JP2003069237A - Insulation film and multilayer interconnection board using the same - Google Patents

Insulation film and multilayer interconnection board using the same

Info

Publication number
JP2003069237A
JP2003069237A JP2001260275A JP2001260275A JP2003069237A JP 2003069237 A JP2003069237 A JP 2003069237A JP 2001260275 A JP2001260275 A JP 2001260275A JP 2001260275 A JP2001260275 A JP 2001260275A JP 2003069237 A JP2003069237 A JP 2003069237A
Authority
JP
Japan
Prior art keywords
liquid crystal
insulating film
crystal polymer
coating layer
polyphenylene ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001260275A
Other languages
Japanese (ja)
Inventor
Takuji Seri
拓司 世利
Katsura Hayashi
桂 林
Takeshi Kume
健士 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001260275A priority Critical patent/JP2003069237A/en
Publication of JP2003069237A publication Critical patent/JP2003069237A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To solve the problem that in insulation films made of organic materials and a multiplayer interconnection board using the same, the increased density of its wirings, its insulating quality, the reliability of its continuity, and its high-frequency transmission characteristic cannot be satisfied collectively. SOLUTION: The multiplayer interconnection board 6 comprises a plurality of insulation films 3 and a plurality of wiring conductors 4 made of metallic foils each of which is provided on at least one of the upper and lower surfaces of the film 3. Each insulation film 3 comprises a liquid crystal polymer layer 1 wherein its contact angle with triallylisocyanurate is 3-5 deg. and its surface energy is 45-70 mJ/m<2> , and coating layers 2 made of polyphenylene ether-based organic matters which are formed on the upper and lower surfaces of the layer 1. Further, each through conductor 5 formed in each insulation film 3 is provided electrically connectively between the wiring conductors 4 so positioned on the upper and lower sides of each film 3 as to sandwich each film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種AV機器や家
電機器・通信機器・コンピュータやその周辺機器等の電
子機器に使用される絶縁フィルムおよびこれを用いた多
層配線基板に関し、特に液晶ポリマーを一部に用いた絶
縁フィルムおよびこれを用いた多層配線基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating film used in various kinds of electronic equipment such as AV equipment, home electric appliances, communication equipment, computers and peripheral equipment thereof, and a multilayer wiring board using the same, and particularly to a liquid crystal polymer. The present invention relates to an insulating film used in part and a multilayer wiring board using the same.

【0002】[0002]

【従来の技術】従来、半導体素子等の能動部品や容量素
子・抵抗素子等の受動部品を多数搭載して所定の電子回
路を構成した混成集積回路を形成するための多層配線基
板は、通常、ガラスクロスにエポキシ樹脂を含浸させて
成る絶縁フィルムにドリルによって上下に貫通孔を形成
し、この貫通孔内部および絶縁層表面に複数の配線導体
を形成した配線基板を、多数積層することによって形成
されている。
2. Description of the Related Art Conventionally, a multilayer wiring board for forming a hybrid integrated circuit in which a large number of active components such as semiconductor elements and passive components such as capacitance elements and resistance elements are mounted to form a predetermined electronic circuit is usually Formed by stacking a number of wiring boards, each having a plurality of wiring conductors formed inside the through hole and on the surface of the insulating layer by forming through holes in the insulating film made of glass cloth impregnated with epoxy resin by a drill. ing.

【0003】一般に、現在の電子機器は、移動体通信機
器に代表されるように小型・薄型・軽量・高性能・高機
能・高品質・高信頼性が要求されており、このような電
子機器に搭載される混成集積回路等の電子部品も小型・
高密度化が要求されるようになってきており、このよう
な高密度化の要求に応えるために、電子部品を構成する
多層配線基板も、配線導体の微細化や絶縁層の薄層化・
貫通孔の微細化が必要となってきている。このため、近
年、貫通孔を微細化するために、ドリル加工より微細加
工が可能なレーザ加工が用いられるようになってきた。
In general, current electronic devices are required to be small, thin, lightweight, high-performance, high-performance, high-quality and highly reliable, as represented by mobile communication devices. Electronic components such as hybrid integrated circuits mounted on
There is a demand for higher densities, and in order to meet such demands for higher densities, the multilayer wiring boards that compose electronic components are also made finer in wiring conductors and thinner in insulating layers.
The miniaturization of through holes has become necessary. For this reason, in recent years, in order to miniaturize the through holes, laser machining, which enables finer machining than drilling, has come to be used.

【0004】しかしながら、ガラスクロスにエポキシ樹
脂を含浸させて成る絶縁フィルムは、ガラスクロスをレ
ーザにより穿設加工することが困難なために貫通孔の微
細化には限界があり、また、ガラスクロスの厚みが不均
一のために均一な孔径の貫通孔を形成することが困難で
あるという問題点を有していた。
However, the insulating film formed by impregnating glass cloth with an epoxy resin has a limit in miniaturizing the through holes because it is difficult to drill the glass cloth with a laser, and the glass cloth of There is a problem that it is difficult to form a through hole having a uniform hole diameter due to the uneven thickness.

【0005】このような問題点を解決するために、アラ
ミド樹脂繊維で製作した不織布にエポキシ樹脂を含浸さ
せて成る絶縁フィルムや、ポリイミドフィルムにエポキ
シ系接着剤を塗布して成る絶縁フィルムを絶縁層に用い
た多層配線基板が提案されている。
In order to solve these problems, an insulating film formed by impregnating a non-woven fabric made of aramid resin fiber with an epoxy resin or an insulating film formed by coating a polyimide film with an epoxy adhesive is used as an insulating layer. The multilayer wiring board used for is proposed.

【0006】しかしながら、アラミド不織布やポリイミ
ドフィルムを用いた絶縁フィルムは吸湿性が高く、吸湿
した状態で半田リフローを行なうと半田リフローの熱に
より吸湿した水分が気化してガスが発生し、絶縁層間で
剥離してしまう等の問題点を有していた。
However, an insulating film using an aramid non-woven fabric or a polyimide film has a high hygroscopic property, and when solder reflow is performed in a moisture-absorbed state, moisture absorbed by the solder reflow is vaporized to generate a gas, and the insulating layers are separated. There was a problem such as peeling.

【0007】このような問題点を解決するために、多層
配線基板の絶縁層の材料として液晶ポリマーを用いるこ
とが検討されている。液晶ポリマーから成る層は、剛直
な分子で構成されているとともに分子同士がある程度規
則的に並んだ構成をしており分子間力が強いことから、
高耐熱性・高弾性率・高寸法安定性・低吸湿性を示し、
ガラスクロスのような強化材を用いる必要がなく、ま
た、微細加工性にも優れるという特徴を有している。さ
らに、高周波領域においても、低誘電率・低誘電正接で
あり高周波特性に優れるという特徴を有している。
In order to solve such a problem, it has been studied to use a liquid crystal polymer as a material for an insulating layer of a multilayer wiring board. The layer made of liquid crystal polymer is composed of rigid molecules and also has a structure in which the molecules are regularly arranged to some extent, and the intermolecular force is strong.
Shows high heat resistance, high elastic modulus, high dimensional stability and low moisture absorption,
It is characterized in that it does not require the use of a reinforcing material such as glass cloth and is excellent in fine workability. Further, even in a high frequency region, it has a characteristic that it has a low dielectric constant and a low dielectric loss tangent and is excellent in high frequency characteristics.

【0008】このような液晶ポリマーの特徴を活かし、
特開平8-97565号公報には、回路層が第1の液晶ポリマ
ーを含み、この回路層間に第1の液晶ポリマーの融点よ
りも低い融点を有する第2の液晶ポリマーを含む接着剤
層を挿入して成る多層プリント回路基板が提案されてお
り、また、特開2000-269616号公報には熱可塑性液晶ポ
リマーフィルムと金属箔とをエポキシ系接着剤を用いて
接着させて成る高周波回路基板が提案されている。
Utilizing the characteristics of such a liquid crystal polymer,
JP-A-8-97565 discloses that a circuit layer contains a first liquid crystal polymer, and an adhesive layer containing a second liquid crystal polymer having a melting point lower than that of the first liquid crystal polymer is inserted between the circuit layers. Has been proposed, and in JP-A-2000-269616, there is proposed a high-frequency circuit board formed by adhering a thermoplastic liquid crystal polymer film and a metal foil with an epoxy adhesive. Has been done.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
8-97565号公報に提案された多層プリント回路基板は、
回路層同士を間に液晶ポリマーを含む接着剤層を挿入し
て熱圧着により接着する際、液晶ポリマー分子が剛直で
あるとともにある程度分子が規則正しく配向して分子間
力が強くなっているために分子が動き難くなり、回路層
の液晶ポリマーと接着剤層の液晶ポリマーの表面のごく
一部の分子だけしか絡み合うことができないために密着
性が悪く、高温バイアス試験において層間で剥離して絶
縁不良が発生してしまうという問題点を有していた。ま
た、回路層の導体箔と液晶ポリマーを熱融着により接着
する際、液晶ポリマー分子が動き難いために導体箔表面
の微細な凹部に入ることができず、その結果、十分なア
ンカー効果を発揮することができず、導体箔と液晶ポリ
マーとの密着性が悪くなって、高温高湿下において両者
間で剥離して導体箔が断線してしまうという問題点も有
していた。
SUMMARY OF THE INVENTION
The multilayer printed circuit board proposed in 8-97565 is
When an adhesive layer containing a liquid crystal polymer is inserted between circuit layers and they are bonded by thermocompression bonding, the liquid crystal polymer molecules are rigid and molecules are regularly oriented to some extent to strengthen the intermolecular force. Of the liquid crystal polymer of the circuit layer and the liquid crystal polymer of the adhesive layer can be entangled with only a small part of the molecules, resulting in poor adhesion and peeling between layers in a high temperature bias test, resulting in insulation failure. There was a problem that it would occur. Also, when the conductor foil of the circuit layer and the liquid crystal polymer are bonded by heat fusion, the liquid crystal polymer molecules are difficult to move and therefore cannot enter the minute recesses on the conductor foil surface, resulting in sufficient anchoring effect. However, the adhesiveness between the conductor foil and the liquid crystal polymer deteriorates, and there is a problem that the conductor foil peels off between the two under high temperature and high humidity and the conductor foil is broken.

【0010】また、特開2000-269616号公報に提案され
た高周波回路基板は、エポキシ系接着剤の誘電率が液晶
ポリマーの誘電率と大きく異なることから、積層時の加
圧によって生じるわずかな厚みばらつきにより、高周波
領域、特に100MHz以上の周波数領域においては伝送
特性が低下してしまうという問題点を有していた。
In the high frequency circuit board proposed in Japanese Patent Laid-Open No. 2000-269616, since the dielectric constant of the epoxy adhesive is greatly different from the dielectric constant of the liquid crystal polymer, a slight thickness caused by pressurization during lamination is required. Due to the variation, there is a problem that the transmission characteristic is deteriorated in a high frequency region, particularly in a frequency region of 100 MHz or more.

【0011】本発明はかかる従来技術の問題点に鑑み案
出されたものであり、その目的は、絶縁性・導通信頼性
・高周波伝送特性に優れた絶縁フィルムおよびこれを用
いた多層配線基板を提供することに有る。
The present invention has been devised in view of the above problems of the prior art, and an object thereof is to provide an insulating film excellent in insulation, conduction reliability, and high frequency transmission characteristics, and a multilayer wiring board using the same. It is in providing.

【0012】[0012]

【課題を解決するための手段】本発明の絶縁フィルム
は、トリアリルイソシアヌレートとの接触角が3〜50°
であって、かつ表面エネルギーが45〜70mJ/m2であ
る液晶ポリマー層の上下面にポリフェニレンエーテル系
有機物から成る被覆層を形成して成ることを特徴とする
ものである。
The insulating film of the present invention has a contact angle with triallyl isocyanurate of 3 to 50 °.
In addition, a coating layer made of a polyphenylene ether organic material is formed on the upper and lower surfaces of the liquid crystal polymer layer having a surface energy of 45 to 70 mJ / m 2 .

【0013】また、本発明の絶縁フィルムは、上記構成
において液晶ポリマー層の上下面の中心線表面粗さRa
が0.05〜5μmであることを特徴とするものである。
Further, the insulating film of the present invention has the above-mentioned structure, and the center line surface roughness Ra of the upper and lower surfaces of the liquid crystal polymer layer.
Is 0.05 to 5 μm.

【0014】さらに、本発明の絶縁フィルムは、上記構
成においてポリフェニレンエーテル系有機物が熱硬化性
ポリフェニレンエーテルであることを特徴とするもので
ある。
Further, the insulating film of the present invention is characterized in that, in the above constitution, the polyphenylene ether organic substance is a thermosetting polyphenylene ether.

【0015】また、本発明の多層配線基板は、上下面の
少なくとも一方の面に金属箔から成る配線導体が配設さ
れた上記の絶縁フィルムを複数積層して成るとともに、
この絶縁フィルムを挟んで上下に位置する配線導体間を
絶縁フィルムに形成された貫通導体を介して電気的に接
続したことを特徴とするものである。
The multilayer wiring board of the present invention is formed by laminating a plurality of the above-mentioned insulating films having wiring conductors made of a metal foil disposed on at least one of the upper and lower surfaces thereof.
It is characterized in that the wiring conductors located above and below the insulating film are electrically connected to each other via a through conductor formed in the insulating film.

【0016】本発明の絶縁フィルムによれば、トリアリ
ルイソシアヌレートとの接触角が3〜50°であって、か
つ表面エネルギーが45〜70mJ/m2である液晶ポリマ
ー層の上下面にポリフェニレンエーテル系有機物から成
る被覆層を形成して成ることから、液晶ポリマー層の上
下面に被覆層が良好に濡れ広がるとともに、液晶ポリマ
ー層表面の活性化された比較的熱運動しやすい分子層と
被覆層とが良好に絡み合って結合し、その結果、高温バ
イアス試験においても両者間で剥離することのない絶縁
フィルムとすることができる。また、ポリフェニレンエ
ーテル系有機物分子が液晶ポリマー分子ほど剛直でな
く、また、規則正しい配向性も示さないことから分子が
比較的動きやすく、その結果、絶縁フィルムを多層化し
た場合においても、絶縁フィルム同士の密着性が良好と
なり、高温バイアス試験においてフィルム間で剥離して
絶縁不良が発生してしまうということもない。さらに、
絶縁フィルム表面に配線導体を配設した場合において
も、ポリフェニレンエーテル系有機物分子が配線導体表
面の微細な凹部に入り込み十分なアンカー効果を発揮す
ることができ、絶縁フィルムと配線導体との密着性が良
好となり、その結果、高温高湿下で両者間で剥離して配
線導体が断線してしまうということもない。また、ポリ
フェニレンエーテル系有機物から成る被覆層と液晶ポリ
マー層の誘電率の周波数挙動がほぼ等しいことから、配
線導体を接着する際の加圧によって被覆層にわずかな厚
みばらつきが生じたとしても、高周波領域における伝送
特性に低下を生じることのない高周波伝送特性に優れた
絶縁フィルムとすることができる。
According to the insulating film of the present invention, polyphenylene ether is formed on the upper and lower surfaces of a liquid crystal polymer layer having a contact angle with triallyl isocyanurate of 3 to 50 ° and a surface energy of 45 to 70 mJ / m 2. Since the coating layer is formed of a system organic substance, the coating layer spreads well on the upper and lower surfaces of the liquid crystal polymer layer, and the activated molecular layer and the coating layer on the surface of the liquid crystal polymer layer are relatively easily moved by heat. And satisfactorily entangle and bond with each other, and as a result, an insulating film that does not separate between the two even in a high temperature bias test can be obtained. In addition, since the polyphenylene ether-based organic molecule is not as rigid as the liquid crystal polymer molecule, and the molecule does not move easily because it does not show a regular orientation, as a result, even when the insulating films are multilayered, Adhesion is good, and there is no possibility that insulation failure occurs due to peeling between films in a high temperature bias test. further,
Even when the wiring conductor is arranged on the surface of the insulating film, the polyphenylene ether-based organic compound molecules can enter the fine recesses on the surface of the wiring conductor to exert a sufficient anchoring effect, and the adhesion between the insulating film and the wiring conductor can be improved. The result is good, and as a result, there is no possibility that the wiring conductor is broken due to peeling between the two under high temperature and high humidity. In addition, since the frequency behavior of the dielectric constant of the coating layer made of polyphenylene ether-based organic material and the liquid crystal polymer layer are almost the same, even if a slight thickness variation occurs in the coating layer due to pressure when bonding the wiring conductor, It is possible to obtain an insulating film excellent in high-frequency transmission characteristics without causing deterioration in transmission characteristics in a region.

【0017】また、本発明の絶縁フィルムによれば、上
記構成において、液晶ポリマー層の上下面の中心線表面
粗さRaを0.05〜5μmとしたことから、液晶ポリマー
層の上下面がポリフェニレンエーテル系有機物から成る
被覆層と良好なアンカー効果を有する密着性の良好なも
のとなり、液晶ポリマー層と被覆層とがより強固に密着
した絶縁フィルムとすることができる。
Further, according to the insulating film of the present invention, in the above structure, the center line surface roughness Ra of the upper and lower surfaces of the liquid crystal polymer layer is 0.05 to 5 μm, so that the upper and lower surfaces of the liquid crystal polymer layer are polyphenylene ether type. The coating layer made of an organic substance has a good anchoring effect and good adhesiveness, and an insulating film in which the liquid crystal polymer layer and the coating layer are more firmly adhered can be obtained.

【0018】さらに、本発明の絶縁フィルムによれば、
上記構成において、ポリフェニレンエーテル系有機物を
熱硬化性ポリフェニレンエーテルとしたことから、熱硬
化性ポリフェニレンエーテルが耐熱性に優れるとともに
寸法安定性に優れ、その結果、温度サイクル信頼性に優
れるとともに、配線導体を接着する際の位置精度の良好
な絶縁フィルムとすることができる。
Further, according to the insulating film of the present invention,
In the above configuration, since the polyphenylene ether-based organic material is a thermosetting polyphenylene ether, the thermosetting polyphenylene ether is excellent in heat resistance and dimensional stability, as a result, excellent in temperature cycle reliability, and the wiring conductor It is possible to obtain an insulating film having good positional accuracy when bonding.

【0019】また、本発明の多層配線基板によれば、多
層配線基板を上記の絶縁フィルムを用いて形成したこと
から、耐湿性・導通信頼性・高周波伝送特性に優れた多
層配線基板とすることができる。
Further, according to the multilayer wiring board of the present invention, since the multilayer wiring board is formed by using the above-mentioned insulating film, the multilayer wiring board is excellent in moisture resistance, continuity reliability and high frequency transmission characteristics. You can

【0020】[0020]

【発明の実施の形態】次に本発明の絶縁フィルムおよび
多層配線基板を添付の図面に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the insulating film and the multilayer wiring board of the present invention will be described in detail with reference to the accompanying drawings.

【0021】図1は、本発明の絶縁フィルムの実施の形
態の一例を示す断面図であり、また、図2は、図1の絶
縁フィルムを用いて形成した本発明の多層配線基板に半
導体素子等の電子部品を搭載して成る混成集積回路の実
施の形態の一例を示す断面図である。さらに、図3は、
図2に示す多層配線基板の要部拡大断面図である。これ
らの図において1は液晶ポリマー層、2はポリフェニレ
ンエーテル系有機物から成る被覆層で、主にこれらで本
発明の絶縁フィルム3が構成されている。また、4は配
線導体、5は貫通導体、7は半導体素子等の電子部品
で、主に絶縁フィルム3と配線導体4と貫通導体5とで
本発明の多層配線基板6が構成されている。なお、本例
の多層配線基板6では、絶縁フィルム3を4層積層して
成るものを示している。
FIG. 1 is a cross-sectional view showing an example of an embodiment of the insulating film of the present invention, and FIG. 2 is a semiconductor device on a multilayer wiring board of the present invention formed by using the insulating film of FIG. FIG. 3 is a cross-sectional view showing an example of an embodiment of a hybrid integrated circuit in which electronic components such as the above are mounted. Furthermore, FIG.
FIG. 3 is an enlarged cross-sectional view of a main part of the multilayer wiring board shown in FIG. 2. In these figures, 1 is a liquid crystal polymer layer, 2 is a coating layer made of a polyphenylene ether organic material, and these mainly constitute the insulating film 3 of the present invention. Further, 4 is a wiring conductor, 5 is a penetrating conductor, 7 is an electronic component such as a semiconductor element, and the multilayer wiring board 6 of the present invention is mainly composed of the insulating film 3, the wiring conductor 4, and the penetrating conductor 5. In addition, the multilayer wiring board 6 of this example is shown as being formed by laminating four layers of the insulating films 3.

【0022】絶縁フィルム3は、液晶ポリマー層1と、
その上下面に被着形成されたポリフェニレンエーテル系
有機物から成る被覆層2とから構成されており、これを
用いて多層配線基板6を形成した場合、配線導体4や多
層配線基板6に搭載される電子部品7の支持体としての
機能を有する。
The insulating film 3 includes the liquid crystal polymer layer 1 and
A coating layer 2 made of a polyphenylene ether-based organic material is formed on the upper and lower surfaces thereof, and when a multilayer wiring board 6 is formed using this, it is mounted on the wiring conductor 4 or the multilayer wiring board 6. It has a function as a support for the electronic component 7.

【0023】なお、ここで液晶ポリマーとは、溶融時に
液晶状態あるいは光学的に複屈折する性質を有するポリ
マーを指し、一般に溶液状態で液晶性を示すリオトロピ
ック液晶ポリマーや溶融時に液晶性を示すサーモトロピ
ック液晶ポリマー、あるいは、熱変形温度で分類される
1型・2型・3型すべての液晶ポリマーを含むものであ
り、本発明に用いる液晶ポリマーとしては、温度サイク
ル信頼性・半田耐熱性・加工性の観点からは200〜400℃
の温度、特に250〜350℃の温度に融点を有するものが好
ましい。また、ポリフェニレンエーテル系有機物とは、
ポリフェニレンエーテル樹脂やポリフェニレンエーテル
に種々の官能基が結合した樹脂、あるいはこれらの誘導
体・重合体を意味するものである。
Here, the liquid crystal polymer refers to a polymer having a property of being in a liquid crystal state or optically birefringent when melted, and generally, a lyotropic liquid crystal polymer which exhibits liquid crystallinity in a solution state or a thermotropic liquid crystallinity which exhibits liquid crystallinity when melted. A liquid crystal polymer or a liquid crystal polymer of type 1, type 2, and type 3 classified by heat distortion temperature is included, and the liquid crystal polymer used in the present invention includes temperature cycle reliability, solder heat resistance, and processability. From the viewpoint of 200 ~ 400 ℃
Those having a melting point at the above temperature, particularly at a temperature of 250 to 350 ° C. are preferable. In addition, the polyphenylene ether-based organic matter,
It means a polyphenylene ether resin, a resin in which various functional groups are bonded to polyphenylene ether, or a derivative or polymer thereof.

【0024】液晶ポリマー層1は、層としての物性を損
なわない範囲内で、熱安定性を改善するための酸化防止
剤や耐光性を改善するための紫外線吸収剤等の光安定
剤、難燃性を付加するためのハロゲン系もしくはリン酸
系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタ
ホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑
性を改善するための高級脂肪酸や高級脂肪酸エステル・
高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の
滑剤、熱膨張係数を調整するため、および/または機械
的強度を向上するための酸化アルミニウム・酸化珪素・
酸化チタン・酸化バリウム・酸化ストロンチウム・酸化
ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素
・窒化アルミニウム・炭化珪素・チタン酸カリウム・チ
タン酸バリウム・チタン酸ストロンチウム・チタン酸カ
ルシウム・ホウ酸アルミニウム・スズ酸バリウム・ジル
コン酸バリウム・ジルコン酸ストロンチウム等の充填材
を含有してもよい。
The liquid crystal polymer layer 1 comprises an antioxidant for improving thermal stability, a light stabilizer such as an ultraviolet absorber for improving light resistance, and a flame retardant within a range that does not impair the physical properties of the layer. Halogen- or phosphoric acid-based flame retardants to add properties, antimony compounds and flame-retardant aids such as zinc borate, barium metaborate and zirconium oxide, higher fatty acids and higher grades to improve lubricity Fatty acid ester
Lubricants such as higher fatty acid metal salts and fluorocarbon-based surfactants, aluminum oxide, silicon oxide for adjusting the thermal expansion coefficient and / or improving mechanical strength
Titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, zeolite, silicon nitride, aluminum nitride, silicon carbide, potassium titanate, barium titanate, strontium titanate, calcium titanate, aluminum borate, barium stannate A filler such as barium zirconate or strontium zirconate may be contained.

【0025】なお、上記の充填材等の粒子形状は、略球
状・針状・フレーク状等があり、充填性の観点からは略
球状が好ましい。また、粒子径は、通常0.1〜15μm程
度であり、液晶ポリマー層1の厚みよりも小さい。
The particle shape of the above-mentioned filler and the like may be substantially spherical, needle-like, flake-like, etc. From the viewpoint of filling properties, substantially spherical shape is preferred. The particle diameter is usually about 0.1 to 15 μm, which is smaller than the thickness of the liquid crystal polymer layer 1.

【0026】また、液晶ポリマー層1は、被覆層2との
密着性を良好とするために、その表面をバフ研磨・ブラ
スト研磨・ブラシ研磨・プラズマ処理・コロナ処理・紫
外線処理・薬品処理等の方法を用いてトリアリルイソシ
アヌレートとの接触角が3〜50゜であって、かつ表面エ
ネルギーが45〜70mJ/m2となるように処理しておくこ
とが重要である。
The liquid crystal polymer layer 1 is subjected to buff polishing, blast polishing, brush polishing, plasma treatment, corona treatment, ultraviolet treatment, chemical treatment, etc. on its surface in order to improve the adhesion to the coating layer 2. It is important to use the method so that the contact angle with triallyl isocyanurate is 3 to 50 ° and the surface energy is 45 to 70 mJ / m 2 .

【0027】液晶ポリマー層1に対する液体のトリアリ
ルイソシアヌレートの濡れ性は、液晶ポリマー層1に対
するポリフェニレンエーテルの濡れ性に近似しており、
液晶ポリマー層1の上下面をトリアリルイソシアヌレー
トとの接触角が3〜50°とすることにより、被覆層2が
液晶ポリマー層1の上下面に良好に濡れ広がり、液晶ポ
リマー層1と被覆層2との密着性を良好となすことがで
き、その結果、高温バイアス試験においても両者間で剥
離することのない絶縁フィルム3とすることができる。
なお、トリアリルイソシアヌレートとの接触角が3°よ
り小さいと、被覆層2が液晶ポリマー層1上に極端に広
がってしまって位置精度が低下して、絶縁フィルム3を
複数枚重ねるとともに加熱・加圧して多層化する際に、
絶縁フィルム3の表面に形成される配線導体4や内部に
形成される貫通導体5の位置がずれて断線し易くなる傾
向があり、50°を超えると高温バイアス試験において液
晶ポリマー層1と被覆層2との密着性が低下して両者間
で剥離し易くなる傾向がある。また、液晶ポリマー層1
の上下面の表面エネルギーを45〜70mJ/m2とすること
により、液晶ポリマー層1表面の活性化された比較的熱
運動しやすい分子層と被覆層とが良好に絡み合って結合
し、両者の密着をさらに強固なものとすることができ
る。なお、表面エネルギーが45mJ/m2未満であると、
液晶ポリマー層1表面の分子層が十分に活性化されず、
被覆層2と良好に絡み合って結合することが困難となる
傾向があり、70mJ/m2を超えると液晶ポリマー層1の
表面が非常に反応性が高くなって空気中の酸素と反応し
てその表面に強度の弱い酸化物が形成され、その結果、
液晶ポリマー層1と被覆層2との密着性が低下して両者
間で剥離し易く成る傾向がある。したがって、液晶ポリ
マー層1の上下面のトリアリルイソシアヌレートとの接
触角を3〜50゜とし、かつ液晶ポリマー層1の表面エネ
ルギーを45〜70mJ/m2とすることが好ましい。
The wettability of liquid triallyl isocyanurate to the liquid crystal polymer layer 1 is similar to the wettability of polyphenylene ether to the liquid crystal polymer layer 1,
By making the upper and lower surfaces of the liquid crystal polymer layer 1 have a contact angle with triallyl isocyanurate of 3 to 50 °, the coating layer 2 satisfactorily wets and spreads on the upper and lower surfaces of the liquid crystal polymer layer 1, and the liquid crystal polymer layer 1 and the coating layer. Adhesion with 2 can be made good, and as a result, it is possible to obtain an insulating film 3 which does not peel off between the two even in a high temperature bias test.
When the contact angle with triallyl isocyanurate is smaller than 3 °, the coating layer 2 spreads extremely over the liquid crystal polymer layer 1 and the positional accuracy deteriorates, and a plurality of insulating films 3 are stacked and heated. When applying pressure to make multiple layers,
The wiring conductors 4 formed on the surface of the insulating film 3 and the penetrating conductors 5 formed inside tend to be displaced and easily break. If the angle exceeds 50 °, the liquid crystal polymer layer 1 and the coating layer are subjected to a high temperature bias test. There is a tendency that the adhesiveness with No. 2 decreases and peeling easily occurs between the two. In addition, the liquid crystal polymer layer 1
By setting the surface energy of the upper and lower surfaces to 45 to 70 mJ / m 2 , the activated molecular layer on the surface of the liquid crystal polymer layer 1 which is relatively easily moved by heat and the coating layer are well entangled and bonded to each other. The adhesion can be made even stronger. If the surface energy is less than 45 mJ / m 2 ,
The molecular layer on the surface of the liquid crystal polymer layer 1 is not sufficiently activated,
It tends to be difficult to entangle and bond well with the coating layer 2, and if it exceeds 70 mJ / m 2 , the surface of the liquid crystal polymer layer 1 becomes very reactive and reacts with oxygen in the air to A weak oxide is formed on the surface, resulting in
The adhesiveness between the liquid crystal polymer layer 1 and the coating layer 2 tends to decrease, and the liquid crystal polymer layer 1 and the coating layer 2 tend to peel off from each other. Therefore, it is preferable that the contact angle between the upper and lower surfaces of the liquid crystal polymer layer 1 and the triallyl isocyanurate is 3 to 50 ° and the surface energy of the liquid crystal polymer layer 1 is 45 to 70 mJ / m 2 .

【0028】なお、ここで表面エネルギーとは、理化学
辞典(第3版増補版)[玉虫文一他編、岩波書店(1981
年)]に記載されるように、表面の潜熱と表面張力との
和を意味し、その測定方法としては、例えばナカライテ
スク株式会社から市販されている濡れ指数標準液によっ
て定量可能なものである。この濡れ指数標準液は、テフ
ロン(登録商標)等基準となる物質表面での濡れ性を基
準に、表面エネルギー毎に濡れ指数標準液が調整されて
おり、測定はピペット等を用いて所定量を試料表面に滴
下し、所定時間での液滴の広がり径および/または液滴
の接触角を評価することで、試料表面における表面エネ
ルギーが定量される。
The term surface energy as used herein means the dictionary of physics and chemistry (3rd edition, augmented edition) [Bunichi Tamamushi et al., Iwanami Shoten (1981).
Year)], it means the sum of the latent heat of the surface and the surface tension, and the measuring method thereof can be quantified by a wetting index standard liquid commercially available from Nacalai Tesque, Inc., for example. . This wetting index standard solution is prepared by adjusting the wetting index standard solution for each surface energy based on the wettability on the surface of the reference substance such as Teflon (registered trademark). The surface energy on the sample surface is quantified by dropping the sample on the sample surface and evaluating the spread diameter of the droplet and / or the contact angle of the droplet in a predetermined time.

【0029】また、液晶ポリマー層1は、その表面の中
心線表面粗さRaを0.05〜5μmとしておくことが好ま
しい。本発明の絶縁フィルムによれば、液晶ポリマー層
1の上下面の中心線表面粗さRaを0.05〜5μmとした
ことから、液晶ポリマー層1の上下面が被覆層2と良好
なアンカー効果を有する密着性の良好なものとなり、液
晶ポリマー層1と被覆層2とがより強固に密着したもの
とすることができる。
The center line surface roughness Ra of the surface of the liquid crystal polymer layer 1 is preferably 0.05 to 5 μm. According to the insulating film of the present invention, the center line surface roughness Ra of the upper and lower surfaces of the liquid crystal polymer layer 1 is set to 0.05 to 5 μm, so that the upper and lower surfaces of the liquid crystal polymer layer 1 have a good anchoring effect with the coating layer 2. The adhesiveness is good, and the liquid crystal polymer layer 1 and the coating layer 2 can be more firmly adhered.

【0030】なお、中心線表面粗さRaは、半田リフロ
ーの際に液晶ポリマー層1と被覆層2との剥離を防止す
るという観点からは0.05μm以上であることが好まし
く、表面に被覆層2を形成する際に空気のかみ込みを防
止するという観点からは5μm以下であることが好まし
い。したがって、液晶ポリマー層1は、その表面の中心
線表面粗さRaを0.05〜5μmとすることが好ましい。
The center line surface roughness Ra is preferably 0.05 μm or more from the viewpoint of preventing separation of the liquid crystal polymer layer 1 and the coating layer 2 during solder reflow, and the coating layer 2 on the surface. The thickness is preferably 5 μm or less from the viewpoint of preventing the entrapment of air when forming the film. Therefore, the liquid crystal polymer layer 1 preferably has a center line surface roughness Ra of the surface of 0.05 to 5 μm.

【0031】次に、被覆層2は、後述する配線導体4を
被着形成する際の接着剤の機能を有するとともに、絶縁
フィルム3を用いて多層配線基板6を構成する際に、絶
縁フィルム3同士を積層する際の接着剤の役目を果た
す。
Next, the coating layer 2 has a function as an adhesive when the wiring conductor 4 to be described later is adhered and formed, and when the insulating film 3 is used to form the multilayer wiring board 6, the insulating film 3 is used. It plays the role of an adhesive when laminating each other.

【0032】被覆層2は、ポリフェニレンエーテル樹脂
やその誘導体、または、これらのポリマーアロイ等のポ
リフェニレンエーテル系有機物を30〜90体積%含有して
おり、とりわけ熱サイクル信頼性や配線導体4を接着す
る際の位置精度の観点からは、アリル変性ポリフェニレ
ンエーテル等の熱硬化性ポリフェニレンエーテルを含有
することが好ましい。
The coating layer 2 contains 30 to 90% by volume of a polyphenylene ether resin, a derivative thereof, or a polyphenylene ether organic material such as a polymer alloy of these, and particularly, the thermal cycle reliability and the adhesion of the wiring conductor 4 to each other. From the viewpoint of positional accuracy in this case, it is preferable to contain a thermosetting polyphenylene ether such as allyl-modified polyphenylene ether.

【0033】なお、ポリフェニレンエーテル系有機物の
含有量が30体積%未満であると、後述する充填材との混
練性が低下する傾向があり、また、90体積%を超える
と、液晶ポリマー層1表面に被覆層2を形成する際に、
被覆層2の厚みバラツキが大きくなる傾向がある。した
がって、ポリフェニレンエーテル系有機物の含有量は、
30〜90体積%の範囲が好ましい。
When the content of the polyphenylene ether-based organic substance is less than 30% by volume, the kneading property with the filler described below tends to be lowered, and when it exceeds 90% by volume, the surface of the liquid crystal polymer layer 1 is When forming the coating layer 2 on
The thickness variation of the coating layer 2 tends to increase. Therefore, the content of polyphenylene ether-based organic matter,
A range of 30 to 90% by volume is preferable.

【0034】また、被覆層2は、液晶ポリマー層1との
接着性や配線導体4・後述する貫通導体5との密着性を
良好にするという観点からは、重合反応可能な官能基を
2個以上有する多官能性モノマーあるいは多官能性重合
体等の添加剤を含有することが好ましく、例えば、トリ
アリルイソシアヌレートやトリアリルシアヌレートおよ
びこれらの重合体等を含有することが好ましい。
From the viewpoint of improving the adhesiveness with the liquid crystal polymer layer 1 and the adhesiveness with the wiring conductor 4 and the through conductor 5 described later, the coating layer 2 has two functional groups capable of undergoing a polymerization reaction. It is preferable to contain an additive such as a polyfunctional monomer or a polyfunctional polymer having the above, and for example, it is preferable to contain triallyl isocyanurate, triallyl cyanurate, or a polymer thereof.

【0035】さらに、被覆層2は、弾性率を調整するた
めのゴム成分や熱安定性を改善するための酸化防止剤、
耐光性を改善するための紫外線吸収剤等の光安定剤、難
燃性を付加するためのハロゲン系もしくはリン酸系の難
燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸
バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改
善するための高級脂肪酸や高級脂肪酸エステルや高級脂
肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、
熱膨張係数を調整したり機械的強度を向上するための酸
化アルミニウムや酸化珪素・酸化チタン・酸化バリウム
・酸化ストロンチウム・酸化ジルコニウム・酸化カルシ
ウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化
珪素・チタン酸カリウム・チタン酸バリウム・チタン酸
ストロンチウム・チタン酸カルシウム・ホウ酸アルミニ
ウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン
酸ストロンチウム等の充填材、あるいは、充填材との親
和性を高めこれらの接合性向上と機械的強度を高めるた
めのシラン系カップリング剤やチタネート系カップリン
グ剤等のカップリング剤を含有してもよい。
Further, the coating layer 2 comprises a rubber component for adjusting the elastic modulus and an antioxidant for improving the thermal stability,
Light stabilizers such as UV absorbers to improve light resistance, halogen-based or phosphoric acid-based flame retardants to add flame retardancy, antimony compounds, zinc borate, barium metaborate, and zirconium oxide. Flame retardant aids such as, lubricants such as higher fatty acids and higher fatty acid esters to improve lubricity, higher fatty acid metal salts and fluorocarbon surfactants,
Aluminum oxide, silicon oxide, titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, zeolite, silicon nitride, aluminum nitride, silicon carbide, potassium titanate for adjusting thermal expansion coefficient and improving mechanical strength・ Filling materials such as barium titanate, strontium titanate, calcium titanate, aluminum borate, barium stannate, barium zirconate, strontium zirconate, etc., or improving their bondability and mechanical properties. A coupling agent such as a silane coupling agent or a titanate coupling agent for increasing the mechanical strength may be contained.

【0036】特に絶縁フィルム3を積層・加圧して多層
配線基板6を形成する際に、被覆層2の流動性を抑制
し、貫通導体5の位置ずれや被覆層2の厚みばらつきを
防止するという観点からは、被覆層2は充填材として10
体積%以上の無機絶縁粉末を含有することが好ましい。
また、液晶ポリマー層1との接着界面および配線導体4
との接着界面での半田リフロー時の剥離を防止するとい
う観点からは、充填材の含有量を70体積%以下とするこ
とが好ましい。したがって、ポリフェニレンエーテル系
有機物から成る被覆層2に、10〜70体積%の充填材を含
有させておくことが好ましい。
Particularly, when the insulating film 3 is laminated and pressed to form the multilayer wiring substrate 6, the fluidity of the coating layer 2 is suppressed, and the displacement of the through conductor 5 and the variation in the thickness of the coating layer 2 are prevented. From the viewpoint, the coating layer 2 is used as a filler.
It is preferable to contain the inorganic insulating powder in a volume% or more.
In addition, the adhesive interface with the liquid crystal polymer layer 1 and the wiring conductor 4
The content of the filler is preferably 70% by volume or less from the viewpoint of preventing peeling during solder reflow at the adhesive interface with. Therefore, it is preferable that the coating layer 2 made of a polyphenylene ether-based organic material contains 10 to 70% by volume of the filler.

【0037】なお、上記の充填材等の形状は、略球状・
針状・フレーク状等があり、充填性の観点からは、略球
状が好ましい。また、粒子径は、0.1〜15μm程度であ
り、被覆層2の厚みよりも小さい。
The shape of the above-mentioned filling material is substantially spherical.
There are needle-like shapes and flake-like shapes, and a substantially spherical shape is preferable from the viewpoint of filling properties. The particle size is about 0.1 to 15 μm, which is smaller than the thickness of the coating layer 2.

【0038】このような絶縁フィルム3は、例えば粒径
が0.1〜15μm程度の酸化珪素等の無機絶縁粉末に、熱
硬化性ポリフェニレンエーテル樹脂と溶剤・可塑剤・分
散剤等を添加して得たペーストを、プラズマ処理により
トリアリルイソシアヌレートとの接触角が3〜50°であ
って、かつ表面エネルギーが45〜70mJ/m2となるよう
に表面処理した液晶ポリマー層1の上下表面に従来周知
のドクタブレード法等のシート成型法を採用して被覆層
2を形成した後、あるいは上記のペースト中に液晶ポリ
マー層1を浸漬し垂直に引き上げることによって液晶ポ
リマー層1の表面に被覆層2を形成した後、これを60〜
100℃の温度で5分〜3時間加熱・乾燥することにより
製作される。
Such an insulating film 3 is obtained by adding a thermosetting polyphenylene ether resin and a solvent, a plasticizer, a dispersant, etc. to an inorganic insulating powder such as silicon oxide having a particle size of about 0.1 to 15 μm. Conventionally well-known on the upper and lower surfaces of the liquid crystal polymer layer 1 which has been subjected to surface treatment by plasma treatment so that the contact angle with triallyl isocyanurate is 3 to 50 ° and the surface energy is 45 to 70 mJ / m 2. The coating layer 2 is formed on the surface of the liquid crystal polymer layer 1 after forming the coating layer 2 by using a sheet molding method such as the doctor blade method or by immersing the liquid crystal polymer layer 1 in the above paste and pulling it up vertically. After forming this, 60 ~
It is manufactured by heating and drying at a temperature of 100 ° C for 5 minutes to 3 hours.

【0039】なお、絶縁フィルム3の厚みは絶縁信頼性
を確保するという観点からは10〜200μmであることが
好ましく、また、高耐熱性・低吸湿性・高寸法安定性を
確保するという観点からは液晶ポリマー層1の厚みを絶
縁フィルム3の厚みの40〜90%の範囲としておくことが
好ましい。
The thickness of the insulating film 3 is preferably 10 to 200 μm from the viewpoint of ensuring insulation reliability, and from the viewpoint of ensuring high heat resistance, low hygroscopicity and high dimensional stability. It is preferable that the thickness of the liquid crystal polymer layer 1 be within the range of 40 to 90% of the thickness of the insulating film 3.

【0040】次に、本発明の多層配線基板6は、上下面
の少なくとも一方の面に金属箔から成る配線導体4が配
設された絶縁フィルム3を複数積層して成るとともに、
この絶縁フィルム3を挟んで上下に位置する配線導体4
間を絶縁フィルム3に形成された貫通導体5を介して電
気的に接続することにより形成されている。
Next, the multilayer wiring board 6 of the present invention is formed by laminating a plurality of insulating films 3 each having a wiring conductor 4 made of a metal foil disposed on at least one of the upper and lower surfaces thereof.
Wiring conductors 4 located above and below with the insulating film 3 interposed therebetween
It is formed by electrically connecting the gaps through the penetrating conductors 5 formed on the insulating film 3.

【0041】配線導体4は、その厚みが2〜30μmで銅
・金等の良導電性の金属箔から成り、多層配線基板6に
搭載される電子部品7を外部電気回路(図示せず)に電
気的に接続する機能を有する。
The wiring conductor 4 has a thickness of 2 to 30 μm and is made of a metal foil having good conductivity such as copper or gold. The electronic component 7 mounted on the multilayer wiring board 6 is connected to an external electric circuit (not shown). It has a function of electrically connecting.

【0042】このような配線導体4は、絶縁フィルム3
を複数積層する際、配線導体4の周囲にボイドが発生す
るのを防止するという観点から、図3の要部拡大断面図
に示すように、被覆層2に少なくとも配線導体4の表面
と被覆層2の表面とが平坦となるように埋設されている
ことが好ましい。また、配線導体4を被覆層2に埋設す
る際に、被覆層2の乾燥状態での気孔率を3〜40体積%
としておくと、配線導体4周囲の被覆層2の樹脂盛り上
がりを生じさせず平坦化することができるとともに配線
導体4と被覆層2の間に挟まれる空気の排出を容易にし
て気泡の巻き込みを防止することができる。なお、乾燥
状態での気孔率が40体積%を超えると、複数積層した絶
縁フィルム3を加圧・加熱硬化した後に被覆層2内に気
孔が残存し、この気孔が空気中の水分を吸着して絶縁性
が低下してしまうおそれがあるので、被覆層2の乾燥状
態での気孔率を3〜40体積%の範囲としておくことが好
ましい。
Such a wiring conductor 4 is composed of the insulating film 3
From the viewpoint of preventing voids from being generated around the wiring conductor 4 when a plurality of layers are laminated, as shown in the enlarged cross-sectional view of the main part of FIG. 3, the coating layer 2 includes at least the surface of the wiring conductor 4 and the coating layer. It is preferable that the second surface and the second surface are buried so as to be flat. When the wiring conductor 4 is embedded in the coating layer 2, the porosity of the coating layer 2 in the dry state is 3 to 40% by volume.
If so, the coating layer 2 around the wiring conductor 4 can be flattened without causing resin swelling, and the air trapped between the wiring conductor 4 and the coating layer 2 can be easily discharged to prevent entrapment of air bubbles. can do. When the porosity in the dry state exceeds 40% by volume, pores remain in the coating layer 2 after pressurizing and heating and curing a plurality of laminated insulating films 3, and the pores adsorb moisture in the air. Therefore, it is preferable that the porosity of the coating layer 2 in the dry state is in the range of 3 to 40% by volume because the insulating property may be deteriorated.

【0043】このような被覆層2の乾燥状態での気孔率
は、被覆層2を液晶ポリマー層1の表面上に塗布し乾燥
する際に、乾燥温度や昇温速度等の乾燥条件を適宜調整
することにより所望の値とすることができる。
The porosity of the coating layer 2 in the dry state is appropriately adjusted by adjusting the drying conditions such as the drying temperature and the temperature rising rate when the coating layer 2 is applied on the surface of the liquid crystal polymer layer 1 and dried. By doing so, a desired value can be obtained.

【0044】さらに、絶縁フィルム3に配設された配線
導体4の幅方向の断面形状を、絶縁フィルム3側の底辺
の長さが対向する底辺の長さよりも短い台形状とすると
ともに、絶縁フィルム3側の底辺と側辺との成す角度を
95〜150°とすることが好ましい。絶縁フィルム3に配
設された配線導体4の幅方向の断面形状を、絶縁フィル
ム3側の底辺の長さが対向する底辺の長さよりも短い台
形状とするとともに、絶縁フィルム3側の底辺と側辺と
の成す角度を95〜150°とすることにより、配線導体4
を被覆層2に埋設する際に、配線導体4を被覆層2に容
易に埋設して配線導体4を埋設した後の被覆層2表面を
ほぼ平坦にすることができ、積層の際に空気をかみ込ん
で絶縁性を低下させることのない多層配線基板6とする
ことができる。なお、気泡をかみ込むことなく埋設する
という観点からは、絶縁フィルム3側の底辺と側辺との
成す角度を95°以上とすることが好ましく、配線導体2
を微細化するという観点からは150°以下とすることが
好ましい。
Furthermore, the cross-sectional shape in the width direction of the wiring conductor 4 arranged on the insulating film 3 is a trapezoidal shape in which the length of the bottom side on the insulating film 3 side is shorter than the length of the opposite bottom side, and the insulating film is formed. The angle between the bottom side and the side on the 3 side is
It is preferably set to 95 to 150 °. The cross-sectional shape of the wiring conductor 4 disposed on the insulating film 3 in the width direction is a trapezoid whose base length on the insulating film 3 side is shorter than the length of the opposing base, and By setting the angle formed by the sides with 95 to 150 °, the wiring conductor 4
When the wiring conductor 4 is embedded in the coating layer 2, the wiring conductor 4 can be easily embedded in the coating layer 2 so that the surface of the coating layer 2 after the wiring conductor 4 is embedded can be made substantially flat. It is possible to obtain the multilayer wiring board 6 that does not bite into and deteriorate the insulation. From the viewpoint of embedding air bubbles without biting, it is preferable that the angle formed by the bottom side and the side side of the insulating film 3 side be 95 ° or more.
From the viewpoint of miniaturization, it is preferable that the angle be 150 ° or less.

【0045】また、絶縁フィルム3の層間において、配
線導体4の長さの短い底辺と液晶ポリマー層1との間に
位置する被覆層2の厚みx(μm)が、上下の液晶ポリ
マー層1間の距離をT(μm)、配線導体4の厚みをt
(μm)としたときに、3μm≦0.5T−t≦x≦0.5T
≦35μm(ただし、8μm≦T≦70μm、1μm≦t≦
32μm)であることが好ましい。
In addition, the thickness x (μm) of the covering layer 2 located between the short base of the wiring conductor 4 and the liquid crystal polymer layer 1 between the insulating film 3 is between the upper and lower liquid crystal polymer layers 1. Is T (μm), and the thickness of the wiring conductor 4 is t
(Μm), 3 μm ≦ 0.5T−t ≦ x ≦ 0.5T
≦ 35 μm (however, 8 μm ≦ T ≦ 70 μm, 1 μm ≦ t ≦
32 μm) is preferable.

【0046】液晶ポリマー層1間の距離をT(μm)、
配線導体4の厚みをt(μm)としたときに、配線導体
4の長さの短い底辺と液晶ポリマー層1間のポリフェニ
レンエーテル系有機物から成る被覆層2の厚みx(μ
m)を3μm≦0.5T−t≦x≦0.5T≦35μmとするこ
とにより、配線導体4の長さの短い底辺と液晶ポリマー
層1間の距離および配線導体4の長さの長い底辺と隣接
する液晶ポリマー層1間の距離の差をt(μm)未満と
小さくすることができ、被覆層2の厚みが大きく異なる
ことから生じる多層配線基板6の反りを防止することが
できる。したがって、配線導体4の台形状の上底側表面
と液晶ポリマー層1の間に位置する、被覆層2の厚みx
(μm)を、液晶ポリマー層1間の距離をT(μm)、
配線導体4の厚みをt(μm)としたときに、3μm≦
0.5T−t≦x≦0.5T≦35μmの範囲とすることが好ま
しい。
The distance between the liquid crystal polymer layers 1 is T (μm),
Assuming that the thickness of the wiring conductor 4 is t (μm), the thickness x (μ of the coating layer 2 made of polyphenylene ether organic material between the bottom of the wiring conductor 4 and the liquid crystal polymer layer 1 is short.
m) is 3 μm ≦ 0.5T−t ≦ x ≦ 0.5T ≦ 35 μm, the distance between the short bottom of the wiring conductor 4 and the liquid crystal polymer layer 1 and the long bottom of the wiring conductor 4 are adjacent to each other. It is possible to reduce the difference in distance between the liquid crystal polymer layers 1 to be less than t (μm), and it is possible to prevent warpage of the multilayer wiring board 6 caused by a large difference in the thickness of the coating layer 2. Therefore, the thickness x of the coating layer 2, which is located between the trapezoidal upper bottom surface of the wiring conductor 4 and the liquid crystal polymer layer 1,
(Μm), the distance between the liquid crystal polymer layers 1 is T (μm),
When the thickness of the wiring conductor 4 is t (μm), 3 μm ≦
It is preferable that 0.5T−t ≦ x ≦ 0.5T ≦ 35 μm.

【0047】このような配線導体4は、絶縁フィルム3
となる前駆体シートに、公知のフォトレジストを用いた
サブトラクティブ法によりパターン形成した、例えば銅
から成る金属箔を転写法等により被着形成することによ
り形成される。先ず、支持体と成るフィルム上に銅から
成る金属箔を接着剤を介して接着した金属箔転写用フィ
ルムを用意し、次に、フィルム上の金属箔を公知のフォ
トレジストを用いたサブトラクティブ法を使用してパタ
ーン状にエッチングする。この時、パターンの表面側の
側面は、フィルム側の側面に較べてエッチング液に接す
る時間が長いためにエッチングされやすく、パターンの
幅方向の断面形状を台形状とすることができる。なお、
台形の形状は、エッチング液の濃度やエッチング時間を
調整することにより短い底辺と側辺とのなす角度を95〜
150°の台形状とすることができる。そして、この金属
箔転写用フィルムを絶縁フィルム3と成る前駆体シート
に積層し、温度が100〜200℃で圧力が0.5〜10MPaの
条件で10分〜1時間ホットプレスした後、支持体と成る
フィルムを剥離除去して金属箔を絶縁フィルム3と成る
前駆体シート表面に転写させることにより、台形状の上
底側が被覆層2に埋設された配線導体4を形成すること
ができる。
Such a wiring conductor 4 is composed of the insulating film 3
It is formed by depositing a metal foil made of, for example, copper, which is patterned by a subtractive method using a known photoresist, on the precursor sheet to be formed by a transfer method or the like. First, a metal foil transfer film is prepared by adhering a metal foil made of copper on a film serving as a support through an adhesive, and then a metal foil on the film is subjected to a subtractive method using a known photoresist. Is used to etch in a pattern. At this time, the side surface on the surface side of the pattern is more likely to be etched because the side surface on the surface side is in contact with the etching solution for a longer time than the side surface on the film side, and the cross-sectional shape in the width direction of the pattern can be trapezoidal. In addition,
The trapezoidal shape allows the angle between the short base and the side to be adjusted to 95 ~ by adjusting the concentration of the etching solution and the etching time.
It can be trapezoidal at 150 °. Then, this metal foil transfer film is laminated on a precursor sheet which becomes the insulating film 3, and hot pressed for 10 minutes to 1 hour under the conditions of a temperature of 100 to 200 ° C. and a pressure of 0.5 to 10 MPa, and then becomes a support. By removing the film by peeling and transferring the metal foil onto the surface of the precursor sheet which becomes the insulating film 3, the wiring conductor 4 having the trapezoidal upper bottom side embedded in the coating layer 2 can be formed.

【0048】なお、配線導体4の長さの短い底辺と対向
する液晶ポリマー層1間の被覆層2の厚みx(μm)
は、金属箔転写時のホットプレスの圧力を調整すること
により所望の範囲とすることができる。また、配線導体
4は被覆層2との密着性を高めるためにその表面にバフ
研磨・ブラスト研磨・ブラシ研磨・薬品処理等の処理で
表面を粗化しておくことが好ましい。
The thickness x (μm) of the coating layer 2 between the liquid crystal polymer layers 1 opposed to the short base of the wiring conductor 4 is as follows.
Can be set to a desired range by adjusting the pressure of the hot press at the time of transferring the metal foil. Further, in order to improve the adhesion with the coating layer 2, the surface of the wiring conductor 4 is preferably roughened by a treatment such as buffing, blasting, brushing, or chemical treatment.

【0049】また、絶縁フィルム3には、直径が20〜15
0μm程度の貫通導体5が形成されている。貫通導体5
は、絶縁フィルム3を挟んで上下に位置する配線導体4
を電気的に接続する機能を有し、絶縁フィルム3にレー
ザにより穿設加工を施すことにより貫通孔を形成した
後、この貫通孔に銅・銀・金・半田等から成る導電性ペ
ーストを従来周知のスクリーン印刷法により埋め込むこ
とにより形成される。
The insulating film 3 has a diameter of 20 to 15
The through conductor 5 having a thickness of about 0 μm is formed. Through conductor 5
Are the wiring conductors 4 located above and below with the insulating film 3 in between.
Has a function of electrically connecting to each other. After a through hole is formed by performing a drilling process on the insulating film 3 with a laser, a conductive paste made of copper, silver, gold, solder or the like is conventionally provided in the through hole. It is formed by embedding by a known screen printing method.

【0050】本発明の多層配線基板6によれば、絶縁フ
ィルム3を液晶ポリマー層1の上下面にポリフェニレン
エーテル系有機物から成る被覆層2を有したものとした
ことから、液晶ポリマー層1が高耐熱性・高弾性率・高
寸法安定性・低吸湿性であり、ガラスクロスのような強
化材を用いなくとも絶縁フィルム3を構成することが可
能となり、その結果、レーザによる穿設加工が容易とな
り微細で均一な貫通孔を形成できる。
According to the multilayer wiring board 6 of the present invention, since the insulating film 3 has the coating layers 2 made of polyphenylene ether organic material on the upper and lower surfaces of the liquid crystal polymer layer 1, the liquid crystal polymer layer 1 has a high quality. It has heat resistance, high elastic modulus, high dimensional stability, and low hygroscopicity, and it is possible to configure the insulating film 3 without using a reinforcing material such as glass cloth. As a result, laser drilling is easy. Therefore, fine and uniform through holes can be formed.

【0051】このような多層配線基板6は、上述したよ
うな方法で製作した絶縁フィルム3と成る前駆体シート
の所望の位置に貫通導体5を形成した後、パターン形成
した例えば銅の金属箔を、温度が100〜200℃で圧力が0.
5〜10MPaの条件で10分〜1時間ホットプレスして転
写し、これらを積層して最終的に温度が150〜300℃で圧
力が0.5〜10MPaの条件で30分〜24時間ホットプレス
して完全硬化させることにより製作される。
In such a multilayer wiring board 6, a through conductor 5 is formed at a desired position on a precursor sheet to be the insulating film 3 manufactured by the above-described method, and then a patterned metal foil of copper, for example, is formed. , The temperature is 100-200 ℃ and the pressure is 0.
Transfer by hot pressing for 10 minutes to 1 hour under the condition of 5 to 10 MPa, stacking these, and finally hot pressing under the condition of temperature of 150 to 300 ° C and pressure of 0.5 to 10 MPa for 30 minutes to 24 hours. It is manufactured by being completely cured.

【0052】本発明の多層配線基板6によれば、液晶ポ
リマー層1上下面にポリフェニレンエーテル系有機物か
ら成る被覆層2を形成して成る絶縁フィルム3を複数積
層して成るものとしたことから、ポリフェニレンエーテ
ル系有機物分子は液晶ポリマー系有機物分子ほど剛直で
なく、また、規則正しい配向性も示さないことから比較
的分子が動きやすいために配線導体4表面の微細な凹部
に入り込み十分なアンカー効果を発揮することができ、
その結果、絶縁フィルム3と配線導体4の密着性が良好
となり高温高湿下において両者間で剥離を生じてしまう
ということがない。また、ポリフェニレンエーテル系有
機物から成る被覆層2と液晶ポリマー層1の誘電率の周
波数挙動がほぼ等しいことから、配線導体4を接着する
際の加圧によって被覆層2にわずかな厚みばらつきが生
じたとしても高周波領域における伝送特性の低下を生じ
ることのない高周波伝送特性に優れた多層配線基板6と
することができる。さらに、絶縁フィルム3を多層化す
る際、ポリフェニレンエーテル系有機物分子は動きやす
いためにポリフェニレンエーテル系有機物分子同士が絡
み合いやすくなって被覆層2同士の密着性が強くなり、
その結果、高温バイアス試験下においても絶縁フィルム
3間で剥離して絶縁不良が発生してしまうこともない。
According to the multilayer wiring board 6 of the present invention, a plurality of insulating films 3 each having a coating layer 2 made of a polyphenylene ether type organic material formed on the upper and lower surfaces of the liquid crystal polymer layer 1 are laminated. Polyphenylene ether-based organic molecules are not as rigid as liquid-crystal polymer-based organic molecules, and because they do not show regular orientation, the molecules move relatively easily, so they enter the minute recesses on the surface of the wiring conductor 4 and exert a sufficient anchoring effect. You can
As a result, the adhesion between the insulating film 3 and the wiring conductor 4 is improved, and peeling between the two does not occur under high temperature and high humidity. Further, since the frequency behavior of the permittivity of the coating layer 2 made of a polyphenylene ether-based organic material and the liquid crystal polymer layer 1 are substantially equal to each other, a slight thickness variation occurs in the coating layer 2 due to the pressure applied when the wiring conductor 4 is bonded. Even in this case, it is possible to obtain the multilayer wiring board 6 excellent in the high frequency transmission characteristics without causing the deterioration of the transmission characteristics in the high frequency region. Furthermore, when the insulating film 3 is multilayered, since the polyphenylene ether-based organic molecule is easily moved, the polyphenylene ether-based organic molecule is easily entangled with each other, and the adhesion between the coating layers 2 is increased,
As a result, even under the high temperature bias test, the insulating films 3 are not peeled from each other to cause insulation failure.

【0053】かくして本発明の多層配線基板6によれ
ば、上記構成の多層配線基板6の上面に形成した配線導
体4の一部から成る接続パッド8に半田等の導体バンプ
8を介して半導体素子等の電子部品7を電気的に接続す
るとともに、多層配線基板6の下面に形成した配線導体
4の一部から成る接続パッド8に半田等の導体バンプ9
を形成することにより配線密度が高く絶縁性に優れた混
成集積回路とすることができる。
Thus, according to the multilayer wiring board 6 of the present invention, the semiconductor element is connected to the connection pad 8 formed by a part of the wiring conductor 4 formed on the upper surface of the multilayer wiring board 6 having the above-mentioned structure, through the conductor bump 8 such as solder. And the like electronic components 7 are electrically connected, and at the same time, a conductor bump 9 such as solder is attached to the connection pad 8 formed of a part of the wiring conductor 4 formed on the lower surface of the multilayer wiring board 6.
By forming the above, it is possible to obtain a hybrid integrated circuit having a high wiring density and an excellent insulating property.

【0054】なお、本発明の多層配線基板6は上述の実
施例に限定されるものではなく、本発明の要旨を逸脱し
ない範囲であれば種々の変更は可能であり、例えば、上
述の実施例では4層の絶縁フィルム3を積層することに
よって多層配線基板6を製作したが、2層や3層、ある
いは5層以上の絶縁フィルム3を積層して多層配線基板
6を製作してもよい。また、本発明の多層配線基板6の
上下表面に、1層や2層、あるいは3層以上の有機樹脂
を主成分とする絶縁層から成るビルドアップ層やソルダ
ーレジスト層10を形成してもよい。
The multilayer wiring board 6 of the present invention is not limited to the above-mentioned embodiments, but various modifications can be made without departing from the scope of the present invention. Then, the multilayer wiring board 6 is manufactured by laminating the four layers of the insulating films 3, but the multilayer wiring board 6 may be manufactured by laminating the insulating films 3 of two layers, three layers, or five layers or more. Further, a build-up layer or a solder resist layer 10 made of an insulating layer containing one, two, or three or more layers of an organic resin as a main component may be formed on the upper and lower surfaces of the multilayer wiring board 6 of the present invention. .

【0055】[0055]

【実施例】次に本発明の絶縁フィルムおよび多層配線基
板を、以下の試料を製作して評価した。 (実施例)先ず、熱硬化性ポリフェニレンエーテル樹脂
に平均粒径が0.6μmの球状溶融シリカをその含有量が4
0体積%となるように加え、これに溶剤としてトルエ
ン、さらに有機樹脂の硬化を促進させるための触媒を添
加し、1時間混合してワニスを調整した。次に、融点が
320℃で厚みが35μmの液晶ポリマー層の表面を、真空
プラズマ装置を用いて、電圧を27kV、雰囲気をO2
よびCF4(ガス流量がそれぞれ80cm3/分)とし、片
面15分×2回の条件でプラズマ処理して、トリアリルイ
ソシアヌレートとの接触角が35°で、かつ表面エネルギ
ーが60mJ/m2、中心線表面粗さRaが0.10μmとなる
ようにし、この液晶ポリマー層の上面に上記ワニスをド
クターブレード法により塗布し、厚さ約20μmの熱硬化
性ポリフェニレンエーテル被覆層を成形した。そして、
この液晶ポリマー層の下面にも同様にポリフェニレンエ
ーテル被覆層を成形し、絶縁フィルムを製作した。
EXAMPLES Next, the following samples were manufactured and evaluated for the insulating film and the multilayer wiring board of the present invention. (Example) First, spherical fused silica having an average particle size of 0.6 μm was added to a thermosetting polyphenylene ether resin in an amount of 4
Toluene as a solvent and a catalyst for accelerating the curing of the organic resin were further added to 0% by volume, and mixed for 1 hour to prepare a varnish. Then the melting point
The surface of the liquid crystal polymer layer having a thickness of 35 μm at 320 ° C. was set to a voltage of 27 kV, the atmosphere was set to O 2 and CF 4 (gas flow rate was 80 cm 3 / min each) using a vacuum plasma device, and one side was 15 minutes × 2 times. The plasma treatment under the conditions described in (1) above so that the contact angle with triallyl isocyanurate is 35 °, the surface energy is 60 mJ / m 2 , and the centerline surface roughness Ra is 0.10 μm. The above varnish was applied to the above by a doctor blade method to form a thermosetting polyphenylene ether coating layer having a thickness of about 20 μm. And
Similarly, a polyphenylene ether coating layer was formed on the lower surface of the liquid crystal polymer layer to produce an insulating film.

【0056】さらに、この絶縁フィルムに、CO2レー
ザにより直径65μmの貫通孔を形成し、この貫通孔に銅
粉末と有機バインダを含有する導体ペーストをスクリー
ン印刷により埋め込むことにより貫通導体を形成した。
Further, a through hole having a diameter of 65 μm was formed in this insulating film by a CO 2 laser, and a conductor paste containing copper powder and an organic binder was embedded in the through hole by screen printing to form a through conductor.

【0057】次に、厚みが12μmで、回路状に形成した
銅箔が付いた転写用支持フィルムと、貫通導体が形成さ
れた絶縁フィルムとを位置合わせして真空積層機により
3MPaの圧力で30秒加圧した後、転写用支持フィルム
を剥離して配線導体を絶縁フィルム上に埋設した。最後
に、この配線導体が形成された絶縁フィルムを4枚重ね
合わせ、3MPaの圧力下で200℃の温度で5時間加熱
処理して完全硬化させて多層配線基板を得た。
Next, the transfer supporting film having a thickness of 12 μm and having a circuit-shaped copper foil attached thereto and the insulating film having the through conductor formed thereon were aligned with each other, and a pressure of 3 MPa was applied by a vacuum laminating machine at a pressure of 3 MPa. After pressing for 2 seconds, the transfer support film was peeled off and the wiring conductor was embedded on the insulating film. Finally, four insulating films having this wiring conductor formed thereon were stacked, and heat-treated at a temperature of 200 ° C. for 5 hours under a pressure of 3 MPa to completely cure them to obtain a multilayer wiring board.

【0058】なお、絶縁性の評価を行うためのテスト基
板は、配線幅50μm、配線間隔50μmの櫛歯状パターン
の配線導体を多層配線基板内に形成し、また、導通性の
評価を行うためのテスト基板は、その内部に多層配線基
板の絶縁層を介して位置する上下の2層の配線導体と両
者を電気的に接続する貫通導体とでビアチェーンを形成
したものとした。さらに、高周波伝送特性の評価を行う
ためのテスト基板は、ストリップライン構造の配線導体
を多層配線基板内部に形成した。
The test board for evaluating the insulating property was used to form a comb-shaped wiring conductor with a wiring width of 50 μm and a wiring interval of 50 μm in the multilayer wiring board, and to evaluate the conductivity. In the test board, the via chain was formed with the upper and lower two-layer wiring conductors positioned via the insulating layer of the multilayer wiring board and the through conductors electrically connecting the two. Further, as the test board for evaluating the high frequency transmission characteristics, a wiring conductor having a stripline structure was formed inside the multilayer wiring board.

【0059】(比較例1)比較例1用として用いた多層
配線基板は、まず、表面に銅箔を熱溶融により接着した
融点が320℃の液晶ポリマー層にフォトレジストを用い
て回路状の配線導体を形成し、次に、CO2レーザによ
り直径65μmの貫通孔を形成し、さらにこの貫通孔に銅
粉末と有機バインダを含有する導体ペーストをスクリー
ン印刷により埋め込むことにより貫通導体を形成して回
路基板を作成した後、これらの回路基板を融点が280℃
の液晶ポリマー層を間に挟んで1MPaの圧力下で285
℃の温度で5分間加熱プレスすることにより製作した。
(Comparative Example 1) The multilayer wiring board used for Comparative Example 1 was first formed into a circuit-like wiring by using a photoresist for a liquid crystal polymer layer having a melting point of 320 ° C. and having a copper foil adhered to the surface by heat melting. A conductor is formed, then a through hole having a diameter of 65 μm is formed by a CO 2 laser, and a conductor paste containing copper powder and an organic binder is embedded in the through hole by screen printing to form a through conductor. After making the boards, these circuit boards have a melting point of 280 ° C.
285 under the pressure of 1 MPa with the liquid crystal polymer layer of
It was manufactured by hot pressing at a temperature of ° C for 5 minutes.

【0060】(比較例2)比較例2用として用いた多層
配線基板は、表面に銅箔をエポキシ樹脂製接着剤を介し
て接着した、融点が320℃の液晶ポリマー層を用いるこ
と以外は、比較例1用の多層配線基板と同様の方法で製
作した。
(Comparative Example 2) The multilayer wiring board used for Comparative Example 2 uses a liquid crystal polymer layer having a melting point of 320 ° C., in which a copper foil is adhered to the surface via an epoxy resin adhesive. It was manufactured by the same method as the multilayer wiring board for Comparative Example 1.

【0061】絶縁性の評価は、試料を温度が130℃、相
対湿度が85%の条件で、印加電圧5.5Vの高温バイアス
試験を行い、168時間後の配線導体間の絶縁抵抗を測定
し、試験前後の変化量を比較することにより評価した。
また、導通性の評価は、試料を温度が-55℃の条件で30
分、125℃の条件で30分を1サイクルとする温度サイク
ル試験を行い、1000サイクル後のビアチェーンの導通抵
抗を測定し、試験前後の導通抵抗の変化量を比較するこ
とにより評価した。さらに、高周波伝送特性の評価は、
ストリップ構造を有する試料を用いて、周波数が100M
Hz〜40GHzの範囲で高周波伝送特性を測定すること
により評価した。
The insulation was evaluated by subjecting the sample to a high temperature bias test with an applied voltage of 5.5 V under conditions of a temperature of 130 ° C. and a relative humidity of 85%, and measuring the insulation resistance between wiring conductors after 168 hours. It was evaluated by comparing the amount of change before and after the test.
In addition, the conductivity was evaluated at a temperature of -55 ° C for 30 minutes.
Min., A temperature cycle test was conducted under the condition of 125 ° C. for 30 minutes as one cycle, the conduction resistance of the via chain after 1000 cycles was measured, and evaluation was made by comparing the amount of change in conduction resistance before and after the test. Furthermore, the evaluation of high frequency transmission characteristics is
Using a sample with a strip structure, the frequency is 100M
It was evaluated by measuring high frequency transmission characteristics in the range of Hz to 40 GHz.

【0062】表1に絶縁性の評価結果を、表2に導通抵
抗の評価結果を、表3に伝送特性の評価結果を示す。
Table 1 shows the evaluation result of the insulation property, Table 2 shows the evaluation result of the conduction resistance, and Table 3 shows the evaluation result of the transmission characteristic.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【表3】 [Table 3]

【0066】表1からは、比較例1の多層配線基板が高
温バイアス試験後の絶縁抵抗が3.5×106Ωと小さくな
り、耐熱性に劣ることがわかった。また、表2からは、
比較例1の多層配線基板は温度サイクル試験で断線が発
生し、絶縁性および温度サイクル性に劣ることがわかっ
た。さらに、表3からは、比較例2の多層配線基板が20
GHz以上の高周波領域で伝送特性が-1.0dB以下と劣
化し、高周波伝送特性に劣ることがわかった。
From Table 1, it was found that the multilayer wiring board of Comparative Example 1 had a low insulation resistance after the high temperature bias test of 3.5 × 10 6 Ω and was inferior in heat resistance. Also, from Table 2,
It was found that the multilayer wiring board of Comparative Example 1 suffered disconnection in the temperature cycle test, and was inferior in insulating property and temperature cycle property. Further, from Table 3, the multilayer wiring board of Comparative Example 2 is 20
It was found that the transmission characteristics deteriorated to -1.0 dB or less in the high frequency region of GHz or higher, and the high frequency transmission characteristics were inferior.

【0067】それらに対して本発明の多層配線基板は、
高温バイアス試験後でも絶縁抵抗は2.7×1011Ωと大き
く、また、温度サイクル試験後でも導通抵抗は変化率が
2%と小さく、さらに、伝送特性も40GHzの高周波領
域においても‐0.51dBと小さいという優れたものであ
った。
On the other hand, the multilayer wiring board of the present invention is
The insulation resistance is as large as 2.7 × 10 11 Ω even after the high temperature bias test, the rate of change in the conduction resistance is as small as 2% even after the temperature cycle test, and the transmission characteristics are also small at -0.51 dB even in the high frequency range of 40 GHz. It was an excellent thing.

【0068】[0068]

【発明の効果】本発明の絶縁フィルムによれば、トリア
リルイソシアヌレートとの接触角が3〜50°であって、
かつ表面エネルギーが45〜70mJ/m2である液晶ポリ
マー層の上下面にポリフェニレンエーテル系有機物から
成る被覆層を形成して成ることから、液晶ポリマー層の
上下面に被覆層が良好に濡れ広がるとともに、液晶ポリ
マー層表面の活性化された比較的熱運動しやすい分子層
と被覆層とが良好に絡み合って結合し、その結果、高温
バイアス試験においても両者間で剥離することのない絶
縁フィルムとすることができる。また、ポリフェニレン
エーテル系有機物分子が液晶ポリマー分子ほど剛直でな
く、また、規則正しい配向性も示さないことから分子が
比較的動きやすく、その結果、絶縁フィルムを多層化し
た場合においても、絶縁フィルム同士の密着性が良好と
なり、高温バイアス試験においてフィルム間で剥離して
絶縁不良が発生してしまうということもない。さらに、
絶縁フィルム表面に配線導体を配設した場合において
も、ポリフェニレンエーテル系有機物分子が配線導体表
面の微細な凹部に入り込み十分なアンカー効果を発揮す
ることができ、絶縁フィルムと配線導体との密着性が良
好となり、その結果、高温高湿下で両者間で剥離して配
線導体が断線してしまうということもない。また、ポリ
フェニレンエーテル系有機物から成る被覆層と液晶ポリ
マー層の誘電率の周波数挙動がほぼ等しいことから、配
線導体を接着する際の加圧によって被覆層にわずかな厚
みばらつきが生じたとしても、高周波領域における伝送
特性に低下を生じることのない高周波伝送特性に優れた
絶縁フィルムとすることができる。
According to the insulating film of the present invention, the contact angle with triallyl isocyanurate is 3 to 50 °,
In addition, since the coating layer made of polyphenylene ether organic material is formed on the upper and lower surfaces of the liquid crystal polymer layer having a surface energy of 45 to 70 mJ / m 2 , the coating layer spreads well on the upper and lower surfaces of the liquid crystal polymer layer. , The activated molecular layer on the surface of the liquid crystal polymer layer, which is relatively easily moved by heat, and the coating layer are well entangled with each other, and as a result, an insulating film which does not peel off between the two even in the high temperature bias test. be able to. In addition, since the polyphenylene ether-based organic molecule is not as rigid as the liquid crystal polymer molecule, and the molecule is relatively easy to move because it does not exhibit regular orientation, as a result, even when the insulating films are multilayered, Adhesion is good, and there is no possibility that insulation failure occurs due to peeling between films in a high temperature bias test. further,
Even when the wiring conductor is arranged on the surface of the insulating film, the polyphenylene ether-based organic compound molecules can enter the fine recesses on the surface of the wiring conductor to exert a sufficient anchoring effect, and the adhesion between the insulating film and the wiring conductor can be improved. The result is good, and as a result, there is no possibility that the wiring conductor is broken due to peeling between the two under high temperature and high humidity. In addition, since the frequency behavior of the dielectric constant of the coating layer made of polyphenylene ether organic material and the liquid crystal polymer layer are almost the same, even if a slight thickness variation occurs in the coating layer due to pressure when bonding the wiring conductor, It is possible to obtain an insulating film excellent in high-frequency transmission characteristics without causing deterioration in transmission characteristics in a region.

【0069】また、本発明の絶縁フィルムによれば、上
記構成において、液晶ポリマー層の上下面の中心線表面
粗さRaを0.05〜5μmとしたことから、液晶ポリマー
層の上下面がポリフェニレンエーテル系有機物から成る
被覆層と良好なアンカー効果を有する密着性の良好なも
のとなり、液晶ポリマー層と被覆層とがより強固に密着
した絶縁フィルムとすることができる。
Further, according to the insulating film of the present invention, in the above structure, the center line surface roughness Ra of the upper and lower surfaces of the liquid crystal polymer layer is 0.05 to 5 μm, so that the upper and lower surfaces of the liquid crystal polymer layer are polyphenylene ether type. The coating layer made of an organic substance has a good anchoring effect and good adhesiveness, and an insulating film in which the liquid crystal polymer layer and the coating layer are more firmly adhered can be obtained.

【0070】さらに、本発明の絶縁フィルムによれば、
上記構成において、ポリフェニレンエーテル系有機物を
熱硬化性ポリフェニレンエーテルとしたことから、熱硬
化性ポリフェニレンエーテルが耐熱性に優れるとともに
寸法安定性に優れ、その結果、温度サイクル信頼性に優
れるとともに、配線導体を接着する際の位置精度の良好
な絶縁フィルムとすることができる。
Further, according to the insulating film of the present invention,
In the above configuration, since the polyphenylene ether-based organic material is a thermosetting polyphenylene ether, the thermosetting polyphenylene ether is excellent in heat resistance and dimensional stability, as a result, excellent in temperature cycle reliability, and the wiring conductor It is possible to obtain an insulating film having good positional accuracy when bonding.

【0071】また、本発明の多層配線基板によれば、多
層配線基板を上記の絶縁フィルムを用いて形成したこと
から、耐湿性・導通信頼性・高周波伝送特性に優れた多
層配線基板とすることができる。
Further, according to the multilayer wiring board of the present invention, since the multilayer wiring board is formed by using the above-mentioned insulating film, the multilayer wiring board is excellent in moisture resistance, continuity reliability and high frequency transmission characteristics. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の絶縁フィルムの実施の形態の一例を示
す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of an insulating film of the present invention.

【図2】本発明の多層配線基板に半導体素子を搭載して
成る混成集積回路の実施の形態の一例を示す断面図であ
る。
FIG. 2 is a sectional view showing an example of an embodiment of a hybrid integrated circuit in which a semiconductor element is mounted on a multilayer wiring board of the present invention.

【図3】図2に示す多層配線基板の要部拡大断面図であ
る。
FIG. 3 is an enlarged cross-sectional view of a main part of the multilayer wiring board shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・・・・・・液晶ポリマー層 2・・・・・・・・被覆層 3・・・・・・・・絶縁フィルム 4・・・・・・・・配線導体 5・・・・・・・・貫通導体 6・・・・・・・・多層配線基板 1 ... Liquid crystal polymer layer 2 ... coating layer 3 ... Insulation film 4 ... Wiring conductor 5 ... Penetration conductor 6 ... Multi-layer wiring board

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 71/12 C08L 71/12 H05K 1/03 610 H05K 1/03 610H 3/38 3/38 E Fターム(参考) 4F100 AA20 AK54B AK54C AK80A BA03 BA06 BA10B BA10C DE01 EJ61 GB43 JB04A JB13B JB13C JG04 JK14A YY00A 4J002 CH071 FD010 FD130 GF00 GH00 GQ01 5E343 AA02 AA13 AA16 AA38 BB05 BB24 BB67 EE21 EE22 GG01 5E346 AA06 AA12 AA15 AA22 AA32 AA43 AA51 CC08 CC32 CC41 DD02 DD12 DD32 EE06 EE07 EE09 EE13 EE18 GG28 HH01 HH06 HH08 HH11 HH25 HH26─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 71/12 C08L 71/12 H05K 1/03 610 H05K 1/03 610H 3/38 3/38 EF Term (Reference) 4F100 AA20 AK54B AK54C AK80A BA03 BA06 BA10B BA10C DE01 EJ61 GB43 JB04A JB13B JB13C JG04 JK14A YY00A 4J002 CH071 FD010 FD130 CC32 A32 A21 A22 A22A22A22A21A21A22A22A21A21A22A21A22A21A22A22A21A21A22A21A21A22A22A22A21A21A22A22A22 DD02 DD12 DD32 EE06 EE07 EE09 EE13 EE18 GG28 HH01 HH06 HH08 HH11 HH25 HH26

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 トリアリルイソシアヌレートとの接触角
が3〜50°であって、かつ表面エネルギーが45〜7
0mJ/m2である液晶ポリマー層の上下面にポリフェ
ニレンエーテル系有機物から成る被覆層を形成して成る
ことを特徴とする絶縁フィルム。
1. A contact angle with triallyl isocyanurate is 3 to 50 ° and a surface energy is 45 to 7.
An insulating film comprising a liquid crystal polymer layer of 0 mJ / m 2 and a coating layer made of a polyphenylene ether organic material formed on the upper and lower surfaces thereof.
【請求項2】 前記液晶ポリマー層の上下面は中心線表
面粗さRaが0.05〜5μmであることを特徴とする
請求項1記載の絶縁フィルム。
2. The insulating film according to claim 1, wherein the upper and lower surfaces of the liquid crystal polymer layer have a centerline surface roughness Ra of 0.05 to 5 μm.
【請求項3】 前記ポリフェニレンエーテル系有機物が
熱硬化性ポリフェニレンエーテルであることを特徴とす
る請求項1または請求項2記載の絶縁フィルム。
3. The insulating film according to claim 1, wherein the polyphenylene ether-based organic material is a thermosetting polyphenylene ether.
【請求項4】 上下面の少なくとも一方の面に金属箔か
ら成る配線導体が配設された請求項1乃至請求項3のい
ずれかに記載の絶縁フィルムを複数積層して成るととも
に、該絶縁フィルムを挟んで上下に位置する前記配線導
体間を前記絶縁フィルムに形成された貫通導体を介して
電気的に接続したことを特徴とする多層配線基板。
4. The insulating film according to claim 1, wherein a wiring conductor made of a metal foil is disposed on at least one of the upper and lower surfaces, and the insulating film is laminated. A multilayer wiring board, characterized in that the wiring conductors located above and below with a pinch therebetween are electrically connected via a penetrating conductor formed in the insulating film.
JP2001260275A 2001-08-29 2001-08-29 Insulation film and multilayer interconnection board using the same Pending JP2003069237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260275A JP2003069237A (en) 2001-08-29 2001-08-29 Insulation film and multilayer interconnection board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260275A JP2003069237A (en) 2001-08-29 2001-08-29 Insulation film and multilayer interconnection board using the same

Publications (1)

Publication Number Publication Date
JP2003069237A true JP2003069237A (en) 2003-03-07

Family

ID=19087502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260275A Pending JP2003069237A (en) 2001-08-29 2001-08-29 Insulation film and multilayer interconnection board using the same

Country Status (1)

Country Link
JP (1) JP2003069237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305734A (en) * 2004-04-20 2005-11-04 Sumitomo Chemical Co Ltd Liquid crystalline aromatic polyester-laminated film and its application
JP2007227420A (en) * 2006-02-21 2007-09-06 Nippon Steel Chem Co Ltd Multilayer printed wiring board
KR101262135B1 (en) 2006-02-21 2013-05-14 신닛테츠 수미킨 가가쿠 가부시키가이샤 Multilayer printed wiring board and method for manufacturing same
JP7447459B2 (en) 2019-12-16 2024-03-12 株式会社レゾナック Method of manufacturing a laminated film, wiring board, and method of manufacturing a semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305734A (en) * 2004-04-20 2005-11-04 Sumitomo Chemical Co Ltd Liquid crystalline aromatic polyester-laminated film and its application
JP4649867B2 (en) * 2004-04-20 2011-03-16 住友化学株式会社 Aromatic liquid crystal polyester laminated film and use thereof
JP2007227420A (en) * 2006-02-21 2007-09-06 Nippon Steel Chem Co Ltd Multilayer printed wiring board
JP4587974B2 (en) * 2006-02-21 2010-11-24 新日鐵化学株式会社 Manufacturing method of multilayer printed wiring board
KR101262135B1 (en) 2006-02-21 2013-05-14 신닛테츠 수미킨 가가쿠 가부시키가이샤 Multilayer printed wiring board and method for manufacturing same
KR101262136B1 (en) * 2006-02-21 2013-05-14 신닛테츠 수미킨 가가쿠 가부시키가이샤 Multilayer printed wiring board and method for manufacturing same
JP7447459B2 (en) 2019-12-16 2024-03-12 株式会社レゾナック Method of manufacturing a laminated film, wiring board, and method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JP2005072328A (en) Multilayer wiring board
JP4462872B2 (en) Wiring board and manufacturing method thereof
JP2003069237A (en) Insulation film and multilayer interconnection board using the same
JP2006191145A (en) Multilayer wiring board
JP2002261453A (en) Multilayer interconnection board
JP3694673B2 (en) Insulating film and multilayer wiring board using the same
JP3872360B2 (en) Multilayer wiring board
JP4025695B2 (en) Insulating layer with protective film and method for producing wiring board
JP4959066B2 (en) Insulating film and multilayer wiring board using the same
JP3878832B2 (en) Multilayer wiring board
JP2003159768A (en) Insulation film and multilayer wiring board using the same
JP2003039602A (en) Insulating film and multilayered wiring board
JP2003174264A (en) Insulation film and multilayer wiring substrate employing the same
JP2003163460A (en) Insulating film and multilayer wiring board using the same
JP2003062942A (en) Insulating film and multilayered wiring board using the same
JP2004179011A (en) Insulating film and multilayer wiring board using this
JP2006191146A (en) Method of manufacturing multilayer wiring board
JP2003340970A (en) Insulating film and multilayer circuit board using the same
JP2004082554A (en) Insulating film and multilayer printed circuit board using the same
JP2002290055A (en) Multilayer wiring board
JP2002324978A (en) Multilayer wiring board
JP2004090238A (en) Insulating film and multi-layer wiring board using the film
JP2005050877A (en) Wiring board
JP4508498B2 (en) Multilayer wiring board
JP2003347454A (en) Multilayer wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613