WO2007101415A2 - Phosphonsäure-haltige blends und phosphonsäure-haltige polymere - Google Patents

Phosphonsäure-haltige blends und phosphonsäure-haltige polymere Download PDF

Info

Publication number
WO2007101415A2
WO2007101415A2 PCT/DE2007/000260 DE2007000260W WO2007101415A2 WO 2007101415 A2 WO2007101415 A2 WO 2007101415A2 DE 2007000260 W DE2007000260 W DE 2007000260W WO 2007101415 A2 WO2007101415 A2 WO 2007101415A2
Authority
WO
WIPO (PCT)
Prior art keywords
groups
sub
hydroxymethylene
polymers
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2007/000260
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2007101415A3 (de
Inventor
Thomas HÄRING
Jochen Kerres
Frank SCHÖNBERGER
Martin Hein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Original Assignee
Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart filed Critical Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Priority to US12/278,245 priority Critical patent/US8637174B2/en
Priority to EP07711177A priority patent/EP1984430A2/de
Priority to DE112007000280T priority patent/DE112007000280A5/de
Priority to JP2008552676A priority patent/JP2009525360A/ja
Publication of WO2007101415A2 publication Critical patent/WO2007101415A2/de
Publication of WO2007101415A3 publication Critical patent/WO2007101415A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. in situ polymerisation or in situ crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2341/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • perfluorinated sulfonic acid-based ionomer membranes can operate at temperatures below 100 0 C in electrochemical cells, particularly fuel cells are used, and in this temperature range show good H + - conductivity and high (electro) chemical stability. However, they are not usable at temperatures above 100 0 C, since they then dry out and therefore their proton conductivity decreases by several orders of magnitude 1 , 2 . However, it is useful to operate fuel cells at temperatures above 100 0 C, since in this temperature range, the CO tolerance of the fuel cell reaction due to faster electrode kinetics is significantly greater than below 100 0 C 3 .
  • micrometer to nanometer size microporous particles which may be inorganic hydroxides, oxides or salts, or inorganic / organic hybrid compounds, such as SiO 2 , 5 , 6 , TiO 2 , ZrO 2 7 , or layer phosphates or zirconium sulfophenyl phosphonates , wherein the layer phosphates such as zirconium or
  • Zirconiumsulfophenylphosphonat also have a Eigenprotonenleitrange,.
  • Another approach is the incorporation of phosphoric acid into basic polybenzimidazole membranes, with the phosphoric acid acting as the proton conductor, since phosphoric acid can function both as a proton donor and as a proton acceptor.
  • Non-fluorinated arylphosphonic acids are generally only medium-strength acids (pKs «
  • Polymeric phosphonic acids have poor film-forming properties (are very brittle)
  • Phosphonic acids tend to condense at temperatures around 12O 0 C, which is their
  • the object of the present invention consists in the preparation of 1-hydroxymethylene-l, l-bisphosphonic acid-containing polymer blends having the following properties:
  • Another object of the invention are processes for preparing the polymer mixtures containing phosphonic acid groups (blends).
  • the object of the invention is the use of polymer mixtures containing phosphonic acid groups (blends) in membrane processes such as gas separation, pervaporation, perstraction, PEM electrolysis and secondary batteries such as PEM and direct methanol fuel cells, in particular under conditions of reduced humidification (0
  • the object of the invention can be achieved by: 1. Preparation of optionally physically, ionically or covalently crosslinked Blen ⁇ s and blend membranes of low molecular weight hydroxymethylene-oligophosphonic RC (POsH 2 ) x (OH) y with polymers which contain the following functional groups:
  • Basic groups such as primary, secondary or tertiary amino groups, imidazole groups, pyridine groups, pyrazole groups etc. and / or
  • Phosphonic acids for example, produced from carboxylic acids by reaction with
  • PCl 3 ZH 3 PO 3 and subsequent hydrolysis with H 2 O 23 ' 24 ' 25 '26 " 27 are shown in Figure 1. Further, preferred low molecular weight according to the invention.
  • a particular embodiment of these blends consists in the fact that ionic crosslinking sites can exist between the polymers and the low molecular weight phosphonic acids, for example between the cation exchange groups of the polymer with a basic group (eg pyridine radical) of the low molecular weight phosphonic acid compound, see Figure 8.
  • a basic group eg pyridine radical
  • the binding of the low molecular weight Hydroxymethylenphosphonkla to the polymers consists in covalent crosslinking, such as by crosslinking of the OH group of the phosphonic acid compound with an OH group of the polymer by means of an ⁇ , ⁇ -Dihalogenalkans, see Figure 9.
  • Further possible crosslinking reactions for the OH group of l-hydroxymethylene-l, l-bisphosphonic acid grouping and optionally with OH groups of polymers according to the invention are:
  • the covalent cross-linking prevents outdiffusion of the phosphonic acid compound from the polymer and improves the mechanical stability of the blend films.
  • interpenetrating networks of very different structure and composition.
  • IPN interpenetrating networks
  • a dipolar aprotic solvent such as N-methylpyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO): a polymer having sulfochloride groups, a crosslinker for Sulfochlorid phenomenon such.
  • NMP N-methylpyrrolidinone
  • DMAc N, N-dimethylacetamide
  • DMF N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • 4,4'-Diaminodiphenylsulfon 40 a bifunctional l-hydroxymethylene-l, l-bisphosphonic acid such as l, 4-bis (l-hydroxymethylene l, l-bisphosphonic) benzene and a crosslinker for the OH groups of the 1- Hydroxymethylene 1,1-bisphosphonic acid groups such.
  • glutaraldehyde After a homogeneous solution of all components has been prepared, the solution is spread out on a pad and the solvent is evaporated.
  • HPN hybrid polymer network
  • Glutaraldehyde 36 After a homogeneous solution of all components has been prepared, the solution is doctored on a pad and the solvent is evaporated. The resulting HPN can still be post-treated as follows: 1. Post-treatment in mineral acid (H 2 SO 4 from 0.1 to 80% concentration, HCl from 0.1 to 37% concentration or phosphoric acid from 0.1 to 85% concentration) and optionally 2. subsequent storage in water to remove excess mineral acid.
  • mineral acid H 2 SO 4 from 0.1 to 80% concentration, HCl from 0.1 to 37% concentration or phosphoric acid from 0.1 to 85% concentration
  • the resulting HPN consists of the covalent network of the polymer having the sulfinate and sulfonate groups 42 , the sulfinate groups having been cross-linked by S-alkylation using the 1,4-diiodobutane, and the network of 3- (l-hydroxy-l, l-bisphosphonic acid) pyridine and glutaraldehyde.
  • ionic interactions between the two networks additionally exist via the pyridine moiety of 3- (1-hydroxy-1,1-bisphosphonic acid) -pyridine and the sulfonate moieties of the sulfonated polymer.
  • the 1,4-diiodobutane crosslinker can also crosslink a portion of the pyridine groups by alkylation, whereby mixed crosslinking bridges between sulfinate groups and pyridine groups can arise 43 .
  • Polyolefins such as polyethylene, polypropylene, polyisobutylene, polynorbornene,
  • Styrene (co) polymers such as polystyrene, poly (methylstyrene), poly ( ⁇ , ß, ß-trifluorstyiOl),
  • Poly (4-vinylpyridine), poly (2-vinylpyridine) and their copolymers perfluorinated ionomers such as Nafion® or the SO 2 Hal precursor of Nafion® (HaI F,
  • Het aryl backbone polymers such as:
  • Polyether ketones such as polyether ketone PEK Victrex®, polyetheretherketone
  • Polyethersulfones such as Polysulfone Udel®, Polyphenylsulfone Radel R®,
  • (Benz) imidazole group may be present in the main chain or in the polymer side chain
  • Polyphenylene ethers such. Poly (2,6-dimethyloxyphenylene), poly (2,6-diphenyloxyphenylene)
  • 1,4-benzoyl groups or p-phenyloxy-l, 4-benzoyl groups can.
  • aryl main chain polymers are possible as base polymers for the polymers and polymer mixtures according to the invention.
  • All possible block copolymers of the polymeric, in particular aryl main chain, polymers are also possible, the following types of block copolymers being preferred:
  • Block copolymers composed of blocks containing basic groups and of unmodified blocks; while the choice of basic groups is not limited, but there are heterocyclic or heteroaromatic, z.
  • Block copolymers of acidic (cation exchange group-containing) blocks and blocks containing basic groups
  • Block copolymers with blocks containing OH groups and blocks containing acid groups Block copolymers with blocks containing OH groups and blocks containing acid groups
  • Block copolymers with OH-containing blocks and blocks containing basic groups Block copolymers with OH-containing blocks and blocks containing basic groups.
  • Method via metallation first metallation (eg with n-butyllithium) 3 then reaction with an S-electrophile (SO 2 , SO 3 , SOCl 2 , SO 2 Cl 2 ), then optionally conversion to
  • Monomers are polymerized / polycondensed, such as. In McGrath et al., 53 , 54 , 55 .
  • One possible method is the metallation of the polymer and the subsequent reaction of the metalated polymer with a halogenated phosphoric or phosphonic esters (examples: Chlorphosphorklarediaryl 16 - or alkyl ester, 2- Bromethanphosphonklaredialkylester, 3-dialkyl phosphonate -Brompropan etc.).
  • carboxylation of the polymers all common methods can be used. Likely here are the carboxylation of polymers via lithiated intermediates, for example the lithiation of polysulfone PSU Udel or the lithiation of polyphenylene oxide with subsequent reaction of the lithiated intermediate with solid or gaseous CO 2 56 '57 .
  • the corresponding acid chloride can be prepared from the polymeric carboxylic acid by reaction with thionyl chloride (for further reaction with, for example, tris (timethylsilyl) phosphite to give the corresponding 1-hydroxymethylene-1,1-bisphosphonic acid).
  • methyl aromatics can be reacted with potassium permanganate to the corresponding aromatic carboxylic acids, for example, the 2-, 3- or 4-methylpyridines.
  • Aliphatic carboxylic acids are also accessible by oxidation of aliphatic alcohols or aldehydes.
  • Arylene main chain polymer (general regulation)
  • caustic alkali metal such as NaOH, KOH 5 LiOH etc.
  • alkaline earth liquor such as Ba (OH) 25 Ca (OH) 2
  • aqueous ammonia or aqueous primary, secondary or tertiary amines or quaternary ammonium salts at temperatures from O to 10O 0 C for 1 to 480 hours;
  • a polymer containing OH groups is dissolved in a dipolar aprotic or in a protic solvent, for example in DMSO.
  • the low molecular weight aryl-l-hydroxymethylene-l, l-bisphosphonic acid is dissolved in the same solvent, either in the H form or in the Na + form.
  • Glutaraldehyde is then added to the solution of the low molecular weight 1-hydroxymethylene-1,1-bisphosphonic acid, specifically per mole of OH groups of the low molecular weight aryl-1-hydroxymethylene-1,1-bisphosphonic acid, Vi mole of glutaraldehyde.
  • the combined solution is doctored onto a glass plate to a thin film.
  • the DMSO at temperatures of 50 to 150 0 C and optionally reduced pressure of 800-1 Ombar removed by evaporation.
  • the glass plate is removed with the polymer film under water from the glass plate.
  • the polymer film is aftertreated as follows:
  • caustic alkali, such as NaOH, KOH, LiOH etc.
  • alkaline earth liquor such as Ba (OH) 25 Ca (OH) 2
  • aqueous ammonia or aqueous primary, secondary or tertiary amines or quaternary ammonium salts at temperatures from 0 to 100 ° C for 1 to 480 hours;
  • Carboxylated PSU with 2 carboxylic acid groups per repeat unit is prepared after 5 ⁇ .
  • the PSU diacid chloride To prepare the PSU diacid chloride, the PSU dicarboxylic acid is dissolved in a 9-fold excess of thionyl chloride, based on the mass of the polymer. A small amount of N, N-dimethylformamide is added to this mixture and refluxed for 72 hours. The PSU diacid chloride is precipitated in a large excess of isopropanol and excess thionyl chloride is washed out. The PSU-di-acid chloride is dried to zw constant weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyethers (AREA)
  • Conductive Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
PCT/DE2007/000260 2006-02-03 2007-02-05 Phosphonsäure-haltige blends und phosphonsäure-haltige polymere Ceased WO2007101415A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/278,245 US8637174B2 (en) 2006-02-03 2007-02-05 Phosphonic acid-containing blends and phosphonic acid-containing polymers
EP07711177A EP1984430A2 (de) 2006-02-03 2007-02-05 Phosphonsäure-haltige blends und phosphonsäure-haltige polymere
DE112007000280T DE112007000280A5 (de) 2006-02-03 2007-02-05 Phosphonsäure-haltige Blends und Phosphonsäure-haltige Polymere
JP2008552676A JP2009525360A (ja) 2006-02-03 2007-02-05 ホスホン酸含有ブレンドおよびホスホン酸含有ポリマー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006005782.1 2006-02-03
DE102006005782 2006-02-03

Publications (2)

Publication Number Publication Date
WO2007101415A2 true WO2007101415A2 (de) 2007-09-13
WO2007101415A3 WO2007101415A3 (de) 2007-12-21

Family

ID=38353891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/000260 Ceased WO2007101415A2 (de) 2006-02-03 2007-02-05 Phosphonsäure-haltige blends und phosphonsäure-haltige polymere

Country Status (5)

Country Link
US (3) US8637174B2 (enExample)
EP (1) EP1984430A2 (enExample)
JP (3) JP2009525360A (enExample)
DE (1) DE112007000280A5 (enExample)
WO (1) WO2007101415A2 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220843A1 (en) * 2006-02-03 2009-09-03 Thomas Haring Phosphonic acid-containing blends and phosphonic acid-containing polymers
WO2022268265A1 (de) * 2021-06-23 2022-12-29 Riva Power Systems GmbH & Co. KG Neuartige phosphonierte nichtfluorierte und teilfluorierte arylpolymere aus sulfonierten arylpolymeren und neuartige polymere perfluorphosphonsäuren aus polymeren perfluorsulfonsäuren, deren herstellungsverfahren und anwendung in elektromembrananwendungen
WO2023170131A1 (de) * 2022-03-11 2023-09-14 Forschungszentrum Jülich GmbH Stoff, verfahren zur herstellung eines stoffs, membran, verwendung einer membran, elektrodenkatalysatorlayer und verwendung eines stoffs

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541517B2 (en) 2011-03-10 2013-09-24 Battelle Energy Alliance, Llc Polymer compositions, polymer films and methods and precursors for forming same
FR2974090B1 (fr) * 2011-04-15 2013-05-31 Chryso Copolymeres a groupements gem-bisphosphones
US9453129B2 (en) 2014-06-23 2016-09-27 Ut-Battelle, Llc Polymer blend compositions and methods of preparation
CN104772050B (zh) * 2015-04-03 2016-10-12 燕山大学 乙二胺四亚甲基膦酸和二乙烯三胺五乙酸改性聚偏氟乙烯螯合膜的制备方法
US9815985B2 (en) 2015-07-14 2017-11-14 Ut-Battelle, Llc High performance lignin-acrylonitrile polymer blend materials
WO2018237111A1 (en) 2017-06-21 2018-12-27 Ut-Battelle, Llc Shape memory polymer blend materials
CN108559115A (zh) * 2018-05-03 2018-09-21 佛山九陌科技信息咨询有限公司 一种高尺寸稳定型聚芳醚电解质膜材料的制备方法
CN113611884A (zh) * 2021-08-03 2021-11-05 中国科学技术大学 钌掺杂α-二氧化锰的复合材料、其制备方法及其应用
DE102022132913A1 (de) 2022-12-12 2024-06-13 Forschungszentrum Jülich GmbH Block-Copolymer, Verfahren zur Herstellung eines Block-Copolymers, Membran und Verwendung einer Membran
CN116590698B (zh) * 2023-04-19 2024-10-25 匠成环保新材料(烟台)有限公司 在金属表面形成化学膜层的处理剂及其制备方法
CN116970136B (zh) * 2023-09-20 2024-02-09 山西大学 一种苯并咪唑基共价有机框架及其制备方法和应用、质子导体及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304734A (en) 1980-10-16 1981-12-08 Vysoka Skola Chemicko-Technologicka 6-Amino-1-hydroxyhexylidene diphosphonic acid, salts and a process for production thereof
US4327039A (en) 1979-10-27 1982-04-27 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Process for the production of 3-amino-1-hydroxypropane-1,1-diphosphonic acid
US4407761A (en) 1980-04-28 1983-10-04 Henkel Kommanditgesellschaft Auf Aktien Process for the production of ω-amino-1-hydroxyalkylidene-1,1-bisphosphonic acid
US4621077A (en) 1982-04-15 1986-11-04 Istituto Gentili S.P.A. Pharmacologically active biphosphonates, process for the preparation thereof and pharmaceutical compositions therefrom
US5525436A (en) 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
EP0574791B1 (de) 1992-06-13 1999-12-22 Aventis Research & Technologies GmbH & Co. KG Polymerelektrolyt-Membran und Verfahren zu ihrer Herstellung
US6590067B2 (en) 1998-08-12 2003-07-08 Universitaet Stuttgart Modification of polymers with basic N-groups and ion exchange groups in the lateral chain
DE10246459A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
US6767585B2 (en) 2000-05-19 2004-07-27 Universität Stuttgart Ionically and covalently cross-linked polymers and polymer membranes

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728460A (en) * 1980-09-01 1988-03-01 Monsanto Company Aminomethylenephosphonic acid solutions
US4830847A (en) * 1985-06-28 1989-05-16 The Procter & Gamble Company Diphosphonate-derivatized macromolecules
DE3536077A1 (de) * 1985-10-09 1987-04-09 Muehlbauer Ernst Kg Polymerisierbare saeure und saeurederivate enthaltende verbindungen, dieselben enthaltende mischungen und ihre verwendung
US4937367A (en) * 1987-07-15 1990-06-26 Zambon Group S.P.A. Process for the preparation of intermediates for the synthesis of fosfomycin
JP3192691B2 (ja) * 1990-09-03 2001-07-30 株式会社片山化学工業研究所 カルシウム系スケール防止剤
US5259985A (en) * 1990-09-03 1993-11-09 Katayama Chemical, Incorporated Calcium carbonate scale inhibitor having organophosphonate, water soluble acrylic or maleic copolymer and citric acid
JP3107873B2 (ja) * 1991-09-26 2000-11-13 ユニ・チャーム株式会社 高吸水性ポリマーの経時着色防止方法および経時着色防止剤
US5584981A (en) * 1994-05-06 1996-12-17 United Kingdom Atomic Energy Authority Electrochemical deionization
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
JP2883330B1 (ja) * 1997-07-03 1999-04-19 花王株式会社 高吸水性樹脂組成物
SG86324A1 (en) * 1997-07-03 2002-02-19 Kao Corp Superabsorbent resin composition
JP2000063844A (ja) * 1998-08-24 2000-02-29 Nippon Chem Ind Co Ltd 難燃剤組成物及び難燃性樹脂組成物
EP1110992B1 (en) * 1999-11-29 2006-08-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid polymer electrolyte having high-durability
US20030216275A1 (en) * 2001-04-18 2003-11-20 Crump Druce K Nª,n -dialkyl aminomethylenephosphonic acids and use thereof
TWI309252B (en) * 2002-01-15 2009-05-01 Sumitomo Chemical Co Polymer electrolyte composition and uses thereof
US6987163B2 (en) * 2002-08-07 2006-01-17 Research Foundation Of The State University Of New York Modified polybenzimidazole (PBI) membranes for enhanced polymer electrochemical cells
EP1626453B1 (en) * 2004-07-30 2012-03-28 Sumitomo Chemical Company, Limited Polymer electrolyte fuel cell
JP4435745B2 (ja) * 2005-03-23 2010-03-24 三洋電機株式会社 燃料電池用電解質、膜電極接合体、および燃料電池用電解質の製造方法
EP1979972B1 (de) * 2006-01-23 2015-11-18 Between Lizenz GmbH Phosphonsäurehaltiger elektrolyt
JP2009525360A (ja) * 2006-02-03 2009-07-09 トーマス ヘーリング ホスホン酸含有ブレンドおよびホスホン酸含有ポリマー

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327039A (en) 1979-10-27 1982-04-27 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Process for the production of 3-amino-1-hydroxypropane-1,1-diphosphonic acid
US4407761A (en) 1980-04-28 1983-10-04 Henkel Kommanditgesellschaft Auf Aktien Process for the production of ω-amino-1-hydroxyalkylidene-1,1-bisphosphonic acid
US4304734A (en) 1980-10-16 1981-12-08 Vysoka Skola Chemicko-Technologicka 6-Amino-1-hydroxyhexylidene diphosphonic acid, salts and a process for production thereof
US4621077A (en) 1982-04-15 1986-11-04 Istituto Gentili S.P.A. Pharmacologically active biphosphonates, process for the preparation thereof and pharmaceutical compositions therefrom
EP0574791B1 (de) 1992-06-13 1999-12-22 Aventis Research & Technologies GmbH & Co. KG Polymerelektrolyt-Membran und Verfahren zu ihrer Herstellung
US5525436A (en) 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
US6590067B2 (en) 1998-08-12 2003-07-08 Universitaet Stuttgart Modification of polymers with basic N-groups and ion exchange groups in the lateral chain
EP1105433B1 (de) 1998-08-12 2004-10-27 Universität Stuttgart Modifikation von engineeringpolymeren mit n-basischen gruppen und mit ionenaustauschergruppen in der seitenkette
US6767585B2 (en) 2000-05-19 2004-07-27 Universität Stuttgart Ionically and covalently cross-linked polymers and polymer membranes
DE10246459A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen

Non-Patent Citations (47)

* Cited by examiner, † Cited by third party
Title
A.S. ARICO; P. CRETI; P.L. ANTONUCCI; V. ANTONUCCI, ELECTROCHEM. SOLID-STATE LETT., vol. 1, no. 2, 1998, pages 66 - 68
B. LAFITTE; P. JANNASCH, JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 43, 2005, pages 273 - 286
BEILHOFFER, T.W.; GLASS, J.E., POLYMER, vol. 27, 1986, pages 1626 - 32
BENSON, M.T., IND. ENG. CHEM. RES., vol. 42, 2003, pages 4147 - 4155
BONAPASTA, A.A.; BUDA, F.; COLOMBET, P.; GUERRINI, G., CHEM. MATER., vol. 14, 2002, pages 1016 - 1022
C. YANG; S. SRINIVASAN; A.S. ARICO; P. CRETI; V. BAGLIO; V. ANTONUCCI, ELECTROCHEM. SOLID-STATE LETT., vol. 44, 2001, pages A31 - A34
G. ALBERTI; M. CASCIOLA, ANNU. REV. MATER. RES., vol. 33, no. 1, 10320, pages 129 - 154
GERARD R. KIECZYKOWSKI; RONALD B. JOBSON; DAVID G. MELLILLO; DONALD F. REINHOLD; VICTOR J. GRENDA; ICHIRO SHINKA, J. ORG. CHEM., vol. 60, 1995, pages 8310 - 8312
GUENIN, E.; DEGACHE, E.; LIQUIER, J.; LECOUVEEY, M., EUR. J. ORG. CHEM., 2004, pages 2983 - 2987
GUIVER, M.D., PH. D. DISSERTATION, 1997
H.H. ULRICH; G. RAFTER, ANGEW. MAKROMOL. CHEM., vol. 263, 1998, pages 71 - 78
H.R. ALLCOCK; M.A. HOFMANN; C.M. AMBLER; R.V. MORFORD, MACROMOLECULES, vol. 35, 2002, pages 3484 - 3489
H.R. ALLCOCK; M.A. HOFMANN; C.M. AMBLER; S.N. LVOV; X.Y. ZHOU; E. CHALKOVA, J.; WESTON, J., J. MEMBR. SCI., vol. 204, 2002, pages 47 - 54
H.R. ALLCOCK; M.A. HOFMANN; C.M. AMBLER; S.N. LVOV; X.Y. ZHOU; E. CHALKOVA; J. WESTON, J. MEMBR. SCI., vol. 204, 2002, pages 47 - 54
H.R. ALLCOCK; M.A. HOFMANN; C.M. AMBLER; S.N. LVOV; X.Y. ZHOU; E. CHALKOVA; J. WESTON, J., J. MEMBR. SCI., vol. 204, 2002, pages 47 - 54
HU, Y.; GAMBLE, V.; PAINTER, P.C.; COLEMAN, M.M., MACROMOLECULES, vol. 35, 2002, pages 1289 - 1298
I. HONMA; H. NAKAJIMA; O. NISHIKAWA; T. SUGIMOTO; S. NOMURA, J. ELECTROCHEM. SOC., vol. 149, no. 10, 2002, pages A1389 - A1392
J. KERRES; C.-M. TANG; C. GRAF, IND. ENG. CHEM. RES., vol. 43, no. 16, 2004, pages 4571 - 4579, Retrieved from the Internet <URL:http://pubs.acs.org/cgibin/asap.cgi/iecred/asap/pdf/ie030762d.pdf>
J. KERRES; W. CUI; P. REICHLE, J. POLYM. SCI.: PART A: POLYM. CHEM., vol. 34, 71219, pages 2421 - 2438
J.A. KERRES; A.J. VAN ZYL, J. APPL. POLYM. SCI., vol. 74, 80319, pages 428 - 438
J.S. WAINRIGHT; J.-T. WANG; D. WENG; R.F. SAVINELLI; M.H. LITT, J. ELECTROCHEM. SOC, vol. 142, 1995, pages L121
K. JAKOBY; K.V. PEINEMANN; S.P. NUNES, MACROMOL. CHEM. PHYS, vol. 204, 2003, pages 61 - 67
K.A. MAURITZ, MAT. SCI. ENG., vol. C6, 1998, pages 121 - 133
K.D. KREUER; S.J. PADDISON; E. SPOHR; M. SCHUSTER, CHEM. REV., vol. 104, 2004, pages 4637 - 4678
K.T. ADJEMIAN; S. SRINIVASAN; J. BENZIGER; A.B. BOCARSLY, J. POWER SOURCE, vol. 109, no. 2, 2002, pages 356 - 364
K.T. ASDJEMIAN; S.J. LEE; S. SRINIVASAN; J. BENZIGER; A.B. BOCARSLY, J. ELECTROCHEM. SOC., vol. 149, no. 3, 2002, pages A256 - A261
KERRES, J.; CUI, W.; JUNGINGER, M., J MEMB. SCI., vol. 139, 1998, pages 227 - 241
KERRES, J.; ZHANG, W.; CUI, W., J. POLYMER. SCI.: PART A: POLYM. CHEM., vol. 36, 1998, pages 1441 - 1448
LECOUVEY, M.; LEROUX, Y., HETETOATOM CHEM., vol. 11, no. 7, 2000, pages 556 - 561
LUO, L.-B.; YU, S.-H.; QIAN, H.-S.; ZHOU, T., J. AM. CHEM. SOC., vol. 127, 10520, pages 2822
M. YAMABE; K. AKIYAMA; Y. AKATSUKA; M. KATO, EUR. POLYM. J., vol. 36, 2000, pages 1035 - 1041
M.D. GUIVER; H. ZHANG; G.P. ROBERTSON; Y. DAI, JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 39, 10120, pages 675 - 682
MARC LECOUVEY; ISABELLE MALLARD; THEODORINE BAILLY; RAMON BURGADA; YVES LEROUX, TETRAHEDRON LETTERS, vol. 42, 2001, pages 8475 - 8478
MIYATAKE; HAY, J. POLYM. SCI., vol. 39, 2001, pages 3770
Q. LI ET AL., CHEM MAT., vol. 15, 2003, pages 4896
R. NOLTE; K. LEDJEFF; M. BAUER; R. MÜLHAUPT, R., J. MEMB, SCI., vol. 83, 1993, pages 211 - 220
S. KALIUGUINE; S.D. MIKHAILENKO; K.P. WANG; P. XING; G.P. ROBERTSON; M.D. GUIVER, CATALYSIS TODAY, vol. 82, 2003, pages 213 - 222
S.C. YEO; A; EISENBERG, J. APPL. POLYM. SCI., vol. 21, 1977, pages 875 - 898
SEKINE, M.; HATA, T., J. CHEM. SOC. CHEM. COMMUN., 1978, pages 285
SEKINE, M.; OKIMOTO, K.; YAMADA, K.; HATA, T., J. ORG. CHEM., vol. 46, 1981, pages 2097 - 2107
WAN, Y.; HUANG, W.Q.; WANG, Z.; ZHU, X.X., POLYMER, vol. 45, no. 1, 2004, pages 71 - 77
WANG, Z.; LUO, J.; ZHU, X.X.; JIN, S.; TOMASZEWSKI, M.J., J. COMB. CHEM., vol. 6, 2004, pages 961 - 966
XU; I. CABASSO, J. POLYM. MATER. SCI., vol. 120, 1993, pages 68
XU; I. CABASSO, J. POLYM. MATER. SCI., vol. 120, 1993, pages 6817
Y.L. MA; J. S. WAINRIGHT; M.H. LITT; R.F. SAVINELLI, J. ELECTROCHEM. SOC., vol. 151, no. 1, 2004, pages A8 - A16
Y.L. XIE; Q. ZHU; X.R. QIN; Y.Y. XIE, CHINESE CHEMICAL LETTERS, vol. 14, no. 1, 10320, pages 25 - 28
ZHAO, D.; LIAO, G.; GAO, G.; LIU, F., MACROMOLECULES, 2006, Retrieved from the Internet <URL:http:.pubs.acs.org/cgi-bin/asap.cgi/mamobx/asap/pdf/ma0524191.pdf>

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220843A1 (en) * 2006-02-03 2009-09-03 Thomas Haring Phosphonic acid-containing blends and phosphonic acid-containing polymers
US8637174B2 (en) * 2006-02-03 2014-01-28 Thomas Häring Phosphonic acid-containing blends and phosphonic acid-containing polymers
US20140213672A1 (en) * 2006-02-03 2014-07-31 Thomas Häring Phosphonic acid-containing blends and phosphonic acid-containing polymers
US20170170505A1 (en) * 2006-02-03 2017-06-15 Thomas Häring Phosphonic acid-containing blends and phosphonic acid-containing polymers
WO2022268265A1 (de) * 2021-06-23 2022-12-29 Riva Power Systems GmbH & Co. KG Neuartige phosphonierte nichtfluorierte und teilfluorierte arylpolymere aus sulfonierten arylpolymeren und neuartige polymere perfluorphosphonsäuren aus polymeren perfluorsulfonsäuren, deren herstellungsverfahren und anwendung in elektromembrananwendungen
WO2023170131A1 (de) * 2022-03-11 2023-09-14 Forschungszentrum Jülich GmbH Stoff, verfahren zur herstellung eines stoffs, membran, verwendung einer membran, elektrodenkatalysatorlayer und verwendung eines stoffs

Also Published As

Publication number Publication date
JP2013177598A (ja) 2013-09-09
US20140213672A1 (en) 2014-07-31
DE112007000280A5 (de) 2008-10-30
US20170170505A1 (en) 2017-06-15
JP2009525360A (ja) 2009-07-09
EP1984430A2 (de) 2008-10-29
US20090220843A1 (en) 2009-09-03
US8637174B2 (en) 2014-01-28
JP2016145351A (ja) 2016-08-12
WO2007101415A3 (de) 2007-12-21

Similar Documents

Publication Publication Date Title
WO2007101415A2 (de) Phosphonsäure-haltige blends und phosphonsäure-haltige polymere
JP5707187B2 (ja) ポリマー溶液の製造方法、ポリマー溶液、薄膜の製造方法および薄膜
Parvole et al. Polysulfones grafted with poly (vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state
JP5037773B2 (ja) 複合体膜並びにその製造方法および使用法
Wang et al. Construction of novel proton transport channels by triphosphonic acid proton conductor-doped crosslinked mPBI-based high-temperature and low-humidity proton exchange membranes
Yu et al. Bilayer designed hydrocarbon membranes for all-climate vanadium flow batteries to shield catholyte degradation and mitigate electrolyte crossover
DE102014009170A1 (de) Kombinatorisches Materialsystem für Ionenaustauschermembranen und dessen Verwendung in elektrochemischen Prozessen
DE10209784A1 (de) Sulfinatgruppen enthaltende Oligomere und Polymere und Verfahren zu ihrer Herstellung
Yang et al. Polyether ether ketone-based anion exchange membranes with bis-imidazolium cations for all-vanadium redox flow batteries
Li et al. Bifunctional acid proton conductor doping to improve the comprehensive properties of a cross-linked polybenzimidazole high-temperature proton exchange membrane
Ma et al. Highly hydrophilic zirconia composite anion exchange membrane for water electrolysis and fuel cells
CA2627887C (en) Method for manufacturing solid electrolyte with high ion-conductivity
EP2156493A1 (en) Novel electrolyte utilizing a lewis acid/bronstead acid complex
Wang et al. Anchoring highly sulfonated hyperbranched PBI onto oPBI: fast proton conduction with low leaching
KR102227017B1 (ko) 특정 중합체 매트릭스 및 이온교환입자로 이루어진 충전제를 함유하는 이온교환 복합재를 제조하는 방법
Sutar et al. Proton Conductivity in a Metal–Organic Cube-Based Framework and Derived Hydrogel with Tubular Morphology
CN110975944B (zh) 一种聚合物阴离子交换膜的制备方法
US11180620B2 (en) Proton-conducting inorganic particles, method for the preparation thereof, and use thereof to form a fuel cell membrane
WO2008034399A1 (de) Mischungen sulfonierter und phosphonierter polymere
EP4298150B1 (de) Phosphonierte nichtfluorierte und teilfluorierte arylpolymere aus sulfonierten arylpolymeren und polymere perfluorphosphonsäuren aus polymeren perfluorsulfonsäuren, deren herstellungsverfahren und anwendung in elektromembrananwendungen
US20160156052A1 (en) Process for preparing an ion-exchange composite material comprising a polymer matrix and a filler consisting of ion-exchange particles
Abu-Saied et al. Zirconium phosphate based polyvinyl chloride to use as proton conducting membrane for dmfc application
CN119060222A (zh) 一种膦酸化聚合物、多官能团复合物以及离子交换膜
Kim et al. Advances in Proton Exchange Membranes for Direct Alcohol Fuel Cells
WO2003014201A9 (de) Membranen für ionentransport

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008552676

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007711177

Country of ref document: EP

REF Corresponds to

Ref document number: 112007000280

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112007000280

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12278245

Country of ref document: US