WO2007097366A1 - Multilayer printed wiring board and method for manufacturing same - Google Patents

Multilayer printed wiring board and method for manufacturing same Download PDF

Info

Publication number
WO2007097366A1
WO2007097366A1 PCT/JP2007/053201 JP2007053201W WO2007097366A1 WO 2007097366 A1 WO2007097366 A1 WO 2007097366A1 JP 2007053201 W JP2007053201 W JP 2007053201W WO 2007097366 A1 WO2007097366 A1 WO 2007097366A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
layer
liquid crystal
crystal polymer
printed wiring
Prior art date
Application number
PCT/JP2007/053201
Other languages
French (fr)
Japanese (ja)
Inventor
Katsufumi Hiraishi
Kazunori Ueda
Yoshihiro Goto
Naoya Kitamura
Shohei Arai
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006043416A external-priority patent/JP4587974B2/en
Priority claimed from JP2007007311A external-priority patent/JP2008177243A/en
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to KR1020127033037A priority Critical patent/KR101262135B1/en
Publication of WO2007097366A1 publication Critical patent/WO2007097366A1/en
Priority to KR1020087022937A priority patent/KR101262136B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a multilayer printed wiring board and a method for manufacturing the same.
  • thermosetting resin such as an epoxy resin or a polyimide resin
  • interlayer insulating material for a multilayer printed wiring board.
  • thermosetting resins have good heat resistance and other properties useful for high-density multilayer printed wiring boards.
  • the thermosetting resin does not necessarily have a sufficiently low dielectric constant and a low dielectric loss tangent characteristic, and thus sufficiently satisfies the high frequency characteristics required for electronic equipment. It wasn't.
  • a multilayer printed wiring board using a liquid crystal polymer, which is a thermoplastic resin, as an interlayer insulating material has been proposed as satisfying the high frequency characteristics.
  • a liquid crystal polymer which is a thermoplastic resin, as an interlayer insulating material.
  • Such a liquid crystal polymer is excellent in each characteristic of a low dielectric constant and a low dielectric loss tangent, and therefore excellent in a high speed and low loss signal transmission property in a high frequency region of a multilayer printed wiring board.
  • JP-A-8-97565 discloses a wiring in which a circuit layer (wiring circuit) is formed.
  • a liquid crystal polymer having a melting point at least 10 ° C lower than the melting point of the liquid crystal polymer of the wiring substrate is interposed between the wiring substrates as an adhesive layer.
  • the laminated body is formed by placing the laminated wiring boards together with the release pads on a lamination press and laminating them.
  • a multilayer printed wiring board can be obtained without the need to heat the liquid crystal polymer component of the circuit layer above its melting point.
  • Japanese Patent Laid-Open No. 2001-244630 discloses that a printed circuit board (wiring board) on which a wired circuit is formed is lower in heat resistance than a liquid crystal polymer film used for an insulating layer of the wired circuit board.
  • a method of disposing the liquid crystal polymer film on the top and bottom surfaces of the liquid crystal polymer film and bonding it with a pair of heating rolls is disclosed.
  • a liquid crystal polymer film having low heat resistance is used as an adhesive layer, as in the case of using the above-described laminating press, and at this time, on the outer surface of the printed circuit board (wiring board).
  • a liquid crystal polymer film having lower heat resistance is further laminated as a protective film.
  • a release sheet is hung between the rolls.
  • pressure is applied by a roll while bringing the release sheet into contact with the surface of each printed circuit board.
  • the first step of laminating with a pressure roll Furthermore, because the liquid crystal polymer layer with lower heat resistance (melting point) than the outer insulating layer is placed on the center side where the pressure roll force is further away, the heat and pressure conditions at the time of lamination become more severe, There are concerns about defects such as deformation of the wiring circuit. Similarly, if the initial lamination process is actually performed, a release sheet such as a glass woven cloth-impregnated Teflon (registered trademark) sheet is considered to be essential to prevent circuit damage. In some cases, this may hinder subtle temperature control in the lamination process and lead to defects in the multilayer circuit board.
  • a release sheet such as a glass woven cloth-impregnated Teflon (registered trademark) sheet is considered to be essential to prevent circuit damage. In some cases, this may hinder subtle temperature control in the lamination process and lead to defects in the multilayer circuit board.
  • the thickness of the multilayer printed wiring board is reduced in order to realize further higher density and smaller size.
  • the heat resistance of the insulating layer is not always sufficient!
  • the present invention has been made in view of the above-described problems of the prior art, and is a method for continuously producing a multilayer printed wiring board having an insulating layer having a liquid crystal polymer strength.
  • a multilayer printed wiring board that can prevent deformation of a wiring circuit formed on the outer surface, and a multilayer printed wiring that is obtained by the manufacturing method and that can simultaneously realize heat resistance and excellent high-frequency characteristics. The purpose is to provide a board.
  • the present inventors have formed a first insulating layer having polyimide or a first liquid crystal polymer force and at least one surface of the first insulating layer. And a second insulating layer comprising a second liquid crystal polymer having a melting point lower than the thermal deformation temperature of the polyimide and a melting point lower than Z or the melting point of the first liquid crystal polymer. And a step of preparing a conductor layer substrate having a conductor layer laminated on one side of the second insulating layer;
  • the wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board.
  • the method for producing a multilayer printed wiring board of the present invention comprises using polyimide or the first liquid crystal polymer.
  • a wiring board having a first insulating layer and a wiring circuit formed on at least one side of the first insulating layer, and a melting point and a Z that are lower than the thermal deformation temperature of the polyimide or the first liquid crystal
  • the wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board.
  • two conductor layer substrates are prepared, and when the wiring substrate and the conductor layer substrate are laminated, the wiring substrate and the two conductors are stacked.
  • a layer substrate is placed with the wiring substrate in between, the two conductor layer substrates are arranged with the second insulating layer side facing the wiring substrate, respectively, and heated and pressurized using a heating and pressing treatment facility. It is preferable to laminate continuously.
  • the second liquid crystal polymer may have a melting point lower by 5 to 60 ° C than the melting point of the first liquid crystal polymer. preferable.
  • the wiring board and the conductor layer board are each wound in a roll shape.
  • the wiring board and the conductor layer board are respectively drawn out, and a roll 'toe' roll It is preferable to laminate in a continuous manner.
  • the heating and pressurizing treatment equipment is a roll laminator.
  • a roll linear pressure of the roll laminator is 10 to 250 kN / m! /.
  • the method for producing a multilayer printed wiring board of the present invention preferably further includes a step of surface-treating the surface of the second insulating layer of the conductor layer substrate. Furthermore, in the method for producing a multilayer printed wiring board according to the present invention, when the wiring board and the conductor layer board are laminated, the wiring board and the conductor layer board are laminated under heat and pressure (temporary lamination). Then, after obtaining a laminated body (temporary laminated body), it is preferable to perform a high temperature heat treatment by heating the laminated body using a heat treatment equipment.
  • the laminate when performing the high temperature heat treatment, the laminate is subjected to a high temperature heat treatment temperature T that satisfies the condition represented by the following formula (F1).
  • the high temperature heat treatment time is in the range of 10 to 180 seconds when performing the high temperature heat treatment.
  • the multilayer heat treatment satisfying the condition represented by the following formula (F2) for the wiring substrate and the conductor layer substrate: Temperature T:
  • the multilayer printed wiring board of the present invention is a multilayer printed wiring board in which wiring circuit layers and insulating layers are alternately laminated.
  • One of the two insulating layers adjacent to each other via the wiring circuit layer is a polyimide resin layer, and the other insulating layer is a liquid crystal polymer layer.
  • the liquid crystal polymer layer is disposed on the opposite side of the liquid crystal polymer layer from the side adjacent to the polyimide resin layer via the wiring circuit layer.
  • U is preferred to be further provided.
  • the roughness of the boundary surface between the polyimide resin layer and the liquid crystal polymer layer is in the range of 4 to 6 ⁇ m. It is preferable.
  • the roughness of the boundary surface between the polyimide resin layer and the liquid crystal polymer layer in the laminated structural unit may be less than 4 m.
  • the present invention in a method for continuously producing a multilayer printed wiring board having an insulating layer that also has liquid crystal polymer power, deformation of the wiring circuit formed on the outermost surface of the multilayer printed wiring board is prevented. It is possible to provide a method for producing a multilayer printed wiring board that can be produced, and a multilayer printed wiring board obtained by the production method.
  • FIG. 1 is a partially enlarged schematic side sectional view showing a copper clad laminate (a) and a wiring board (b) wound in a roll shape used in the first step.
  • FIG. 2 is a partially enlarged schematic side sectional view showing a two-layer conductor layer substrate wound in a roll shape used in the first step.
  • FIG. 3 is a schematic cross-sectional side view showing a peripheral portion of a heat and pressure treatment facility in a second step.
  • FIG. 4 is a schematic cross-sectional side view showing the periphery of the heat treatment equipment in the second step.
  • FIG. 5 is a schematic side cross-sectional view showing a preferred embodiment of a post-process applied to an unprocessed multilayer printed wiring board obtained by the second process (FIG. 5 (a) is a through-hole formation).
  • Fig. 5 (b) corresponds to the plating process
  • Fig. 5 (c) corresponds to the circuit formation process and the solder resist formation process.
  • FIG. 6 is a schematic sectional side view showing a preferred embodiment of the multilayer printed wiring board of the present invention.
  • FIG. 7 is a schematic side cross-sectional view showing another preferred embodiment of the multilayer printed wiring board of the present invention.
  • FIG. 8 is a schematic side sectional view showing a multilayer printed wiring board obtained in Example 7.
  • FIG. 9 is a schematic side sectional view showing a multilayer printed wiring board obtained in Example 8.
  • FIG. 10 is a schematic side sectional view showing a multilayer printed wiring board obtained in Example 9.
  • FIG. 11 is a schematic sectional side view showing a multilayer printed wiring board obtained in Example 10.
  • FIG. 12 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 11.
  • FIG. 13 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 12.
  • FIG. 14 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 13.
  • FIG. 15 is a process diagram for explaining a process for producing a multilayer printed wiring board obtained in Example 14.
  • FIG. 16 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 15.
  • FIG. 17 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 16.
  • the method for producing a multilayer printed wiring board according to the present invention includes a wiring board having a first insulating layer made of polyimide or a first liquid crystal polymer force, and a wiring circuit formed on at least one side of the first insulating layer, and A second insulating layer having a melting point lower than the heat distortion temperature of the polyimide and a melting point lower than the melting point of Z or the first liquid crystal polymer; and a second insulating layer formed on one side of the second insulating layer.
  • Preparing a conductor layer substrate having a laminated conductor layer (first step);
  • the wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board.
  • Process (second process) and
  • polyimide used in the method for producing a multilayer printed wiring board of the present invention and first and The second liquid crystal polymer will be described.
  • the polyimide used in the method for producing a multilayer printed wiring board of the present invention is mainly composed of a polyimide having a imide bond in the molecule, and polyamide, and it is not always necessary to use only a single polyimide. It may be a mixture with fat.
  • Polyimide can be obtained by appropriately selecting a known diamino compound and tetracarboxylic acid or an anhydrous product thereof and combining them so as to obtain desired characteristics.
  • these polyimides are, for example, from 0 to 35 X 10 _6 Z ° C (more preferably 1 X 10 _6 to 25 X 10 _6 Z ° C) from the viewpoint of dimensional accuracy of the obtained multilayer printed wiring board. It is preferable to have a linear expansion coefficient in the range.
  • a polyimide resin is used as a first insulating layer, and a wiring board having a wiring circuit formed on at least one surface thereof is used.
  • a circuit can be formed by a known method such as sputtering to form a wiring board.
  • any wiring circuit can be formed by a known method to form a wiring board.
  • a polyimide film Avical AH, NPI (manufactured by Kane Riki Co., Ltd.), Upilex S (manufactured by Ube Industries, Ltd.), Kapton (manufactured by Toray DuPont Co., Ltd.), etc. may be used. it can.
  • a copper-clad laminate Espanex S series and M series (both manufactured by Nippon Steel Engineering Co., Ltd.) can be used.
  • the heat distortion temperature of such a polyimide is preferably in the range of 300 to 380 ° C, and is preferably in the range of 320 to 360 ° C.
  • the first and second liquid crystal polymers used in the method for producing a multilayer printed wiring board of the present invention are those that form an optically anisotropic molten phase.
  • the type of these liquid crystal polymers is not particularly limited, but so-called wholly aromatic liquid crystal polymers, that is, liquid crystal polymers that do not contain an aliphatic long chain and are substantially composed of only aromatics are preferable. Further, among these, it is more preferable to use a polyester comprising 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid. Further, as these liquid crystal polymers, a mixture in which an appropriate kind of liquid crystal material is combined can be used.
  • liquid crystal polymers such as a liquid crystal polymer used as an insulating layer in a commercially available copper-clad laminate.
  • the intermediate force can also be selected and used as appropriate.
  • these liquid crystal polymers are obtained From the viewpoint of the dimensional accuracy of the multilayer printed wiring board, for example, it is preferable that it has a linear expansion coefficient in the range of 1 X 10 — 6 to 25 X 10 — 6 Z ° C.
  • a liquid crystal polymer is used as a second insulating layer, and a wiring board having a wiring circuit formed on at least one surface thereof is used. In that case, a commercially available liquid crystal polymer film is used.
  • a copper clad laminate having a liquid crystal polymer and a copper foil force As such a liquid crystal polymer film, Betastar (manufactured by KURARENE CORPORATION) or the like can be used. As such a copper-clad laminate, Espanex L series (manufactured by Nippon Steel Chemical Co., Ltd.) can be used. Further, the melting point of the first liquid crystal polymer is preferably in the range of 280 to 350 ° C. Also, the melting point of the second liquid crystal polymer is in the range of 80 to 280 ° C. It is preferable that it exists in.
  • Such a polyimide or the first liquid crystal polymer is a material for the first insulating layer that is useful in the present invention.
  • the second liquid crystal polymer is a material for the second insulating layer according to the present invention.
  • the second liquid crystal polymer needs to have a melting point lower than the heat distortion temperature of the polyimide and a melting point lower than Z or the melting point of the first liquid crystal polymer. is there.
  • the second liquid crystal polymer has a melting point lower than the thermal deformation temperature of the polyimide and Z or the melting point of the first liquid crystal polymer. It is possible to prevent deformation of the obtained multilayer printed wiring board while maintaining the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one side of the insulating layer.
  • the melting point of the second liquid crystal polymer is 5 ° C or more lower than the thermal deformation temperature of the polyimide. It is more preferable that the temperature is lower.
  • the melting point of the second liquid crystal polymer is preferably 5 to 60 ° C lower than the melting point of the first liquid crystal polymer, more preferably 10 to 60 ° C lower, more preferably 15 to 40 °. A low C is particularly preferred. If the melting point of the second liquid crystal polymer is less than the lower limit, the dimensional accuracy of the resulting multilayer printed wiring board tends to be insufficient. On the other hand, if the upper limit is exceeded, warping of the multilayer printed wiring board to be obtained can be reduced. Circuit deformation tends to increase.
  • the heat distortion temperature in the present invention refers to a temperature at which a film starts to grow suddenly by a load when a certain load is applied to the film and the temperature is raised.
  • the molding temperature can be measured according to the method described in ASTM D648 or ⁇ and IS K7191, and for example, it can be measured by the following method. In other words, using a thermomechanical analyzer (TMA), a 5 g load was applied to the sample, the dimensional change of the sample was measured when the temperature was raised to 400 ° C at a temperature increase rate of 10 ° CZmin, and the elongation below Tg was measured.
  • TMA thermomechanical analyzer
  • the heat distortion temperature can also be obtained from the intersection force between the extrapolated line and the extrapolated line extending beyond Tg.
  • the melting point is the temperature of the endothermic peak observed when the temperature is raised to 360 ° C at a rate of 10 ° CZmin using a differential scanning calorimeter (DSC).
  • FIGS. 3 and 4 correspond to the second step
  • FIG. 5 corresponds to a later step to be described later.
  • the first step first, as shown in FIG. 1B, at least one surface of the first insulating layer 12 made of the polyimide or the first liquid crystal polymer and the first insulating layer 12 is firstly shown.
  • a wiring board 18 having a wiring circuit 16 formed on is prepared.
  • Such a wiring board 18 is not particularly limited, but is preferably one wound in a roll shape as shown in FIG. 1 (b). By using the roll wound in this way, the multilayer printed wiring board can be manufactured by a roll 'toe' roll method, and the productivity can be further improved.
  • such a wiring board 18 is laminated on at least one surface of the first insulating layer 12 and the first insulating layer 12 wound in a roll shape as shown in FIG. 1A, for example.
  • the copper clad laminate 14 having the copper foil 10 can be produced by subjecting it to a circuit forming process.
  • a circuit forming process for example, a method of sequentially performing etching resist laminating, exposure, development, etching, and resist stripping on the copper-clad laminate 14 can be employed. Further, such a circuit formation process is preferably performed by a roll 'toe' roll method.
  • the first insulating layer 12 is not particularly limited as long as it is a layer made of the polyimide or the first liquid crystal polymer.
  • a first insulating layer 12 includes the poly An imide film or a commercially available liquid crystal polymer film may be appropriately selected and used.
  • a liquid crystal polymer film As such a liquid crystal polymer film, Betastar (manufactured by Kurarene Co., Ltd.) or the like can be used.
  • the copper clad laminate 14 having the first insulating layer 12 as described above the S-vanex L series (manufactured by Nippon Steel Corp.) and the S-vanex M series (Nippon Steel Corp. ( Etc.) can be used.
  • the thickness of the first insulating layer 12 can be, for example, in the range of 5 to: LOO / zm, and preferably in the range of 10 to 50 m. Furthermore, the thickness of the wiring circuit 16 can be in the range of 3 to 35 m, for example, and is preferably in the range of 5 to 25 m.
  • a second melting point having a melting point lower than the thermal deformation temperature of the polyimide and a melting point lower than the melting point of Z or the first liquid crystal polymer is prepared.
  • the second insulating layer 22 is not particularly limited as long as it is a layer having the second liquid crystal polymer force.
  • a commercially available liquid crystal polymer film may be appropriately selected and used.
  • Betastar manufactured by KURARENE CORPORATION
  • the like can be used.
  • an appropriate highly conductive metal can be used, but it is particularly preferable to use copper.
  • Esbanex L series manufactured by Nippon Steel Chemical Co., Ltd.
  • Esbanex L series manufactured by Nippon Steel Chemical Co., Ltd.
  • the thickness of the second insulating layer 22 can be, for example, in the range of 5 to: LOO / zm, and preferably in the range of 10 to 50 m. Furthermore, the thickness of the conductor layer 20 can be, for example, in the range of 3 to 35 / ⁇ ⁇ , and preferably in the range of 5 to 25 ⁇ m.
  • the wiring board 18 has the wiring circuit 16 only on one side, it is sufficient to prepare at least one such conductive layer board 24, but the wiring board 18 is on both sides.
  • the wiring circuit 16 it is preferable to prepare two sheets.
  • the surface of the second liquid crystal polymer (the second insulating layer) may be subjected to a surface treatment before performing a second step described later.
  • the desired strength can improve the adhesion strength of the laminated surface.
  • a surface treatment method For example, an etching process using an alkali mixed solution or an etching process using plasma is preferably applicable.
  • the wiring board 18 and the conductor layer board 24 are arranged with the second insulating layer side of the conductor layer board 24 facing the wiring board 18.
  • the wiring board 18 has the wiring circuit 16 on both sides, it is shown in FIG. 3 from the viewpoint of preventing the deformation of the wiring circuit formed on the outermost surface of the obtained multilayer printed wiring board.
  • the wiring board 18 and the two conductor layer boards 24 can be arranged with the wiring board 18 in between and the two conductor layer boards 24 arranged with the second insulating layer side facing the wiring board 18 respectively. preferable.
  • the wiring board 18 and the conductor layer board 24 are wound in a roll shape, they can be drawn out and used.
  • the wiring board 18 and the conductor layer board 24 are continuously laminated under heat and pressure using the heating and pressure treatment equipment 27, and the outermost surface is not processed.
  • a multilayer printed wiring board (outer layer unprocessed multilayer printed wiring board) is obtained (Fig. 3).
  • Such a heating and pressurizing treatment equipment 27 is preferably one that can be continuously treated by a roll 'toe' roll method from the viewpoint of productivity.
  • an apparatus such as a roll laminator, a double steel belt press, or a continuous press apparatus (for example, MVLP series manufactured by Meiki Seisakusho Co., Ltd.) can be used from the viewpoint of productivity. It is preferable to use a roll laminator.
  • the roll line pressure (laminate pressure) by the roll laminator is preferably 10 to 25 OkNZm, more preferably 25 to 150 kNZm.
  • the roll line pressure is less than the lower limit, the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one side of the first insulating layer, and the wiring circuit and the second insulating layer
  • the upper limit is exceeded, the warp of the resulting multilayer printed wiring board tends to increase, or the thickness change of the second liquid crystal polymer tends to increase.
  • the roll temperature (surface temperature) of the roll laminator is preferably 150 to 300 ° C.
  • the wiring board 18 and the conductor layer board 24 are stacked, the wiring board 18 and the conductor layer board 24 are stacked under heat and pressure.
  • the laminate 26 is heated using a heat treatment equipment 29 as shown in FIG. It is preferable to obtain a non-caloric multilayer printed wiring board (outer layer unprocessed multilayer printed wiring board 28).
  • the filling of the second liquid crystal polymer between the circuits, the adhesion between the wiring circuit and the second insulating layer, and the prevention of deformation of the resulting multilayer printed wiring board should be satisfied.
  • These layers need to be laminated. For example, if the influence of variations in raw material quality such as heat resistance and thickness is taken into account, there is a risk that delicate condition management in the lamination process may be required.
  • the multilayer printed wiring board can be used in subsequent processes due to residual stress that is considered to be caused by lamination under heating and pressing conditions. There is a risk of warping, which may cause problems when mounting and using parts as a multilayer printed wiring board.
  • Temporary lamination heat treatment temperature T is less than the lower limit
  • the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one surface of the first insulating layer and the adhesion between the wiring circuit and the second insulating layer are insufficient.
  • the upper limit is exceeded, warping of the resulting multilayer printed wiring board cannot be sufficiently suppressed.
  • the high-temperature heat treatment temperature T is less than the lower limit, the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one surface of the first insulating layer, and the wiring circuit and the second insulating layer
  • the upper limit is exceeded, the wiring circuit formed on at least one surface of the first insulating layer tends to be deformed or wrinkled.
  • the high temperature heat treatment time is preferably 5 seconds or more, more preferably in the range of 10 to 180 seconds.
  • the high-temperature heat treatment time is less than 5 seconds, the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one side of the first insulating layer, and the wiring circuit and the second insulating layer Adhesiveness tends to be inadequate.
  • it exceeds 180 seconds the wiring circuit formed on at least one surface of the first insulating layer may be deformed or damaged.
  • such a heat treatment equipment 29 is preferably capable of being continuously treated by a roll 'toe' roll method from the viewpoint of productivity.
  • Examples of such heat treatment equipment 29 include a tunnel furnace, a far-infrared furnace, and a hot air drying furnace.
  • the outer layer unprocessed multilayer printed wiring board obtained by the second step is subjected to a post-process described below as necessary.
  • a wiring board can be obtained.
  • the multilayer printed wiring board of the present invention is manufactured.
  • a post-process may be performed for each of the cut pieces. The post-process may be performed by continuously processing the printed wiring board as it is by a roll-to-roll method.
  • the outer layer uncovered multilayer printed wiring board may be wound and temporarily stored in a roll shape.
  • the outermost surface is a conductor layer. Absent.
  • the outermost unprocessed multilayer printed wiring board obtained by the second step is a conductor layer that is not yet a wiring circuit. Therefore, there is no room for the problem of deformation of the wiring circuit in the second step.Furthermore, after forming the wiring circuit by patterning the conductor layer after the second step, the multi-layer printed wiring board is formed. There is little risk of deformation of the wiring circuit formed on the outer surface.
  • the second step can be continuously performed by a roll 'toe' roll method, and in that case, the multilayer printed wiring board is expensive. It becomes possible to manufacture with productivity.
  • the method for producing a multilayer printed wiring board of the present invention is not limited to the above embodiment.
  • the wiring board may have a plurality of the first insulating layers. That is, it is possible to manufacture a multilayer printed wiring board having four or more layers by using a multi-layered wiring board as the wiring board, and further, according to the method for manufacturing a multilayer printed wiring board of the present invention.
  • the resulting multilayer printed wiring board can be further multilayered.
  • the multilayer printed wiring of the present invention In the manufacturing method of the plate, it is possible to use an appropriate highly conductive metal in addition to copper as a material for the wiring circuit.
  • the multilayer printed wiring board of the present invention has a structure in which a plurality of wiring circuit layers (wiring circuit, conductor layer) and a plurality of insulating layers are alternately laminated.
  • one of the two insulating layers adjacent to each other via the wiring circuit layer is a polyimide resin layer
  • the other insulating layer is a liquid crystal polymer. It is necessary to include laminated structural units that are layers.
  • a laminated structure in which one of the two insulating layers adjacent to each other through the wiring circuit layer is a polyimide resin layer and the other insulating layer is a liquid crystal polymer layer. By including the unit, it is possible to achieve both heat resistance and excellent high-frequency characteristics.
  • the multilayer printed wiring board of the present invention can be manufactured, for example, by the above-described method for manufacturing a multilayer printed wiring board of the present invention. That is, a wiring board having a first insulating layer made of polyimide or a first liquid crystal polymer and a wiring circuit formed on at least one surface of the first insulating layer, and a temperature lower than the thermal deformation temperature of the polyimide A second insulating layer having a second liquid crystal polymer force having a melting point and a melting point lower than the melting point of Z or the first liquid crystal polymer, and a conductor layer laminated on one side of the second insulating layer. A step of preparing a conductor layer substrate;
  • the wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board.
  • the multilayer printed wiring board of the present invention can be manufactured. Monkey.
  • the multilayer printed wiring board of the present invention is, for example, as shown in FIG. 6, in a multilayer printed wiring board 50 having the above-described laminated structure, two insulating layers 5 adjacent to each other with a wiring circuit layer 52 interposed therebetween.
  • One of the insulating layers 4a and 54b is a polyimide resin layer, and the other insulating layer is a liquid crystal polymer layer.
  • It includes a laminated structural unit 56 that is a remer layer.
  • Such a laminated structural unit 56 may extend over the entire laminated structure of the multilayer printed wiring board 50, or may be provided at one or more appropriate portions in the entire laminated structure. Good.
  • polyimide resin As the material of one insulating layer 54a, but is not limited to this, heat resistance of the insulating layer is ensured, and an appropriate low dielectric constant and low dielectric loss tangent are provided. As long as it has each of these characteristics, you may use another thermosetting resin.
  • polyimide resin include those similar to the polyimide used in the above-described method for producing a multilayer printed wiring board of the present invention.
  • thermoplastic rosins examples include the same liquid crystal polymers as those used in the above-described method for producing a multilayer printed wiring board of the present invention.
  • wiring circuit layer (wiring circuit) 52 As a material of the wiring circuit layer (wiring circuit) 52, a force capable of using an appropriate highly conductive metal, in particular, a copper foil is preferably used.
  • the thickness of the insulating layer 54a can be, for example, about 5 to: LOO m, and the thickness of the insulating layer 54b. Can be, for example, about 10 to about LOO m. Further, the thickness of the wiring circuit layer 12 can be set to about 3 to 35 ⁇ m, for example.
  • Such a multilayer printed wiring board of the present invention has an excellent balance of properties due to the combination of the good heat resistance of polyimide resin and the excellent high-frequency properties of the liquid crystal polymer.
  • the insulating layer according to the present invention does not include a reinforcing material such as a glass woven fabric and a ramid nonwoven fabric, the resulting multilayer printed wiring board is excellent in densification, thinning, and weight reduction, and powder falling off. The resulting yield loss is reduced.
  • the multilayer printed wiring board of the present invention is adjacent to the polyimide resin layer (insulating layer 54a) of the liquid crystal polymer layer (insulating layer 54b) in the laminated structural unit 56a.
  • a liquid crystal polymer layer (insulating layer 54c) may be further provided on the side opposite to the mating side via the wiring circuit layer 52a.
  • the melting point of the liquid crystal polymer layer 54b is preferably 5 to 60 ° C higher than the melting point of the liquid crystal polymer layer 54c, more preferably 10 to 60 ° C, and particularly preferably 15 to 40 ° C higher.
  • the melting point of the liquid crystal polymer according to the present invention refers to the temperature of the endothermic peak observed when the temperature is increased to 360 ° C. at a temperature increase rate of 10 ° C. Zmin using a differential scanning calorimeter (DSC).
  • the multilayer printed wiring board including the multilayer structural unit 56a is advantageous in that it can easily realize higher-order multilayering of the printed wiring board having the multilayer structural unit 56 as a skeleton structure. is there.
  • the boundary surface between the polyimide resin layer (insulating layer 54a) and the liquid crystal polymer layer (insulating layer 54b) (see FIG. 6, indicated by arrow A.
  • the roughness (Rz) of) is preferably in the range of 4 to 6 ⁇ m.
  • the gap between the layers that does not adversely affect the high-speed and low-loss signal transmission in the high-frequency region that can occur when the roughness of the interface is significantly large. It is possible to secure sufficient interlayer adhesion strength.
  • the roughness (Rz) of the boundary surface may be less than 4 ⁇ m, preferably in the range of 1 to 3 ⁇ m.
  • a high-speed, low-loss signal in the high-frequency region may be used. The adverse effect on transmission performance can be avoided more reliably.
  • the roughness of the boundary surface is controlled by, for example, preliminarily forming the polyimide resin layer when the wiring layer 52 is formed by etching and patterning a conductor layer previously laminated on the polyimide resin layer (insulating layer 54a).
  • the surface roughness of the conductor layer such as copper foil laminated on the layer (insulating layer 54a), in other words, the surface roughness of the surface (laminated surface) on which the liquid crystal polymer layer (insulating layer 54b) is laminated, etc. It can be performed by an appropriate method.
  • the boundary surface A between the polyimide resin layer (insulating layer 54a) and the liquid crystal polymer layer (insulating layer 54b) is formed in the laminated structural units 56 and 56a.
  • the laminated surface of the liquid crystal polymer layer 54b facing the polyimide resin layer 54a and the laminated surface of the liquid crystal polymer layer 54c facing the liquid crystal polymer layer 54b are respectively surface-treated in advance. It is preferable. In this way, it is possible to obtain a good interlayer adhesion strength by closely contacting the layers with no gap.
  • Such a surface treatment cage is applied before the lamination integration step. Further, as such a surface treatment cache method, etching treatment with an alkali mixed solution or etching treatment with plasma is desirable.
  • the maximum temperature is controlled in the range of 220 to 300 ° C
  • the press pressure is controlled in the range of 4 to 8MPa
  • the lamination process for example, the maximum temperature
  • the laminating pressure linear pressure
  • the thermoplastic resin can be softened or fluidized appropriately, providing sufficient interlayer adhesion Ensuring strength can be realized.
  • FIG. 12 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 11 to be described later) centering on a polyimide resin layer.
  • a double-sided copper-clad laminate 502 in which a polyimide resin layer is used as an insulating layer and copper foils 503 are laminated on both sides is prepared (see FIG. 12 (a)).
  • a commercially available double-sided copper-clad laminate can be used.
  • a wiring circuit layer 504 is formed on the double-sided copper-clad laminate 502 by an arbitrary method (see FIG. 12 (b)).
  • the wiring circuit layer 504 may be formed on a polyimide film by sputter plating.
  • the thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
  • a single-sided copper-clad laminate 506 having a liquid crystal polymer as an insulating layer is thermocompression bonded to both sides of the double-sided wiring board 505 having the circuit formed as described above (see FIG. 12 (c)).
  • Reference numeral 507 denotes a hot press hot platen.
  • a liquid crystal polymer having the same melting point that is heat-pressed on both sides of the double-sided wiring board 505 in order to satisfactorily fill the liquid crystal polymer between the circuits.
  • the preferred melting point of the liquid crystal polymer is in the range of 250 to 350 ° C, and the heating temperature during heating and pressurization is 0 to 50 ° C lower than the melting point of the liquid crystal polymer. It is preferable.
  • the pressurization is preferably performed at 4 to 8 MPa for 5 to 60 minutes.
  • heating temperature force during heating / pressurization of the liquid crystal polymer When the temperature is lower than the melting point of the liquid crystal polymer by 50 ° C or more, the wiring circuit of the wiring board may be deformed, and the pressurization range is less than 4 MPa. There is a possibility that the liquid crystal polymer is insufficiently filled between the wiring circuits.
  • the heating temperature of the liquid crystal polymer (heating temperature during pressurization) is higher than the melting point of the liquid crystal polymer, or if the pressure range exceeds 8 MPa, the liquid crystal polymer may seep out of the substrate (wiring board). Voids may be generated in the liquid crystal polymer layer.
  • the substrate is cooled to obtain a laminate 508 (see FIGS. 12D and 12E).
  • the obtained laminate 508 forms a through hole 509 by a known method such as an NC drill (see FIG. 12 (f)), and is subjected to desmear treatment to form a panel metal 510 (FIG. 12 ( g)).
  • the outermost layer 511 is etched and patterned by a tenting method to form a wiring circuit layer 512 and a solder resist layer 513 to obtain a multilayer printed wiring board 501 (see FIG. 12 (h)). ).
  • FIG. 13 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 12 to be described later) centered on a polyimide resin layer by a roll-to-roll method.
  • a double-sided copper clad laminate 602 wound in a roll shape in which a polyimide resin layer is used as an insulating layer and copper foil 603 is laminated on both sides thereof is prepared, and a wiring circuit layer 604 is formed by an arbitrary method.
  • a double-sided wiring board 605 formed and wound into a roll is obtained (see FIG. 13 (a)).
  • As the double-sided copper clad laminate 6 02 a commercially available double-sided copper clad laminate can be used.
  • the thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
  • a two-sided single-sided copper-clad laminate 606 wound in a roll shape using a liquid crystal polymer as an insulating layer was prepared.
  • two single-sided copper-clad laminates 606 are thermocompression bonded to both sides of the double-sided wiring board 605 formed with the circuit as described above to obtain a laminate 608 (see FIGS. 13 (b) and 13 (c)).
  • Reference numeral 607 indicates a roll.
  • the range of the melting point of the liquid crystal polymer used is the same as in the press process, but the heating temperature at the time of heating and pressurizing is 0 than the melting point of the liquid crystal polymer. It is preferable that the temperature be lower by -80 ° C. In addition, it is preferable to pass the roll at a laminating pressure (linear pressure) of 2 to 200k NZm! /.
  • the obtained laminate 608 is cut, and after that, through holes 609 are formed by the same method as described above (see FIG. 13 (d)), desmear treatment is performed, and the panel members are formed.
  • Form 610 see Fig. 13 (e)
  • the outermost layer 611 is etched and patterned by a tenting method to form a wiring circuit layer 612 and further a solder resist layer 613 to obtain a multilayer printed wiring board 601 (FIG. 13 (f )reference).
  • FIG. 14 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 13 described later) centering on a polyimide resin layer similar to FIG.
  • a double-sided copper-clad laminate 702 in which a polyimide resin layer is used as an insulating layer and copper foils 703-1 and 703-2 are laminated on both sides is prepared (see FIG. 14 (a)).
  • a commercially available double-sided copper-clad laminate can be used as the double-sided copper-clad laminate 702.
  • Two double-sided copper-clad laminates 702 are prepared (the other one is indicated by reference numeral 702 '), and the wiring circuit layer 704— 1 ', 704-2 (see Fig. 14 (b)).
  • the thickness of the polyimide resin layer, the wiring circuit layer (copper foil), etc. are preferably as described above.
  • the copper foil 706 on both sides of the double-sided copper-clad laminate 705 using the liquid crystal polymer layer 707 of the same size as the double-sided copper-clad laminates 702 and 702 'as the insulating layer is removed by etching and immersed in an alkali mixed aqueous solution.
  • the liquid crystal polymer layer 707 is obtained by processing (see FIG. 14 (c)).
  • the surface-treated liquid crystal polymer layer 707 is sandwiched between the double-sided copper-clad laminates 702 and 702 ′ facing each other in the wiring circuit layers 704-2 and 704-1 ′, and thermocompression bonded (FIG. 14). (See (d)).
  • Na Reference numeral 708 indicates a hot platen. After heating and pressing, the substrate is cooled to obtain a laminate 709
  • the obtained laminate 709 forms a through-hole 710 by a known method such as an NC drill (see FIG. 14 (g)), is subjected to desmear treatment, and has a panel mesh 711. (Fig. 14
  • the outermost layer 712 is etched and patterned by a tenting method to form the wiring circuit layer 713, the solder resist layer 714, and the multilayer printed wiring board 7
  • FIG. 15 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 14 to be described later) having the same polyimide resin layer as that in FIG.
  • the double-sided copper-clad laminates 802 and 802 ' commercially available double-sided copper-clad laminates can be used.
  • the thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
  • the surface-treated liquid crystal polymer layer 807 is sandwiched between the double-sided wiring boards 805 and 805 ′ with the wiring circuit layers 804 and 804 ′ facing each other, and thermocompression bonding is performed (see FIG. 15C).
  • Reference numeral 808 indicates a roll. After heating and pressing, the substrate is cooled to obtain a laminate 809.
  • FIG. 16 is a process diagram showing a method for producing an 8-layer printed wiring board (corresponding to Example 15 described later) centering on a polyimide resin layer.
  • FIG. 16 (a) two double-sided copper clad laminates 902 in which a polyimide resin layer is used as an insulating layer and copper foils 903-1 and 903-2 are laminated on both sides are prepared (see FIG. 16 (a), Here, only the double-sided copper-clad laminate 902 is displayed.)
  • Double-sided copper-clad laminates 902 and 902 ′ can be commercially available double-sided copper-clad laminates.
  • Wiring circuit layers 904-1, 904-1 ', 904-2, 904-2' are formed on both sides of this double-sided copper-clad laminate 902, 902 'by any method (see Fig. 16 (b)). .
  • the thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
  • the liquid crystal polymer layer 907 is obtained by processing (see FIG. 16 (c)).
  • the surface-treated liquid crystal polymer layer 907 is sandwiched between the double-sided copper-clad laminates 902 and 902 ′ formed with a circuit as described above, and thermocompression bonded (see FIG. 16 (d)).
  • Reference numeral 90 8 indicates a hot platen. Thereafter, after heating and pressing, the substrate is cooled to obtain a laminate 909 (see FIG. 16 (e)).
  • single-sided copper-clad laminates 910 and 910 ' were prepared by plasma-treating the resin surfaces 911 and 911' of the liquid crystal polymer, and the resin surfaces 911 and 911 'were opposed to both sides of the laminate 909. Are stacked (see Fig. 16 (f)), heated and pressurized to obtain laminate 912 (see Fig. 16 (g)).
  • the obtained stacked body 912 is etched 913 (see FIG. 16 (h)), and then a blind via hole 914 is formed (see FIG. 16 (i)).
  • a plating layer 915 is formed (see FIG. 16 (j)), and a wiring circuit layer 916 is formed (see FIG. 16 (k)).
  • Steps (f) to (i) in FIG. 16 are performed again, through holes 918 are formed in the obtained laminate 917 (see FIG. 16 (1)), desmear treatment is performed, and panel fittings 919 are formed. (See Fig. 16 (m)).
  • the outermost layer 920 is etched and turned by a tenting method to form a wiring circuit layer 919 and a solder resist layer 921 to obtain an eight-layer printed wiring board 901 (see FIG. 16 (n)).
  • FIG. 17 is a process diagram showing a method for producing an 8-layer printed wiring board (corresponding to Example 16 to be described later) centering on a polyimide resin layer similar to FIG.
  • a polyimide resin layer is used as an insulating layer, and copper foils 1003-1, 1003-2, 1003 are formed on both sides thereof.
  • the copper foil on both sides of the double-sided copper clad laminate 1006 having the same size liquid crystal polymer layer as the double-sided wiring boards 1005 and 1005 'as the insulating layer is removed by etching, and then the surface is subjected to plasma treatment and the liquid crystal polymer Layer 1007 is obtained (see Fig. 17 (b)).
  • the surface-treated liquid crystal polymer layer 1007 is sandwiched between the double-sided wiring boards 1005 and 1005 ′, heat-pressed and then cooled to obtain a laminate 1009 (see FIG. 17 (c)).
  • Reference numeral 1008 indicates a roll.
  • a single-sided copper-clad laminate 1 010, 1010 'in which the resin surfaces of the liquid crystal polymers 1011, 1011' were plasma-treated was prepared, and the liquid crystal positors 1011, 1011 'were put on both sides of the laminate 1009
  • the laminates 1012 are obtained by stacking the surfaces facing each other and heating and pressing (see FIG. 17 (d)).
  • the laminated body 1012 is etched 1014, and then the blind via hole 1015 is formed (see FIG. 17 (e)).
  • the steps from Fig. 17 (c!) To (e) are carried out again, through holes 1019 are formed in the obtained laminate 1018 (see Fig. 17 (h)), desmear treatment is performed, and panel fittings 1020 (See Fig. 17 (i)).
  • the outermost layers 1021 and 1021 are etched and patterned by a tenting method to form a wiring circuit layer 1022 and a solder resist layer 1023 to obtain an eight-layer printed wiring board 1001 (see FIG. 17 (j)). .
  • Etching resist lamination, exposure, development, etching, and resist stripping are performed on a copper clad laminate 14 with 9m copper foil 10 and a roll 'toe' roll method, and wiring circuit 16 is provided on both sides. form
  • a long wiring board 18 wound in a roll shape having a width of 300 mm and a length of 200 m was produced (see FIG. 1).
  • a second insulating layer 22 made of a second liquid crystal polymer having a melting point of 280 ° C (thermal deformation temperature: 240 ° C) and having a thickness of 25 ⁇ m, and a second insulating layer 22 Prepare a two-layer conductor layer substrate 24 having a conductor layer 20 (copper foil) with a thickness of 9 ⁇ m laminated on one side (see Fig. 2). Each of the 22 surfaces was plasma treated.
  • the wiring board 18 and the two conductor layer boards 24 are pulled out, respectively, and the two conductor layer boards 24 are directed to the wiring board 18 with the wiring board 18 in between.
  • a roll laminator as the heat and pressure treatment equipment 27
  • a multilayer printed wiring board whose outermost surface is unprocessed is continuously heated and pressurized under the conditions of a roll temperature of 260 ° C and a roll linear pressure of 20 kNZm. (Laminated body 26) was produced (see FIG. 3).
  • the obtained laminate 26 was cut to 300 mm x 400 mm, and a through hole 30 of ⁇ 0.15 mm was formed with an NC drill cage (see Fig. 5 (a)), and after a predetermined desmear treatment 8 m thick panel mesh 32 was applied (see Fig. 5 (b)). Then, the outermost surface was etched and patterned by the tenting method to form the outermost wiring circuit 34, and further the solder resist 36 was formed to produce a multilayer printed wiring board 38 (see FIG. 5 (c)). ).
  • the multilayer printed wiring board obtained in Example 1 was further multilayered as follows. That is, first, a multilayer printed wiring board (laminate 26) whose outermost surface obtained in Example 1 was not processed was prepared, and upper and lower double-sided copper foils 20 were patterned to form a wiring layer (wiring circuit). . Next, a second insulating layer 22 having a thickness of 260 ⁇ C (thermal deformation temperature: 220 ° C) and having a second liquid crystal polymer force and having a thickness of 25 ⁇ m is laminated on one side of the second insulating layer 22. Two conductor layer substrates 24 having a conductor layer 20 (copper foil) having a thickness of 9 ⁇ m were prepared (see FIG. 2).
  • a multilayer printed wiring board (laminated body 26 on which a wiring layer is formed) and two conductor layer substrates 2 4 with a multilayer printed wiring board (laminated body 26 with a wiring layer formed) in between, the two conductor layer substrates 24 are respectively disposed on the second insulating layer side with a multilayer printed wiring board (laminated with a wiring layer formed).
  • a roll laminator as the heat and pressure treatment equipment 27, continuously heated and pressurized under the conditions of a roll temperature of 240 ° C and a roll linear pressure of 20kNZm, a multilayer printed wiring board ( Two conductor layer substrates 24 were laminated on the laminate 26) on which the wiring layer was formed.
  • a post-process as shown in FIG. 5 was performed to further increase the number of layers of the multilayer printed wiring board (laminated body 26 on which a wiring layer was formed).
  • Etching resist lamination, exposure, development, etching, and resist stripping are performed on the tension laminate 14 by the roll 'toe' roll method, wiring circuit 16 is formed on both sides, and the roll is 300mm wide and 200m long.
  • a long wiring board 18 wound in a shape was produced (see FIG. 1).
  • the second insulating layer 22 having a thickness of 25 ⁇ m and the second liquid crystal polymer having a melting point of 280 ° C., and the thickness laminated on one side of the second insulating layer 22 is 9 ⁇ m.
  • a two-conductor layer substrate 24 having m conductor layers 20 (copper foil) was prepared (see FIG. 2).
  • the laminate (temporary laminate) 26 is produced by continuously heating and pressing under the conditions of a roll temperature of 210 ° C and a roll linear pressure of lOOkNZm. (See Figure 3).
  • the peel strength at the laminate interface of the obtained temporary laminate 26 was 0.2 kNZm, and it was not peeled when wound up into a roll, but could be easily peeled off by hand.
  • the obtained temporary laminate 26 was subjected to high-temperature heat treatment at 280 ° C for 30 seconds using a heat treatment equipment 29 to produce an outer layer unprocessed multilayer printed wiring board 28 (see Fig. 4). ).
  • the peel strength at the laminated interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.8 kNZm, which was not easy to peel off by hand.
  • the obtained outer layer unprocessed multilayer printed wiring board 28 was cut into 300 mm x 400 mm.
  • a through hole 30 of ⁇ ⁇ . 15mm was formed by NC drilling (see Fig. 5 (a)), and after a predetermined desmear treatment, panel plating 32 of 8 / zm thickness was applied (see Fig. 5 (b)) .
  • the outermost surface was etched and patterned by the tenting method to form the outermost wiring circuit 34, and further the solder resist 36 was formed to produce a multilayer printed wiring board 38 (see FIG. 5 (c)). See).
  • the thickness is laminated on both surfaces of the first insulating layer 12 and the first insulating layer 12 having a thickness of 25 m made of polyimide having a heat distortion temperature of 360 ° C.
  • An outer layer unprocessed multilayer printed wiring board 28 and a multilayer printed wiring board 38 were produced in the same manner as in Example 3 except that a copper clad laminate having a 9 ⁇ m copper foil 10 was used.
  • the peel strength at the lamination interface of the obtained temporary laminate 26 is 0.2 kNZm, and it does not peel when wound into a roll, but can be easily peeled off by hand. Atsuta. Further, the peel strength at the lamination interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.9 kNZm, and it was not easily peeled off by hand.
  • the obtained multilayer printed wiring board 38 was cut into a size of 5 cm square, the wiring board warpage was evaluated, and the wiring board warpage was small. Further, when a cross-sectional observation of the obtained outer layer unprocessed multilayer printed wiring board 28 was performed, no disconnection or deformation of the wiring circuit 16 was observed, and the filling of the second liquid crystal polymer 22 between the wirings was also good. The thickness of each resin layer was also substantially uniform.
  • the roll laminator roll temperature was 275 ° C, the linear pressure was 20 kNZm, and the high-temperature heat treatment as shown in Fig. 4 was not performed.
  • a printed wiring board 38 was produced. [0130] At this time, the peel strength at the lamination interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.6 kN / m. However, when the obtained multilayer printed wiring board 38 was cut into a 5 cm square size, the wiring board warpage was evaluated. Further, when a cross-sectional observation of the obtained outer layer unprocessed multilayer printed wiring board 28 was performed, a minute deformation of the wiring circuit, which seems to be caused by stress at the time of lamination, was confirmed.
  • a temporary laminate 26 was produced in the same manner as in Example 3 except that the roll temperature of the roll laminator was 170 ° C. and the linear pressure was 100 kN / m.
  • the obtained temporary laminate 26 was easily peeled off at the lamination interface, and was unable to be wound into a roll. Therefore, it cannot be used as a temporary laminate, and it was impossible to carry out the subsequent steps after the high-temperature heat treatment.
  • the outer layer unprocessed multilayer printed wiring board 28 and the multilayer printed wiring board 38 were produced in the same manner as in Example 4 except that the processing temperature in the high temperature heat treatment was 250 ° C. and the processing time was 30 seconds.
  • the peel strength at the laminated interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.3 kNZm, which can be easily peeled off by hand, and the adhesiveness is insufficient. It was something. Then, when the obtained multilayer printed wiring board 38 was cut into a size of 5 cm square, the wiring board warpage was evaluated, and the wiring board warpage was small.
  • An outer layer unprocessed multilayer printed wiring board 28 and a multilayer printed wiring board 38 were produced in the same manner as in Example 4 except that the processing temperature in the high temperature heat treatment was 310 ° C. and the processing time was 30 seconds.
  • the peel strength at the lamination interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.9 kNZm, and it was not easily peeled off by hand.
  • the obtained multilayer printed wiring board 38 was cut into a size of 5 cm square, the wiring board warpage was evaluated.
  • the cross-section of the resulting outer layer unprocessed multilayer printed wiring board 28 was observed, it was thought to be due to thermal deformation during high-temperature heat treatment. As a result, the deformation of the circuit was confirmed.
  • Table 1 shows the results of evaluation or measurement of cross-section observation of processed multilayer printed wiring boards.
  • Table 1 shows the material type of the first insulating layer in Examples 3 to 6 and Reference Examples 1 and 2, and the conditions for temporary lamination and high-temperature heat treatment.
  • the multilayer printed wiring board 101 whose sectional view is shown in FIG. 8 will be described.
  • the multilayer (four-layer) printed wiring board 101 shown in FIG. 8 has a basic structure 105 in which one polyimide resin layer 103 and two liquid crystal polymer layers 104 are used as insulating layers.
  • a wiring circuit layer 102 is formed on both sides of the resin layer 103, and further, a liquid crystal polymer layer 104 is provided on both sides as an insulating layer.
  • the polyimide resin layer 103 and the wiring circuit layer 102 on both sides are made of a double-sided copper-clad laminate (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex S (espanex is a registered trademark), product number: SB12— 25—12CE) force is also formed. That is, the polyimide resin layer 103 is a polyimide resin layer derived from the double-sided copper-clad laminate, and the wiring circuit layer 102 was formed by processing a copper foil derived from the double-sided copper-clad laminate. Is.
  • the liquid crystal polymer layer 104 as the basic structure 105 and the wiring circuit layer 109 provided adjacent thereto are formed by, for example, processing the double-sided copper-clad laminate.
  • a single-sided copper-clad laminate (hereinafter referred to as a single-sided copper-clad laminate) having a 12-m-thick copper foil on one side of a 25-m-thick insulating layer on both sides of the double-sided wiring board obtained LX, a melting point of liquid crystal polymer: 280 ° C), can be formed by laminating and forming a copper foil circuit.
  • the wiring circuit layer 109 has a wiring circuit layer 106 on the surface thereof, a through hole 107 for electrically connecting each layer, and a solder resist layer 108 formed in the outermost layer. Have! /
  • the wiring circuit layer 106 is composed of the same copper 110 as the wiring circuit layer 109 and the fitting through hole 107.
  • the liquid crystal polymer layer 104 has a thickness of 25 m
  • the wiring circuit layer 109 has a thickness of 12 ⁇ m
  • the polyimide resin layer 103 has a thickness of 25 ⁇ m.
  • the through hole 107 has a hole diameter of 0.15 mm
  • the plated copper 110 has a thickness of 8 m
  • the solder resist layer 108 has a thickness of 25 m.
  • the basic design rule for the wiring circuit layer is that the wiring circuit layer 102 is line Z space: 50/50 ⁇ m, wiring circuit layer 106 force 75Z75 ⁇ m, through-hole land of each wiring circuit layer 102, 106 force ⁇ 0.3 mm It is.
  • polyimide resin layer 103 and two liquids As a result of cross-sectional observation, the roughness (Rz) of the two boundary surfaces 112 and 112 formed between the crystalline polymer layers 104 and 104 was 4.5 m and 4.9 m, respectively.
  • the total thickness of the four-layer printed wiring board 101 was about 125 ⁇ m.
  • a multilayer printed wiring board 201 whose sectional view is shown in FIG. 9 will be described.
  • a multilayer (four-layer) printed wiring board 201 shown in Fig. 9 uses two polyimide resin layers 203, 203 and one liquid crystal polymer layer 204 as an insulating layer.
  • Wiring circuit layers 208 and 208 ′ are formed on both sides of the oil layers 203 and 203 ′, and the liquid crystal polymer layer 204 is used as an insulating layer between the polyimide resin layer 203 and the polyimide resin layer 203 ′.
  • Polyimide resin layer 203 and wiring circuit layers 208 and 208 'on both sides are made of double-sided copper-clad laminate (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) It is formed from.
  • the polyimide resin layers 203 and 203 ' are polyimide resin layers derived from the double-sided copper-clad laminate
  • the wiring circuit layers 208 and 208' are circuited copper foils derived from the double-sided copper-clad laminate. It is formed by processing.
  • the basic structure 205 of the multilayer printed wiring board 201 shown in FIG. 9 is a circuit processing only on one side of a double-sided copper-clad laminate having polyimide resin layers 203 and 203 'as insulating layers on both sides of the liquid crystal polymer layer 204.
  • the wiring circuit layers 202-2 and 202-1 ′ thus formed and the liquid crystal polymer layer 204 were laminated and integrated so that the outer wiring circuit layer 208 was formed.
  • the liquid crystal polymer layer 204 has a double-sided copper-clad laminate (hereinafter referred to as double-sided copper-clad laminate) having a liquid crystal polymer layer with a thickness of 50 m as an insulating layer and a copper foil with a thickness of 12 / zm on both sides.
  • a liquid crystal polymer film obtained by etching away a copper foil having a melting point of 300 ° C. (referred to as plate LY) was used.
  • the outer wiring circuit layer 208 has a wiring circuit layer 209 on the surface thereof, and a through hole 206 for electrically connecting each layer and a solder formed in the outermost layer. It has a resist layer 207!
  • the wiring circuit layers 202-1 and 202-2 ' are the wiring circuit layer 208 derived from the double-sided copper clad laminate LY (manufactured by Nippon Steel Engineering Co., Ltd., trade name: ESPANEX M Part No .: MB12-12-12F R), and the plated through-hole 206 and the same plated copper 209.
  • the thickness of the polyimide resin layer is 12 ⁇ m
  • the thickness of the copper foil derived from Esbanex M is 12 ⁇ m.
  • the hole diameter of one hole 206 is 0.15 mm
  • the thickness of plated copper 209 is 8 m
  • the thickness of the solder resist film is 20 m.
  • the basic design rule for the wiring circuit layer is that the wiring circuit layers 202-2 and 202-1 are line Z space: 50Z50 ⁇ m, the wiring circuit layers 202-1 and 202-2 are line Z space: 75Z75 ⁇ m,
  • the through hole land of each layer is ⁇ 0.3mm.
  • the roughness (Rz) of the interface 210 between the polyimide resin layers 203 and 203 ′ and the liquid crystal polymer layer 204 was 2.0 m and 1.9 m, respectively, as a result of cross-sectional observation.
  • the total thickness of the four-layer printed wiring board 201 was about 115 m.
  • a multilayer printed wiring board 301 whose sectional view is shown in FIG. 10 will be described.
  • a multilayer (8-layer) printed wiring board 301 shown in FIG. 10 has a basic structure 302 similar to that of Example 2 (but no structure corresponding to the through-hole 206 and its plated copper 209).
  • Laminated liquid crystal polymer layers 303 and 303, IVH304 ', self-wire circuit layers 305 and 305, and liquid crystal polymer layers 317 and 317', BVH307 and 307 ', and wiring circuit layers 308 and 308' It is an eight-layer printed wiring board that is integrated with a through hole 309 that electrically connects each layer and a solder resist layer 310 formed as the outermost layer.
  • the liquid crystal polymer layers 303 and 303 ' are made of a single-sided copper-clad laminate (hereinafter referred to as a single-sided copper-clad laminate) having a 25-m-thick liquid crystal polymer as an insulating layer and a copper foil of 9 m thickness on one side.
  • a plate LX2 which is derived from the melting point of the liquid crystal polymer: 300 ° C.
  • the wiring circuit layers 311 and 311 ′ are formed by circuit processing of the copper foil of the single-sided copper-clad laminate.
  • the liquid crystal polymer layers 317 and 317 ′ have a single-sided copper-clad laminate (hereinafter referred to as single-sided copper-clad laminate) having a liquid crystal polymer with a thickness of 50 m as an insulating layer and a copper foil with a thickness of 9 ⁇ m on one side.
  • Laminated plate LX3 is derived from the melting point of liquid crystal polymer: 280 ° C., and the wiring circuit layers 313 and 313 ′ are formed by circuit processing the copper foil of the single-sided copper-clad laminate.
  • the IVH 304 ′ is arbitrarily provided by a known means, and can be electrically connected to other wiring circuits.
  • the self-wire circuit layers 305 and 305 are composed of the self-wire circuit layers 311 and 311 and the plated copper 312 that is the same as the IVH 304 and 304.
  • the wiring circuit layers 308, 308 ′ are composed of the wiring circuit layers 313, 313, BVH 307, 307, and the same copper copper 314 as that of the female snowboard motor 309.
  • the liquid crystal polymer thickness derived from single-sided copper-clad laminate LX2 and single-sided copper-clad laminate LX3 is 25 / zm, and the thickness of wiring circuit layers 313 and 313 'is 9 / zm.
  • the upper diameter is 100 ⁇ m
  • the lower diameter is 90 ⁇ m
  • the thickness of plated copper 314 is 8 ⁇ m
  • the diameter of through hole 30 9 is 0.15 mm
  • the thickness of plated copper 312 is 8 m
  • the solder resist layer 310 The film thickness is 20 m.
  • the basic design rule for the wiring circuit layer is that the wiring circuit layers 305 and 305 have a line / space of 50/50 ⁇ m in all layers, the through-hole land 315 has a total layer of 0.3 mm, IVH30 4, and BVH307 and 307. Nodka 2 mm.
  • the roughness (Rz) of the interface 316 between the polyimide resin layer and the liquid crystal polymer layer was 2.2 m and 2.0 m as a result of cross-sectional observation.
  • the total thickness of this 8-layer printed wiring board 301 was about 270 m.
  • a multilayer printed wiring board 401 whose sectional view is shown in FIG. 11 will be described.
  • the multilayer (four-layer) printed wiring board 401 shown in Fig. 11 has one polyimide resin layer 40 3 and two liquid crystal polymer layers 404 and 407 in an insulating layer, and four wiring circuit layers. 402, 406, 412, 41 4.
  • the polyimide resin layer 403 and the wiring circuit layers 402 and 414 on both sides thereof are double-sided copper-clad laminates made of polyimide resin layer as an insulating layer (manufactured by Nippon Steel Chemical Co., Ltd., trade name: ESPANEX) S, product number: SB 18-25-18CE) is a wiring circuit layer formed by applying a circuit to the resin layer and its copper foil.
  • the liquid crystal polymer layer 404 and the wiring circuit layer 406 adjacent to the polyimide resin layer 403 are a single-sided copper-clad laminate (hereinafter referred to as a single-sided copper clad laminate having an 18-m thick copper foil on one side of an insulating layer of a liquid crystal polymer layer having a thickness of 50 m)
  • This is called single-sided copper-clad laminate LX4, which is derived from the melting point of the liquid crystal polymer: 290 ° C
  • the liquid crystal polymer layer 407 and the wiring circuit layer 412 adjacent to the liquid crystal polymer layer 404 have a thickness of 50 Derived from a single-sided copper-clad laminate (hereinafter referred to as single-sided copper-clad laminate LX5; melting point of liquid crystal polymer: 280 ° C), which has a copper foil of thickness on one side of the insulating layer of the liquid crystal polymer layer of m
  • It is a wiring circuit layer formed by circuit processing of a resin layer and its copper foil
  • the liquid crystal polymer thickness of the single-sided copper-clad laminate LX4 and single-sided copper-clad laminate LX5 is 50 ⁇ m
  • the thickness of the wiring circuit layers 402 and 408 is 18 ⁇ m.
  • the hole diameter of the through hole 410 is 0.15 mm
  • the upper diameter of the BVH409 is 80 m
  • the lower diameter is 75 / ⁇ ⁇
  • the thickness of the copper 413 is 8 ⁇ m
  • the solder resist layer 411 The film thickness is 20 ⁇ m.
  • the roughness (Rz) of the interface 415 between the polyimide resin layer 403 and the liquid crystal polymer layer 404 was 4. ⁇ and 4.6 ⁇ m, respectively, as a result of cross-sectional observation.
  • the total thickness of this 4-layer printed wiring board 401 was about 168 ⁇ m.
  • a manufacturing method of the four-layer printed wiring board 501 having the same structure as the four-layer printed wiring board of Example 7 will be described in detail with reference to the process cross-sectional views shown in FIGS.
  • a double-sided copper-clad laminate having an polyimide resin layer shown in Fig. 12 (a) as an insulating layer (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex, product number: SB12-25) 12CE) 502 double-sided copper foil 503 was pattern-checked by the subtractive method to produce a 400 x 300 mm double-sided wiring board 505 with a wiring circuit layer 504 (see Fig. 12 (b)).
  • a single-sided copper-clad laminate LX506 of the same size with a liquid crystal polymer layer as an insulating layer was prepared, and the double-sided wiring board 505 was sandwiched from both sides facing each other and set in a vacuum press as it was (Fig. (See 12 (c)).
  • the mold was clamped while evacuating the press hot platen 507 at 1.3 kPa, and the hot platen was heated to 260 ° C and heated. Five minutes after the hot platen temperature reached 260 ° C, an adhesive pressure of 6 MPa was applied, and 10 minutes later, cooling of the hot platen 507 was started (see Fig. 12 (d)).
  • a copper foil 603 on both sides of the same double-sided copper-clad laminate 602 used in Example 11 was patterned by a subtractive method to form a wiring circuit layer 604, width 300 mm, length 100 m.
  • a long double-sided wiring board 605 wound in a roll was prepared (see FIG. 13 (a)).
  • a double-sided wiring board 605 is sandwiched between LX606, a single-sided copper-clad laminate with the same shape facing the grease surface from both sides (see Fig.
  • a method for manufacturing a four-layer printed wiring board 701 having the same structure as the four-layer printed wiring board of Example 8 will be described in detail with reference to process cross-sectional views shown in FIGS. 14 (a) to (i).
  • a double-sided copper-clad laminate with a 400 x 300mm polyimide resin layer as an insulating layer manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR
  • the copper foil 703-2 on one side in Fig. 14 (a) was pattern-checked by the subtractive method to form the wiring circuit layer 704-2.
  • another sheet of double-sided copper-clad laminate 702 was pattern-carried (see Fig. 14 (b)).
  • both sides of the copper foil 706 of the double-sided copper-clad laminate LY705 that the insulating layer of the liquid crystal polymer layer of the same size is removed by etching, potassium hydroxide ⁇ beam the exposed surface (34 mass 0/0) Z Ethylene glycol ( 22 mass 0/0) (to prepare a 11 mass 0 / o) liquid crystal polymer layer 707 60 ° C, and 60 seconds immersed in an alkaline mixed aqueous solution of (FIG. 14 (c) Z Echirenjiamin reference).
  • the surface-treated liquid crystal polymer layer 707 was sandwiched between single-sided processed substrates 70 2 and 702 'with the wiring circuit layer (704-2, 704-1') facing each other, and set in a vacuum press (Fig. 14 ( d)).
  • the mold was clamped while evacuating the press hot platen 708 at 1.3 kPa, and the hot platen 708 was heated to 300 ° C. and heated. 5 minutes after the hot platen temperature reached 300 ° C, 4 MPa pressure was applied, and 10 minutes later, the hot platen 708 started to cool (Fig. 14 (e) reference). After 20 minutes, the adhesive pressure was removed, the heating plate 708 was opened, and the laminate 709 was taken out (see FIG. 14 (f)).
  • Through hole 710 of ⁇ ⁇ . 15 mm was formed on the obtained laminate 709 using an NC drill cage (see Fig. 14 (g)), and after a predetermined desmear treatment, a thick panel clasp 7 11 was formed ( (See Figure 14 (h)). Then, the outermost layer 712 was etched and patterned by a tenting method to form a wiring circuit layer 713, and further a solder resist layer 714 to form a four-layer printed wiring board 701 (see FIG. 14 (i)). ).
  • a double-sided copper-clad laminate with a polyimide resin layer as an insulating layer (manufactured by Nippon Steel Engineering Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) 802 , 802, copper foils 803, 803 'each side is patterned by subtractive method to form wiring circuit layers 804, 804' 30mm wide x 100m long rolled Double-sided wiring boards 805 and 805 'were fabricated (see Fig. 15 (a)).
  • a liquid crystal polymer layer 807 was fabricated (see Fig. 15 (b)). This liquid crystal polymer layer 807 is sandwiched between two wiring boards 805 and 805 with the wiring circuit layers 804 and 804 'facing each other, and is supplied between rolls 8 08 having a surface temperature of 260 ° C, and continuously at a linear pressure of lOOkNZm. Heated and pressurized (see Fig. 15 (c)).
  • the outermost layer 812 was etched and patterned by a tenting method, a wiring circuit layer 813 was formed, a solder resist layer 814 was formed, and a four-layer printed wiring board 801 was manufactured (see FIG. 15 (f)).
  • a double-sided copper-clad laminate with a 400 x 300mm polyimide resin layer as an insulating layer (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) 902 (Fig. 16 ( The copper foils 903-1, 903-2 on both sides of a)) were pattern-checked by the subtractive method to form wiring circuit layers 904-1, 904-2. Similarly, another sheet was prepared (see Fig. 16 (b)).
  • the copper foil 906 on both sides of the double-sided copper clad laminate LY905 having the same size liquid crystal polymer layer as the insulating layer was removed by etching, and the exposed surface was hydrated with potassium hydroxide (34% by mass).
  • the surface-treated liquid crystal polymer layer 907 was sandwiched between the double-sided copper-clad laminates 902 and 902 'and set in a vacuum press as it was (see Fig. 16 (d)).
  • the mold was clamped while evacuating the press hot platen 908 at 1.3 kPa, and the hot platen 908 was heated to 280 ° C. and heated. Five minutes after the hot platen temperature reached 280 ° C, an adhesive pressure of 5 MPa was applied, and 10 minutes later, cooling of the hot platen 908 was started (see Fig. 16 (e)). Then, after 20 minutes, the adhesive pressure was removed, the heating platen 908 was opened, the laminate 909 was taken out, and the resin surface of the liquid crystal polymer was placed on both sides of the obtained laminate 909 with argon, helium, Single-sided copper-clad laminate LX2 910 and 910 'with 911 and 911' facing each other (see Fig.
  • the laminate 912 was fabricated by pressing (see Fig. 16 (g)).
  • the copper foil at a predetermined position of the laminate 912 was etched 913 to ⁇ 100 / zm (see Fig. 16 (h)), and then a blind via hole 914 was formed with a carbon dioxide laser (Fig. 16 (i)). reference).
  • a plating layer 915 electrically connected to the wiring circuit layer 904-2 ′ was formed (see Fig. 16 (j)), and a wiring circuit layer 916 was formed by the subtractive method (Fig. 16 (k)). reference).
  • a double-sided copper-clad laminate with a polyimide resin layer as an insulating layer 1002 , 1002, copper foils on both sides 1003-1, 1003-2, 1003-1 ', 1003-2' are turned by sub-rotative method, and wiring circuit layers 1004-1, 1004-2 1004-1 ′ and 1004-2-2 ′ were produced as long double-sided wiring boards 1005 and 1005 ′ wound in a roll shape having a width of 300 mm and a length of 100 m (see FIG. 17A).
  • a treated liquid crystal polymer layer 1007 was produced (see FIG. 17 (b)).
  • a plating layer 1016 electrically connected to the wiring circuit layer 1004-2-2 ' was formed (see Fig. 17 (f)), and a wiring circuit layer 1017 was formed by the subtractive method (Fig. 17 (g )reference).
  • Fig. 17 (d) to () were carried out, and through hole 1019 of ⁇ ⁇ . 15mm was formed in the obtained continuous laminate 1018 by NC drilling (see Fig. 17 (h)), and a predetermined desmear was formed.
  • a thick panel fitting 1020 was formed (see Fig. 17 (i)), except that the single-sided copper-clad laminate LX3 was added to the newly laminated single-sided copper-clad laminate in Fig. 17 (h).
  • the outermost layers 1021 and 1021 were etched by the tenting method. Then, the wiring circuit layer 1022 was formed, the solder resist layer 1023 was formed, and the 8-layer printed wiring board 1001 was formed (see FIG. 17 (j)).
  • Example 12 instead of the single-sided copper-clad laminate LX, a copper foil with grease (made by Matsushita Electric Works, trade name: R0880, copper foil thickness: m, grease thickness: 50 m) was used. The procedure was the same except that the temperature was changed to 180 ° C. However, since the copper foil with grease was broken during lamination, the four-layer printed wiring board could not be manufactured.
  • a copper foil with grease made by Matsushita Electric Works, trade name: R0880, copper foil thickness: m, grease thickness: 50 m

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Disclosed is a method for manufacturing a multilayer printed wiring board which comprises a step for preparing a wiring board having a first insulating layer composed of a polyimide or a first liquid crystal polymer and a wiring circuit formed on at least one side of the first insulating layer, and a conductor layer substrate having a second insulating layer composed of a second liquid crystal polymer having a melting point lower than the heat distortion temperature of the polyimide and/or the melting point of the first liquid crystal polymer and a conductor layer arranged on one side of the second insulating layer, and a step for arranging the wiring board and the conductor layer substrate in such a manner that the second insulating layer side of the conductor layer substrate faces the wiring board and continuously joining them in layers under heated and pressurized conditions by using a hot pressing apparatus.

Description

明 細 書  Specification
多層プリント配線板及びその製造方法  Multilayer printed wiring board and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、多層プリント配線板及びその製造方法に関する。  The present invention relates to a multilayer printed wiring board and a method for manufacturing the same.
背景技術  Background art
[0002] 近年の電子機器の高性能化は目覚しぐ特に、通信機器、コンピュータは、動作速 度の向上に加え、高周波化への対応が求められ、力!]えて、多機能化や携帯性向上 のため、一層の軽薄短小化も要求されている。  [0002] In recent years, the performance of electronic devices has been remarkably improved. In particular, communication devices and computers are required to respond to higher frequencies in addition to higher operating speeds! In order to increase functionality and portability, there is a need for further reductions in size and thickness.
[0003] そのため、これらの機器に搭載されるプリント配線板に対しても高速'低損失信号伝 送性、配線高密度化、薄化、軽量ィ匕等が求められている。そして、プリント配線板に 対するこれらの要求は、そのまま、基板材料のより一層の低誘電率化、低誘電正接 化や薄化、軽量ィ匕等に向けられている。これら要求を解決する手段として、ビルドアッ プ方式による多層プリント配線板が採用されて久しい。  [0003] Therefore, high-speed and low-loss signal transmission, high-density wiring, thinning, light weight, etc. are required for printed wiring boards mounted on these devices. These demands on the printed wiring board are directly directed to further lowering the dielectric constant, lowering the dielectric loss tangent and thickness, and reducing the weight of the substrate material. It has been a long time since multilayer printed wiring boards using the build-up method have been adopted as a means to solve these requirements.
[0004] また、多層プリント配線板の層間絶縁材料として、エポキシ榭脂ゃポリイミド榭脂等 の熱硬化性榭脂を用いたものが広く知られている。これらの熱硬化性榭脂は、高密 度化された多層プリント配線板にとって有用な、良好な耐熱性等の特性を備える。し かしながら、上記熱硬化性榭脂は、必ずしも十二分な低誘電率、低誘電正接特性を 有するものではないため、電子機器に要求される高周波特性を十二分に満足するも のではなかった。  [0004] In addition, a material using a thermosetting resin such as an epoxy resin or a polyimide resin is widely known as an interlayer insulating material for a multilayer printed wiring board. These thermosetting resins have good heat resistance and other properties useful for high-density multilayer printed wiring boards. However, the thermosetting resin does not necessarily have a sufficiently low dielectric constant and a low dielectric loss tangent characteristic, and thus sufficiently satisfies the high frequency characteristics required for electronic equipment. It wasn't.
[0005] そのため、上記高周波特性を満足するものとして、熱可塑性榭脂である液晶ポリマ 一を層間絶縁材料に用いた多層プリント配線板も提案されている。このような液晶ポ リマーは、低誘電率、低誘電正接の各特性において優れているため、多層プリント配 線板の高周波領域での高速'低損失信号伝送性に優れる。  [0005] Therefore, a multilayer printed wiring board using a liquid crystal polymer, which is a thermoplastic resin, as an interlayer insulating material has been proposed as satisfying the high frequency characteristics. Such a liquid crystal polymer is excellent in each characteristic of a low dielectric constant and a low dielectric loss tangent, and therefore excellent in a high speed and low loss signal transmission property in a high frequency region of a multilayer printed wiring board.
[0006] そして、このような液晶ポリマーを層間絶縁材料に用いた多層プリント配線板として 、例えば、特開平 8— 97565号公報 (文献 1)には、回路層(配線回路)を形成した配 線基板を重ねて積層体を形成するに際し、配線基板の液晶ポリマーの融点よりも少 なくとも 10°C低 、融点を有する液晶ポリマーを、接着層として配線基板の間に介挿し たものが開示され、明細書中において、積層体は、積み重ねた配線基板を離型パッ ドとともに積層プレスに配置し、積層することにより形成されることが記載されている。 また、明細書中には、この提案によれば、回路層の液晶ポリマー成分をその融点以 上に加熱する必要なしに、多層プリント配線板を得ることができると記載されている。 [0006] As a multilayer printed wiring board using such a liquid crystal polymer as an interlayer insulating material, for example, JP-A-8-97565 (Reference 1) discloses a wiring in which a circuit layer (wiring circuit) is formed. When forming a laminate by stacking substrates, a liquid crystal polymer having a melting point at least 10 ° C lower than the melting point of the liquid crystal polymer of the wiring substrate is interposed between the wiring substrates as an adhesive layer. In the specification, it is described that the laminated body is formed by placing the laminated wiring boards together with the release pads on a lamination press and laminating them. In addition, it is described in the specification that, according to this proposal, a multilayer printed wiring board can be obtained without the need to heat the liquid crystal polymer component of the circuit layer above its melting point.
[0007] また、特開 2001— 244630号公報 (文献 2)には、配線回路を形成した配線回路 基板 (配線基板)を、この配線回路基板の絶縁層に用いられる液晶ポリマーフィルム より低い耐熱性を有する液晶ポリマーフィルムの上下面に配置して一対の加熱ロー ルで圧着させる方法が開示されている。また、明細書中には、上記積層プレスを用い るものと同様に、低い耐熱性を有する液晶ポリマーフィルムは、接着層として用いられ 、また、このとき、配線回路基板 (配線基板)の外面に、より低い耐熱性を有する液晶 ポリマーフィルムを保護膜としてさらに積層することも記載されている。さらに、明細書 中には、各加熱ロールが各配線回路基板の表面 (外表面)に形成された配線回路を 破損したりするのを防止するために、ロール間に離型シートを掛回して、この離型シ 一トを各配線回路基板の表面に接触させながらロールによる加圧を行うことが記載さ れている。また、明細書中には、この提案によれば、外観が良好で、十分な寸法安定 性および高接着力を有する多層配線回路基板 (多層プリント配線板)を低コストで得 ることができると記載されている。  [0007] Further, Japanese Patent Laid-Open No. 2001-244630 (Document 2) discloses that a printed circuit board (wiring board) on which a wired circuit is formed is lower in heat resistance than a liquid crystal polymer film used for an insulating layer of the wired circuit board. A method of disposing the liquid crystal polymer film on the top and bottom surfaces of the liquid crystal polymer film and bonding it with a pair of heating rolls is disclosed. In addition, in the specification, a liquid crystal polymer film having low heat resistance is used as an adhesive layer, as in the case of using the above-described laminating press, and at this time, on the outer surface of the printed circuit board (wiring board). It also describes that a liquid crystal polymer film having lower heat resistance is further laminated as a protective film. Furthermore, in the specification, in order to prevent each heating roll from damaging the wiring circuit formed on the surface (outer surface) of each wiring circuit board, a release sheet is hung between the rolls. In addition, it is described that pressure is applied by a roll while bringing the release sheet into contact with the surface of each printed circuit board. Also, in this specification, according to this proposal, it is possible to obtain a multilayer printed circuit board (multilayer printed wiring board) having good appearance, sufficient dimensional stability and high adhesive strength at low cost. Are listed.
発明の開示  Disclosure of the invention
[0008] し力しながら、上記従来技術のうち、前者 (文献 1)の積層プレスにより積層するもの は、ロール圧着する、いわゆるロールラミネートにより積層するものに比べて、生産性 の点で劣ることがよく知られている。また、積層プレス時に液晶ポリマー融点よりも高 い温度で積層した場合は、回路の流れ出しや変形を生じる不具合があるという問題 かあつた。  [0008] However, among the above-described conventional techniques, those laminated by the former (Reference 1) laminating press are inferior in productivity compared to those laminated by so-called roll laminating. Is well known. In addition, when laminating at a temperature higher than the melting point of the liquid crystal polymer at the time of laminating press, there was a problem that the circuit flowed out and deformed.
[0009] 一方、後者 (文献 2)の加熱ロールにより積層するものは、上記のように生産性ゃコ ストの点で積層プレスにより積層するものに比べて優れるものの、各配線回路基板の 表面 (外表面)に形成された配線回路に与える損傷を完全に回避することは難しいと いう問題があった。  [0009] On the other hand, the latter (Reference 2) laminated with a heating roll is superior to the one laminated with a laminating press in terms of productivity as described above, but the surface of each printed circuit board ( There was a problem that it was difficult to completely avoid damage to the wiring circuit formed on the outer surface.
[0010] すなわち、文献 2に記載された方法によれば、最初の加圧ロールによる積層工程に お!、て、加圧ロール力も離れた中央側に外側の絶縁層よりも低 、耐熱性 (融点)の液 晶ポリマー層を配置するため、積層時の加熱加圧条件がより厳しいものとなり、配線 回路の変形等の不具合が懸念される。また、同様に最初の積層工程を実際行おうと する場合には、現実的には回路破損防止のためガラス織布含浸テフロン (登録商標 )シート等の離型シートが必須となると思われ、その場合には、積層工程の微妙な温 度制御の妨げとなり多層回路基板の不良につながる恐れがある。 [0010] That is, according to the method described in Document 2, the first step of laminating with a pressure roll Furthermore, because the liquid crystal polymer layer with lower heat resistance (melting point) than the outer insulating layer is placed on the center side where the pressure roll force is further away, the heat and pressure conditions at the time of lamination become more severe, There are concerns about defects such as deformation of the wiring circuit. Similarly, if the initial lamination process is actually performed, a release sheet such as a glass woven cloth-impregnated Teflon (registered trademark) sheet is considered to be essential to prevent circuit damage. In some cases, this may hinder subtle temperature control in the lamination process and lead to defects in the multilayer circuit board.
[0011] さらに、上記文献 1、 2に記載されているような多層プリント配線板においては、更な る高密度化や小型化を実現するために、多層プリント配線板の板厚の薄型化を図る 場合、絶縁層の耐熱性が必ずしも十分ではな!ヽと 、う問題があった。  [0011] Further, in the multilayer printed wiring boards as described in the above-mentioned documents 1 and 2, the thickness of the multilayer printed wiring board is reduced in order to realize further higher density and smaller size. In this case, the heat resistance of the insulating layer is not always sufficient!
[0012] 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、液晶ポリマー 力もなる絶縁層を有する多層プリント配線板を連続的に製造する方法において、多 層プリント配線板の最外面に形成されている配線回路の変形を防止することができる 多層プリント配線板の製造方法、並びにその製造方法により得られ、耐熱性と優れた 高周波特性とを同時に実現することができる多層プリント配線板を提供することを目 的とする。  [0012] The present invention has been made in view of the above-described problems of the prior art, and is a method for continuously producing a multilayer printed wiring board having an insulating layer having a liquid crystal polymer strength. A multilayer printed wiring board that can prevent deformation of a wiring circuit formed on the outer surface, and a multilayer printed wiring that is obtained by the manufacturing method and that can simultaneously realize heat resistance and excellent high-frequency characteristics. The purpose is to provide a board.
[0013] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ポリイミド又は第 1 の液晶ポリマー力もなる第 1の絶縁層と前記第 1の絶縁層の少なくとも片面に形成さ れた配線回路とを有する配線基板、並びに、前記ポリイミドの熱変形温度未満である 融点及び Z又は前記第 1の液晶ポリマーの融点よりも低い融点を有する第 2の液晶 ポリマーからなる第 2の絶縁層と前記第 2の絶縁層の片面に積層された導体層とを有 する導体層基板を準備する工程と、  [0013] As a result of intensive studies to achieve the above object, the present inventors have formed a first insulating layer having polyimide or a first liquid crystal polymer force and at least one surface of the first insulating layer. And a second insulating layer comprising a second liquid crystal polymer having a melting point lower than the thermal deformation temperature of the polyimide and a melting point lower than Z or the melting point of the first liquid crystal polymer. And a step of preparing a conductor layer substrate having a conductor layer laminated on one side of the second insulating layer;
前記配線基板及び前記導体層基板を、前記導体層基板の前記第 2の絶縁層側を 前記配線基板に向けて配置して、加熱加圧処理設備を用いて加熱加圧下で連続的 に積層する工程と、  The wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board. Process,
を含む多層プリント配線板の製造方法により、多層プリント配線板の最外面に形成さ れている配線回路の変形を防止することができることを見出し、本発明を完成するに 至った。  It has been found that a method of manufacturing a multilayer printed wiring board including the above can prevent deformation of a wiring circuit formed on the outermost surface of the multilayer printed wiring board, and has completed the present invention.
[0014] 本発明の多層プリント配線板の製造方法は、ポリイミド又は第 1の液晶ポリマーから なる第 1の絶縁層と前記第 1の絶縁層の少なくとも片面に形成された配線回路とを有 する配線基板、並びに、前記ポリイミドの熱変形温度未満である融点及び Z又は前 記第 1の液晶ポリマーの融点よりも低い融点を有する第 2の液晶ポリマーからなる第 2 の絶縁層と前記第 2の絶縁層の片面に積層された導体層とを有する導体層基板を 準備する工程と、 [0014] The method for producing a multilayer printed wiring board of the present invention comprises using polyimide or the first liquid crystal polymer. A wiring board having a first insulating layer and a wiring circuit formed on at least one side of the first insulating layer, and a melting point and a Z that are lower than the thermal deformation temperature of the polyimide or the first liquid crystal Preparing a conductor layer substrate having a second insulating layer made of a second liquid crystal polymer having a melting point lower than the melting point of the polymer, and a conductor layer laminated on one side of the second insulating layer;
前記配線基板及び前記導体層基板を、前記導体層基板の前記第 2の絶縁層側を 前記配線基板に向けて配置して、加熱加圧処理設備を用いて加熱加圧下で連続的 に積層する工程と、  The wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board. Process,
を含む方法である。  It is a method including.
[0015] また、本発明の多層プリント配線板の製造方法においては、前記導体層基板を 2枚 準備し、前記配線基板及び前記導体層基板を積層するにあたり、前記配線基板及 び 2枚の導体層基板を、前記配線基板を間にして前記 2枚の導体層基板を前記第 2 の絶縁層側をそれぞれ前記配線基板に向けて配置して、加熱加圧処理設備を用い て加熱加圧下で連続的に積層することが好ましい。  [0015] Further, in the method for producing a multilayer printed wiring board according to the present invention, two conductor layer substrates are prepared, and when the wiring substrate and the conductor layer substrate are laminated, the wiring substrate and the two conductors are stacked. A layer substrate is placed with the wiring substrate in between, the two conductor layer substrates are arranged with the second insulating layer side facing the wiring substrate, respectively, and heated and pressurized using a heating and pressing treatment facility. It is preferable to laminate continuously.
[0016] さらに、本発明の多層プリント配線板の製造方法においては、前記第 2の液晶ポリ マーが、第 1の液晶ポリマーの融点よりも 5〜60°C低い融点を有するものであることが 好ましい。  [0016] Further, in the method for producing a multilayer printed wiring board of the present invention, the second liquid crystal polymer may have a melting point lower by 5 to 60 ° C than the melting point of the first liquid crystal polymer. preferable.
[0017] また、本発明の多層プリント配線板の製造方法においては、前記配線基板及び前 記導体層基板がそれぞれロール状に卷回されたものであることが好ましい。  [0017] In the method for producing a multilayer printed wiring board of the present invention, it is preferable that the wiring board and the conductor layer board are each wound in a roll shape.
[0018] さらに、本発明の多層プリント配線板の製造方法においては、前記配線基板及び 前記導体層基板を積層するにあたり、前記配線基板及び前記導体層基板をそれぞ れ引き出し、ロール 'トウ'ロール方式で連続的に積層することが好ま 、。  [0018] Further, in the method for producing a multilayer printed wiring board of the present invention, when laminating the wiring board and the conductor layer board, the wiring board and the conductor layer board are respectively drawn out, and a roll 'toe' roll It is preferable to laminate in a continuous manner.
[0019] また、本発明の多層プリント配線板の製造方法にぉ 、ては、前記加熱加圧処理設 備がロールラミネーターであることが好まし 、。 [0019] Further, in the method for producing a multilayer printed wiring board of the present invention, it is preferable that the heating and pressurizing treatment equipment is a roll laminator.
[0020] さらに、本発明の多層プリント配線板の製造方法においては、前記ロールラミネー ターのロール線圧が 10〜250kN/mであることが好まし!/、。  [0020] Further, in the method for producing a multilayer printed wiring board of the present invention, it is preferable that a roll linear pressure of the roll laminator is 10 to 250 kN / m! /.
[0021] また、本発明の多層プリント配線板の製造方法においては、前記導体層基板の前 記第 2の絶縁層の表面を表面処理する工程を更に含むことが好ましい。 [0022] さらに、本発明の多層プリント配線板の製造方法においては、前記配線基板及び 前記導体層基板を積層するにあたり、前記配線基板及び前記導体層基板を、加熱 加圧下で積層 (仮積層)して積層体 (仮積層体)を得た後に、前記積層体を熱処理設 備を用いて加熱することにより高温熱処理を行うことが好まし 、。 [0021] The method for producing a multilayer printed wiring board of the present invention preferably further includes a step of surface-treating the surface of the second insulating layer of the conductor layer substrate. Furthermore, in the method for producing a multilayer printed wiring board according to the present invention, when the wiring board and the conductor layer board are laminated, the wiring board and the conductor layer board are laminated under heat and pressure (temporary lamination). Then, after obtaining a laminated body (temporary laminated body), it is preferable to perform a high temperature heat treatment by heating the laminated body using a heat treatment equipment.
[0023] また、本発明の多層プリント配線板の製造方法においては、前記高温熱処理を行う にあたり、前記積層体を下記数式 (F1)で表される条件を満たす高温熱処理温度 T  [0023] Further, in the method for producing a multilayer printed wiring board of the present invention, when performing the high temperature heat treatment, the laminate is subjected to a high temperature heat treatment temperature T that satisfies the condition represented by the following formula (F1).
(第 2の液晶ポリマーの融点) 15°C≤T≤ (第 2の液晶ポリマーの融点) + 20°C ' · •(F1) (The melting point of the second liquid crystal polymer) 15 ° C≤T≤ (The melting point of the second liquid crystal polymer) + 20 ° C '· • (F1)
で加熱することが好ましい。  It is preferable to heat with.
[0024] さらに、本発明の多層プリント配線板の製造方法においては、前記高温熱処理を 行うにあたり、高温熱処理時間が 10〜180秒の範囲であることが好ましい。 Furthermore, in the method for producing a multilayer printed wiring board of the present invention, it is preferable that the high temperature heat treatment time is in the range of 10 to 180 seconds when performing the high temperature heat treatment.
[0025] また、本発明の多層プリント配線板の製造方法においては、前記積層体を得るにあ たり、前記配線基板及び前記導体層基板を下記数式 (F2)で表される条件を満たす 積層熱処理温度 T: [0025] Further, in the method for producing a multilayer printed wiring board of the present invention, in obtaining the multilayer body, the multilayer heat treatment satisfying the condition represented by the following formula (F2) for the wiring substrate and the conductor layer substrate: Temperature T:
2  2
(第 2の液晶ポリマーの融点) 100°C≤T≤ (第 2の液晶ポリマーの融点) 20°C '  (The melting point of the second liquid crystal polymer) 100 ° C≤T≤ (The melting point of the second liquid crystal polymer) 20 ° C '
2  2
• . (F2)  •. (F2)
にお 、て積層(仮積層)することが好ま 、。  In addition, it is preferable to laminate (temporary lamination).
[0026] 本発明の多層プリント配線板は、配線回路層と絶縁層とが交互に積層されてなる多 層プリント配線板において、 [0026] The multilayer printed wiring board of the present invention is a multilayer printed wiring board in which wiring circuit layers and insulating layers are alternately laminated.
前記配線回路層を介して隣り合う 2層の絶縁層のうちの一つの絶縁層がポリイミド 榭脂層であり、他の一つの絶縁層が液晶ポリマー層である積層構造単位を含むもの である。  One of the two insulating layers adjacent to each other via the wiring circuit layer is a polyimide resin layer, and the other insulating layer is a liquid crystal polymer layer.
[0027] また、本発明の多層プリント配線板においては、前記積層構造単位において、前記 液晶ポリマー層のポリイミド榭脂層と隣り合う側とは反対側に、配線回路層を介して液 晶ポリマー層が更に設けられて 、ることが好ま U、。  [0027] Further, in the multilayer printed wiring board of the present invention, in the laminated structural unit, the liquid crystal polymer layer is disposed on the opposite side of the liquid crystal polymer layer from the side adjacent to the polyimide resin layer via the wiring circuit layer. U is preferred to be further provided.
[0028] さらに、本発明の多層プリント配線板においては、前記積層構造単位において、前 記ポリイミド榭脂層と前記液晶ポリマー層との境界面の粗さが 4〜6 μ mの範囲である ことが好ましい。 [0028] Further, in the multilayer printed wiring board of the present invention, in the laminated structural unit, the roughness of the boundary surface between the polyimide resin layer and the liquid crystal polymer layer is in the range of 4 to 6 μm. It is preferable.
[0029] また、本発明の多層プリント配線板においては、前記積層構造単位において、前記 ポリイミド榭脂層と前記液晶ポリマー層との境界面の粗さが 4 m未満であってもよい  [0029] In the multilayer printed wiring board of the present invention, the roughness of the boundary surface between the polyimide resin layer and the liquid crystal polymer layer in the laminated structural unit may be less than 4 m.
[0030] 本発明によれば、液晶ポリマー力もなる絶縁層を有する多層プリント配線板を連続 的に製造する方法において、多層プリント配線板の最外面に形成されている配線回 路の変形を防止することができる多層プリント配線板の製造方法、並びにその製造 方法により得られる多層プリント配線板を提供することが可能となる。 [0030] According to the present invention, in a method for continuously producing a multilayer printed wiring board having an insulating layer that also has liquid crystal polymer power, deformation of the wiring circuit formed on the outermost surface of the multilayer printed wiring board is prevented. It is possible to provide a method for producing a multilayer printed wiring board that can be produced, and a multilayer printed wiring board obtained by the production method.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]図 1は、第 1の工程において用いるロール状に卷回された銅張積層板 (a)及び 配線基板 (b)を示す一部拡大模式側断面図である。  FIG. 1 is a partially enlarged schematic side sectional view showing a copper clad laminate (a) and a wiring board (b) wound in a roll shape used in the first step.
[図 2]図 2は、第 1の工程において用いるロール状に卷回された 2巻の導体層基板を 示す一部拡大模式側断面図である。  [FIG. 2] FIG. 2 is a partially enlarged schematic side sectional view showing a two-layer conductor layer substrate wound in a roll shape used in the first step.
[図 3]図 3は、第 2の工程における加熱加圧処理設備の周辺部を示す模式側断面図 である。  FIG. 3 is a schematic cross-sectional side view showing a peripheral portion of a heat and pressure treatment facility in a second step.
[図 4]図 4は、第 2の工程における熱処理設備の周辺部を示す模式側断面図である。  FIG. 4 is a schematic cross-sectional side view showing the periphery of the heat treatment equipment in the second step.
[図 5]図 5は、第 2の工程により得られる外層未加工多層プリント配線板に施す後工程 の好適な一実施形態を示す模式側断面図である(図 5 (a)はスルーホール形成処理 に対応し、図 5 (b)はメツキ処理に対応し、図 5 (c)は回路形成処理及びソルダーレジ スト形成処理に対応する。)。  FIG. 5 is a schematic side cross-sectional view showing a preferred embodiment of a post-process applied to an unprocessed multilayer printed wiring board obtained by the second process (FIG. 5 (a) is a through-hole formation). Fig. 5 (b) corresponds to the plating process, and Fig. 5 (c) corresponds to the circuit formation process and the solder resist formation process.
[図 6]図 6は、本発明の多層プリント配線板の好適な一実施形態を示す模式側断面 図である。  FIG. 6 is a schematic sectional side view showing a preferred embodiment of the multilayer printed wiring board of the present invention.
[図 7]図 7は、本発明の多層プリント配線板の好適な他の実施形態を示す模式側断 面図である。  FIG. 7 is a schematic side cross-sectional view showing another preferred embodiment of the multilayer printed wiring board of the present invention.
[図 8]図 8は、実施例 7で得られる多層プリント配線板を示す模式側断面図である。  FIG. 8 is a schematic side sectional view showing a multilayer printed wiring board obtained in Example 7.
[図 9]図 9は、実施例 8で得られる多層プリント配線板を示す模式側断面図である。  FIG. 9 is a schematic side sectional view showing a multilayer printed wiring board obtained in Example 8.
[図 10]図 10は、実施例 9で得られる多層プリント配線板を示す模式側断面図である。  FIG. 10 is a schematic side sectional view showing a multilayer printed wiring board obtained in Example 9.
[図 11]図 11は、実施例 10で得られる多層プリント配線板を示す模式側断面図である [図 12]図 12は、実施例 11で得られる多層プリント配線板の製造工程を説明するため の工程図である。 FIG. 11 is a schematic sectional side view showing a multilayer printed wiring board obtained in Example 10. FIG. 12 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 11.
[図 13]図 13は、実施例 12で得られる多層プリント配線板の製造工程を説明するため の工程図である。  FIG. 13 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 12.
[図 14]図 14は、実施例 13で得られる多層プリント配線板の製造工程を説明するため の工程図である。  FIG. 14 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 13.
[図 15]図 15は、実施例 14で得られる多層プリント配線板の製造工程を説明するため の工程図である。  FIG. 15 is a process diagram for explaining a process for producing a multilayer printed wiring board obtained in Example 14.
[図 16]図 16は、実施例 15で得られる多層プリント配線板の製造工程を説明するため の工程図である。  FIG. 16 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 15.
[図 17]図 17は、実施例 16で得られる多層プリント配線板の製造工程を説明するため の工程図である。  FIG. 17 is a process diagram for explaining a production process for the multilayer printed wiring board obtained in Example 16.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0033] (多層プリント配線板の製造方法)  [0033] (Method for producing multilayer printed wiring board)
先ず、本発明の多層プリント配線板の製造方法について説明する。本発明の多層 プリント配線板の製造方法は、ポリイミド又は第 1の液晶ポリマー力 なる第 1の絶縁 層と前記第 1の絶縁層の少なくとも片面に形成された配線回路とを有する配線基板、 並びに、前記ポリイミドの熱変形温度未満である融点及び Z又は前記第 1の液晶ポリ マーの融点よりも低い融点を有する第 2の液晶ポリマー力 なる第 2の絶縁層と前記 第 2の絶縁層の片面に積層された導体層とを有する導体層基板を準備する工程 (第 1の工程)と、  First, the manufacturing method of the multilayer printed wiring board of this invention is demonstrated. The method for producing a multilayer printed wiring board according to the present invention includes a wiring board having a first insulating layer made of polyimide or a first liquid crystal polymer force, and a wiring circuit formed on at least one side of the first insulating layer, and A second insulating layer having a melting point lower than the heat distortion temperature of the polyimide and a melting point lower than the melting point of Z or the first liquid crystal polymer; and a second insulating layer formed on one side of the second insulating layer. Preparing a conductor layer substrate having a laminated conductor layer (first step);
前記配線基板及び前記導体層基板を、前記導体層基板の前記第 2の絶縁層側を 前記配線基板に向けて配置して、加熱加圧処理設備を用いて加熱加圧下で連続的 に積層する工程 (第 2の工程)と、  The wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board. Process (second process), and
を含む方法である。  It is a method including.
[0034] 先ず、本発明の多層プリント配線板の製造方法に用いるポリイミド、並びに第 1及び 第 2の液晶ポリマーについて説明する。本発明の多層プリント配線板の製造方法に 用いるポリイミドとは、分子中にイミド結合を有するポリイミドゃポリアミドを主成分とす るものであり、必ずしも単一なポリイミドだけ力 なる必要はなぐ他の榭脂との混合物 であってもよい。ポリイミドは、公知のジァミノ化合物とテトラカルボン酸またはその無 水物とを適宜選定し、所望の特性が得られるようにこれらを組み合わせて反応させる ことで得ることができる。さらに、これらのポリイミドは、得られる多層プリント配線板の 寸法精度の観点から、例えば、 0〜35 X 10_6Z°C (より好ましくは、 1 X 10_6〜25 X 10_6Z°C)の範囲の線膨張係数を有するものであることが好ましい。本発明では、例 えば、このようなポリイミド榭脂を第 1の絶縁層とし、その少なくとも片面に形成された 配線回路を有する配線基板を使用するが、その場合、市販されているポリイミドフィル ム又はポリイミド及び銅箔力 なる銅張積層板を使用することが簡便である。ポリイミド フィルムを用いる場合には、スパッタ等の公知の方法で回路形成し配線基板とするこ とができる。また、銅張積層板を用いる場合には、公知の方法で任意の配線回路を 形成して配線基板とすることができる。このようなポリイミドフィルムとしては、アビカル AH、 NPI ( (株)カネ力社製)、ユーピレックス S (宇部興産 (株)社製)、カプトン (東レ · デュポン (株)社製)等を用いることができる。また、このような銅張積層板としては、ェ スパネックス Sシリーズや Mシリーズ ( 、ずれも新日鐡ィ匕学 (株)社製)を使用すること ができる。また、このようなポリイミドの熱変形温度は、 300〜380°Cの範囲であること が好ましぐ 320〜360°Cの範囲であることが好ましい。 [0034] First, polyimide used in the method for producing a multilayer printed wiring board of the present invention, and first and The second liquid crystal polymer will be described. The polyimide used in the method for producing a multilayer printed wiring board of the present invention is mainly composed of a polyimide having a imide bond in the molecule, and polyamide, and it is not always necessary to use only a single polyimide. It may be a mixture with fat. Polyimide can be obtained by appropriately selecting a known diamino compound and tetracarboxylic acid or an anhydrous product thereof and combining them so as to obtain desired characteristics. Furthermore, these polyimides are, for example, from 0 to 35 X 10 _6 Z ° C (more preferably 1 X 10 _6 to 25 X 10 _6 Z ° C) from the viewpoint of dimensional accuracy of the obtained multilayer printed wiring board. It is preferable to have a linear expansion coefficient in the range. In the present invention, for example, such a polyimide resin is used as a first insulating layer, and a wiring board having a wiring circuit formed on at least one surface thereof is used. In that case, a commercially available polyimide film or It is convenient to use a copper-clad laminate with polyimide and copper foil strength. When a polyimide film is used, a circuit can be formed by a known method such as sputtering to form a wiring board. When using a copper-clad laminate, any wiring circuit can be formed by a known method to form a wiring board. As such a polyimide film, Avical AH, NPI (manufactured by Kane Riki Co., Ltd.), Upilex S (manufactured by Ube Industries, Ltd.), Kapton (manufactured by Toray DuPont Co., Ltd.), etc. may be used. it can. As such a copper-clad laminate, Espanex S series and M series (both manufactured by Nippon Steel Engineering Co., Ltd.) can be used. Further, the heat distortion temperature of such a polyimide is preferably in the range of 300 to 380 ° C, and is preferably in the range of 320 to 360 ° C.
本発明の多層プリント配線板の製造方法に用いる第 1及び第 2の液晶ポリマーとは 、光学的異方性の溶融相を形成するもののことをいう。これらの液晶ポリマーは、特に その種類が限定されるものではないが、いわゆる全芳香族液晶ポリマー、すなわち、 脂肪族長鎖を含まず実質的に芳香族のみで構成される液晶ポリマーが好ましい。さ らに、これらの中でも、 6—ヒドロキシー2—ナフトェ酸と p—ヒドロキシ安息香酸とから なるポリエステルを用いることがより好ましい。また、これらの液晶ポリマーとしては、適 宜の種類の液晶材料を組み合わせた混合物を用いることもでき、例えば、市販され ている銅張積層板に絶縁層として用いられる液晶ポリマー等の各種の液晶ポリマー の中力も適宜選定して用いることもできる。さらに、これらの液晶ポリマーは、得られる 多層プリント配線板の寸法精度の観点から、例えば、 1 X 10_6〜25 X 10_6Z°Cの 範囲の線膨張係数を有するものであることが好ましい。また、本発明では、例えば、こ のような液晶ポリマーを第 2の絶縁層とし、その少なくとも片面に形成された配線回路 を有する配線基板を使用するが、その場合、市販されている液晶ポリマーフィルム又 は液晶ポリマー及び銅箔力もなる銅張積層板を使用することが簡便である。このよう な液晶ポリマーフィルムとしては、ベタスター( (株)クラレネ土製)等を用いることができる 。また、このような銅張積層板としては、エスパネックス Lシリーズ (新日鐡ィ匕学 (株)社 製)を使用することができる。さらに、このような第 1の液晶ポリマーの融点は、 280〜 350°Cの範囲にあることが好ましぐまた、このような第 2の液晶ポリマーの融点は、 1 80〜280°Cの範囲にあることが好ましい。 The first and second liquid crystal polymers used in the method for producing a multilayer printed wiring board of the present invention are those that form an optically anisotropic molten phase. The type of these liquid crystal polymers is not particularly limited, but so-called wholly aromatic liquid crystal polymers, that is, liquid crystal polymers that do not contain an aliphatic long chain and are substantially composed of only aromatics are preferable. Further, among these, it is more preferable to use a polyester comprising 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid. Further, as these liquid crystal polymers, a mixture in which an appropriate kind of liquid crystal material is combined can be used. For example, various liquid crystal polymers such as a liquid crystal polymer used as an insulating layer in a commercially available copper-clad laminate. The intermediate force can also be selected and used as appropriate. In addition, these liquid crystal polymers are obtained From the viewpoint of the dimensional accuracy of the multilayer printed wiring board, for example, it is preferable that it has a linear expansion coefficient in the range of 1 X 10 — 6 to 25 X 10 — 6 Z ° C. In the present invention, for example, such a liquid crystal polymer is used as a second insulating layer, and a wiring board having a wiring circuit formed on at least one surface thereof is used. In that case, a commercially available liquid crystal polymer film is used. Alternatively, it is convenient to use a copper clad laminate having a liquid crystal polymer and a copper foil force. As such a liquid crystal polymer film, Betastar (manufactured by KURARENE CORPORATION) or the like can be used. As such a copper-clad laminate, Espanex L series (manufactured by Nippon Steel Chemical Co., Ltd.) can be used. Further, the melting point of the first liquid crystal polymer is preferably in the range of 280 to 350 ° C. Also, the melting point of the second liquid crystal polymer is in the range of 80 to 280 ° C. It is preferable that it exists in.
[0036] このようなポリイミド又は第 1の液晶ポリマーは、本発明に力かる第 1の絶縁層の材 料である。また、このような第 2の液晶ポリマーは、本発明にカゝかる第 2の絶縁層の材 料である。そして、本発明においては、前記第 2の液晶ポリマーが、前記ポリイミドの 熱変形温度未満である融点及び Z又は前記第 1の液晶ポリマーの融点よりも低い融 点を有するものであることが必要である。このように、前記第 2の液晶ポリマーの融点 が前記ポリイミドの熱変形温度及び Z又は前記第 1の液晶ポリマーの融点よりも低く なるようにすることにより、後述する第 2の工程において、前記第 1の絶縁層の少なくと も片面に形成された配線回路間への前記第 2の液晶ポリマーの充填性を維持しつつ 、得られる多層プリント配線板の変形を防止することが可能となる。  [0036] Such a polyimide or the first liquid crystal polymer is a material for the first insulating layer that is useful in the present invention. The second liquid crystal polymer is a material for the second insulating layer according to the present invention. In the present invention, the second liquid crystal polymer needs to have a melting point lower than the heat distortion temperature of the polyimide and a melting point lower than Z or the melting point of the first liquid crystal polymer. is there. In this way, in the second step described later, the second liquid crystal polymer has a melting point lower than the thermal deformation temperature of the polyimide and Z or the melting point of the first liquid crystal polymer. It is possible to prevent deformation of the obtained multilayer printed wiring board while maintaining the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one side of the insulating layer.
[0037] また、本発明においては、前記第 2の液晶ポリマーの融点が、前記ポリイミドの熱変 形温度よりも 5°C以上低いことが好ましぐ前記ポリイミドの熱変形温度よりも 5〜200 °C低いことがより好ましい。また、前記第 2の液晶ポリマーの融点は、前記第 1の液晶 ポリマーの融点よりも 5〜60°C低 、ことが好ましく、 10〜60°C低!、ことがより好ましく、 15〜40°C低いことが特に好ましい。前記第 2の液晶ポリマーの融点が前記下限未満 では、得られる多層プリント配線板の寸法精度が不十分となる傾向にあり、他方、前 記上限を超えると、得られる多層プリント配線板のそりや回路変形が大きくなる傾向 にある。なお、本発明における熱変形温度とは、フィルムに一定の荷重を加えて昇温 させたときに、荷重により急激にフィルムが伸び始める温度のことをいう。そして、熱変 形温度は、 ASTM D648又 ίお IS K7191に記載されている方法に準じて測定す ることができ、例えば、以下のような方法で測定することできる。すなわち、熱機械分 析装置 (TMA)を用いて、サンプルに 5gの荷重をかけ、昇温速度 10°CZminで 400 °Cまで昇温した際のサンプルの寸法変化を測定し、 Tg以下の伸びの外挿線と Tg以 上の伸びの外挿線との交点力も熱変形温度を求めることができる。また、融点とは、 示差走査熱量計 (DSC)を用いて、昇温速度 10°CZminで 360°Cまで昇温した際に 観察される吸熱ピークの温度をいう。 [0037] In the present invention, it is preferable that the melting point of the second liquid crystal polymer is 5 ° C or more lower than the thermal deformation temperature of the polyimide. It is more preferable that the temperature is lower. The melting point of the second liquid crystal polymer is preferably 5 to 60 ° C lower than the melting point of the first liquid crystal polymer, more preferably 10 to 60 ° C lower, more preferably 15 to 40 °. A low C is particularly preferred. If the melting point of the second liquid crystal polymer is less than the lower limit, the dimensional accuracy of the resulting multilayer printed wiring board tends to be insufficient. On the other hand, if the upper limit is exceeded, warping of the multilayer printed wiring board to be obtained can be reduced. Circuit deformation tends to increase. The heat distortion temperature in the present invention refers to a temperature at which a film starts to grow suddenly by a load when a certain load is applied to the film and the temperature is raised. And heat change The molding temperature can be measured according to the method described in ASTM D648 or ί and IS K7191, and for example, it can be measured by the following method. In other words, using a thermomechanical analyzer (TMA), a 5 g load was applied to the sample, the dimensional change of the sample was measured when the temperature was raised to 400 ° C at a temperature increase rate of 10 ° CZmin, and the elongation below Tg was measured. The heat distortion temperature can also be obtained from the intersection force between the extrapolated line and the extrapolated line extending beyond Tg. The melting point is the temperature of the endothermic peak observed when the temperature is raised to 360 ° C at a rate of 10 ° CZmin using a differential scanning calorimeter (DSC).
[0038] 以上、本発明の多層プリント配線板の製造方法に用いるポリイミド、並びに第 1及び 第 2の液晶ポリマーについて説明した力 以下、図 1〜5を参照しながら本発明の多 層プリント配線板の製造方法について説明する。図 1〜5は、本発明の多層プリント 配線板の製造方法の好適な一実施形態を説明するための模式側断面図である。そ して、図 1及び図 2は第 1の工程に対応し、図 3及び図 4は第 2の工程に対応し、図 5 は後述する後工程に対応する。  [0038] The forces described above for the polyimide and the first and second liquid crystal polymers used in the method for producing the multilayer printed wiring board of the present invention are described below. The multilayer printed wiring board of the present invention with reference to Figs. The manufacturing method will be described. 1 to 5 are schematic side sectional views for explaining a preferred embodiment of a method for producing a multilayer printed wiring board according to the present invention. 1 and 2 correspond to the first step, FIGS. 3 and 4 correspond to the second step, and FIG. 5 corresponds to a later step to be described later.
[0039] 第 1の工程においては、先ず、図 1 (b)に示すような、前記ポリイミド又は前記第 1の 液晶ポリマーからなる第 1の絶縁層 12と、第 1の絶縁層 12の少なくとも片面に形成さ れた配線回路 16とを有する配線基板 18を準備する。このような配線基板 18は、特に 限定されないが、図 1 (b)に示すようにロール状に卷回されたものであることが好まし い。このようにロール状に卷回されたものを用いることにより、多層プリント配線板の製 造方法をロール 'トウ'ロール方式で実施することができ、生産性の更なる向上を図る ことができる。また、このような配線基板 18は、例えば、図 1 (a)に示すような、ロール 状に卷回された、第 1の絶縁層 12と、第 1の絶縁層 12の少なくとも片面に積層された 銅箔 10とを有する銅張積層板 14に対し、回路形成処理を施すことにより作製するこ とができる。このような回路形成処理としては、例えば、銅張積層板 14にエッチングレ ジストラミネート、露光、現像、エッチング、レジスト剥離の処理を順次施す方法を採 用することができる。また、このような回路形成処理は、ロール 'トウ'ロール方式で実 施することが好ましい。  In the first step, first, as shown in FIG. 1B, at least one surface of the first insulating layer 12 made of the polyimide or the first liquid crystal polymer and the first insulating layer 12 is firstly shown. A wiring board 18 having a wiring circuit 16 formed on is prepared. Such a wiring board 18 is not particularly limited, but is preferably one wound in a roll shape as shown in FIG. 1 (b). By using the roll wound in this way, the multilayer printed wiring board can be manufactured by a roll 'toe' roll method, and the productivity can be further improved. In addition, such a wiring board 18 is laminated on at least one surface of the first insulating layer 12 and the first insulating layer 12 wound in a roll shape as shown in FIG. 1A, for example. The copper clad laminate 14 having the copper foil 10 can be produced by subjecting it to a circuit forming process. As such a circuit forming process, for example, a method of sequentially performing etching resist laminating, exposure, development, etching, and resist stripping on the copper-clad laminate 14 can be employed. Further, such a circuit formation process is preferably performed by a roll 'toe' roll method.
[0040] また、第 1の絶縁層 12は、前記ポリイミド又は前記第 1の液晶ポリマーからなる層で あればよぐ特に限定されない。そして、このような第 1の絶縁層 12としては、前記ポリ イミドフィルム、又は市販されて 、る液晶ポリマーフィルムを適宜選択して用いてもよ い。このような液晶ポリマーフィルムとしては、ベタスター((株)クラレネ土製)等を用いる ことができる。また、このような第 1の絶縁層 12を有する銅張積層板 14としては、エス バネックス Lシリーズ (新日鐡ィ匕学 (株)社製)やエスバネックス Mシリーズ (新日鐡ィ匕 学 (株)社製)等を用いることができる。 [0040] The first insulating layer 12 is not particularly limited as long as it is a layer made of the polyimide or the first liquid crystal polymer. Such a first insulating layer 12 includes the poly An imide film or a commercially available liquid crystal polymer film may be appropriately selected and used. As such a liquid crystal polymer film, Betastar (manufactured by Kurarene Co., Ltd.) or the like can be used. In addition, as the copper clad laminate 14 having the first insulating layer 12 as described above, the S-vanex L series (manufactured by Nippon Steel Corp.) and the S-vanex M series (Nippon Steel Corp. ( Etc.) can be used.
[0041] また、第 1の絶縁層 12の厚みは、例えば 5〜: LOO /z mの範囲とすることができ、好ま しくは、 10〜50 mの範囲である。さらに、配線回路 16の厚みは、例えば 3〜35 mの範囲とすることができ、好ましくは、 5〜25 mの範囲である。  [0041] The thickness of the first insulating layer 12 can be, for example, in the range of 5 to: LOO / zm, and preferably in the range of 10 to 50 m. Furthermore, the thickness of the wiring circuit 16 can be in the range of 3 to 35 m, for example, and is preferably in the range of 5 to 25 m.
[0042] 第 1の工程においては、次に、図 2に示すような、前記ポリイミドの熱変形温度未満 である融点及び Z又は前記第 1の液晶ポリマーの融点よりも低い融点を有する第 2の 液晶ポリマーからなる第 2の絶縁層 22と、第 2の絶縁層 22の片面に積層された導体 層 20とを有する導体層基板 24を準備する。このような第 2の絶縁層 22は、前記第 2 の液晶ポリマー力もなる層であればよぐ特に限定されない。そして、このような第 2の 絶縁層 22としては、市販されている液晶ポリマーフィルムを適宜選択して用いてもよ い。このような液晶ポリマーフィルムとしては、ベタスター((株)クラレネ土製)等を用いる ことができる。また、導体層 20の材料としては、適宜の良導電性金属を用いることが できるが、銅を用いることが特に好ましい。また、このような第 2の絶縁層 22を有する 導体層基板 24としては、エスバネックス Lシリーズ (新日鐡ィ匕学 (株)社製)等を用いる ことができる。  In the first step, next, as shown in FIG. 2, a second melting point having a melting point lower than the thermal deformation temperature of the polyimide and a melting point lower than the melting point of Z or the first liquid crystal polymer. A conductor layer substrate 24 having a second insulating layer 22 made of a liquid crystal polymer and a conductor layer 20 laminated on one side of the second insulating layer 22 is prepared. The second insulating layer 22 is not particularly limited as long as it is a layer having the second liquid crystal polymer force. As such second insulating layer 22, a commercially available liquid crystal polymer film may be appropriately selected and used. As such a liquid crystal polymer film, Betastar (manufactured by KURARENE CORPORATION) or the like can be used. Further, as the material of the conductor layer 20, an appropriate highly conductive metal can be used, but it is particularly preferable to use copper. In addition, as the conductor layer substrate 24 having the second insulating layer 22 as described above, Esbanex L series (manufactured by Nippon Steel Chemical Co., Ltd.) or the like can be used.
[0043] また、第 2の絶縁層 22の厚みは、例えば 5〜: LOO /z mの範囲とすることができ、好ま しくは、 10〜50 mの範囲である。さらに、導体層 20の厚みは、例えば 3〜35 /ζ πι の範囲とすることができ、好ましくは、 5〜25 μ mの範囲である。  [0043] The thickness of the second insulating layer 22 can be, for example, in the range of 5 to: LOO / zm, and preferably in the range of 10 to 50 m. Furthermore, the thickness of the conductor layer 20 can be, for example, in the range of 3 to 35 / ζ πι, and preferably in the range of 5 to 25 μm.
[0044] なお、このような導体層基板 24は、配線基板 18が片面にのみ配線回路 16を有す るものである場合には、少なくとも 1枚準備すればよいが、配線基板 18が両面に配線 回路 16を有するものである場合には、 2枚準備することが好ましい。  [0044] When the wiring board 18 has the wiring circuit 16 only on one side, it is sufficient to prepare at least one such conductive layer board 24, but the wiring board 18 is on both sides. When the wiring circuit 16 is provided, it is preferable to prepare two sheets.
[0045] また、このような導体層基板 24においては、後述する第 2の工程を行う前に、前記 第 2の液晶ポリマー(前記第 2の絶縁層)の表面を表面処理しておくことが望ましぐこ れにより積層面の密着強度を向上させることができる。また、このような表面処理方法 としては、アルカリ混合溶液によるエッチング処理やプラズマによるエッチング処理が 好適に適用可能である。 [0045] Further, in such a conductor layer substrate 24, the surface of the second liquid crystal polymer (the second insulating layer) may be subjected to a surface treatment before performing a second step described later. The desired strength can improve the adhesion strength of the laminated surface. Also, such a surface treatment method For example, an etching process using an alkali mixed solution or an etching process using plasma is preferably applicable.
[0046] 第 2の工程にお ヽては、先ず、前記配線基板 18及び前記導体層基板 24を、前記 導体層基板 24の第 2の絶縁層側を前記配線基板 18に向けて配置する。ここで、配 線基板 18が両面に配線回路 16を有するものである場合には、得られる多層プリント 配線板の最外面に形成されている配線回路の変形を防止するという観点から、図 3 に示すように、配線基板 18及び 2枚の導体層基板 24を、配線基板 18を間にして 2枚 の導体層基板 24を第 2の絶縁層側をそれぞれ配線基板 18に向けて配置することが 好ましい。また、配線基板 18及び導体層基板 24がロール状に卷回されたものである 場合には、それらを引き出して用いることができる。  In the second step, first, the wiring board 18 and the conductor layer board 24 are arranged with the second insulating layer side of the conductor layer board 24 facing the wiring board 18. Here, when the wiring board 18 has the wiring circuit 16 on both sides, it is shown in FIG. 3 from the viewpoint of preventing the deformation of the wiring circuit formed on the outermost surface of the obtained multilayer printed wiring board. As shown, the wiring board 18 and the two conductor layer boards 24 can be arranged with the wiring board 18 in between and the two conductor layer boards 24 arranged with the second insulating layer side facing the wiring board 18 respectively. preferable. Further, when the wiring board 18 and the conductor layer board 24 are wound in a roll shape, they can be drawn out and used.
[0047] 第 2の工程においては、その後、前記配線基板 18及び前記導体層基板 24を、加 熱加圧処理設備 27を用いて加熱加圧下で連続的に積層して、最外面が未加工の 多層プリント配線板 (外層未加工多層プリント配線板)を得る(図 3)。このような加熱加 圧処理設備 27は、生産性の観点から、ロール 'トウ'ロール方式で連続的に処理可能 なものであることが好ましい。また、このような加熱加圧処理設備 27としては、ロール ラミネーター、ダブルスチールベルトプレス、連続プレス装置 (例えば、名機製作所社 製 MVLPシリーズ)等の装置を用いることができる力 生産性の観点から、ロールラミ ネーターを用いることが好ましい。また、加熱加圧処理設備 27としてロールラミネータ 一を用いる場合には、ロールラミネーターによるロール線圧 (ラミネート圧)が 10〜25 OkNZmであることが好ましぐ 25〜150kNZmであることがより好ましい。ロール線 圧が前記下限未満では、前記第 1の絶縁層の少なくとも片面に形成された配線回路 間への前記第 2の液晶ポリマーの充填性、並びに前記配線回路と前記第 2の絶縁層 との接着性が不十分となる傾向にあり、他方、前記上限を超えると、得られる多層プリ ント配線板のそりが大きくなつたり、前記第 2の液晶ポリマーの厚み変化が大きくなる 傾向にある。また、ロールラミネーターのロール温度(表面温度)は 150〜300°Cであ ることが好ましい。  [0047] In the second step, thereafter, the wiring board 18 and the conductor layer board 24 are continuously laminated under heat and pressure using the heating and pressure treatment equipment 27, and the outermost surface is not processed. A multilayer printed wiring board (outer layer unprocessed multilayer printed wiring board) is obtained (Fig. 3). Such a heating and pressurizing treatment equipment 27 is preferably one that can be continuously treated by a roll 'toe' roll method from the viewpoint of productivity. In addition, as such a heat and pressure treatment equipment 27, an apparatus such as a roll laminator, a double steel belt press, or a continuous press apparatus (for example, MVLP series manufactured by Meiki Seisakusho Co., Ltd.) can be used from the viewpoint of productivity. It is preferable to use a roll laminator. When a roll laminator is used as the heat and pressure treatment equipment 27, the roll line pressure (laminate pressure) by the roll laminator is preferably 10 to 25 OkNZm, more preferably 25 to 150 kNZm. When the roll line pressure is less than the lower limit, the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one side of the first insulating layer, and the wiring circuit and the second insulating layer On the other hand, if the upper limit is exceeded, the warp of the resulting multilayer printed wiring board tends to increase, or the thickness change of the second liquid crystal polymer tends to increase. The roll temperature (surface temperature) of the roll laminator is preferably 150 to 300 ° C.
[0048] また、このような第 2の工程にぉ ヽては、前記配線基板 18及び前記導体層基板 24 を積層するにあたり、前記配線基板 18及び前記導体層基板 24を、加熱加圧下で積 層 (仮積層)して積層体 26 (仮積層体 26)を得た後に、図 4に示すように前記積層体 26を熱処理設備 29を用いて加熱することにより高温熱処理を行い、最外面が未カロ ェの多層プリント配線板 (外層未加工多層プリント配線板 28)を得ることが好ま 、。 [0048] In addition, in the second step, when the wiring board 18 and the conductor layer board 24 are stacked, the wiring board 18 and the conductor layer board 24 are stacked under heat and pressure. After the layer (temporary laminate) is obtained to obtain the laminate 26 (temporary laminate 26), the laminate 26 is heated using a heat treatment equipment 29 as shown in FIG. It is preferable to obtain a non-caloric multilayer printed wiring board (outer layer unprocessed multilayer printed wiring board 28).
[0049] このように仮積層体を得た後に高温熱処理を行 ヽ、外層未加工多層プリント配線板 を得る方法は、ロールラミネーター等の加熱加圧処理設備のみを用いて前記配線基 板及び前記導体層基板を積層して外層未加工多層プリント配線板を得る方法と比較 して、以下に説明するような点で有利である。すなわち、ロールラミネーター等の加熱 加圧処理設備のみを用いて前記配線基板及び前記導体層基板を積層して外層未 加工多層プリント配線板を得る場合には、短時間の加熱加圧処理で前記配線回路 間への前記第 2の液晶ポリマーの充填性、前記配線回路と前記第 2の絶縁層との接 着性、並びに得られる多層プリント配線板の変形防止と 、う 3つの観点を満たすよう にして、これらを積層する必要があり、例えば、耐熱性や厚みといった原料品質のば らつきによる影響も勘案すると、積層工程での微妙な条件管理が必要とされる恐れが ある。また、このような条件管理の下で良好な積層が実施された場合でも、加熱加圧 条件下での積層により生じたと考えられる残留応力によって、その後の工程にお!、て 、多層プリント配線板にそりが生じ、多層プリント配線板として部品を実装して使用す る場合にお ヽて不具合が発生する恐れがある。  [0049] In this way, after obtaining the temporary laminate, high-temperature heat treatment is performed to obtain an unprocessed multilayer printed wiring board using only the heating and pressure treatment equipment such as a roll laminator. Compared to the method of laminating a conductor layer substrate to obtain an unprocessed multilayer printed wiring board, it is advantageous in the points described below. That is, when only the heating and pressurizing processing equipment such as a roll laminator is used to obtain the multilayered printed wiring board without processing the outer layer by laminating the wiring board and the conductor layer board, the wiring can be performed by a short heating and pressing process. The filling of the second liquid crystal polymer between the circuits, the adhesion between the wiring circuit and the second insulating layer, and the prevention of deformation of the resulting multilayer printed wiring board should be satisfied. These layers need to be laminated. For example, if the influence of variations in raw material quality such as heat resistance and thickness is taken into account, there is a risk that delicate condition management in the lamination process may be required. In addition, even when good lamination is performed under such condition control, the multilayer printed wiring board can be used in subsequent processes due to residual stress that is considered to be caused by lamination under heating and pressing conditions. There is a risk of warping, which may cause problems when mounting and using parts as a multilayer printed wiring board.
[0050] これに対し、上記のように仮積層体を得た後に高温熱処理を行い、外層未加工多 層プリント配線板を得る場合には、得られる外層未加工多層プリント配線板に残留応 力が生じにくい。そのため、このようにして、多層プリント配線板のそりを十分に抑制 することができる。また、このような場合には、ロールラミネーター等の加熱加圧処理 設備 27のみを用いて積層する場合と比較して、多層プリント配線板を製造する際に 上記の 3つの観点を同時に満たすような製造条件を容易に見出すことができる。  [0050] On the other hand, when a high temperature heat treatment is performed after obtaining a temporary laminate as described above to obtain an outer layer unprocessed multilayer printed wiring board, residual stress is applied to the obtained outer layer unprocessed multilayer printed wiring board. Is unlikely to occur. Therefore, warpage of the multilayer printed wiring board can be sufficiently suppressed in this way. In such a case, the above three viewpoints should be satisfied at the same time when producing a multilayer printed wiring board as compared with the case of laminating using only the heat and pressure treatment equipment 27 such as a roll laminator. Manufacturing conditions can be easily found.
[0051] このように仮積層体 26を得た後に高温熱処理を行い、外層未加工多層プリント配 線板 28を得る場合には、仮積層体 26を得るにあたり、前記配線基板 18及び前記導 体層基板 24を下記数式 (F2)で表される条件を満たす積層熱処理温度 (仮積層熱 処理温度) T:  [0051] When the temporary laminated body 26 is obtained and then subjected to high-temperature heat treatment to obtain the outer layer unprocessed multilayer printed wiring board 28, the wiring board 18 and the conductor are obtained in obtaining the temporary laminated body 26. Lamination heat treatment temperature for layer substrate 24 that satisfies the condition expressed by the following formula (F2) (temporary lamination heat treatment temperature) T:
2  2
(第 2の液晶ポリマーの融点) 100°C≤T≤ (第 2の液晶ポリマーの融点) 20°C' • . (F2) (The melting point of the second liquid crystal polymer) 100 ° C≤T≤ (The melting point of the second liquid crystal polymer) 20 ° C ' •. (F2)
において積層(仮積層)することが好ましい。仮積層熱処理温度 Tが前記下限未満  Is preferably laminated (temporary lamination). Temporary lamination heat treatment temperature T is less than the lower limit
2  2
では、前記第 1の絶縁層の少なくとも片面に形成された配線回路間への前記第 2の 液晶ポリマーの充填性、並びに前記配線回路と前記第 2の絶縁層との接着性が不十 分となる傾向にあり、他方、前記上限を超えると、得られる多層プリント配線板のそり を十分に抑制することができな 、傾向にある。  Then, the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one surface of the first insulating layer and the adhesion between the wiring circuit and the second insulating layer are insufficient. On the other hand, if the upper limit is exceeded, warping of the resulting multilayer printed wiring board cannot be sufficiently suppressed.
[0052] また、このように仮積層体 26を得た後に高温熱処理を行い、外層未加工多層プリン ト配線板 28を得る場合には、前記高温熱処理を行うにあたり、仮積層体 26を下記数 式 (F1)で表される条件を満たす高温熱処理温度 T: [0052] In addition, when the high temperature heat treatment is performed after obtaining the temporary laminate 26 in this way to obtain the outer layer unprocessed multilayer printed wiring board 28, the temporary laminate 26 is divided into the following number in performing the high temperature heat treatment. High-temperature heat treatment temperature T that satisfies the condition expressed by formula (F1):
(第 2の液晶ポリマーの融点) 15°C≤T≤ (第 2の液晶ポリマーの融点) + 20°C ' · •(F1)  (The melting point of the second liquid crystal polymer) 15 ° C≤T≤ (The melting point of the second liquid crystal polymer) + 20 ° C '· • (F1)
で加熱することが好ましい。高温熱処理温度 Tが前記下限未満では、前記第 1の絶 縁層の少なくとも片面に形成された配線回路間への前記第 2の液晶ポリマーの充填 性、並びに前記配線回路と前記第 2の絶縁層との接着性が不十分となる傾向にあり 、他方、前記上限を超えると、前記第 1の絶縁層の少なくとも片面に形成された配線 回路に変形やシヮが生ずる傾向にある。  It is preferable to heat with. When the high-temperature heat treatment temperature T is less than the lower limit, the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one surface of the first insulating layer, and the wiring circuit and the second insulating layer On the other hand, if the upper limit is exceeded, the wiring circuit formed on at least one surface of the first insulating layer tends to be deformed or wrinkled.
[0053] さらに、前記高温熱処理を行うにあたり、高温熱処理時間は、 5秒以上とすることが 好ましぐ 10〜180秒の範囲とすることがより好ましい。高温熱処理時間が 5秒未満 では、前記第 1の絶縁層の少なくとも片面に形成された配線回路間への前記第 2の 液晶ポリマーの充填性、並びに前記配線回路と前記第 2の絶縁層との接着性が不十 分となる傾向があり、他方、 180秒を超えると、前記第 1の絶縁層の少なくとも片面に 形成された配線回路に変形やシヮが生ずる恐れがある。  [0053] Further, in performing the high temperature heat treatment, the high temperature heat treatment time is preferably 5 seconds or more, more preferably in the range of 10 to 180 seconds. When the high-temperature heat treatment time is less than 5 seconds, the filling property of the second liquid crystal polymer between the wiring circuits formed on at least one side of the first insulating layer, and the wiring circuit and the second insulating layer Adhesiveness tends to be inadequate. On the other hand, if it exceeds 180 seconds, the wiring circuit formed on at least one surface of the first insulating layer may be deformed or damaged.
[0054] また、このような熱処理設備 29は、生産性の観点から、ロール 'トウ'ロール方式で 連続的に処理可能なものであることが好ましい。また、このような熱処理設備 29として は、例えば、トンネル炉、遠赤外線炉、熱風乾燥炉が挙げられる。  [0054] In addition, such a heat treatment equipment 29 is preferably capable of being continuously treated by a roll 'toe' roll method from the viewpoint of productivity. Examples of such heat treatment equipment 29 include a tunnel furnace, a far-infrared furnace, and a hot air drying furnace.
[0055] 本発明の多層プリント配線板の製造方法においては、前記第 2の工程により得られ る外層未加工多層プリント配線板に、必要に応じて、以下説明する後工程を行うこと により多層プリント配線板を得ることができる。また、本発明の多層プリント配線板の製 造方法にお!、ては、外層未加工多層プリント配線板を多層プリント配線板の製品寸 法に裁断した後、裁断されたもの毎に後工程を行ってもよぐまた、外層未加工多層 プリント配線板をそのままロール'トウ ·ロール方式で連続的に処理して後工程を行つ てもよい。 [0055] In the method for producing a multilayer printed wiring board of the present invention, the outer layer unprocessed multilayer printed wiring board obtained by the second step is subjected to a post-process described below as necessary. A wiring board can be obtained. Further, the multilayer printed wiring board of the present invention is manufactured. After the outer layer unprocessed multilayer printed wiring board is cut into the product dimensions of the multilayer printed wiring board, a post-process may be performed for each of the cut pieces. The post-process may be performed by continuously processing the printed wiring board as it is by a roll-to-roll method.
[0056] さらに、本発明の多層プリント配線板の製造方法においては、必要に応じて、外層 未カ卩ェ多層プリント配線板のシートを巻き取ってロール状にして一時保管してもよい 。このような場合、従来の方法のように表面に配線回路を形成したものでは配線回路 層を損傷する恐れがある力 本発明によれば、最外面は導体層であるため、このよう な不具合はない。  [0056] Further, in the method for producing a multilayer printed wiring board of the present invention, if necessary, the outer layer uncovered multilayer printed wiring board may be wound and temporarily stored in a roll shape. In such a case, if a wiring circuit is formed on the surface as in the conventional method, there is a risk of damaging the wiring circuit layer. According to the present invention, the outermost surface is a conductor layer. Absent.
[0057] また、その後の後工程としては、例えば、図 5 (a)に示すようなスルーホール形成処 理、図 5 (b)に示すようなメツキ処理、図 5 (c)に示すような回路形成処理及びソルダ 一レジスト形成処理を挙げることができる。また、これらの後工程としては、適宜公知 の方法を採用することができる。  [0057] Further, as subsequent processes, for example, a through-hole forming process as shown in Fig. 5 (a), a plating process as shown in Fig. 5 (b), and a process as shown in Fig. 5 (c) Circuit formation processing and soldering One resist formation processing can be mentioned. In addition, as these subsequent steps, known methods can be appropriately employed.
[0058] 以上説明したような本発明の多層プリント配線板の製造方法においては、第 2のェ 程により得られる外層未加工多層プリント配線板の最外面が未だ配線回路となって いない導体層であるため、第 2の工程で配線回路の変形の問題を生じる余地がなぐ さらに、第 2の工程の後で導体層をパターンィ匕して配線回路を形成することにより、多 層プリント配線板の最外面に形成されて 、る配線回路が変形する恐れが少な 、。  In the method for producing a multilayer printed wiring board of the present invention as described above, the outermost unprocessed multilayer printed wiring board obtained by the second step is a conductor layer that is not yet a wiring circuit. Therefore, there is no room for the problem of deformation of the wiring circuit in the second step.Furthermore, after forming the wiring circuit by patterning the conductor layer after the second step, the multi-layer printed wiring board is formed. There is little risk of deformation of the wiring circuit formed on the outer surface.
[0059] また、本発明の多層プリント配線板の製造方法よれば、第 2の工程をロール 'トウ'口 ール方式により連続的に行うことができ、その場合には多層プリント配線板を高い生 産性で製造することが可能となる。  [0059] Further, according to the method for producing a multilayer printed wiring board of the present invention, the second step can be continuously performed by a roll 'toe' roll method, and in that case, the multilayer printed wiring board is expensive. It becomes possible to manufacture with productivity.
[0060] 以上、本発明の多層プリント配線板の製造方法の好適な実施形態について説明し たが、本発明の多層プリント配線板の製造方法は上記実施形態に限定されるもので はない。例えば、本発明の多層プリント配線板の製造方法においては、前記配線基 板が前記第 1の絶縁層を複数有するものであってもよい。すなわち、前記配線基板と してあら力じめ多層の配線基板を用いることにより、 4層以上の多層プリント配線板を 製造することもでき、更には、本発明の多層プリント配線板の製造方法により得られる 多層プリント配線板をさらに多層化することもできる。また、本発明の多層プリント配線 板の製造方法においては、配線回路の材料として、銅の他に適宜の良導電性金属 を用いることちでさる。 The preferred embodiment of the method for producing a multilayer printed wiring board of the present invention has been described above, but the method for producing a multilayer printed wiring board of the present invention is not limited to the above embodiment. For example, in the method for producing a multilayer printed wiring board according to the present invention, the wiring board may have a plurality of the first insulating layers. That is, it is possible to manufacture a multilayer printed wiring board having four or more layers by using a multi-layered wiring board as the wiring board, and further, according to the method for manufacturing a multilayer printed wiring board of the present invention. The resulting multilayer printed wiring board can be further multilayered. Also, the multilayer printed wiring of the present invention In the manufacturing method of the plate, it is possible to use an appropriate highly conductive metal in addition to copper as a material for the wiring circuit.
[0061] (多層プリント配線板)  [0061] (Multilayer printed wiring board)
次に、本発明の多層プリント配線板について説明する。本発明の多層プリント配線 板は、複数の配線回路層(配線回路、導体層)と複数の絶縁層とが交互に積層され た構造を有するものである。そして、本発明の多層プリント配線板においては、前記 配線回路層を介して隣り合う 2層の絶縁層のうちの一つの絶縁層がポリイミド榭脂層 であり、他の一つの絶縁層が液晶ポリマー層である積層構造単位を含むことが必要 である。本発明においては、このように配線回路層を介して隣り合う 2層の絶縁層のう ちの一つの絶縁層がポリイミド榭脂層であり、他の一つの絶縁層が液晶ポリマー層で ある積層構造単位を含むことにより、耐熱性と優れた高周波特性とを両立することが 可能となる。  Next, the multilayer printed wiring board of the present invention will be described. The multilayer printed wiring board of the present invention has a structure in which a plurality of wiring circuit layers (wiring circuit, conductor layer) and a plurality of insulating layers are alternately laminated. In the multilayer printed wiring board of the present invention, one of the two insulating layers adjacent to each other via the wiring circuit layer is a polyimide resin layer, and the other insulating layer is a liquid crystal polymer. It is necessary to include laminated structural units that are layers. In the present invention, a laminated structure in which one of the two insulating layers adjacent to each other through the wiring circuit layer is a polyimide resin layer and the other insulating layer is a liquid crystal polymer layer. By including the unit, it is possible to achieve both heat resistance and excellent high-frequency characteristics.
[0062] また、本発明の多層プリント配線板は、例えば、前述した本発明の多層プリント配線 板の製造方法により製造することができる。すなわち、ポリイミド又は第 1の液晶ポリマ 一からなる第 1の絶縁層と前記第 1の絶縁層の少なくとも片面に形成された配線回路 とを有する配線基板、並びに、前記ポリイミドの熱変形温度未満である融点及び Z又 は前記第 1の液晶ポリマーの融点よりも低い融点を有する第 2の液晶ポリマー力もな る第 2の絶縁層と前記第 2の絶縁層の片面に積層された導体層とを有する導体層基 板を準備する工程と、  [0062] The multilayer printed wiring board of the present invention can be manufactured, for example, by the above-described method for manufacturing a multilayer printed wiring board of the present invention. That is, a wiring board having a first insulating layer made of polyimide or a first liquid crystal polymer and a wiring circuit formed on at least one surface of the first insulating layer, and a temperature lower than the thermal deformation temperature of the polyimide A second insulating layer having a second liquid crystal polymer force having a melting point and a melting point lower than the melting point of Z or the first liquid crystal polymer, and a conductor layer laminated on one side of the second insulating layer. A step of preparing a conductor layer substrate;
前記配線基板及び前記導体層基板を、前記導体層基板の前記第 2の絶縁層側を 前記配線基板に向けて配置して、加熱加圧処理設備を用いて加熱加圧下で連続的 に積層する工程と、  The wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board. Process,
を含む方法において、少なくとも 1枚の配線基板がポリイミドからなる第 1の絶縁層(ポ リイミド榭脂層)を有するものである場合には、本発明の多層プリント配線板を製造す ることがでさる。  When at least one wiring board has a first insulating layer (polyimide resin layer) made of polyimide, the multilayer printed wiring board of the present invention can be manufactured. Monkey.
[0063] 本発明の多層プリント配線板は、例えば、図 6に示すように、上記の積層構造を有 する多層プリント配線板 50において、配線回路層 52を介して隣り合う 2層の絶縁層 5 4a、 54bのうちの 1つの絶縁層がポリイミド榭脂層であり、他の 1つの絶縁層が液晶ポ リマー層である積層構造単位 56を含むものである。このような積層構造単位 56は、 多層プリント配線板 50の積層構造全体に及ぶものであってもよぐまた、積層構造全 体のなかの適当な部位に 1又は複数設けられるものであってもよい。 [0063] The multilayer printed wiring board of the present invention is, for example, as shown in FIG. 6, in a multilayer printed wiring board 50 having the above-described laminated structure, two insulating layers 5 adjacent to each other with a wiring circuit layer 52 interposed therebetween. One of the insulating layers 4a and 54b is a polyimide resin layer, and the other insulating layer is a liquid crystal polymer layer. It includes a laminated structural unit 56 that is a remer layer. Such a laminated structural unit 56 may extend over the entire laminated structure of the multilayer printed wiring board 50, or may be provided at one or more appropriate portions in the entire laminated structure. Good.
[0064] なお、 1つの絶縁層 54aの材料としては、ポリイミド榭脂を用いることが好ましいが、 これに限らず、絶縁層の耐熱性が確保され、且つ、適度の低誘電率、低誘電正接の 各特性を有するものであれば、他の熱硬化性榭脂を用いてもよい。また、このような ポリイミド榭脂としては、前述した本発明の多層プリント配線板の製造方法に用いるポ リイミドと同様のものを挙げることができる。  [0064] It is preferable to use polyimide resin as the material of one insulating layer 54a, but is not limited to this, heat resistance of the insulating layer is ensured, and an appropriate low dielectric constant and low dielectric loss tangent are provided. As long as it has each of these characteristics, you may use another thermosetting resin. Examples of such polyimide resin include those similar to the polyimide used in the above-described method for producing a multilayer printed wiring board of the present invention.
[0065] さらに、他の 1つの絶縁層 54bの材料としては、液晶ポリマーを用いることが好まし いが、これに限らず、低誘電率、低誘電正接の各特性に優れるものであれば、他の 熱可塑性榭脂を用いてもよい。また、このような液晶ポリマーとしては、前述した本発 明の多層プリント配線板の製造方法に用いる液晶ポリマーと同様のものを挙げること ができる。  [0065] Further, as the material of the other one insulating layer 54b, it is preferable to use a liquid crystal polymer, but not limited to this, as long as it has excellent characteristics of low dielectric constant and low dielectric loss tangent, Other thermoplastic rosins may be used. Examples of such a liquid crystal polymer include the same liquid crystal polymers as those used in the above-described method for producing a multilayer printed wiring board of the present invention.
[0066] また、配線回路層(配線回路) 52の材料としては、適宜の良導電性金属を用いるこ とができる力 特に、銅箔を用いることが好ましい。  [0066] Further, as a material of the wiring circuit layer (wiring circuit) 52, a force capable of using an appropriate highly conductive metal, in particular, a copper foil is preferably used.
[0067] 絶縁層 54aをポリイミド榭脂層とし、また絶縁層 54bを液晶ポリマー層とした場合、 絶縁層 54aの厚みは、例えば 5〜: LOO m程度とすることができ、絶縁層 54bの厚み は、例えば 10〜: LOO m程度とすることができる。また、配線回路層 12の厚みは、例 えば 3〜35 μ m程度とすることができる。  [0067] When the insulating layer 54a is a polyimide resin layer and the insulating layer 54b is a liquid crystal polymer layer, the thickness of the insulating layer 54a can be, for example, about 5 to: LOO m, and the thickness of the insulating layer 54b. Can be, for example, about 10 to about LOO m. Further, the thickness of the wiring circuit layer 12 can be set to about 3 to 35 μm, for example.
[0068] このような本発明の多層プリント配線板は、ポリイミド榭脂の良好な耐熱性と、液晶 ポリマーの優れた高周波特性とが相俟って特性のバランスに優れる。また、本発明に かかる絶縁層にはガラス織布、ァラミド不織布のような補強材を含まないので、得られ る多層プリント配線板の高密度化、薄化、軽量化に優れ、また、粉落ち起因の歩留り 損の発生が軽減される。  [0068] Such a multilayer printed wiring board of the present invention has an excellent balance of properties due to the combination of the good heat resistance of polyimide resin and the excellent high-frequency properties of the liquid crystal polymer. In addition, since the insulating layer according to the present invention does not include a reinforcing material such as a glass woven fabric and a ramid nonwoven fabric, the resulting multilayer printed wiring board is excellent in densification, thinning, and weight reduction, and powder falling off. The resulting yield loss is reduced.
[0069] また、本発明の多層プリント配線板は、例えば、図 7に示すように、積層構造単位 5 6aにおいて、液晶ポリマー層(絶縁層 54b)のポリイミド榭脂層(絶縁層 54a)と隣り合 う側とは反対側に、配線回路層 52aを介して液晶ポリマー層(絶縁層 54c)が更に設 けられたものであってもよ 、。 [0070] このような液晶ポリマーを隣り合わせで積層する構造の場合、多層プリント配線板の 製造工程での加熱'加圧により配線回路の位置ずれが懸念されるため、隣り合わせ る液晶ポリマーの融点は、液晶ポリマー層 54bの融点が液晶ポリマー層 54cの融点 よりも 5〜60°C高いことが好ましぐ 10〜60°C高いことがより好ましぐ 15〜40°C高い ことが特に好ましい。なお、本発明にかかる液晶ポリマーの融点は、示差走査熱量計 (DSC)を用いて、昇温速度 10°CZminで 360°Cまで昇温した際に観察される吸熱 ピークの温度をいう。 [0069] Further, the multilayer printed wiring board of the present invention, for example, as shown in FIG. 7, is adjacent to the polyimide resin layer (insulating layer 54a) of the liquid crystal polymer layer (insulating layer 54b) in the laminated structural unit 56a. A liquid crystal polymer layer (insulating layer 54c) may be further provided on the side opposite to the mating side via the wiring circuit layer 52a. [0070] In the case of such a structure in which the liquid crystal polymers are laminated adjacent to each other, there is a concern about the positional displacement of the wiring circuit due to heating and pressurization in the manufacturing process of the multilayer printed wiring board. The melting point of the liquid crystal polymer layer 54b is preferably 5 to 60 ° C higher than the melting point of the liquid crystal polymer layer 54c, more preferably 10 to 60 ° C, and particularly preferably 15 to 40 ° C higher. The melting point of the liquid crystal polymer according to the present invention refers to the temperature of the endothermic peak observed when the temperature is increased to 360 ° C. at a temperature increase rate of 10 ° C. Zmin using a differential scanning calorimeter (DSC).
[0071] このように積層構造単位 56aを含む多層プリント配線板は、前記の積層構造単位 5 6を骨格構造としたプリント配線板の高次多層化を容易に実現することができる点で 有利である。  [0071] Thus, the multilayer printed wiring board including the multilayer structural unit 56a is advantageous in that it can easily realize higher-order multilayering of the printed wiring board having the multilayer structural unit 56 as a skeleton structure. is there.
[0072] また、本発明の多層プリント配線板においては、前記積層構造単位 56、 56aにお いて、ポリイミド榭脂層(絶縁層 54a)と液晶ポリマー層(絶縁層 54b)との境界面(図 6 中、矢印 Aで示す。 )の粗さ(Rz)が 4〜6 μ mの範囲であることが好ましい。境界面の 粗さが前記範囲内である場合には、境界面の粗さが顕著に大きい場合に生じうる高 周波領域での高速'低損失信号伝送性への悪影響を生じることなぐ層間を隙間なく 密着させ、十分な層間密着強度を確保することができる。  [0072] Further, in the multilayer printed wiring board of the present invention, in the laminated structural units 56 and 56a, the boundary surface between the polyimide resin layer (insulating layer 54a) and the liquid crystal polymer layer (insulating layer 54b) (see FIG. 6, indicated by arrow A. The roughness (Rz) of) is preferably in the range of 4 to 6 μm. When the roughness of the interface is within the above range, the gap between the layers that does not adversely affect the high-speed and low-loss signal transmission in the high-frequency region that can occur when the roughness of the interface is significantly large. It is possible to secure sufficient interlayer adhesion strength.
[0073] また、前記境界面の粗さ(Rz)は、 4 μ m未満、好ましくは 1〜3 μ mの範囲であって もよぐこの場合には、高周波領域での高速'低損失信号伝送性への悪影響をより確 実に避けることができる。  [0073] Further, the roughness (Rz) of the boundary surface may be less than 4 μm, preferably in the range of 1 to 3 μm. In this case, a high-speed, low-loss signal in the high-frequency region may be used. The adverse effect on transmission performance can be avoided more reliably.
[0074] 境界面の粗さの制御は、例えば、ポリイミド榭脂層(絶縁層 54a)に予め積層された 導体層をエッチング、パターンィ匕して配線回路 52を形成する際に、予めポリイミド榭 脂層(絶縁層 54a)に積層される銅箔等の導体層の表面粗さ、言い換えれば、液晶 ポリマー層(絶縁層 54b)が積層される面 (積層面)の表面粗さを変更する等の適宜 の方法によって行うことができる。  [0074] The roughness of the boundary surface is controlled by, for example, preliminarily forming the polyimide resin layer when the wiring layer 52 is formed by etching and patterning a conductor layer previously laminated on the polyimide resin layer (insulating layer 54a). The surface roughness of the conductor layer such as copper foil laminated on the layer (insulating layer 54a), in other words, the surface roughness of the surface (laminated surface) on which the liquid crystal polymer layer (insulating layer 54b) is laminated, etc. It can be performed by an appropriate method.
[0075] また、本発明の多層プリント配線板においては、前記積層構造単位 56、 56aにお いて、ポリイミド榭脂層(絶縁層 54a)と液晶ポリマー層(絶縁層 54b)の境界面 Aを構 成する液晶ポリマー層 54bのポリイミド榭脂層 54aに向いた積層面、液晶ポリマー層 54cの液晶ポリマー層 54bに向いた積層面がそれぞれ予め表面処理されたものであ ることが好ましい。このようにして、層間を隙間なく密着させ、良好な層間密着強度を 得ることができる。 In the multilayer printed wiring board of the present invention, the boundary surface A between the polyimide resin layer (insulating layer 54a) and the liquid crystal polymer layer (insulating layer 54b) is formed in the laminated structural units 56 and 56a. The laminated surface of the liquid crystal polymer layer 54b facing the polyimide resin layer 54a and the laminated surface of the liquid crystal polymer layer 54c facing the liquid crystal polymer layer 54b are respectively surface-treated in advance. It is preferable. In this way, it is possible to obtain a good interlayer adhesion strength by closely contacting the layers with no gap.
[0076] 特に、上記のように表面粗さが 4 μ m未満の場合に、表面処理加工を行うと、高周 波領域での高速 ·低損失信号伝送性への悪影響の軽減と層間密着強度の確保をバ ランスよく実現することができて、より好適である。  [0076] In particular, when the surface roughness is less than 4 μm as described above, performing surface treatment reduces the adverse effects on high-speed and low-loss signal transmission and increases the interlayer adhesion strength in the high-frequency region. This is more preferable because it is possible to achieve a good balance.
[0077] このような表面処理カ卩ェは、積層一体化工程の前に施す。また、このような表面処 理カ卩ェの方法としては、アルカリ混合溶液によるエッチング処理やプラズマによるェ ツチング処理が望ましい。  [0077] Such a surface treatment cage is applied before the lamination integration step. Further, as such a surface treatment cache method, etching treatment with an alkali mixed solution or etching treatment with plasma is desirable.
[0078] そして、真空熱プレスプロセスでは、例えば、最高温度を 220〜300°Cの範囲で、 プレス圧を 4〜8MPaの範囲でコントロールすることにより、また、ラミネートプロセスで も、例えば、最高温度を 200〜300°Cの範囲で、ラミネート圧 (線圧)を 2〜200kNZ mの範囲でコントロールすることにより、熱可塑性榭脂を好適に軟ィ匕あるいは流動さ せることで、十分な層間密着強度の確保を実現することができる。  [0078] In the vacuum hot press process, for example, the maximum temperature is controlled in the range of 220 to 300 ° C, the press pressure is controlled in the range of 4 to 8MPa, and in the lamination process, for example, the maximum temperature By controlling the laminating pressure (linear pressure) in the range of 200 to 300 ° C and in the range of 2 to 200kNZ m, the thermoplastic resin can be softened or fluidized appropriately, providing sufficient interlayer adhesion Ensuring strength can be realized.
[0079] 以下、本発明の多層プリント配線板を製造する方法について説明する。  Hereinafter, a method for producing the multilayer printed wiring board of the present invention will be described.
[0080] 図 12は、ポリイミド榭脂層を中心とする 4層プリント配線板 (後述する実施例 11に対 応)を製造する方法を示す工程図である。  FIG. 12 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 11 to be described later) centering on a polyimide resin layer.
[0081] 先ず、ポリイミド榭脂層を絶縁層とし、その両面に銅箔 503が積層された両面銅張 積層板 502を準備する(図 12 (a)参照)。両面銅張積層板 502は、市販されている両 面銅張積層板を使用することができる。そして、この両面銅張積層板 502に任意の 方法で配線回路層 504を形成する(図 12 (b)参照)。ここでは例えば、ポリイミドフィ ルムにスパッタめっきで配線回路層 504を形成してもよい。また、ポリイミド榭脂層、配 線回路層 (銅箔)の厚さ等は上述したものが好ましい。  First, a double-sided copper-clad laminate 502 in which a polyimide resin layer is used as an insulating layer and copper foils 503 are laminated on both sides is prepared (see FIG. 12 (a)). As the double-sided copper-clad laminate 502, a commercially available double-sided copper-clad laminate can be used. Then, a wiring circuit layer 504 is formed on the double-sided copper-clad laminate 502 by an arbitrary method (see FIG. 12 (b)). Here, for example, the wiring circuit layer 504 may be formed on a polyimide film by sputter plating. The thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
[0082] 次に、このように回路形成された両面配線基板 505の両側に、液晶ポリマーを絶縁 層とする片面銅張積層板 506を加熱圧着する(図 12 (c)参照)。なお、参照符号 507 は、真空プレスの熱盤を示す。ここで、両面配線基板 505の両側に加熱圧着される 液晶ポリマーは同じ融点のものを使用することが回路間への液晶ポリマーの充填を 良好に行ううえで好ましい。液晶ポリマーの好ましい融点は、 250〜350°Cの範囲で あり、加熱'加圧時の加熱温度は、液晶ポリマーの融点よりも 0〜50°C低い温度とす ることが好ましい。また、加圧は 4〜8MPaで、 5〜60分行うことが好ましい。ここで、 液晶ポリマーに対する加熱 ·加圧時の加熱温度力 液晶ポリマーの融点よりも 50°C 以上低いと配線基板の配線回路が変形するおそれがあり、また、加圧範囲が 4MPa に満たな 、と配線回路間への液晶ポリマーの充填が不十分となるおそれがある。一 方、液晶ポリマーに対する加熱'加圧時の加熱温度力 液晶ポリマーの融点よりも高 いか、加圧範囲が 8MPaを超えると液晶ポリマーの基板 (配線基板)外への染み出し が多くなつたり、液晶ポリマー層内でボイドが発生するおそれがある。 Next, a single-sided copper-clad laminate 506 having a liquid crystal polymer as an insulating layer is thermocompression bonded to both sides of the double-sided wiring board 505 having the circuit formed as described above (see FIG. 12 (c)). Reference numeral 507 denotes a hot press hot platen. Here, it is preferable to use a liquid crystal polymer having the same melting point that is heat-pressed on both sides of the double-sided wiring board 505 in order to satisfactorily fill the liquid crystal polymer between the circuits. The preferred melting point of the liquid crystal polymer is in the range of 250 to 350 ° C, and the heating temperature during heating and pressurization is 0 to 50 ° C lower than the melting point of the liquid crystal polymer. It is preferable. The pressurization is preferably performed at 4 to 8 MPa for 5 to 60 minutes. Here, heating temperature force during heating / pressurization of the liquid crystal polymer When the temperature is lower than the melting point of the liquid crystal polymer by 50 ° C or more, the wiring circuit of the wiring board may be deformed, and the pressurization range is less than 4 MPa. There is a possibility that the liquid crystal polymer is insufficiently filled between the wiring circuits. On the other hand, the heating temperature of the liquid crystal polymer (heating temperature during pressurization) is higher than the melting point of the liquid crystal polymer, or if the pressure range exceeds 8 MPa, the liquid crystal polymer may seep out of the substrate (wiring board). Voids may be generated in the liquid crystal polymer layer.
[0083] 次いで、加熱'加圧後、基板を冷却し、積層体 508を得る(図 12 (d)、図 12 (e)参照 )。これらの製造条件は、以下に説明する類似の製造方法においても同様である。ま た、得られた積層体 508は、 NCドリルなど公知の方法で、スルーホール 509を形成 し(図 12 (f)参照)、デスミア処理を行い、パネルめつき 510を形成する(図 12 (g)参 照)。そして、テンティング法により最外層 511をエッチング、パターン化し、配線回路 層 512を形成し、ソルダーレジスト層 513を形成して、多層プリント配線基板 501を得 ることができる(図 12 (h)参照)。  Next, after heating and pressurizing, the substrate is cooled to obtain a laminate 508 (see FIGS. 12D and 12E). These manufacturing conditions are the same in the similar manufacturing method described below. In addition, the obtained laminate 508 forms a through hole 509 by a known method such as an NC drill (see FIG. 12 (f)), and is subjected to desmear treatment to form a panel metal 510 (FIG. 12 ( g)). Then, the outermost layer 511 is etched and patterned by a tenting method to form a wiring circuit layer 512 and a solder resist layer 513 to obtain a multilayer printed wiring board 501 (see FIG. 12 (h)). ).
[0084] 図 13は、ポリイミド榭脂層を中心とする 4層プリント配線板 (後述する実施例 12に対 応)をロール'トウ ·ロール方式で製造する方法を示す工程図である。  FIG. 13 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 12 to be described later) centered on a polyimide resin layer by a roll-to-roll method.
[0085] 先ず、ポリイミド榭脂層を絶縁層とし、その両側に銅箔 603を積層した、ロール状に 卷回された両面銅張積層板 602を準備し、任意の方法で配線回路層 604を形成し、 ロール状に卷回された両面配線基板 605を得る(図 13 (a)参照)。両面銅張積層板 6 02は、市販されている両面銅張積層板を使用することができる。なお、ポリイミド榭脂 層、配線回路層 (銅箔)の厚さ等は上述したものが好ましい。  [0085] First, a double-sided copper clad laminate 602 wound in a roll shape in which a polyimide resin layer is used as an insulating layer and copper foil 603 is laminated on both sides thereof is prepared, and a wiring circuit layer 604 is formed by an arbitrary method. A double-sided wiring board 605 formed and wound into a roll is obtained (see FIG. 13 (a)). As the double-sided copper clad laminate 6 02, a commercially available double-sided copper clad laminate can be used. The thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
[0086] 次に、液晶ポリマーを絶縁層とする、ロール状に卷回された 2巻の片面銅張積層板 606を準備した。そして、上記のように回路形成された両面配線基板 605の両側に、 2枚の片面銅張積層板 606を加熱圧着し、積層体 608を得る(図 13 (b)、図 13 (c) 参照)。なお、参照符号 607は、ロールを示す。ここで、両面配線基板 605の両側に 加熱圧着される液晶ポリマーは同じ融点のものを使用することが、両側の回路間へ の充填を良好に行ううえで好ましい。使用する液晶ポリマーの融点の範囲は、プレス プロセスと同様であるが、加熱'加圧時の加熱温度は、液晶ポリマーの融点よりも、 0 〜80°C低い温度とすることが好ましい。また、加圧は、ラミネート圧 (線圧) 2〜200k NZmでロールを通過させることが好まし!/、。 Next, a two-sided single-sided copper-clad laminate 606 wound in a roll shape using a liquid crystal polymer as an insulating layer was prepared. Then, two single-sided copper-clad laminates 606 are thermocompression bonded to both sides of the double-sided wiring board 605 formed with the circuit as described above to obtain a laminate 608 (see FIGS. 13 (b) and 13 (c)). ). Reference numeral 607 indicates a roll. Here, it is preferable to use a liquid crystal polymer having the same melting point as the liquid crystal polymer to be heat-pressed on both sides of the double-sided wiring board 605 in order to satisfactorily fill between the circuits on both sides. The range of the melting point of the liquid crystal polymer used is the same as in the press process, but the heating temperature at the time of heating and pressurizing is 0 than the melting point of the liquid crystal polymer. It is preferable that the temperature be lower by -80 ° C. In addition, it is preferable to pass the roll at a laminating pressure (linear pressure) of 2 to 200k NZm! /.
[0087] これらの製造条件は、以下に説明する類似の製造方法においても同様である。ここ で、液晶ポリマーに対する加熱 ·加圧時の加熱温度力 液晶ポリマーの融点よりも 80 °C以上低いと配線基板の配線回路が変形するおそれがあり、また、加圧範囲が 2kN Zmに満たないと配線回路間への液晶ポリマーの充填が不十分となるおそれがある 。一方、液晶ポリマーに対する加熱'加圧時の加熱温度力 液晶ポリマーの融点より も高いか、加圧範囲が 200kNZmを超えると液晶ポリマーの基板外への染み出しが 多くなつたり、液晶ポリマー層内でボイドが発生するおそれがある。  [0087] These manufacturing conditions are the same in the similar manufacturing method described below. Here, heating temperature force during heating / pressurization of liquid crystal polymer If the temperature is lower than the melting point of liquid crystal polymer by 80 ° C or more, the wiring circuit of the wiring board may be deformed, and the pressure range is less than 2 kN Zm. Insufficient filling of the liquid crystal polymer between the wiring circuits. On the other hand, if the heating temperature is applied to the liquid crystal polymer and the heating temperature during pressurization is higher than the melting point of the liquid crystal polymer or the pressure range exceeds 200 kNZm, the liquid crystal polymer may seep out to the outside of the substrate, or within the liquid crystal polymer layer. There is a risk of voids.
[0088] 次 、で、得られた積層体 608は、切断後、上述した方法と同様の方法で、スルーホ ール 609を形成し(図 13 (d)参照)、デスミア処理を行い、パネルめつき 610を形成す る(図 13 (e)参照)。そして、テンティング法により最外層 611をエッチング、パターン 化して、配線回路層 612を形成し、さらにソルダーレジスト層 613を形成して、多層プ リント配線基板 601を得ることができる(図 13 (f)参照)。  [0088] Next, the obtained laminate 608 is cut, and after that, through holes 609 are formed by the same method as described above (see FIG. 13 (d)), desmear treatment is performed, and the panel members are formed. Form 610 (see Fig. 13 (e)). Then, the outermost layer 611 is etched and patterned by a tenting method to form a wiring circuit layer 612 and further a solder resist layer 613 to obtain a multilayer printed wiring board 601 (FIG. 13 (f )reference).
[0089] 図 14は、図 12と同様のポリイミド榭脂層を中心とする 4層プリント配線板 (後述する 実施例 13に対応)を製造する方法を示す工程図である。  FIG. 14 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 13 described later) centering on a polyimide resin layer similar to FIG.
[0090] 先ず、ポリイミド榭脂層を絶縁層とし、その両面に銅箔 703— 1、 703— 2が積層さ れた両面銅張積層板 702を準備する(図 14 (a)参照)。両面銅張積層板 702は、巿 販されている両面銅張積層板を使用することができる。この両面銅張積層板 702を 2 枚準備し (他の 1枚を参照符号 702'で示す。)、任意の方法でそれぞれの両面銅張 積層板 702、 702'の片面に配線回路層 704— 1 '、 704— 2を形成する(図 14 (b)参 照)。なお、ポリイミド榭脂層、配線回路層 (銅箔)の厚さ等は上述したものが好ましい  [0090] First, a double-sided copper-clad laminate 702 in which a polyimide resin layer is used as an insulating layer and copper foils 703-1 and 703-2 are laminated on both sides is prepared (see FIG. 14 (a)). As the double-sided copper-clad laminate 702, a commercially available double-sided copper-clad laminate can be used. Two double-sided copper-clad laminates 702 are prepared (the other one is indicated by reference numeral 702 '), and the wiring circuit layer 704— 1 ', 704-2 (see Fig. 14 (b)). In addition, the thickness of the polyimide resin layer, the wiring circuit layer (copper foil), etc. are preferably as described above.
[0091] 一方、両面銅張積層板 702、 702'と同サイズの液晶ポリマー層 707を絶縁層とす る両面銅張積層板 705の両面の銅箔 706をエッチング除去し、アルカリ混合水溶液 に浸漬処理して、液晶ポリマー層 707を得る(図 14 (c)参照)。 [0091] On the other hand, the copper foil 706 on both sides of the double-sided copper-clad laminate 705 using the liquid crystal polymer layer 707 of the same size as the double-sided copper-clad laminates 702 and 702 'as the insulating layer is removed by etching and immersed in an alkali mixed aqueous solution. The liquid crystal polymer layer 707 is obtained by processing (see FIG. 14 (c)).
[0092] 次に、配線回路層 704— 2、 704— 1 '面を対向させた両面銅張積層板 702、 702' の間に表面処理済み液晶ポリマー層 707を挟み、加熱圧着する(図 14 (d)参照)。な お、参照符号 708は、熱盤を示す。加熱 ·加圧後、基板を冷却し、積層体 709を得るNext, the surface-treated liquid crystal polymer layer 707 is sandwiched between the double-sided copper-clad laminates 702 and 702 ′ facing each other in the wiring circuit layers 704-2 and 704-1 ′, and thermocompression bonded (FIG. 14). (See (d)). Na Reference numeral 708 indicates a hot platen. After heating and pressing, the substrate is cooled to obtain a laminate 709
(図 14 (e)、図 14 (f)参照)。 (See Fig. 14 (e) and Fig. 14 (f)).
[0093] 次!、で、得られた積層体 709は、 NCドリル等の公知の方法で、スルーホール 710 を形成し(図 14 (g)参照)、デスミア処理を行い、パネルめつき 711を形成する(図 14[0093] Next !, the obtained laminate 709 forms a through-hole 710 by a known method such as an NC drill (see FIG. 14 (g)), is subjected to desmear treatment, and has a panel mesh 711. (Fig. 14
(h)参照)。そして、テンティング法により最外層 712をエッチング、パターンィ匕し、配 線回路層 713を形成し、ソルダーレジスト層 714を形成して、多層プリント配線基板 7(See (h)). Then, the outermost layer 712 is etched and patterned by a tenting method to form the wiring circuit layer 713, the solder resist layer 714, and the multilayer printed wiring board 7
01を得ることができる(図 14 (i)参照)。 01 can be obtained (see FIG. 14 (i)).
[0094] 図 15は、図 14と同様のポリイミド榭脂層を中心とする 4層プリント配線板 (後述する 実施例 14に対応)を製造する方法を示す工程図である。 FIG. 15 is a process diagram showing a method for producing a four-layer printed wiring board (corresponding to Example 14 to be described later) having the same polyimide resin layer as that in FIG.
[0095] 先ず、ポリイミド榭脂層を絶縁層とし、その両側に銅箔 803、 803 'が積層された、口 ール状に卷回された 2枚の両面銅張積層板 802、 802'を準備し、任意の方法で配 線回路層 804、 804'を形成し、両面配線基板 805、 805 'を得る(図 15 (a)参照)。 [0095] First, two double-sided copper clad laminates 802 and 802 ', which are wound in the form of a ring, in which a polyimide resin layer is used as an insulating layer and copper foils 803 and 803' are laminated on both sides thereof, are used. Prepare wiring circuit layers 804 and 804 ′ by any method to obtain double-sided wiring boards 805 and 805 ′ (see FIG. 15 (a)).
[0096] 両面銅張積層板 802、 802'は、市販されている両面銅張積層板を使用することが できる。なお、ポリイミド榭脂層、配線回路層 (銅箔)の厚さ等は上述したものが好まし い。 [0096] As the double-sided copper-clad laminates 802 and 802 ', commercially available double-sided copper-clad laminates can be used. The thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
[0097] 一方、両面配線基板 805、 805 'と同サイズの液晶ポリマー層を絶縁層とする両面 銅張積層板 806の両面の銅箔をエッチング除去した後、露出した表面をプラズマ処 理して、液晶ポリマー層 807を得る(図 15 (b)参照)。  [0097] On the other hand, after removing the copper foil on both sides of the double-sided copper-clad laminate 806 having a liquid crystal polymer layer of the same size as the double-sided wiring boards 805 and 805 'as an insulating layer, the exposed surface is subjected to plasma treatment. As a result, a liquid crystal polymer layer 807 is obtained (see FIG. 15B).
[0098] 次に、配線回路層 804、 804'を対向させた両面配線基板 805、 805 'の間に表面 処理済み液晶ポリマー層 807を挟み、加熱圧着する(図 15 (c)参照)。なお、参照符 号 808は、ロールを示す。加熱'加圧後、基板を冷却し、積層体 809を得る。  Next, the surface-treated liquid crystal polymer layer 807 is sandwiched between the double-sided wiring boards 805 and 805 ′ with the wiring circuit layers 804 and 804 ′ facing each other, and thermocompression bonding is performed (see FIG. 15C). Reference numeral 808 indicates a roll. After heating and pressing, the substrate is cooled to obtain a laminate 809.
[0099] 次 、で、得られた積層体 809は、切断後、上述した方法と同様の方法で、スルーホ ール 810を形成し(図 15 (d)参照)、デスミア処理を行い、パネルめつき 811を形成す る。そして、テンティング法により最外層 812をエッチング、パターンィ匕して、配線回路 層 813を形成し、さらにソルダーレジスト層 814を形成して、多層プリント配線基板 80 1を得ることができる(図 15 (e)、図 15 (f)参照)。  [0099] Next, in the obtained laminate 809, after cutting, through-holes 810 are formed by the same method as described above (see FIG. 15 (d)), desmear treatment is performed, and a panel member is obtained. Form 811. Then, the outermost layer 812 is etched and patterned by a tenting method to form a wiring circuit layer 813 and further a solder resist layer 814 to obtain a multilayer printed wiring board 801 (FIG. 15 ( e), see Figure 15 (f)).
[0100] 図 16は、ポリイミド榭脂層を中心とする 8層プリント配線板 (後述する実施例 15に対 応)を製造する方法を示す工程図である。 [0101] 先ず、ポリイミド榭脂層を絶縁層とし、その両面に銅箔 903— 1、 903— 2が積層さ れた両面銅張積層板 902を 2枚準備する(図 16 (a)参照、ここで両面銅張積層板 90 2のみ表示。 ) 0両面銅張積層板 902、 902'は、市販されている両面銅張積層板を 使用することができる。この両面銅張積層板 902、 902'それぞれの両面に任意の方 法で配線回路層 904— 1、 904— 1 '、 904— 2、 904— 2'を形成する(図 16 (b)参照 )。なお、ポリイミド榭脂層、配線回路層 (銅箔)の厚さ等は上述したものが好ましい。 FIG. 16 is a process diagram showing a method for producing an 8-layer printed wiring board (corresponding to Example 15 described later) centering on a polyimide resin layer. [0101] First, two double-sided copper clad laminates 902 in which a polyimide resin layer is used as an insulating layer and copper foils 903-1 and 903-2 are laminated on both sides are prepared (see FIG. 16 (a), Here, only the double-sided copper-clad laminate 902 is displayed.) 0 Double-sided copper-clad laminates 902 and 902 ′ can be commercially available double-sided copper-clad laminates. Wiring circuit layers 904-1, 904-1 ', 904-2, 904-2' are formed on both sides of this double-sided copper-clad laminate 902, 902 'by any method (see Fig. 16 (b)). . The thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
[0102] 一方、両面銅張積層板 902、 902'と同サイズの液晶ポリマー層 907を絶縁層とす る両面銅張積層板 905の両面の銅箔 906をエッチング除去し、アルカリ混合水溶液 に浸漬処理して、液晶ポリマー層 907を得る(図 16 (c)参照)。  [0102] On the other hand, the copper foil 906 on both sides of the double-sided copper-clad laminate 905 using the liquid crystal polymer layer 907 of the same size as the double-sided copper-clad laminate 902, 902 'as an insulating layer is etched away and immersed in an aqueous alkali mixture The liquid crystal polymer layer 907 is obtained by processing (see FIG. 16 (c)).
[0103] 次に、上記のように回路形成された両面銅張積層板 902、 902'の間に表面処理 済み液晶ポリマー層 907を挟み、加熱圧着する(図 16 (d)参照)。なお、参照符号 90 8は、熱盤を示す。その後、加熱'加圧後、基板を冷却し、積層体 909を得る(図 16 ( e)参照)。  Next, the surface-treated liquid crystal polymer layer 907 is sandwiched between the double-sided copper-clad laminates 902 and 902 ′ formed with a circuit as described above, and thermocompression bonded (see FIG. 16 (d)). Reference numeral 90 8 indicates a hot platen. Thereafter, after heating and pressing, the substrate is cooled to obtain a laminate 909 (see FIG. 16 (e)).
[0104] 次に、液晶ポリマーの榭脂面 911、 911 'をプラズマ処理した片面銅張積層板 910 、 910'を準備し、積層体 909の両面に、榭脂面 911、 911 'を対向させて重ね(図 16 (f)参照)、加熱 ·加圧して積層体 912を得る(図 16 (g)参照)。  [0104] Next, single-sided copper-clad laminates 910 and 910 'were prepared by plasma-treating the resin surfaces 911 and 911' of the liquid crystal polymer, and the resin surfaces 911 and 911 'were opposed to both sides of the laminate 909. Are stacked (see Fig. 16 (f)), heated and pressurized to obtain laminate 912 (see Fig. 16 (g)).
[0105] 次いで、得られた積層体 912をエッチングカ卩ェ 913し(図 16 (h)参照)、その後、ブ ラインドビア穴 914を形成する(図 16 (i)参照)。デスミア処理後、めっき層 915を形成 し (図 16 (j)参照)、さらに配線回路層 916を形成する(図 16 (k)参照)。再度、図 16 ( f )〜 (i)までの工程を実施し、得られた積層体 917にスルーホール 918を形成し(図 1 6 (1)参照)、デスミア処理して、パネルめつき 919を施す(図 16 (m)参照)。そして、テ ンティング法により最外層 920をエッチング、ノターンィ匕し、配線回路層 919を形成し 、ソルダーレジスト層 921を形成して 8層プリント配線板 901を得る(図 16 (n)参照)。  Next, the obtained stacked body 912 is etched 913 (see FIG. 16 (h)), and then a blind via hole 914 is formed (see FIG. 16 (i)). After the desmear treatment, a plating layer 915 is formed (see FIG. 16 (j)), and a wiring circuit layer 916 is formed (see FIG. 16 (k)). Steps (f) to (i) in FIG. 16 are performed again, through holes 918 are formed in the obtained laminate 917 (see FIG. 16 (1)), desmear treatment is performed, and panel fittings 919 are formed. (See Fig. 16 (m)). Then, the outermost layer 920 is etched and turned by a tenting method to form a wiring circuit layer 919 and a solder resist layer 921 to obtain an eight-layer printed wiring board 901 (see FIG. 16 (n)).
[0106] 図 17は、図 16と同様のポリイミド榭脂層を中心とする 8層プリント配線板 (後述する 実施例 16に対応)を製造する方法を示す工程図である。  FIG. 17 is a process diagram showing a method for producing an 8-layer printed wiring board (corresponding to Example 16 to be described later) centering on a polyimide resin layer similar to FIG.
[0107] 先ず、ポリイミド榭脂層を絶縁層とし、その両側に銅箔 1003— 1、 1003 - 2、 1003  [0107] First, a polyimide resin layer is used as an insulating layer, and copper foils 1003-1, 1003-2, 1003 are formed on both sides thereof.
1 '、 1003 - 2'が積層されたロール状に卷回された 2巻の両面銅張積層板 1002 、 1002'を準備し、任意の方法で配線回路層 1004— 1、 1004— 2、 1004—1 '、 10 04— 2'を形成し、両面配線基板 1005、 1005 'を得る(図 17 (a)参照)。両面銅張積 層板 1002、 1002'は、市販されている両面銅張積層板を使用することができる。な お、ポリイミド榭脂層、配線回路層 (銅箔)の厚さ等は上述したものが好ましい。 Prepare two-sided double-sided copper-clad laminates 1002 and 1002 'wound in a roll with 1' and 1003-2 'layers, and use any method for wiring circuit layers 1004—1, 1004—2, 1004 —1 ', 10 04—2 ′ is formed, and double-sided wiring boards 1005 and 1005 ′ are obtained (see FIG. 17 (a)). As the double-sided copper-clad laminates 1002 and 1002 ′, a commercially available double-sided copper-clad laminate can be used. The thicknesses of the polyimide resin layer and the wiring circuit layer (copper foil) are preferably as described above.
[0108] 一方、両面配線基板 1005、 1005 'と同サイズの液晶ポリマー層を絶縁層とする両 面銅張積層板 1006の両面の銅箔をエッチング除去した後、表面をプラズマ処理し て液晶ポリマー層 1007を得る(図 17 (b)参照)。  [0108] On the other hand, the copper foil on both sides of the double-sided copper clad laminate 1006 having the same size liquid crystal polymer layer as the double-sided wiring boards 1005 and 1005 'as the insulating layer is removed by etching, and then the surface is subjected to plasma treatment and the liquid crystal polymer Layer 1007 is obtained (see Fig. 17 (b)).
[0109] 次に、両面配線基板 1005、 1005 'の間に表面処理済み液晶ポリマー層 1007を 挟み、加熱圧着した後、冷却し、積層体 1009を得る(図 17 (c)参照)。なお、参照符 号 1008は、ロールを示す。  Next, the surface-treated liquid crystal polymer layer 1007 is sandwiched between the double-sided wiring boards 1005 and 1005 ′, heat-pressed and then cooled to obtain a laminate 1009 (see FIG. 17 (c)). Reference numeral 1008 indicates a roll.
[0110] 次に、液晶ポリマー 1011、 1011 'の榭脂面をプラズマ処理した片面銅張積層板 1 010、 1010'を準備し、積層体 1009の両面に、液晶ポジマー 1011、 1011 'の樹月旨 面を対向させて重ね、加熱'加圧して積層体 1012を得る(図 17 (d)参照)。  [0110] Next, a single-sided copper-clad laminate 1 010, 1010 'in which the resin surfaces of the liquid crystal polymers 1011, 1011' were plasma-treated was prepared, and the liquid crystal positors 1011, 1011 'were put on both sides of the laminate 1009 The laminates 1012 are obtained by stacking the surfaces facing each other and heating and pressing (see FIG. 17 (d)).
[0111] 次に、積層体 1012をエッチング加工 1014し、その後、ブラインドビア穴 1015を形 成する(図 17 (e)参照)。デスミア処理後、配線回路層 1004— 1、 1004— 2 'と電気 的に接続しためっき層 1016を形成し(図 17 (f)参照)、さらに配線回路層 1017を形 成する(図 17 (g)参照)。再度、図 17 (c!)〜 (e)までの工程を実施し、得られた積層体 1018にスルーホール 1019を形成し(図 17 (h)参照)、デスミア処理して、パネルめ つき 1020を施す(図 17 (i)参照)。そして、テンティング法により最外層 1021、 1021 ,をエッチング、パターン化し、配線回路層 1022を形成し、ソルダーレジスト層 1023 を形成して 8層プリント配線板 1001を得る(図 17 (j)参照)。  [0111] Next, the laminated body 1012 is etched 1014, and then the blind via hole 1015 is formed (see FIG. 17 (e)). After the desmear treatment, a plating layer 1016 electrically connected to the wiring circuit layers 1004-1 and 1004-2 'is formed (see Fig. 17 (f)), and further, the wiring circuit layer 1017 is formed (Fig. 17 (g )reference). The steps from Fig. 17 (c!) To (e) are carried out again, through holes 1019 are formed in the obtained laminate 1018 (see Fig. 17 (h)), desmear treatment is performed, and panel fittings 1020 (See Fig. 17 (i)). Then, the outermost layers 1021 and 1021 are etched and patterned by a tenting method to form a wiring circuit layer 1022 and a solder resist layer 1023 to obtain an eight-layer printed wiring board 1001 (see FIG. 17 (j)). .
実施例  Example
[0112] 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は 以下の実施例に限定されるものではない。  [0112] Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0113] (実施例 1)  [0113] (Example 1)
融点が 295°C (熱変形温度: 265°C)の第 1の液晶ポリマーからなる、厚みが 25 μ m の第 1の絶縁層 12と、第 1の絶縁層 12の両面に積層された厚みが 9 mの銅箔 10と を有する銅張積層板 14に対し、エッチングレジストラミネート、露光、現像、エツチン グ、レジスト剥離の処理をロール 'トウ'ロール方式で実施し、両面に配線回路 16を形 成して、幅 300mm X長さ 200mのロール状に卷回された長尺の配線基板 18を作製 した(図 1参照)。 A first insulating layer 12 made of a first liquid crystal polymer having a melting point of 295 ° C. (thermal deformation temperature: 265 ° C.) having a thickness of 25 μm and a thickness laminated on both surfaces of the first insulating layer 12 Etching resist lamination, exposure, development, etching, and resist stripping are performed on a copper clad laminate 14 with 9m copper foil 10 and a roll 'toe' roll method, and wiring circuit 16 is provided on both sides. form Thus, a long wiring board 18 wound in a roll shape having a width of 300 mm and a length of 200 m was produced (see FIG. 1).
[0114] 次に、融点が 280°C (熱変形温度: 240°C)の第 2の液晶ポリマーからなる、厚みが 25 μ mの第 2の絶縁層 22と、第 2の絶縁層 22の片面に積層された厚みが 9 μ mの 導体層 20 (銅箔)とを有する 2巻の導体層基板 24を準備し (図 2参照)、 2巻の導体層 基板 24の第 2の絶縁層 22の表面にそれぞれプラズマ処理を施した。  [0114] Next, a second insulating layer 22 made of a second liquid crystal polymer having a melting point of 280 ° C (thermal deformation temperature: 240 ° C) and having a thickness of 25 µm, and a second insulating layer 22 Prepare a two-layer conductor layer substrate 24 having a conductor layer 20 (copper foil) with a thickness of 9 μm laminated on one side (see Fig. 2). Each of the 22 surfaces was plasma treated.
[0115] そして、配線基板 18及び 2枚の導体層基板 24をそれぞれ引き出し、配線基板 18 を間にして 2枚の導体層基板 24を前記第 2の絶縁層側をそれぞれ配線基板 18に向 けて配置して、加熱加圧処理設備 27としてロールラミネーターを用いて、ロール温度 260°C、ロール線圧 20kNZmの条件で連続的に加熱、加圧して、最外面が未加工 の多層プリント配線板 (積層体 26)を作製した (図 3参照)。  [0115] Then, the wiring board 18 and the two conductor layer boards 24 are pulled out, respectively, and the two conductor layer boards 24 are directed to the wiring board 18 with the wiring board 18 in between. Using a roll laminator as the heat and pressure treatment equipment 27, a multilayer printed wiring board whose outermost surface is unprocessed is continuously heated and pressurized under the conditions of a roll temperature of 260 ° C and a roll linear pressure of 20 kNZm. (Laminated body 26) was produced (see FIG. 3).
[0116] 次いで、得られた積層体 26を 300mm X 400mmに裁断し、 NCドリルカ卩ェにて φ 0 . 15mmのスルーホール 30を形成し(図 5 (a)参照)、所定のデスミア処理後、 8 m 厚のパネルメツキ 32を施した(図 5 (b)参照)。そして、テンティング法により最外面を エッチング、パターンィ匕して、最外面の配線回路 34を形成し、さらにソルダーレジスト 36を形成して、多層プリント配線板 38を作製した(図 5 (c)参照)。  [0116] Next, the obtained laminate 26 was cut to 300 mm x 400 mm, and a through hole 30 of φ0.15 mm was formed with an NC drill cage (see Fig. 5 (a)), and after a predetermined desmear treatment 8 m thick panel mesh 32 was applied (see Fig. 5 (b)). Then, the outermost surface was etched and patterned by the tenting method to form the outermost wiring circuit 34, and further the solder resist 36 was formed to produce a multilayer printed wiring board 38 (see FIG. 5 (c)). ).
[0117] なお、得られた多層プリント配線板においては、最外面の配線回路 34の変形を十 分に防止することができることが確認された。また、得られた積層体 26の断面観察を 行ったところ、配線回路 16の配線回路の断線や変形が見られず、配線間への第 2の 液晶ポリマー 22の充填も良好であり、各榭脂層厚みも略均一となっていた。  [0117] In the obtained multilayer printed wiring board, it was confirmed that deformation of the outermost wiring circuit 34 can be sufficiently prevented. Further, when the cross-section of the obtained laminate 26 was observed, no disconnection or deformation of the wiring circuit 16 of the wiring circuit 16 was observed, and the filling of the second liquid crystal polymer 22 between the wirings was good. The fat layer thickness was also substantially uniform.
[0118] (実施例 2)  [0118] (Example 2)
以下のようにして、実施例 1で得られた多層プリント配線板の更なる多層化を図った 。すなわち、先ず、実施例 1で得られた最外面が未加工の多層プリント配線板 (積層 体 26)を準備し、上下の両面銅箔 20をパターンィ匕して配線層(配線回路)を形成した 。次に、融点が 260°C (熱変形温度: 220°C)の第 2の液晶ポリマー力もなる、厚みが 25 μ mの第 2の絶縁層 22と、第 2の絶縁層 22の片面に積層された厚みが 9 μ mの 導体層 20 (銅箔)とを有する 2枚の導体層基板 24を準備した(図 2参照)。  The multilayer printed wiring board obtained in Example 1 was further multilayered as follows. That is, first, a multilayer printed wiring board (laminate 26) whose outermost surface obtained in Example 1 was not processed was prepared, and upper and lower double-sided copper foils 20 were patterned to form a wiring layer (wiring circuit). . Next, a second insulating layer 22 having a thickness of 260 μC (thermal deformation temperature: 220 ° C) and having a second liquid crystal polymer force and having a thickness of 25 μm is laminated on one side of the second insulating layer 22. Two conductor layer substrates 24 having a conductor layer 20 (copper foil) having a thickness of 9 μm were prepared (see FIG. 2).
[0119] そして、多層プリント配線板 (配線層を形成した積層体 26)及び 2枚の導体層基板 2 4を、多層プリント配線板 (配線層を形成した積層体 26)を間にして 2枚の導体層基 板 24を前記第 2の絶縁層側をそれぞれ多層プリント配線板 (配線層を形成した積層 体 26)に向けて配置して、加熱加圧処理設備 27としてロールラミネーターを用いて、 ロール温度 240°C、ロール線圧 20kNZmの条件で連続的に加熱、加圧して、多層 プリント配線板 (配線層を形成した積層体 26)に 2枚の導体層基板 24を積層した。そ の後、図 5に示すような後工程を施して、多層プリント配線板 (配線層を形成した積層 体 26)の更なる多層化を図った。 [0119] Then, a multilayer printed wiring board (laminated body 26 on which a wiring layer is formed) and two conductor layer substrates 2 4 with a multilayer printed wiring board (laminated body 26 with a wiring layer formed) in between, the two conductor layer substrates 24 are respectively disposed on the second insulating layer side with a multilayer printed wiring board (laminated with a wiring layer formed). Placed toward the body 26), using a roll laminator as the heat and pressure treatment equipment 27, continuously heated and pressurized under the conditions of a roll temperature of 240 ° C and a roll linear pressure of 20kNZm, a multilayer printed wiring board ( Two conductor layer substrates 24 were laminated on the laminate 26) on which the wiring layer was formed. Thereafter, a post-process as shown in FIG. 5 was performed to further increase the number of layers of the multilayer printed wiring board (laminated body 26 on which a wiring layer was formed).
[0120] (実施例 3)  [0120] (Example 3)
融点 295°Cの第 1の液晶ポリマー力もなる、厚みが 25 mの第 1の絶縁層 12と、第 1の絶縁層 12の両面に積層された厚みが 9 mの銅箔 10とを有する銅張積層板 14 に対し、エッチングレジストラミネート、露光、現像、エッチング、レジスト剥離の処理を ロール 'トウ'ロール方式で実施し、両面に配線回路 16を形成して、幅 300mm X長 さ 200mのロール状に卷回された長尺の配線基板 18を作製した(図 1参照)。  A copper having a first insulating layer 12 having a thickness of 25 m and a copper foil 10 having a thickness of 9 m laminated on both surfaces of the first insulating layer 12, which also has a first liquid crystal polymer force having a melting point of 295 ° C. Etching resist lamination, exposure, development, etching, and resist stripping are performed on the tension laminate 14 by the roll 'toe' roll method, wiring circuit 16 is formed on both sides, and the roll is 300mm wide and 200m long. A long wiring board 18 wound in a shape was produced (see FIG. 1).
[0121] 次に、融点が 280°Cの第 2の液晶ポリマー力もなる、厚みが 25 μ mの第 2の絶縁層 22と、第 2の絶縁層 22の片面に積層された厚みが 9 μ mの導体層 20 (銅箔)とを有 する 2巻の導体層基板 24を準備した(図 2参照)。  [0121] Next, the second insulating layer 22 having a thickness of 25 μm and the second liquid crystal polymer having a melting point of 280 ° C., and the thickness laminated on one side of the second insulating layer 22 is 9 μm. A two-conductor layer substrate 24 having m conductor layers 20 (copper foil) was prepared (see FIG. 2).
[0122] そして、配線基板 18及び 2枚の導体層基板 24をそれぞれ引き出し、配線基板 18 を間にして 2枚の導体層基板 24を前記第 2の絶縁層側をそれぞれ配線基板 18に向 けて配置して、加熱加圧処理設備 27としてロールラミネーターを用いて、ロール温度 210°C、ロール線圧 lOOkNZmの条件で連続的に加熱、加圧して、積層体 (仮積層 体) 26を作製した(図 3参照)。なお、得られた仮積層体 26の積層界面における剥離 強度は、 0. 2kNZmであり、ロール状に巻き取る際には剥離しないが、手などで容 易に引き剥がせるものであった。  [0122] Then, the wiring board 18 and the two conductor layer boards 24 are respectively pulled out, and the two conductor layer boards 24 are directed to the wiring board 18 with the wiring board 18 therebetween. Using a roll laminator as the heat and pressure treatment equipment 27, the laminate (temporary laminate) 26 is produced by continuously heating and pressing under the conditions of a roll temperature of 210 ° C and a roll linear pressure of lOOkNZm. (See Figure 3). The peel strength at the laminate interface of the obtained temporary laminate 26 was 0.2 kNZm, and it was not peeled when wound up into a roll, but could be easily peeled off by hand.
[0123] 次に、得られた仮積層体 26を熱処理設備 29を用いて、 280°Cで 30秒の高温熱処 理を行い、外層未加工多層プリント配線板 28を作製した(図 4参照)。なお、得られた 外層未加工多層プリント配線板 28の積層界面における剥離強度は、 0. 8kNZmで あり、手などで容易に引き剥がせるものではな力つた。  [0123] Next, the obtained temporary laminate 26 was subjected to high-temperature heat treatment at 280 ° C for 30 seconds using a heat treatment equipment 29 to produce an outer layer unprocessed multilayer printed wiring board 28 (see Fig. 4). ). The peel strength at the laminated interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.8 kNZm, which was not easy to peel off by hand.
[0124] 次いで、得られた外層未加工多層プリント配線板 28を 300mm X 400mmに裁断し 、 NCドリル加工にて φ θ. 15mmのスルーホール 30を形成し(図 5 (a)参照)、所定の デスミア処理後、 8 /z m厚のパネルメツキ 32を施した(図 5 (b)参照)。そして、テンティ ング法により最外面をエッチング、パターンィ匕して、最外面の配線回路 34を形成し、 さらにソルダーレジスト 36を形成して、多層プリント配線板 38を作製した(図 5 (c)参 照)。 [0124] Next, the obtained outer layer unprocessed multilayer printed wiring board 28 was cut into 300 mm x 400 mm. A through hole 30 of φ θ. 15mm was formed by NC drilling (see Fig. 5 (a)), and after a predetermined desmear treatment, panel plating 32 of 8 / zm thickness was applied (see Fig. 5 (b)) . Then, the outermost surface was etched and patterned by the tenting method to form the outermost wiring circuit 34, and further the solder resist 36 was formed to produce a multilayer printed wiring board 38 (see FIG. 5 (c)). See).
[0125] このとき、得られた多層プリント配線板 38を 5cm四方の大きさに切り出した際の配 線板のそりを評価したところ、配線板のそりは小さかった。また、得られた外層未加工 多層プリント配線板 28の断面観察を行ったところ、配線回路 16の配線回路の断線や 変形が見られず、配線間への第 2の液晶ポリマー 22の充填も良好であり、各榭脂層 厚みも略均一となって 、た。  [0125] At this time, when the obtained multilayer printed wiring board 38 was cut into a size of 5 cm square, the wiring board warpage was evaluated, and the wiring board warpage was small. In addition, when the cross-section of the obtained outer layer unprocessed multilayer printed wiring board 28 was observed, the wiring circuit 16 was not disconnected or deformed, and the second liquid crystal polymer 22 was well filled between the wirings. The thickness of each resin layer was also substantially uniform.
[0126] (実施例 4)  [0126] (Example 4)
実施例 3で用いた銅張積層板に代えて、熱変形温度が 360°Cであるポリイミドから なる厚みが 25 mの第 1の絶縁層 12と第 1の絶縁層 12の両面に積層され厚みが 9 μ mの銅箔 10とを有する銅張積層板を用いた以外は実施例 3と同様にして、外層未 加工多層プリント配線板 28及び多層プリント配線板 38を作製した。  Instead of the copper-clad laminate used in Example 3, the thickness is laminated on both surfaces of the first insulating layer 12 and the first insulating layer 12 having a thickness of 25 m made of polyimide having a heat distortion temperature of 360 ° C. An outer layer unprocessed multilayer printed wiring board 28 and a multilayer printed wiring board 38 were produced in the same manner as in Example 3 except that a copper clad laminate having a 9 μm copper foil 10 was used.
[0127] このとき、得られた仮積層体 26の積層界面における剥離強度は、 0. 2kNZmであ り、ロール状に巻き取る際には剥離しないが、手などで容易に引き剥がせるものであ つた。さらに、得られた外層未加工多層プリント配線板 28の積層界面における剥離 強度は、 0. 9kNZmであり、手などで容易に引き剥がせるものではなかった。  [0127] At this time, the peel strength at the lamination interface of the obtained temporary laminate 26 is 0.2 kNZm, and it does not peel when wound into a roll, but can be easily peeled off by hand. Atsuta. Further, the peel strength at the lamination interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.9 kNZm, and it was not easily peeled off by hand.
[0128] また、得られた多層プリント配線板 38を 5cm四方の大きさに切り出した際の配線板 のそりを評価したところ、配線板のそりは小さかった。また、得られた外層未加工多層 プリント配線板 28の断面観察を行ったところ、配線回路 16の配線回路の断線や変形 が見られず、配線間への第 2の液晶ポリマー 22の充填も良好であり、各榭脂層厚み も略均一となっていた。  [0128] Further, when the obtained multilayer printed wiring board 38 was cut into a size of 5 cm square, the wiring board warpage was evaluated, and the wiring board warpage was small. Further, when a cross-sectional observation of the obtained outer layer unprocessed multilayer printed wiring board 28 was performed, no disconnection or deformation of the wiring circuit 16 was observed, and the filling of the second liquid crystal polymer 22 between the wirings was also good. The thickness of each resin layer was also substantially uniform.
[0129] (実施例 5)  [Example 5]
ロールラミネーターのロール温度を 275°C、線圧 20kNZmとし、図 4に示すような 高温熱処理を実施しなカゝつた以外は実施例 3と同様にして、外層未加工多層プリント 配線板 28及び多層プリント配線板 38を作製した。 [0130] このとき、得られた外層未加工多層プリント配線板 28の積層界面における剥離強 度は、 0. 6kN/mであった。しかし、得られた多層プリント配線板 38を 5cm四方の 大きさに切り出した際の配線板のそりを評価したところ、配線板のそりは大き力つた。 また、得られた外層未加工多層プリント配線板 28の断面観察を行ったところ、積層時 における応力によると思われる微細なシヮゃ配線回路の変形が確認された。 The roll laminator roll temperature was 275 ° C, the linear pressure was 20 kNZm, and the high-temperature heat treatment as shown in Fig. 4 was not performed. A printed wiring board 38 was produced. [0130] At this time, the peel strength at the lamination interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.6 kN / m. However, when the obtained multilayer printed wiring board 38 was cut into a 5 cm square size, the wiring board warpage was evaluated. Further, when a cross-sectional observation of the obtained outer layer unprocessed multilayer printed wiring board 28 was performed, a minute deformation of the wiring circuit, which seems to be caused by stress at the time of lamination, was confirmed.
[0131] (参考例 1)  [0131] (Reference Example 1)
ロールラミネーターのロール温度を 170°C、線圧 100kN/mとした以外は実施例 3 と同様にして、仮積層体 26を作製した。  A temporary laminate 26 was produced in the same manner as in Example 3 except that the roll temperature of the roll laminator was 170 ° C. and the linear pressure was 100 kN / m.
[0132] このとき、得られた仮積層体 26は、積層界面で容易に剥離してしまい、ロール状に 巻き取ることができな力つた。そのため、仮積層体として使用できないものであり、そ の後の高温熱処理以降の工程を実施することも不可能であった。  [0132] At this time, the obtained temporary laminate 26 was easily peeled off at the lamination interface, and was unable to be wound into a roll. Therefore, it cannot be used as a temporary laminate, and it was impossible to carry out the subsequent steps after the high-temperature heat treatment.
[0133] (参考例 2)  [0133] (Reference Example 2)
高温熱処理における処理温度を 250°C、処理時間を 30秒とした以外は実施例 4と 同様にして、外層未加工多層プリント配線板 28及び多層プリント配線板 38を作製し た。  The outer layer unprocessed multilayer printed wiring board 28 and the multilayer printed wiring board 38 were produced in the same manner as in Example 4 except that the processing temperature in the high temperature heat treatment was 250 ° C. and the processing time was 30 seconds.
[0134] このとき、得られた外層未加工多層プリント配線板 28の積層界面における剥離強 度は、 0. 3kNZmであり、手などで容易に引き剥がせるものであって、接着性が不 十分なものであった。そして、得られた多層プリント配線板 38を 5cm四方の大きさに 切り出した際の配線板のそりを評価したところ、配線板のそりは小さかった。  [0134] At this time, the peel strength at the laminated interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.3 kNZm, which can be easily peeled off by hand, and the adhesiveness is insufficient. It was something. Then, when the obtained multilayer printed wiring board 38 was cut into a size of 5 cm square, the wiring board warpage was evaluated, and the wiring board warpage was small.
[0135] (実施例 6)  [Example 6]
高温熱処理における処理温度を 310°C、処理時間を 30秒とした以外は実施例 4と 同様にして、外層未加工多層プリント配線板 28及び多層プリント配線板 38を作製し た。  An outer layer unprocessed multilayer printed wiring board 28 and a multilayer printed wiring board 38 were produced in the same manner as in Example 4 except that the processing temperature in the high temperature heat treatment was 310 ° C. and the processing time was 30 seconds.
[0136] このとき、得られた外層未加工多層プリント配線板 28の積層界面における剥離強 度は、 0. 9kNZmであり、手などで容易に引き剥がせるものではなかった。しかし、 得られた多層プリント配線板 38を 5cm四方の大きさに切り出した際の配線板のそりを 評価したところ、配線板のそりが大き力つた。また、得られた外層未加工多層プリント 配線板 28の断面観察を行ったところ、高温熱処理時における熱変形によると思われ る微細なシヮゃ回路の変形が確認された。 [0136] At this time, the peel strength at the lamination interface of the obtained outer layer unprocessed multilayer printed wiring board 28 was 0.9 kNZm, and it was not easily peeled off by hand. However, when the obtained multilayer printed wiring board 38 was cut into a size of 5 cm square, the wiring board warpage was evaluated. In addition, when the cross-section of the resulting outer layer unprocessed multilayer printed wiring board 28 was observed, it was thought to be due to thermal deformation during high-temperature heat treatment. As a result, the deformation of the circuit was confirmed.
[0137] <多層プリント配線板の剥離強度、そり及び断面観察の評価結果 >  [0137] <Evaluation results of peel strength, warpage and cross-section observation of multilayer printed wiring board>
実施例 3〜6及び参考例 1、 2で得られた仮積層体及び外層未加工多層プリント配 線板の積層界面における剥離強度 (ピール)、多層プリント配線板のそりの評価、並 びに外層未加工多層プリント配線板の断面観察の評価又は測定の結果を表 1に示 す。また、実施例 3〜6及び参考例 1、 2における、第 1の絶縁層の材料の種類、並び に仮積層及び高温熱処理の条件を表 1に示す。  Peel strength (peel) at the lamination interface between the temporary laminate obtained in Examples 3 to 6 and Reference Examples 1 and 2 and the outer layer unprocessed multilayer printed wiring board, evaluation of warpage of the multilayer printed wiring board, and outer layer not yet Table 1 shows the results of evaluation or measurement of cross-section observation of processed multilayer printed wiring boards. Table 1 shows the material type of the first insulating layer in Examples 3 to 6 and Reference Examples 1 and 2, and the conditions for temporary lamination and high-temperature heat treatment.
[0138] [表 1] [0138] [Table 1]
Figure imgf000032_0001
表 1に示した結果から明らかなように、前記配線基板 18及び前記導体層基板 24を 、特定の加熱加圧下で積層 (仮積層)して積層体 26 (仮積層体 26)を得た後に、前 記積層体 26を熱処理設備 29を用いて特定の条件で加熱することにより高温熱処理 を行い、外層未加工多層プリント配線板 28を得る場合 (実施例 3、 4)には、ロール'ト ゥ ·ロール方式で連続的に液晶ポリマー力もなる絶縁層を有する多層プリント配線板 を製造する方法において、多層プリント配線板の最外面に形成されている配線回路 の変形を防止することができ、しかも多層プリント配線板のそりを十分に抑制すること ができることが確認された。
Figure imgf000032_0001
As is clear from the results shown in Table 1, after the wiring board 18 and the conductor layer board 24 were laminated (temporary laminated) under a specific heating and pressing to obtain a laminated body 26 (temporary laminated body 26). When the laminated body 26 is subjected to high-temperature heat treatment by heating it under specific conditions using a heat treatment equipment 29 to obtain an outer layer unprocessed multilayer printed wiring board 28 (Examples 3 and 4), A wiring circuit formed on the outermost surface of a multilayer printed wiring board in a method of manufacturing a multilayer printed wiring board having an insulating layer that also has liquid crystal polymer power continuously by a roll method. It was confirmed that warpage of the multilayer printed wiring board can be sufficiently suppressed.
[0140] (実施例 7)  [0140] (Example 7)
図 8に断面図を示す多層プリント配線板 101について説明する。  The multilayer printed wiring board 101 whose sectional view is shown in FIG. 8 will be described.
[0141] 図 8に示す多層(4層)プリント配線板 101は、基本構造 105として、絶縁層に 1層の ポリイミド榭脂層 103と 2層の液晶ポリマー層 104を用いたものであり、ポリイミド榭脂 層 103の両側には、配線回路層 102が形成されており、更にその両側には、液晶ポ リマー層 104を絶縁層として有して 、る。ポリイミド榭脂層 103とその両側の配線回路 層 102は、両面銅張積層板 (新日鐡ィ匕学 (株)社製、商品名:エスバネックス S (エス パネックスは登録商標)、品番: SB12— 25— 12CE)力も形成されている。すなわち 、ポリイミド榭脂層 103は前記両面銅張積層板に由来するポリイミド榭脂層であり、配 線回路層 102は、前記両面銅張積層板に由来する銅箔を回路加工して形成された ものである。  [0141] The multilayer (four-layer) printed wiring board 101 shown in FIG. 8 has a basic structure 105 in which one polyimide resin layer 103 and two liquid crystal polymer layers 104 are used as insulating layers. A wiring circuit layer 102 is formed on both sides of the resin layer 103, and further, a liquid crystal polymer layer 104 is provided on both sides as an insulating layer. The polyimide resin layer 103 and the wiring circuit layer 102 on both sides are made of a double-sided copper-clad laminate (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex S (espanex is a registered trademark), product number: SB12— 25—12CE) force is also formed. That is, the polyimide resin layer 103 is a polyimide resin layer derived from the double-sided copper-clad laminate, and the wiring circuit layer 102 was formed by processing a copper foil derived from the double-sided copper-clad laminate. Is.
[0142] 図 8に示す多層プリント配線板 101において、基本構造 105としての液晶ポリマー 層 104とそれに隣接して設けられている配線回路層 109は、例えば、前記両面銅張 積層板を回路加工して得られた両面配線基板の両側に、厚さ 25 mの液晶ポリマ 一からなる絶縁層の片面に厚さ 12 mの銅箔を有する片面銅張積層板 (以下、これ を片面銅張積層板 LXという。液晶ポリマーの融点: 280°C)を積層一体ィ匕し、銅箔を 回路カ卩ェすることによって形成することができる。図 8に示すように、配線回路層 109 上にはその表面に配線回路層 106を有し、また、各層間を電気的に接続するめつき スルーホール 107と最外層に形成されたソルダーレジスト層 108を有して!/、る。  [0142] In the multilayer printed wiring board 101 shown in Fig. 8, the liquid crystal polymer layer 104 as the basic structure 105 and the wiring circuit layer 109 provided adjacent thereto are formed by, for example, processing the double-sided copper-clad laminate. A single-sided copper-clad laminate (hereinafter referred to as a single-sided copper-clad laminate) having a 12-m-thick copper foil on one side of a 25-m-thick insulating layer on both sides of the double-sided wiring board obtained LX, a melting point of liquid crystal polymer: 280 ° C), can be formed by laminating and forming a copper foil circuit. As shown in FIG. 8, the wiring circuit layer 109 has a wiring circuit layer 106 on the surface thereof, a through hole 107 for electrically connecting each layer, and a solder resist layer 108 formed in the outermost layer. Have! /
[0143] ここで、配線回路層 106は配線回路層 109とめつきスルーホール 107と同一のめつ き銅 110と力 構成される。液晶ポリマー層 104の厚みは 25 m、配線回路層 109 の厚みは 12 μ m、ポリイミド榭脂層 103の厚みは 25 μ mである。また、スルーホール 107の穴径は 0. 15mm,めっき銅 110の厚みは 8 m、ソルダーレジスト層 108の厚 みは 25 mである。配線回路層の基本設計ルールは配線回路層 102がライン Zス ペース: 50/50 μ m、配線回路層 106力 75Z75 μ m、各配線回路層 102、 106の スルーホールランド 111力 φ 0. 3mmである。なお、ポリイミド榭脂層 103と 2つの液 晶ポリマー層 104、 104との間に形成される 2つの境界面 112、 112の粗さ(Rz)は、 断面観察の結果、それぞれ 4. 5 mと 4. 9 mであった。また、この 4層プリント配線 板 101の総厚は約 125 μ mであった。 Here, the wiring circuit layer 106 is composed of the same copper 110 as the wiring circuit layer 109 and the fitting through hole 107. The liquid crystal polymer layer 104 has a thickness of 25 m, the wiring circuit layer 109 has a thickness of 12 μm, and the polyimide resin layer 103 has a thickness of 25 μm. The through hole 107 has a hole diameter of 0.15 mm, the plated copper 110 has a thickness of 8 m, and the solder resist layer 108 has a thickness of 25 m. The basic design rule for the wiring circuit layer is that the wiring circuit layer 102 is line Z space: 50/50 μm, wiring circuit layer 106 force 75Z75 μm, through-hole land of each wiring circuit layer 102, 106 force φ 0.3 mm It is. In addition, polyimide resin layer 103 and two liquids As a result of cross-sectional observation, the roughness (Rz) of the two boundary surfaces 112 and 112 formed between the crystalline polymer layers 104 and 104 was 4.5 m and 4.9 m, respectively. The total thickness of the four-layer printed wiring board 101 was about 125 μm.
[0144] (実施例 8)  [Example 8]
図 9に断面図を示す多層プリント配線板 201について説明する。  A multilayer printed wiring board 201 whose sectional view is shown in FIG. 9 will be described.
[0145] 図 9に示す多層(4層)プリント配線板 201は、絶縁層に 2層のポリイミド榭脂層 203 、 203,と 1層の液晶ポリマー層 204を用いたものであり、各ポリイミド榭脂層 203、 20 3'の両側には、配線回路層 208、 208'が形成されており、ポリイミド榭脂層 203とポ リイミド榭脂層 203'との間には絶縁層として液晶ポリマー層 204を有している。ポリイ ミド榭脂層 203とその両側の配線回路層 208、 208'は、両面銅張積層板 (新日鐡化 学 (株)社製、商品名:エスバネックスM、品番: MB12— 12— 12FR)から形成され ている。すなわち、ポリイミド榭脂層 203、 203'は前記両面銅張積層板に由来するポ リイミド榭脂層であり、配線回路層 208、 208'は、前記両面銅張積層板に由来する 銅箔を回路加工して形成されたものである。  [0145] A multilayer (four-layer) printed wiring board 201 shown in Fig. 9 uses two polyimide resin layers 203, 203 and one liquid crystal polymer layer 204 as an insulating layer. Wiring circuit layers 208 and 208 ′ are formed on both sides of the oil layers 203 and 203 ′, and the liquid crystal polymer layer 204 is used as an insulating layer between the polyimide resin layer 203 and the polyimide resin layer 203 ′. have. Polyimide resin layer 203 and wiring circuit layers 208 and 208 'on both sides are made of double-sided copper-clad laminate (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) It is formed from. That is, the polyimide resin layers 203 and 203 'are polyimide resin layers derived from the double-sided copper-clad laminate, and the wiring circuit layers 208 and 208' are circuited copper foils derived from the double-sided copper-clad laminate. It is formed by processing.
[0146] 図 9に示す多層プリント配線板 201の基本構造 205は、液晶ポリマー層 204の両側 に、ポリイミド榭脂層 203、 203'を絶縁層とする両面銅張積層板の片面側のみ回路 加工して形成した配線回路層 202— 2、 202— 1 'と液晶ポリマー層 204が対向する ように積層一体ィ匕し、その後、外側の配線回路層 208を形成した。ここで、液晶ポリマ 一層 204には、厚さ 50 mの液晶ポリマー層を絶縁層とし、その両面に厚さ 12 /z m の銅箔を有する両面銅張積層板 (以下、これを両面銅張積層板 LYという。液晶ポリ マーの融点: 300°C)の銅箔をエッチング除去した液晶ポリマーフィルムを使用した。 図 9に示すように、外側の配線回路層 208上にはその表面に配線回路層 209を有し 、また、各層間を電気的に接続するめつきスルーホール 206と最外層に形成されたソ ルダーレジスト層 207を有して!/、る。  [0146] The basic structure 205 of the multilayer printed wiring board 201 shown in FIG. 9 is a circuit processing only on one side of a double-sided copper-clad laminate having polyimide resin layers 203 and 203 'as insulating layers on both sides of the liquid crystal polymer layer 204. The wiring circuit layers 202-2 and 202-1 ′ thus formed and the liquid crystal polymer layer 204 were laminated and integrated so that the outer wiring circuit layer 208 was formed. Here, the liquid crystal polymer layer 204 has a double-sided copper-clad laminate (hereinafter referred to as double-sided copper-clad laminate) having a liquid crystal polymer layer with a thickness of 50 m as an insulating layer and a copper foil with a thickness of 12 / zm on both sides. A liquid crystal polymer film obtained by etching away a copper foil having a melting point of 300 ° C. (referred to as plate LY) was used. As shown in FIG. 9, the outer wiring circuit layer 208 has a wiring circuit layer 209 on the surface thereof, and a through hole 206 for electrically connecting each layer and a solder formed in the outermost layer. It has a resist layer 207!
[0147] ここで、配線回路層 202— 1と 202— 2'は、両面銅張積層板 LY由来の配線回路 層 208 (新日鐡ィ匕学 (株)社製、商品名:エスパネックス M、品番: MB12— 12— 12F R)とめつきスルーホール 206と同一のめっき銅 209とから構成される。ポリイミド榭脂 層の厚みは 12 μ m、エスバネックス Mに由来する銅箔厚は 12 μ mである。また、スル 一ホール 206の穴径は 0. 15mm,めっき銅 209の厚みは 8 m、ソルダーレジスト膜 厚は 20 mである。配線回路層の基本設計ルールは、配線回路層 202— 2と 202— 1,がライン Zスペース: 50Z50 μ m、配線回路層 202— 1と 202— 2,がライン Zス ペース: 75Z75 μ m、各層のスルーホールランドが φ 0. 3mmである。なお、ポリイミ ド榭脂層 203、 203'と液晶ポリマー層 204の界面 210の粗さ (Rz)は、断面観察の結 果、それぞれ 2. 0 mと 1. 9 mであった。また、この 4層プリント配線板 201の総厚 は約 115 mであった。 [0147] Here, the wiring circuit layers 202-1 and 202-2 'are the wiring circuit layer 208 derived from the double-sided copper clad laminate LY (manufactured by Nippon Steel Engineering Co., Ltd., trade name: ESPANEX M Part No .: MB12-12-12F R), and the plated through-hole 206 and the same plated copper 209. The thickness of the polyimide resin layer is 12 μm, and the thickness of the copper foil derived from Esbanex M is 12 μm. Also, The hole diameter of one hole 206 is 0.15 mm, the thickness of plated copper 209 is 8 m, and the thickness of the solder resist film is 20 m. The basic design rule for the wiring circuit layer is that the wiring circuit layers 202-2 and 202-1 are line Z space: 50Z50 μm, the wiring circuit layers 202-1 and 202-2 are line Z space: 75Z75 μm, The through hole land of each layer is φ0.3mm. The roughness (Rz) of the interface 210 between the polyimide resin layers 203 and 203 ′ and the liquid crystal polymer layer 204 was 2.0 m and 1.9 m, respectively, as a result of cross-sectional observation. The total thickness of the four-layer printed wiring board 201 was about 115 m.
[0148] (実施例 9)  [Example 9]
図 10に断面図を示す多層プリント配線板 301について説明する。  A multilayer printed wiring board 301 whose sectional view is shown in FIG. 10 will be described.
[0149] 図 10に示す多層(8層)プリント配線板 301は、実施例 2と同様の基本構造 302 (伹 し、スルーホール 206とそのめっき銅 209に相当する構造は無し)の両面に、液晶ポ リマー層 303、 303,と、 IVH304'、酉己線回路層 305、 305,、さらにもう一層ずつ液 晶ポリマー層 317、 317'、 BVH307、 307'、配線回路層 308、 308'を積層一体ィ匕 し、各層間を電気的に接続するめつきスルーホール 309と最外層に形成されたソル ダーレジスト層 310と力 なる 8層プリント配線板である。  [0149] A multilayer (8-layer) printed wiring board 301 shown in FIG. 10 has a basic structure 302 similar to that of Example 2 (but no structure corresponding to the through-hole 206 and its plated copper 209). Laminated liquid crystal polymer layers 303 and 303, IVH304 ', self-wire circuit layers 305 and 305, and liquid crystal polymer layers 317 and 317', BVH307 and 307 ', and wiring circuit layers 308 and 308' It is an eight-layer printed wiring board that is integrated with a through hole 309 that electrically connects each layer and a solder resist layer 310 formed as the outermost layer.
[0150] 液晶ポリマー層 303、 303'は、厚さ 25 mの液晶ポリマーを絶縁層とし、その片面 に厚さ 9 mの銅箔を有する片面銅張積層板 (以下、これを片面銅張積層板 LX2と いう。液晶ポリマーの融点: 300°C)に由来するもので、配線回路層 311、 311 'は、 前記片面銅張積層板の銅箔を回路加工して形成されたものである。また、液晶ポリ マー層 317、 317'は、厚さ 50 mの液晶ポリマーを絶縁層とし、その片面に厚さ 9 μ mの銅箔を有する片面銅張積層板 (以下、これを片面銅張積層板 LX3という。液晶 ポリマーの融点: 280°C)に由来するもので、配線回路層 313、 313'は、前記片面銅 張積層板の銅箔を回路加工して形成されたものである。 IVH304'は、公知の手段 で任意に設けられ、他の配線回路との電気的接続を可能とする。  [0150] The liquid crystal polymer layers 303 and 303 'are made of a single-sided copper-clad laminate (hereinafter referred to as a single-sided copper-clad laminate) having a 25-m-thick liquid crystal polymer as an insulating layer and a copper foil of 9 m thickness on one side. This is a plate LX2, which is derived from the melting point of the liquid crystal polymer: 300 ° C., and the wiring circuit layers 311 and 311 ′ are formed by circuit processing of the copper foil of the single-sided copper-clad laminate. In addition, the liquid crystal polymer layers 317 and 317 ′ have a single-sided copper-clad laminate (hereinafter referred to as single-sided copper-clad laminate) having a liquid crystal polymer with a thickness of 50 m as an insulating layer and a copper foil with a thickness of 9 μm on one side. Laminated plate LX3 is derived from the melting point of liquid crystal polymer: 280 ° C., and the wiring circuit layers 313 and 313 ′ are formed by circuit processing the copper foil of the single-sided copper-clad laminate. The IVH 304 ′ is arbitrarily provided by a known means, and can be electrically connected to other wiring circuits.
[0151] ここで、酉己線回路層 305と 305,は、酉己線回路層 311、 311,と IVH304、 304,と同 一のめっき銅 312とから構成される。同様に、配線回路層 308、 308'は配線回路層 313、 313,と BVH307、 307,と、めつさスノレーホ一ノレ 309と同一のめつさ銅 314と から構成される。 [0152] 片面銅張積層板 LX2及び片面銅張積層板 LX3に由来する液晶ポリマー厚は 25 /z mおよび配線回路層 313、 313 'の厚みは 9 /z mで、 IVH304'、 BVH307、 307' の上径は 100 μ m、下径は 90 μ m、めっき銅 314の厚みは 8 μ m、スルーホール 30 9の穴径は 0. 15mm,めっき銅 312の厚みは 8 m、ソルダーレジスト層 310の膜厚 は 20 mである。配線回路層の基本設計ルールは、配線回路層 305と 305,のライ ン/スペースが全層 50/50 μ m、スルーホールランド 315が全層 0. 3mm、 IVH30 4,と BVH307、 307,のノッドカ . 2mmである。なお、ポリイミド榭脂層と液晶ポリマ 一層の界面 316の粗さ(Rz)は、断面観察の結果、 2. 2 mと 2. 0 mであった。ま た、この 8層プリント配線板 301の総厚は約 270 mであった。 [0151] Here, the self-wire circuit layers 305 and 305 are composed of the self-wire circuit layers 311 and 311 and the plated copper 312 that is the same as the IVH 304 and 304. Similarly, the wiring circuit layers 308, 308 ′ are composed of the wiring circuit layers 313, 313, BVH 307, 307, and the same copper copper 314 as that of the female snowboard motor 309. [0152] The liquid crystal polymer thickness derived from single-sided copper-clad laminate LX2 and single-sided copper-clad laminate LX3 is 25 / zm, and the thickness of wiring circuit layers 313 and 313 'is 9 / zm. IVH304', BVH307, 307 ' The upper diameter is 100 μm, the lower diameter is 90 μm, the thickness of plated copper 314 is 8 μm, the diameter of through hole 30 9 is 0.15 mm, the thickness of plated copper 312 is 8 m, and the solder resist layer 310 The film thickness is 20 m. The basic design rule for the wiring circuit layer is that the wiring circuit layers 305 and 305 have a line / space of 50/50 μm in all layers, the through-hole land 315 has a total layer of 0.3 mm, IVH30 4, and BVH307 and 307. Nodka 2 mm. The roughness (Rz) of the interface 316 between the polyimide resin layer and the liquid crystal polymer layer was 2.2 m and 2.0 m as a result of cross-sectional observation. The total thickness of this 8-layer printed wiring board 301 was about 270 m.
[0153] (実施例 10)  [Example 10]
図 11に断面図を示す多層プリント配線板 401につ 、て説明する。  A multilayer printed wiring board 401 whose sectional view is shown in FIG. 11 will be described.
[0154] 図 11に示す多層(4層)プリント配線板 401は、絶縁層に 1層のポリイミド榭脂層 40 3と 2層の液晶ポリマー層 404、 407を有し、 4層の配線回路層 402、 406, 412, 41 4を有している。ポリイミド榭脂層 403とその両側の配線回路層 402、 414は、ポリイミ ド榭脂層を絶縁層とする両面銅張積層板 (新日鐡ィ匕学 (株)社製、商品名:エスパネ ックス S、品番: SB 18— 25— 18CE)に由来する榭脂層とその銅箔を回路加ェして 形成された配線回路層である。また、ポリイミド榭脂層 403に隣接する液晶ポリマー 層 404と配線回路層 406は厚さ 50 mの液晶ポリマー層の絶縁層の片面に厚さ 18 mの銅箔を有する片面銅張積層板 (以下、これを片面銅張積層板 LX4という。液 晶ポリマーの融点: 290°C)に由来するもので、その液晶ポリマー層 404に隣接する 液晶ポリマー層 407と配線回路層 412とは、厚さ 50 mの液晶ポリマー層の絶縁層 の片面に厚さ の銅箔を有するとする片面銅張積層板 (以下、これを片面銅張 積層板 LX5という。液晶ポリマーの融点: 280°C)に由来する榭脂層とその銅箔を回 路加工して形成された配線回路層である。なお、配線回路層 408は、配線回路層 41 2と BVH409、めっきスルーホール 410と同一のめっき銅 413から、また、配線回路 層 402'は配線回路層 414とめつき銅 413から構成される。  [0154] The multilayer (four-layer) printed wiring board 401 shown in Fig. 11 has one polyimide resin layer 40 3 and two liquid crystal polymer layers 404 and 407 in an insulating layer, and four wiring circuit layers. 402, 406, 412, 41 4. The polyimide resin layer 403 and the wiring circuit layers 402 and 414 on both sides thereof are double-sided copper-clad laminates made of polyimide resin layer as an insulating layer (manufactured by Nippon Steel Chemical Co., Ltd., trade name: ESPANEX) S, product number: SB 18-25-18CE) is a wiring circuit layer formed by applying a circuit to the resin layer and its copper foil. The liquid crystal polymer layer 404 and the wiring circuit layer 406 adjacent to the polyimide resin layer 403 are a single-sided copper-clad laminate (hereinafter referred to as a single-sided copper clad laminate having an 18-m thick copper foil on one side of an insulating layer of a liquid crystal polymer layer having a thickness of 50 m) This is called single-sided copper-clad laminate LX4, which is derived from the melting point of the liquid crystal polymer: 290 ° C, and the liquid crystal polymer layer 407 and the wiring circuit layer 412 adjacent to the liquid crystal polymer layer 404 have a thickness of 50 Derived from a single-sided copper-clad laminate (hereinafter referred to as single-sided copper-clad laminate LX5; melting point of liquid crystal polymer: 280 ° C), which has a copper foil of thickness on one side of the insulating layer of the liquid crystal polymer layer of m It is a wiring circuit layer formed by circuit processing of a resin layer and its copper foil. The wiring circuit layer 408 includes the wiring circuit layer 412 and the BVH 409 and the plated copper 413 identical to the plated through hole 410, and the wiring circuit layer 402 ′ includes the wiring circuit layer 414 and the mating copper 413.
[0155] ここで、片面銅張積層板 LX4と片面銅張積層板 LX5の液晶ポリマーの厚みは 50 μ m、酉己線回路層 406、 412の厚み ίま 18 μ m、ポリイミド榭月旨層 403の厚み ίま 25 μ m、配線回路層 402, 408の厚みは 18 μ mである。また、スルーホール 410の穴径 ίま 0. 15mm, BVH409の上径 ίま 80 m、下径 ίま 75 /ζ πι、めつさ銅 413の厚み ίま 8 μ m、ソルダーレジスト層 411の膜厚は 20 μ mである。なお、ポリイミド榭脂層 403と 液晶ポリマー層 404の界面 415の粗さ (Rz)は、断面観察の結果、それぞれ 4. Ί μ ι と 4. 6 μ mであった。また、この 4層プリント配線板 401の総厚は約 168 μ mであった [0155] Here, the liquid crystal polymer thickness of the single-sided copper-clad laminate LX4 and single-sided copper-clad laminate LX5 is 50 μm, the thickness of the self-wire circuit layers 406 and 412 ί or 18 μm, and the polyimide layer 403 thickness ί or 25 μ m, and the thickness of the wiring circuit layers 402 and 408 is 18 μm. Also, the hole diameter of the through hole 410 is 0.15 mm, the upper diameter of the BVH409 is 80 m, the lower diameter is 75 / ζ πι, the thickness of the copper 413 is 8 μm, the solder resist layer 411 The film thickness is 20 μm. The roughness (Rz) of the interface 415 between the polyimide resin layer 403 and the liquid crystal polymer layer 404 was 4.Ίμι and 4.6 μm, respectively, as a result of cross-sectional observation. The total thickness of this 4-layer printed wiring board 401 was about 168 μm.
[0156] (実施例 11) [Example 10]
実施例 7の 4層プリント配線板と同構造の 4層プリント配線板 501の製造方法を、図 12 (a)〜 (h)に示すプロセス断面図で詳細に説明する。  A manufacturing method of the four-layer printed wiring board 501 having the same structure as the four-layer printed wiring board of Example 7 will be described in detail with reference to the process cross-sectional views shown in FIGS.
[0157] 先ず、図 12 (a)に示すポリイミド榭脂層を絶縁層とする両面銅張積層板 (新日鐡ィ匕 学 (株)社製、商品名:エスバネックス 、品番: SB12— 25— 12CE) 502の両面の銅 箔 503をサブトラクティブ法によりパターンカ卩ェし、配線回路層 504を形成した 400 X 300mmの両面配線基板 505を作製した(図 12 (b)参照)。次に、液晶ポリマー層を 絶縁層とする同サイズの片面銅張積層板 LX506を準備し、榭脂面同士を対向させ 両面配線基板 505をその両側から挟み、そのまま、真空プレスにセットした(図 12 (c) 参照)。次いで、プレス熱盤 507間を 1. 3kPaで排気しながら、型締めを行い、熱盤 を 260°Cに昇温して加熱した。熱盤温度が 260°Cに達した 5分後に、 6MPaの接着 圧を付加し、 10分後、熱盤 507の冷却を開始した (図 12 (d)参照)。 20分後、接着圧 を除去し、熱盤 507を開放して、積層体 508を取り出した(図 12 (e)参照)。得られた 積層体 508に NCドリルカ卩ェにて φ 0. 15mmのスルーホール 509を形成し(図 12 (f )参照)、所定のデスミア処理後、 8 /z m厚のパネルめつき 510を形成した(図 12 (g) 参照)。そして、テンティング法により最外層 511をエッチング、パターン化し、配線回 路層 512を形成し、ソルダーレジスト層 513を形成して 4層プリント配線板 501を作製 した(図 12 (h)参照)。  [0157] First, a double-sided copper-clad laminate having an polyimide resin layer shown in Fig. 12 (a) as an insulating layer (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex, product number: SB12-25) 12CE) 502 double-sided copper foil 503 was pattern-checked by the subtractive method to produce a 400 x 300 mm double-sided wiring board 505 with a wiring circuit layer 504 (see Fig. 12 (b)). Next, a single-sided copper-clad laminate LX506 of the same size with a liquid crystal polymer layer as an insulating layer was prepared, and the double-sided wiring board 505 was sandwiched from both sides facing each other and set in a vacuum press as it was (Fig. (See 12 (c)). Next, the mold was clamped while evacuating the press hot platen 507 at 1.3 kPa, and the hot platen was heated to 260 ° C and heated. Five minutes after the hot platen temperature reached 260 ° C, an adhesive pressure of 6 MPa was applied, and 10 minutes later, cooling of the hot platen 507 was started (see Fig. 12 (d)). After 20 minutes, the adhesive pressure was removed, the heating plate 507 was opened, and the laminate 508 was taken out (see FIG. 12 (e)). Through hole 509 of φ 0.15mm is formed in the obtained laminate 508 with NC drill cage (see Fig. 12 (f)), and after the desmear treatment, 8 / zm thick panel 510 is formed. (See Fig. 12 (g)). Then, the outermost layer 511 was etched and patterned by a tenting method, a wiring circuit layer 512 was formed, and a solder resist layer 513 was formed to produce a four-layer printed wiring board 501 (see FIG. 12 (h)).
[0158] 本プロセスにおける粉落ち起因の歩留り損は 0%であった。  [0158] The yield loss due to powder falling in this process was 0%.
[0159] (実施例 12)  [Example 12]
実施例 11の 4層プリント配線板と同構造の 4層プリント配線板 601の別の製造方法 を、図 13 (a)〜 (f)に示すプロセス断面図で詳細に説明する。 [0160] 先ず、実施例 11で使用したものと同じ両面銅張積層板 602の両面の銅箔 603をサ ブトラタティブ法によりパターンカ卩ェし、配線回路層 604を形成した幅 300mm X長さ 100mのロール状に卷回された長尺の両面配線基板 605を作製した(図 13 (a)参照 )。両面配線基板 605をその両側から榭脂面を対向させた同形状の片面銅張積層板 LX606で挟み(図 13 (b)参照)、表面温度 260°Cのロール 607間に供給し、連続的 に線圧 20kNZmで加熱、加圧した(図 13 (c)参照)。得られた連続積層体 608は、 400 X 30mmに裁断し、 NCドリルカ卩ェにて φ 0. 15mmのスルーホール 609を形成 し(図 13 (d)参照)、所定のデスミア処理後、 8 /z m厚のパネルめつき 610を形成した (図 13 (e)参照)。そして、テンティング法により最外層 611をエッチング、パターンィ匕 し、配線回路層 612を形成し、ソルダーレジスト層 613を形成して 4層プリント配線板 601を作製した(図 13 (f)参照)。 Another method for manufacturing a four-layer printed wiring board 601 having the same structure as that of the four-layer printed wiring board of Example 11 will be described in detail with reference to process cross-sectional views shown in FIGS. 13 (a) to (f). [0160] First, a copper foil 603 on both sides of the same double-sided copper-clad laminate 602 used in Example 11 was patterned by a subtractive method to form a wiring circuit layer 604, width 300 mm, length 100 m. A long double-sided wiring board 605 wound in a roll was prepared (see FIG. 13 (a)). A double-sided wiring board 605 is sandwiched between LX606, a single-sided copper-clad laminate with the same shape facing the grease surface from both sides (see Fig. 13 (b)), and supplied between rolls 607 with a surface temperature of 260 ° C. Was heated and pressurized at a linear pressure of 20 kNZm (see Fig. 13 (c)). The obtained continuous laminate 608 was cut to 400 X 30 mm, and a through hole 609 of φ0.15 mm was formed with an NC drill cage (see Fig. 13 (d)). A panel fitting 610 having a thickness of zm was formed (see FIG. 13 (e)). Then, the outermost layer 611 was etched and patterned by a tenting method to form a wiring circuit layer 612, and a solder resist layer 613 to form a four-layer printed wiring board 601 (see FIG. 13 (f)).
[0161] 本プロセスにおける粉落ち起因の歩留り損は 0%であった。  [0161] The yield loss due to powder falling in this process was 0%.
[0162] (実施例 13)  [0162] (Example 13)
実施例 8の 4層プリント配線板と同構造の 4層プリント配線板 701の製造方法を、図 14 (a)〜 (i)に示すプロセス断面図で詳細に説明する。  A method for manufacturing a four-layer printed wiring board 701 having the same structure as the four-layer printed wiring board of Example 8 will be described in detail with reference to process cross-sectional views shown in FIGS. 14 (a) to (i).
[0163] 先ず、 400 X 300mmのポリイミド榭脂層を絶縁層とする両面銅張積層板 (新日鐡 化学 (株)社製、商品名:エスバネックスM、品番: MB12— 12— 12FR) 702 (図 14 ( a)参照)の片面の銅箔 703 - 2をサブトラクティブ法によりパターンカ卩ェし、配線回路 層 704— 2を形成した。同様にして、もう一枚の両面銅張積層板 702,をパターンカロ ェした(図 14 (b)参照)。次いで、同サイズの液晶ポリマー層を絶縁層とする両面銅 張積層板 LY705の両面の銅箔 706をエッチング除去し、露出した表面を水酸化カリ ゥム(34質量0 /0) Zエチレングリコール(22質量0 /0) Zエチレンジァミン(11質量0 /o) のアルカリ混合水溶液で 60°C、 60秒浸漬処理した液晶ポリマー層 707を作製した ( 図 14 (c)参照)。配線回路層(704— 2、 704— 1 ' )面を対向させた片面加工基板 70 2、 702'の間に表面処理済み液晶ポリマー層 707を挟み、そのまま、真空プレスに セットした(図 14 (d)参照)。次いで、プレス熱盤 708間を 1. 3kPaで排気しながら、 型締めを行い、熱盤 708を 300°Cに昇温して加熱した。熱盤温度が 300°Cに達した 5分後に、 4MPaの接着圧を付加し、 10分後、熱盤 708の冷却を開始した(図 14 (e) 参照)。 20分後、接着圧を除去し、熱盤 708を開放して、積層体 709を取り出した( 図 14 (f)参照)。得られた積層体 709に NCドリルカ卩ェにて φ θ. 15mmのスルーホー ル 710を形成し(図 14 (g)参照)、所定のデスミア処理後、 厚のパネルめつき 7 11を形成した(図 14 (h)参照)。そして、テンティング法により最外層 712をエツチン グ、パターンィ匕し、配線回路層 713を形成し、さらにソルダーレジスト層 714を形成し て 4層プリント配線板 701を作製した(図 14 (i)参照)。 [0163] First, a double-sided copper-clad laminate with a 400 x 300mm polyimide resin layer as an insulating layer (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) 702 ( The copper foil 703-2 on one side in Fig. 14 (a) was pattern-checked by the subtractive method to form the wiring circuit layer 704-2. In the same manner, another sheet of double-sided copper-clad laminate 702 was pattern-carried (see Fig. 14 (b)). Then, both sides of the copper foil 706 of the double-sided copper-clad laminate LY705 that the insulating layer of the liquid crystal polymer layer of the same size is removed by etching, potassium hydroxide © beam the exposed surface (34 mass 0/0) Z Ethylene glycol ( 22 mass 0/0) (to prepare a 11 mass 0 / o) liquid crystal polymer layer 707 60 ° C, and 60 seconds immersed in an alkaline mixed aqueous solution of (FIG. 14 (c) Z Echirenjiamin reference). The surface-treated liquid crystal polymer layer 707 was sandwiched between single-sided processed substrates 70 2 and 702 'with the wiring circuit layer (704-2, 704-1') facing each other, and set in a vacuum press (Fig. 14 ( d)). Next, the mold was clamped while evacuating the press hot platen 708 at 1.3 kPa, and the hot platen 708 was heated to 300 ° C. and heated. 5 minutes after the hot platen temperature reached 300 ° C, 4 MPa pressure was applied, and 10 minutes later, the hot platen 708 started to cool (Fig. 14 (e) reference). After 20 minutes, the adhesive pressure was removed, the heating plate 708 was opened, and the laminate 709 was taken out (see FIG. 14 (f)). Through hole 710 of φ θ. 15 mm was formed on the obtained laminate 709 using an NC drill cage (see Fig. 14 (g)), and after a predetermined desmear treatment, a thick panel clasp 7 11 was formed ( (See Figure 14 (h)). Then, the outermost layer 712 was etched and patterned by a tenting method to form a wiring circuit layer 713, and further a solder resist layer 714 to form a four-layer printed wiring board 701 (see FIG. 14 (i)). ).
[0164] 本プロセスにおける粉落ち起因の歩留り損は 0%であった。  [0164] The yield loss due to powder falling in this process was 0%.
[0165] (実施例 14)  [Example 14]
実施例 13の 4層プリント配線板と同構造の 4層プリント配線板 801の別の製造方法 を、図 15 (a)〜 (f)に示すプロセス断面図で詳細に説明する。  Another method for manufacturing a four-layer printed wiring board 801 having the same structure as the four-layer printed wiring board of Example 13 will be described in detail with reference to the process cross-sectional views shown in FIGS.
[0166] 先ず、ポリイミド榭脂層を絶縁層とする 2巻の両面銅張積層板 (新日鐡ィ匕学 (株)社 製、商品名:エスバネックスM、品番: MB12— 12— 12FR) 802、 802,の銅箔 803 、 803'のそれぞれ片面をサブトラクティブ法によりパターンカ卩ェし、配線回路層 804 、 804'を形成した幅 30mmX長さ 100mのロール状に卷回された長尺の両面配線 基板 805、 805'を作製した(図 15 (a)参照)。次いで、同形状の液晶ポリマー層を絶 縁層とする両面銅張積層板 LY806の両面の銅箔をエッチング除去し、露出した表 面をアルゴン、ヘリウム、酸素、窒素からなるガスを用いてプラズマ処理した液晶ポリ マー層 807を作製した(図 15 (b)参照)。この液晶ポリマー層 807を配線回路層 804 、 804'を対向させた 2枚の配線基板 805、 805,で挟み、表面温度 260°Cのロール 8 08間に供給し、連続的に線圧 lOOkNZmで加熱、加圧した(図 15 (c)参照)。得ら れた連続積層体 809ίま、 400 X 300mm【こ裁断し、 NC リノレカ卩工【こて φ 0. 15mm のスルーホール 810を形成し(図 15 (d)参照)、所定のデスミア処理後、 8 /z m厚のパ ネルめつきを 811形成した(図 15 (e)参照)。そして、テンティング法により最外層 812 をエッチング、パターン化し、配線回路層 813を形成し、ソルダーレジスト層 814を形 成して 4層プリント配線板 801を作製した(図 15 (f)参照)。  [0166] First, a double-sided copper-clad laminate with a polyimide resin layer as an insulating layer (manufactured by Nippon Steel Engineering Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) 802 , 802, copper foils 803, 803 'each side is patterned by subtractive method to form wiring circuit layers 804, 804' 30mm wide x 100m long rolled Double-sided wiring boards 805 and 805 'were fabricated (see Fig. 15 (a)). Next, the copper foil on both sides of the double-sided copper clad laminate LY806 with the same shape liquid crystal polymer layer as an insulating layer is removed by etching, and the exposed surface is plasma-treated using a gas composed of argon, helium, oxygen, and nitrogen. A liquid crystal polymer layer 807 was fabricated (see Fig. 15 (b)). This liquid crystal polymer layer 807 is sandwiched between two wiring boards 805 and 805 with the wiring circuit layers 804 and 804 'facing each other, and is supplied between rolls 8 08 having a surface temperature of 260 ° C, and continuously at a linear pressure of lOOkNZm. Heated and pressurized (see Fig. 15 (c)). The resulting continuous laminate 809ί, 400 X 300mm [Cutting, NC renoreka trowel [trowel φ 0.15mm through hole 810 (see Fig. 15 (d)), and after the prescribed desmear treatment 811 panel thickness 811 was formed (see Fig. 15 (e)). Then, the outermost layer 812 was etched and patterned by a tenting method, a wiring circuit layer 813 was formed, a solder resist layer 814 was formed, and a four-layer printed wiring board 801 was manufactured (see FIG. 15 (f)).
[0167] 本プロセスにおける粉落ち起因の歩留り損は 0%であった。  [0167] The yield loss due to powder falling in this process was 0%.
[0168] (実施例 15)  [Example 15]
実施例 9の 8層プリント配線板と同構造の 8層プリント配線板 901の製造方法を、図 16 (a)〜 (j)に示すプロセス断面図で詳細に説明する。 The manufacturing method of 8-layer printed wiring board 901 with the same structure as the 8-layer printed wiring board of Example 9 is This will be described in detail with reference to process cross-sectional views shown in 16 (a) to (j).
先ず、 400 X 300mmのポリイミド榭脂層を絶縁層とする両面銅張積層板 (新日鐡 化学 (株)社製、商品名:エスバネックスM、品番: MB12— 12— 12FR) 902 (図 16 ( a)参照)の両面の銅箔 903— 1、 903— 2をサブトラクティブ法によりパターンカ卩ェし、 配線回路層 904— 1、 904— 2を形成した。同様にもう一枚作製した(図 16 (b)参照) 。次いで、同サイズの液晶ポリマー層を絶縁層とする両面銅張積層板 LY905の両面 の銅箔 906をエッチング除去し、露出した表面を水酸ィ匕カリウム(34質量%) Zェチ レンダリコール(22質量0 /0) Zエチレンジァミン(11質量0 /o)のアルカリ混合水溶液で 80°C30秒浸漬処理した液晶ポリマー層 907を作製した(図 16 (c)参照)。両面銅張 積層板 902、 902'の間に表面処理済み液晶ポリマー層 907を挟み、そのまま、真空 プレスにセットした(図 16 (d)参照)。次いで、プレス熱盤 908間を 1. 3kPaで排気し ながら、型締めを行い、熱盤 908を 280°Cに昇温して加熱した。熱盤温度が 280°C に達した 5分後に、 5MPaの接着圧を付加し、 10分後、熱盤 908の冷却を開始した( 図 16 (e)参照)。そして、 20分後、接着圧を除去し、熱盤 908を開放して、積層体 90 9を取り出し、得られた積層体 909の両面に、液晶ポリマーの榭脂面をアルゴン、ヘリ ゥム、酸素、窒素カゝらなるガスを用いてプラズマ処理した片面銅張積層板 LX2 910 、 910'の榭脂面 911、 911 'を対向させて重ね(図 16 (f)参照)、上記条件で真空プ レスして積層体 912を作製した(図 16 (g)参照)。積層体 912の所定の位置の銅箔を φ 100 /z mにエッチングカ卩ェ 913し(図 16 (h)参照)、その後、炭酸レーザにてブライ ンドビア穴 914を形成した(図 16 (i)参照)。デスミア処理後、配線回路層 904— 2'と 電気的に接続しためっき層 915を形成し(図 16 (j)参照)、サブトラクティブ法により配 線回路層 916を形成した(図 16 (k)参照)。再度、図 11 (f)〜(i)までの工程を実施し 、得られた積層体 917に NCドリルカ卩ェにて φ θ. 15mmのスルーホール 918を形成 し(図 16 (1)参照)、所定のデスミア処理後、 8 /z m厚のパネルめつき 919を形成した( 図 16 (m)参照)。但し、図 16 (1)において新たに積層した片面銅張積層板には、片 面銅張積層板 LX3を用いた。そして、テンティング法により最外層 920をエッチング、 ノ ターンィ匕し、配線回路層 921を形成し、ソルダーレジスト層 922を形成して 8層プリ ント配線板 901を作製した(図 16 (n)参照)。 [0170] 本プロセスにおける粉落ち起因の歩留り損は 0%であった。 First, a double-sided copper-clad laminate with a 400 x 300mm polyimide resin layer as an insulating layer (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) 902 (Fig. 16 ( The copper foils 903-1, 903-2 on both sides of a)) were pattern-checked by the subtractive method to form wiring circuit layers 904-1, 904-2. Similarly, another sheet was prepared (see Fig. 16 (b)). Next, the copper foil 906 on both sides of the double-sided copper clad laminate LY905 having the same size liquid crystal polymer layer as the insulating layer was removed by etching, and the exposed surface was hydrated with potassium hydroxide (34% by mass). 22 mass 0/0) (to prepare a 11 mass 0 / o) liquid crystal polymer layer 907 80 ° to C30 seconds immersed in an alkaline mixed aqueous solution of (FIG. 16 (c) Z Echirenjiamin reference). The surface-treated liquid crystal polymer layer 907 was sandwiched between the double-sided copper-clad laminates 902 and 902 'and set in a vacuum press as it was (see Fig. 16 (d)). Next, the mold was clamped while evacuating the press hot platen 908 at 1.3 kPa, and the hot platen 908 was heated to 280 ° C. and heated. Five minutes after the hot platen temperature reached 280 ° C, an adhesive pressure of 5 MPa was applied, and 10 minutes later, cooling of the hot platen 908 was started (see Fig. 16 (e)). Then, after 20 minutes, the adhesive pressure was removed, the heating platen 908 was opened, the laminate 909 was taken out, and the resin surface of the liquid crystal polymer was placed on both sides of the obtained laminate 909 with argon, helium, Single-sided copper-clad laminate LX2 910 and 910 'with 911 and 911' facing each other (see Fig. 16 (f)) and vacuumed under the above conditions. The laminate 912 was fabricated by pressing (see Fig. 16 (g)). The copper foil at a predetermined position of the laminate 912 was etched 913 to φ100 / zm (see Fig. 16 (h)), and then a blind via hole 914 was formed with a carbon dioxide laser (Fig. 16 (i)). reference). After the desmear treatment, a plating layer 915 electrically connected to the wiring circuit layer 904-2 ′ was formed (see Fig. 16 (j)), and a wiring circuit layer 916 was formed by the subtractive method (Fig. 16 (k)). reference). The steps from Fig. 11 (f) to (i) were carried out again, and a through hole 918 of φ θ. 15mm was formed in the resulting laminate 917 using an NC drill cage (see Fig. 16 (1)). After a predetermined desmear treatment, a panel 919 having a thickness of 8 / zm was formed (see FIG. 16 (m)). However, the single-sided copper-clad laminate LX3 was used as the newly laminated single-sided copper-clad laminate in FIG. 16 (1). Then, the outermost layer 920 was etched and turned by the tenting method, the wiring circuit layer 921 was formed, and the solder resist layer 922 was formed to produce an eight-layer printed wiring board 901 (see FIG. 16 (n)). ). [0170] The yield loss due to powder falling in this process was 0%.
[0171] (実施例 16)  [Example 16]
実施例 15の 8層プリント配線板と同構造の 8層プリント配線板 1001の別の製造方 法を、図 17 (a)〜 (f)に示すプロセス断面図で詳細に説明する。  Another manufacturing method of the 8-layer printed wiring board 1001 having the same structure as the 8-layer printed wiring board of Example 15 will be described in detail with reference to process cross-sectional views shown in FIGS. 17 (a) to (f).
[0172] 先ず、ポリイミド榭脂層を絶縁層とする 2巻の両面銅張積層板 (新日鐡ィ匕学 (株)社 製、商品名:エスバネックスM、品番: MB12— 12— 12FR) 1002、 1002,のそれぞ れ両面の銅箔 1003— 1、 1003— 2、 1003— 1 '、 1003— 2'をサブ卜ラタティブ法に よりノ ターン加工し、配線回路層 1004— 1、 1004— 2、 1004—1 '、 1004— 2'を形 成した幅 300mm X長さ 100mのロール状に卷回された長尺の両面配線基板 1005 、 1005'を作製した(図 17 (a)参照)。次いで、同形状の液晶ポリマー層を絶縁層と する両面銅張積層板 LY1006の両面の銅箔をエッチング除去し、露出した表面をァ ルゴン、ヘリウム、酸素、窒素カゝらなるガスを用いてプラズマ処理した液晶ポリマー層 1007を作製した(図 17 (b)参照)。この液晶ポリマー層 1007を 2枚の両面配線基板 1005、 1005'で挟み、表面温度 240oCの口一ノレ 1008f¾【こ供給し、連続的【こ線圧 1 OOkNZmで加熱、加圧した(図 17 (c)参照)。得られた連続積層体 1009の両面に、 さらに、榭脂面をアルゴン、ヘリウム、酸素、窒素力もなるガスを用いてプラズマ処理 した幅 300mm X長さ 100mの液晶ポリマー層を絶縁層とする片面銅張積層板 LX2 1010、 1010,の榭脂面 1011、 1011 'を対向させて重ね、上記条件で連続加熱' 加圧して連続積層体 1012を作製した(図 17 (d)参照)。次いで、連続積層体 1012 の最外層の銅箔 1013、 1013,の所定の位置に φ 100 mのエッチングカ卩ェ 1014 し、続いて、炭酸レーザにてブラインドビア穴 1015をカ卩ェした(図 17 (e)参照)。デス ミア処理後、配線回路層 1004— 2'と電気的に接続しためっき層 1016を形成し(図 1 7 (f)参照)、サブトラクティブ法により配線回路層 1017を形成した(図 17 (g)参照)。 再度、図 17 (d)〜( の工程を実施し、得られた連続積層体 1018に NCドリル加工 で φ θ. 15mmのスルーホール 1019を形成し(図 17 (h)参照)、所定のデスミア処理 後、 厚のパネルめつき 1020を形成した(図 17 (i)参照)。但し、図 17 (h)にお いて新たに積層した片面銅張積層板には、片面銅張積層板 LX3を用いた。そして、 400mm X 300mmに裁断した後、テンティング法により最外層 1021、 1021,をエツ チング、パターンィ匕し、配線回路層 1022を形成し、ソルダーレジスト層 1023を形成 して 8層プリント配線板 1001を形成した(図 17 (j)参照)。 [0172] First, a double-sided copper-clad laminate with a polyimide resin layer as an insulating layer (manufactured by Nippon Steel Engineering Co., Ltd., trade name: Esbanex M, product number: MB12-12-12FR) 1002 , 1002, copper foils on both sides 1003-1, 1003-2, 1003-1 ', 1003-2' are turned by sub-rotative method, and wiring circuit layers 1004-1, 1004-2 1004-1 ′ and 1004-2-2 ′ were produced as long double-sided wiring boards 1005 and 1005 ′ wound in a roll shape having a width of 300 mm and a length of 100 m (see FIG. 17A). Next, the copper foil on both sides of the double-sided copper clad laminate LY1006 with the same shape liquid crystal polymer layer as the insulating layer is etched away, and the exposed surface is plasma using a gas such as argon, helium, oxygen, and nitrogen. A treated liquid crystal polymer layer 1007 was produced (see FIG. 17 (b)). The liquid crystal polymer layer 1007 sandwiched between two double-sided circuit board 1005, 1005 ', the surface temperature of 240 o to mouth one Honoré 1008f¾ [this supply and C, heated in a continuous [This line pressure 1 OOkNZm, pressurized (FIG. 17 (c)). Single-sided copper with an insulating layer of a 300 mm wide x 100 m long liquid crystal polymer layer that is plasma-treated on both sides of the resulting continuous laminate 1009 using a gas that also has argon, helium, oxygen, and nitrogen power Stretched laminates LX2 1010, 1010, the resin surfaces 1011, 1011 ′ were placed facing each other and continuously heated and pressurized under the above conditions to produce a continuous laminate 1012 (see FIG. 17 (d)). Next, an etching cache 1014 having a diameter of 100 m was formed at a predetermined position of the outermost copper foils 1013 and 1013 of the continuous laminated body 1012, and then blind via holes 1015 were cast with a carbonic acid laser (see FIG. 17 (e)). After the desmear treatment, a plating layer 1016 electrically connected to the wiring circuit layer 1004-2-2 'was formed (see Fig. 17 (f)), and a wiring circuit layer 1017 was formed by the subtractive method (Fig. 17 (g )reference). Again, the steps of Fig. 17 (d) to () were carried out, and through hole 1019 of φ θ. 15mm was formed in the obtained continuous laminate 1018 by NC drilling (see Fig. 17 (h)), and a predetermined desmear was formed. After processing, a thick panel fitting 1020 was formed (see Fig. 17 (i)), except that the single-sided copper-clad laminate LX3 was added to the newly laminated single-sided copper-clad laminate in Fig. 17 (h). After cutting to 400 mm x 300 mm, the outermost layers 1021 and 1021 were etched by the tenting method. Then, the wiring circuit layer 1022 was formed, the solder resist layer 1023 was formed, and the 8-layer printed wiring board 1001 was formed (see FIG. 17 (j)).
[0173] 本プロセスにおける粉落ち起因の歩留り損は 0%であった。 [0173] The yield loss due to powder falling in this process was 0%.
[0174] (比較例 1) [0174] (Comparative Example 1)
エスバネックス Sに代えてガラスエポキシ系両面銅張積層板(日立化成製、商品名: Glass epoxy-based double-sided copper-clad laminate (made by Hitachi Chemical Co., Ltd., product name)
MCL— E— 679、銅箔厚: m、絶縁基材厚:60 m)を使用した以外は実施例MCL—E—679, copper foil thickness: m, insulation base material thickness: 60 m)
11と同様にして、総厚み 190 /z mの 4層基板を作製した。本プロセスにおける粉落ち 起因の歩留り損は 4. 5%であった。 In the same manner as in 11, a four-layer substrate having a total thickness of 190 / zm was produced. The yield loss due to powder falling in this process was 4.5%.
[0175] (比較例 2) [0175] (Comparative Example 2)
実施例 12において、片面銅張積層板 LXの代わりに榭脂付き銅箔 (松下電工製、 商品名: R0880、銅箔厚: m、榭脂厚: 50 m)を使用し、ラミネートロール表面 温度を 180°Cにした以外は同様に実施した。しかし、ラミネート中に榭脂付銅箔が破 断したため、 4層プリント配線板は製造できな力つた。  In Example 12, instead of the single-sided copper-clad laminate LX, a copper foil with grease (made by Matsushita Electric Works, trade name: R0880, copper foil thickness: m, grease thickness: 50 m) was used. The procedure was the same except that the temperature was changed to 180 ° C. However, since the copper foil with grease was broken during lamination, the four-layer printed wiring board could not be manufactured.
産業上の利用可能性  Industrial applicability
[0176] 本発明によれば、液晶ポリマー力もなる絶縁層を有する多層プリント配線板を連続 的に製造する方法において、多層プリント配線板の最外面に形成されている配線回 路の変形を防止することができる多層プリント配線板の製造方法、並びにその製造 方法により得られる多層プリント配線板を提供することが可能となる。 [0176] According to the present invention, in a method for continuously producing a multilayer printed wiring board having an insulating layer having a liquid crystal polymer power, deformation of the wiring circuit formed on the outermost surface of the multilayer printed wiring board is prevented. It is possible to provide a method for producing a multilayer printed wiring board that can be produced, and a multilayer printed wiring board obtained by the production method.

Claims

請求の範囲 The scope of the claims
[1] ポリイミド又は第 1の液晶ポリマー力 なる第 1の絶縁層と前記第 1の絶縁層の少なく とも片面に形成された配線回路とを有する配線基板、並びに、前記ポリイミドの熱変 形温度未満である融点及び Z又は前記第 1の液晶ポリマーの融点よりも低い融点を 有する第 2の液晶ポリマー力 なる第 2の絶縁層と前記第 2の絶縁層の片面に積層さ れた導体層とを有する導体層基板を準備する工程と、  [1] A wiring board having a first insulating layer made of polyimide or a first liquid crystal polymer force and a wiring circuit formed on at least one side of the first insulating layer, and less than the thermal deformation temperature of the polyimide And a second insulating layer having a second liquid crystal polymer force having a melting point lower than that of Z or the first liquid crystal polymer and a conductor layer laminated on one side of the second insulating layer. A step of preparing a conductor layer substrate having,
前記配線基板及び前記導体層基板を、前記導体層基板の前記第 2の絶縁層側を 前記配線基板に向けて配置して、加熱加圧処理設備を用いて加熱加圧下で連続的 に積層する工程と、  The wiring board and the conductor layer board are continuously stacked under heat and pressure by using a heat and pressure treatment facility, with the second insulating layer side of the conductor layer board facing the wiring board. Process,
を含む、多層プリント配線板の製造方法。  A method for producing a multilayer printed wiring board, comprising:
[2] 前記導体層基板を 2枚準備し、前記配線基板及び前記導体層基板を積層するにあ たり、前記配線基板及び 2枚の導体層基板を、前記配線基板を間にして前記 2枚の 導体層基板を前記第 2の絶縁層側をそれぞれ前記配線基板に向けて配置して、加 熱加圧処理設備を用いて加熱加圧下で連続的に積層する、請求項 1に記載の多層 プリント配線板の製造方法。 [2] Two conductor layer substrates are prepared, and when the wiring substrate and the conductor layer substrate are laminated, the wiring substrate and the two conductor layer substrates are sandwiched between the two substrates. 2. The multilayer according to claim 1, wherein the conductor layer substrate is disposed with the second insulating layer side facing the wiring substrate, and is continuously laminated under heat and pressure using a heat and pressure treatment facility. Manufacturing method of printed wiring board.
[3] 前記第 2の液晶ポリマーが、第 1の液晶ポリマーの融点よりも 5〜60°C低い融点を有 するものである、請求項 1に記載の多層プリント配線板の製造方法。 [3] The method for producing a multilayer printed wiring board according to claim 1, wherein the second liquid crystal polymer has a melting point 5 to 60 ° C. lower than the melting point of the first liquid crystal polymer.
[4] 前記配線基板及び前記導体層基板がそれぞれロール状に卷回されたものである、 請求項 1に記載の多層プリント配線板の製造方法。 4. The method for producing a multilayer printed wiring board according to claim 1, wherein the wiring board and the conductor layer board are each wound in a roll shape.
[5] 前記配線基板及び前記導体層基板を積層するにあたり、前記配線基板及び前記導 体層基板をそれぞれ引き出し、ロール 'トウ'ロール方式で連続的に積層する、請求 項 4に記載の多層プリント配線板の製造方法。 [5] The multilayer print according to claim 4, wherein, when laminating the wiring board and the conductor layer board, the wiring board and the conductor layer board are respectively pulled out and continuously laminated by a roll 'toe' roll method. A method for manufacturing a wiring board.
[6] 前記加熱加圧処理設備がロールラミネーターである、請求項 1に記載の多層プリント 配線板の製造方法。 6. The method for producing a multilayer printed wiring board according to claim 1, wherein the heat and pressure treatment facility is a roll laminator.
[7] 前記ロールラミネーターのロール線圧が 10〜250kNZmである、請求項 6に記載の 多層プリント配線板の製造方法。  7. The method for producing a multilayer printed wiring board according to claim 6, wherein the roll line pressure of the roll laminator is 10 to 250 kNZm.
[8] 前記導体層基板の前記第 2の絶縁層の表面を表面処理する工程を更に含む、請求 項 1に記載の多層プリント配線板の製造方法。 8. The method for producing a multilayer printed wiring board according to claim 1, further comprising a step of surface-treating a surface of the second insulating layer of the conductor layer substrate.
[9] 前記配線基板及び前記導体層基板を積層するにあたり、前記配線基板及び前記導 体層基板を、加熱加圧下で積層して積層体を得た後に、前記積層体を熱処理設備 を用 、て加熱することにより高温熱処理を行う、請求項 1に記載の多層プリント配線 板の製造方法。 [9] In laminating the wiring board and the conductor layer board, the wiring board and the conductor layer board are laminated under heat and pressure to obtain a laminated body, and then the laminated body is subjected to heat treatment equipment. 2. The method for producing a multilayer printed wiring board according to claim 1, wherein high-temperature heat treatment is performed by heating.
[10] 前記高温熱処理を行うにあたり、前記積層体を下記数式 (F1)で表される条件を満た す高温熱処理温度 T:  [10] In performing the high-temperature heat treatment, the laminate is subjected to a high-temperature heat treatment temperature T that satisfies the condition represented by the following formula (F1):
(第 2の液晶ポリマーの融点) 15°C≤T≤ (第 2の液晶ポリマーの融点) + 20°C ' · •(F1)  (The melting point of the second liquid crystal polymer) 15 ° C≤T≤ (The melting point of the second liquid crystal polymer) + 20 ° C '· • (F1)
で加熱する、請求項 9に記載の多層プリント配線板の製造方法。  The method for producing a multilayer printed wiring board according to claim 9, wherein heating is performed at
[11] 前記高温熱処理を行うにあたり、高温熱処理時間が 10〜180秒の範囲である、請求 項 10に記載の多層プリント配線板の製造方法。 11. The method for producing a multilayer printed wiring board according to claim 10, wherein the high temperature heat treatment is performed in a range of 10 to 180 seconds when performing the high temperature heat treatment.
[12] 前記積層体を得るにあたり、前記配線基板及び前記導体層基板を下記数式 (F2)で 表される条件を満たす積層熱処理温度 T: [12] In obtaining the laminate, the heat treatment temperature T for satisfying the condition represented by the following formula (F2) for the wiring board and the conductor layer board:
2  2
(第 2の液晶ポリマーの融点) 100°C≤T≤ (第 2の液晶ポリマーの融点) 20°C '  (The melting point of the second liquid crystal polymer) 100 ° C≤T≤ (The melting point of the second liquid crystal polymer) 20 ° C '
2  2
• . (F2)  •. (F2)
にお 、て積層する、請求項 9に記載の多層プリント配線板の製造方法。  The method for producing a multilayer printed wiring board according to claim 9, wherein the layers are laminated.
[13] 配線回路層と絶縁層とが交互に積層されてなる多層プリント配線板において、 [13] In a multilayer printed wiring board in which wiring circuit layers and insulating layers are alternately laminated,
前記配線回路層を介して隣り合う 2層の絶縁層のうちの一つの絶縁層がポリイミド 榭脂層であり、他の一つの絶縁層が液晶ポリマー層である積層構造単位を含む、多 層プリント配線板。  A multilayer print including a laminated structural unit in which one of the two insulating layers adjacent to each other through the wiring circuit layer is a polyimide resin layer, and the other insulating layer is a liquid crystal polymer layer. Wiring board.
[14] 前記積層構造単位において、前記液晶ポリマー層のポリイミド榭脂層と隣り合う側と は反対側に、配線回路層を介して液晶ポリマー層が更に設けられている、請求項 13 に記載の多層プリント配線板。  [14] The liquid crystal polymer layer according to claim 13, wherein a liquid crystal polymer layer is further provided on the opposite side to the side adjacent to the polyimide resin layer of the liquid crystal polymer layer via a wiring circuit layer in the laminated structural unit. Multilayer printed wiring board.
[15] 前記積層構造単位において、前記ポリイミド榭脂層と前記液晶ポリマー層との境界面 の粗さが 4〜6 mの範囲である、請求項 13に記載の多層プリント配線板。 15. The multilayer printed wiring board according to claim 13, wherein in the laminated structural unit, the roughness of the interface between the polyimide resin layer and the liquid crystal polymer layer is in the range of 4 to 6 m.
[16] 前記積層構造単位において、前記ポリイミド榭脂層と前記液晶ポリマー層との境界面 の粗さが 4 m未満である、請求項 13に記載の多層プリント配線板。 16. The multilayer printed wiring board according to claim 13, wherein in the laminated structural unit, the roughness of the interface between the polyimide resin layer and the liquid crystal polymer layer is less than 4 m.
PCT/JP2007/053201 2006-02-21 2007-02-21 Multilayer printed wiring board and method for manufacturing same WO2007097366A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127033037A KR101262135B1 (en) 2006-02-21 2007-02-21 Multilayer printed wiring board and method for manufacturing same
KR1020087022937A KR101262136B1 (en) 2006-02-21 2008-09-19 Multilayer printed wiring board and method for manufacturing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-043416 2006-02-21
JP2006043416A JP4587974B2 (en) 2006-02-21 2006-02-21 Manufacturing method of multilayer printed wiring board
JP2006-050175 2006-02-27
JP2006050175 2006-02-27
JP2007-007311 2007-01-16
JP2007007311A JP2008177243A (en) 2007-01-16 2007-01-16 Manufaturing method for multilayer printed board

Publications (1)

Publication Number Publication Date
WO2007097366A1 true WO2007097366A1 (en) 2007-08-30

Family

ID=38437405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053201 WO2007097366A1 (en) 2006-02-21 2007-02-21 Multilayer printed wiring board and method for manufacturing same

Country Status (2)

Country Link
KR (2) KR101262135B1 (en)
WO (1) WO2007097366A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513237A (en) * 2014-03-21 2017-05-25 ノキア テクノロジーズ オサケユイチア Flexible electronic device and associated method
US10435289B2 (en) 2014-10-16 2019-10-08 Nokia Technoloiges Oy Deformable apparatus and method
CN113905518A (en) * 2021-09-10 2022-01-07 北京华镁钛科技有限公司 Liquid crystal antenna panel and manufacturing process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244630A (en) * 2000-02-25 2001-09-07 Kuraray Co Ltd Multilayer interconnection circuit board and manufacturing method therefor
JP2003017855A (en) * 2001-06-29 2003-01-17 Kyocera Chemical Corp Manufacturing method of multilayer printed-wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353619A (en) 2001-03-23 2002-12-06 Fujikura Ltd Multilayer wiring board and base material for multilayer interconnection, and method of manufacturing the same
JP2003069237A (en) 2001-08-29 2003-03-07 Kyocera Corp Insulation film and multilayer interconnection board using the same
JP2004349534A (en) 2003-05-23 2004-12-09 Fujikura Ltd Base material for multilayer substrate and its manufacturing method
JP2005072187A (en) * 2003-08-22 2005-03-17 Denso Corp Multilayer circuit board, and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244630A (en) * 2000-02-25 2001-09-07 Kuraray Co Ltd Multilayer interconnection circuit board and manufacturing method therefor
JP2003017855A (en) * 2001-06-29 2003-01-17 Kyocera Chemical Corp Manufacturing method of multilayer printed-wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513237A (en) * 2014-03-21 2017-05-25 ノキア テクノロジーズ オサケユイチア Flexible electronic device and associated method
US10470304B2 (en) 2014-03-21 2019-11-05 Nokia Technologies Oy Flexible electronics apparatus and associated methods
US10435289B2 (en) 2014-10-16 2019-10-08 Nokia Technoloiges Oy Deformable apparatus and method
CN113905518A (en) * 2021-09-10 2022-01-07 北京华镁钛科技有限公司 Liquid crystal antenna panel and manufacturing process thereof

Also Published As

Publication number Publication date
KR20130004530A (en) 2013-01-10
KR101262135B1 (en) 2013-05-14
KR101262136B1 (en) 2013-05-14
KR20080094110A (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP6499584B2 (en) Thermoplastic liquid crystal polymer film, circuit board, and production method thereof
EP0781501B1 (en) Monolithic lcp polymer microelectronic wiring modules
TWI590722B (en) Circuit board and method of manufacturing same
JP2007059822A (en) Hinge substrate and manufacturing method therefor
KR20110067921A (en) A carrier member for manufacturing a substrate and a method of manufacturing a substrate using the same
JP2008124370A (en) Method of manufacturing multilayer printed wiring board
JP4587974B2 (en) Manufacturing method of multilayer printed wiring board
TW201406224A (en) Multilayer printed circuit board and method for manufacturing same
JP4064897B2 (en) Multilayer circuit board and manufacturing method thereof
JP2000200976A (en) Multilayer printed wiring substrate and its manufacture
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
WO2007097366A1 (en) Multilayer printed wiring board and method for manufacturing same
JP2006253328A (en) Manufacturing method of multilayer wiring board
JP2001015933A (en) Thermally fusible insulating sheet
JP2008177243A (en) Manufaturing method for multilayer printed board
JP2007258697A (en) Method of manufacturing multilayer printed wiring board
JP3879159B2 (en) Manufacturing method of multilayer printed wiring board
JP2003086941A (en) Printed wiring board
JPH08288656A (en) Manufacture of multilayered printed wiring board
JP2011160005A (en) Partially-multilayered flexible printed wiring board
JPH01313998A (en) Manufacture of metal composite laminated board
JPH10313177A (en) Manufacture of multilayered printed wiring board
JP2003168873A (en) Hollow multilayer printed-wiring board
JPH06268371A (en) Manufacture of multilayer printed wiring board
JPH02229492A (en) Manufacture of wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022937

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07714701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020127033037

Country of ref document: KR

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)