TWI310237B - Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states - Google Patents

Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states Download PDF

Info

Publication number
TWI310237B
TWI310237B TW95139867A TW95139867A TWI310237B TW I310237 B TWI310237 B TW I310237B TW 95139867 A TW95139867 A TW 95139867A TW 95139867 A TW95139867 A TW 95139867A TW I310237 B TWI310237 B TW I310237B
Authority
TW
Taiwan
Prior art keywords
random access
access memory
resistive random
logic state
state
Prior art date
Application number
TW95139867A
Other languages
Chinese (zh)
Other versions
TW200820426A (en
Inventor
Chia Hua Ho
Erh Kun Lai
Kuang Yeu Hsieh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95139867A priority Critical patent/TWI310237B/en
Publication of TW200820426A publication Critical patent/TW200820426A/en
Application granted granted Critical
Publication of TWI310237B publication Critical patent/TWI310237B/en

Links

Description

13102371310237

- 三蓮編號:TW2958PA 、 九、發明說明·· 【發明所屬之技術領域】- Sanlian No.: TW2958PA, IX, invention description··Technical field to which the invention belongs

本發明是有關於一種基於可程式電阻式記憶體材料 的尚密度記憶體農置,包含金屬氧化基材及其他 及此襞置製造之方法。 U 【先前技術】 "讀/寫光碟廣泛使用相變化為主之記憶體材料。而此 攀材料至少含有兩種固體相,舉例來說包含一般之非晶質固 體相及一般之晶質固定相。雷射脈衝可使讀/寫光碟之在 相位的切換以及在相位改變之後讀取之光學特性的材料。 相變化基本記憶體材料,如硫屬化物基本素材及相似 的材料,可藉由應用適合電流位準施加於積體電路使得相 位改變。一般非晶質狀態較一般晶質固定相具有高電阻係 數的特徵,而可立即地去感應及指出資料。因這些特性而 產生了使用可程式電阻的材料來形成非揮發性電路的興 趣,可以隨機存取來讀取與寫入。 一般是以一低電流操作而使非晶質狀態改變至晶質 狀恶。從晶質改變至非晶質,在此處被稱為重置(reset) ’ 一般是以一南電流來操作,其包含了一瞬時高密度電流脈 衝來炼化或打斷晶質結構,而其相變化材料經冷卻相變化 ;序可快速冷卻’且至少有-部份相變化結構以#晶質狀 t穩疋。想要將引起相變化材料從晶質狀態變成非晶質狀 態的重置電流強度減至最低。減少重置動作所需的重置電SUMMARY OF THE INVENTION The present invention is directed to a mass-density memory farm based on a programmable resistive memory material, comprising a metal oxide substrate and other methods of making the device. U [Prior Art] "Read/write optical discs widely use phase change-based memory materials. The climbing material contains at least two solid phases, for example, a general amorphous solid phase and a generally crystalline stationary phase. The laser pulse enables the reading/writing of the optical disc to be phase-switched and the material of the optical characteristic read after the phase change. Phase change basic memory materials, such as chalcogenide base materials and similar materials, can be phase changed by applying a suitable current level to the integrated circuit. Generally, the amorphous state has a higher resistance coefficient than the general crystalline stationary phase, and can immediately sense and indicate the data. Because of these characteristics, the use of materials that use programmable resistors to form non-volatile circuits has the potential to be read and written with random access. Generally, the amorphous state is changed to a crystalline form by a low current operation. Changing from crystalline to amorphous, referred to herein as reset ' is generally operated with a south current that contains an instantaneous high-density current pulse to refine or break the crystalline structure, and The phase change material is changed by the cooling phase; the sequence can be rapidly cooled' and at least some of the phase change structures are stabilized by #晶晶状. It is desirable to minimize the reset current intensity that causes the phase change material to change from a crystalline state to an amorphous state. Reduce the reset power required for the reset action

131哪 :TW2958PA 流強度可藉由減少相變化材料及電極之尺寸以及相變化 材料與電極之間的接觸面積來達成,藉由相變化材料而以 小絕對電流值達至更高的電流密度。 一種發展方向係在積體電路裡形成小孔洞,以及使用 小量的可程式電阻式材料來填補此小孔洞。而指出朝向小 孔洞發展的專利包含:Ovshinsky於1997年11月11日發 表之美國專利案號No. 5, 687, 112”具有尖細接觸點之多 位元單記憶胞記憶元件(Multibit Single Cell Memory • Element Having Tapered Contact) ; Zahorik 等人於 1998 年8月4日發表之美國專利案號No. 5,789,277”硫化合物 記憶體裝置製造之方法(Method of Making Chalogenide [sic] Memory Device” ; Doan 等人於 2000 年 11 月 21 日 發表之美國專利案號No. 6, 150, 253”可控制之雙向相變 化半導電記憶體裝置及製造方法(Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same)” ° •製造此種裝置所產生的問題例如裝置需要非常小的 尺寸,以及要符合大尺寸記憶體裝置嚴謹的規格需要改變 製程。如同追尋更大的記體容量,需要相變化記憶體的每 一記憶層儲存多位元。 【發明内容】 一雙穩態隨機存取記憶體描述中包含多個可程式電 阻式隨機存取記憶胞,此處每一個可程式電阻式隨機存取 7131: The flow intensity of TW2958PA can be achieved by reducing the size of the phase change material and the electrode and the contact area between the phase change material and the electrode, and achieving a higher current density with a small absolute current value by the phase change material. One direction of development is to create small holes in the integrated circuit and to fill the small holes with a small amount of programmable resistive material. U.S. Patent No. 5,687,112, issued on Nov. 11, 1997, to U.S. Patent No. 5,687,112, the disclosure of which is incorporated herein by reference. Memory 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the US Patent No. 6, 150, 253, issued on November 21, 2000. Same)” ° • Problems caused by the manufacture of such devices, such as the need for very small sizes of devices, and the need to change the process to meet the stringent specifications of large-size memory devices. As with the pursuit of larger recording capacities, phase-change memory is required. Each memory layer stores a plurality of bits. [Summary of the Invention] A bistable random access memory description Comprising a plurality of programmable resistive random access memory cells, where each programmable resistive random access 7

阮:TW2958PA 記憶體胞具有多層的記憶層堆疊。每一記憶層堆疊包含一 導電層覆於一可程式電阻式隨機存取記憶層。根據本發明 之第一方面,一第一記憶層堆疊覆蓋一第二記憶層堆疊, 以及第二記憶層堆疊覆蓋一第三記憶層堆疊。此第一記憶 層堆疊包含一第一導電層覆蓋於一第一可程式電阻式隨 機記憶層。此第二記憶層堆疊包含一第二導電層覆蓋於第 二可程式電阻式隨機存取記憶層。第三記憶層堆疊包含一 第一導電層覆蓋於一第二可程式電阻式隨機記憶層。此第 三可程式電阻式隨機存取記憶層具有一記憶面積且大於 第二可程式隨機存取憶體層的記憶面積。此第二可程式隨 機存取記憶層具有一記憶面積且大於此第一可程式隨機 存取記憶層的記憶面積。 每一可程式電阻式隨機存取記憶層具有多階的記憶 狀態,例如:第一位元用以儲存第一狀態及第二位元用以 儲存第二狀態。第一記憶堆疊與第二記憶堆疊串連,且第 一§己憶堆疊與第三記憶堆疊串聯。記憶胞具有三個記憶堆 疊而提供八個邏輯狀態(2k),此處的k代表記憶層或記憶 堆疊的數量。舉例來說,記億堆疊的數量可減少為每一記 憶胞裡兩個記憶堆疊,或增加為每一記憶胞裡為四個記憶 體堆疊,端看記憶體的設計。 做為第一可辞式電阻式機記憶層、第二可程式電阻式 隨機兄憶層或第三可程式電阻式隨機記憶層的適當材 料,可包括但不限定於金屬氧化物、巨磁阻材料(c〇l〇ssal magnet〇resistance,CMR)、三元氧化物(three_element阮: TW2958PA memory cells have multiple layers of memory layers. Each memory layer stack includes a conductive layer overlying a programmable resistive random access memory layer. According to a first aspect of the invention, a first memory layer stack covers a second memory layer stack, and a second memory layer stack covers a third memory layer stack. The first memory layer stack includes a first conductive layer overlying a first programmable resistive memory layer. The second memory layer stack includes a second conductive layer overlying the second programmable resistive random access memory layer. The third memory layer stack includes a first conductive layer overlying a second programmable resistive random memory layer. The third programmable resistive random access memory layer has a memory area and is larger than a memory area of the second programmable random access memory layer. The second programmable random access memory layer has a memory area and is larger than the memory area of the first programmable random access memory layer. Each programmable resistive random access memory layer has a multi-level memory state, for example, the first bit is used to store the first state and the second bit is used to store the second state. The first memory stack is connected in series with the second memory stack, and the first sigma stack is in series with the third memory stack. The memory cell has three memory stacks and provides eight logic states (2k), where k represents the number of memory layers or memory stacks. For example, the number of billions of stacks can be reduced to two memory stacks per cell, or to four memory stacks per cell, looking at the memory design. Suitable materials for the first reversible resistive memory layer, the second programmable resistive random memory layer or the third programmable resistive random memory layer may include, but are not limited to, metal oxides, giant magnetoresistance Material (c〇l〇ssal magnet〇resistance, CMR), ternary oxide (three_element

:TW2958PA 、0Xlde)、相變化材料以及高分子材料。電阻式隨機存 憶體(RRAM)用於第一可程式電阻式隨機存取記憶層斑楚 二可程式電阻式隨機存取記憶層的材料可相同或不 阻式隨機存取記憶體⑽AM)用於第三可程式電阻 存取記憶層與第-可程式電阻式賴存取記憶層的材料 可相同或不同。電阻式隨機存取記龍(_)用於第 程式電阻式隨機存取記憶層與第二可程式電阻式隨機存 取記憶層的材料可相同或不同。而在第一、第二及第三可 •程式電阻式隨機存取記憶體之間的厚度例如為大約i奈求 (nm)至 200 奈米(nm)。 不一、 廣泛來說,記憶體裝置包含一第一導電構件覆蓋於一 第一可程式電阻式隨機存取記憶體構件,第一可程式電阻 式隨機存取圯憶體構件具有一表示第一電阻值之面積,第 一導電構件及第一可程式電阻式隨機存取記憶體具有側 邊,以及一第二導電構件覆蓋於一第二可程式電阻式隨機 存取§己憶體構件’第一可程式電阻式隨機存取記憶體構件 瞻覆蓋於第二導電構件’第一可程式電阻式隨機存取記憶體 構件與第二可程式電阻式隨機存取記憶體構件串聯,且第 二可程式電阻式隨機存取記憶體具一表示一第二電阻值 之面積’而第二可程式隨機存取記憶體構件的面積大於第 一可程式隨機存取記憶體構件的面積。 在此描述製造一雙穩態電阻式隨機存取記憶體且具 有多重§己憶層堆疊之方法。一第一記憶層堆疊,包含一第 一導電層覆蓋於一第一可程式電阻式隨機存取記憶體材 9: TW2958PA, 0Xlde), phase change materials and polymer materials. Resistive random memory (RRAM) for the first programmable resistive random access memory layer, the material of the programmable resistive random access memory layer, the same or non-resistive random access memory (10) AM) The material of the third programmable resistance access memory layer and the first programmable resistance access memory layer may be the same or different. The resistive random access memory (_) may be the same or different material used for the first resistive random access memory layer and the second programmable resistive random access memory layer. The thickness between the first, second and third programmable resistive random access memories is, for example, about n (nm) to 200 nm (nm). In a broad sense, the memory device includes a first conductive member covering a first programmable resistive random access memory device, and the first programmable resistive random access memory member has a first representation The area of the resistance value, the first conductive member and the first programmable resistive random access memory have sides, and a second conductive member covers the second programmable resistive random access § memory element A programmable resistive random access memory device is disposed over the second conductive member 'the first programmable resistive random access memory device is connected in series with the second programmable resistive random access memory device, and the second The program resistive random access memory has an area representing a second resistance value and the area of the second programmable random access memory component is greater than the area of the first programmable random access memory component. A method of fabricating a bistable resistive random access memory and having multiple § recall layers is described herein. a first memory layer stack including a first conductive layer overlying a first programmable resistive random access memory device 9

13卿 :TW2958PA 料上,以及第一 §己憶屬堆疊包含了一第二導電層覆蓋於一 第一可程式電阻式卩迎機存取記憶層,而第一記憶層堆疊係 堆積於一第一#己憶層堆豎上。一遮罩(mask)以乾式或濕式 蝕刻化學設置於部分第一導電層上。此第一導電層及第一 可程式電阻式隨機存取記憶層的左侧及右侧蝕刻至第二 導電層的頂面,由此產生一第一導電構件以及一第一可程 式電阻式隨機存取記憶體構件。一介電侧壁子設置於第一 導電構件及第一可程式電阻式隨機存取記憶體構件的左 右兩侧。 此介電側壁子的厚度影響第二導電構件及第二可程 式電阻式隨機存取記憶體構件兩者的面積尺寸。舉例來 說’如I设遮罩的臨界尺寸(critical dimension,⑶)大 約為0. 15微米(#ra),而介電側壁子的厚度大約可選擇為 1不米(nm),即代表第二可程式電阻式隨機存取記憶體才籌 件的面積大約為第一可程式電阻式隨機存取記憶體構件 的面積二倍。此面積與電阻值成反比,而以一數學關係式 和P 表示,此處』代表可程式電阻式隨機存取記憶 體構件的長度,以及4代表可程式電阻式隨機存取記憶體 構件的面積。在這個例子中,第二可程式電阻式隨機存取 *己憶體構件的電阻大約為第一可程式電阻式隨機存取記 憶體構件的電阻的二分之一。界於第一芡第二可程式電阻 式隨機存取記憶體構件間理想的電阻差值是取決於此可 程式電阻式隨機存取記憶體構件的SE:T/RESET電阻窗 (resistance window)(其以一狀態至另一狀態的電阻比值13 Qing: TW2958PA material, and the first § Reliance stack includes a second conductive layer covering a first programmable resistive access memory layer, and the first memory layer stack is stacked on the first A #回忆层 heap vertical. A mask is disposed on a portion of the first conductive layer in a dry or wet etch chemistry. The first conductive layer and the left and right sides of the first programmable resistive random access memory layer are etched to the top surface of the second conductive layer, thereby generating a first conductive member and a first programmable resistive random Access memory components. A dielectric sidewall is disposed on the left and right sides of the first conductive member and the first programmable resistive random access memory device. The thickness of the dielectric sidewalls affects the area dimensions of both the second conductive member and the second programmable resistive random access memory device. For example, 'the critical dimension (I) of the mask is about 0.15 micrometers (#ra), and the thickness of the dielectric sidewalls can be about 1 millimeter (nm), which means The area of the second programmable resistive random access memory is approximately twice the area of the first programmable resistive random access memory component. This area is inversely proportional to the resistance value, expressed as a mathematical relationship and P, where 』 represents the length of the programmable resistive random access memory component, and 4 represents the area of the programmable resistive random access memory component. . In this example, the resistance of the second programmable resistive random access *resonant member is approximately one-half the resistance of the first programmable resistive random access memory member. The ideal resistance difference between the first and second programmable resistive random access memory components is determined by the SE:T/RESET resistance window of the programmable resistive random access memory component ( Its resistance ratio from one state to another

I31〇m :TW2958PA 疋義)。將第二導電層及第二可程式電阻式隨機存取記 、層的左右兩侧蝕刻,產生一第二導電構件以及一第二可 程式電阻式隨機存取記憶體構件。對第二導電層及第二可 =式電阻式隨機存取記憶層的左右兩侧蝕刻至下一層或 牙過下一層為止。而一接觸孔(via plug)則置於下一 下方。 根據本發明之第二方面,揭露一用以操作串聯排列的 二個記憶層堆疊之電阻式隨機存取記憶體。此第一記 堆疊包含一第一導電層覆蓋於一第一可程式電阻式^機 存取記憶層上,以及第二記憶層堆疊包含一第二導電層覆 蓋於第二可程式電阻式隨機存取記憶層上。一第一位元線 電壓Vm與第一導電層的頂面連接以及一第二位元線電壓 與第二可程式電阻式隨機存取記憶體的底面連接。一可 程式電阻式隨機存取電壓v1RRAM具有一第一端與第一導電 構件連接以及一第二端與第一可程式電阻式隨機存取記 憶層構件連接。第二可程式電阻式隨機存取電壓V2RRAM一般 以一第一端與第一可程式電阻式隨機存取記憶體構件連 接以及一第一端與第二可程式電阻式隨機存取記憶體構 件連接。 有兩個重要的變數影響雙穩態可程式電阻式隨機存 取記憶靜如何從一邏輯狀態變化至另一邏輯狀態。第一個 變數以符號/3來代表,用以表示所選擇的記憶體材料特 性。第二個變數以符號來代表,用以表示介電侧壁子的 厚度(或寬度)。此變數/可選擇或調整來與電阻的改變符 11I31〇m : TW2958PA 疋 meaning). The second conductive layer and the second programmable resistive random access memory and the left and right sides of the layer are etched to form a second conductive member and a second programmable resistive random access memory device. The left and right sides of the second conductive layer and the second resistive random access memory layer are etched to the next layer or the tooth passes the next layer. A via plug is placed next to the next. According to a second aspect of the present invention, a resistive random access memory for operating a stack of two memory layers arranged in series is disclosed. The first stack includes a first conductive layer overlying a first programmable resistive memory layer, and the second memory layer stack includes a second conductive layer overlying the second programmable resistive memory Take the memory layer. A first bit line voltage Vm is coupled to the top surface of the first conductive layer and a second bit line voltage is coupled to the bottom surface of the second programmable resistive random access memory. A programmable resistive random access voltage v1RRAM has a first end coupled to the first conductive member and a second end coupled to the first programmable resistive random access memory layer member. The second programmable resistive random access voltage V2RRAM is generally connected to the first programmable resistive random access memory component by a first end and to the first programmable second resistive random access memory component. . There are two important variables that affect how a bistable, programmable, resistive random access memory changes from one logic state to another. The first variable is represented by the symbol /3 to indicate the selected memory material characteristics. The second variable is represented by a symbol to indicate the thickness (or width) of the dielectric sidewall. This variable / can be selected or adjusted to change with the resistance 11

13102¾¾ :TW2958PA 合,而有足夠大的操作窗去執行一多重位元電阻式隨機存 取記憶體(resistive random access memory, RRAM) ° 在 一雙穩態隨機存取記憶體中每一個記憶體單元具有兩個 記憶層堆疊,雙穩態電阻式隨機存取記憶體以四個邏輯狀 態操作,邏輯狀態「00」(或邏輯狀態「0」)、邏輯狀態 「01」(或邏輯狀態「1」)、邏輯狀態「10」(或邏輯狀 態「2」)以及邏輯狀態「11」(或邏輯狀態「3」)。而這 四個不同的邏輯狀態之間的關係可藉由兩個變數/1、f及 • 電阻值i?以數學來表示。邏輯狀態” 0”以數學式+ 表示。邏輯狀態” Γ以數學式表示。邏輯狀 態” 2”以數學式(1+/]/)/?表示。邏輯狀態” 3”以數學式 /7(1 */·/% 表示。 本發明的優點為藉由使用每一記憶體單元以多重記 憶層堆疊增加一雙穩態電阻式隨機存取記憶體的整體密 度。本發明也提供一三維的雙穩態隨機存取記憶體設計及 製造方案。本發明更能減少於雙穩態式電阻式隨機存取記 • 憶體的電阻改變。 本發明中的結構與方法於之後詳細敘述揭露。此處之 發明内容不意圖去定義本發明。而本發明以專利申請範圍 進行定義。為讓這些以及其他技術的實施例、特徵、方面 以及優點能更明顯易懂,下文特舉一較佳實施例,並配合 所附圖式,作詳細說明如下: 12131023⁄43⁄4 : TW2958PA combined with a large enough operating window to perform a multi-bit resistive random access memory (RRAM) ° in a bistable random access memory for each memory The unit has two memory layer stacks, and the bistable resistive random access memory operates in four logic states, logic state "00" (or logic state "0"), logic state "01" (or logic state "1" "), logic state "10" (or logic state "2") and logic state "11" (or logic state "3"). The relationship between these four different logic states can be mathematically represented by two variables /1, f, and • the resistance value i?. The logic state "0" is represented by the mathematical formula +. The logic state" is represented by a mathematical expression. The logic state "2" is represented by the mathematical formula (1+/]/)/? The logic state "3" is represented by the mathematical expression /7 (1 */·/%. The advantage is that the overall density of a bistable resistive random access memory is increased by using multiple memory layer stacks by using each memory unit. The invention also provides a three-dimensional bistable random access memory design and manufacturing scheme. The present invention is more capable of reducing the resistance change of the bistable resistive random access memory. The structure and method of the present invention are disclosed in detail later. The summary of the present invention is not intended to define the present invention. The invention is defined by the scope of the patent application. In order to make the embodiments, features, aspects and advantages of these and other techniques more apparent, the following detailed description of the preferred embodiments : 12

Α : TW2958PA 【實施方式】 描述本發明之結構實施例及方法請參照所提供之第1 至第17圖。可瞭解到具體揭露之本發明實施例並不用以 限縮範圍並且本發明也可使用其他特徵、元件、方法及以 實施例來實施。在不同實施例中相同元件共用相同標號。 第1圖為一概要圖用以說明一記憶體陣列1 〇〇,以如 此處描述之方式實施。在第1圖中所示,一共源線(c〇mm〇n source line)128、一字元線(word line)123 以及一字元 Φ 線124—般以Y軸方向平行排列。一位元線mi及142— 般以X軸方向平行排列。因此,γ_解碼器及一字元線驅動 器(word line driver)145在裡與字元線123及124耦接。 X-解碼器及一組感應放大器(sense amplifier) 146與位 元線141及142耦接。此共源線128與存取電晶體150、 151、152及153的源極端(source terminal)麵接。存取 電晶體150的閘極(gate)與字元線123耦接。存取電晶體 151的閘極與字元線124耦接。存取電晶體152的閘極與 翁子元線123耦接。存取電晶體153的閘極與字元線124耦 接。此存取電晶體150之汲極以侧壁接腳記憶胞(sidewaU Pin memory (^10135與下部電極構件132耦接,且側壁 接腳5己憶胞135具有上部電極構件134及下部電極構件 132。此上部電極構件134與仿分線丨41耦接。而共源線 128可視為由兩列記憶體元件所分享,此處所指的列是指 示意圖的Y方向。在其他的實施例中,可以二極體取代此 存取電晶體,或選擇裝置用以控制電流流量之其他結構於 13Α : TW2958PA [Embodiment] For describing the structural embodiments and methods of the present invention, please refer to the first to seventeenth drawings provided. It is to be understood that the specific embodiments of the present invention are not to be construed as limited. The same elements are shared by the same reference numerals in the different embodiments. Figure 1 is a schematic diagram illustrating a memory array 1 实施 implemented in the manner described herein. As shown in Fig. 1, a common source line (c〇mm〇n source line) 128, a word line 123, and a character Φ line 124 are generally arranged in parallel in the Y-axis direction. One element line mi and 142 are generally arranged in parallel in the X-axis direction. Thus, the y_decoder and a word line driver 145 are coupled to word lines 123 and 124. An X-decoder and a set of sense amplifiers 146 are coupled to bit lines 141 and 142. The common source line 128 is in contact with the source terminals of the access transistors 150, 151, 152, and 153. A gate of the access transistor 150 is coupled to the word line 123. The gate of the access transistor 151 is coupled to the word line 124. The gate of the access transistor 152 is coupled to the elementary line 123. The gate of the access transistor 153 is coupled to the word line 124. The drain of the access transistor 150 is coupled to the sidewall memory cell (the sidewaU pin memory is coupled to the lower electrode member 132, and the sidewall pin 5 has the upper electrode member 134 and the lower electrode member 132. The upper electrode member 134 is coupled to the analog-line 丨 41. The common source line 128 can be considered to be shared by two columns of memory elements, and the column referred to herein refers to the Y-direction of the schematic. In other embodiments, The access transistor can be replaced by a diode, or the device can be selected to control the current flow.

1310^¾ :TW2958PA 陣列中用以讀取及寫出資料。 苐2圖緣示根據本發明一較佳實施例之一電阻式隨 機存取記憶體構造的積體電路200之簡單方塊圖。此積體 電路275包含一記憶體陣列,係應用側邊主動接腳雙穩態 電阻式隨機存取記憶胞於一半導電基板。一列解碼器261 與數條字元線262耦接,且沿著記憶體陣列26〇的列排 列。一接腳解碼器263與數條位元線264耦接並延著記憶 體陣列2 6 0的接腳排列,用以讀取及程式化記憶體陣列2 6 〇 鲁内之侧邊接腳^己憶體元件資料。由一匯流排2 6 5所提供之 位址至接腳解碼器263及列解碼器261。感應放大器及資 料輸入結構2 6 6通過一資料匯排流2 6 7與接腳解碼器2 6 3 耦接。資料的提供係經由從位於積體電路275之輸入/輸 出璋或從位於積體電路2 7 5内部或外部的其他資料來源經 由資料輸入線(data-in line)271流入至位於感應放大器 及資料輸入結構266之資料輸入結構。在此實施例說明 中’其他的電路圖也包含於積體電路裡,如一般用途處理 鲁器(general-purpose processor)或特殊用途應用電路系 統(special purpose application circuitry),或藉由 薄膜雙穩態電阻式隨機存取記憶胞陣列提供功能性之系 統晶片(system-on-a chip)之模組組合。資料藉由資料 輸出線(data-out line)272提供’從位於感應放大器及資 料輸入結構266之感應放大器至積體電路275上輸入/輸 出接口,或者至其他内部的資料目的單元或外部的積體電 路 275。 141310^3⁄4 : Used to read and write data in the TW2958PA array. Figure 2 is a simplified block diagram of an integrated circuit 200 constructed of a resistive random access memory in accordance with a preferred embodiment of the present invention. The integrated circuit 275 includes a memory array using a side active pin bistable resistive random access memory cell on one of the conductive substrates. A column of decoders 261 is coupled to the plurality of word lines 262 and arranged along the columns of the memory array 26A. A pin decoder 263 is coupled to the plurality of bit lines 264 and extends along the pins of the memory array 206 to read and program the side of the memory array. Recall the body component data. The address provided by a bus 265 is provided to the pin decoder 263 and the column decoder 261. The sense amplifier and data input structure 2 6 6 is coupled to the pin decoder 2 6 3 through a data sink drain 2 6 7 . The data is supplied from the input/output port located at the integrated circuit 275 or from another data source located inside or outside the integrated circuit 275 via the data-in line 271 to the sense amplifier and the data. The data input structure of the input structure 266 is entered. In the description of this embodiment, 'other circuit diagrams are also included in the integrated circuit, such as general-purpose processor or special purpose application circuitry, or by thin film bistable. Resistive random access memory cell arrays provide a modular system-on-a chip module combination. The data is provided by a data-out line 272 'from the sense amplifier located in the sense amplifier and data input structure 266 to the input/output interface on the integrated circuit 275, or to other internal data destination units or external products. Body circuit 275. 14

13 1 ·· TW2958PA 此例中控制器利用偏壓排列狀態機(bias arrangement state machine)269控制偏壓排列供應電壓 (bis arrangement supply voltage)268,如讀取、程式 化、抹除、抹除驗證以及程式驗證電壓。此控制器可使用 習知之特殊目的邏輯電路實施。在替代實施例中,此控制 器包含一多種用途的多重處理器’其可以執行相同的積體 電路,也可執行一電腦程式去控制裝置的操作。另一實施 例中’合併特殊用途邏輯電路及多種用途的多重處理器也 φ 可利用於控制器的實施。 第3圖繪示根據本發明製造雙穩態電阻式隨機存取 記憶層之兩可程式電阻式隨機存取記憶層之沈積及微影 技術的參考步驟之簡單示意圖。此雙穩態電阻式隨機存取 記憶體300包含一第一可程式電阻式隨機存取記憶層31〇 與一第一可私式電阻式隨機存取記憶層320串連。每一個 第一可程式電阻式隨機存取記憶層31〇和第二可程式電阻 式隨機存取記憶層320提供儲存兩組資訊狀態的容量。第 • 一及第二可程式電阻式隨機存取記憶層310、320於雙穩 態電阻式隨機存取記憶體3〇〇提供總計四組邏輯狀態:第 一邏輯狀態「〇〇」(或「0」)、第二邏輯狀態「01」(或「1」)、 第三邏輯狀態「10」(或「2」)以及第四邏輯狀態「11」(或 「3」)。, 在一實施例中’第一可程式電阻式隨機存取記憶層 310與第二可程式電阻式隨機存取記憶層32〇係為相同的 材料。在另一實施例中’第一可程式電阻式隨機存取記憶 1513 1 ·· TW2958PA In this example, the controller uses a bias arrangement state machine 269 to control the bis arrangement supply voltage 268, such as read, program, erase, erase verify And the program verification voltage. This controller can be implemented using conventional special purpose logic circuits. In an alternate embodiment, the controller includes a multi-purpose multi-processor 'which can execute the same integrated circuit, and can also execute a computer program to control the operation of the device. In another embodiment, a multiprocessor that combines special-purpose logic circuits and multiple uses is also available for controller implementation. Figure 3 is a simplified diagram showing the steps of the deposition and lithography techniques for fabricating two programmable resistive random access memory layers of a bistable resistive random access memory layer in accordance with the present invention. The bistable resistive random access memory 300 includes a first programmable resistive random access memory layer 31 串 connected in series with a first private resistive random access memory layer 320. Each of the first programmable resistive random access memory layer 31 and the second programmable resistive random access memory layer 320 provides a capacity to store two sets of information states. The first and second programmable resistive random access memory layers 310, 320 provide a total of four sets of logic states in the bistable resistive random access memory 3: the first logic state "〇〇" (or " 0"), the second logic state "01" (or "1"), the third logic state "10" (or "2"), and the fourth logic state "11" (or "3"). In one embodiment, the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 32 are the same material. In another embodiment, the first programmable resistive random access memory 15

131(^2 :TW2958PA 層310與第二可程式電阻式隨機存取記憶層320則係為不 同的材料。而第一可程式電阻式隨機存取記憶層310與第 二可程式電阻式隨機存取記憶層320兩者的厚度可為相同 或者相異。而第一可程式電阻式隨機存取記憶層310或第 二可程式電阻式隨機存取記憶層320其厚度範圍例如大約 從1奈米(nm)至200奈米(nm)。 以同一材料所形成之各可程式電阻式記憶層310、320 至少包含兩個穩態電阻位準,意即電阻式隨機存取記憶體 • 材料。在後續敘述證明不同的材料對製造電阻式隨機存取 記憶體有益。 項次”雙穩態電阻式隨機存取記憶體”意指控制一 電阻位準而有下述的意義:電壓振幅、電流振幅或電極 性。相變化記憶體的狀態係藉由電壓振幅、電流振幅或脈 衝時間來進行控制。此雙穩態電阻式隨機存取記憶體300 的電極性並不會影響雙穩態電阻式隨機存取記憶體300的 程式化。 • 接下來為簡短摘要敘述四種型式電阻式記憶體材料 適合做為電阻式隨機存取記憶體。第一種適合用於實施例 的記憶體材料為巨磁阻(CMR)材料,如镨-i弓-猛氧化物 (PrxCayMn〇3)其中 x:y=0. 5:0. 5 或者是 x:0〜1 ; y:0〜l 來組 成CMR,其中氧化錳(Mn oxide)可選擇性的使用。 一種形成CMR材料的方法例如為使用物理氣相沉積 (physical vapor deposition, PVD)藏鐘或磁控錢Μ 方法 (magnetro-sputtering method),並使用氬氣(Ar)、氮氣 16131 (^2: TW2958PA layer 310 and the second programmable resistive random access memory layer 320 are different materials. The first programmable resistive random access memory layer 310 and the second programmable resistive random memory The thickness of the memory layer 320 can be the same or different, and the first programmable resistive random access memory layer 310 or the second programmable resistive random access memory layer 320 has a thickness ranging, for example, from about 1 nm. (nm) to 200 nm (nm) Each of the programmable resistive memory layers 310, 320 formed of the same material contains at least two steady-state resistance levels, that is, resistive random access memory materials. Subsequent narratives prove that different materials are beneficial for the manufacture of resistive random access memory. The term "bistable resistive random access memory" means controlling a resistance level and has the following meanings: voltage amplitude, current amplitude Or electrode. The state of the phase change memory is controlled by voltage amplitude, current amplitude or pulse time. The polarity of the bistable resistive random access memory 300 does not affect the bistable resistance type. The stylization of access memory 300. • The following is a brief summary of four types of resistive memory materials suitable for resistive random access memory. The first suitable memory material for the embodiment is giant magnetic Resistance (CMR) material, such as 镨-i bow-mass oxide (PrxCayMn〇3) where x:y=0. 5:0. 5 or x:0~1; y:0~l to form CMR, wherein Manganese oxide (Mn oxide) can be selectively used. A method of forming a CMR material is, for example, using a physical vapor deposition (PVD) trap or a magnetro-sputtering method, and using argon. Gas (Ar), nitrogen 16

擔:TW2958PA (N2)、氧氣(〇2)以及或者氦氣(He)做為來源氣體,其壓力 位於1〜100毫托爾(mTorr)之間。而其沉積溫度其範圍從 室溫至600°C ’取決於後續沉積處理的條件。一具有縱掃 比1〜5的準直儀(collimator)可以用來改善填補表現 (fill-in performance)。為了改善填補表現,直流式偏 壓由數十倍的電壓至數百倍的電壓均可使用。另一方面, 可同時結合直流偏壓及準直儀來使用。一磁場由數十倍高 斯(Gauss)到一特斯拉(Tesla=10, OOOGauss)也可應用於 • 改善磁結晶相。 一沉積後退火處理可選擇使用於真空或於氮氣或氮 氣/氧氣混合的環境中來改善CMR材料的結晶狀態。其退 火溫度位於400°C至60(TC之間,且其退火時間至少小於2 小時。 CMR材料的厚度取決於記憶胞結構的設計。例如可使 用厚度為10~200奈米(nm)的CMR做為核心材料。一釔-鋇 -銅氧化物(YBaCu〇3為一種高溫度超導體材料)缓衝層 • (buffer layer)也常使用於改善CMR材料的結晶狀態。此 YBC0係沉積於CMR材料前。且YBC0的厚度範圍為30〜200 奈米(nm)。 第二種記憶體材料型式為兩種元素的化合物,如鎳氧 化物(NixOy)、欽氧化物(TixOy)、銘ft化物(AlxOy)、鶴氧化 物(Wx〇y)、鋅氧化物(ZnxOy)、錯氧化物(ZrxOy)、銅氧化物 (Cux〇y)等’其中 x:y=〇· 5:0. 5 或是 x:0~l ; y:〇~l。一形成 方法例如為使用PVD濺鍍或磁控濺鍍方法與反應性氣體氬 17TW2958PA (N2), oxygen (〇2), and or helium (He) are used as source gases, and the pressure is between 1 and 100 milliTorr (mTorr). The deposition temperature ranges from room temperature to 600 ° C depending on the conditions of the subsequent deposition treatment. A collimator with a sweep ratio of 1 to 5 can be used to improve fill-in performance. In order to improve the filling performance, the DC bias voltage can be used from tens of times the voltage to hundreds of times. On the other hand, it can be used in combination with a DC bias and a collimator. A magnetic field from tens of times Gauss to a Tesla (10, OOOGauss) can also be applied to • Improve the magnetic crystalline phase. A post-deposition annealing treatment can be selected for use in a vacuum or in a nitrogen or nitrogen/oxygen mixed environment to improve the crystalline state of the CMR material. The annealing temperature is between 400 ° C and 60 (TC), and the annealing time is at least less than 2 hours. The thickness of the CMR material depends on the design of the memory cell structure. For example, CMR with a thickness of 10 to 200 nanometers (nm) can be used. As a core material, a buffer layer of yttrium-yttrium-copper oxide (YBaCu〇3 is a high-temperature superconductor material) • Buffer layer is also often used to improve the crystallization state of CMR materials. This YBC0 system is deposited on CMR materials. The thickness of YBC0 ranges from 30 to 200 nanometers (nm). The second type of memory material is a compound of two elements, such as nickel oxide (NixOy), tantalum oxide (TixOy), and ft compound ( AlxOy), crane oxide (Wx〇y), zinc oxide (ZnxOy), mis-oxide (ZrxOy), copper oxide (Cux〇y), etc. 'where x:y=〇·5:0. 5 or x:0~l ; y:〇~l. A forming method is, for example, using PVD sputtering or magnetron sputtering method with reactive gas argon 17

1 :TW2958PA 氣(Αι·)、氮氮(Ν2)、氧氣(〇2)以及或者氦氣(He)等,壓力 位於1〜100毫托爾(mTorr)之間,使用氧化金屬做為乾材, 如鎳氧化物(NixOy)、鈦氧化物(TixOy)、銘氧化物(AlxOy)、 鎢氧化物(WxOy)、鋅氧化物(Znx〇y)、結氧化物(Zrx〇y)、銅 氧化物(CUxOy)等。而沉積通常於室溫中形成。一具有縱橫 比1〜5的準直儀可以用來改善填補表現。為了改善填補表 現,直流偏壓由數十倍至數百倍的電壓均可使用。假如需 要,直流偏壓也可同時與準直儀同時使用。 • 一沉積後退火處理可選擇使用於真空或於氮氣或氮 氣/氧氣混合的環境中來改善金屬氧化物的氧氣分佈。其 退火溫度位於400°C至600°C之間,其退火時間小於2小 時。 一替代性形成方法可使用PVD濺鍍或磁控濺鍍方法 與反應性氣體氬/氧(Ar/〇2)、氬/氮/氧(Ar/N2/〇2)、純氧 (〇2)、氦/氧(He/〇2)、氦/氮/氧(He/N2/〇2)等氣體,其壓力 為1〜100毫托爾(mTorr),使用金屬岸巴材如鎳(Ni)、鈦 • (Ti)、鋁(A1)、鎢(W)、鋅(Zn)、锆(Zr)、銅(Οι)等。其 沉積通常於室溫執行。一具有縱橫比1〜5的準直儀可以用 來改善填補表現。為了改善填補表現,直流偏壓由數十倍 至數百倍的電壓均可使用。假如需要,直流偏壓也可同時 與準直儀同時使用。 一沉積後退火處理可選擇使用於真空或於氮氣或氮 氣/氧氣混合的環境中來改善金屬氧化物的氧氣分佈。其 退火溫度位於400°C至600°C之間,其退火時間小於2小 181 : TW2958PA gas (Αι·), nitrogen nitrogen (Ν2), oxygen (〇2), or helium (He), etc., pressure between 1 and 100 millitorr (mTorr), using oxidized metal as dry material , such as nickel oxide (NixOy), titanium oxide (TixOy), oxide (AlxOy), tungsten oxide (WxOy), zinc oxide (Znx〇y), oxide (Zrx〇y), copper oxidation (CUxOy) and so on. The deposition is usually formed at room temperature. A collimator with an aspect ratio of 1 to 5 can be used to improve the filling performance. In order to improve the filling performance, a DC bias voltage of tens to hundreds of times can be used. The DC bias can also be used simultaneously with the collimator if required. • A post-deposition annealing treatment can be used to improve the oxygen distribution of the metal oxide in a vacuum or in a nitrogen or nitrogen/oxygen mixture. The annealing temperature is between 400 ° C and 600 ° C and the annealing time is less than 2 hours. An alternative formation method can use PVD sputtering or magnetron sputtering methods with reactive gases argon/oxygen (Ar/〇2), argon/nitrogen/oxygen (Ar/N2/〇2), pure oxygen (〇2) Gases such as helium/oxygen (He/〇2), helium/nitrogen/oxygen (He/N2/〇2), and a pressure of 1 to 100 mTorr (mTorr), using metal shore materials such as nickel (Ni) Titanium (Ti), aluminum (A1), tungsten (W), zinc (Zn), zirconium (Zr), copper (Οι), and the like. Its deposition is usually performed at room temperature. A collimator with an aspect ratio of 1 to 5 can be used to improve fill performance. In order to improve the filling performance, a DC bias voltage of tens to hundreds of times can be used. The DC bias can also be used simultaneously with the collimator if required. A post-deposition annealing treatment can be selected to be used in a vacuum or in a nitrogen or nitrogen/oxygen mixed environment to improve the oxygen distribution of the metal oxide. The annealing temperature is between 400 ° C and 600 ° C, and the annealing time is less than 2 small 18

丄 J 丄 ·- TW2958PA 時。 另一個形成方法為藉由高溫度氧化系統進行氧化,如 炫爐或快速熱火處理(rapid thermal pulse, RTP)系統。 其溫度為200〜70(TC以及純氧(〇2)及氮/氧(仏/〇2)混合氣 體其壓力為數毫托爾(mTorr)至1大氣壓(atm)。而時間範 圍為數分鐘至數小時。另一氧化方法為電漿氧化。一射頻 或一直流來源電漿為以純氧(〇2)、氬/氧(Ar/〇2)混合氣體 或氬/氮/氧(Ar/Ch/O2)混合氣體於壓力ι~ι〇〇毫托爾 φ (mT〇rr)用於氧化金屬表面,金屬例如為錄(Ni)、鈦(τι)、 銘(A1)、鎢(W)、鋅(Zn)、結(Zr)、銅(Cu)等。其氧化時 間從數秒至數分鐘。其氧化溫度範圍由室溫至3〇〇nc其, 視電漿氧化的程度決定。 第三種記憶體型式材料為一聚合材料,如氰基對目昆二 曱烷錯合物(tetracyquinodimethane,TCNQ)摻雜銅 (Cu)、碳60(α。)、銀(Ag)等或苯基C61 丁酸甲脂(phenyl C61-butyric acid methyl ester,PCBM)-氰基對醌二曱烧 _ 錯合物(TCNQ)混合聚合物。形成方法可藉由熱蒸艘 (thermal evaportation)、電子束蒸鍍(e-beam evaportation)或分子束磊晶成長(ra〇iecuiar beam epitaxy, MBE)系統等進行蒸鍍。固體狀態的TCNQ與摻雜 粒狀物於一早横裡共蒸(co-evap〇rated)。固體狀態的 TCNQ與粒狀物摻雜放入一鶴舟(w-b〇at)或一钽舟 (Ta-boat)或一陶舟。一高電流或電子束應用於熔解來源 材料以便材料混合及沉積於晶圓上。沒有反應性的化學物 19丄 J 丄 ·- TW2958PA. Another method of formation is oxidation by a high temperature oxidation system, such as a bright furnace or a rapid thermal pulse (RTP) system. The temperature is 200~70 (TC and pure oxygen (〇2) and nitrogen/oxygen (仏/〇2) mixed gas, the pressure is several millitorr (mTorr) to 1 atmosphere (atm), and the time range is several minutes to several Another oxidation method is plasma oxidation. A radio frequency or DC source plasma is pure oxygen (〇2), argon/oxygen (Ar/〇2) mixed gas or argon/nitrogen/oxygen (Ar/Ch/O2). The mixed gas is used to oxidize the metal surface at a pressure of ι~ι〇〇mTorr φ (mT〇rr), such as Ni (Ni), Ti (τι), Ming (A1), Tungsten (W), Zinc ( Zn), knot (Zr), copper (Cu), etc. Its oxidation time ranges from a few seconds to several minutes. Its oxidation temperature ranges from room temperature to 3〇〇nc, depending on the degree of plasma oxidation. The type of material is a polymeric material, such as tetracyquinodimethane (TCNQ) doped copper (Cu), carbon 60 (α.), silver (Ag), etc. or phenyl C61 butyric acid Phenyl C61-butyric acid methyl ester (PCBM)-cyano-p-bifluorene-compound (TCNQ) mixed polymer. The formation method can be by thermal evaporation, electron beam Electroplating (e-beam evaportation) or molecular beam epitaxy (MBE) system is performed. The solid state TCNQ and the doped granules are co-evaporated in the morning (co-evap〇rated). The solid state of TCNQ and the granular material are doped into a crane boat (wb〇at) or a boat (Ta-boat) or a pottery boat. A high current or electron beam is applied to the melting source material for material mixing. And deposited on the wafer. Unreactive chemicals 19

131 : TW2958PA 質及氣體。而沉積則是於壓力10-4〜10j托爾(T〇rd進行。 晶圓的溫度範圍由室溫至2〇〇。〇。 一沉積後退火處理可選擇使用於真空或於氮氣(NO 環3兄中來改善聚合物材料的組成分佈。其退火溫度位於室 溫至300〇C,其退火時間小於1小時。 另一技術用以形成一聚合物為主的記憶體材料為使 用摻雜TCNQ的溶液以小於i〇〇〇rpm的轉速旋轉塗佈。在 旋轉塗佈後,此晶圓會擺置一段時間直至形成固體狀態 ® (一般在室溫或低於200°c中進行)。此擺置時間範圍從數 分鐘至數天’視其溫度以及形成狀態。 第四種型式為硫化物(chalcogenide)材料,如鍺—録_ 碲(GexSbyTez)其中 x:y:z=2:2:5 或以 x:0~5、y:〇〜5、z:0~10 所組成。GeSbTe可以摻雜氮(N-)、矽(Si-)、銻(Sb_)或選 擇性的摻雜其他的元素。 一形成硫化物材料之方法例如可使用PVD賤鑛或磁 控濺鍍方法與來源氣體氬(Ar)、氮(仏)及/或氦(He)等氣 • 體,於壓力為1〜1〇〇毫托爾(mTorr)。沉積通常於室溫下 形成。一具有縱橫比1〜5的準直儀可以用來改善填補表 現。為了改善填補表現’直流偏壓由數十倍至數百倍的電 壓均可使用。假如需要,直流偏壓也可同時與準直儀同時 使用。 . 一沉積後退火處理可選擇使用於真空或於氮氣的環 境中來改善硫化物的晶體狀態。其退火溫度一般位於1〇〇 C至400 C之間,其退火時間小於30分鐘。該硫化材料的 20131 : TW2958PA quality and gas. The deposition is carried out at a pressure of 10-4 to 10j (T〇rd. The temperature of the wafer ranges from room temperature to 2 〇〇. 〇. A post-deposition annealing treatment can be used for vacuum or nitrogen (NO ring) 3 brothers to improve the composition of the polymer material. The annealing temperature is from room temperature to 300 ° C, the annealing time is less than 1 hour. Another technique used to form a polymer-based memory material is doped TCNQ The solution is spin coated at a speed less than i rpm. After spin coating, the wafer is placed for a period of time until a solid state is formed (typically at room temperature or below 200 ° C). The placement time ranges from a few minutes to several days' depending on its temperature and formation state. The fourth type is a chalcogenide material such as GexSbyTez where x:y:z=2:2: 5 or consist of x:0~5, y:〇~5, z:0~10. GeSbTe can be doped with nitrogen (N-), yttrium (Si-), ytterbium (Sb_) or selective doping other The method of forming a sulfide material can be, for example, PVD tantalum or magnetron sputtering method and source gas argon (Ar), nitrogen (仏). And / or 氦 (He) gas body, the pressure is 1~1 〇〇 millitor (mTorr). The deposition is usually formed at room temperature. A collimator with an aspect ratio of 1~5 can be used to improve Filling performance. In order to improve the filling performance, the DC bias voltage can be used from tens to hundreds of times. If necessary, the DC bias can also be used simultaneously with the collimator. A post-deposition annealing treatment can be used. The crystal state of the sulfide is improved in a vacuum or in a nitrogen atmosphere. The annealing temperature is generally between 1 〇〇C and 400 C, and the annealing time is less than 30 minutes.

131(¾¾ :TW2958PA 厚度高於8奈米(nm)而可具有一相變化特性以使材料展現 出兩種穩定的電阻狀態。 實施例中於雙穩態電阻式隨機存取記憶體300之記 憶胞可能包括相變化為主之記憶體材料,包含硫化物為主 之材料以及其他材料,做為第一可程式電阻式隨機存取記 憶層310以及第二可程式電阻式隨機存取記憶層320。硫 族元素包含週期表的第六族以及任何有這四種元素氧 (Oxygen)、硫(Sulfer)、硒(Selenium)以及碲 # (Tellurium)。硫化物包含具有更趨正電性 (electropositive element)或自由基(radical)的硫屬元 素化合物。硫屬合金包含硫屬化合物及如過渡金屬等其他 材料。硫屬合金通常包含一或多個元素從週期表元素的第 六欄如鍺(germanium)及錫(Tin)。通常硫屬合金包含包含 銻(antimony)、鎵(galiium)、銦(indium)及銀(sliver) 中的一個或多個之組合。許多相變化基本記憶體材料已敘 述於科技出版品内,包含合金:鎵/銻(Ga/Sb)、銦/銻 • (In/Sb)、銦/硒(In/Se)、銻/碲(Sb/Te)、鍺/碲(Ge/Te)、 鍺/銻/碲(Ge/Sb/Te)、銦/銻/碲(in/Sb/Te)、鎵/硒/碲 (Ga/Se/Te)、錫 / 銻 / 碲(Sn/Sb/Te)、銦 / 銻 / 碲 (In/Sb/Ge)、銀/銦/銻/碲(Ag/In/Sb/Te)、鍺/錫/銻/碲 (Ge/Sn/Sb/Te)、鍺/銻/硒/碲(Ge/Sb/Se/Te)及碲/鍺/銻/ 硫(Te/Ge/Sb/S)。於鍺/銻/碲(Ge/Sb/Te)合金家族裡,可 使用的合金組成範圍很大。而其組成可以碲_鍺-銻化合物 (TeaGebSbm-wbO做為特徵。一研究員曾描述最有用的合金 21131 (3⁄43⁄4: TW2958PA thickness is higher than 8 nanometers (nm) and may have a phase change characteristic to cause the material to exhibit two stable resistance states. In the embodiment, the memory of the bistable resistive random access memory 300 The cell may include a phase change-based memory material, a sulfide-based material, and other materials, as the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320. The chalcogen element contains the sixth group of the periodic table and any of the four elements oxygen (Oxygen), sulfur (Sulfer), selenium (Selenium), and 碲# (Tellurium). The sulfide contains more positive electrical properties (electropositive) Element) or a radical chalcogen compound. Chalcogenide alloys contain chalcogenides and other materials such as transition metals. Chalcogenide alloys usually contain one or more elements from the sixth column of the periodic table elements such as ruthenium ( Germanium) and tin (Tin). Usually the chalcogenide alloy comprises a combination of one or more of anthony, galli, indium and sliver. Body materials have been described in scientific publications, including alloys: gallium/germanium (Ga/Sb), indium/bismuth (In/Sb), indium/selenium (In/Se), bismuth/bismuth (Sb/Te),锗/碲 (Ge/Te), 锗/锑/碲 (Ge/Sb/Te), indium/锑/碲 (in/Sb/Te), gallium/selenium/tellurium (Ga/Se/Te), tin/锑 / 碲 (Sn / Sb / Te), indium / 锑 / 碲 (In / Sb / Ge), silver / indium / 锑 / 碲 (Ag / In / Sb / Te), 锗 / tin / 锑 / 碲 (Ge /Sn/Sb/Te), 锗/锑/Selenium/碲 (Ge/Sb/Se/Te) and 碲/锗/锑/Sulphur (Te/Ge/Sb/S). 锗/锑/碲 (Ge In the /Sb/Te) alloy family, the alloys that can be used have a wide range of compositions, and their composition can be characterized by the 碲_锗-锑 compound (TeaGebSbm-wbO. A researcher has described the most useful alloys 21

• 13 1 OJH : TW2958PA 其沉積材料裡的碲(Te)平均濃度最好是少於7〇%,一般為 低於60%’ 一般範圍最低從23%至58%Te,以及較佳地大約 為48%~58%Te。鍺(Ge)的濃度大約超過5%以及平均在材料 中從最低的大約從8%至平均30%的範圍,一般低於50%。 在此化合物中剩餘主要組成元素為銻(Sb)。這些百分比為 原子百分比’其組成元素原子的總量為1〇〇%。 (Ovshinsky” 112patent,cols 10-11·)。另一研究者評 估之特殊合金包含碲-銻-鎵化合物(Ge2Sb2Te5、GeSb2Te4以 0 及 GeSb4Te? )(Noboru Yamada,” 以鎵-銻-碲(Ge-Sb-Te) 做為高速率資料記錄的相變化光碟的可能性” ,SPIE ν·3109,pp. 28-37(1997))。更廣泛性的來說,一過渡金 屬如鉻(chromium, Cr)、鐵(iron, Fe)、鎳(nickel, Ni)、 鈮(niobium,Nb)、鈀(palladium, Pd)、鉑(platinum, Pt) 以及其混合物或其合金也可以與鍺/銻/碲(Ge/Sb/Te)相 互合併來形成一相變化合金,以具有可程式電阻的特性。 由 Ovshinsky’ 112 patent at columns 11-13 所提供之 • 記憶體材料的特殊例子也可能有用,此處的例子包含在參 考資料内。 相變化合金可切換於第一結構狀態及第二結構狀態 之間,第一結構狀態是材料位於一般非晶質固體相以及第 二結.構狀態是材料位於一般晶質固體相,也就是記憶胞的 活動通道區域内的局部秩序(l〇cal order)。此些合金至 少為雙穩態。非晶質是指相對來說較無秩序的結構,較單 一晶體較無致序,比起結晶態具有具有可偵測特性如較高 22• 13 1 OJH : TW2958PA The average concentration of cerium (Te) in the deposited material is preferably less than 7〇%, generally less than 60%' in the general range, from 23% to 58% Te, and preferably about 48%~58% Te. The concentration of germanium (Ge) is greater than about 5% and averages from about 8% to an average of 30% in the material, typically less than 50%. The main constituent element remaining in this compound is bismuth (Sb). These percentages are atomic percentages and the total amount of constituent element atoms is 1%. (Ovshinsky) 112patent, cols 10-11·). The special alloy evaluated by another investigator contains yttrium-tellurium-gallium compounds (Ge2Sb2Te5, GeSb2Te4 with 0 and GeSb4Te?) (Noboru Yamada," with gallium-germanium-tellurium (Ge) -Sb-Te) The possibility of phase-change optical discs for high-rate data recording, SPIE ν·3109, pp. 28-37 (1997). More broadly, a transition metal such as chromium (chromium, Cr), iron (iron), nickel (nickel, Ni), niobium (Nb), palladium (Pd), platinum (platinum, Pt), and mixtures thereof or alloys thereof may also be combined with 锗/锑/碲 (Ge/Sb/Te) are combined to form a phase change alloy to have programmable resistance characteristics. Special examples of memory materials may also be useful by Ovshinsky' 112 patent at columns 11-13. Examples are included in the reference. The phase change alloy can be switched between a first structural state in which the material is located in a generally amorphous solid phase and a second structural state in which the material is located. Generally crystalline solid phase, which is the active channel region of the memory cell Partial order (l〇cal order). These alloys are at least bistable. Amorphous refers to a relatively disorderly structure, which is less ordered than a single crystal and has detectable properties compared to a crystalline state. Such as higher 22

Ι31· ^ : TW2958PA •的電阻係數。結晶態是指其相對來說其較為有序的结構 (較非晶質結構有致序),其具有可偵測特性例如其電卩I係 數較非晶質相低。一般來說,相變化材料可於局部秩序的 完全的非晶質及晶質狀態的範圍間的可偵測狀態中相互 電切換。其他材料特性也會被相位在非晶質與晶質變化時 影響’包含原子序、自由電子密度以及活化能。材料可以 切換為不同的固體相,或是兩個或更多之固體混合相,以 提供一個介於完全非晶質及完全晶質狀態的灰階。在材料 • 裡的電子特性會對應產生改變。 相變化合金藉由電子脈衝的應用可從一相位改變至 另一相位。而可觀察出一較短、較高振幅的脈衝傾向於改 變相變化材料至一般非晶質狀態。一較長、較低的振幅的 脈衝傾向於改變相變化材料至一般晶質狀態。一較短、較 高振幅的脈衝的能量夠高而使晶體鍵結被打斷,也因為脈 衝夠短而可避免原子重新排列為晶體狀態。不必經由過度 實驗即可決定適用於特殊相變化合金的適當脈衝波形。在 • 後續的章節中所揭露的相變化材料是指鍺-銻-碲(GST), 而且可以了解的是其他的相變化材料也可以被使用。在此 所描述對完成相變化隨機存取記憶體(phase chage random access nieniory,PCRAM)有幫助的材料為錯-録-蹄 化合物(Ge2Sb2Te5)。 其他的可程式電阻式記憶體材料也可使用於本發明 的其他實施例,包含鍺-錄-碲(GST)摻雜氮氣(N2)、錯-綈 化合物(GexSby)、或其他材料使用不同晶體相的變化來決 23Ι31· ^ : TW2958PA • Resistivity. The crystalline state refers to its relatively ordered structure (ordered compared to the amorphous structure), which has detectable properties such as a lower electrical system I coefficient than the amorphous phase. In general, the phase change material can be electrically switched to each other in a detectable state between the range of fully amorphous and crystalline states of the local order. Other material properties are also affected by the phase changes in amorphous and crystalline properties, including atomic order, free electron density, and activation energy. The material can be switched to a different solid phase or a mixture of two or more solids to provide a gray scale between completely amorphous and fully crystalline states. The electronic properties in the material • will change accordingly. Phase change alloys can be changed from one phase to another by the application of electronic pulses. It can be observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state. A longer, lower amplitude pulse tends to change the phase change material to a generally crystalline state. The energy of a shorter, higher amplitude pulse is high enough to cause the crystal bond to be broken, and because the pulse is short enough to avoid rearranging the atoms into a crystalline state. The appropriate pulse waveform for a particular phase change alloy can be determined without undue experimentation. The phase change material disclosed in the subsequent sections refers to 锗-锑-碲 (GST), and it can be understood that other phase change materials can also be used. The material described herein that is useful for completing the phase chage random access nieniory (PCRAM) is a mis-recording-hoof compound (Ge2Sb2Te5). Other programmable resistive memory materials can also be used in other embodiments of the invention, including 锗-record-碲 (GST) doped nitrogen (N2), erbium-tellurium (GexSby), or other materials using different crystals. The change of phase depends on 23

I31〇m :TW2958PA 定其電阻;镨-鈣-錳氧化物(PrXayMn〇3)、镨-锶-錳氧化物 (PrSrMnCb)、锆氧化物(Zr〇x)、鎢氧化物(W〇x)、鈦氧化物 (Ti〇x)、鋁氧化物(A10O或其他材料使用電子脈衝來改變 其電阻狀態;7, 7, 8, 8-氰基對醌二曱烷錯合物 (7, 7,8,8-tetracyanoquinodimethane, TCNQ) 、 methanofullerene 6,6-phenyl C61-butyric acid ester,PCBM、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C6Q-TCNQ、 摻雜其他金屬的TCNQ、或者任何其他可被電子脈衝控制且 • 具有雙穩態或多重穩態電阻的狀態的聚合物材料。 第一導電層312覆於第一可程式電阻式隨機存取記 憶層310上,係為一導電元件。第二導電層322則是被設 置於第一可程式電阻式隨機存取記憶層310和第二可程式 電阻式隨機存取記憶層320之間。此第一導電層312係為 與第一可程式電阻式隨機存取記憶層310有連接之導電元 件。此第二導電層322係為與第二可程式電阻式隨機存取 記憶層320有連接之導電元件。適合做為第一導電層312 • 和第二導電層322的材料包含:钬(Ti)、氮化鈦(TiN)、 氮化鈦/鎢/氮化鈦(TiN/W/TiN)、氮化鈦/鈦/鋁/氮化鈦 (TiN/Ti/Al/TiN)、n+多晶矽(n+polysilicon)、氮氧化欽 (TiON)、钽(Ta)、氮化鈕(TaN)、氮氧化鈕(TaON)以及其 他材料。 ·* 於一實施例裡,第一導電層312和第二導電層322為 相同的材料。但在另一實施例裡,第一導電層31 £與第二 導電層322則是不同的材料。第一導電層312與第二導電 24I31〇m : TW2958PA determines its resistance; 镨-calcium-manganese oxide (PrXayMn〇3), 镨-锶-manganese oxide (PrSrMnCb), zirconium oxide (Zr〇x), tungsten oxide (W〇x) Titanium oxide (Ti〇x), aluminum oxide (A10O or other materials use electronic pulses to change their resistance state; 7, 7, 8, 8-cyano-p-dioxane complex (7, 7, 8,8-tetracyanoquinodimethane, TCNQ), methanofullerene 6,6-phenyl C61-butyric acid ester, PCBM, TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C6Q-TCNQ, TCNQ doped with other metals, or any other A polymer material controlled by an electronic pulse and having a state of bistable or multiple steady state resistance. The first conductive layer 312 is overlying the first programmable resistive random access memory layer 310 and is a conductive element. The second conductive layer 322 is disposed between the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320. The first conductive layer 312 is coupled to the first programmable The resistive random access memory layer 310 has connected conductive elements. The second conductive layer 322 is connected to the second programmable circuit. The random access memory layer 320 has connected conductive elements. The material suitable for the first conductive layer 312 and the second conductive layer 322 comprises: bismuth (Ti), titanium nitride (TiN), titanium nitride/tungsten/ Titanium nitride (TiN/W/TiN), titanium nitride/titanium/aluminum/titanium nitride (TiN/Ti/Al/TiN), n+polysilicon (n+polysilicon), nitrous oxide (TiON), tantalum (Ta) ), a nitride button (TaN), a nitrogen oxide button (TaON), and other materials. * In one embodiment, the first conductive layer 312 and the second conductive layer 322 are the same material, but in another embodiment The first conductive layer 31 £ and the second conductive layer 322 are different materials. The first conductive layer 312 and the second conductive layer 24

131 :TW2958PA 層322的厚度可以相同或是相異。第一導電層312或是第 二導電層322的厚度範圍例如大約為1〇至2〇奈米(nm)之 間。 一遮罩330形成於弟一導電層312上。此遮罩33〇勺 含光阻、硬遮罩(1^(111^1〇’如矽氧化物(^〇3[)、石夕氣= 物(SiNx)、石夕氮氧化物(SiOxNy)。此遮罩可以藉由挑選適人 遮罩的技術來修整出臨界尺寸(CD)。假如遮罩33n 二 組’以氯(Cl〇及溴化氫(HBr)為主的反應離子蝕刻機用γ 修整光阻。假如遮罩330為一硬遮罩,以濕修整搭配適& 的溶劑可S以修整此硬豸[尤其是,—稀釋的氧 (dilute HF,DHF)可使用於以氧化矽(Si〇x)製作的^ 罩。熱磷酸(Hot phosphoric acid,HPA)則使用於 '、、' 氮(SiNx)製作的硬遮罩。 、氧1化 第4圖緣示根據本發明製造雙穩態電阻式 記憶體30G之下-步驟之示意圖,㈣至第二導電声^ 二導電層有鄰近於第一導電構件412及第-可程式^且^ 隨機存取記憶體構件410沈積之介 卩式 示,第一導電声于如第3圖所 弟导電層312及第-可程式電阻式隨 310被蚀刻至第二導電層322的頂面,以形成第 件,及第-可程式電阻式隨機存取記憶體構件41= L之序Τ及3第一可程式電阻式隨機存取記憶層 是單—非等她㈣,或者以兩階^ 知序’第’以第-钱刻化學物_第一導電層批·= 二’以第二她刻化學物_第—可程式電阻式隨機存取 25 131131: The thickness of the TW2958PA layer 322 may be the same or different. The first conductive layer 312 or the second conductive layer 322 has a thickness ranging, for example, between about 1 Å and about 2 nanometers (nm). A mask 330 is formed on the conductive layer 312. This mask 33 〇 spoon contains photoresist, hard mask (1 ^ (111 ^ 1 〇 ' such as 矽 oxide (^ 〇 3 [), Shi Xi gas = material (SiNx), Shi Xi oxynitride (SiOxNy) This mask can be trimmed to a critical dimension (CD) by selecting a suitable masking technique. If the mask 33n is used in a group of chlorine (ClBr and hydrogen bromide (HBr)-based reactive ion etching machines) γ Trimming the photoresist. If the mask 330 is a hard mask, wet-trimming with a suitable solvent can be used to trim the hard 豸 [in particular, dilute HF (DHF) can be used for oxidation. A mask made of 矽(Si〇x). Hot phosphoric acid (HPA) is used for hard masks made of ',,' nitrogen (SiNx). A schematic diagram of the step under the bistable resistive memory 30G, (4) to the second conductive acoustic layer have a deposition adjacent to the first conductive member 412 and the first programmable memory member 410. The first conductive sound is etched to the top surface of the second conductive layer 322 along with the conductive layer 312 and the first programmable resistance pattern as shown in FIG. 3 to form a first piece. The first-programmable resistive random access memory component 41=L sequence and the third first programmable resistive random access memory layer are single-non-equal (four), or two-ordered 'order' The first - money engraved chemical _ the first conductive layer batch · = two 'to the second her chemical _ first - programmable resistance random access 25 131

TW2958PA =二钱刻化學物可依據單一材料或 :“,兄:假如第一導電構件412 = =之第,步驟是z 導電層312’以及第二崎驟是以氣化硫⑽:; =第-可程式電阻式隨機存取記憶層310。第― 4H)材積於第-可程式電阻錢機存取錢體構件 辟子置Γ/電構件412的左側及右侧。第-介電側 ς子430置於第二導電| 322的部分頂面上。而適合 ^電侧壁子的材料包含氧化發(si⑹和氣化石夕 請’且此處選擇材料具有一預定厚度。第一介電侧辟 子430的厚度會影響第二導電構件512(如s 5圖示)以ς 第二可程式電阻式隨機存取記憶體構件51〇(如第5圖示) 的面積^舉例來說:假如遮罩330具有一臨界尺寸大"為 〇. 15微米(μιη),而設定之介電侧壁子的厚度大約可為耵 奈米Οηη),以使第二可程式電阻式隨機存取記憶體構件 510的面積大約為第一可程式電阻式隨機存取記憶體構件 41〇的一倍大。也就是說,在相同的邏輯狀態(如SET或 RESET) ’第二可程式電阻式隨機存取記憶體構件51〇的電 阻大約為第一可程式電阻式隨機存取記憶體構件41〇的電 限的一半。第一可程式電阻式隨機存取記憶體構件41〇與 第二可程式電阻式隨機存取記憶體構件51〇的電阻差值是 依據一電阻式隨機存取記憶體材料之SET/RESET電阻窗。 假$又SET/RESET窗大約為10倍一個數量級(order of 26TW2958PA = two money carving chemicals can be based on a single material or: ", brother: if the first conductive member 412 = = first, the step is z conductive layer 312 ' and the second is the gasification of sulfur (10):; = - a programmable resistive random access memory layer 310. The -4H) material is stored on the left and right sides of the first programmable resistor/electrical component 412. The first dielectric side The sub-430 is placed on a portion of the top surface of the second conductive portion 322. The material suitable for the electro-optic sidewall includes oxidized hair (si(6) and gasification stone ' ́ and the material selected herein has a predetermined thickness. The first dielectric side The thickness of the sub-430 430 affects the area of the second conductive member 512 (as illustrated by s 5) to the second programmable resistive random access memory device 51 (as shown in Figure 5). For example: if The cover 330 has a critical dimension of "15 micrometers (μιη), and the thickness of the dielectric sidewall is set to be approximately 耵ηηη), so that the second programmable resistive random access memory The area of the member 510 is approximately twice as large as that of the first programmable resistive random access memory member 41. That is, in the same logic state (such as SET or RESET), the resistance of the second programmable resistive random access memory component 51 is approximately the power limit of the first programmable resistive random access memory component 41〇. The resistance difference between the first programmable resistive random access memory component 41 and the second programmable resistive random access memory component 51 is based on a resistive random access memory material SET/ RESET resistor window. Fake $ and SET/RESET window is about 10 times an order of magnitude (order of 26

1310: :TW2958PA magnitude),則第一可程式電阻式隨機存取記憶體構件 410及第二可程式電阻式隨機存取記憶體構件510的電阻 差值大約兩倍是適當的。 第5圖為繪示根據本發明製造雙穩態電阻式隨機存 取記憶體下一步驟之結構圖5〇〇,蝕刻穿過第二電阻式隨 機存取記憶層。此第二導電層322和第二可程式電阻式隨 機存取記憶層320(如第3圖示),藉由一反應離子蝕刻機 姓刻至底層的頂面或是蝕刻穿過一底層610(如第6圖所示〕 來產生第二導電構件512和第二可程式電阻式隨機存取記> 憶體構件51〇。此蝕刻程序可對第二導電層322及第二可 程式電阻式隨機存取記憶層32〇以一單一非等相性蝕刻或 一兩階段程序,第一,第一蝕刻化學物蝕刻第二導電層 322 ;第二,以第二蝕刻化學物蝕刻第二可程式電阻式隨 機存取記憶層320。蝕刻化學物可依據材料或材料選擇。 舉例來說,假如第二導電構件512使用氮化鈦(TiN)以及 第二可程式電阻式隨機存取記憶體構件51Q使用鶴氣化物 π〇χ),則兩階段蝕刻程序之以氣(Ch)對第二導電層Μ? j行第一次蝕刻,以及以氟化硫(SF〇對第二可程^ 隨機存取記憶體構件510進行第二次蝕刻。 式 第6 _為㈣根據本發明雙㈣可程式電 存取記憶_電喊_存取記憶胞結構⑼ 遺, 5圓圖=_倾61。已被_穿過,== 含^ ^。雙穩態可程式電阻式隨機存取記憶體_包 各底層_係設置於第二可程式電阻式隨機存取記憶體匕 271310: : TW2958PA magnitude), the resistance difference of the first programmable resistive random access memory component 410 and the second programmable resistive random access memory component 510 is approximately twice as appropriate. Figure 5 is a block diagram showing the next step of fabricating a bistable resistive random access memory in accordance with the present invention. The etching is performed through a second resistive random access memory layer. The second conductive layer 322 and the second programmable resistive random access memory layer 320 (as shown in FIG. 3) are pasted to the top surface of the underlying layer by a reactive ion etching machine or etched through a bottom layer 610 ( As shown in Fig. 6, the second conductive member 512 and the second programmable resistive random access memory > the memory member 51 are formed. The etching process can be performed on the second conductive layer 322 and the second programmable resistor. The random access memory layer 32 is etched by a single asymmetrical phase or a two-stage process. First, the first etch etch etches the second conductive layer 322. Second, the second etch etch etches the second programmable resistor. The random access memory layer 320. The etching chemistry can be selected according to the material or material. For example, if the second conductive member 512 is made of titanium nitride (TiN) and the second programmable resistive random access memory device 51Q Hexane gas π〇χ), the two-stage etching process uses gas (Ch) to etch the first conductive layer j? j, and fluorinated sulfur (SF 〇 to the second process ^ random access The memory member 510 performs a second etching. Equation 6_(4) is based on Invention double (four) programmable electrical access memory _ electric shouting _ access memory cell structure (9) legacy, 5 circle graph = _ tilt 61. has been _ through, == containing ^ ^. bistable programmable resistance random memory The memory _ packet bottom layer _ is set in the second programmable resistive random access memory 匕 27

13l(mA :TW2958PA 件510下。底層610的蝕刻程序於中間介電層63〇的頂面 即停止。底層610則與接觸孔62〇連接’係設置於底層61〇 之下以及由中間介電層630圍繞。接觸孔62〇的實施例包 含鎢栓塞(W-plug)或多晶矽栓塞(p〇ly_Si plug)。而多晶 矽栓塞則可由多晶矽兩極體(Poly_Si以〇(16)或Np二極體 (NP diode)所構成。 第7圖為繪示根據本發明具有一電阻式隨機存記憶 層之雙穩態電阻式隨機存取記憶體的電流_電壓曲線之範 • 例700,其X轴為電壓710而y軸為電流720。在一重置 (RESET)狀態730,此電阻式隨機存取記憶層為低電阻。在 一設定(SET)狀態740’此電阻式隨機存取記憶層於一高雷 阻。在此例子中’此電阻式隨機存取記憶層的設定/重置 窗大約為一個數量級之讀取電壓750。此讀取電壓,圖示 為一虛線752,表現展示高電流狀態(高邏輯狀態)以及低 電流狀態(低邏輯狀態)之間具有一顯著間隙,從重置狀離 730 ’在電壓應力之後’重置狀態730内的電流昇高至古 鲁電流。從設定狀態740,設定狀態内的電流降低。電流停 止時的大幅擺蘯,由低狀態至高狀態或由高狀態至一低狀 態,以電壓控制不同邏輯多重狀態會變得困難。因此,以 不同電阻式隨機存取記憶層以串連相互連接,而此處每一 電阻式隨機存取5己憶體具有各自..的P積或自己的電阻,用 於雙穩態電阻式隨機存取記憶體實現不同邏輯狀態。 第8A圖為繪示根據本發明具有兩個均位於重置 (RESET)狀態之電阻式隨機存取記憶體構件之雙穩態可程 2813l (mA: TW2958PA device 510. The etching process of the bottom layer 610 is stopped on the top surface of the intermediate dielectric layer 63A. The bottom layer 610 is connected to the contact hole 62〇' is disposed under the bottom layer 61〇 and is dielectrically interposed. The layer 630 is surrounded. The embodiment of the contact hole 62A includes a tungsten plug (W-plug) or a polysilicon plug (p〇ly_Si plug), and the polycrystalline germanium plug can be made of a polycrystalline germanium (Poly_Si with a germanium (16) or Np diode ( The NP diode is constructed. Figure 7 is a diagram showing a current-voltage curve of a bistable resistive random access memory having a resistive random memory layer according to the present invention. 710 and the y-axis is current 720. In a RESET state 730, the resistive random access memory layer is low resistance. In a set (SET) state 740', the resistive random access memory layer is at a high Lightning resistance. In this example, the set/reset window of this resistive random access memory layer is approximately one order of magnitude of read voltage 750. This read voltage, shown as a dashed line 752, exhibits a high current state ( High logic state) and low current state (low logic) There is a significant gap between the states), and the current in the reset state 730 rises from the reset state 730 'after the voltage stress' to the Guru current. From the set state 740, the current in the set state decreases. The large swing, from low state to high state or from high state to low state, it becomes difficult to control different logic multiple states with voltage. Therefore, different resistive random access memory layers are connected in series, and this Each resistive random access 5 memory has its own P product or its own resistance for the bistable resistive random access memory to achieve different logic states. FIG. 8A is a diagram showing Bi-stable range 28 with two resistive random access memory components all in a RESET state

: TW2958PA 式電阻式隨機存取記憶體600之簡單示意圖。當第一可程 式電阻式隨機存取記憶體構件410和第二可程式電阻式隨 機存取記憶體構件510均於重置狀態,此雙穩態可程式電 陡式隨機存取記憶體600操作於邏輯狀態” 00” 。第二可 程式電阻式隨機存取記憶體構件510具有一電阻卵1〇而 第一可程式電阻式隨機存取記憶體構件410具有一電阻 θ?820。此處變數/大於1,因為第一可程式電阻式隨機存 取記憶體構件410的面積小於第二可程式電阻式隨機存取 記憶體構件510之面積。此雙穩態可程式電阻式隨機存取 記憶體600的總電阻大約為(1+/)及。舉例來說,假設變數 /等於2’而總電阻可計算為3i?,數學式表示為(l+2/?)=3i?。 第8B圖繪示根據本發明之具有兩個位於設定(SET) 及重置(RESET)狀態電阻式隨機存取構件的雙穩態可程式 電阻式隨機存取記憶體600之簡單示意圖。當第一可程式 電阻式隨機存取記憶體構件41〇於一設定狀態以及第二可 程式電阻式隨機存取記憶體構件51〇於一重置狀態,此雙 穩態可程式電阻式隨機存取記憶體6〇〇操作於一邏輯狀 態” 01” ,而此處的第二可程式電阻式隨機存取記憶體構 件510仍然於處於重置狀態或未充電。第二可程式電阻式 隨機存取記憶體構件510具有一電阻础1〇以及第一可程 •式電阻式隨機存取記憶體構件41〇具有一電阴^^拙如,此 處的變數/]比1大。而雙穩態可程式電阻式隨機存取記憶 體600的總電阻大約為(1+/2i)i?。舉例來說,假如變數f 等於2以及變數/3等於10’而總電阻經計算為21i?,其數: A simplified schematic of the TW2958PA type resistive random access memory 600. When the first programmable resistive random access memory component 410 and the second programmable resistive random access memory component 510 are in a reset state, the bistable programmable steep random access memory 600 operates In the logic state "00". The second programmable resistive random access memory component 510 has a resistor egg 1 and the first programmable resistive random access memory component 410 has a resistance θ 820. The variable here is greater than 1 because the area of the first programmable resistive random access memory component 410 is smaller than the area of the second programmable resistive random access memory component 510. The total resistance of the bistable programmable resistive random access memory 600 is approximately (1+/) and . For example, assume that the variable / is equal to 2' and the total resistance can be calculated as 3i?, and the mathematical expression is expressed as (l+2/?) = 3i?. Figure 8B is a simplified schematic diagram of a bistable programmable resistive random access memory 600 having two resistive random access devices in a set (SET) and reset (RESET) state in accordance with the present invention. When the first programmable resistive random access memory component 41 is in a set state and the second programmable resistive random access memory component 51 is in a reset state, the bistable programmable resistive memory is stored. The memory 6 is operated in a logic state "01", and the second programmable resistive random access memory component 510 is still in a reset state or is not charged. The second programmable resistive random access memory device 510 has a resistor base 1 and a first programmable resistive random access memory component 41 having an electrical function, such as the variable here. ] is bigger than 1. The total resistance of the bistable programmable resistive random access memory 600 is approximately (1+/2i)i?. For example, if the variable f is equal to 2 and the variable /3 is equal to 10' and the total resistance is calculated as 21i?

-· TW2958PA 學式表示如(l〇+21)i?=31i?。 第8C圖繪示根據本發明具有兩個位於設定(SET)及 重置(RESET)狀態之電阻式隨機存取㊂己億體構件的雙穩態 可程式電阻式隨機存取記憶體600之簡單示意圖。當第一 電阻式隨機存取記憶體材料構件410於一重置狀態以及第 二可程式電阻式隨機存取記憶體構件510於一設定狀態, 此雙穩態可程式電阻式隨機存取記憶體600操作於邏輯狀 態” 10” ’而此處第一可程式電阻式隨機存取記憶體構件 # 410仍於重置狀態或充電。第二可程式電阻式隨機存取記 憶體構件510具有一電阻^/^850以及第一可程式電阻式隨 機存取記憶體構件410具有一電阻/i?860,此處變數;2大 於1。此雙穩態可程式電阻式隨機存取記憶體600的總電 阻大約為(/7+f)i?。舉例來說,假設變數/等於2且變數/2 等於10,總電阻可計算為12i?,其數學式表示為 (10+2)i?=12i?。 第8D圖繪示根據本發明之具有兩個位於設定(SET) •狀態之電阻式隨機存取記憶體構件的雙穩態可程式電阻 式隨機存取記憶體600之簡單示意圖。當第一可程式電陴 式隨機存取記憶體構件410於一設定狀態以及第二可程式 電阻式隨機存取記憶體構件510於一設定狀態,則此雙穩 態可程式電.阿弍隨機存取記憶體6〇〇操作於一邏輯狀 態11 。第二可程式電阻式隨機存取記憶體構件510 具有一電阻fli?870以及第一電阻式隨機存取記憶體41〇具 有一電阻/2 8 0。此雙穩態可程式電阻式隨機存取記憶體 30 .131 .131-· TW2958PA The formula is expressed as (l〇+21)i?=31i?. Figure 8C is a diagram showing the simplicity of a bistable programmable resistive random access memory 600 having two resistive random access triple-element members in a set (SET) and reset (RESET) state in accordance with the present invention. schematic diagram. When the first resistive random access memory material member 410 is in a reset state and the second programmable resistive random access memory device 510 is in a set state, the bistable programmable resistive random access memory 600 operates in a logic state "10"' where the first programmable resistive random access memory component #410 is still in a reset state or charged. The second programmable resistive random access memory component 510 has a resistor 580 and the first programmable resistive random access memory component 410 has a resistor /i?860, where the variable is; 2 is greater than one. The total resistance of the bistable programmable resistive random access memory 600 is approximately (/7 + f) i?. For example, assuming that the variable / is equal to 2 and the variable /2 is equal to 10, the total resistance can be calculated as 12i?, and its mathematical expression is expressed as (10+2)i?=12i?. Figure 8D is a simplified schematic diagram of a bistable programmable resistive random access memory 600 having two resistive random access memory components in a set (SET) state according to the present invention. When the first programmable memory random access memory component 410 is in a set state and the second programmable resistive random access memory component 510 is in a set state, the bistable programmable power is randomly selected. The access memory 6 is operated in a logic state 11. The second programmable resistive random access memory device 510 has a resistor fli? 870 and a first resistive random access memory 41 having a resistor / 8000. The bistable programmable resistance random access memory 30 .131 .131

: TW2958PA 6〇0的總电阻大約為。舉例來說,假設變數彡等 於2以及變數/3等於10,總電阻可以計算為3〇芡,而數學 式表示為10(1+2)於=30允。 第9圖繪示根據本發明以串聯方式連接之兩個電阻 式Ik機存取記憶體構件以提供四種邏輯狀態的雙穩態可 程式電阻式隨機存取記憶體6〇〇之四種邏輯狀態之數學關 係,且每記憶胞儲存兩位元。三個變數况、以及γ使用 毛阻關係的方程式,此處變數芡表示一記憶體構件的重置 電組、變數/2與電阻式隨機存取記憶體材料的特性有關, 且變數f與介電侧壁子的厚度有關。換句話說,變數乃隨 材料特性相關而定。變數f可以藉由介電侧壁子厚度來控 制。在邏輯狀態「〇」91〇,雙穩態可程式電阻式隨機存取 記憶體600的總電阻大約為(1+/)/?。在邏輯狀態「丨」92〇, 雙穩態可程式電阻式隨機存取記憶體6〇〇的總電阻^約為 (奸/)及。在邏輯狀態「2」93G,雙穩態可程式電阻式隨機 存取記憶體600的總電阻大約為。在邏輯狀態「3 94〇 ’雙穩怨可程式電阻式隨機存取記憶體6〇〇的總電阻 大約為Z5(l + i)i?。調整變數/來符合電阻變換,以便 ^之操作窗在雙穩態可程式電阻式隨機存取記憶體咖 進仃二位城作。舉例來說’上述二位元操作窗在以 之電阻表示L、抑至繼。假如變數㈣⑽,以 及變數/=2,而二位元操作窗將被計算為3 及 300]?。 別1/? 第10圖繪示根據本發明以串聯方式連接多重電阻弋 31: The total resistance of TW2958PA 6〇0 is approximately. For example, assuming that the variable 彡 is equal to 2 and the variable /3 is equal to 10, the total resistance can be calculated as 3 〇芡, and the mathematical expression is expressed as 10 (1 + 2) at = 30. FIG. 9 is a diagram showing four logics of a bistable programmable resistive random access memory 6 提供 that provides two logic states by connecting two memory type Ik machines connected in series according to the present invention. The mathematical relationship of the state, and each memory cell stores two yuan. Three variable cases, and the equation of γ using the relationship of the gross resistance, where the variable 芡 indicates that the reset electrical group of a memory member, the variable /2 is related to the characteristics of the resistive random access memory material, and the variable f and The thickness of the electric side wall is related. In other words, the variables are dependent on the material properties. The variable f can be controlled by the thickness of the dielectric sidewalls. In the logic state "〇" 91〇, the total resistance of the bistable programmable resistive random access memory 600 is approximately (1+/)/?. In the logic state "丨" 92〇, the total resistance of the bistable programmable resistive random access memory is approximately (s). In the logic state "2" 93G, the total resistance of the bistable programmable resistive random access memory 600 is approximately. In the logic state "3 94〇' bistable resilience resistive random access memory 6〇〇 total resistance is about Z5(l + i)i?. Adjust the variable / to match the resistance transformation, so that the operation window In the case of bistable programmable resistance random access memory, for example, 'the above two-bit operation window is represented by the resistance L, and then succeeds. If the variable (four) (10), and the variable /= 2, and the two-bit operation window will be calculated as 3 and 300]?. 1/? Figure 10 illustrates the connection of multiple resistors 串联31 in series according to the present invention.

1310212號 :TW2958PA 隨機存取記憶體構件以使每一記憶體單元提供多重位元 之雙穩態電阻式隨機存取記憶體1000的示意圖。多重電 阻隨機存取記憶體構件以串聯連接每一記憶胞以提供多 重位元。雙穩態電阻式隨機存取記憶體1000包含以串連 連接的多重電阻式隨機存取記憶層,換言之即為一第一可 程式電阻式隨機存取記憶層310與第二可程式電阻式隨機 存取記憶層320串聯,第二可程式電阻式隨機存取記憶層 320與第三可程式電阻式隨機存取記憶層1010串聯,…, • 第(n-l)th可程式電阻式隨機記憶層1020與第nth可程式電 阻式隨機存取記憶層1030串聯。於實施例中,每個第一、 第二、第三…(n-l)th、nth可程式電阻式隨機存取記憶層 310、320、1010、1020、1030分別提供儲存兩邏輯狀態的 能力。在另一實施例中,每個第一、第二、第三…(η-1)th、 nth可程式電阻式隨機存取記憶層310、320、1010、1020、 1030分別提供儲存大於兩位元的資訊的能力。在其他的實 施例中,每個第一、第二、第三…(n-l)th、nth可程式電阻 _ 式隨機存取記憶層310、320、1010、1020、1030分別提 供儲存兩個或多於兩位元的資訊能力,其中每位元具有儲 存多重的資訊的能力。雙穩態電阻式隨機存取記憶體1000 的總邏輯狀態數量藉由各電阻式隨機存取記憶層的X數目 以及每位元的層數y來決定,以數學式Zx〜表示,符號Z 表示總電阻式隨機存取記憶層的總數量。舉例來說,假如 雙穩態電阻式隨機存取記憶體1000具有八個電阻式隨機 存取記憶層,此處每電阻式存取記憶層可儲存1元位的資 32No. 1310212: TW2958PA A schematic diagram of a bistable resistive random access memory 1000 with random access memory components to provide multiple bits per memory cell. Multiple Resistive Random Access Memory Components connect each memory cell in series to provide multiple bits. The bistable resistive random access memory 1000 includes a multi-resistive random access memory layer connected in series, in other words, a first programmable resistive random access memory layer 310 and a second programmable resistive random access The access memory layer 320 is connected in series, and the second programmable resistive random access memory layer 320 is connected in series with the third programmable resistive random access memory layer 1010, ..., • the (nl)th programmable resistive random memory layer 1020 It is connected in series with the nth programmable resistive random access memory layer 1030. In an embodiment, each of the first, second, third, (n-1)th, nth programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 provides the ability to store two logic states, respectively. In another embodiment, each of the first, second, third, (n-1)th, nth programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 provides storage greater than two bits, respectively. The ability of meta information. In other embodiments, each of the first, second, third (nl)th, nth programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 provides two or more stores, respectively. The two-digit information ability, in which each bit has the ability to store multiple pieces of information. The total number of logic states of the bistable resistive random access memory 1000 is determined by the number of Xs of each resistive random access memory layer and the number of layers y per bit, expressed by the mathematical formula Zx~, symbol Z The total number of total resistive random access memory layers. For example, if the bistable resistive random access memory 1000 has eight resistive random access memory layers, each resistive access memory layer can store one bit of resources.

1310¾¾ :TW2958PA 訊以及每一位元儲存兩邏輯狀態或電流位準,而邏輯狀態 的總數目可計算為81#2或64種邏輯狀態。 每個第一、第二、第三·,·(η-ΐΓ、nth可程式電阻式 隨機存取記憶層310、320、1〇1〇、1020、1030材料分別13103⁄43⁄4: TW2958PA and each bit stores two logic states or current levels, and the total number of logic states can be calculated as 81#2 or 64 logic states. Each of the first, second, third, ... (n-ΐΓ, nth programmable resistive random access memory layers 310, 320, 1〇1〇, 1020, 1030 material respectively

可為相同或相異’或是某一些電阻式隨機存取記憶層使用 相同的材料,部分結合其他電阻式隨機存取記憶層使用另 一材料。此外,第一、第二、第三…(n-l)th、nth可程式 電阻式隨機存取記憶層310、320、1010、1020、1030厚 度可彼此相同或相異,或者某一些電阻式隨機存取記憶體 使用相同的厚度’部分其他電阻式隨機存取記憶層的使用 不同的厚度。第一、第一、第三…(n_l)th、nth可程式電阻 式隨機存取記憶層310、320、1〇1〇、1〇2〇、1030的厚度 範圍例如大約從1奈米(nm)至200奈米(ηιη)之間。 每一電阻式隨機存取記憶層均會與一導電層相連。除 上述描述的第一及第二導電層312、322,第三導電詹1〇12 設置於第三電阻式隨機存取記憶層1〇1〇上。第(n_1)thThe same material can be used for the same or different 'or some resistive random access memory layers, and some materials can be used in combination with other resistive random access memory layers. In addition, the thicknesses of the first, second, third, (nl)th, nth programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 may be the same or different from each other, or some resistive random memory Take the memory using the same thickness 'part of the other resistive random access memory layers using different thicknesses. The first, first, third, ... (n_l)th, nth programmable resistive random access memory layers 310, 320, 1〇1〇, 1〇2〇, 1030 have a thickness ranging, for example, from about 1 nm (nm) ) to between 200 nm (ηιη). Each resistive random access memory layer is connected to a conductive layer. In addition to the first and second conductive layers 312, 322 described above, the third conductive Jan 1 12 is disposed on the third resistive random access memory layer 1 〇 1 。. (n_1)th

導電層1022設置於第(n-l)th電阻式隨機存取記憶層上。 第nth導電層1032設置於第/可程式電阻式隨機存取記憶 層1030上。 口第11圖繪示根據本發明具有蝕刻程序於第一及第二 可程式=式隨機存取記憶體構件41G、510以A崎第 彳⑽電侧壁子43°、1U〇的雙穩態電阻式隨機存取 一〇〇之示意圖。蝕刻程序可以更進-步的執行於 一可程式電阻式隨機存取記憶體構件41〇、 33The conductive layer 1022 is disposed on the (n-1)th resistive random access memory layer. The nth conductive layer 1032 is disposed on the /th programmable resistive random access memory layer 1030. Figure 11 shows a bistable state with an etching process for the first and second programmable random access memory devices 41G, 510 with an A Saki (10) electrical sidewall 43°, 1U〇. A schematic diagram of resistive random access. The etching process can be further performed in a programmable resistive random access memory device 41〇, 33

:TW2958PA 以及後續的電阻式隨機存取記憶層,如第三電阻式隨機存 取圮憶層1010。在此例子中,第三導電層1〇12在第三電 阻式隨機存取記憶層1010同時被蝕刻。相同的介電側壁 子也設置於後續的的導電層及電阻式隨機存取記憶層 上於實知例中,第二可程式電阻式隨機存取記憶體構件 510的面積主要是藉由第一介電側壁子43〇來決定的。相 同地,第三電阻式隨機存取記憶體構件1〇1〇的面積主要 也是藉由第二介電侧壁子1110來決定的。因此,每一電 阻式隨機存取記憶層具有其各別的面積,且主要是由介電 側壁子的厚度所定義的,如此,電阻式隨機存取記憶層具 有其各自的電阻。 第12圖繪示根據本發明去除介電侧壁子後具有多重 電阻式隨機存取記憶體構件及多重導電構件的雙穩態電 阻式隨機存取記憶體12〇〇之示意圖。雙穩態電阻式隨機 存取記憶體1200包含第一導電構件412設置於第一可程 式電阻式隨機存取記憶體構件41〇上、第一可程式電阻式 隨機存取記憶體構件41〇設置於第二導電構件512上、第 二導電構件512設置於第二可程式電阻式隨機存取記憶體 構件510上、第二可程式電阻式隨機存取記憶體構件51〇 設置於第三導電構件1220上、第三導電構件1220設置於 第三可程式電俾式隨機存取記憶體構件do.·.,以及第 nth導電構件1040設置於第nth可程式電阻式隨機存取記憶 體層1030上。於實施例中,第一導電構件412與第一可 程式電阻式隨機存取記憶體構件41〇具有相同的寬度,且 34: TW2958PA and subsequent resistive random access memory layers, such as the third resistive random access memory layer 1010. In this example, the third conductive layer 1〇12 is simultaneously etched in the third resistive random access memory layer 1010. The same dielectric sidewall is also disposed on the subsequent conductive layer and the resistive random access memory layer. In the practical example, the area of the second programmable resistive random access memory component 510 is mainly by the first The dielectric sidewall 43 is determined. Similarly, the area of the third resistive random access memory device 1〇1〇 is also mainly determined by the second dielectric sidewall 1110. Therefore, each of the resistive random access memory layers has its respective area and is mainly defined by the thickness of the dielectric sidewalls, and thus, the resistive random access memory layers have their respective resistances. Figure 12 is a schematic diagram showing a bistable resistive random access memory device 12 having a plurality of resistive random access memory devices and a plurality of conductive members after removing the dielectric sidewalls according to the present invention. The bistable resistive random access memory 1200 includes a first conductive member 412 disposed on the first programmable resistive random access memory device 41, and a first programmable resistive random access memory member 41. On the second conductive member 512, the second conductive member 512 is disposed on the second programmable resistive random access memory member 510, and the second programmable resistive random access memory member 51 is disposed on the third conductive member. The first conductive member 1220 is disposed on the third programmable gate random access memory device do.., and the nth conductive member 1040 is disposed on the nth programmable resistive random access memory layer 1030. In an embodiment, the first conductive member 412 has the same width as the first programmable resistive random access memory member 41, and 34

131(^¾ :TW2958PA 小於第二導電構件512及第二可程式電阻式隨機存取記憶 體構件510的寬度。第二導電構件512與第二可程式電阻 式隨機存取記憶體構件510具有相同的寬度,且小於第三 導電構件1220及第三可程式電阻式隨機存取記憶體構件 1210的寬度。第nth導電構件1040及第nth可程式電阻式 隨機存取記憶體層1030的寬度會較前一個電阻式隨機存 取記憶體構件及導電構件的寬度為寬。 如第12及第13圖所示,位元線電壓施加於雙穩態可 • 程式電阻式隨機存取記憶體600使其達到不同的邏輯狀 態。如第5圖的結構500可以第13圖以相同電路圖示意。 在此實施例中,描述兩可程式電阻式隨機存取記憶層,以 及額外附加記憶層及相對應的位元線電壓。此電路1300 之第一電阻器Rd310表示第一可程式電阻式隨機存取記 憶體構件410的電阻,以及第二電阻器R21312表示第二可 程式電阻式隨機存取記憶體構件510的電阻,而與具有第 一位元線電壓Vbd320的第一位元線BLd340與具有第二位 _ 元線電壓Vb21330的第二位元線BL21342相連。第一位元線 電壓Vbl1320與連接於第一導電層構件412的頂面以及第 二位元線電壓Vb21330與第二可程式電阻式隨機存取記憶 體構件510的底面相連。在此實施例中,雙穩態電阻式隨 機存取記憶體500包含兩可.麥气電阻式隨機存取記憶層, 其具有兩個分別與第一可程式電阻式隨機存取記憶體構 件410和第二可程式電阻式隨機存取記憶體構件510相連 的電壓,其中第一電壓至第一可程式電阻式隨機存取記憶 35131 (^3⁄4: TW2958PA is smaller than the width of the second conductive member 512 and the second programmable resistive random access memory member 510. The second conductive member 512 has the same as the second programmable resistive random access memory member 510 The width of the nth conductive member 1040 and the nth programmable resistive random access memory layer 1030 is smaller than the width of the third conductive member 1220 and the third programmable resistive random access memory device 1210. A resistive random access memory component and a conductive member have a wide width. As shown in FIGS. 12 and 13, the bit line voltage is applied to the bistable programmable resistive random access memory 600 to achieve Different logic states. Structure 500 as shown in Figure 5 can be illustrated in Figure 13 in the same circuit diagram. In this embodiment, two programmable resistive random access memory layers are described, along with additional memory layers and corresponding bits. The first resistor Rd310 of the circuit 1300 represents the resistance of the first programmable resistive random access memory component 410, and the second resistor R21312 represents the second programmable voltage. The resistance of the resistive random access memory device 510 is connected to the first bit line BLd340 having the first bit line voltage Vbd320 and the second bit line BL21342 having the second bit_yuan line voltage Vb21330. The bit line voltage Vbl1320 is connected to the top surface of the first conductive layer member 412 and the second bit line voltage Vb21330 to the bottom surface of the second programmable resistive random access memory member 510. In this embodiment, the double The steady-state resistive random access memory 500 includes two ohmic resistance random access memory layers having two first and first programmable resistive random access memory components 410 and a second programmable resistive The voltage connected to the random access memory component 510, wherein the first voltage to the first programmable resistive random access memory 35

131023& :TW2958PA 體構件410,以符號V1RRAM1312表示而第二電壓至第二電阻 式隨機存取構件510,以符號VmAd314表示。此第一可程 式電阻式隨機存取電壓Vl RRAM 1313具有一第一端與第一導 電構件412相連’以及一第二端與第一可程式電阻式隨機 存取記憶體構件410相連。第二可程式電阻式隨機存取記 憶體電壓VmAM 1314具有一第一端一般與第一可程式電阻 式隨機存取記憶體構件410及第一可程式電阻式隨機存取 電壓ν11ίΚΑΜ1313相連,以及以一第二端與第二可程式電阻式 • 隨機存取記憶體構件510相連。另外的可程式電阻式隨機 存取記憶體電壓,如V3mM1316與第三可程式電阻式隨機存 取記憶體1210相連,且可施加於於後績的可程式電阻式 隨機存取記憶體構件。 當雙穩態電阻式隨機存取記憶體500為重置狀態 時,也就是重置狀態,此雙穩態可程式電阻式隨機存取記 憶體600由邏輯狀態「〇」(或狀態「〇〇」)設定8此雙穩 態可程式電阻式隨機存取記憶體600可從邏輯狀態「〇」程 ® 式化至邏輯狀態「1」(或狀態「〇1」)、或是從邏輯狀態 「〇」至邏輯狀態「2」(或狀態「1〇」)、或是從邏輯狀態 「〇」至邏輯狀態「3」(或狀態「11」)。 在可程式雙穩態電阻式隨機存取記憶體500從邏輯 , 狀態「〇〇」至邏輯狀態「10」過程中,第電壓施加於第 一位元線達到第一位元線電壓Vbl1320以及一第二電壓施 加於第二位元線達當第二位元線電壓Vbd330。施加達到第 一位元線電壓Vbd320的電壓可為〇電壓或者是小的負電 36131023&: TW2958PA body member 410, indicated by symbol V1RRAM 1312 and second voltage to second resistive random access member 510, indicated by symbol VmAd314. The first programmable resistive random access voltage V1 RRAM 1313 has a first end connected to the first conductive member 412' and a second end connected to the first programmable resistive random access memory member 410. The second programmable resistive random access memory voltage VmAM 1314 has a first end generally connected to the first programmable resistive random access memory component 410 and the first programmable resistive random access voltage ν11ίΚΑΜ 1313, and A second end is coupled to the second programmable resistive random access memory component 510. Another programmable resistive random access memory voltage, such as V3 mM 1316, is coupled to the third programmable resistive random access memory 1210 and can be applied to the programmable resistive random access memory component of the subsequent performance. When the bistable resistive random access memory 500 is in a reset state, that is, a reset state, the bistable programmable resistive random access memory 600 has a logic state of "〇" (or state "〇〇" ”Setting 8 bistable programmable resistive random access memory 600 can be switched from logic state “逻辑” to logic state “1” (or state “〇1”), or from logic state” 〇” to logic state “2” (or state “1〇”), or logic state “〇” to logic state “3” (or state “11”). In the process of the programmable bistable resistive random access memory 500 from the logic state "〇〇" to the logic state "10", the first voltage is applied to the first bit line to reach the first bit line voltage Vbl1320 and one The second voltage is applied to the second bit line up to the second bit line voltage Vbd330. The voltage applied to the first bit line voltage Vbd320 may be a chirp voltage or a small negative voltage 36

13102¾¾ :TW2958PA 壓。施加於第一元位線Vbil320及第二位元線電壓Vb2l330 間的電壓差值與第一電阻式隨機存取記憶體電壓 V1RRAM1313及第二電阻式隨機存取記憶體電壓V2mMl314的 總合相等’若以數學表示即為:V"b2-Vbl = V2mM + VlRRAM = Vlcw。第 一可程式電阻式隨機存取記憶體構件410和第二可程式電 阻式隨機存取記憶體構510兩者的初始狀態為重置狀態, 也就是一低電阻的狀態。在此實施例中,第一可程式電阻 式隨機存取記憶體構件410的面積較第二可程式電阻式隨 • 機存取記憶體構510的面積小。因此,第一可程式電阻式 隨機存取記憶體構件410的電阻較第二可程式電阻式隨機 存取記憶體構510的電阻高。這意義即為第一電阻式隨機 存取記憶體電壓ν1ΚΜΜ1313的值較第二電阻式隨機存取記 憶體電壓V2mM1314大,若以數學關係式表示即為 VlRRM>V2mM。假設第一電阻式隨機存取記憶體電壓VlRRAM 1313比一重置電麼大(VlRRAM>VsET),則第一可程式電阻式隨 機存取記憶體構件410由一重置狀態改變為一設定狀態 ® (也就是高電阻)。假如第二電阻式隨機存取記憶體電壓 V2RRAK1 314小於設定電壓(V2RRAM<VsET),則第二可程式電阻式 隨機存取記憶體構件510保持於重置狀態下。此第一可程 式電阻式隨機存取記憶體構件410的電阻具有+ 的電 阻值從邏輯狀態「0」(或狀態「00」)改變至具有.電阻 的邏輯狀態「2」(或狀態「10」)。舉例來說,假 如變數/=2,變數/2=10,及第二可程式電阻式隨機存取記 憶體構件510的重置電阻等於i?,而總電阻就會從3/?改變 37131023⁄43⁄4 : TW2958PA pressure. The voltage difference applied between the first bit line Vbil320 and the second bit line voltage Vb2l330 is equal to the sum of the first resistive random access memory voltage V1RRAM1313 and the second resistive random access memory voltage V2mMl314' If expressed in mathematics, it is: V"b2-Vbl = V2mM + VlRRAM = Vlcw. The initial state of both the first programmable resistive random access memory component 410 and the second programmable resistive random access memory structure 510 is a reset state, that is, a low resistance state. In this embodiment, the area of the first programmable resistive random access memory component 410 is smaller than the area of the second programmable resistive access memory structure 510. Therefore, the resistance of the first programmable resistive random access memory component 410 is higher than the resistance of the second programmable resistive random access memory structure 510. This means that the value of the first resistive random access memory voltage ν1 ΚΜΜ 1313 is larger than the second resistive random access memory voltage V2 mM 1314, and if expressed in a mathematical relationship, it is VlRRM > V2 mM. Assuming that the first resistive random access memory voltage VlRRAM 1313 is larger than a reset voltage (VlRRAM>VsET), the first programmable resistive random access memory component 410 is changed from a reset state to a set state. ® (ie high resistance). If the second resistive random access memory voltage V2RRAK1 314 is less than the set voltage (V2RRAM < VsET), the second programmable resistive random access memory component 510 remains in the reset state. The resistance of the first programmable resistive random access memory device 410 has a resistance value of + from a logic state "0" (or state "00") to a logic state "2" having a resistance (or a state "10" "). For example, if the variable /=2, the variable/2=10, and the second programmable resistive random access memory member 510 has a reset resistance equal to i?, the total resistance will change from 3/?

1310¾¾ :TW2958PA 至 21i?。 &在又穩恶可程式電阻式隨機存取記憶體6〇〇從邏輯 〇」(或狀態「〇〇」)程式化至邏輯狀態「3」(或狀 匕1丨」)的過程中,第一電壓施加於第一位元線達到第 了位το線電壓Vbl132G,而第二電壓施加於第二彳化線達當 第-位το線電壓vb2i330。施加達到第一位元線電壓 的電壓可以為零電壓或是小的負電壓。第一可程式電阻式 隨機存取記憶體構件410和第二可程式電阻式隨機存取記 籲憶體構件510的初始狀態為一重置狀態,也就是一低電阻 狀態。介於第-位元線電壓Vbil32〇和第二位元線電壓 Vb21330的電壓差值夠尚(Vhigh),足以使第一電阻式隨機存 取構件電壓V職《1313及第二電阻式隨機存取記憶體電壓 V窗《1314均較第-可程式電阻式隨機存取記憶體構件41〇 及第二可程式電阻式隨機存取記憶體構件51() # V阳高。 第一可程式電阻式隨機存取記憶體構件410及第二可程式 電阻式隨機存取記憶體構件51〇的電阻狀態從重置狀態改 變至設定狀態。第-及第二可程式電阻式隨機存取記憶體 構件410、510的電阻從電阻值(1 + /从的邏輯狀態「〇」^狀 態「〇〇」)變化至電阻值〆的邏輯狀態「3」(狀態 「11」)。舉例來說,假如變數f=2,變數n=1〇及第二^ 程式電阻式隨機存毕記憶體構件510的重置電阻等於允, 則總電阻會從3允改變至30犮。 在雙穩態可程式電阻式隨機存取記憶體6〇〇從邏輯 狀態「〇」(或狀態「〇〇」)程式化至邏輯狀態「丨」(或狀 3813103⁄43⁄4 : TW2958PA to 21i?. & in the process of stabilizing the programmable resistive random access memory 6 from the logic (or state "〇〇") to the logic state "3" (or the state 1) The first voltage is applied to the first bit line to reach the first bit το line voltage Vbl132G, and the second voltage is applied to the second pass line to reach the first bit το line voltage vb2i330. The voltage applied to the first bit line voltage can be zero voltage or a small negative voltage. The initial state of the first programmable resistive random access memory component 410 and the second programmable resistive random access memory component 510 is a reset state, that is, a low resistance state. The voltage difference between the first bit line voltage Vbil32〇 and the second bit line voltage Vb21330 is sufficient (Vhigh), which is sufficient for the first resistive random access device voltage V to “1313 and the second resistive random memory The memory voltage V window "1314 is compared with the first-programmable resistive random access memory device 41" and the second programmable resistive random access memory device 51 () #V positive. The resistance states of the first programmable resistive random access memory component 410 and the second programmable resistive random access memory component 51 are changed from a reset state to a set state. The resistances of the first and second programmable resistive random access memory components 410, 510 are changed from a resistance value (1 + / from a logic state "〇" ^ state "〇〇") to a logic state of a resistance value 「" 3" (status "11"). For example, if the variable f=2, the variable n=1〇, and the second resistor of the second type of resistive random memory device 510 are equal to the allowable resistance, the total resistance will change from 3 to 30 犮. In the bistable programmable resistive random access memory 6 程式 from the logic state "〇" (or state "〇〇") to the logic state "丨" (or shape 38

I31C^^:TW2958PA 態「01」)的過程中,此雙穩態可程式電阻式隨機存取記 憶體600首先依序從邏輯狀態「〇」(或狀態「〇〇」)改變 至邏輯狀態「3」(或狀態「11」)’且第一及第二可程式 電阻式隨機存取記憶體構件410、510也從重置狀態改變 為設定狀態。提供給第二位元線電壓Vb21330的電壓可以 為零電壓或一小負電壓,以數學式表示為: Vb2-Vm=-Vi(jw<0。第一位元線電壓Vbil320提供一正電壓。 在設定狀態,第一可程式電阻式隨機存取記憶體構件的面 • 積較第二可程式電阻式隨機存取記憶體構510的面積小, 以便第一可程式電阻式隨機存取記憶體構件410具有較第 二可程式電阻式隨機存取記憶體構件510高的電阻。這代 表發生一高電壓洩降通過第一可程式電阻式隨機存取記 憶體構件410,以數學式表示為|71心1(|>丨%81^丨。假如第一 電阻式隨機存取記憶體電壓V1RRAM1313的絕對值大於重置 電壓(丨V1RRAM | >VRESET),則第一可程式電阻式隨機存取記憶體 構件410改變至重置狀態(低電阻)。假如第二電阻式隨機 鲁存取記憶體電壓VmAM1314之絕對值少於重置電壓 (| V2m« | <VmET),此第二可程式電阻式隨機存取記憶體構件 510仍維持於設定狀態。在第一和第二可程式電阻式隨機 存取記憶體構件410、510的電阻從電阻值的邏 輯狀態” 3”(或狀態” 11”)改老至電阻值(w/从的邏輯 狀態1 (或狀態” 01 ”)。舉例來說,假如變數/=2, 變數/2=10以及第二可程式電阻式隨機存取記憶體構件510 的重置電阻等於i?,當從邏輯狀態,,〇,’變至,,3”時’總 39In the process of I31C^^: TW2958PA state "01"), the bistable programmable resistive random access memory 600 firstly changes from the logic state "〇" (or the state "〇〇") to the logic state. 3" (or state "11")" and the first and second programmable resistive random access memory components 410, 510 also change from the reset state to the set state. The voltage supplied to the second bit line voltage Vb21330 may be a zero voltage or a small negative voltage, expressed by a mathematical expression: Vb2 - Vm = -Vi (jw < 0. The first bit line voltage Vbil 320 provides a positive voltage. In the set state, the area of the first programmable resistive random access memory component is smaller than the area of the second programmable resistive random access memory structure 510, so that the first programmable resistive random access memory The member 410 has a higher resistance than the second programmable resistive random access memory member 510. This represents that a high voltage drop occurs through the first programmable resistive random access memory component 410, expressed mathematically as | 71心1(|>丨%81^丨. If the absolute value of the first resistive random access memory voltage V1RRAM1313 is greater than the reset voltage (丨V1RRAM | >VRESET), the first programmable resistor is randomly stored. The memory member 410 is changed to a reset state (low resistance). If the absolute value of the second resistive random access memory voltage VmAM1314 is less than the reset voltage (|V2m« | <VmET), the second Program resistive random access memory The member 510 remains in the set state. The resistances of the first and second programmable resistive random access memory members 410, 510 are changed from the logic state "3" (or state "11") of the resistance value to the resistance value. (w/slave logic state 1 (or state "01"). For example, if the variable /=2, the variable/2=10 and the reset resistance of the second programmable resistive random access memory component 510 is equal to i?, when from logic state, 〇, 'change to, 3' when total 39

uuml· :TW2958PA 電阻從3i?變至30i?,當邏輯狀態從” 3”變至” Γ時,總 電阻從30i?變至12i?。 兩電阻Ril310和IM312串連於兩位元線BLil340和 BL21342之間。供給於位元線之電壓分別表示為Vbl1320和 Vb21342,以及跨越兩電阻之電壓洩降分別為VimdSIS和 V2RIUMI 3 1 4 ’兩位元線間的電壓茂降為Vb2_ Vbl相等於VlRRAM + V2R_。如第5圖、第6圖、第8A〜8B圖、及第12圖圖示所 繪,第一可程式電阻式隨機存取記憶體構件410的面積較 • 第二可程式電阻式隨機存取記憶體構件510的面積小,因 此電阻Ri大於Rz。 結合電阻式隨機存取記憶體的狀態,及其造成的胞值 (cell value)如第1表所示。此胞值對應於相對之整體電 阻值。 第1表狀態/值Uuml· : TW2958PA The resistance changes from 3i? to 30i?. When the logic state changes from "3" to "Γ", the total resistance changes from 30i? to 12i?. The two resistors Ril310 and IM312 are connected in series to the two-dimensional line BLil340 and Between BL21342. The voltages supplied to the bit lines are denoted as Vbl1320 and Vb21342, respectively, and the voltage leakage across the two resistors is VimdSIS and V2RIUMI respectively. The voltage between the two lines is Vb2_Vbl equal to VlRRAM. + V2R_. As shown in FIG. 5, FIG. 6, FIG. 8A to FIG. 8B, and FIG. 12, the area of the first programmable resistive random access memory device 410 is smaller than that of the second programmable resistance type. The area of the random access memory device 510 is small, so the resistance Ri is larger than Rz. The state of the resistive random access memory, and the resulting cell value are as shown in Table 1. This cell value corresponds to Relative to the overall resistance value. Table 1 status / value

Ri r2 胞值 重置 重置 0(“00,,) 重置 δ又疋 1( “01” ) 設定 重置 2( “10” ) 汉疋 設定 3( “11” ) 值得注意是第1表之實施例係依循一小尾序 (small-endian)之結構表示。也就是說,最後一個元件係 為最小有效數元(least significant digit, LSD)及最大 40 131Ri r2 cell reset reset 0 ("00,,) reset δ again 疋 1 ("01") set reset 2 ("10") 疋 set 3 ("11") It is worth noting that the first table The embodiment is represented by a small-endian structure. That is, the last component is a least significant digit (LSD) and a maximum of 40 131

TW2958PA 有效數元(most significant digit, MSD)。其他實施例 係依循大尾序(big-endian)模式,亦即數元係被保存,且 開始之程序係為同樣之程序,但兩個記憶單元係為顛倒。 如第8A至8D圖描述呈現各記憶胞狀態的數學式推導 之關係。第8A圖繪示具有第一記憶體元件沁之記憶胞包 含第一可程式電阻式隨機存取記憶體構件41〇以及第一導 電構件420。以及第二記憶體元件M2,包含第二可程式電 阻式隨機存取記憶體構510和第二導電構件52(^此處, % 兩構件於一重置狀態均具有低電阻。假如R可以被當作較 大第二可程式電阻式隨機存取記憶體構510的電阻,然後 其他的第一可程式電阻式隨機存取記憶體構件41〇的電阻 值與弟一可程式電阻式隨機存取記憶體構510之一定值歹 相關。此實施例表示,此第一可程式電阻式隨機存取讀取 記憶體構件410的電阻較第二可程式電阻式隨機存取記憶 體構510的電阻高,因此常數f已知大於丨,但其他實施 例於語義上係為與上述顛倒之描述。 如圖示,此實施例的第8A至第8D圖表現出的電阻的 差值係由於兩電阻式隨機存取記憶體構件不同的尺寸。較 小的電阻式隨機存取記憶體構件具有一較高的電阻值。在 另一實施例中(未繪不),藉由兩元件使用不同的材料以取 得相同的操作電阻差值。在此兩實施例結構上的差距,並 不會影響彼此之間關係的表示’然而其差值仍可由常數^ 獲仔。在此實施例中,兩電阻式隨機存取記憶體構件大約 為相同的厚度(以下提出詳細說明),但是其寬度不同因而 產生電阻差異。 41TW2958PA Most significant digit (MSD). Other embodiments follow the big-endian mode, that is, the number system is saved, and the starting program is the same program, but the two memory units are reversed. The relationship of the mathematical derivation showing the state of each memory cell is described as shown in Figs. 8A to 8D. FIG. 8A illustrates that the memory cell having the first memory component includes the first programmable resistive random access memory component 41A and the first conductive member 420. And the second memory element M2 includes a second programmable resistive random access memory structure 510 and a second conductive member 52. (Here, the % components have low resistance in a reset state. If R can be As the resistance of the larger second programmable resistive random access memory structure 510, and then the resistance of the other first programmable resistive random access memory device 41〇 and the programmable resistive random access The certain value of the memory structure 510 is related. This embodiment shows that the resistance of the first programmable resistive random access memory component 410 is higher than that of the second programmable resistive random access memory structure 510. Therefore, the constant f is known to be larger than 丨, but other embodiments are semantically described as being reversed from the above. As shown, the difference in resistance exhibited by the 8A to 8D figures of this embodiment is due to the two-resistance type. The random access memory components are of different sizes. The smaller resistive random access memory components have a higher resistance value. In another embodiment (not shown), the two components use different materials to Get the same The difference in the structure of the two embodiments does not affect the representation of the relationship between the two. However, the difference can still be obtained by the constant ^. In this embodiment, the two-resistive random access memory The body members are approximately the same thickness (described in detail below), but differ in width to cause a difference in resistance.

:TW2958PA 此兩電阻式隨機存取記憶體構件以串聯排列,以及因 此記憶胞的電阻可全部以仍/i?、或來表示。轉換 較低次序元件M2至設定狀態,其具有一相對高電阻位準, 如第8B圖所示。電阻位準與常數/2成比例升高。不同的 材料存在不同的常數,依據特定化合物的特性或准予挑 選,但是一給定材料其重置及設定狀態之間的關係可藉由 一關係式R今nR如第8B圖所示。如此,於第8B圖所縿示 的狀態可以藉由數學式或描述。 • 相似的,第8C圖繪示轉換電阻式隨機存取記憶體元 件1^12至設定狀態的結果,保留I於重置狀態。在此實施 例中,以相同村料形成兩構件,此常數η可描述介於設定 與重置之間的差值,且允許以來描述電阻值。推導出 完整的數學式來描述記憶胞的電阻值。最後,於 第8D圖繪示轉換RRAM構件沁、M2至一設定狀態,產生過 渡i?~>/2i?(forM2)以及//?·>/]//? (forMi)的過渡狀態。此狀態 可表示為 或 /2(l+/)i?。 •四個胞值語意上的關係可以第2表做一整琿如下。 第2表胞值關係 關係 胞值 (l + /)i? - 0(“00,’) (nif)R 1( “01” ) 2( “10” ) nCHOR 3( “1Γ ) 42: TW2958PA The two resistive random access memory components are arranged in series, and thus the resistance of the memory cells can all be represented by /i?, or . The lower order component M2 is switched to a set state having a relatively high resistance level as shown in Fig. 8B. The resistance level increases in proportion to the constant/2. Different materials have different constants depending on the characteristics or approval of a particular compound, but the relationship between the reset and set states of a given material can be determined by a relationship R to now nR as shown in Fig. 8B. Thus, the state illustrated in Figure 8B can be mathematically or described. • Similarly, Figure 8C shows the result of switching the resistive random access memory device 1^12 to the set state, leaving I in the reset state. In this embodiment, two members are formed in the same village material, and this constant η can describe the difference between the set and the reset, and allows the resistance value to be described. Derived a complete mathematical formula to describe the resistance of the memory cell. Finally, in FIG. 8D, the transition state of the transition RRAM component 沁, M2 to a set state is generated, and the transition i?~>/2i?(forM2) and /?·>/]//? (forMi) are generated. . This state can be expressed as or /2(l+/)i?. • The semantic relationship of the four cell values can be done as a whole in Table 2. The second table cell relationship relationship Cell value (l + /) i? - 0 ("00,') (nif) R 1 ("01") 2 ("10") nCHOR 3 ("1Γ) 42

131(^¾¾ :TW2958PA 一感應操作窗的例子可以藉由設定參數值η、/及P 實現。假如i?=l〇4Q、22=10及/=2,四狀態的電阻值可表 示為 3χ104Ω、1. 2χ105Ω、2. 1χ105Ω及 3χ105Ω。—侦測 電壓(讀取電壓)為120mV,此四狀態的感應電流分別為4 #A、1#A、0.6#A及0.4/zA。用以多重位準操作的區別 電壓可設定為2·5βΑ、0·8/ζΑ及0.5//A。對於高於2 5 //Α的感應電流,一最低電阻狀態可被定義為狀態「〇」(或 狀態「〇〇」)。對於少於0. 5# Α的感應電流,一最高電阻 • 狀態可被定義為狀態「3」(或狀態「11」> 對於高於〇 8 /z A但少於2. 5 /z A的感應電流,一低電阻狀態可被定義為 狀態「1」(或狀態「01」)。對於偵測高於0.5//a但小 於0.8# A的感應電流,一高電阻狀態可被定義為狀態「2」 (或狀態「10」)。感應電流的變化係依據製造程序的變化 以及材料本質的變化《舉例來說,介電侧壁子的厚度(或 寬度)的變化決定第二可程式電阻式隨機存取記憶體構件 的面積’其厚度及面積決定第二可程式電阻式隨機存取記 •憶體構件的電阻。因此,一高品質的多重位元電阻式隨機 存取記憶體的操作需要一寬廣操作窗。一較高的常數以 及較高的係數ί可以提供一寬廣操作窗,因此來避免產品 發生狀態確認錯誤。 藉由跨越位元線BL1和BL2施;.電壓於以設定記恨體 於期望值。四電壓的總值足以完成所有如第丨表所示之可 能值。在此技藝領域中之技術人員可了解存在—些可用之 實際電壓。在一實施例中,使用兩正電壓(此處的正是在 43131(^3⁄43⁄4 : TW2958PA An example of an inductive operation window can be realized by setting the parameter values η, / and P. If i?=l〇4Q, 22=10 and /=2, the resistance value of the four states can be expressed as 3χ104Ω. 1. 2χ105Ω, 2.1χ105Ω, and 3χ105Ω.—The detection voltage (read voltage) is 120mV, and the induced currents of the four states are 4 #A, 1#A, 0.6#A, and 0.4/zA, respectively. The difference voltage of the level operation can be set to 2·5βΑ, 0·8/ζΑ and 0.5//A. For an induced current higher than 2 5 //Α, a minimum resistance state can be defined as the state “〇” (or State "〇〇"). For induction currents less than 0. 5# Α, a maximum resistance • state can be defined as state "3" (or state "11"> for less than 〇8 /z A but less For a sense current of 2. 5 /z A, a low resistance state can be defined as state "1" (or state "01"). For detecting an induced current higher than 0.5//a but less than 0.8# A, The high resistance state can be defined as state "2" (or state "10"). The change in induced current is based on changes in the manufacturing process and changes in the nature of the material. The change in the thickness (or width) of the dielectric sidewall determines the area of the second programmable resistive random access memory device. The thickness and area determine the second programmable resistive random access memory. Therefore, the operation of a high quality multi-bit resistive random access memory requires a wide operating window. A higher constant and a higher coefficient ί can provide a wide operating window, thus avoiding product occurrence. Acknowledgment of error. By applying across the bit lines BL1 and BL2; the voltage is set to the desired value. The total value of the four voltages is sufficient to complete all possible values as shown in the table. Those skilled in the art It can be seen that there are some actual voltages available. In one embodiment, two positive voltages are used (here at 43

! : TW2958PA 以,VB2測量)及兩負電壓,此結果電麗標記為 二::及,。W。施加電壓的絕對值取決於記憶體構件 么’I括材料及尺寸。在此實施例中表示,—高電壓 =:(則及一低崎為L 5伏特(一)被 個程序為—般的重置’也就是驅動電阻式隨機存 件至重置狀態,來產生〇胞值。此程序如下方 第3表整體重置過渡過程! : TW2958PA, VB2 measurement) and two negative voltages. The result is marked as two:: and. W. The absolute value of the applied voltage depends on the memory component and the material and dimensions. In this embodiment, it is shown that - high voltage =: (and then a low is L 5 volts (a) is a program-like reset" that is to drive the resistive random access to the reset state to generate Cell value. This procedure resets the transition process as a whole in Table 3 below.

如上示,適當的過渡區錢Hh,如電壓茂降的每 :邑對值V_* V·#超過重置值。隨著兩電阻式隨機 存取記憶體構件於重置狀態,記憶胞的整體的值則為〇。 社重置狀態是進一步的操作的起始點。因為不可預知的 、、'°果了此發生於中間狀態的過渡,較佳地在任何相變化操 作.tT以降低單位至重置狀態做為第一步。 其相反的狀態,一胞值為3,如下方第4表中所示。As indicated above, the appropriate transition zone money Hh, such as the voltage drop, per: 邑 value V_* V·# exceeds the reset value. As the two resistive random access memory components are in the reset state, the overall value of the memory cells is 〇. The social reset status is the starting point for further operations. Since the unpredictable, '° effect occurs in the intermediate state transition, it is preferable to operate the .tT in any phase change step to reduce the unit to the reset state as the first step. In its opposite state, the cell value is 3, as shown in Table 4 below.

.1310^¾ :TW2958PA 第4表0-3的過渡 (Vb2-Vbl )=Vhigh 元件狀態 胞值 動作 元件狀態 胞值 Μι 0 0 Vi<Vset 1 3 m2 0 Y2>VsET 1 施加一 Vhigh高壓,足以產生超過兩構件之VsET的電壓 洩降。隨著兩構件於設定狀態,此胞值為二進位的11或3。 要產生一胞值2,其程序如下方第5表所示。 第5表0-2的過渡 (Vb2-Vbl)=Vlow 元件狀態 胞值 動作 元件狀態 胞值 Μι 0 0 Vl>VsET 1 2 m2 0 Y2<VsET 0 此設定中,此電壓洩降Vi大於產生一設定狀態的需 求,所以R!為設定狀態,但此電壓洩降v2小於設定需求。 此結果使Ri位於一設定狀態,且R2於重置狀態,而造成一 胞值為二位元01或2。 產生一胞值1的方式第6表所示。到達1值較其他過 渡轉換更加的困難,可明顯的觀察到假如兩構件從重置狀 態開始,在V2施加一足以產生設定狀態之電壓也必然會在 L設定,而造成之值為3而非1。而此解決方法為首先讓 記憶胞全部為設定狀態,如前第3表所示。然後,從一胞 45.1310^3⁄4 : TW2958PA Transition of Table 4-3 (Vb2-Vbl) = Vhigh Component Status Cell Value Action Element Status Cell Value Μι 0 0 Vi<Vset 1 3 m2 0 Y2>VsET 1 Apply a Vhigh high voltage, enough A voltage drop of more than two components of VsET is generated. This cell value is 11 or 3 of the binary as the two components are in the set state. To generate a cell value of 2, the procedure is as shown in Table 5 below. Transition of Table 5-2 (Vb2-Vbl)=Vlow Component State Cell Value Action Element State Cell Value Μι 0 0 Vl>VsET 1 2 m2 0 Y2<VsET 0 In this setting, this voltage bleed Vi is greater than one Set the state of the demand, so R! is the set state, but this voltage drop v2 is less than the set demand. This result causes Ri to be in a set state and R2 to be in a reset state, resulting in a cell value of two bits 01 or 2. The way to generate a cell value of 1 is shown in Table 6. It is more difficult to reach the value of 1 than other transitions. It can be clearly observed that if the two components start from the reset state, applying a voltage sufficient to generate the set state at V2 will inevitably be set at L, resulting in a value of 3 instead of 1. The solution is to first make the memory cells all set, as shown in the previous table. Then, from a cell 45

.1310235k :TW2958PA . 值3設定,施加-Vi。》電壓足夠於h而非R產生重置狀態 而產生二位元的胞值01或1。 第6表3-1的過渡 (Vb2 - Vbl)=-Vl〇w 元件狀態 胞值 動作 元件狀態 胞值 Μι 1 3 | Vl | >Vreset 0 1 M2 1 1 V21 >Vreset 1 • 第14圖繪示根據本發明說明雙穩態可程式電阻式隨 機存取記憶體600從邏輯狀態「00」至其他三個邏輯狀態, 邏輯狀態「01」、邏輯狀態「10」以及邏輯狀態「11 j之 流程圖1400。在步驟1410,雙穩態可程式電阻式隨機存 取記憶體600可程式從邏輯狀態「〇〇」至三邏輯狀態、邏 輯狀態「〇1」、邏輯狀態「10」及邏輯狀態「11」。在步雜 1410中,雙穩態可程式電阻式隨機存取記憶體600於邏輯 狀態「00」。假如,雙穩態可程式電阻式隨機存取記憶體 籲 600從邏輯狀態「〇〇」程式化至邏輯狀態「01」,在步驟 1420中此雙穩態可程式電阻式隨機存取記憶體600首先從 邏輯狀態「00」程式化至邏輯狀態「11」,以及其次在步 驟1430中從邏輯狀態「11」程式化至邏輯狀態「01」。在 步驟1420中此雙穩態可程式電阻式隨機存取記憶體600 由邏輯狀態「〇〇」程式化至邏輯狀態「11」,其第/位元 線電壓Vbl1320及第二位元線電壓yb2l330間之差值電壓相 等於〆高電壓Vhigh ’以數學式表示為ybl-Vb2=Vhigh,此第二 46.1310235k : TW2958PA . Value 3 setting, apply -Vi. The voltage is sufficient for h instead of R to generate a reset state resulting in a two-bit cell value of 01 or 1. Transition of Table 6 3-1 (Vb2 - Vbl) = -Vl〇w Component Status Cell Value Action Element Status Cell Value Μι 1 3 | Vl | > Vreset 0 1 M2 1 1 V21 > Vreset 1 • Figure 14 The bistable programmable resistive random access memory 600 is illustrated in accordance with the present invention from a logic state "00" to three other logic states, a logic state "01", a logic state "10", and a logic state "11j". Flowchart 1400. In step 1410, the bistable programmable resistive random access memory 600 can be programmed from a logic state "〇〇" to a three logic state, a logic state "〇1", a logic state "10", and a logic state. "11". In step 1410, the bistable programmable resistive random access memory 600 is in a logic state "00". If the bistable programmable resist random access memory 600 is programmed from the logic state "〇〇" to the logic state "01", the bistable programmable resistive random access memory 600 is obtained in step 1420. First, the logic state "00" is programmed to the logic state "11", and then the logic state "11" is programmed to the logic state "01" in step 1430. In step 1420, the bistable programmable resistive random access memory 600 is programmed from a logic state "〇〇" to a logic state "11", and its bit/bit line voltage Vbl1320 and second bit line voltage yb2l330 The difference between the voltages is equal to the high voltage Vhigh 'in mathematical expression ybl-Vb2=Vhigh, this second 46

1310¾¾ :TW2958PA 電阻式隨機存取記憶體電壓VmAMl314大於Vset電壓,且第 一電阻式隨機存取記憶體電壓VlRRAM 1313大於VSET電壓。 於步驟1430中雙穩態可程式電阻式隨機存取記憶體6〇〇 從邏輯狀態「11」程式化至邏輯狀態「01」,其第一元位 線電壓Vbl1320和第二位元線電壓vb21330間的電壓差值相 等於一負低電壓-V!。胃,以數學式表示為VwVwVw,其第 二電阻式隨機存取憶體電壓VmAM1314的絕對值小於Vreset 電壓的絕對值’以及第一電阻式隨機存取記憶體電壓 鲁 V1RRAM 1 3 1 3大於VrESET電壓的絕對值。 於步驟1440中雙穩態可程式電阻式隨機存取記憶體 600由邏輯狀態「00」程式化至邏輯狀態「10」,在第一位 元線電壓Vm1320和第二位元線電壓Vb21330間的電壓差值 等於一低電壓Vi。*,而以數學式表示為Vw-VbFV!。*,第二電 阻式隨機存取記憶體電壓Vzmd314小於Vsn電壓,且第一 電阻式隨機存取記憶體電壓VmAM 1313大於Vset電壓。於 步驟1450中雙穩態可程式電阻式隨機存取記憶體600由 _ 邏輯狀態「00」程式化至邏輯狀態「11」’其第一位元線 電壓Vm1320和第二位元線電壓Vb2l330間的電壓差值等於 高電壓Vhuh,由數學式表示為Vbl-Vb2=Vhigh,此第二電阻式 隨機存取記憶體電壓V2mu 1314大於Vset電壓’且第一電 1¾•式隨機存取記憶體電壓V1RRAM 1313九於vSET電壓。 第15圖繪示根據本發明說明雙穩態可程式電阻式隨 機存取記憶體6〇〇從邏輯狀態「〇 1」至其他三個邏輯狀態’ 邏輯狀態「00」、邏輯狀態「10」以及邏輯狀態「11」之 47 I .13103⁄43⁄4: The TW2958PA resistive random access memory voltage VmAM1314 is greater than the Vset voltage, and the first resistive random access memory voltage VlRRAM 1313 is greater than the VSET voltage. In step 1430, the bistable programmable resistive random access memory 6 is programmed from a logic state "11" to a logic state "01", and the first bit line voltage Vbl1320 and the second bit line voltage vb21330 The voltage difference between them is equal to a negative low voltage -V!. The stomach is expressed in the mathematical form as VwVwVw, the absolute value of the second resistive random access memory voltage VmAM1314 is less than the absolute value of the Vreset voltage' and the first resistive random access memory voltage Lu V1RRAM 1 3 1 3 is greater than VrESET The absolute value of the voltage. In step 1440, the bistable programmable resistive random access memory 600 is programmed from a logic state "00" to a logic state "10" between the first bit line voltage Vm1320 and the second bit line voltage Vb21330. The voltage difference is equal to a low voltage Vi. *, and expressed in mathematics as Vw-VbFV!. *, the second resistive random access memory voltage Vzmd314 is less than the Vsn voltage, and the first resistive random access memory voltage VmAM 1313 is greater than the Vset voltage. In step 1450, the bistable programmable resistive random access memory 600 is programmed from the _ logic state "00" to the logic state "11"' between the first bit line voltage Vm1320 and the second bit line voltage Vb2l330. The voltage difference is equal to the high voltage Vhuh, which is expressed by the mathematical expression as Vbl-Vb2=Vhigh, and the second resistive random access memory voltage V2mu 1314 is greater than the Vset voltage' and the first electrical random access memory voltage V1RRAM 1313 is nine times the vSET voltage. 15 is a diagram showing a bistable programmable resistive random access memory 6 〇〇 from a logic state “〇1” to three other logic states, a logic state “00”, a logic state “10”, and a logic state “10” according to the present invention. 47 of the logical state "11".

.131025¾ :TW2958PA 流程圖1500。於步驟1510,雙穩態可程式電阻式隨機存 取記憶體600位於邏輯狀態「〇1」。於步驟1520,雙穩態 電阻式隨機存取記憶體6〇〇由邏輯狀態「01」程式化至邏 輯狀態「00」’第一位元線電壓Vbl1320和第二位元線電壓 Vb21330間的電壓差值相等於一負高電壓-vhish,由數學式 表示為Vbi-Vb2=-Vhigh,且第二電阻式隨機存取記憶體電壓 V"2RRAm1314的絕對值大於VRESET電壓,以及第一電阻式隨機 存取記憶體電壓V1RRm1313的絕對值大於Vreset電壓。 • 假如雙穩態可程式電阻式隨機存取記憶體600從邏 輯狀態「01」程式化至邏輯狀態「10」,此雙穩態可程式 電阻式隨機存取記憶體600於步驟1530中首先由邏輯狀 態「01」程式化至邏輯狀態「00」,其次於步驟1540中由 邏輯狀態「00」程式化至邏輯狀態「10」。於步驟1530中 雙穩態可程式電阻式隨機存取記憶體600由邏輯狀態「01」 程式化至邏輯狀態「〇〇」,其第一位元線電壓Vbil320及第 二位元線電壓Vb21330間的電壓差值相等於一負高電壓 _ -Vhigh,以數學式表示為Vbi-Vb2=-Vhigh,其第二電阻式隨機 存取記憶體電壓V2RRax1314的絕對值大於VRESET電壓,且第 一電阻式隨機存取記憶體1哪《«1313的絕對值大於VRESn電 壓。於步驟1540中雙穩態可程式電阻式隨機存取記憶體 600由,邏輯狀態「〇〇」程式化至邏輯狀態「1〇」,其第一位 元線電壓Vbil320及第二位元線電壓Vb2l330間的電壓差值 相等於一低電壓Vl。*’以數學式表示為VbrVb^Vu,,第二電 阻式隨機存取記憶體電壓VmAM1314大於Vresh電壓,且第 48.1310253⁄4 : TW2958PA Flowchart 1500. In step 1510, the bistable programmable resistive random access memory 600 is in the logic state "〇1". In step 1520, the bistable resistive random access memory 6 is programmed from a logic state "01" to a logic state "00" and a voltage between the first bit line voltage Vbl1320 and the second bit line voltage Vb21330. The difference is equal to a negative high voltage -vhish, represented by the mathematical expression as Vbi-Vb2=-Vhigh, and the absolute value of the second resistive random access memory voltage V" 2RRAm 1314 is greater than the VRESET voltage, and the first resistive random The absolute value of the access memory voltage V1RRm1313 is greater than the Vreset voltage. • If the bistable programmable resistive random access memory 600 is programmed from the logic state "01" to the logic state "10", the bistable programmable resistive random access memory 600 is firstly used in step 1530. The logic state "01" is programmed to the logic state "00", followed by the logic state "00" to the logic state "10" in step 1540. In step 1530, the bistable programmable resistive random access memory 600 is programmed from a logic state "01" to a logic state "〇〇", between the first bit line voltage Vbil320 and the second bit line voltage Vb21330. The voltage difference is equal to a negative high voltage _ -Vhigh, expressed as Vbi-Vb2=-Vhigh in a mathematical expression, the absolute value of the second resistive random access memory voltage V2RRax1314 is greater than the VRESET voltage, and the first resistive Random access memory 1 "The absolute value of «1313 is greater than the VRESn voltage. In step 1540, the bistable programmable resistive random access memory 600 is programmed from the logic state "〇〇" to the logic state "1", and the first bit line voltage Vbil320 and the second bit line voltage The voltage difference between Vb2l330 is equal to a low voltage Vl. *' is expressed in the mathematical form as VbrVb^Vu, and the second resistive random access memory voltage VmAM1314 is greater than the Vresh voltage, and the 48th

1310^¾¾ :TW2958PA 一電阻式隨機存取記憶體電壓V1RRAM1313小於VRESET電壓。 於步驟1550中,雙穩態可程式電阻式隨機存取記憶 體600從邏輯狀態「01」程式化至邏輯狀態「11」,其第 一位元線電壓Vbd320及第二位元線電壓Vb21330間的電壓 差值相等於一高電壓Vhish,以數學式表示為Vbl-Vb2=Vhigh, 第二電阻式隨機存取記憶體電壓V2mM1314大於VSET電壓, 且第一電阻式隨機存取記憶體電壓大於VSET電 壓。 • 第16圖繪示根據本發明說明雙穩態可程式電阻式隨 機存取記憶體600從邏輯狀態「10」程式化至其他三個邏 輯狀態,邏輯狀態「00」、邏輯狀態「01」以及邏輯狀態 「11」之流程圖1600。於步驟1610,雙穩態可程式電阻 式隨機存取記憶體600於邏輯狀態「1〇」。於步驟1620中 雙穩態可程式電阻式隨機存取記憶體600由邏輯狀態「1〇」 程式化至邏輯狀態「〇〇」’其第一位元線電壓Vbl 1320及第 二位元線電壓1^1330間的電壓差值相等於一負高電壓 _ -Vhuh,以數學式表示為Vbi-Vb2=-Vhigh,其第二電阻式隨機 存取記憶體電壓VmAM 1314的絕對值大於Vreset電壓,及第 一電阻式隨機存取記憶體電壓Virram1313的絕對值大於 Vreset 電壓0 假如雙穩態可拜式電阻式隨機存取記憶體600由邏 輯狀恝「10」程式化至邏輯狀態「0丨」,於步驟1630中此 雙穩態可程式電阻式隨機存取記憶體600首先由邏輯狀態 「10」程式化至邏輯狀態「u」,其次於步驟1640中由邏 491310^3⁄43⁄4 : TW2958PA A resistive random access memory voltage V1RRAM1313 is less than the VRESET voltage. In step 1550, the bistable programmable resistive random access memory 600 is programmed from a logic state "01" to a logic state "11", between the first bit line voltage Vbd320 and the second bit line voltage Vb21330. The voltage difference is equal to a high voltage Vhish, expressed as Vbl-Vb2=Vhigh in a mathematical expression, the second resistive random access memory voltage V2mM1314 is greater than the VSET voltage, and the first resistive random access memory voltage is greater than VSET Voltage. • Figure 16 illustrates a bistable programmable resistive random access memory 600 programmed from a logic state "10" to three other logic states, a logic state "00", a logic state "01", and Flowchart 1600 of logic state "11". In step 1610, the bistable programmable resistive random access memory 600 is in a logic state "1". In step 1620, the bistable programmable resistive random access memory 600 is programmed from a logic state "1" to a logic state "〇〇", its first bit line voltage Vbl 1320 and a second bit line voltage. The voltage difference between 1^1330 is equal to a negative high voltage _ -Vhuh, expressed as Vbi-Vb2=-Vhigh in mathematical expression, and the absolute value of the second resistive random access memory voltage VmAM 1314 is greater than the Vreset voltage. And the absolute value of the first resistive random access memory voltage Virram1313 is greater than the Vreset voltage 0. If the bistable resistive random access memory 600 is programmed from the logic state "10" to the logic state "0" In step 1630, the bistable programmable resistive random access memory 600 is first programmed from a logic state "10" to a logic state "u", followed by a logic 49 in step 1640.

-* : TW2958PA 輯狀態” 11”程式化至邏輯狀態「〇1」。在步驟1630中雙 穩態可程式電阻式隨機存取記憶體600從邏輯狀態「10」 程式化至邏輯狀態「11」,其第一位元線電壓Vbl1320及第 二位元線電壓Vb21330間的電壓差值相等於高電壓VhUh, 以數學式表示為Vbl-Vb2 = Vhigh,第二電阻式隨機存取記憶體 電壓V2mMl314大於Vsn電壓,且第一電阻式隨機存取記憶 體電壓Vimul313大於Vset電壓。於步驟1640中,雙穩態 可程式電阻式隨機存取記憶體600由邏輯狀態「11」程式 • 化至邏輯狀態「10」,其第一位元線電壓Vbl1320及第二位 元線電壓Vb21330的電壓差值相等於負低電壓-V^,以數學 式表示為VM-Vb^-Vu,,第二電阻式隨機存取記憶體零壓 VmAn 1314的絕對值大於Vreset電壓的絕對值,且第一電阻 式隨機存取記憶體電壓Vuram1313的絕對值小於Vreset電壓 的絕對值。 於步驟1650中,雙穩態可程式電阻式隨機存取記憶 體600由邏輯狀態「1〇」程式化至邏輯狀態「11」,其第 • 一位元線電壓ν^1320及第二位元線電壓Vb21330的電壓差 值相等於高電壓Vhigh ’以數學式表示為Vbl-Vb2=Vhigh,第二 電阻式隨機存取記憶體電壓%咖《1314大於Vsn電壓,且第 一電阻式隨機存取記憶體電壓V1Rrm1312大於Vsn電壓。 第17圖繪示根據本發明說明雙穩態可程式電阻式隨 機存取記憶體600之從邏輯狀態「1」程式化至其他三個 邏輯狀態,邏輯狀態「00」、邏輯狀態「01」以及邏輯狀 態「10」之流程圊Π00。於步驟Π10中雙穩態可程式電 50-* : TW2958PA status "11" is programmed to logic state "〇1". In step 1630, the bistable programmable resistive random access memory 600 is programmed from a logic state "10" to a logic state "11", between the first bit line voltage Vbl1320 and the second bit line voltage Vb21330. The voltage difference is equal to the high voltage VhUh, expressed as Vbl-Vb2 = Vhigh, the second resistive random access memory voltage V2mMl314 is greater than the Vsn voltage, and the first resistive random access memory voltage Vimul313 is greater than the Vset voltage . In step 1640, the bistable programmable resistive random access memory 600 is programmed from the logic state "11" to the logic state "10", and the first bit line voltage Vbl1320 and the second bit line voltage Vb21330 The voltage difference is equal to the negative low voltage -V^, expressed as VM-Vb^-Vu in a mathematical expression, and the absolute value of the second resistive random access memory zero voltage VmAn 1314 is greater than the absolute value of the Vreset voltage, and The absolute value of the first resistive random access memory voltage Vuram 1313 is smaller than the absolute value of the Vreset voltage. In step 1650, the bistable programmable resistive random access memory 600 is programmed from a logic state "1" to a logic state "11", the first bit line voltage ν^1320 and the second bit. The voltage difference of the line voltage Vb21330 is equal to the high voltage Vhigh', which is expressed by the mathematical expression as Vbl-Vb2=Vhigh, and the second resistive random access memory voltage %13 is greater than the Vsn voltage, and the first resistive random access The memory voltage V1Rrm1312 is greater than the Vsn voltage. Figure 17 is a diagram showing the bistable programmable resistive random access memory 600 from the logic state "1" to the other three logic states, the logic state "00", the logic state "01", and the logic state "01" according to the present invention. The flow of logic state "10" is 圊Π00. The bistable programmable circuit in step Π10

13102ii2^ :TW2958PA 阻式隨機存取記憶體600由邏輯狀態「11」複式化至邏輯 狀態「00」’其介於第一位元線電壓Vbl1320及第二位元線 電壓Vb21330的電壓差值相等於負高電壓-Vhigh,以數學式 表示為Vbi-Vb2=-Vhigh,第二電阻式隨機存取記,障體電壓 VmAMl 314的絕對值大於Vreset電壓,且第一電阻式隨機存 取記憶體電壓ViRtmfl313的絕對值大於Vreset%^。 於步驟1730中雙穩態可程式電阻式隨璣存取記憶體 600由邏輯狀態「11」程式化至邏輯狀態「〇1」,其第一位 φ 元線電壓Vm1320及第二位元線電壓Vb21330之間的電壓差 值相等於負低電壓’以數學式表示為Vbi〜Vb2=_vl()w,第 二電阻式隨機存取記憶體電壓VmAiil314的絕對值大於 Vreset電壓的絕對值’且第一電阻式隨機存取記體體電壓 Vim«1313的絕對值小於VRESET電壓的絕對值。 假如雙穩態可程式電阻式隨機存取記憶體600由邏 輯狀態「11」程式化至邏輯狀態「10」,於步驟1740雙穩 態可程式電阻式隨機存取記憶體6〇〇首先由邏輯狀態r 11」 • 程式化至邏輯狀態「00」,其次於步驟175〇中由邏輯狀態 「00」程式化至邏輯狀態「10」。於步驟1740中雙穩態可 程式電阻式隨機存取記憶體60()由邏輯狀態「11」程式化 至邏輯狀態「00」,其第一位元線電壓Vbi 1320及第二位元 .線電壓Vb21330之間的電壓差值相等於負高電壓-Vhigh,以 數學式表示為VbrVb2=-Vhigh’第二電阻式隨機存取記憶體 電壓VmAM1314的絕對值大於Vreset電壓,且第一電阻式隨 機存取記憶體電壓VlRRAMl313的絕對值大於Vreset電塵。於 5113102ii2^: TW2958PA Resistive random access memory 600 is doubled from logic state "11" to logic state "00", which is the voltage difference between the first bit line voltage Vbl1320 and the second bit line voltage Vb21330. Equal to the negative high voltage -Vhigh, expressed as Vbi-Vb2=-Vhigh in the mathematical expression, the second resistive random access, the absolute value of the barrier voltage VmAM1 314 is greater than the Vreset voltage, and the first resistive random access memory The absolute value of the voltage ViRtmfl 313 is greater than Vreset%^. In step 1730, the bistable programmable resistive access memory 600 is programmed from the logic state "11" to the logic state "〇1", the first bit of the φ element line voltage Vm1320 and the second bit line voltage. The voltage difference between Vb21330 is equal to the negative low voltage 'calculated as Vbi~Vb2=_vl()w, the absolute value of the second resistive random access memory voltage VmAiil314 is greater than the absolute value of the Vreset voltage' and The absolute value of a resistive random access register body voltage Vim «1313 is less than the absolute value of the VRESET voltage. If the bistable programmable resistive random access memory 600 is programmed from the logic state "11" to the logic state "10", in step 1740 the bistable programmable resistive random access memory 6 is first logically State r 11" • Programmatically to logic state "00", followed by logic state "00" to logic state "10" in step 175. In step 1740, the bistable programmable resistive random access memory 60() is programmed from a logic state "11" to a logic state "00", the first bit line voltage Vbi 1320 and the second bit line. The voltage difference between the voltages Vb21330 is equal to the negative high voltage -Vhigh, expressed as VbrVb2=-Vhigh' in the mathematical expression. The absolute value of the second resistive random access memory voltage VmAM1314 is greater than the Vreset voltage, and the first resistive random The absolute value of the access memory voltage VlRRAM1313 is greater than the Vreset dust. At 51

,131〇編 :TW2958PA .步驟1750中,其雙穩態可程式電阻式隨機存取記憶體6〇〇 由邏輯狀態「〇〇」程式化至邏輯狀態「10」,其第一位元 線電壓Vbl1320及第二位元線電壓vb21330之間的電壓差值 相等於負低電壓-’以數學式表示為VbrVfViM,第二 電阻式隨機存取§己憶體電壓V2RRAm1 31 4大於VsET電廢,且第 一電阻式隨機存取記憶體電壓VurAm1313小於VsET電壓。 關於相變化隨機存取記憶體裝置的製造、材料組成、 使用及操作的其他資訊,請見美國專利案號 • N〇.11/155,067,,Thin Film F峨 Phase Chang 疆 and, 131〇: TW2958PA. In step 1750, the bistable programmable resistive random access memory 6 is programmed from a logic state "〇〇" to a logic state "10", and its first bit line voltage The voltage difference between Vbl1320 and the second bit line voltage vb21330 is equal to the negative low voltage - 'Expressed as VbrVfViM in a mathematical expression, and the second resistive random access § Remembrance voltage V2RRAm1 31 4 is greater than VsET, and The first resistive random access memory voltage VurAm 1313 is smaller than the VsET voltage. For additional information on the fabrication, material composition, use, and operation of phase change random access memory devices, see U.S. Patent No. 11/155,067, Thin Film F峨 Phase Chang and

Manufacturing Method ” , ,, * 此專利於2005年6月17號 申請並為此應用的受讓人沐抵+ 上丄 所擁有,包括在在此提出之參考 綜上所述,雖然本發明 其並非用以限定本發明。2以較佳實施例揭露如上’然 知識者,在不脫離本發明2明所屬技術領域中具有通常 更動與潤飾。因此,本發楕神和範圍内,當可作各種之 • 利範圍所界定者為準之保護範圍當視後附之申請專 52Manufacturing Method ” , ,, * This patent was filed on June 17, 2005 and is owned by the assignee of this application, including the reference cited herein, although the invention is not The present invention is used to define the present invention. 2 The preferred embodiment of the present invention is disclosed in the above-mentioned technical field, and has various modifications and refinements in the technical field of the present invention. • The scope of protection as defined by the scope of interest shall be attached to the application form 52

13102¾ 號:TW2958PA 【圖式簡單說明】 第1圖繪示根據本發明之雙穩態電阻式隨機存取記 憶體陣列之示意圖。 ° 第2圖繪示根據本發明一較佳實施例之一電阻式隨 機存取記憶體構造的積體電路圖之簡單方塊圖。 第3圖繪示根據本發明製造雙穩態電阻式隨機存取 記憶層之兩可程式電阻式隨機存取記憶層之沈積及微影 技術的參考步騾之簡單示意圖。 如 第4圖繪不根據本發明製造雙穩態電阻式隨機存取 記憶體之下一步驟的示意圖,蝕刻至第二導電層,第二導 電層沈積鄰近万;、第一導電構件及第一可程式電阻式隨機 存取記憶體構件之介電側壁子。 第5圖為繪示根據本發明製造雙穩態電阻式隨機存 取記憶體之下一步驟的結構圖,蝕刻穿過第二電阻式隨機 存取記憶層。 第6圖為繪示根據本發明雙穩態電阻式隨機存取記 憶體的電阻式隨機存取記憶體胞結構之簡單示意圖。 第7圖為繪示根據本發明具有一電阻式隨機存取記 憶層之雙穩態電阻式隨機存取記憶體的電流_電麗(I_v) 曲線之範例。 第8A圖為繪示根據本發明具有兩個均位於重置 (RESET )狀態之電阻式隨機存取記憶體構件之雙穩態電阻 式隨機存取s己憶體之簡单示意圖。 第8B圖繪示根據本發明之具有兩個位於設定(SET) 53131023⁄4: TW2958PA [Simplified Schematic] FIG. 1 is a schematic diagram showing a bistable resistive random access memory array according to the present invention. Figure 2 is a block diagram showing an integrated circuit diagram of a resistive random access memory structure in accordance with a preferred embodiment of the present invention. Figure 3 is a simplified diagram showing the steps of deposition and lithography of two programmable resistive random access memory layers for fabricating a bistable resistive random access memory layer in accordance with the present invention. FIG. 4 is a schematic diagram showing a step of manufacturing a bistable resistive random access memory according to the present invention, etching to a second conductive layer, depositing a second conductive layer adjacent to the 10,000; first conductive member and first A dielectric sidewall of a programmable resistive random access memory device. Figure 5 is a block diagram showing a step under the fabrication of a bistable resistive random access memory in accordance with the present invention, etched through a second resistive random access memory layer. Figure 6 is a simplified schematic diagram showing the structure of a resistive random access memory cell in accordance with the bistable resistive random access memory of the present invention. Fig. 7 is a view showing an example of a current_electrical (I_v) curve of a bistable resistive random access memory having a resistive random access memory layer according to the present invention. Figure 8A is a simplified schematic diagram showing a bistable resistive random access s memory having two resistive random access memory components each located in a reset (RESET) state in accordance with the present invention. Figure 8B illustrates two settings (SET) 53 in accordance with the present invention.

131觀 :TW2958PA 及重置(RESET)狀態電阻式隨機存取構件的雙穩態電阻式 隨機存取記憶體之簡單示意圖。 第8C圖繪不根據本發明之具有兩個位於設定(SET ) 及重置(RESET)狀態之電阻式隨機存取記憶體構件的雙穩 態電阻式隨機存取記憶體之簡單示意圖。 第8D圖繪示根據本發明之具有兩個位於設定(SET) 狀態之電阻式隨機存取記憶體構件的雙穩態電阻式隨機 存取記憶體之簡單示意圖。 • 第9圖繪示根據本發明之以串聯方式連接兩個電阻 式隨機存取記憶體構件以提供四種邏輯狀態的雙穩態電 阻式隨機存取記憶體之四種邏輯狀態的數學關係。 第10圖繪示根據本發明以串聯方式連接多重電I1 且式 隨機存取記憶體構件以使每一記憶體單元提供多重位元 之雙穩態隨機存取記憶體的示意圖。 第11圖繪示根據本發明具有蝕刻程序於第一及第二 電阻式隨機存取記憶層以及沈積介電侧壁子的雙穩態電 _ 阻式隨機存取記憶體之示意圖。 第12圖繪示根據本發明去除介電侧壁子後具有多重 電阻式隨機存取記憶體構件及多重導電構件的雙穩態電 阻式隨機存取記憶體之示意圖。 第13圖繪示根據本發明用以施用電壓以程式具有二 電阻式隨機存取記憶體構件之雙穩態電阻式隨機存取記 憶體。 第14圖繪示根據本發明說明雙穩態電阻式隨機存取 54131 view: A simple schematic diagram of the bistable resistive random access memory of the TW2958PA and the RESET state resistive random access device. Figure 8C is a simplified schematic diagram of a bistable resistive random access memory having two resistive random access memory components in a set (SET) and reset (RESET) state in accordance with the present invention. Figure 8D is a simplified schematic diagram of a bistable resistive random access memory having two resistive random access memory components in a set (SET) state in accordance with the present invention. • Figure 9 is a graphical representation of the mathematical relationship of four logic states of a bistable resistive random access memory in which two resistive random access memory components are connected in series to provide four logic states in accordance with the present invention. Figure 10 is a schematic diagram showing a bistable random access memory in which a plurality of electrical I1 and random access memory components are connected in series to provide multiple bits per memory cell in accordance with the present invention. 11 is a schematic diagram of a bistable resistive random access memory having an etch process on the first and second resistive random access memory layers and a deposited dielectric sidewall according to the present invention. Figure 12 is a schematic diagram showing a bistable resistive random access memory having a multi-resistive random access memory device and a plurality of conductive members after removing the dielectric sidewalls according to the present invention. Figure 13 is a diagram showing a bistable resistive random access memory device for applying a voltage to program a two-resistance random access memory device in accordance with the present invention. Figure 14 is a diagram showing bistable resistive random access in accordance with the present invention.

I31Q2^fe :TW2958PA 記憶體從邏輯狀態「00」程式化至其他三個邏輯狀態,邏 輯狀態「01」、邏輯狀態「10」以及邏輯狀態「11」之流 程圖。 第15圖繪示根據本發明說明雙穩態電阻式隨機存取 記憶體從邏輯狀態「01」程式化至其他三個邏輯狀態,邏 輯狀態「00」、邏輯狀態「10」以及邏輯狀態「11」之流 程圖。 第16圖繪示根據本發明說明雙穩態電阻式隨機存取 • 記憶體從邏輯狀態「10」程式化至其他三個邏輯狀態,邏 輯狀態「00」、邏輯狀態「01」以及邏輯狀態「11」之流 程圖。 第17圖繪示根據本發明說明雙穩態電阻式隨機存取 記憶體從邏輯狀態「11」程式化至其他三個邏輯狀態,邏 輯狀態「00」、邏輯狀態「01」以及邏輯狀態「10」之流 程圖。 鲁 【主要元件符號說明】 100 :記憶體陣列 123、124、262 :字元線 128 :共源線 , 132、133 :下部電極構件 , 134 :上部電極構件 135 :側壁接腳記憶體胞 141、142、264 :位元線 55I31Q2^fe : The flow chart of the TW2958PA memory from the logic state "00" to the other three logic states, the logic state "01", the logic state "10", and the logic state "11". Figure 15 is a diagram showing the bistable resistive random access memory from the logic state "01" to the other three logic states, the logic state "00", the logic state "10", and the logic state "11" according to the present invention. Flow chart. Figure 16 is a diagram showing the bistable resistive random access memory from the logic state "10" to the other three logic states, the logic state "00", the logic state "01", and the logic state according to the present invention. Flow chart of 11". Figure 17 is a diagram showing the bistable resistive random access memory from the logic state "11" to the other three logic states, the logic state "00", the logic state "01", and the logic state "10" according to the present invention. Flow chart. Lu [Major component symbol description] 100: Memory array 123, 124, 262: word line 128: common source line, 132, 133: lower electrode member, 134: upper electrode member 135: sidewall pin memory cell 141, 142, 264: bit line 55

131哪 :TW2958PA 145 : Y-解碼器及一字元線驅動器 14 6 : X-解碼器及·一組感應放大器 150、151、152、153 ::存取電晶體 200、275 :積體電路 260 :記憶體陣列 261 :列解碼器 263 :接腳解碼器 φ 26δ :匯流排 266 :感應放大器及資料輸入結構 267 :資料匯排流 268 :偏壓排列供應電壓 269 :偏壓排列狀態機 271 :資料輸入線 272 :資料輸出線 274 :其他電路 • 300、1000、500 :雙穩態電阻式隨機存取記憶體 310 :第一可程式電阻式隨機存取記憶層 312 :第一導電層 320:第二可程式電阻式隨機存取記憶層 322 :第二導電層 330 :遮罩 410:第一可程式電阻式隨機存取記憶體構件 412、420 :第一導電構件 56131: TW2958PA 145: Y-decoder and a word line driver 14 6 : X-decoder and a set of sense amplifiers 150, 151, 152, 153 :: access transistor 200, 275: integrated circuit 260 Memory array 261: column decoder 263: pin decoder φ 26δ: bus bar 266: sense amplifier and data input structure 267: data sink drain 268: bias arrangement supply voltage 269: bias arrangement state machine 271: Data input line 272: data output line 274: other circuits • 300, 1000, 500: bistable resistive random access memory 310: first programmable resistive random access memory layer 312: first conductive layer 320: The second programmable resistive random access memory layer 322: the second conductive layer 330: the mask 410: the first programmable resistive random access memory member 412, 420: the first conductive member 56

131觀 :TW2958PA 430 :第一介電侧壁子 510:第二可程式電阻式隨機存取記憶體構件 512、520 :第二導電構件 600 :雙穩態可程式電阻式隨機存取記憶體 610 :底層 620 :接觸孔 630 :中間介電層 700:電流-電壓曲線範例圖 • 710 :電壓 720 :電流 730 :重置狀態 740 :設定狀態 750 :讀取電壓 752 :虛線 810 ·•電阻 i? 820、860 :電阻 /i? _ 830、880 :電阻 850、870 :電阻 Μ 910 :邏輯狀態「0」 920 :邏輯狀態「1」 930 :邏輯狀態「2」、 940 :邏輯狀態「3」 1010:第三電阻式隨機存取記憶層 1012 :第三導電層 57131: TW2958PA 430: first dielectric sidewall 510: second programmable resistive random access memory component 512, 520: second conductive member 600: bistable programmable resistive random access memory 610 : bottom layer 620: contact hole 630: intermediate dielectric layer 700: current-voltage curve example diagram • 710: voltage 720: current 730: reset state 740: set state 750: read voltage 752: dashed line 810 · • resistance i? 820, 860: resistance / i? _ 830, 880: resistance 850, 870: resistance Μ 910: logic state "0" 920: logic state "1" 930: logic state "2", 940: logic state "3" 1010 : third resistive random access memory layer 1012 : third conductive layer 57

·· TW2958PA 1020:第(n-l)th可程式電阻式隨機記憶層 1022 :第(n-l)th導電層 1030 :第nth可程式電阻式隨機存取記憶層 1032 :第nth導電層 1110 :第二介電側壁子 1200 :雙穩態可程式電阻式隨機存取記憶體 1210:第三可程式電阻式隨機存取記憶構件 1220 :第三導電構件· TW2958PA 1020: (nl)th programmable resistive random memory layer 1022: (nl)th conductive layer 1030: nth programmable resistive random access memory layer 1032: nth conductive layer 1110: second Electrical sidewall 1200: bistable programmable resistive random access memory 1210: third programmable resistive random access memory component 1220: third conductive member

1300 :電路系統 1310 :第一電阻器Ri 1312 :第二電阻器R2、 1313:第一可程式電阻式隨機存取電壓V1RRA« 1314 :第二可程式電阻式隨機存取記憶體電壓V2RRA« 1316 :附加的可程式電阻式隨機存取記憶體電壓 1320 :第一位元線電壓Vbl 1330 :第二位元線電壓Vb21300: circuit system 1310: first resistor Ri 1312: second resistor R2, 1313: first programmable resistance random access voltage V1RRA « 1314: second programmable resistance random access memory voltage V2RRA « 1316 : additional programmable resistive random access memory voltage 1320: first bit line voltage Vbl 1330: second bit line voltage Vb2

1340 :第一位元線BLi 1342 :第二位元線BL2 1400、1500、1600、1700 :流程圖 581340: first bit line BLi 1342: second bit line BL2 1400, 1500, 1600, 1700: flowchart 58

Claims (1)

TW2958PA 十、申請專利範圍: 一種操作一電阻式隨機存取記憶體裝置之方法, 具有-第-導電構件,係位於—第—可程式電阻式隨機存 取。己it體構件上’該第—可程式電阻式隨機存取記憶體構 件係位於-第二導電構件上,該第二導電構件則是位於— 第二可程式電阻式隨機存取記憶體構件上,該方法至少包 該第一可程式電阻式隨機存取記憶體構件與該第二 可程式電阻式隨機存取記憶體構件以串聯連接,該第一可 程式電阻式隨機存取記憶體構件具有一表示一第一電阻 值之面積,該第二可程式電阻式隨機存取記憶體構件具有 一表不一第二電阻值R之面積,該第二可程式電阻式隨機 存取記憶體構件其所具有該面積大於該第一可程式電阻 式隨機存取記憶體構件,該第一可程式電阻式隨機存取記 憶體構件具有一第一邏輯狀態(“00”狀態)以及一第二 邏輯狀態(“or狀態),該第二可程式電阻式隨機存取記 憶體構件具有一第三邏輯狀態(“10”狀態)以及一第四 邏輯狀態(“1Γ狀態); 沈積一介電側壁子於該第一導電構件以及該第一可 程式電阻式隨機存取記憶體構件兩側以及在該第二導電 構件.的κ表面,該第二可程式電阻式隨機存取記憶體構件 具有一面積,該面積為該第一介電側壁子之厚度的函數; 以及 改變該第一及該第二可程式電阻式隨機存取記憶體 59 :TW2958PA 構件之邏輯狀態至另一邏輯狀態,邏輯狀態係為材料係數 η及介電側壁子之厚度f的函數。 2. 如申請專利範圍第1項所述之方法,其中該第一 邏輯狀態依據數學式(1 + /)/?操作。 3. 如申請專利範圍第1項所述之方法,其中該第二 邏輯狀態依據數學式操作。 4. 如申請專利範圍第1項所述之方法,其中該第三 邏輯狀態依據數學式操作。 • 5.如申請專利範圍第1項所述之方法,其中該第四 邏輯狀態依據數學式+ 操作。 6. 如申請專利範圍第1項所述之方法,更包括: 連接一第一位元線電壓Vbl至該第一導電廣的一頂 面; 連接一第二位元線電壓Vb2至該第二可程式電阻式隨 機存取記憶體構件的底面; 產生一第一電阻式隨機存取記憶體電壓v1RRAM於該第 ❿一導電構件及該第一可程式電阻式隨機存取記憶體構件 之間;以及 產生一第二電阻式隨機存取記憶體電壓VmAM於該第 一可程式電阻式隨機存取記憶體構件及該第二可程式電 阻式隨機存取記憶髏構件之間。 7. 如申請專利範圍第6項所述之電阻式隨機存取記 憶體裝置操作方法,其中該第一及第二可程式電阻式隨機 存取記憶體構件在一重置(RESE:T)狀態。 60 .I31· 8.如申請專利範圍第6項所述之方法,其中該記憶 體裝置從該第一邏輯狀態經由一過渡狀態至該第二邏輯 狀態,如此從該第一邏輯狀態改變至該過渡狀態時,設定 Vbl-Vb2 = Vhigh,VmAM&gt;VsET 及 V〖rra«&gt;Vset ’ 以及從該過渡狀態改 變至該第二邏輯狀態時’設定Vb2-Vbl=-V1(^&lt;〇, I V2RRAM 丨 &lt; 丨 VrESET I 且丨 VlRHAM 丨 &gt; | VrESET I。 9·如申請專利範圍第6項所述之方法,其中該記憶 體裝置藉由設定Virram&gt;Vset由該第 • 一邏輯狀態改變至該第三邏輯狀態。 10. 如申請專利範圍第6項所述之方法,其中該記憶 體裝置藉由設定Vbi-Vb2=Vhish ’ ¥2册(1&gt;乂3£了跟v1RRAM〉VsET由該第 一邏輯狀態改變至該第四邏輯狀態。 11. 如申請專利範圍第6項所述之操作方法,其中該 記憶體裝置藉由設定Vbi-Vb2=-Vhigh ’ |v2RRAm|&gt;Vreset且 | VlRRAM丨&gt;VrESET由該第二邏輯狀態改變至該第一狀態。 12. 如申請專利範圍第6項所述之方法,其中該記憶 • 體裝置從該第二邏輯狀態經由一過渡狀態至該第三狀 態,如此從該第一狀態改變至該過渡狀態時,設定 Vbl_Vb2 = _Vhigh ’ |V2RRAm|&gt;VrESET 且 |ViRRAm|&gt;VrESET ’ 以及從該過渡 狀態改變至第三狀態時,設定Vbi-Vb2=ViQW,V2m«&gt;VsET跟 VlRRAM〈VsET。 .... 13. 如申請專利範圍第6項所述之操作方法,其中該 記憶體裝置藉由設定 Vbl-Vb2=Vhigh,V2RRAM&gt;Vsn 且 VlRRAM&gt;VsET從 該第二邏輯狀態改變至該第四邏輯狀態。 61 1310237 三達鶬諕:TW2958PA 14. 如申請專利範圍第6項所述之操作方法,其中該 記憶體裝置藉由設定Vbl-Vb2 = _Vhigh,|V2RRAM|&gt;VRESET且 IVmMpVRESET從該第三邏輯狀態改變至該第一邏輯狀態。 15. 如申請專利範圍第6項所述之操作方法’其中該 記憶體裝置從該第三邏輯狀態經由一過渡狀態改變至該 第二邏輯狀態,如此從該第三邏輯狀態改變至該過渡狀態 時,設定 Vbl-Vb2 = Vhigh,V2I?liAM&gt;VsET 且 VlRRAM&gt;Vsn,以及從 5亥第 三邏輯狀態改變至該第二邏輯狀態時,設定VbrVbfVb, .|V2RRAM|&gt;|VRESET|a|VlRRAM|&gt;|V RESET 1 ° 16. 如申請專利範圍第6項所述之方法,其中該記憶 體裝置.從該第三邏輯狀態至該第四邏輯狀態時’ Vbl-Vb2 = Yhigh , V2RRAM〉VsET 且 VlRRAM〈V&quot;sn 0 17. 如申請專利範圍第6項所述之方法,其中該記憶 體裝置藉由設定 Vbl-Vbas-Vhigh,|V2RRAM|&gt;VRESET且 丨〉VRESET 從該第四邏輯狀態改變至該第一邏輯狀態。 18. 如申請專利範圍第6項所述之方法,其中該記憶 丨體裝置藉由設定 VbrVfVlow,|V2RRAm|&gt;|VRESET丨且 丨VlRRAM丨&lt; | VRESET丨從該第四邏輯狀態改變至該第二邏輯狀態 19·如申請專利範圍第6項所述之方法,其中該記憶 體裝置從該第四邏輯狀態經由一過渡狀態改變至該第一 .. 邏輯狀態,如此從該第四邏輯狀態改變至辟過渡狀態時’ .設定 Vbl-Vb2 = - Vhigh,|.V2RRA«|&gt;VrESET 且 |ViRRAm|&gt;VrESET’ 以及從該 過渡狀態改變至該第四邏輯狀態時,設定Vbl-Vb2=Vi。* ’ V2RRAM〉VsET 且 VimM〈VsET ° 62TW2958PA X. Patent Application Range: A method of operating a resistive random access memory device, having a -first conductive member, located in a -st programmable resistance random access. The first-programmable resistive random access memory component is located on the second conductive member, and the second conductive member is located on the second programmable resistive random access memory component. The method includes at least the first programmable resistive random access memory component and the second programmable resistive random access memory component connected in series, the first programmable resistive random access memory component having One representing a first resistance value, the second programmable resistive random access memory component has an area equal to a second resistance value R, and the second programmable resistive random access memory component has The first programmable resistive random access memory component has a first logic state ("00" state) and a second logic state. The first programmable resistive random access memory component has a larger area than the first programmable resistive random access memory component. ("or state"), the second programmable resistive random access memory component has a third logic state ("10" state) and a fourth logic state ("1 state"; Forming a dielectric sidewall on the first conductive member and the first programmable resistive random access memory member and on the κ surface of the second conductive member. The second programmable resistive random access The memory member has an area that is a function of the thickness of the first dielectric sidewall; and changes the logic state of the first and second programmable resistive random access memory 59: TW2958PA components to another The logic state, the logic state is a function of the material coefficient η and the thickness f of the dielectric sidewall. 2. The method of claim 1, wherein the first logic state operates according to a mathematical formula (1 + /) /?. 3. The method of claim 1, wherein the second logic state operates according to a mathematical formula. 4. The method of claim 1, wherein the third logic state operates according to a mathematical formula. 5. The method of claim 1, wherein the fourth logic state is based on a mathematical formula + operation. 6. The method of claim 1, further comprising: connecting a first bit line voltage Vbl to a top surface of the first conductive area; and connecting a second bit line voltage Vb2 to the second a bottom surface of the programmable resistive random access memory device; generating a first resistive random access memory voltage v1RRAM between the first conductive member and the first programmable resistive random access memory device; And generating a second resistive random access memory voltage VmAM between the first programmable resistive random access memory component and the second programmable resistive random access memory component. 7. The method of operating a resistive random access memory device according to claim 6, wherein the first and second programmable resistive random access memory components are in a reset (RESE:T) state. . The method of claim 6, wherein the memory device changes from the first logic state to the second logic state from the first logic state, thereby changing from the first logic state to the In the transient state, when Vbl-Vb2 = Vhigh, VmAM&gt;VsET and V〖rra«&gt;Vset', and when changing from the transition state to the second logic state, 'set Vb2-Vbl=-V1(^&lt;〇, I V2RRAM 丨 &lt; 丨VrESET I and 丨VlRHAM 丨&gt; | VrESET I. The method of claim 6, wherein the memory device is set by Virram&gt;Vset by the first logic state 10. The method of claim 6, wherein the memory device is set by Vbi-Vb2=Vhish' ¥2 (1&gt;乂3£ with v1RRAM>VsET 11. The operation method of claim 6, wherein the memory device is set by Vbi-Vb2=-Vhigh ' |v2RRAm|&gt;Vreset And | VlRRAM丨&gt;VrESET is changed from the second logic state to The method of claim 6, wherein the memory device moves from the second logic state to the third state from the second logic state, thereby changing from the first state to the In the transient state, when Vbl_Vb2 = _Vhigh ' |V2RRAm|&gt;VrESET and |ViRRAm|&gt;VrESET ' and when changing from the transition state to the third state, Vbi-Vb2=ViQW, V2m«&gt;VsET and VlRRAM< The operating method of claim 6, wherein the memory device is changed from the second logic state by setting Vbl-Vb2=Vhigh, V2RRAM&gt;Vsn and VlRRAM&gt;VsET The fourth logic state is the same as the operation method described in claim 6, wherein the memory device is set by Vbl-Vb2 = _Vhigh, |V2RRAM|&gt;VRESET and The operating mode of the invention is changed from the third logic state to the second logic state. a logic state, when changing from the third logic state to the transition state, setting Vbl-Vb2 = Vhigh, V2I?liAM&gt;VsET and VlRRAM&gt;Vsn, and changing from the fifth logic state to the second logic state VVVbfVb, .V2RRAM|&gt;|VRESET|a|VlRRAM|&gt;|V RESET 1 ° 16. The method of claim 6, wherein the memory device is from the third logic state To the fourth logic state, 'Vbl-Vb2 = Yhigh, V2RRAM>VsET and VlRRAM<V&quot;sn 0 17. The method of claim 6, wherein the memory device is set by Vbl-Vbas- Vhigh, |V2RRAM|&gt;VRESET and 丨>VRESET changes from the fourth logic state to the first logic state. 18. The method of claim 6, wherein the memory cartridge device is changed from the fourth logic state by setting VbrVfVlow, |V2RRAm|&gt;|VRESET, and 丨VlRRAM丨&lt;|VRESET丨The second logic state is the method of claim 6, wherein the memory device changes from the fourth logic state to the first:. logic state via a transition state, such that from the fourth logic When the state changes to the transition state'. Set Vbl-Vb2 = - Vhigh, |.V2RRA«|&gt;VrESET and |ViRRAm|&gt;VrESET' and when changing from the transition state to the fourth logic state, set Vbl- Vb2=Vi. * ’ V2RRAM>VsET and VimM<VsET ° 62
TW95139867A 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states TWI310237B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95139867A TWI310237B (en) 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95139867A TWI310237B (en) 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states

Publications (2)

Publication Number Publication Date
TW200820426A TW200820426A (en) 2008-05-01
TWI310237B true TWI310237B (en) 2009-05-21

Family

ID=44770156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95139867A TWI310237B (en) 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states

Country Status (1)

Country Link
TW (1) TWI310237B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035141B1 (en) * 2004-11-17 2006-04-25 Spansion Llc Diode array architecture for addressing nanoscale resistive memory arrays
US8134865B2 (en) * 2008-05-06 2012-03-13 Macronix International Co., Ltd. Operating method of electrical pulse voltage for RRAM application
US11017856B1 (en) * 2020-02-18 2021-05-25 Applied Materials, Inc. Soft reset for multi-level programming of memory cells in non-Von Neumann architectures

Also Published As

Publication number Publication date
TW200820426A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US9076964B2 (en) Methods for forming resistance random access memory structure
US7924600B2 (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
US7456421B2 (en) Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7697316B2 (en) Multi-level cell resistance random access memory with metal oxides
US8084760B2 (en) Ring-shaped electrode and manufacturing method for same
US7397060B2 (en) Pipe shaped phase change memory
US7599217B2 (en) Memory cell device and manufacturing method
US8315088B2 (en) Multiple phase change materials in an integrated circuit for system on a chip application
TWI442518B (en) Self aligning pillar memory cell device and method for making the same
US20080173931A1 (en) Multilevel-Cell Memory Structures Employing Multi-Memory Layers with Tungsten Oxides and Manufacturing Method
TWI313044B (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
US20080099791A1 (en) Memory Cell Device with Circumferentially-Extending Memory Element
CN100563042C (en) Manufacture method with resistive ram of autoregistration air gap insulator
US20130306931A1 (en) Sidewall Thin Film Electrode with Self-Aligned Top Electrode and Programmable Resistance Memory
US20080094885A1 (en) Bistable Resistance Random Access Memory Structures with Multiple Memory Layers and Multilevel Memory States
US7956344B2 (en) Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7884342B2 (en) Phase change memory bridge cell
US20080247224A1 (en) Phase Change Memory Bridge Cell with Diode Isolation Device
TWI310237B (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
TWI322993B (en) Programmable resistance random access memory and method of forming the same
TWI312574B (en) Resistance random access memory structure for enhanced retention
TWI357635B (en) Resistor random access memory cell with reduced ac