 2006-03-08 抵抗変化型記憶素子の製造方法

Publications (1)

Publication Number Publication Date
WO2007102212A1 true WO2007102212A1 (ja) 2007-09-13

Family

ID=38474661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304492 WO2007102212A1 (ja) 2006-03-08 2006-03-08 抵抗変化型記憶素子の製造方法

Country Status (2)

Country Link
JP (1) JPWO2007102212A1 (ja)
WO (1) WO2007102212A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523772A (ja) * 2008-05-01 2011-08-18 インターモレキュラー,インク. 半導体デバイスの形成電圧の低下
US8125817B2 (en) 2008-12-18 2012-02-28 Panasonic Corporation Nonvolatile storage device and method for writing into the same
JP2012209569A (ja) * 2008-05-22 2012-10-25 Panasonic Corp 抵抗変化型不揮発性記憶装置
CN112071979A (zh) * 2020-08-26 2020-12-11 西安理工大学 一种格点阵列复合电极电阻存储器薄膜制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068983A (ja) * 2001-06-28 2003-03-07 Sharp Corp 電気的にプログラム可能な抵抗特性を有する、クロストークが低いクロスポイントメモリ
WO2005041303A1 (ja) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子、その製造方法、その素子を含むメモリ、およびそのメモリの駆動方法
JP2005175202A (ja) * 2003-12-11 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> 記録素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068983A (ja) * 2001-06-28 2003-03-07 Sharp Corp 電気的にプログラム可能な抵抗特性を有する、クロストークが低いクロスポイントメモリ
WO2005041303A1 (ja) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子、その製造方法、その素子を含むメモリ、およびそのメモリの駆動方法
JP2005175202A (ja) * 2003-12-11 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> 記録素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523772A (ja) * 2008-05-01 2011-08-18 インターモレキュラー,インク. 半導体デバイスの形成電圧の低下
JP2012209569A (ja) * 2008-05-22 2012-10-25 Panasonic Corp 抵抗変化型不揮発性記憶装置
US8125817B2 (en) 2008-12-18 2012-02-28 Panasonic Corporation Nonvolatile storage device and method for writing into the same
CN112071979A (zh) * 2020-08-26 2020-12-11 西安理工大学 一种格点阵列复合电极电阻存储器薄膜制备方法
CN112071979B (zh) * 2020-08-26 2023-07-14 西安理工大学 一种格点阵列复合电极电阻存储器薄膜制备方法

Also Published As

Publication number Publication date
JPWO2007102212A1 (ja) 2009-07-23

Similar Documents

Publication Publication Date Title
KR101078541B1 (ko) 기억 소자 및 기억 장치
US8125817B2 (en) Nonvolatile storage device and method for writing into the same
US8885387B2 (en) Cross point variable resistance nonvolatile memory device
US7786459B2 (en) Memory element and memory device comprising memory layer positioned between first and second electrodes
KR101171065B1 (ko) 기억소자 및 기억장치
US8395930B2 (en) Method of programming variable resistance element and nonvolatile storage device
JP6014753B2 (ja) スイッチングデバイスの構造および方法
US8203875B2 (en) Anti-parallel diode structure and method of fabrication
WO2011069697A1 (en) RESISTIVE SWITCHING IN NITROGEN-DOPED MgO
KR20070058312A (ko) 기억 소자 및 기억 장치
US7935952B2 (en) Non-volatile memory device having threshold switching resistor, memory array including the non-volatile memory device and methods of manufacturing the same
JP2006120702A (ja) 可変抵抗素子および半導体装置
KR20170137562A (ko) 스위칭 소자 및 저항 변화 메모리 장치의 제조 방법
US8446752B2 (en) Programmable metallization cell switch and memory units containing the same
US9373786B1 (en) Two terminal resistive access devices and methods of formation thereof
WO2007105284A1 (ja) 抵抗変化型記憶素子および抵抗変化型記憶素子の製造方法
WO2007102212A1 (ja) 抵抗変化型記憶素子の製造方法
JP5326242B2 (ja) 磁気トンネル素子、これを利用した半導体装置およびその製造方法
US8363450B2 (en) Hierarchical cross-point array of non-volatile memory
TWI310237B (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
Lu et al. State-of-the-art flash memory devices and post-flash emerging memories
KR20170141508A (ko) 스위치 및 그 제조 방법과, 이를 포함하는 저항성 메모리 셀 및 전자 장치
WO2021101582A1 (en) Electric field controllable spin filter tunnel junction magnetoresistive memory devices and methods of making the same
JP2006339395A (ja) 抵抗変化型素子および半導体装置
WO2010084774A1 (ja) 不揮発性メモリセル、抵抗可変型不揮発性メモリ装置および不揮発性メモリセルの設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008503708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715412

Country of ref document: EP

Kind code of ref document: A1